
Approximative Real-Time Analysis

DISSERTATION

zur Erlangung des akademischen Grades eines
Dr. rer. nat.

der Fakultät für Ingenieurwissenschaften und Informatik
der Universität Ulm

vorgelegt von
Karsten Albers

aus Erlangen

Institut für Eingebettete Systeme / Echtzeitsystem, 2011

2

Amtierender Dekan: Prof. Dr.-Ing. Klaus Dietmayer
Universität Ulm, Deutschland

Gutachter: Prof. Dr.-Ing. Frank Slomka
Universität Ulm, Deutschland

Gutachter: Prof. Dr. Helmuth A. Partsch
Universität Ulm, Deutschland

Externer Gutachter: Prof. Dr. Lothar Thiele
ETH Zürich, Schweiz

Tag der Promotion: 08.04.2011

Contents

List of Figures 5

List of symbols 9

Chapter 1. Introduction 11

Chapter 2. Related Work 15

2.1. Schedulability analysis for task sets with static priorities 17

2.2. Schedulability analysis for task sets with dynamic priorities 20

2.3. Event models 32

Chapter 3. Approximation for dynamic priorities 49

3.1. Periodic task system 50

3.2. Capacity calculation for the period task model 56

3.3. Event Stream Model 57

3.4. Proofs 60

3.5. Approximation error 66

3.6. Complexity 69

3.7. Comparison to related work 70

Chapter 4. Adaptive schedulability tests 73

4.1. Dynamic error analysis 73

4.2. All-approximated algorithm 77

4.3. Generalization of the maximum test interval 82

4.4. Complexity 82

Chapter 5. Approximation for static priority scheduling 85

5.1. Exact schedulability analysis 85

5.2. Exceeding costs 91

5.3. Approximation of Static Priorities 95

5.4. Dynamic adaptive test 99

5.5. Complexity 103

Chapter 6. Evaluations 105

6.1. General setup of the experiments 105

6.2. Superposition approximation 107

6.3. Dynamic Approximation Approaches 116

6.4. Approximation and Dynamic approximation for static priorities 127

3

4 CONTENTS

6.5. Previous approaches 132

Chapter 7. Hierarchical event spectra 139

7.1. Limitations of the event stream model 139

7.2. Spectra 141

7.3. Reduction and normalization of hierarchical event spectra 148

7.4. Capacity Function 150

7.5. Modeling common event models with event spectra 152

7.6. Event Spectra Algebra 154

7.7. Schedulability analysis 161

7.8. Limitations of the hierarchical event stream model 165

Chapter 8. Approximation of hierarchical event spectra 167

8.1. First approach: Separate approximation for each element 168

8.2. Second approach: Global approximation for each element 172

8.3. Summarizing Examples 183

Chapter 9. Case-Study 189

Chapter 10. Summary and Outlook 197

Zusammenfassung 201

Bibliography 211

List of Figures

1.0.1 Example of a distributed hard-real time system published in [77] 12

2.0.1 Example task set 17

2.2.1 Example demand bound function 23

2.2.2 Example demand bound function with large ratio 31

2.3.1 Example Event Sequence 34

2.3.2 Example event bound function 35

2.3.3 Example event streams ([60]) 37

2.3.4 Transformation periodic event sequence into event stream 37

2.3.5 Scheduling network for real-time calculus 44

2.3.6 Real-Time Calculus of single task 44

3.1.1 Approximation of a single task 52

3.1.2 Adding two approximated demand bound functions 53

3.1.3 Visualization of the approximation bound 54

3.4.1 Visualization of lemma 3.4.3 63

3.5.1 Approximation related to the time 68

4.1.1 Exact demand bound function 73

4.1.2 Graphical visualization for an example of the dynamicerror test 74

4.2.1 Graphical visualization of the all-approximation algorithm 79

5.1.1 Example of satisfaction intervals 89

5.1.2 Worst-case response-time with satisfaction intervals 90

5.2.1 Task set example for exceeding costs 92

6.2.1 Superposition: ratio of schedulable task sets for different utilizations 107

6.2.2 Superposition: ratio of schedulable task sets (50 tasks) 108

6.2.3 Superposition: ratio of schedulable task sets (500 tasks) 109

6.2.4 Superposition: ration of schedulable task sets for different average gaps 110

6.2.5 Superposition: ratio of schedulable task sets for different ratios between the

largest and smallest task in the task set (100 tasks per task set) 111

5

6 LIST OF FIGURES

6.2.6 Superposition: average run-time for different utilizations 111

6.2.7 Superposition: average run-time for different utilizations (500 tasks) 112

6.2.8 Superposition: average run-time for different utilizations for only the

schedulable task sets 113

6.2.9 Superposition: maximum run-time for different utilizations (with PDC) 114

6.2.10 Superposition: maximum run-time for different utilizations (50 tasks) 114

6.2.11 Superposition: maximum run-time for different utilizations with PDC (500

tasks) 115

6.2.12 Superposition: maximum run-time for different ratios between smallest and

largest task in the task set 115

6.2.13 Superposition: Average run-time for different utilizations with exponential

distribution of periods 116

6.2.14Superposition: maximum run-time for different utilizations with exponential

distribution of periods 117

6.2.15Superposition: run-time for different number of tasks in the task sets 117

6.3.1 Adaptive analysis: maximum run-time 118

6.3.2 Maximum computation time of adaptive analysis (50 tasks) 119

6.3.3 Adaptive analysis: maximum run-time - exponential distribution of periods 119

6.3.4 Adaptive analysis: average run-time 120

6.3.5 Adaptive analysis: maximum run-time (500 tasks) 121

6.3.6 Adaptive analysis: average run-time (500 tasks) 121

6.3.7 Adaptive analysis: maximum run-time for different ratios between largest and

smallest period for 98% utilization 122

6.3.8 Adaptive analysis: maximum run-time of the test for different number of tasks

in the task set for 98% utilization 124

6.3.9 All-approximation test: different kind of orders 124

6.4.1 Static analysis: ratio schedulable task sets - normaldistribution of periods 128

6.4.2 Static analysis: maximum required computation time for exact static analyses -

normal distributed periods 128

6.4.3 Static analysis: average run-time - normal distributed periods 129

6.4.4 Static analysis: average run-time - normal distributed periods (500 tasks) 130

6.4.5 Static analysis: maximum run-time for different number of tasks - normal

distributed periods 130

6.4.6 Static analysis: maximum required run-time for approximative static analyses

algorithms - exponential distributed periods 131

6.4.7 Static analysis: average run-time - exponential distributed periods 131

6.5.1 EDF: acceptance ratio of the approach of Masrur et al. (normal distribution) 132

LIST OF FIGURES 7

6.5.2 EDF: max run-time compared of approach of Masrur et al.(normal distribution)133

6.5.3 EDF: acceptance ratio of the approach of Masrur et al. (exp. distribution) 133

6.5.4 EDF: max run-time compared of approach of Masrur et al.(exp. distribution) 134

6.5.5 EDF: average run-time of the previous approaches 134

6.5.6 EDF: maximum run-time of the previous approaches 135

6.5.7 Static priorities: average run-time of previous approaches 136

6.5.8 Static priorities: maximum runtime of previous approaches 136

7.1.1 Example Event Spectrum 140

7.1.2 Example task graph generating bursts 141

7.2.1 Hierarchical event spectrum̂Θ6 143

7.2.2 Example for overlapping events of different periods 145

7.2.3 Example event spectrum 146

7.2.4 Example simple periodic event sequence 147

7.4.1 Example service bound functions 151

8.1.1 Approximated hierarchical spectrum bound function 170

8.2.1 Case one simple event spectrum element 173

8.2.2 One-level event spectrum element 175

8.2.3 Approximation for hierarchical event spectra 179

8.3.1 Example 8.1.2: Approximated hierarchical event bound function 184

8.3.2 Example 8.1.2: Periodic model with minimum separation distance 185

8.3.3 Example 8.1.2: Approximation of the real-time calculus 186

9.0.1 Example of a distributed hard-real time system published in [77] 189

10.0.1 Approximation einer einfachen Task 207

10.0.2 Anteil der als planbar klassifizierten Tasksets 208

10.0.3 Maximale Laufzeit der Echtzeitanalysen für verschieden Approximationstufen 208

10.0.4 Rechenzeiten der dynamischen Approximation und desProcessor-Demand-

Criterion 209

List of symbols

descriptor meaning First defined in

τ task chapter2

Γ task set chapter 2

τi, j j- th job of a taskτi chapter 2

p period chapter 2

c execution-time chapter 2

c+ worst-case execution-time chapter 2

c− best-case execution-time chapter 2

d relative deadline chapter 2

U utilization chapter 2

∆t interval section 2.1

r response time section 2.1

hp(τ) set of tasks with a higher priority thanτ section 2.1

j jitter section 2.1

S scheduling point set section 2.1

δ () demand bound function section 2.2.2

χ() capacity bound function section 2.2.2

∆tmax maximum test interval section 2.2.3

∆tLCM least-common multiple of periods interval section 2.2.3

B() busy period function section 2.2.3

n number of tasks section 2.2.4

η() event bound function section 2.3.2

Θ periodic event sequence section 2.3.2

θ event element section 2.3.2

a offset / initial interval section 2.3.2

ψ() interval bound function section 2.3.2

s minimum separation distance section 2.3.4

α arrival curve section 2.3.6

αu upper arrival curve section 2.3.6

α l lower arrival curve section 2.3.6

β service curve section 2.3.6

β u upper service curve section 2.3.6

β l lower service curve section 2.3.6

9

10 LIST OF SYMBOLS

descriptor meaning First defined in

γ either arrival or service curve section 2.3.6

ρ resource section 2.3.6

inf() infimum section 2.3.6

sup() supremum section 2.3.6

δ ′() approximated demand bound function section 3.1

ε approximation error section 3.1

k number of exact evaluated test intervals section 3.1

C capacity section 3.2

ρ() request bound function section 5.1

E () exceeding costs function section 5.2

Θ̂ event spectrum section 7.2

Θ̂k approximated event spectrum withk exact evaluated test intervals section 8

Θ̂+ upper event spectrum section 7.2

Θ̂− lower event spectrum section 7.2

θ̂ event spectrum element section 7.2

n limitation (amount of costs / number of events) section 7.2

L limitation (length of interval) section 7.2

f slope section 7.2

CHAPTER 1

Introduction

An average car of today has a large number of embedded systemshandling applica-

tions. The requirements to reduce fuel consumption combined with the pollution reduction

leads to complex motor management systems. A growing numberof driver assistance

systems like the break management, the electronic stabilization program, the potential col-

lision detection and so on, are integrated in modern cars.

The result of all these new features is the integration of up to 70 ECUs (electronic

control units) with hundreds of functions in a modern car [120] ([121] speaks of up to 100

ECUs) and that the embedded systems are responsible for often more than 20% of the total

costs of a car. All these embedded car systems are connected and communicate with each

other. In future there will be a lot more of such systems like car-to-car communication to

get a complete picture of the traffic ahead.

Cost reduction is a very important topic for today’s automotive industry. One way

to do this would be to reduce the number of different systems and to substitute expensive

systems with inexpensive ones, if possible. Nowadays, manyof the systems build in cars

are designed independently of each other, often from different suppliers. They form a

separate unit of hardware and software. In the future, the integration of several applications

on one system will be required. For example AUTOSAR is an approach of the automotive

industry in this direction [120]. It allows the separation of the functionality from the ECUs

and enables therefore the integration of functionality from different vendors on the same

ECUs.

But, as many of these applications can be critical for safety, we need to be able to

rely on these kinds of systems. It is not only necessary that these systems always deliver

the correct results but it is required that they do this within the available time. For such

real-time systems methods are required to prove and predictreliability. The best would be

to have formal methods that can proof mathematically the real-time requirements. This is

not an easy task, especially if several embedded systems areconnected and work together

or interfere with each other.

The module-based design processes make it possible to handle the complexity in soft-

ware and hardware designs. Systems are constructed using a set of closed modules. These

modules can be designed and developed separately. The purpose of modularization is to

split the challenging job of designing the whole system intomultiple smaller jobs. Another

purpose is to allow the reuse of modules in different designs. Also for using IP (Intellectual

property) components, which are developed by third-party vendors, it is necessary to have

a module-based design concept.

11

12 1. INTRODUCTION

FIGURE 1.0.1. Example of a distributed hard-real time system pub-
lished in [77]

For each set of modules a well-defined interface-concept forconnecting the different

modules is required. For developing real-time systems withsuch a modular approach it

would be interesting to have a concept for analyzing the system which can handle the real-

time aspects of the different modules separately. With thisconcept it is possible to hide the

details of the scheduling and its real-time analysis insidethe modules and to abstract the

interface from the construction of the modules. For the global real-time analysis it is nec-

essary to propagate the analyses results of the different modules in an abstract way through

the system. The global analysis can than be build by connecting the local analyses of the

single modules by well-defined interfaces. Therefore it is essential to have an expressive

and efficient interface describing the influence in time of one module to the next module.

One aspect of this interface is the timing description of events, which are produced by one

module to activate the next following module. Another aspect is the remaining computa-

tion capacity for the next module left over by the previous modules.

Consider for example a system as shown in figure 1.0.1. Chainsof tasksτi that can be

located on different resourcesρi process the activations. There are three chains of tasks.

The tasks are distributed on two processors and one connecting bus. Each of these tasks

can be considered as one separate module. The resourcesρ can be processors, dedicated

1. INTRODUCTION 13

hardware or the communication network. The tasks are activated either by events from

other tasks or events from dedicated sources (in the model).The resource CPU2 uses a

fixed-priority scheduling. The available capacity for eachtask on CPU2 depends on the

totally available capacity for CPU2 and on the consumed capacity of all tasks with a higher

priority on the same resource. See chapter 9 for a detailed description of the example.

First, we need an accurate but compact model to describe the events in the network.

We need an event model to describe the incoming and outgoing event streams and we

need a model for the existing and remaining capacities. Second, we need a methodology

to analyze each task together with his incoming streams. This methodology requires not

only to proof the real-time constraints of the task itself but also to calculate the outgoing

streams.

Having many different modules and the requirement of cost reduction in mind we

need an optimization process to find the cheapest set of hardware components that can

handle all the tasks and the best distribution of the tasks between hardware and software

components that keeps the costs low but still achieves all necessary real-time requirements.

For the optimization it is necessary to analyze thousands ofdifferent possible distributions

and therefore to perform a complex real-time analysis for each of them. The previously

available real-time analysis approaches are either only sufficient or have a exponential or

pseudo-polynomial complexity. Sufficient means that thereare many schedulable systems,

especially those leading to a high utilization of the systems, which cannot be classified

correctly with these approaches. Therefore an efficient method for real-time analysis is

required that reduces the run-time of the previous methods.

The purpose of this thesis is to develop such a new efficient way for real-time analysis.

The idea is to allow a faster analysis by using a bit of uncertainty. An approximation algo-

rithm solves this. The advantage of this approximation is a lower (polynomial) complexity

than the one of previous results and that it can guarantee both the maximum run-time and

the degree of uncertainty. In chapter 3 we propose such an approximation for the optimal

EDF scheduling, in chapter 4 we propose fast exact analysis algorithms based an the ap-

proximation algorithms using a dynamically changing degree of exactness and in chapter

5 we extend both kinds of algorithms to static priority scheduling.

Additionally, we contribute to the theory of event models. The real-time calculus

and the sub-additive and super-additive event bound functions (and also service / capac-

ity bound functions) on which the real-time calculus is based are the key concept for the

schedulability analysis. The answer on the question how many events can occur at most /

at least within any possible interval of length∆t for each interval length∆t leads to a inte-

grated theory on schedulability analysis. These functionsextract the worst-case situations

of all possible concrete schedules into one single description. We call this concept event

spectrum, because an event spectrum contains all possible worst-case event densities like

the light spectrum contains all possible wavelengths of thedifferent colors of light. Having

an efficient and compact description for event spectra whichallows a fast calculation of

the values for each interval leads to an efficient real-time analysis. Many proposed models

in the real-time community are concrete descriptions of event spectra or can be interpreted

14 1. INTRODUCTION

as a description of event spectra. Examples are the event stream model [61] (introduced in

section 2.3.2), the periodic model with jitter and minimum separation distance (introduced

in section 2.3.4), the concrete description and the approximation of the real-time calculus

curves (introduced in section 2.3.6). Also most of the analysis proposed for the periodic

model, the periodic model with jitter and the recurring real-time task model are fulfilling

the conditions of event spectra. Of course our approximation and all the analysis algorithm

proposed for them in chapter 3, chapter 4 and chapter 5 are based also on event spectra.

In this work we propose a new concrete description for event spectra, the hierarchical

event spectra model. It is a general model that overcomes some limitations of the event

stream model and is especially suitable for modeling all kind of bursts efficiently.

We have already published several ideas and concepts proposed in this thesis. In [5]

we have presented the superposition approximation analysis for EDF systems. An early

idea of the approximation was developed in our master thesis[1]. In [6] we have extended

this analysis to new fast exact analysis and proposed the dynamic error test and the all-

approximation analysis. Also we have outlined there the relationships of the superposition

analysis to previous work. This covers a sufficient analysisapproach proposed by U. Devi

[46] and a proposed approximation for the real-time calculus approach [37, 38]. We have

proposed our extension of the approximation to static priority scheduling and also of a fast

exact analysis algorithm to static priority scheduling [3]. A first version of the hierarchical

event spectra model, which we will introduce in chapter 7, has been published in [2], an

advanced version in [4].

CHAPTER 2

Related Work

Despite that the first fundamental work in the area of schedulability analysis is more

than 30 years old, many questions in this area are still open.Most achievements have been

made in the past 10 to 15 years. Nearly all work in the area cites the seminal work of Liu

and Layland [88]. Liu and Layland consider a simple task model that consists of a set of

independent preemptive tasks bounded on one processing element. Each task is described

by a worst-case execution time and a deadline. A task is invoked multiple times and the

invocation rate is described by a single period only. The work is restricted to task sets in

which the deadline of each task is equal to the period of its invocation rate. So, a new

invocation can only occur in this model after the processingof the previous invocation has

finished.

Each invocation is called an event of the task and leads to oneexecution of the task

called a job of the task. The event pattern of a task describeshow events of this task can

occur. It is assumed in the model that in the worst-case, events of all tasks can occur

concurrently. Liu and Layland proved for this model the optimality of the deadline mono-

tonic priority assignment for static priority scheduling (tasks with a smaller deadline gets

a higher priority, those with a longer deadline a lower priority). They also proved the opti-

mality of earliest deadline first (EDF) scheduling; a scheduling with dynamic priorities, in

the sense that every task set that cannot be scheduled by EDF holding all of its deadlines

cannot be scheduled by any other scheduling strategy. Additionally, they give a sufficient

schedulability condition for the deadline monotonic assignment and proved that systems

using preemptive EDF scheduling meet all their deadlines unless they are overloaded, e.g.

their utilization exceeds 100%.

Unfortunately, most of these results are no longer valid when the restrictions of the task

model are relaxed. The utilization conditions are still valid in case of extended deadlines

but they are no longer valid for tasks having deadlines smaller than their corresponding

periods. For such task sets the optimality condition of EDF remains true but the RM

priority assignment has to be exchanged with the deadline monotonic assignment (DM)

[84], giving those tasks a higher priority having a smaller deadline assigned to the task.

Note that the RM priority assignment is only a special case ofthe DM priority assignment

in case of the simple task model having only tasks with a deadline equal to the task period.

The schedulability analysis tells whether a given task set with a given scheduling keeps

always all of its deadlines. The result of the schedulability analysis is independent of the

concrete schedule and the concrete stimulation of a system as long as both are within the

15

16 2. RELATED WORK

given bounds of the task set and the scheduling scheme. Overviews of this area are given

in [33, 34, 82, 90].

We have to distinguish between the analysis of distributed and of uni-processor sys-

tems. Distributed systems can be distinguished into multi-processor systems and hetero-

geneous distributed systems. In multi-processor systems there exist no fixed distribution

of the tasks on the single processors and also no or only few dependencies between the

tasks. This leads to a centralized scheduling scheme. In [7,11, 15, 36, 54] approaches for

different scheduling schemes with or without task migration are introduced. We will not

consider multi-processor systems without a fixed task distribution despite that some of the

proposed approaches are useful also for this area [11, 54].

For the analysis for heterogeneous distributed systems theconsideration of dependen-

cies between the tasks is required. Normally system architecture with a fixed distribution of

the tasks on the processing units of the system is used. The distribution (and partitioning) of

the system can be done separately for the analysis by the developer or with an optimization

process [29, 44, 45, 48, 49]. The schedulability analysis can then use a fixed distribution

of the tasks. The holistic scheduling analysis [130], an extension of the response-time

analysis for single processor systems, which will be explained in the following section,

uses the jitter to cover the dependencies between the tasks.It was improved and extended

by several subsequent approaches [64, 97, 99, 100, 112, 114,115]. To cover dependencies

between tasks on the same processing unit the transaction model [129] was developed.

The key concept is to group dependent tasks into transactions. The approached was im-

proved and combined with the holistic scheduling analysis in [20, 98, 99, 111, 112, 113].

Approaches for calculating certain kinds of task dependencies are for example given in

[65, 74, 75].

In several approaches the analysis of task sets with specialcharacteristics have been

considered. This includes for example task sets with resource constraints [85], mixed time-

and event-activated tasks [107, 108, 109], self-suspending tasks [116] and task sets with

selectable offsets [59]. All these approaches are specialized to cover one characteristic of

the system only.

General holistic approaches for the schedulability analysis for distributed systems are

given for example with the extended periodic model [50, 62, 65, 69, 70, 71, 72, 110, 117,

118] and the real-time calculus approach [31, 39, 76, 78, 95,127, 128, 131, 132, 133].

These approaches, and there relationship to this work, are introduced later in detail.

In the following sections we will give a closer look on the schedulability analysis

for uni-processor systems. The schedulability analysis covers the worst-case situations,

especially the worst-case densities of events. Relaxing these worst-case situations will

preserve the schedulability condition. These circumstances allow the integration of tasks

which do not have a constant invocation rate or for which the event pattern is not known.

Those tasks are called sporadic tasks. For these tasks the minimum time between two

events of the task is used as period in the schedulability tests. Note, that this might lead

to a very pessimistic analysis for tasks having a minimum distance between events that is

much lower than the average distance between consecutive events of the task.

2.1. SCHEDULABILITY ANALYSIS FOR TASK SETS WITH STATIC PRIORITIES 17

τ1

τ1

τ1

τ2
τ2,2

τ3,1

τ1
τ1,2

τ3

τ2,1

τ3,1

τ1,1 τ1,3 τ1,4

τ2,1

P

d

+c

ms

ms

ms

FIGURE 2.0.1. Example task set

Let Γ be a task set having tasksτ ∈ Γ with τ = (pτ ,c+
τ ,dτ) andτi,n be then-th job

of taskτi . Let dτ be the relative deadline,c+
τ be the worst-case execution time andpτ be

the period of (or minimum distance between) the events activatingτ. Let Uτ = c+
τ

pτ
be the

utilization of taskτ andUΓ = ∑τ∈ΓUτ = ∑τ∈Γ
c+

τ
pτ

be the utilization of the complete task

set. A task set is called rate monotonic if for all tasksτ in the task setΓ the period is equal

to the deadline of the task(∀τ ∈ Γ : pτ = dτ) and the task with the smaller period/ deadline

gets the higher priority.

2.1. Schedulability analysis for task sets with static priorities

Let us first consider the previous results in the area of fixed priority scheduling.

THEOREM 2.1.1. [88] Let n = |Γ| be the number of tasksτ in Γ. All tasks of an rate

monotonic task set meet their deadlines if

UΓ ≤ n(
n
√

2−1)

PROOF. See [88]. �

The analysis guarantees the schedulability of task sets having utilization not larger than

the given bound. For large numbers of tasks in the task set e.g. n→ ∞ the test bound will

converge to ln2, that is approximately a utilization of 69.3%. For task sets with utilizations

larger than 69.3% it is uncertain whether they meet all deadlines or not. Therefore the

analysis is only sufficient.

This first schedulability condition for RM scheduling of Liuand Layland was im-

proved several times. In [42] the test bound was improved by considering possible rela-

tionships between the periods of different tasks of the tasksets. The results of [102, 63, 89]

are based on a similar idea. The latest result in this area is the Hyperbolic Bound (HB), a

schedulability condition proposed by Bini et al. [22, 23, 25, 27, 28]:

18 2. RELATED WORK

THEOREM2.1.2. A rate monotonic (RM) task set (deadline equal to the periodsof the

tasks) is schedulable with fixed priority scheduling and a RMpriority assignment if

∏
∀τ∈Γ

(Uτ +1)≤ 2

PROOF. See [27] �

This bound is better than the previous bounds and improves the acceptance ratio up to√
2 compared to the bound proposed by Liu and Layland. All theseschedulability bounds

can be evaluated fast even for large task sets. Unfortunately, they are only sufficient, e.g.

not all schedulable task sets can be recognized as such by thetest. Additionally, the bounds

mentioned are only valid for the restricted RM task model.

For an analysis which is both sufficient and necessary the worst-case response-time

analysis was developed initially by Joseph and Pandya [73] and later improved in [9].

It calculates the worst-case response times of each task separately by using a fixed-point

iteration, taking the interferences by higher priority tasks into account:

THEOREM2.1.3. [73] For the worst-case response time rτ of a taskτ ∈ Γ is given by

the smallest value for rτ fulfilling the following equation:

rτ = c+
τ + ∑

∀τ ′∈hp(τ,Γ)

⌈

rτ
pτ ′

⌉

c+
τ ′

PROOF. The fixed-point iteration is necessary because the response time depends on

the number of tasks interfering within this time, which again depends on the response-time

itself. The calculation would start with e.g. the executiontime of taskτ as initial value for

the response time. All interferences within this executiontime are then considered and the

initial response time is extended by the delay caused by these interferences. For a fixed-

priority scheduling scheme only interferences by tasks with a higher priority are relevant

(hp(τ,Γ)). In the worst case each of these interferences causes a delay with the worst-

case execution time of the task causing the interference, asthe worst-case length of the

delay. Extending the calculated initial response time by these delays leads to a new (longer)

response time, that can result in new additional interferences. These interferences cause

additional delays leading to a longer response time and so on. The fixed-point iteration

finishes when there are no new interferences or the response time of a task exceeds its

deadline. �

The response time analysis was the origin for a lot of work extending this result. The

introduction of a jitter was necessary to model variable stimuli. With jitter the arrival of

events is still assumed to be periodic in general but single events can arrive a bit earlier

or later compared to the strict periodic arrival scheme. Theinterval in which these earlier

or later arrival can happen is denoted jitter interval. Therefore the stimuli of a taskτ is

described by the periodp and the jitterj. The events generally occur periodically but the

arrival of each event can vary withinj. Therefore the average distance between two events

is p. Due to the jitter the minimum distance between two events can be p− j and the

maximum distance can bep+ j.

2.1. SCHEDULABILITY ANALYSIS FOR TASK SETS WITH STATIC PRIORITIES 19

A jittering high-priority task can cause more interferenceto a lower-priority task than

a non-jittering periodic high-priority task. Therefore the introduction of the jitter leads to

a modified worst-case response-time calculation. The number of interferencesI(∆t,τ) of

a taskτ within an interval∆t can be calculated by:

I(∆t,τ) =

⌈

1+
∆t− (p− j)

p

⌉

=

⌈

1+
∆t + j− p

p

⌉

=

⌈

1+
∆t + j

p
− p

p

⌉

=

⌈

∆t + j
p

⌉

Therefore the introduction of jitter leads to the followingmodified response time anal-

ysis:

THEOREM 2.1.4. [9] For a task τ with a period pτ a jitter jτ and a worst-case

execution time c+τ the response time is given by the minimum value for rτ fulfilling:

rτ = c+
τ + jτ + ∑

∀τ ′∈hp(τ,Γ)

⌈

rτ + jτ ′
pτ ′

⌉

c+
τ ′

PROOF. Follows directly out of the previous considerations. �

These results are only valid for task sets in which all tasks have a deadline smaller

or equal than their period. In case of larger deadlines, the worst-case response time is not

necessarily the response time of the first job of a task. A job having a response time being

longer than the period of the task can finish its execution later than the arrival of the next

following job. It can postpone the execution of this following job and therefore can cause

an even longer response time for this job. The previous analysis can be extended to solve

also these arbitrary deadline systems [79, 130]. The idea isto calculate the response time

of the first, second, third, job of a task until a job is found that finishes before the

invocation of the next following job. The resulting response time of the task is than the

maximum of all these job response times.

THEOREM 2.1.5. [79, 129] Letτi,q be the first job of taskτi having a response time

smaller than the invocation time of the next following eventof τi (r i ≤ (q+ 1)pi) in a set

of jobs following a simultaneous release of a job of all tasksin the task set. The response

time ri of τi is given by:

r i = maxn≤q(jτ + rn− (n−1)pτ)

rn = n ·c+
τ + ∑

∀τ ′∈hp(τ,Γ)

⌈

rn + jτ ′
pτ ′

⌉

c+
τ ′

PROOF. See [79]. �

In [122] some improvements for a faster implementation and in [32] better initial

start values are proposed. In [21] the response time of several consecutive jobs and in

[91] for transactions of tasks is considered.

An alternative analysis is the scheduling point test [80]. Ascheduling pointS for a

taskτ is a point in time in which all existing jobs of tasks with equal or higher priority than

τ and the task itself are finished. For the task itself it is onlynecessary that the currently

considered job is finished. In this case, the schedulabilitywith regard to a specific deadline

20 2. RELATED WORK

dτi is given when there exists a scheduling point with regard toτi that is equal or smaller

thandτi .

THEOREM 2.1.6. (similar to [80, 81]) A task setΓ is schedulable with respect to a

taskτ when there exists a time point S≤ dτ with:

S≤ ∑
∀τ ′∈hp(τ,Γ)∪τ

⌈

S
pτ ′

⌉

c+
τ ′

PROOF. See [80]. �

This test can be extended to the arbitrary case. Due to the possible existence of several

concurrent instances of a task the first scheduling point might occur later than the deadlines

of the first instances of a task. It is then necessary to additionally prove for all deadlinesD

occurring before the first scheduling pointSthat there exists a reduced scheduling pointS′

with regard to all tasks of higher priority and all such instances of the task that have to be

finished at deadlineD.

Manabe and Aoyagi [92] reduce the set of relevant schedulingpoints and proved that

in all cases in which a scheduling point exists, at least one element of the reduced set is

also a scheduling point.

THEOREM 2.1.7. [92] If there exists a scheduling point with regard to a taskτ than

one point in R is also a scheduling point

R=
⋃

τ ′∈hp(τ,Γ)∪τ
Qτ

τ ′

Qτ
τ ′ = {b

t
pτ ′
cpτ ′ |t ∈ (

⋃

τ ′′∈hp(τ,Γ)\hp(τ ′,Γ)

Qτ ′′ ∧ t < b t
pτ ′
cpτ ′+dτ ′)}

Qτ
τ = {dτ}

PROOF. See [92] �

Other than in previously introduced analysis concepts, thesize of this set and therefore

the complexity of this test only depends on the number of tasks in the task set and is

independent of the periods and deadlines involved. The sizeof the set is exponential in the

number of tasks and therefore the analysis has an exponential complexity too.

2.2. Schedulability analysis for task sets with dynamic priorities

Allowing a dynamic change of the priorities of tasks taking the concrete schedule

into account can lead to a higher possible utilization of a processor and therefore to the

schedulability of more tasks on the same processor. The mostimportant scheduling rule

using dynamic priorities is earliest deadline first scheduling (EDF). Liu and Layland proved

in [88] that EDF is an optimal scheduling in the sense that if atask set is schedulable on a

processor and keeps all its deadlines, it is schedulable using EDF scheduling.

2.2. SCHEDULABILITY ANALYSIS FOR TASK SETS WITH DYNAMIC PRIORITIES 21

2.2.1. Analysis with linear complexity. For the simple task and event model in

which every task has a stimulation period being larger or equal to the deadline of the

task, EDF allows a utilization of 100% (without consideration of the scheduling over-

head). Therefore each task set that does not overload a resource is schedulable with EDF

scheduling. Remember, that this bound is as low as 69.3% for fixed-priority scheduling.

The only step required for a schedulability analysis for EDFwith this bound is calcu-

lating the utilization of the task set on its resource. As no task set that overloads a resource

is schedulable this simple test is sufficient and necessary.Unfortunately, the situation is

not that easy when using a more restricted task or event model. In the case that a task

set includes at least one task having a deadline smaller thanthe period of its events, the

utilization-based analysis is no longer sufficient.

There are simple sufficient schedulability analyses even for less restricted models

available. One can be followed out of the utilization-basedanalysis by exchanging the

period with the deadline of the task.

THEOREM 2.2.1. [90] A task setΓ containing tasksτ ∈ Γ with deadline dτ smaller

than their period pτ is schedulable on a given resource if

∑
∀τ∈Γ

c+
τ

dτ
≤ 1

PROOF. Assume a more restricted task setΓ′ in which all tasks are assigned a period

pτ ′ with pτ ′ = min(dτ , pτ). For this task set the following condition holds:∑∀τ∈Γ
c+

τ
dτ
≥

∑∀τ ′∈Γ′
c+

τ ′
pτ ′

= UΓ′ .

If ∑∀τ∈Γ
c+

τ
dτ
≤ 1 then also∑∀τ ′∈Γ′

c+
τ ′

pτ ′
≤ 1, which means that the task setΓ′ is schedu-

lable if the task setΓ fulfills the lemma.Γ′ is only a restricted version ofΓ and soΓ can be

generated out ofΓ′ by relaxing some periods. AsΓ′ is schedulable and relaxing periods of

a schedulable task set leads again to a schedulable task set,Γ is schedulable. �

Unfortunately, this test is only sufficient and many schedulable task sets cannot be rec-

ognized as schedulable by this test. The utilizations achievable by the recognized schedu-

lable task sets are quite lower than the average utilizations of all schedulable task sets. For

example, if a task set includes a task having a deadline equalto its worst-case execution

time, the test would allow no other tasks in the task set even if this task only needs a low

fraction of the available processor time. Therefore a more realistic analysis was required.

Devi improved the sufficient analysis in [46].

THEOREM 2.2.2. [46] A task setΓ is schedulable if for each taskτ ∈ Γ the following

condition holds:

∑
∀τ ′∈Γ
dτ ′≤dτ

c+
τ ′

pτ ′
+

1
dτ

∑
∀τ ′∈Γ
dτ ′≤dτ

(

pτ ′−min(pτ ′ ,dτ ′)

pτ ′

)

c+
τ ′ ≤ 1

PROOF. See [46] �

22 2. RELATED WORK

This test is more accurate than the previous test. It was alsoproved that this test returns

“schedulable” in all those cases in which the previous test returns also “schedulable”. Un-

fortunately, the test is still only sufficient. In section 3.7 we will investigate the sufficiency

of the test and show interesting relationships of this test and results achieved in this theses.

Recently Masrur et al. proposed another sufficient test which we will introduce at the

end of section 2.2.3 as it requires some more theory in advance.

For a sufficient and necessary proof of the schedulability ofa task set having at least

one task with a deadline smaller than the period of the task’sevents a more complex anal-

ysis is necessary. An inefficient approach is the transfer ofthe worst-case response-time

analysis on dynamic priority scheduling approaches [47, 58, 125]. The processor demand

criterion is much more efficient.

2.2.2. Processor Demand Criterion.The processor demand criterion was, in a sim-

plified version, proposed by Leung & Merill [83] and improvedby Baruah et al. [19]

for the periodic task model. Later Gresser [60] proposed independently a similar test for

a more advanced event model, the event streams. The problem is reduced to an efficient

computation of one function; the demand bound function.

The idea is to calculate for each possible length of intervals∆t the maximum demand

of computation time that has to be processed in any interval of this length in any possible

schedule. This demand belongs to jobs having both, their invocation and their absolute

deadline within the interval. This demand can be described by an abstract demand bound

function.

DEFINITION 2.2.3. (Demand Bound Functionδ) [13, 19, 60, 61, 83]

Let Γ be a simple periodic task set. The demand bound functionδ (∆t,Γ) returns for

each interval-length∆t the worst-case demand that has to be processed by all those jobs

for which both, the release time and the deadline is includedin ∆t.

COROLLARY 2.2.4. ([83, 60]) The maximum demand bound function for any interval-

length∆t is given by:

δ (∆t,Γ) = ∑
∀τ∈Γ
∆t≥dτ

⌊

∆t−dτ
pτ

+1

⌋

c+
τ

PROOF. Let ττ be the set of jobs generated by taskτi ∈ Γ andττ,i ∈ ττ be one of those

jobs. Letrττ, j be the release time of the job andDττ, j be the absolute deadline of the job.

Let there be a schedule for the tasks ofΓ having a point of timet0 in which one job of each

ττ is released, so all tasks are released simultaneously int0. The demand bound function

δ (∆t,Γ) consists of the sum of the worst-case execution times of all those jobs having a

release-timerττ,i ≥ t0 and an absolute deadlineDττ,i ≤ t0 + ∆t. The number of these jobs

for a taskτ is given by
⌊

∆t−dτ
pτ

+1
⌋

if ∆t ≥ dτ .

The condition∆t ≥ dτ prevents negative numbers of events. The first job being fully

included into an interval is the first job that starts at the begin of the interval and ends at its

deadline. So the minimum interval including one job ofτ has the lengthdτ and is also the

minimum interval for which the calculation returns one. Thesecond job ofτ starts at the

2.2. SCHEDULABILITY ANALYSIS FOR TASK SETS WITH DYNAMIC PRIORITIES 23

∆ t

χ(∆ t, ρ) δ(∆ t, Γ)

(ms)

c (ms)

FIGURE 2.2.1. Example demand bound function

time point 0+ pτ and ends atpτ +dτ . The calculation returns two for the interval of length

pτ + dτ , and so on. So, the calculation returns the exact number of those jobs of a task

occurring within∆t for the case in which the start point of the first job and of the interval

is the same.

Obviously, a job that is released at or after the start of an interval and has to be finished

at or before the end of this interval needs to be processed completely within this interval.

Therefore the job needs, in the worst case, as much processing time within the interval as

it has as worst-case execution time. As it is allowed to release all tasks simultaneously the

schedule calculated by the lemma can occur. So, it only remains to prove that this schedule

leads directly to the worst-case value for the demand bound function and that there exists no

other schedule leading to more demand. Such a schedule wouldrequire that for at least one

task more jobs are released and finished within∆t as with the schedule above. As the first

release of each job is exactly at the start of the interval that would mean that postponing

this release could lead to more jobs. That is not possible. Note, that we consider each

interval-length separately, so we have not to consider any job with either release time or

deadline outside of∆t. Therefore the intervals starting at the simultaneously release of jobs

of all tasks describes the worst-case contributions for thedemand bound function. �

EXAMPLE 2.2.5. Consider the task setΓ = {τ1,τ2,τ3,τ4} with τ = (pτ ,c+
τ ,dτ) and

τ1 = (8ms,4ms,4ms), τ2 = (22ms,3ms,7ms), τ3 = (19ms,3ms,17ms), τ4 = (30ms,1ms,26ms).

The task set is visualized in figure 2.0.1. The demand bound function of this task set is vi-

sualized in figure 2.2.1.

For the simple period task model the worst-case demand for any interval∆t is given

by one worst-case schedule of the task set. This is not a necessary condition for the de-

mand bound function, as we will see later. The worst-case situations for different intervals

can result out of different worst-case schedules. The demand bound function is than a

combination of all worst-case schedules.

The idea behind the processor demand test is to prove for intervals of each possible

length that the maximum demand of computation time can be satisfied by the available

computation time within the interval.

24 2. RELATED WORK

The available computation time depends on the resourceρ on which the task set is

mapped. It can be described by a function similar to the demand bound function.

DEFINITION 2.2.6. Capacity bound function

The capacity bound functionχ(∆t,ρ) returns for each interval-length∆t the minimum

amount of computation time that is available for the execution of tasks on a resourceρ
within any interval of length∆t.

The given worst-case execution time is measured on an idealized processor withχ(∆t)=

∆t for all interval-lengths∆t. For simplicity,χ(∆t) = ∆t is considered as capacity bound

function by the processor demand test.

THEOREM 2.2.7. Processor Demand Test

A task setΓ is schedulable if and only if for all possible interval-lengths I the demand

bound functionδ (∆t,Γ) is smaller or equal than the amount of execution time available

within ∆t on the resourceρ . ρ is the resource on whichΓ is executed:

δ (∆t,Γ)≤ χ(∆t,ρ)

So, in the simplified case we have to checkδ (∆t,Γ) ≤ ∆t. For the example of above

the test is visualized again in figure 2.2.1.

PROOF. The proof follows [60]. Let us assume that the condition holds and that there

is at least one deadline miss. Let us consider a reduced scheduleS′ eliminating all jobs with

a deadline later than the missed deadline. We consider the demand bound function for an

interval∆t that ends at the point of time where the deadline is missed andstarts at the last

idle time of the reduced scheduleS′ before the missed deadline. There exists an idle time at

least at the origin. The existence of an idle time requires that at this time there are no jobs

available for processing. Therefore all jobs being processed within ∆t are also released

within ∆t. As we have no tasks within the reduced scheduleS′ having a deadline later than

the end of∆t, all jobs being executed within∆t contribute to the demand bound function.

If a deadline is missed within∆t at least one time unit of the processing time required by

the job that misses the deadline is not processed within∆t. There are only two possibilities

to reach such an additional processing time ofτ after its deadline. First, the jobs require

more processing time than available within∆t. In this case the demand bound function

would exceed the capacity bound function for this interval,which is in contradiction to the

assumption. Second, there exists at least one time unit within ∆t in which the processor is

either idle or a task is executed which does not belong toS′. That means that there exists

an idle time within∆t in relation to the reduced scheduleS′. But this is in contradiction to

the definition of∆t. �

The question is which intervals have to be considered by the processor demand test.

These are all those intervals for which the value of the demand bound function can change.

The concrete values depend on the task set and the chosen event model. For the periodic

task model these values are all those interval sizes that match exactly with the minimum

difference between the occurrence times of several jobs of the same task. Collecting these

2.2. SCHEDULABILITY ANALYSIS FOR TASK SETS WITH DYNAMIC PRIORITIES 25

times for all tasks and all number of instances gives the set of test intervals for the processor

demand criterion. For the periodic task model the set for onetaskτ is given by

∆t = kpτ +dτ

with k∈ N0. The union of all sets of all tasks gives the complete set.

The problem of the test is reduced to an efficient computationof the demand bound

function. In this version the processor demand criterion would require to check all intervals

up to an infinite size.

2.2.3. Maximum test interval. To make the test feasible it is necessary to limit the

maximum considered interval. To give a complete overview wewill briefly summarize in

the following the results and the proofs for the results achieved so far in literature. We will

start with a definition of the term “maximum test interval”.

DEFINITION 2.2.8. Maximum test interval∆tmax

Let Γ be a task set with UΓ ≤ 1. A maximum test interval is an interval-length∆tmax

so that in case of the existence of an interval-length∆t with δ (∆t,Γ) > χ(∆t,ρ) and∆t >

∆tmax there exists also an interval∆t′ ≤ ∆tmax with δ (∆t ′,Γ) > χ(∆t′,ρ).

For the periodic task model there are several maximum test intervals available.

The first one is the least common multiple of the event-periods of all tasks.

THEOREM2.2.9. [83] The least common multiplier (LCM) of the event-periodsof all

tasks in the task set is a maximum test interval.

PROOF. By definition the first event of taskτ occurs at time-point zero. As the pattern

of the following events are given by their periods, the following event occurs at timepτ , the

next at time 2· pτ and so on. So one event of a taskτ occurs at every multiple of its period

pτ . Therefore an event of the task occurs at the least common multiplier of all periods of

all tasks. Therefore an event of each task occurs at this point of time.

The request of executionCLCM within ∆tLCM is given byCLCM = ∑∀τ∈Γ

⌈

∆tLCM
pτ

⌉

c+
τ .

As
⌈

a
b

⌉

=
(

a
b

)

if b dividesa,

∑
∀τ∈Γ

⌈

∆tLCM

pτ

⌉

c+
τ = ∑

∀τ∈Γ

(

∆tLCM

pτ

)

c+
τ = ∆tLCM ∑

∀τ∈Γ

c+
τ

pτ

.

As ∑∀τ∈Γ
c+

τ
pτ
≤ 1 there has to be an end of the first busy period within∆tLCM and

therefore if there exists a miss of a deadline somewhere in the schedule, one miss exist

within ∆tLCM. �

The disadvantage to use the least common multiple as maximumtest interval is that its

length heavily depends on the concrete values of the periods. In the case that the periods

are neither integer-values nor multiples of one common step-size it can be impossible to

find an LCM smaller than the product of all periods. For event models with offsets the

maximum offset has to be added to the LCM for the maximum test interval.

Another maximum test interval is the general busy period condition, which is also not

limited to the simple periodic task model.

26 2. RELATED WORK

DEFINITION 2.2.10. [119]Busy period

The busy period is the length of the maximum interval which does not include an idle

point. An idle point is a point of time in which no job is ready to be processed, e.g. the

processing for each job for which the activating event has occurred is already finished. The

idle point can be an infinitely small moment of time if the completion of the last available

job and the invocation of the first new job happen at the same point of time.

THEOREM 2.2.11. [119] Busy period condition

The busy period of a task set in which the first events of all tasks occur simultaneous

at the start of the busy period is a maximum test interval for each kind of task set.

PROOF. We have to proof that in those cases in which a failure of a deadline occurs,

a failure occurs within the first busy period. Let us assume the contrary, e.g. that the

first failure occurs in one of the following busy periods. Other than for the first busy

period the first events of the task do not have to occur simultaneously in the following busy

periods. They can occur with any pattern. Only events arriving within the busy period

can contribute to the execution time that has to be processedwithin this busy period. This

follows out of the idle point that has to occur by definition right before the start of the busy

period and prevents the existence of any unfinished job. Therefore each busy period can be

considered separately, only distinguished by their event pattern. The worst-case pattern is

the simultaneous release of events of all tasks, which is thepattern for the first busy period.

So if any pattern leads to a missed deadline, the synchronousrelease would lead to such a

miss too, so a miss would have to occur within the first busy period. �

For the periodic task model the busy period is the smallest value of ∆t for which the

following condition holds:

B(Γ) = min

(

∆t |∆t ≥ ∑
∀τ∈Γ

⌈

∆t
pτ

⌉

c+
τ

)

The disadvantage to calculate the maximum test interval by this formula is that a fix-

point iteration is required which can result in many calculations to achieve the result.

There are some other maximum test intervals available so far. The first one was devel-

oped 1990 by Baruah et al. [19]:

THEOREM 2.2.12. [19] The interval

∆tmax= max
∀τ∈Γ

(pτ −dτ)
UΓ

1−UΓ

with UΓ = ∑∀τ∈Γ
c+

τ
pτ

is a maximum test interval for the task setΓ

Later Ripoll et al. [119] showed another maximum test interval leading to a stricter

bound:

THEOREM 2.2.13. [119] The interval:

∆tmax=
∑∀τ∈Γ

(

1− dτ
pτ

)

c+
τ

1−UΓ

2.2. SCHEDULABILITY ANALYSIS FOR TASK SETS WITH DYNAMIC PRIORITIES 27

is a maximum test interval for the task setΓ if ∀τ ∈ Γ : dτ ≤ pτ .

If a task set is not feasible, a deadline is missed before the maximum test interval of

Ripoll et al. The proofs for these two maximum test intervalscan be done together:

PROOF. (Following the proof in [19]) Let∆t be the interval for which the analysis

fails, e.g. the demand bound function exceeds the intersection, which models the available

computation time. That means∆t fulfills the following conditions:

∆t < ∑
∀τ∈Γ

⌊

∆t−dτ
pτ

+1

⌋

c+
τ

∆t < ∑
∀τ∈Γ

(

∆t−dτ
pτ

+1

)

c+
τ

∆t < ∑
∀τ∈Γ

(

∆t−dτ + pτ
pτ

)

c+
τ

∆t < ∆t ∑
∀τ∈Γ

c+
τ

pτ
+ ∑
∀τ∈Γ

c+
τ

pτ
(pτ −dτ)

∆t <
∑∀τ∈Γ

c+
τ

pτ
(pτ −dτ)

1−∑∀τ∈Γ
c+

τ
pτ

This result can easily be transferred into the maximum test interval of Ripoll et al.

[119]:

∆t <
∑∀τ∈Γ

(

1− dτ
pτ

)

c+
τ

1−UΓ
So, the demand bound function can only exceed the intersection for values smaller or

equal to∆t.

The goal for Baruah et al. [19] was to prove the complexity of the analysis. Therefore

they used an upper bound of the above in-equation depending mainly on the utilization:

∆t <
∑∀τ∈Γ

c+
τ

pτ
(pτ −dτ)

1−∑∀τ∈Γ
c+

τ
pτ

∆t <
∑∀τ∈Γ

c+
τ

pτ
max∀τ ′∈Γ(pτ ′−dτ ′)

1−∑∀τ∈Γ
c+

τ
pτ

∆t <
UΓ

1−UΓ
max
∀τ∈Γ

(pτ −dτ)

�

George et al. [55] extended the maximum test interval of Ripoll et al. [119] to task

sets with tasks having deadlines larger than their periods.

THEOREM 2.2.14. [55] The interval

∆tmax=
∑∀τ∈Γ

(

1− min(dτ ,pτ)
pτ

)

c+
τ

1−UΓ

is a maximum test interval for the task setΓ

28 2. RELATED WORK

PROOF. The proof is quite similar to the proof above but now the condition ∀τ ∈ Γ :

dτ ≤ pτ is not required any more.

∆t < ∑
∀τ∈Γ

∆t>dτ−pτ

⌊

∆t−dτ
pτ

+1

⌋

c+
τ

∆t < ∑
∀τ∈Γ

⌊

∆t−min(dτ , pτ)

pτ
+1

⌋

c+
τ

∆t <
∑∀τ∈Γ

(

1− min(dτ ,pτ)
pτ

)

c+
τ

1−UΓ

�

Park and Cho proposed in [103] another maximum test interval.

THEOREM 2.2.15. [103] The interval

∆tmax= min

(

∆t|∆t ≥ ∑
∀τ∈Γ

(⌊

∆t
pτ

⌋

c+
τ +

c+
τ

dτ
min(dτ ,∆t modpτ)

)

)

is a maximum test interval for the task setΓ.

PROOF. See [103] �

The problem with this bound is that the condition for the maximum test interval has

to be calculated for every interval∆t separately. This leads to a high effort during the

analysis.

Recently Masrur et al. [93] improved the maximum test interval of Ripoll et al. by

showing that the interval itself can be excluded, so the firstdeadline miss has to happen

before this bound. This conclusion is applicable to all the maximum test intervals described

before.

THEOREM 2.2.16. (Similar to [93]) For a non-feasible task set a deadline is missed

before the maximum test interval is reached.

PROOF. Let ∆t be the smallest interval leading to a deadline miss. Therefore the

available computation time for∆t is not sufficient to cover the requested demand(∆t <

δ (∆t,Γ)). As already shown in the proofs of above this leads to an interval really smaller

than the maximum test intervals. �

Masrur and Färber proposed in [94] a bound quite similar to the bound proposed

by Ripoll et al. [119]. For improving this bound, Masrur and Färber use the fact that

an infeasible task set leads to a deadline-miss in size of at least one time unit. They are

considering the inverse synchronous schedule (e.g. the schedule build in a way that it

contains a job of each task with a deadline at the end of the hyper-period). In case that a

task set is not feasible and has an utilization equal or lowerto 100%, at least one deadline

is missed at the end of the hyper-period when using the inverse synchronous schedule.

Therefore an additional idle time with size of at least one time unit exists within this hyper-

period. It exists additional to the idle time that occurs inevitably for task sets having a

utilization lower than 100%.

2.2. SCHEDULABILITY ANALYSIS FOR TASK SETS WITH DYNAMIC PRIORITIES 29

THEOREM2.2.17. (Similar to [94]) A task setΓ is feasible if and only if the requested

processor demand for all tasks in the inverse synchronous schedule is larger than the avail-

able computation time for all intervals smaller or equal themaximum test interval∆tMF

(using a discrete time scale):

∆tmax=
∑τ∈Γ(1− dτ

pτ
)c+

τ −1

1−UΓ

PROOF. See [94] �

To prove schedulability using this new maximum test interval ∆tmaxMasrur and Färber

propose to complete the task set with a task covering the utilization gap between the uti-

lization of the task set itself and 100% utilization and the check for every possible interval

up ∆tMF if an idle time can occur.

The bound is that it requires a discrete time scale, so each deadline, period and worst-

case execution time is a multiple of a common time unit. It is also not suitable for ap-

proximative analysis, as for finding the additional idle times it is necessary to close the

gap between the utilization of the task set and a utilizationof 100% leaving no space for

approximation.

Masrur et al. [93] extended this result also to a new sufficient feasibility test. The

test is partly based on the relationship between the test of Devi [46] and the test bound of

George et al. [55] as indirectly shown in [6]. The idea is to calculate a maximum test

interval separately for each task based only on the task in question and all tasks having an

equal or smaller deadline than the task in question. In case that for each task the maximum

test interval is equal or smaller than the deadline of the task the schedulability is proved.

THEOREM 2.2.18. (Generalization of [93]) Let∆tτ
max be a test interval based only

on the taskτ ∈ Γ and all tasks inΓτ = {τ ′ ∈ Γ|dτ ′ ≤ dτ}. The schedulability is given if

∆tτ
max≤ dτ holds for allτ ∈ Γ.

PROOF. As we know from [88] the simultaneous release of all tasks isthe worst-case

situation. So due to the EDF scheduling scheme a task cannot be postponed by a task with

a larger deadline so these tasks can be ignored completely. As a result we can useτ ∪Γτ

for calculating∆tmax. From definition 2.2.8 we know that a non-feasible task set has a

deadline miss within the maximum test interval and therefore also before the deadline of

τ. �

Using the maximum test interval of George et al. [55] and thistheorem results in the

test of Devi [46]. Masrur et al. used a new, tighter, maximum test interval which is an

improvement of theorem 2.2.17.

THEOREM 2.2.19. [93] Let there be a task setΓ with n tasksτ ∈ Γ sorted by their

increasing deadline, so i< j ⇒ dτi ≤ dτ j . The interval∆tk
max is a maximum test interval

with

∆tk
max=

∑k
i=1x(i−1)

i c+
τi

+ ∑n
j=k+1(pτ j −min(pτi ,dτ j))Uτ j

1−UΓ + ∑k
i=1Uτi

30 2. RELATED WORK

with

x j
i = max

(

0,

⌈

∆t j
max−dτi

pτi

⌉)

and∆t0
max= ∆tmax as the maximum test interval of theorem 2.2.14.

PROOF. The proof is given in [93]. Starting point is again that for an infeasible task

set the deadline miss has to happen before the maximum test interval of theorem 2.2.14. For

this maximum test interval∆tmax the maximum effort for a concrete task can be bounded

by the exact number of jobsx j
i processed at most within the maximum test interval.�

In chapter 6 we have compared the execution times for the schedulability analysis for

all these different maximum test intervals for a huge set of randomly generated task sets

and compared them with our results.

2.2.4. The Problem of complexity.Let us now consider the complexity of the pro-

cessor demand criterion, which will give a motivation for this thesis. It depends on the

effort to calculate and evaluate the demand bound function for one interval and on the

number of those intervals, test intervals, being necessaryto be tested to decide the problem

of feasibility. See [16] for an overview of the previous results on complexity analysis.

For feasibility analysis we need to consider the worst-casetest intervals of each pos-

sible length. From the definition of the demand bound function we know that each test

interval starting at the origin of the demand bound functionis the worst-case test inter-

val of its specific length. Each test interval requires the evaluation of the demand bound

function for one value only. The complexity for the evaluation is O(n) wheren = |Γ| is
the number of tasksτ in the task setΓ. The problem is that the number of test intervals

does not only depend on the number of tasks in a task set. The number of test intervals is

determined by the maximum test interval on the one side and the maximum density of test

intervals on the other side.

The length of the maximum test intervals depends mainly on the utilization of the task

sets. The maximum test intervals of Ripoll et al. [119] and ofBaruah et al. [19] depend

directly on the utilization. The length of the busy period, that covers the interval up to the

first idle point of the system, depends on how often such an idle point or such an idle time

occurs (An idle point is defined as a point in time at which all available jobs are finished;

only jobs arriving at exactly this point of time are allowed to exist. It can be regarded as

an idle time with length zero). The density of idle points respectively idle times (and their

length) is closely related to the utilization. A system with50% utilization has much more

idle times than one with 99% utilization. The distance to thefirst idle point is normally

smaller in systems with 50% utilization than in those with 99% utilization.

The test interval of lemma 2.2.9 is independent of the utilization value. It depends only

on the tasks of the task set. But this test interval is normally much larger than the previously

considered test intervals. It cannot be bound using the utilization. In the worst case the

“least common multiple” is equal to the product of the periods of all tasks. Therefore we

can bound its length only with an exponential value (max(pτ)
|Γ|).

2.2. SCHEDULABILITY ANALYSIS FOR TASK SETS WITH DYNAMIC PRIORITIES 31

∆ t (ms)

δ (∆ t, Γ)

(ms)c

FIGURE 2.2.2. Example demand bound function with large ratio

The problem is that a task set can contain tasks of very different sizes. The size of the

task is determined by the value of all parameters of the task,its period, its deadline and its

worst-case execution time. Consider for example a taskτa with pτa = 10, dτa = 8msand

c+
τa

= 3msand a taskτb with pτb = 1000ms, dτb = 800msandc+
τb

= 300ms. Both tasks

lead to the same utilization of 30% and the hardness of schedulability is also the same for

both tasks. But they have different sizes, asτb is 100 times larger thanτa.

It is possible to have very large tasks and very small tasks inone single task set. The

maximum test interval depends somehow on the largest task oron the average size of the

tasks. For example the value of the maximum test interval of Baruah et al. [19] depends on

the maximum of the differences between the period and the deadline of any task of the task

set (max∀τ∈Γ(pτ −dτ)). The maximum test interval of Ripoll et al. [119] depends onthe

ratio between the deadline and the period of the task but alsoon the worst-case execution

time and therefore on the size of the task itself. In contraryto that, the density of the test

intervals depends on the smallest tasks of the task set.

The problem is that the maximum test interval depends on the whole task set. But

every task of the task set, even the smallest, requires a set of test intervals that has to cover

the complete length of the maximum test interval. So, a task set having tasks with a large

size and therefore a large maximum test interval and at leastone very small task would

need a large number of test intervals for this task. This number will dominate the overall

number of test intervals. For example, having a maximum testinterval of 100 ms and a task

with a period of 20 ms would lead to no more than five test intervals for this task whereas

having a maximum test interval of 100 s can lead to up to 5000 test intervals for the same

task. A demand bound function for such a task set is visualized in figure 2.2.2.

A larger ratio between the sizes of the tasks in one task set leads to a larger effort for

the schedulability analysis. Its complexity depends on theratio of the sizes and therefore

on the values of the parameters of the task.

An algorithm has a pseudo-polynomial complexity if it runs in polynomial time in

case that the parameters are represented by unary numbers but does not run in polynomial

time if the parameters are represented by binary numbers. So, the complexity for pseudo-

polynomial algorithms does not depend on the value of one single parameter but on the

32 2. RELATED WORK

values of all parameters. In our example the complexity doesnot depend only on the

number of tasks but also on the size of the task. The size is represented by the period, the

deadline and the worst-case execution time of the task. For an algorithm with polynomial

complexity it can depend on one parameter only, for example on the number of tasks in the

task set.

If the utilization is bounded by a valueUmax < 1, the processor demand criteria, in

the form we have introduced so far, has a worst-case complexity of O(n2 max∀τ∈Γ(max(pτ ,dτ)
min∀τ∈Γ(min(pτ ,dτ)))

wheren is the number of tasks in the task setΓ. It is sufficient to use only the maximum

respectively minimum periods of all tasks and ignore the deadlines and the worst-case

execution times. If its utilization value is bounded, the processor demand analysis has a

pseudo-polynomial complexity.

For a general schedulability analysis the dependency of thecomplexity on the param-

eters of the tasks and especially on the ratio between different tasks is a problem. The

run time of the analysis becomes unpredictable. The problemhas also a practical implica-

tion. Such task sets with a large ratio occur in many real-world applications. For example

consider an embedded system with a small real-time operating system. The tasks of the op-

erating system like task switching and the scheduling decision functions as well as polling

requests for sensor data can have run-times in the area of nanoseconds or less whereas

complex tasks for the evaluation of the sensor data or complex decision algorithms can

have run-times in the area of seconds or minutes.

We will propose in chapter 3 and chapter 4 solutions for this problem.

2.3. Event models

After the introduction of different schedulability analysis methods we will now con-

sider the existing possibilities to describe the stimuli for the tasks.

We distinguish between tasks models and event models, whichseparates the stimuli

from the other parameters of the tasks.

A huge set of specialized task models have been proposed so far. Examples for ad-

vanced task models are the multi-frame task model [41, 96] and its extension the gener-

alized multi-frame task model [14]. These models allow the variation of the execution

time, the deadlines and the periods of the tasks. The model consists of a periodically re-

peated chain of tasks with a fixed order where each task is associated with separate values

for its parameters. For the analysis it is necessary to buildstep-wise the worst-case situa-

tions. The recurring real-time task model [12, 13] generalizes this approach by allowing

branches in the chain.

In literature several event models relaxing the strictly period stimuli model of Liu

and Layland [88] where proposed. The first one was the introduction of sporadic tasks,

having a minimum inter-arrival time instead of the period. The distance between events of

sporadic tasks may be longer than their minimum inter-arrival time, but not shorter.

We are using the same symbolp for both, the period of strictly periodic tasks and the

minimum inter-arrival time of sporadic tasks. In the periodic task model the events have

to occur exactly at the period whereas in the sporadic task model the events are allowed

2.3. EVENT MODELS 33

to occur later than the time given by their periods. There hasto be at least the distance

of one period-length to the next following event, so the lateness of one event will lead to

the lateness of all following events. The previously introduced schedulability analyses are

applicable to both models.

Widely accepted is the introduction of a jitter interval. The occurrences of the events

are no longer strictly periodic. Instead, around the place of the expected occurrence of an

event a jitter intervalj is defined and the event is allowed to occur anywhere withinj. The

interval is normally defined in a way that the occurrence of the event in the strictly period

case would be in the middle of the jitter interval so the eventis allowed to occur earlier or

later by the same amount of time. Since each event is allowed to jitter in the same way,

the minimum distance between two events becomesp− j and the maximum distance (for

strictly periodic tasks) becomesp+ j.

2.3.1. Periodic task model.We will reconsider the periodic task model first. This

model was originally described in the seminal work of Liu andLayland [88]. In this work

the tasks of one processor are modeled by a task setΓ consisting of independent tasksτ.

One task can be invoked continuously. Each invocation of a task is called a job. Thei-th

job of then-th task is denotedτn,i . The workload of the task is bounded by the worst-case

execution timec+, the available time to process this workload is bounded by a relative

deadlined. A system in which the execution of a job has to be finished within his deadline

is called a hard real-time system. In the model the same relative deadline is assigned to

each job of a task. The absolute deadline of a job is given by the time of invocation of the

job and its relative deadline. It describes the point of timeat which the execution of a task

has to be finished.

In the periodic task model each taskτ of a task setΓ is assigned a periodp, a deadline

d and a worst-case execution timec+ and, optionally, a maximum jitter intervalj. This is

sufficient for strictly periodic stimuli. Sensors monitoring the environment and doing mea-

surements with a constant rate can for example generate sucha kind of stimuli. Sporadic

tasks can be modeled by the periodic task model sufficiently by setting the period equal to

the minimum distance between either two invocations of the task.

2.3.2. Event Streams.Event streams where first defined by Gresser [60]. In the fol-

lowing we will give our own introduction of the event-streammodel. The purpose of the

event-stream model was to give a generalized description for stimuli. The basic idea is to

provide an efficient general notation for the event bound function. The event-streams are a

general model that can describe each kind of stimuli exactly. It is therefore an extension of

the previously described periodic model. This model is mainly based on one function; the

event bound function.

For every interval∆t the event bound functionη(I) calculates the maximum number

of those events which can occur withinI . For this function only the length ofI is relevant,

not a specific begin and end point. In the following, the term interval refers to its length

only.

34 2. RELATED WORK

Events

0 5 10 15 20 25 30 ms

FIGURE 2.3.1. Example Event Sequence

The goal of the event stream model is to provide an efficient general notation for this

event bound functionη . Let us start with a general notation for sets of events.

DEFINITION 2.3.1. Event sequenceΘ
An event sequenceΘ is a set of events being notated by their distance to a common

origin of time.

The distance can also be regarded as a time interval between the start time and the

event. We will call this set an event sequence. Let, for example, the setΘ = {2 ms, 3 ms,

5 ms, 8 ms, 9 ms, 11 ms, 14 ms, 15 ms, 17 ms, 20 ms, 21 ms, 23 ms, 26 ms, 27 ms, 29 ms}

be an event sequence. The first event of the sequence arrives after 2 ms, the second 1 ms

later and the third event additionally 2 ms later. The graphical representation for this small

event sequence is given in figure 2.3.1.

Note that it is not possible to notate an infinite number of events in this way. Therefore

events are grouped into periodic sequences. Such a periodicsequence can be modeled by

a single tuple consisting of a period and an interval. The interval describes the distance for

the first event of the sequence to the common origin.

DEFINITION 2.3.2. Event elementθ
An event elementθ = (p,a) defines a set of periodic events. It consists of a period p

and an initial interval (or offset) a. Each value k= a+ np (n ∈ N0) describes an event

of the set having k as the distance of the event to the common origin of time. A periodic

event sequenceΘ is a set of event elementsθ and the union of the events described by each

θ ∈ Θ is the set of events belonging toΘ̂.

An event tuple modeling only a single event can be notated using an infinite pe-

riod (p = ∞), if it has no offset it can be notated as(∞,0). Each possible event se-

quence can be described by a set of event elements. The example above can be notated

asΘ={ (∞s,2ms), (∞s,3ms), (∞s,5ms), (∞s,8ms), (∞s,9ms), (∞s,11ms), (∞s,14ms),

(∞s,15ms), (∞s,17ms), (∞s,20ms), (∞s,21ms), (∞s,23ms), (∞s,26ms), (∞s,27ms),

(∞s,29ms)}

The set can include the same event element several times. That would mean that

several events could occur at exactly the same time.

In case that the event pattern ofΘ is continued for an infinite time the event sequence

can be notated in a much shorter way:

Θ2 = {(6ms,2ms),(6ms,3ms),(6ms,5ms)}

The periodic event sequence consists of three event elements with offsets of 2 ms, 3ms

and 5 ms and a common period of 6 ms. The first event element expands to 2 ms, 8 ms,

2.3. EVENT MODELS 35

∆ t (ms)

δ (∆ t, Γ)

(ms)c

5 25 30

5

10

15

20

201510

FIGURE 2.3.2. Example event bound function

14 ms, 20 ms, 26 ms, 32 ms, ..., the second to 3 ms, 9 ms, 15 ms, 21 ms, 27 ms, 33 ms,

... and the third to 5 ms, 11 ms, 17 ms, 23 ms, 29 ms, 35 ms, Together they form

the infinite extension of the sequenceΘ. This possibility to note infinite event sequences

shortly leads to an efficient schedulability analysis.

The periodic event sequences are an extension of the periodic task model. The stimuli

for a taskτ with a period of 10 ms can be modeled by the periodic event sequenceΘ =

{(10ms,0ms)}. The stimuli for every task set described with the periodic task model can

be also described exactly with one periodic event sequence for each task of the task set

containing one event element.

DEFINITION 2.3.3. Event Bound Function

An event bound function provides the number of events occurring within the interval

∆t located at the start of the sequence.

COROLLARY 2.3.4. The event bound functionη(∆t,Θ) for a periodic event sequence

Θ and an interval I is given by:

η(∆t,Θ) = ∑
θ∈Θ

∆t≥aθ

⌊

∆t−aθ
pθ

+1

⌋

PROOF. Follows directly out of the definition of the periodic eventsequence. �

The event bound function for the periodic event sequenceΘ2 is depicted in figure

2.3.2. The event bound function always has a monotonic non-decreasing behavior. A

periodic event sequence is called homogeneous if all event elements share the same period

or have an infinite period.

DEFINITION 2.3.5. Homogeneous periodic event sequence

A homogeneous periodic event sequence having a common period p is a periodic event

sequence in which all event elements either share this common period p or have an infinite

period.

For exampleΘ3 = { (∞s,1ms), (∞s,2ms), (10ms,5ms), (10ms,7ms)} is such a ho-

mogeneous periodic event sequence. The periods of the sequence are either∞ or have

10 ms as common value. A homogeneous periodic event sequenceconsists of two parts,

36 2. RELATED WORK

an aperiodic part containing all event elements with∞ as period and a periodic part con-

taining the other event elements. It is possible to transfereach periodic event sequence into

a homogeneous one by exchanging the periods within the sequence by the least common

multiple of the periods. To compensate this step it is necessary to insert additional event

elements.

EXAMPLE 2.3.6. Consider the inhomogeneousperiodic event sequenceΘ4 = { (10ms,3ms),

(15ms,7ms)}. The corresponding homogeneous periodic event sequence has 30 ms as the

common period and needs therefore additional elements. Forthe first event element of the

original sequence(10ms,3ms) three elements are required in the homogeneous sequence

to generate the same set of events. These are the elements(30ms,3ms), (30ms,13ms),

(30ms,23ms). For the second event element(15ms,7ms) two elements(30ms,7ms),

(30ms,22ms) are required. The complete homogeneous periodic event sequence is given

by Θ′4 ={ (30ms,3ms), (30ms,7ms), (30ms,13ms), (30ms,22ms), (30ms,23ms)}.

In general a periodic event sequenceΘ with p as the LCM of all periods (except∞)

can be transferred to a homogeneous periodic event sequenceΘ′ with

Θ′ =
⋃

θ∈Θ′
⋃

kpθ <p(p,kpθ +aθ) andk∈N0.

For real-time analysis it is necessary that the event bound function gives for each

interval the worst-case density of events. These densitiesneed no longer belong to one

concrete schedule only. They are the summary of the worst-case densities of all possible

schedules. For the event bound function it is not necessary that there exist one single

schedule containing the worst case for every possible interval. The worst-case densities

can result from different scenarios and concrete time intervals. To model this event bound

function for real-time analysis it is necessary to define an abstract event sequence modeling

this cumulated worst-case densities, the event stream.

DEFINITION 2.3.7. Event Stream

An event sequenceΘ is called event stream if for all intervals∆t,J:

η(∆t +J,Θ)≤ η(∆t,Θ)+ η(J,Θ)

The event stream is an event sequence in which the highest density of events occurs

always at the start of the sequence. Together with the event bound function the event stream

gives for each possible interval length the worst-case density of those events that can occur

anywhere in any possible schedule of the task set.

In figure 2.3.3 some examples for event streams can be found. The first one is the

event streamΘ5 having a strictly periodic stimulus with a periodp. The event stream can

be notated asΘ5 = {(p,0)}. So event streams having one event element only can model

the event pattern activating a task of the simple periodic task model. In the second example

Θ6 a periodic stimulus in which the single events can jitter within a jitter interval of size

j is depicted.Θ6 = { (∞,0), (p, p− j)} is a description for this event stream. The third

exampleΘ7 is an event stream with an irregular behavior, three events occurring at the

same time and the fourth occurring after a timet. This pattern is repeated with a period

of p. The notation isΘ7 = { (p,0), (p,0) , (p,0), (p,t) } or shorterΘ7 = {3(p,0),(p,t)}.

2.3. EVENT MODELS 37

t

5

6

7

P−j

P

P

Θ

Θ

Θ

ms

ms

ms

FIGURE 2.3.3. Example event streams ([60])

0 10 5020 30 40

0 10 5020 30 40

Events

Events

t (ms)

t (ms)∆

FIGURE 2.3.4. Transformation periodic event sequence into event stream

Event streams can describe all these examples in an easy and intuitive way. The offset

value of the first event element is always zero. The reason is that this value models the

shortest interval in which one single event can occur. As theposition of the interval can

be chosen freely it is possible to choose the start of the interval just before the event and

the end just after the event. Then the length of the interval can be an infinitely small value

being notated as zero for the purpose of simplicity.

Each homogeneous periodic event sequence can be transferred to an event stream

with an equal number of elements by reordering the event elements (and recalculating

the offsets). Note, that for the purpose of real-time analysis it is not necessary to extract

the event stream out of a periodic event sequence, because the event stream can be directly

extracted out of the system description in most cases. Let us, for example, consider again

Θ2 = { (6ms,2ms), (6ms,3ms), (6ms,5ms)}. The corresponding event stream isΘ2 =

{ (6ms,0ms), (6ms,1ms), (6ms,3ms)}. The transfer from a homogeneous periodic event

sequence to the corresponding event stream keeps the numberof event elements and the

period the same. ForΘ′4 = { (30ms,3ms), (30ms,7ms), (30ms,13ms), (30ms,22ms),

(30ms,23ms)} the corresponding event stream reads asΘ′4a ={ (30ms,0ms), (30ms,1ms),

(30ms,10ms), (30ms,15ms), (30ms,20ms)}. The transformation of the periodic event

sequencêΘ′4 to the event stream̂Θ′4a is visualized in figure 2.3.4. One event can occur

within an interval of an infinitely small length so the first event element has an offset of

38 2. RELATED WORK

zero. Two events can occur in the original sequence at shortest between the time points

22 ms and 23 ms. The offset for the second event element is therefore one. All other

distances between two events as for example between three and seven or between 23 ms

and 33 ms (the second event of the first event element) are longer. Three events can occur

at shortest between the time points three and 13 ms or betweenthe time points 13 ms and

23 ms. In both cases the interval length, in which three events can occur, is 10 ms and

therefore the offset of the third event element ofΘ′4a is 10 ms. The fourth event element

has the offset 15 ms, that is the interval between the time points 22 ms and 37 ms. In this

case the smallest interval containing four events crosses the boarder of the period. The

distance between 3 ms and 22 ms would be 19 ms, between 7 ms and 23 ms would be 16,

between 13 ms and 33 ms would be 20 ms and between 23 ms and 43 ms would also be

20 ms. All these interval lengths are longer than 15 ms and aretherefore not the worst case.

With an infinite number of elements it would be possible to describe each set of events

by an event stream. With a bounded number of elements it is necessary that the event

sequence is either bounded too or has a part that is repeated periodically. For some sets of

events the number of elements required to describe the exactoccurrence of the events can

become quite large. For example a burst of 100 events that is repeated periodically would

require 100 event elements for description. To solve this problem we will extend the event

streams to hierarchical event streams (or event spectra) inchapter 7.

For the purpose of evaluation it is not necessary to find the exact minimum intervals.

It is sufficient to find for all intervals a lower bound. Additionally it is possible to simplify

an event stream by using a pessimistic description with fewer elements than in the original

event stream.

LEMMA 2.3.8. Let Γ be a task set having tasksτ each one activated by a periodic

event sequenceΘ. The utilization of this task set is given by:

UΓ = ∑
∀τ∈Γ

∑
∀θ∈Θτ

c+
τ

pθ

For task sets having only homogeneous event streams withoutinfinite periods activat-

ing the tasks a more simpler calculation is possible. LetpΘ be the common period of all

event elements ofΘ. The utilization is then given by:

UΓ = ∑
∀τ∈Γ

c+
τ

pΘ
|Θ|

Let us, for example, consider a task setΓ with one taskτ activated by the periodic

event sequenceΘ4 of example 2.3.6. Let us assume a worst-case execution timec+
τ = 4 ms.

The utilizationUΓ can be calculated byUΓ = 4
10 + 4

15 = 66.6%. Using its homogeneous

counter-partΘ4a leads to the following calculation:UΓ = 4
30 ·5 = 66.6%. The calculation

for the event stream and for its homogeneous counter-part leads to the same results for the

utilization. The utilization is independent of the offset and therefore the utilization of a

periodic event sequence is the same as the utilization of thecorresponding event stream.

LEMMA 2.3.9. (Demand Bound Function - event stream version) LetΓ be a task set

having tasksτ each one activated by an event streamΘτ . The maximum demand of the

2.3. EVENT MODELS 39

task set for each interval∆t can be calculated by:

δ (∆t,Γ) = ∑
∀τ∈Γ

η(∆t−dτ ,Θτ)c
+
τ = ∑

∀τ∈Γ
∑
∀θ∈Θτ

∆t≥aθ +dτ

⌊

∆t−aθ −dτ
pθ

+1

⌋

c+
τ

PROOF. Follows directly out of the definitions. �

The demand bound function can be tested for every interval whether it exceeds the

intersection(δ (∆t,Γ) ≤ ∆t). If this is not the case for every possible interval, the taskset

is feasible.

Same as for the periodic task set, only those intervals are ofrelevance for which the

value of the demand bound function changes. This set of test intervals is given by the set

of all intervals for all event stream elements with

∆t = aθ +kpθ +dτ

with k ∈ N0. Consider again the event streamΘ4a = { (30ms,0ms), (30ms,1ms),

(30ms,10ms), (30ms,15ms), (30ms,20ms)} and assume a deadlinedΘ′4
= 7 ms. The

relevant intervals would be 7ms; 8ms; 17ms; 22ms; 27ms; 37ms; 38ms; 47ms; 52ms;

57ms; 67ms; 68ms;

Gresser [60, 61] proposes a schedulability analysis using the demand bound function.

In contrary to the processor demand analysis he did not use a maximum test interval. In-

stead he proposes an alternating test of the demand bound function and a special upper

bound of the demand bound function. This leads to unnecessary effort compared to the

processor demand test.

A better way would be to calculate a maximum test interval forthe event stream model.

It is possible to modify the existing test interval of Ripollet al. [119] and, of cause, also

the one of Baruah et al. [19], to work with the event stream model. Let us re-consider

again the proof for the test interval of Ripoll et al:

∆t ≤ ∑
∀τ∈Γ

∑
∀θ∈Θτ

∆t≥aθ +dΘ

⌊

∆t−aθ −dτ
pθ

+1

⌋

c+
τ

∆t ≤ ∑
∀τ∈Γ

∑
∀θ∈Θτ

∆t≥aθ +dΘ

(

∆t−aθ −dτ
pθ

+1

)

c+
τ

∆t






1− ∑

∀τ∈Γ
∑
∀θ∈Θτ

∆t≥aθ +dΘ

c+
τ

pθ






≤ ∑
∀τ∈Γ

∑
∀θ∈Θτ

∆t≥aθ +dΘ

(−aθ −dτ
pθ

+1

)

c+
τ

Limiting ∆t on ∆t ≥max(aθ +dθ) leads to the following maximum test interval:

∆t ≤
∑∀τ∈Γ ∑∀θ∈Θτ

(

1− aθ +dτ
pθ

)

c+
τ

1−UΓ

40 2. RELATED WORK

For the exampleΘ4a with c+
Θ′4

= 4 ms anddΘ′4
= 7 ms the maximum test interval has

the value:

∆tmax=

(

1− 0ms+7ms
30ms

)

·4ms+
(

1− 1ms+7ms
30ms

)

·4ms+ ...+
(

1− 20ms+7ms
30ms

)

·4ms

1− 2ms
3ms

= 13.8ms

Remember that this maximum test interval is only valid, if itis larger thanmax∀τ∈Γ
∀θ∈Θ

(aθ +

dτ). This result completes the schedulability analysis of event stream based task sets using

EDF scheduling. We only have to check whetherδ (∆t,Γ)≤ 1 for all intervals∆t up to the

maximum of the maximum test interval andmax∀τ∈Γ
∀θ∈Θ

(aθ +dτ).

The complexity of the processor demand analysis for event streams is quite similar

to the complexity for the periodic task model. The only difference is that the set of test

intervals for each task can be larger.

The processor demand analysis for event streams wheren is the number of tasks,e is

the maximum number of event elements for any event stream activating one of the tasks

andmax(pτ − dτ) the maximum difference between the period and the deadline for any

of the tasks has a complexity ofO(n · e·max(p− d)) if UΓ ≤ c andc is a fixed constant

0 < c < 1. Using the maximum test interval of Ripoll et al. [119] leads to a complexity in

an equal range.

For the sake of completeness we will now discuss the inverse function for the event

bound function; the interval bound function.

DEFINITION 2.3.10. The interval bound function calculates for a given number of

events the minimum interval in which this number can occur:

ψ(n,Θ) = min(∆t|(η(∆t,Θ) = n))

This function is required in the following chapters. For a homogeneous sequence

evaluating the interval bound function is easy. It is only necessary to calculate first the

number of totally completed periods. This can be done by dividing the given number of

events by the number of those events generated by the sequence within a single period.

The remaining events are then distributed on the event elements in the ascending order of

their offsets. The interval is given by the sum of first the number of completed periods

multiplied with the length of the period and of second the offset of the last event element

generating an event.

Let Θ be a homogeneous event stream with|Θ∞| be the number of elements with an

infinite period. LetΘ first contain the elements with the infinite period and after them the

remaining elements with the common periodp. Let the elements be sorted within each

of both groups by their ascending offseta. Let Θk denote thek−th element ofΘ. Let

mod(x,y) = x−
⌊

x
y

⌋

y. We can rewriteψ(n,Θ) by

ψ(n,Θ) =







aΘn n≤ |Θ|
⌊

n−|Θ∞|
|Θ|−|Θ∞|

⌋

pΘ +aΘ(|Θ∞|+mod(n−|Θ∞|,|Θ|−|Θ∞|)) else

In general it is necessary to use an optimization approach tofind the correct distribu-

tion of the events on the different event elements.

2.3. EVENT MODELS 41

Mathematically the concept behind the events stream model can be defined by the

concept of sub-additive functions.

DEFINITION 2.3.11. [31] (Sub-additive function) A function f is sub-additive if f is

a monotonic increasing function and if and only if f(I +J)≤ f (I)+ f (J) for all I ,J≥ 0

In other words:

LEMMA 2.3.12. The event bound function of an event stream is a sub-additivefunc-

tion.

PROOF. Assume the above condition does not apply. In this case there would exist

an interval∆t +J having more events than∆t andJ together. By definition both intervals

contain each the maximum number of those events that can be contained by any interval of

their respective length. In case that the complete interval∆t + J is split into two intervals

∆t andJ, all events of∆t +J have to exist in one of the parts. The assumption would there-

fore require that at least one part∆t,J contains less events than its respective counterpart

within the sum. This is contradiction to the definition of theevent stream and therefore not

possible. �

The event stream model is a flexible model to describe the stimuli of an embedded

real-time system. The event stream describes an upper boundon the density of events. It is

allowed for events to occur later and with less density than predicted by the event stream.

This lateness not only has an impact on the density of events before the arrival of the

late event but of course also on the density of events behind this arrival. It is not allowed

that such lateness leads locally to a higher density of events than allowed by the event

stream. The event stream was constructed in a way that it includes for each interval an

upper bound of the maximum number of those events that can occur within this interval.

This is independent of the concrete start and end points of the intervals and also of the

concrete scenario generating the events. Generally spoken, it is necessary to consider the

densities for each possible scenario. For each scenario themaximum possible number of

events can be calculated for each interval separately. The event stream function is an upper

bound for the maximum number of events occurring within the interval in any possible

scenario. The worst case of adjacent intervals can result oftotally different scenarios.

Therefore in those cases where the lateness of an event wouldlead to a higher density

in the part following the event, some of the following eventshave also to be delayed to

keep the densities on the allowed level.

The event stream model is a general model but the efficient description of event stimuli

containing bursts of events can require many elements.

2.3.3. Sporadically periodic tasks.Bursts consist of a number of events arriving

within a short amount of time. They are normally followed by atime interval with no events

or a much lower density of events. To extend the periodic taskmodel with the capabilities

to model bursts the sporadically periodic task model was introduced by Audsley et al.

[8, 126]. Two different periods are assigned to one task, an inner period to model the

distances between the events within a burst and an outer period to model the distances

42 2. RELATED WORK

between the bursts. Additionally the length of the burst is limited by a maximum number

of events.

As the periodic task model this model is also limited in its capabilities too. Only

simple periodic bursts can be described. The hierarchical event stream model (chapter 7)

will extend the event stream model with the capabilities to model all kind of bursts. It is

therefore a generalization of this model and of the event stream model.

2.3.4. Periodic with jitter and minimum separation. Richter et al. [117] proposed

an extension of the periodic task model by adding a minimum separation distance between

two consecutive events. A taskτ is given in this model byτ = (p, j,s,c+,d) wherep is

the period,j is the jitter,s is the minimum separation time,c+ is the worst-case execution

time andd is the relative deadline of the task.

The reason for this extension is the holistic schedulability analysis of distributed sys-

tems proposed by Tindell & Clark [130] and improved by Redellet al. [113, 114, 115].

This model consists of chains of tasks allocated on a set of resources with a fixed distribu-

tion of the tasks on the resources. The initial tasks of the chains are triggered by periodic

stimulis with jitter and each task generates an event at the end of each of its jobs. These

outgoing events activate the following tasks in the chain that can be assigned to a different

resource. The activating event sequences for the followingtasks are also modeled by a

period and a jitter. In the holistic approach the period of the incoming event sequence for a

following task is the same as the period of the previous task.The jitter instead is increased

by the difference of the best-case and the worst-case response time of the previous task. A

job can finish somewhere between the best-case response timeand the worst-case response

time of its task, so the jitter of the following task has to cover the space between these

response times. The response time of the following task depends directly on its jitter value

as proved in section 2.1. A larger jitter leads to a larger response time. The last task of the

chain can have large jitter values, so the analysis can lead to task sets in which the jitter of

a task can be several times larger than the period of this task.

The problem of the simple periodic model is that it assumes that all events of the same

task within the jitter interval can occur simultaneously. It is obvious that this simultaneous

occurrence of events cannot happen in the scenario of above as the jobs of one task are pro-

cessed one after the other and therefore two outgoing eventsof the same task are separated

at least by the best-case execution time of the task. This wasthe reason for introducing the

minimum separation distance in the model proposed by Richter et al. [117].

With the new model the minimum separation distance can separate the jobs of the

following task, so that they can be handled one after the other. This reduces the required

resources for the following tasks. Despite that this model is a clear advantage to the pe-

riodic model it does not have the general modeling capacities of the event stream model.

Unfortunately the separation condition cannot be modeled efficiently with the event stream

model. This problem will also be solved with the hierarchical extension of the event stream

model (chapter 7).

2.3. EVENT MODELS 43

2.3.5. Streaming application model.A more expressive model for bursts was pro-

posed by Chakraborty and Thiele in [40]. An event stream is described by a set of elements

each containing an interval and the maximum number of eventswhich can occur within

this interval. The different elements limit each other, so that only the minimum number of

events allowed by all elements can occur in the event stream.The main problem of this

model is the expensive evaluation, as it is necessary to build for evaluation all possible lin-

ear combinations of each possible pair of elements. It can also not model efficiently event

streams with several bursts having different minimum separation times within the bursts.

A related but less expressive approach is the rate-base execution model [56, 57, 67].

In it each task has as parameters only one interval and the number of events generated at

most within this interval.

2.3.6. Real-Time calculus.A methodology for the real-time analysis of a network

of modules is the real-time calculus by [39, 127, 128, 131]. It is based on the network

calculus approach defined by [43] and [101]. The real-time calculus is an approach for

a compositional real-time analysis based on the concept of the min-plus and the max-

plus algebra. It splits the whole distributed system into processing components having an

incoming upper and lower arrival and upper and lower capacity curve and provides the

equations to calculate the outgoing upper and lower arrivalcurves and the remaining upper

and lower capacity curve out of theses incoming curves.

The event pattern is modeled by an arrival curveα f (∆t) denoting the number of those

events arriving within a time interval of length∆t. For this functionαu
f (∆t) denotes the

upper bound andα l
f (∆t) the lower bound for the arrival curve. These functions deliver for

every∆t the maximum respective the minimum number of those events which can occur in

any interval of length∆t. Therefore these functions are also sub-additive functions as the

event bound function of the event stream model.

The real-time calculus also defines service curvesβr(∆t) similar to the arrival curves.

They model the number of computational requirements that can be handled by the resource

during a time interval of length∆t. Again β u
r (∆t) andβ l

r (∆t) define the upper and lower

bound of the service curve.

The processing ability is measured in computation time of anidealized resource. This

is in consistency to previous work in real-time analysis where also computation time is

used to measure the computational effort required by a resource.

To explain the functionality of the real-time calculus approach figure 2.3.5 shows an

example scheduling network. A scheduling network is a system consisting of several

chains of tasks and a set of resources. Each taskτ of the task chain is mapped to one

resourceρ . The tasks mapped on the same resource are scheduled with fixed priority

scheduling. Different tasks of a chain can be mapped on different resources. In the fig-

ure 2.3.5 the tasksτ1, τ4, τ6 form a task chain and the tasksτ1, τ4, τ7 form another task

chain. Each taskτ is activated by an upper and lower arrival curveαu
τ (∆t) andα l

τ(∆t) and

the available computational effort for this task is described by an upper and lower service

curveβ u
τ (∆t) andβ l

τ(∆t).

44 2. RELATED WORK

Θ
10

Θ
11

Θ
12

τ4

sp
2

τ5

S
5

S
4 Θ

8

Θ
9

Θ
7

sp
3

Θ
1

Θ
2

Θ
3

sp
3

τ 7

τ 8

6
S

S
7

S
8

τ

S

S

S

τ

τ

1

2

3

1

2

3

Θ

Θ

Θ
6

5

4

1
ρ

τ 6

3
ρρ

2

FIGURE 2.3.5. Scheduling network for real-time calculus

u
ατ ∆ (t)

u
ατ ∆ (t)’

β τ
l

(t)∆β
u

τ (t)∆

u
(t)’∆β τ

l ∆ατ(t)’

τ

u
∆β τ(t)’

lατ ∆(t)

FIGURE 2.3.6. Real-Time Calculus of single task

Each task of the system is considered as a so-called greedy processing component

(GPC). Figure 2.3.6 gives a closer look on a greedy processing component (GPC). For each

task we have an incoming (upper and lower) arrival curveαu
τ (∆t) andα l

τ (∆t) modeling

the workload forτ. We also have an (upper and lower) service curveβ u
τ (∆t) andβ l

τ(∆t)

modeling the amount of workload that can be handled by the resource.

The analysis of a task generates outgoing (upper and lower) arrival (αu
τ (∆t)′ and

α l
τ (∆t)′) and service curves (β u

τ (∆t)′ andβ l
τ(∆t)′). The outgoing arrival curve is a modifi-

cation of the incoming arrival curves and is also the incoming arrival curve of the following

task in the chain. The outgoing service curve is the incomingservice curve reduced by the

workload handled by the task. It is the incoming service curve for the task with the next

lower priority on the same resource.

The real-time calculus provides the equations to describe the relationships between

the incoming and outgoing curves [39]. The curves can be of two types, event based

or resource based. The arrival curves are normally event based and the service curves

are resource based. Each of the two types can be transferred into the other. The curves

used for each equation have to be of the same type. As the arrival curves are event based

and the service curves are resource based it is preferable touse the event-based types for

calculating the outgoing arrival curves and the resource-based type for the outgoing service

curves. For the calculation the functions sup and inf are needed. The functions give the

maximum or minimum value. The difference to the functionmaxandmin is thatsupand

in f provides upper and lower bounds. Their value can be reachable, but need not to be.

2.3. EVENT MODELS 45

The outgoing upper arrival curve of the basic module in the real-time calculus, the

greedy processing component (GPC), is given by [39]:

αu
τ (∆t)′ = min(inf

0≤∆t′≤∆t
{ sup

0≤v<∞
[αu

τ (∆t′+v)−β l
τ(v)]+ β u

τ (∆t−∆t′)},β u
τ (∆t))

The outgoing arrival ofτ is limited by the available capacityβ u
τ (∆t). No more work-

load can be handled within∆t despite how much has arrived. In case the maximum avail-

able capacity is not reached we have to split the total interval ∆t into two parts∆t′ and

∆t−∆t′. ∆t ′ is the part in which the system is not completely utilized,∆t−∆t′ is the part

in which a full utilization occurs. The splitting point is the last idle point of the system,

e.g. the last point in which no processable workload is available. Therefore for the second

part we can limit the outgoing arrival flow by the available capacityβ u
τ (∆t−∆t′). For the

first part all available workload is handled.

The available workload consists of the workload arriving within ∆t′ and the maximum

available workload at the start of∆t. This is that amount of workload that has arrived pre-

viously but was not processed by the system so far. The calculation of these workloads

is done together by sup0≤v≤∞[αu
τ (∆t ′+ v)− β l

τ(v)]. It is necessary to find the intervalv

providing the maximum amount of remaining workload. This isworkload that can arrive

within v at most (αu
τ (v)) reduced by the workload being processed withinv at least (β l

τ(v)).

The intervalsv and∆t ′ are considered together. Therefore the workload availableto han-

dle within ∆t′ is calculated by the maximum amount of workload arriving within ∆t ′+ v

reduced by the minimum amount of workload processed withinv. To find the maximum

amount of workload for∆t ′ we have to consider every possible intervalv to get an upper

bound forαu
τ (∆t ′+v)−β l

τ(v).

The interesting splitting interval∆t′ of ∆t is given by the minimum of the calculated

workloads for all∆t′. It is the last idle point of the system. The reason why we haveto use

it is that all other splitting points overestimate the processable workload as we assume a

total utilization for the remaining interval∆t−∆t′. Note that this value is bounded by the

maximum available capacity within∆t (β u
τ (∆t)).

The outgoing lower arrival curve is given by [39]:

α l
τ(∆t)′ = inf

0≤∆t′≤∆t
{α l

τ(∆t ′)+ β l
τ(∆t−∆t′)}

For the outgoing lower arrival curve the interval∆t is again split into two parts∆t ′ and

∆t−∆t′. ∆t′ is again the part that is not fully utilized (with regard to the lower incoming

service curveβ l
τ(∆t)). ∆t −∆t′ is the fully utilized part (again with regard to the lower

incoming service curveβ l
τ(∆t)). The minimum outgoing arrival is given by the minimum

sum of these parts for all intervals∆t ′.

The outgoing service curves, which give the available capacity for the task with the

next lower priority on the same processor, can be calculatedby [39]:

β l
τ(∆t)′ = max(sup

0≤∆t′≤∆t
{β l

τ(∆t ′)−αu
τ (∆t ′)},0)

β u
τ (∆t)′ = max(sup

0≤∆t′≤∆t
{β u

τ (∆t ′)−α l
τ(∆t ′)},0)

46 2. RELATED WORK

The minimum remaining capacityβ l
τ(∆t) can be found in an interval∆t ′ for which the

minimum available capacity exceeds the maximum arriving workload. Only if this is the

case some capacity is remaining. The maximum calculated value for all intervals∆t′ is

the overall remaining capacity. For the interval∆t−∆t′ the maximum arriving workload

requires fully the minimum available capacity, therefore this interval does not contribute

to the remaining capacity. Note, that capacity remaining for some intervals∆t ′ is also

remaining for any larger intervals because none of the arriving workload can be executed

in the past. So, even if the total workload for∆t exceeds the available capacity within∆t

there can still exist remaining capacity for∆t.

For the maximum remaining capacity we have the same scheme but we are using the

maximum available capacity and the minimum required workload.

For example in [131] the convolution and the deconvolution are defined as central

operations in the theory of the min-plus and max-plus algebra. Letγ be eitherα or β .

DEFINITION 2.3.13. Min-plus convolution⊗ / deconvolution�
The min-plus convolutionγC = γA⊗ γB and the min-plus deconvolutionγC = γA� γB

is given by:

γA(∆t)⊗ γB(∆t) = inf
0≤∆t′≤∆t

{γA(∆t−∆t′)+ γB(∆t′)}

γA(∆t)� γB(∆t) = sup
0≤∆t′<∞

{γA(∆t + ∆t′)− γB(∆t ′)}

DEFINITION 2.3.14. Max-plus convolution̄⊗ / deconvolution�̄
The max-plus convolutionγC = γA⊗̄γB and the max-plus deconvolutionγC = γA�̄γB is

given by:

γA(∆t)⊗̄γB(∆t) = sup
0≤∆t′≤∆t

{γA(∆t−∆t′)+ γB(∆t′)}

γA(∆t)�̄γB(∆t) = inf
0≤∆t′<∞

{γA(∆t + ∆t′)− γB(∆t ′)}

The above curves can also be calculated using the convolution and deconvolution:

αu′
τ = min{(αu

τ ⊗β u
τ)�β l

τ ,β
u
τ }

α l ′
τ = min{(α l

τ �β u
τ)⊗β l

τ ,β l
τ}

β l ′
τ = max{(0⊗ (β l

τ−αu
τ),0)}

β u′
τ = max{(0⊗ (β u

τ −α l
τ),0)}

The calculation for the outgoing curves is based only on the incoming curves and the

values of the task itself. No other values are required. Thismakes it possible to con-

sider each task separately from each other. Each incoming arrival or service curve of the

scheduling network is an incoming arrival or service curve of one tasks of the scheduling

network. These curves are transformed with the transformation equations of these tasks

to new arrival and service curves. These can be incoming curves of other tasks of the

scheduling network, transformed again for the next following tasks and so on.

2.3. EVENT MODELS 47

It is possible to calculate a value somewhere in the scheduling network by recursively

evaluating the transformation equations until the original incoming curves are reached.

Obviously such an approach is expensive to compute. So, the equations describing the

relationship between the functions are expensive to compute for general functions, too.

To calculate the modification equations independently fromeach other, an event model is

needed that can characterize the modified curves.

No concrete description for the functions themselves is provided in the real-time cal-

culus. As the timet is defined for all values up to∞ it is not possible to simply enumerate

all values. A good finite description for this function is necessary. The complexity of the

relationship equations depends directly on the complexityof this description.

In [39, 76] an approximation for the arrival and service curves was proposed in which

each curve is described by three straight line segments. Onesegment describes the initial

offset or arrival time, one a possible initial bursts and onethe long time rate. As outlined

in [6] this approach is to inaccurate to be suitable for complex systems.

In [131] an exact characterization for the curves is given. The curves are described

by two sets of segments, one set for the aperiodic first part ofthe curve and one describing

the periodic part. The number of segments in each of the partsis not bounded in general.

Operations performed on two curves with different periods and/or different length of the

aperiodic parts requires the hyper-period as the period of the resulting stream. In the worst

case, the hyper-period is the product of all periods. This can lead to an explosion of event

segments and an uncontrollable run-time of the proposed algorithms.

The new model described in this work is quite suitable to be anefficient description

for the real-time calculus. Therefore the real-time calculus is extended to an event stream

calculus in this work.

We will discuss this model later and show how an new extended version of the event

stream model, the hierarchical event streams can be used to achieve an explicit description

for the curves of the real-time calculus.

CHAPTER 3

Approximation for dynamic priorities

To overcome the problem of the evaluation complexity as described in section 2.2.4 we

will propose in the following an approximative schedulability test. Approximative tests are

inexact tests. A range of systems exists for which the tests may not be able to answer the

question whether the systems meets all deadlines or not. Theadvantage to use such tests

is that the approximative tests run much faster than their exact counterparts and therefore

allow to solving problems that would be unsolvable otherwise because of their complexity.

The main characteristic of an approximative algorithm is, that the area of uncertainty

is bounded. Only for the exact solution and solutions close to the exact one the algorithm

might not be able to make a decision.

Take for example the knapsack problem. Given is a problem instance

{b,w1,w2, ...,wn,c1,c2, ...,cn}

There exists a set of goods having different sizeswi and costsci . The problem is to pack

a knapsack having a sizeb with these goods getting as much value into the knapsack as

possible. In its exact general form this problem is a NP-hardoptimization problem [66].

But nevertheless the knapsack problem becomes tractable with a small modification of

the requirements [66]. We do not consider a knapsack of sizebbut allow that the size of the

knapsack can vary with an errorε. The knapsack can have a size up tob+b·ε. In this case

an approximation exists that is solvable in polynomial time[66]. The resulting solution

may not be optimal to a knapsack of the sizeb but it is optimal to at least one knapsack

having a size within the interval[b,b+ b · ε]. So even if we have not found the optimal

solution for the knapsack in question we have found an optimal solution for a knapsack

with a size close to the size of the knapsack in question. The result is therefore close to the

optimal solution of the problem and can be reasonably used for practical applications.

Different types of approximations are available. There exist algorithms having a fixed

maximum error depending on the problem. Better are those algorithms for which the error

value and therefore the size of the area of uncertainty are freely selectable. It should be

possible that the error can become as small as desirable. Of cause, a reduction of the error

increases the worst-case run-time of the test in many cases.

Algorithms having a polynomial run-time complexity with respect to the problem size

are called polynomial time approximation schemes. Algorithms having a polynomial run-

time complexity with respect to both, the problem size and the value of the error are called

fully polynomial-time approximation schemes [66]. They are normally the best kind of

49

50 3. APPROXIMATION FOR DYNAMIC PRIORITIES

approximation algorithm possible. Polynomial with respect to the error means that a de-

crease of the error by a certain factork (for example reducing it by half) can only lead to

an increase of the run-time that is polynomial bounded with respect tok.

The approximative analysis is only sufficient, but the degree of exactness is adjustable.

An approximative analysis can have a much smaller complexity than the exact analysis

with only a small change in the requirements. An optimization problem is considered

tractable if there “exists a polynomial-time approximation that solves the problem with a

reasonable error”[66].

A feasibility analysis is sufficient if it classifies all systems that do not fulfill the real-

time requirement correctly. An infeasible schedule is always recognized as infeasible. It is

only possible that a sufficient test does not recognize a schedulable system as schedulable;

it will never classify a non-schedulable system as schedulable.

In [37, 38] it was proposed to consider two other kinds of approximations, those be-

ing only necessary and those being neither necessary nor sufficient. Necessary tests give

a correct classification for non-schedulable systems, whereas tests being neither necessary

nor sufficient cannot guarantee either side. The idea behindconsidering these two addi-

tional types of approximations is that due to the limitationof the approximation error the

uncertainty only affects a small number of systems being located close to the boarder be-

tween schedulable and non-schedulable systems. The assumption is that non-schedulable

systems close to this boarder do only lead to small misses of deadlines. We will consider

in the following only sufficient approximations. The proposed approximations therefore

always guarantee the real-time requirement despite of their uncertainty.

In the following we will present an approximative schedulability analysis for single

processor systems scheduled with EDF scheduling. It is the first approximation for this

problem fulfilling the definition of a fully polynomial-timeapproximation scheme.

The main idea is to limit the maximum number of test intervalsfor each task sepa-

rately by constructing an approximated demand bound function for each task and to add

all approximative functions resulting in an approximated demand bound function for the

task set.

The idea behind the approximated demand bound function for atask is to analyze for

each function only a limited number of jobs (the first k jobs) exactly. The following jobs

are approximated. We call the interval that includes all non-approximated jobs (e.g. the

boarder between the non-approximatedand the approximatedjobs) the maximum exact test

interval. For the approximation we use the specific utilization of the task. In the following

we will give the formal definition of the approximated demandbound function.

3.1. Periodic task system

Let us first consider the approximation for the periodic tasksystem as given in section

2.3.1. We have a task setΓ and tasksτ ∈ Γ with τ = (p,a,c+,d) wherep is the period,a is

the offset,c+ is the worst-case execution time andd is the relative deadline ofτ. The de-

mand bound functionδ (∆t,Γ) gives the maximum demand on computation time for a task

setΓ within any interval of length∆t and the demand bound functionδ (∆t,τ) gives the part

3.1. PERIODIC TASK SYSTEM 51

of the maximum demand which is generated by taskτ. Therefore the sum of the demand

bound functions of all tasks of a task set gives the complete demand bound function of the

task set (δ (∆t,Γ) = ∑∀τ∈Γ δ (∆t,τ)). The effort to calculate these demand bound functions

depends not only on the number of tasks but also on the concrete parameters of the tasks.

These are the period, deadline and worst-case execution time. Especially the ratio between

the values of the largest and the smallest task in the task setcontributes substantially to the

computational effort required for analyzing the task set.

Consider for example the tasksτ1 = (10 s, 0ms, 5s, 7s) andτ2 = (10ms, 0ms, 2ms,

3ms). Let us assume that we need a test bound∆tmax having a size of about ten timespτ1.

Therefore∆tmax= 100s. We need ten test intervals forτ1 (7s, 17s, 27s, ..., 87s, 97s). For

τ2 many more test intervals are necessary. The demand bound function has to be tested for

the intervals: 3ms,13ms,33ms, ...,99983ms,99993ms. In total we require∆tmax
pτ2

= 10000

test intervals forτ2 compared to 10 forτ1. Thereforeτ2 dominates the total number of

test intervals. If we increase all parameters ofτ2 by the factor 10 the total number of test

intervals will increase by the same factor. Reducing the parameters ofτ1 by the same

factor will result in a reduction of the maximum test bound bynearly the same factor and

therefore to a reduction of the number of test intervals required forτ2 and of the necessary

total number of test intervals. Therefore the total number of test intervals depends on

the concrete values of the tasks and the fraction between thevalues of the largest and the

smallest tasks.

To avoid these problems we propose to approximate the demandbound functions. The

idea is to evaluate the firstk test intervals (jobs) for each task exactly and approximatethe

remaining test intervals using the specific utilization of the task. In the following we first

present the concepts and explain them informally. The formal proofs are given later in

section 3.4 to cover a more general model.

DEFINITION 3.1.1. Approximated demand bound function of a task

Let τ be a task and k be a chosen number of those jobs that should be considered for

the task exactly. Let∆tτ,k = dτ,k = (k−1)pτ +dτ . We callδ ′(∆t,τ,k) with

δ ′(∆t,τ,k) =

{

δ (∆tτ,k,τ)+ c+
τ

pτ
(∆t−∆tτ,k) ∆t > ∆tτ,k

δ (∆t,τ) ∆t ≤ ∆tτ,k

the approximated demand bound function. This formula can also be transformed in

δ ′(∆t,τ,k) =







c+
τ

pτ
(∆t−dτ)+c+

τ ∆t ≥ ∆tτ,k

δ (∆t,τ) ∆t < ∆tτ,k

Figure 3.1.1 shows an example of an approximated demand bound functionδ ′(∆t,τ,k)

with k = 4 and the comparable exact demand bound functionδ (∆t,τ). The first four test

intervals are evaluated exactly and the remaining test intervals are approximated using a

straight line. The slope of the line is the specific utilization of the task.

The interesting point of this approximation is the resulting approximation error. As

shown in Figure 3.1.1 the maximum distance between the approximated and the real de-

mand bound function is one time the worst-case execution time c+
τ . The approximation

52 3. APPROXIMATION FOR DYNAMIC PRIORITIES

∆ t (ms)

δ (∆ t, Γ)

(ms)c

t, Γ,)kδ (∆’ +
τc

τ
+k c

}

FIGURE 3.1.1. Approximation of a single task

starts at thek-th test interval. The demand bound function has for thek-th test interval a

value ofk·c+
τ therefore the demand bound function has for all those interval sizes for which

an approximation error can occur at least this value. The relative approximation error is

the maximum distance between the approximated and the exactdemand bound function

divided by the value of the exact demand bound function. The maximum approximation

error is the maximum relative error. For the proposed approximation it is easy to find an

upper bound to the approximation error:

ετ,k =
δ ′(∆t,τ,k)− δ (∆t,τ)

δ (∆t,τ)
≤ c+

τ
kc+

τ
=

1
k

The overall approximation error can be bounded by the same value:

ε =
δ ′(∆t,Γ,k)− δ (∆t,Γ)

δ (∆t,Γ)
≤ 1

k

The proof follows in section 3.4. The error is independent ofthe parameters of the

task and the system and does only depend on the selectable number of exactly analyzed

test intervals. The value of the approximated function is for each interval∆t equal or larger

than the value of the exact function for the same interval∆t. The analysis compares this

value of the function with the available capacity. To proof schedulability the value of the

demand bound function (approximated or not) has always to beequal or smaller than the

available capacity.

The approximated demand bound functions of the single taskscan be added to an

approximated demand bound function of the complete task set.

DEFINITION 3.1.2. The approximated demand bound function of a task setΓ is the

sum of the separated approximated demand bound functions ofall tasksτ ∈ Γ.

δ ′(∆t,Γ,k) = ∑
∀τ∈Γ

δ ′(∆t,τ,k)

This definition is outlined in figure 3.1.2. For usability of these functions as approx-

imation it is necessary for them to keep two conditions. First we have to guarantee that

3.1. PERIODIC TASK SYSTEM 53

∆ t (ms)

∆ t (ms) ∆ t (ms)

(ms)c

(ms)c(ms)c

FIGURE 3.1.2. Adding two approximated demand bound functions

the demand is never underestimated by the approximation, which means the approximated

demand bound function is always greater or equal the real demand bound function.

LEMMA 3.1.3. Sufficiency condition

The approximated demand bound functionδ ′(∆t,Γ,k) has for each possible interval

∆t and each value of k at least the same amount of demand than theexact demand bound

functionδ (∆t,Γ).

δ (∆t,Γ)≤ δ ′(∆t,Γ,k)

Second it is necessary that the error of the approximation isbounded.

THEOREM 3.1.4. Let ρ1 be a processor with a capacity given by the available execu-

tion time functionχ(∆t,ρ1) andρ2 be a processor with a slightly higher capacity given by

χ(∆t,ρ2) = χ(∆t,ρ1)+
1
k χ(∆t,ρ1). If the schedulability analysis forρ1 using the exact de-

mand bound function results “schedulable”, the approximated demand bound function is

guaranteed to result also “schedulable” if tested against the capacity function of processor

ρ2, the processor with the slightly higher capacity, so if

δ (∆t,Γ)≤ χ(∆t,ρ1)

⇒ δ ′(∆t,Γ,k) ≤ χ(∆t,ρ2)

The relative difference between the capacity ofρ1 andρ2 is simply:

χ(∆t,ρ2)− χ(∆t,ρ1)

χ(∆t,ρ1)
=

χ(∆t,ρ1)+ 1
k χ(∆t,ρ1)− χ(∆t,ρ1)

χ(∆t,ρ1)
≤ 1

k

54 3. APPROXIMATION FOR DYNAMIC PRIORITIES

(ms)c

δ (∆ t, Γ)

χ(∆ t, ρ)2
χ(∆ t, ρ)1

∆ t (ms)

t, kδ (∆’ Γ, 2)

FIGURE 3.1.3. Visualization of the approximation bound

The proofs for the lemma and the theorem will follow also in section 3.4. The theorem

3.1.4 is visualized in figure 3.1.3. It shows an example of an exact and an approximated

demand bound function. The approximation is done after the second test interval. The

exact demand bound functionδ (∆t,τ) stays always below the capacity functionχ(∆t,ρ1)

of ρ1 while the approximated demand bound functionδ (∆t,τ,2) exceeds this capacity

function. But it does not exceed the area between this capacity function and the capacity

function χ(∆t,ρ2) of ρ2. ρ2 has only a slightly higher capacity thanρ1. The difference

between these capacities depends on the error value as defined in lemma 3.1.4.

For an efficient implementation of the test it is not necessary to calculateδ ′(∆t,Γ,k)

for each test interval∆t separately. The intervals can be calculated stepwise by only con-

sidering the differences between the single intervals. A possible implementation of the

superposition analysis is shown in algorithm 1.

The algorithm works as follows: First it initializes thetest-listwith the first test in-

terval of each task. The first test interval of a task is the smallest interval for which it is

necessary to have completely processed one job of the task. The length of this interval is

the smallest distance between the release time of any job of the task and the absolute dead-

line of this job and is exactly the relative deadline of the task. The worst-case scenario is

that the invocation of the task and the start of the interval occur simultaneously. In this case

the deadline of the task occurs simultaneously with the end of the interval and, of cause,

processing the task has to be finished by this point of time. Therefore the interval with the

length equal to the deadline of the task is the smallest interval in which the task has to be

processed completely. This step has to be done for each task in the task set. The algorithm

processes the list of test intervals in ascending order of their length. For each test interval

it adds to the cumulated demand the computation time of the task belonging to the interval.

Initially this demand is empty. If the cumulated demand exceeds the length of the actual

interval, the analysis deliversnot schedulable.In this case more computation time as being

available within the interval is required to process all jobs within the interval. Therefore at

least one job would miss its deadline.

3.1. PERIODIC TASK SYSTEM 55

Algorithm 1 Superposition Analysis

Algorithm Superposition

Given: task set Γ, k

IF UΓ = ∑∀τ∈Γ
c+

τ
pτ

> 1
⇒ not schedulable

END IF

testlist:= {}
∆told := 0

∆tmax :=
∑∀τ∈Γ

(

1− dτ
pτ

)

c+
τ

1−UΓ
∀τ ∈ Γ : ADD te= (dτ ,τ) TO testlist
WHILE (∆told ≤ ∆tmax)

te=TEST LIST ELEMENT WITH SMALLEST ∆t IN testlist
∆t =INTERVAL OF te
τ =TASK BELONGING TO te
REMOVE te FROM testlist
δ ′ := δ ′+c+

τ +Ur(∆t−∆told)
IF (δ ′ > ∆t)
⇒ not schedulable

END IF

IF (∆t = dτ)
ADD te= (∆t + pτ − jτ) TO testlist

ELSE IF (∆t < (dτ + pτk))
ADD te= (∆t + pτ ,τ) TO testlist

ELSE

Ur := Ur + c+
τ

pτ
END IF

∆told := ∆t
END WHILE

⇒ schedulable

As next step it is checked whether the maximum number of exactly evaluated test in-

tervals for the task is reached. If it is not reached, the nextlarger test interval of the task

is added totest-list. It is calculated by adding the period of the taskpτ to the length of the

actual test interval. Thereforetest-listcontains at most one test interval for each task at one

time. If the maximum number of exactly evaluated test intervals for this task is reached, all

further test intervals of the task are skipped due to the approximation. For compensation

this skipping of test intervals an approximative value for the demand of the task has to be

considered at each following test interval. Therefore whena task is approximated, its spe-

cific utilization cτ
pτ

is added toUr . Ur contains the cumulated utilization of all approximated

tasks and is initially empty. It is used to calculate the additional approximated execution

times for all approximated tasks by

c+
add,Γ′ = Ur(∆tact−∆told)

The analysis ends and deliversschedulableif either test-list is empty (when all tasks are

approximated) or if the maximum overall test interval∆tmax is reached.

56 3. APPROXIMATION FOR DYNAMIC PRIORITIES

The proof for the exactness of this algorithm and the questions of complexity and the

error are discussed in the sections 3.4 and 3.6.

3.2. Capacity calculation for the period task model

During the system design process it is often necessary to choose a processor for a

certain task set. Therefore it is interesting to calculate the capacity necessary for this task

set. If we assume a scalable processing element for which therelationship between the

execution times of all tasks is fixed, we can achieve such a calculation efficiently. We only

need a small modification of the proposed superposition algorithm.

We need to assume a standard processing element to measure the execution time on

it. The question for the calculation is, which ratio the capacity of the minimum required

processing element has to the capacity of this standard processing element. We can still

calculate the demand bound function in the same way using thestandard processing ele-

ment for measuring the execution times. But the calculationof each kind of the maximum

test interval, with exception of the LCM (least common multiple) of the periods, requires

the utilization of the task set and therefore the capacity ofthe resource. The way to avoid

the maximum test interval is to use the approximation. We then need to calculate the de-

mand bound function for each test interval required by the approximation. In case of an

approximation error of 1% we have to calculate 100 test intervals for each task in the task

set, in case of an error of 0.1% we need 1000 test intervals foreach task and so on.

We then only have to calculate the utilization for each test interval separately and store

the maximum one. It determines the necessary capacity for the processing element. The

necessary capacity is at least the utilization of the task set. The algorithm 2 implements

this idea.

Cproc is the capacity of the minimal processor necessary to handlethe task set and

fulfilling all real-time requirements. The main idea of the algorithm is to calculate for each

test interval the dimension of the processor required to meet the real-time requirements

of the test interval. We measure the dimension of the test intervals comparing its demand

with a generic processing element. We call the demand of one test interval it’s specific

utilization and measure it in percent of the capacity of the generic processing element. The

required dimension is the maximum of all specific utilizations. It can be quite larger than

100% leading to a larger processing element than the genericprocessing element.

We can improve the above algorithm by reconsidering the maximum test bound. In-

stead of using a fixed pre-calculated maximum test bound we will recalculate it every time

the value of the necessary capacity changes. The calculation of the test interval differs from

the known calculation, as the execution times are measured on a standard processor and

not longer on the analyzed processor. Let us reconsider the maximum test interval given

by Ripoll et al. [119] introduced in lemma 2.2.13 for the new defined execution times. Let

CN be the new capacity andCS = 1 be the standard capacity in which the execution times

are measured. LetUΓ be the utilization of the task set compared toCN. Then the maximum

3.3. EVENT STREAM MODEL 57

Algorithm 2 Dimensioning a processing element

Algorithm DimProcSimple

Given: task set Γ, k
testlist:= {}
Cresult := UProc = ∑∀τ∈Γ

c+
τ

pτ
∆told := 0; δ ′ := 0
Uready := 0
∀τ ∈ Γ : ADD te= (dτ ,τ) TO testlist
WHILE (test-list 6= {})

te=ELEMENT WITH SMALLEST ∆t IN testlist
∆t =INTERVAL OF te
τ =TASK BELONGING TO te
REMOVE te FROM testlist
δ ′ := δ ′+c+

τ +(∆t−∆told)Uready

Cact := δ ′
∆t

IF (Cact > Cresult)
Cresult := Cact

END IF

IF (∆t < (dτ + pτk))
ADD te= (∆t + pτ ,τ) TO testlist

ELSE

Uready := Uready+
c+

τ
pτ

END IF

∆told := ∆t
END WHILE

⇒Cresult

test interval looks as follows:

∆tmax :=
∑∀τ∈Γ

(

1− dτ
pτ

)

CS
CN

c+
τ

1− UΓ
CN

=
∑∀τ∈Γ

(

1− dτ
pτ

)

c+
τ

CN−UΓ

The only difference is the exchange of the capacity. In the original form we had a

capacity of “1” now we haveCN. This is not a surprise. The maximum test interval depends

obviously directly on the remaining capacity. If it gets very small the problem becomes

more difficulty leading to a larger maximum test interval. Using this new maximum test

interval we achieve the improved algorithm 3.

The hyper-period as maximum test bound, given in lemma 2.2.9is independent of the

capacity. The problem with this interval is that it becomes quite large in most cases and that

we cannot limit the number of test intervals for this bound. We therefore do not consider

this maximum test interval here.

3.3. Event Stream Model

In the following we will extend the superposition approximation to the advanced event

stream model. Instead of the simple periodic activation of the tasks, the event streams allow

a more powerful description of the stimuli of the tasks. Note, that the periodic task model

is included as a special case in the event stream model. For the extension we have mainly

58 3. APPROXIMATION FOR DYNAMIC PRIORITIES

Algorithm 3 Dimensioning a processing element

Algorithm DimProcAdvanced

Given: task set Γ, k
testlist:= {}
UΓ := ∑∀τ∈Γ

c+
τ

pτ
Cresult := UΓ
∆told := 0; δ ′ := 0;
∆tmax := ∞;
Uready := 0
∀τ ∈ Γ : ADD te= (dτ ,τ) TO testlist
WHILE (testlist6= {} AND ∆told < ∆tmax)

te=ELEMENT WITH SMALLEST ∆t IN testlist
∆t =INTERVAL OF te
τ =TASK BELONGING TO te
REMOVE te FROM testlist
δ ′ := δ ′+c+

τ +(∆t−∆told)Uready

Uact := δ ′
∆t

IF (Uact > Cresult)
Cresult := Uact

∆tmax := max

(

∑∀τ∈Γ

(

1− dτ
pτ

)

c+
τ

Cresult−UΓ
,dmax

)

END IF

IF (∆t < (dτ + pτk))
ADD te := (∆t + pτ ,τ) TO testlist

ELSE

Uready := Uready+
c+

τ
pτ

END IF

∆told := ∆t
END WHILE

⇒Cresult

to exchange the demand bound functions for the periodic model by the corresponding

functions for the event stream model.

Let us first repeat the demand bound function definition for the event streams:

δ (∆t,Γ) = ∑
∀τ∈Γ

η(∆t−dτ ,Θτ)c
+
τ = ∑

∀τ∈Γ
∑
∀θ∈Θτ

∆t≥aθ +dτ

⌊

∆t−aθ −dτ
pθ

+1

⌋

c+
τ

Let θ be an event element belonging to the event streamΘτ which belongs to the task

τ. For a single event element the demand bound function looks as follows:

δ (∆t,θ ,τ) =

{

⌊

∆t−aθ−dτ
pθ

+1
⌋

c+
τ : ∆t ≥ aθ +dτ

0 : else

So we have:

δ (∆t,Γ) = ∑
∀τ∈Γ

∑
∀θ∈Θτ

δ (∆t,θ ,τ)

3.3. EVENT STREAM MODEL 59

Algorithm 4 Superposition Analysis for Event Streams

Algorithm SuperpositionEventStream

Given: task set Γ, k

IF UΓ = ∑∀τ∈Γ ∑∀θ∈Θτ
c+

τ
pθ

> 1
⇒ not schedulable

END IF

testlist:= {}
∆told := 0
Uready := 0

∆tmax :=
∑∀τ∈Γ ∑∀θ∈Θτ

(

1− aθ +dτ
pθ

)

c+
τ

1−UΓ
∀τ ∈ Γ,∀θ ∈ Θτ : ADD te= (NextInt(0,θ),θ) TO testlist
WHILE (testlist 6= {} AND ∆t ≤ ∆tmax)

te=TEST LIST ELEMENT WITH SMALLEST ∆t IN testlist
∆t =INTERVAL OF te
θ =EVENT-ELEMENT BELONGING TO te
τ := τθ
REMOVE te FROM testlist
δ ′ := δ ′+c+

τ +(∆t−∆told)Uready

IF (δ ′ > ∆tact)
⇒ not schedulable

END IF

IF (∆t < (dτ + pθ k))
ADD ∆t + pθ ,θ TO testlist

ELSE

Uready := Uready+
c+

τ
pθ

END IF

∆told := ∆t
END WHILE

⇒ schedulable

We assume that exactly one event stream is connected to each task. Cases in which

several independent event streams activate a task can be modeled either by unifying these

event streams to one event stream or copying the task for eachevent stream.

For the calculation of the demand bound function the order ofthe event elements or

even to which event stream a concrete event element belongs does not play a role. So we

can simplify the above calculation by unifying the event stream elements of all tasks in one

big set of event elements.

We can define an approximated demand bound function in the same way as we have

done for the periodic task model.

DEFINITION 3.3.1. Approximated demand bound function for an event element

Let τ be a task activated by an event streamΘ having an event elementθ and k be a

chosen number of those test intervals that should be considered for the task exactly. Let

∆tθ ,k = dτ +aθ +(k−1)p. We callδ ′(∆t,θ ,τ,k) with

δ ′(∆t,θ ,τ,k) =

{

δ (∆tθ ,k,θ ,τ)+ cτ
pθ

(∆t−∆tθ ,k) ∆t > ∆tθ ,k

δ (∆t,θ ,τ) ∆t ≤ ∆tθ ,k

60 3. APPROXIMATION FOR DYNAMIC PRIORITIES

the approximated demand bound function for a single event element. Usingδ (∆tθ ,k,θ ,τ)=
c+

τ
pθ

(∆tθ ,k−aθ −dτ) we can also get:

δ ′(∆t,θ ,τ,k) =

{

c+
τ

pθ
(∆t−aθ −dτ) ∆t > ∆tθ ,k

δ (∆t,θ ,τ) ∆t ≤ ∆tθ ,k

The complete approximated demand bound function for the event stream model is

the sum of the approximated demand bound functions for the event elements of the event

stream:

δ ′(∆t,Γ,k) = ∑
∀τ∈Γ

∑
∀θ∈Θτ

δ ′(∆t,θ ,τ,k)

The error of each demand bound function for a single event elementθ can be bounded

separately toεθ ,k = 1
k leading to an overall error of alsoεΓ,k = 1

k .

The approximated demand bound function for the event streammodel has always the

same or a larger value than the corresponding exact function. Therefore it can be used for

a sufficient schedulability analysis.

In algorithm 4 the new superposition analysis for the event stream model is given. The

only difference to the analysis for the periodic model is theinclusion of the event streams.

Algorithm 5 is the corresponding algorithm for calculatingthe capacity for the event

stream model.

If we have a more complex capacity function thanχ(∆t) = ∆t it is necessary to con-

sider additionally those test intervals at which the rate ofthe additional available execution

time changes. A capacity stream can describe such functions. The event stream model

is not capable to model complex capacity functions. We will give in chapter 7 a more

advanced event model, the hierarchical event streams, thatwill be able to handle even

complex capacity functions.

3.4. Proofs

In the following we will proof the correctness and the approximation characteristic of

the superposition approach. We will prove therefore the theorems of the previous sections.

It is sufficient to do this proof for the event stream model, asthe periodic task model is only

a special case of it. A periodic taskτ with τ = (p,c+,d) can be modeled also by using

the event streamΘτ = {(p,0)} so τ = (Θτ ,c+
τ ,dτ) and a periodic taskτ ′ having a jitter

(τ ′ = (p, j,c+,d)) can be modeled usingΘτ ′ = {(∞,0),(p, p− j)} so τ ′ = (Θτ ′ ,c
+
τ ′ ,dτ ′).

First it is necessary to prove the condition of lemma 3.1.3. For every possible interval

∆t the approximated demand bound functionδ ′(∆t,Γ,k) has to meet or exceed the exact

demand bound functionδ (∆t,Γ).

LEMMA 3.4.1. If the approximated demand bound function of each event elementθ
of the event streamΘ of each tasksτ of a task setΓ (δ ′(∆t,θ ,τ,k)) is larger or equal than

the exact demand bound function of this event elementθ (δ (∆t,θ ,τ,k)), the approximated

demand bound function of the task setΓ (δ ′(∆t,Γ)) is also larger or equal than the exact

demand bound function of the task set(δ (∆t,Γ)).

∀τ ∈ Γ∧∀θ ∈ Θτ : δ ′(∆t,θ ,τ,k)≥ δ (∆t,θ ,τ) ⇒ δ ′(∆t,Γ,k)≥ δ (∆t,Γ)

3.4. PROOFS 61

Algorithm 5 Dimensioning a processing element (event stream model)

Algorithm DimProcEvent

Given: task set Γ, k
testlist:= {}
UΓ = ∑∀τ∈Γ ∑∀θ∈Θτ

c+
τ

pθ
Cresult := UΓ
∆told := 0; δ ′ := 0
Uready := 0
∀τ ∈ Γ∀θ ∈Θτ : ADD te= (NextInt(0,θ),θ) TO testlist
WHILE (testlist 6= {} AND ∆t < ∆tmax)

∆t :=NEXT INTERVAL OF testlist
θ :=EVENT STREAM ELEMENT BELONGING TO ∆t
τ := τθ
REMOVE (∆t,τ) FROM testlist
δ ′ := δ ′+c+

τ +(∆t−∆told)Uready

Cact := δ ′
∆t

IF (Cact > Cresult)
Cresult := Cact

∆tmax :=
∑∀τ ′∈Γ∀θ ′∈Θτ ′

(

1−
dτθ ′
pθ ′

)

c+
τθ ′

Cact−UΓ
END IF

IF (∆t < (dτ + pθ k))
ADD ∆t + pθ ,τ TO testlist

ELSE

Uready := Uready+
c+

τ
pθ

END IF

∆told := ∆t
END WHILE

⇒Cresult

PROOF. The proof for this lemma follows directly out of the definition 3.3.1 of the

approximated demand bound function of a task set:

∀τ ∈ Γ∧∀θ ∈ Θτ : δ ′(∆t,θ ,τ,k)≥ δ (∆t,θ ,τ)

δ ′(∆t,θ1,τ1,τ1,k)+ ...+ δ ′(∆t,θk,τ1,τ1,k)+

δ ′(∆t,θ1,τ2,τ2,k)+ ...+ δ ′(∆t,θl ,τn,τn,k)≥δ (∆t,θ1,τ1,τ1,k)+ ...+ δ (∆t,θk,τ1,τ1,k)+

δ (∆t,θ1,τ2,τ2,k)+ ...+ δ (∆t,θl ,τn,τn,k)

δ ′(∆t,θ ,τ,k) ≥ δ (∆t,θ ,τ)

Both complete demand bound functions, the exact and the approximated one, consist

of the same set of elements either in its exact or in its approximated form. They are the

sum of these elements. Each element of the both sums has one and only one corresponding

element for the other sum. Both sums have therefore the same size, e.g the same number of

elements. If a sum has the same size then another sum and each of its elements is equal or

62 3. APPROXIMATION FOR DYNAMIC PRIORITIES

larger than its corresponding element of the other sum, thanthe sum is also equal or larger

than the other sum. �

Therefore we can concentrate our considerations in the following on the approximated

demand bound function of an event element.

LEMMA 3.4.2. The exact demand bound functionδ (∆t,θ ,τ) is for any event element

θ , any interval∆t and any value of k equal or smaller than the approximated demand

bound functionδ ′(∆t,θ ,τ,k).

PROOF. With regard to the definition of the approximated demand bound function

given in definition 3.3.1 we have to distinguish two cases. The proof for the first case,

covering all intervals being evaluated exactly (∆t < aθ +dτ +kp= ∆tθ), follows directly

out of definition 3.1.1. The second case covers all intervalsthat are equal or larger than

∆tθ and that are therefore approximated (∆t ≥ ∆tθ). The proof for these cases is given by:

δ ′(∆t,θ ,τ,k) = δ (∆tθ ,k,τ)+
c+

τ
pθ

(∆t−∆tθ ,k)

=

(

∆tθ ,k−aθ −dτ

pθ
+1

)

c+
τ +

c+
τ

pθ

(

∆t−∆tθ ,k
)

=

(

∆tθ ,k−aθ −dτ + ∆t−∆tθ ,k

pθ
+1

)

c+
τ

=

(

∆t−aθ −dτ
pθ

+1

)

c+
τ

≥
⌊

∆t−aθ −dτ
pθ

+1

⌋

c+
τ = δ (∆t,θ ,τ)

As consequence the approximated demand bound function is always greater or equal than

the exact demand bound function. �

The next step is to prove that it is sufficient to check the approximated demand bound

function for the remaining test intervals to proof schedulability. We have to distinguish

between two cases. The first case is that the capacity function is equal to the intersection

(χ(∆t) = ∆t).

LEMMA 3.4.3. Let ∆t i ,∆t j be two consecutive test intervals for the approximated

demand bound functionδ ′ of the task setΓ. If there exists an interval∆t ′ with ∆t i < ∆t′ <

∆t j andδ (∆t ′,Γ) > ∆t′ and UΓ ≤ 100%then the value of the approximated demand bound

function exceeds the available execution time also at interval ∆t i , thereforeδ ′(∆t i ,Γ,k) >

∆t i .

In the case that the exact demand exceeds the available execution time at some interval

∆t′ and this interval∆t ′ is not a test interval for an approximated demand bound function,

this approximated demand bound function will also exceed the available execution time

for the largest interval being smaller than∆t′ and being a test interval of the approximated

demand bound function. The situation is visualized in figure3.4.1.

PROOF. The proof for lemma 3.4.3 is given in the following.

3.4. PROOFS 63

(ms)c

χ(∆ t, ρ)

t, Γ,)kδ (∆’

δ (∆ t, Γ)

∆ t∆ t
i

∆ t’ ∆ t
j

(ms)

FIGURE 3.4.1. Visualization of lemma 3.4.3

Let us assume that∆t ′ is a test interval of the non-approximated demand bound func-

tion with δ (∆t ′,Γ) > ∆t′ and that∆t i is the largest test interval being smaller than∆t′ for a

certain approximative demand bound functionδ ′.
For the approximated demand bound functionδ ′ the event streamΘτ of each task is

split up into those event elements being considered exactlyΘe
τ and those event elements

being approximatedΘa
τ with regard to interval∆t i . The event elements of a task can be

distributed in both groups. We know thatΘτ = Θe
τ ∪Θa

τ andΘe
τ ∩Θa

τ = /0, therefore

δ (∆t,τ) = ∑
∀θ∈Θe

τ

δ (∆t,θ ,τ)+ ∑
∀θ∈Θa

τ

δ (∆t,θ ,τ)

Let us rewrite the demand bound function for∆t′ using the split task set:

∑
∀τ∈Γ

∑
∀θ∈Θe

τ

δ (∆t′,θ ,τ,k)+ ∑
∀τ∈Γ

∑
∀θ∈Θa

τ

δ (∆t ′,θ ,τ) > ∆t′

Because due to the condition in lemma 3.4.3 there is no test interval between∆t i and∆t ′

with regard to the tasks considered exactly, so we know that:

∀θ ∈ Θe
τ : δ (∆t ′,θ ,τ) = δ (∆t,θ ,τ)

We also know from lemma 3.4.2 that the approximated demand bound functions have

always an equal or larger value than the exact demand bound functions(δ ′(∆t,θ ,τ,k) ≥
δ (∆t,θ ,τ)). With these conditions the inequality can be rewriten:

∑
∀τ∈Γ

∑
∀θ∈Θe

τ

δ ′(∆t i ,θ ,τ,k)+ ∑
∀τ∈Γ

∑
∀θ∈Θa

τ

δ ′(∆t ′,θ ,τ,k) > ∆t ′

By using definition 3.1.2 of the approximated demand bound function the demand of the

approximated event stream elements can be split. As the capacity function is equal to the

intersection we only allow utilizations lower than the available capacity of 100% here.

Therefore

∑
∀τ∈Γ

∑
∀θ∈Θa

τ

c+
τ

pθ
≤ ∑
∀τ∈Γ

∑
∀θ∈Θτ

c+
τ

pθ
≤ 1

With this condition we achieve:

δ ′(∆t i ,Γ,k)+ ∆t′−∆ti > ∆t′

64 3. APPROXIMATION FOR DYNAMIC PRIORITIES

δ ′(∆t i ,Γ,k) > ∆t i

In case that the demand bound function exceeds the intersection, which models the avail-

able capacity, for any interval∆t the approximated demand bound function also exceeds

the intersection at the test interval before∆t. �

The proof of the algorithms 2, 3 and 5 which calculate the minimum possible capacity

of a resource requires a different lemma than lemma 3.4.3. Wehave to proof for these

algorithms that the skipped test intervals cannot lead to a higher required capacity than the

previous considered test-interval. Also isU ≤ 1 no longer a valid assumption.

LEMMA 3.4.4. Let ∆t i ,∆t j be two consecutive test intervals for the approximated

demand bound functionδ ′ of the task setΓ. Let Cr be a required capacity with Cr ≥UΓ. If

there exists an interval∆t′ with ∆t i < ∆t ′ < ∆t j andδ (∆t ′,Γ) = Cr ∆t′ then the value of the

approximated demand bound function reaches at least the same required capacity also at

interval∆t i , thereforeδ ′(∆t i ,Γ,k) ≥Cr∆t i .

PROOF. The proof for this lemma is quite similar to the proof for lemma 3.4.3. We

have

∑
∀τ∈Γ

∑
∀θ∈Θe

τ

δ (∆t ′,θ ,τ,k)+ ∑
∀τ∈Γ

∑
∀θ∈Θa

τ

δ (∆t ′,θ ,τ) = Cr∆t ′

Following the proof of above we achieve

∑
∀τ∈Γ

∑
∀θ∈Θe

τ

δ ′(∆t i ,θ ,τ,k)+ ∑
∀τ∈Γ

∑
∀θ∈Θa

τ

δ ′(∆t′,θ ,τ,k) ≥Cr ∆t′

As the utilization does not exceedCr we can assume

∑
∀τ∈Γ

∑
∀θ∈Θa

τ

c+
τ

pθ
≤ ∑
∀τ∈Γ

∑
∀θ∈Θτ

c+
τ

pθ
≤Cr

and achieve with this condition

δ ′(∆t i ,Γ,k)+ ∆t′−∆t i ≥Cr∆t ′

δ ′(∆t i ,Γ,k) ≥Cr∆t i

The capacity required for a skipped test interval is also required for the previous considered

test interval �

General capacity functions are considered in chapter 7 where we present models for

these functions.

Let us now consider the proof of the approximation condition:

LEMMA 3.4.5. The relative error between the approximated demand bound function

and the exact demand bound function is bounded by1
k .

δ ′(∆t,Γ,k)− δ (∆t,Γ)

δ (∆t,Γ)
≤ 1

k

First we will determine the maximum absolute approximationerror.

3.4. PROOFS 65

LEMMA 3.4.6. For an event stream elementθ the maximum difference between any

approximated demand bound functionδ ′(∆t,θ ,τ,k) and the corresponding exact demand

bound functionδ (∆t,θ ,τ) is bounded by one time the execution time of the task c+
τθ

.

PROOF. Let, without loss of generality,∆t be any interval andk be any number of

exactly analyzed test intervals:

δ ′(∆t,θ ,τ,k)− δ (∆t,θ ,τ) = δ (∆tθ ,k,θ)+
c+

τ
pθ

(∆t−∆tθ ,k)− δ (∆t,θ)

=
∆tθ ,k−aθ −dτ

pθ
c+

τ +
c+

τ
pθ

(∆t−∆tθ ,k)−
⌊

∆t−aθ −dτ
pθ

⌋

c+
τ

=
c+

τ
pθ

(∆t−aθ −dτ)−
⌊

∆t−aθ −dτ
pθ

⌋

c+
τ

≤ c+
τ

pθ
(∆t−aθ −dτ)−

⌈

∆t−aθ −dτ

pθ
−1

⌉

c+
τ

≤ c+
τ

pθ
(∆t−aθ −dτ)−

(

∆t−aθ −dτ
pθ

−1

)

c+
τ

≤ c+
τ

�

Therefore the maximum error of an approximative demand-bound-functionδ ′(∆t,θ ,k)

is limited to one time the execution time of the taskcτθ . It only applies if the task is approx-

imated, therefore if∆t ≥ kpθ + dτθ + aθ . Using this result the error of the approximated

demand bound functionδ ′(∆t,Γ,k) and thereforeδ ′(∆t,Γ,k) can be bounded too.

LEMMA 3.4.7. The error of the approximated demand bound function is bounded by:

δ ′(∆t,Γ,k)− δ (∆t,Γ)≤ ∑
∀τ∈Γ

∑
∀θ∈Θτ

∆t>∆tθ ,k

c+
τ

PROOF. The proof for the lemma follows out of the previous statements. �

LEMMA 3.4.8. For an interval∆t the demand bound function has at least the value:

δ (∆t,Γ)≥ ∑
∀τ∈Γ

∑
∀θ∈Θτ

∆t>∆tθ ,k

kc+
τ

PROOF.

δ (∆t,Γ)≥ ∑
∀τ∈Γ

∑
∀θ∈Θτ

∆t>∆tθ ,k

δ (∆tθ ,k,θ ,τ)

≥ ∑
∀τ∈Γ

∑
∀θ∈Θτ

∆t>∆tθ ,k

⌊

kpθ +dτ−dτ
pθ

+1

⌋

c+
τ

≥ ∑
∀τ∈Γ

∑
∀θ∈Θτ

∆t>∆tθ ,k

(k+1)c+
τ

≥ ∑
∀τ∈Γ

∑
∀θ∈Θτ

∆t>∆tθ ,k

kc+
τ

66 3. APPROXIMATION FOR DYNAMIC PRIORITIES

With these two bounds it is possible to prove theorem 3.1.4, in which it is assumed that if

a task setΓ is schedulable on a resourceρ1, it is guaranteed for the approximative analysis

to return “schedulable” for a resourceρ2 with a slightly higher capacity thanρ1:

δ (∆t,Γ)≤ χ(∆t,ρ1)

⇒ δ ′(∆t,Γ,k) ≤ χ(∆t,ρ2)

The relationship between the capacities is given by

χ(∆t,ρ2) = χ(∆t,ρ1)+
1
k

χ(∆t,ρ1)

We haveδ (∆t,Γ)≤ χ(∆t,ρ1). It follows:

δ (∆t,S)≤ χ(∆t,ρ1)

δ (∆t,S)+
1
k

δ (∆t,S)≤ χ(∆t,ρ1)+
1
k

δ (∆t,S)

Using definition 3.3.1 we get:

δ ′(∆t,S ,k)≤ χ(∆t,ρ1)+
1
k

δ (∆t,S)

δ ′(∆t,S ,k)≤ χ(∆t,ρ1)+
1
k

χ(∆t,ρ1)

δ ′(∆t,S ,k)≤ χ(∆t,ρ2)

The relative difference between the capacities ofρ1 andρ2 is simply:

χ(∆t,ρ2)− χ(∆t,ρ1)

χ(∆t,ρ1)
=

χ(∆t,ρ1)+ 1
k χ(∆t,ρ1)− χ(∆t,ρ1)

χ(∆t,ρ1)
≤ 1

k

which is equal to the maximum difference between the demand bound functionδ (∆t,Γ)

and the approximated demand bound functionδ ′(∆t,Γ,k) and therefore to the error:

δ ′(∆t,Γ,k)− δ (∆t,Γ)

δ (∆t,Γ)
≤

∑∀τ∈Γ ∑ ∀θ∈Θτ
∆t>∆tθ ,k

c+
τ

∑∀τ∈Γ ∑ ∀θ∈Θτ
∆t>∆tθ ,k

kc+
τ

=
1
k

The error of the approximation for the complete task set is always bounded by1k . �

3.5. Approximation error

It is necessary to investigate the term of error used in the approximation schemes more

closely. This term is not as clear as it seems on the first view.

3.5.1. General remarks.The error somehow depends on the question to solve. For

example the backpacking-problem has the question whether it is possible to pack items

with a certain value in a backpack with a given size. For the schedulability analysis the

question is whether it can be guaranteed for a given task set to meet all its deadlines while

executed on a processing element with a certain capacity. These questions are true/false

decisions.

Each of these questions can be transferred into a corresponding optimization problem.

For the backpacking problem, the goal of the optimization algorithms would be to find

3.5. APPROXIMATION ERROR 67

either the maximum value of those goods which could be packedinto a given backpack or

the minimum backpack which can accept a set of goods with a given value.

Each of these optimization problems leads to a possible approximation scheme with a

different kind of error. For the first problem the error wouldbe measured in percentage of

the value of the goods, for the second problem the error wouldbe measured in the size of

the backpack.

For example, if the optimal solution allows goods for 1000 $ an approximation scheme

with an error of 1% has to find a solution with a value of at least990 $. In the second case

the approximation scheme would allow a slightly larger backpack than the optimal. The

difference between these backpacks is bounded by the error.

Those are two different questions leading to different algorithms for the approximation

(of cause only if such approximations exists).

For our schedulability problem we cannot vary the length of the tasks. Perhaps it

would be possible to vary the length of the deadlines, but we do not have a measurement

to compare the deadlines of different task sets.

In soft real-time systems an optimization criterion could be to minimize the maximum

latency or the average latency of tasks. But for hard real-time systems we do not allow any

latency at all.

So we have as only adjustable parameter the capacity of the chosen processor. The

optimization question is to find the processor with the minimum capacity for which it is

possible to guarantee the deadlines of all tasks in the task set. This leads to an approxima-

tion scheme in which the error is measured in the size of the capacity of the processor.

An algorithm fulfilling this approximation scheme will guarantee that a task set wrongly

classified to be “not schedulable” on some processors is guaranteed to be “not schedulable”

on another processor with a slightly lower capacity. This capacity of the other processor is

given by the previous capacity and the approximation error.

This definition of the error is similar to the definition givenby Axelsson [10] p. 82

ff. He uses the term “minimum required speed-up”. This minimum required speed-up is

defined as how much additional capacity for the processor is needed to reach schedulability.

3.5.2. Approximation error for schedulability analysis. For the schedulability anal-

ysis two different concepts for the approximation errors exists.

The first concept is related to the time in the system and was proposed by Chakraborty

et al. [38]. The maximum test interval, a value of time, is divided into equally distributed

test intervals. Every demand occurring between two of thesetest intervals is considered as

having occurred either in the smaller one or the larger one ofthese test intervals.

Considering the demand as having occurred in the smaller test interval leads to a pes-

simistic analysis, which means an overestimation of the required resources or an underesti-

mation of the response times. Considering the demand as having occurred in the larger test

interval leads to an optimistic analysis, which means an underestimation of the response

times or the necessary resources. Note, that this overestimation and underestimations are

bounded by the approximation error. An analysis having a difference of 10 ms between

two consecutive test intervals can lead to deadline misses of respectively 10 ms at most.

68 3. APPROXIMATION FOR DYNAMIC PRIORITIES

(ms)c

(ms)c (ms)c

∆ t (ms)

∆ t (ms)

∆ t (ms)

δ (∆ t, Γ)

δ (∆ t, Γ)
δ (∆ t, Γ)

a)

b) c)

FIGURE 3.5.1. Approximation related to the time
a) Exact case b) pessimistic approximation c) optimistic approximation

Figure 3.5.1 shows an example for this approximation. In a) the exact demand bound

function and its test intervals are given. In the Figure b) the dotted line shows the same

demand bound function using a pessimistic approximation with equally distributed test

intervals. Any value of the approximated demand bound function occurs at an equal or

earlier time than the same value of the exact demand bound function.

The approximated demand bound function is still feasible inthe example but meets the

capacity for the second test interval. In c) an optimistic approximation of the same demand

bound function is shown. The values for the approximated demand bound function occur

later or at the same time than the same values of the exact demand bound function. This

can lead to deadline misses as the response of a task can end a bit later than predicted by

the analysis.

The distance between two consecutive test intervals determines the error of the time

related approximation. This distance depends on two conditions, the chosen maximum

number of allowed test intervals and therefore the chosen effort for the analysis on the one

side, and the length of the maximum test interval on the otherside.

The maximum test interval depends not on the number of tasks in a task set but on the

parameter of these tasks and on the utilization of the complete task set. A high utilization

or large periods leads to a long maximum test interval and therefore to a long distance

3.6. COMPLEXITY 69

between consecutive test intervals. This distance is equalto the error so a long maximum

test interval leads to a large error.

The size of the maximum test interval depends of the parameters of the task in the

task set. For this reason, the error of the time related approximation also depends on these

parameters. The problem is that this error is the same absolute value for all tasks in the

task set independently whether they are small or large. Tasks of very different sizes in one

task set can lead to a large maximum test interval. For the smaller tasks in the task set the

error can be quite large compared to their periods and deadlines.

For example having a task set with a taskτ1 with dτ1 = 10 ms and tasks with periods

of 1,000 ms leading to a maximum test interval of 2,500 ms. Assuming an allowed effort

of 1,000 test intervals leads to an error of 0.1% and an absolute difference between the test

intervals of 2.5 ms. Despite that the error seems to be very small for the complete task set,

2.5 ms is 25% of the deadline ofτ1. The task is either allowed to miss its deadline by 2.5

ms so to end at 12.5 ms or the task has to respond within 7.5 ms toguarantee its deadline

using this approximation. The error of this approach is the maximum additional demand

allowed to occur between any two test intervals.

The second kind of approximation error is the one used in our approach. The approx-

imation is bounded by a fraction of the capacity, not a value of time. The value of the

approximated demand bound function is always equal or larger than the value of the exact

demand bound function. We only consider the pessimistic case for this approximation. The

resulting performance, especially for the adaptive approximation, which we will introduce

in chapter 4, is so satisfactory that an optimistic approachwith its potential deadline misses

is not necessary. The error of our approximation does not, other than the error of the time

related approximation, depend on the parameters of the taskset.

By definition of approximations the type of error of the approximation need to be

measured with the same type of value as for the optimization.In our approach the error

is of type “capacity of the resource” and the optimization wants to minimize this capacity.

For the goal to minimize the latency of the task an error of time would be adequate. For

achieving a small error a price has to be paid in increasing the necessary effort. The

advantage is that the approximation allows a trade-off between the degree of exactness

and the required evaluation effort.

We have an error that can be chosen and reduced as near as desired to the exact solu-

tion. To prove that the superposition algorithm is afully polynomial time approximation

schemewe only have to show that the superposition algorithm has a polynomial complexity

with regard to the number of tasks and the chosen approximation error.

3.6. Complexity

The complexity of the schedulability problem for the synchronous uni-processor case

is unknown. The best available exact analysis has a pseudo-polynomial complexity if the

utilization is bound by a value smaller than 100% [17, 84]. One example for such an

algorithm is the processor demand criterion given in [19].

70 3. APPROXIMATION FOR DYNAMIC PRIORITIES

The complexity of our algorithm 4 depends, same as for each other approximation, on

two values: The number of tasks of the considered task set andthe chosen approximation

error. Letn be the number of tasks in the task set andε = 1
k be the chosen approxima-

tion error. The consideration of a single test interval needs several operations with linear

complexity (addition, multiplication, comparison) and one operation for inserting a new

element into a sorted list. Due to the required priority queue the overall complexity for

considering a single test interval isO(nlogn). The maximum number of test intervals that

have to be considered during one run of the algorithm can be bound by the number of tasks

multiplied with the maximum number of exactly considered test intervals for each task.

This number isk = 1
ε and therefore depends directly on the approximation error.Calculat-

ing the maximum test interval, with exception of the busy period which we therefore have

not used, and the initialization requires also not more thanO(nlogn). Therefore the overall

complexity of the superposition algorithm can be bounded byO(nlogn1
ε).

The complexity of our algorithm depends polynomial on the number of tasks and on

the chosen error. It is a fully polynomial time approximation scheme.

3.7. Comparison to related work

Comparing the superposition algorithm to previous relatedwork leads to interesting

results. In the following chapter we will discuss the relation of the superposition algorithms

to the best sufficient analysis and the best exact analysis and prove that both are only special

cases of the superposition analysis.

3.7.1. Best sufficient analyses.In this chapter we will show and prove the relation-

ship of the superposition approach to the best available sufficient test for EDF scheduling,

that was proposed by Devi in [46].

We will show that the superposition approach is a generalization of the previously

existing sufficient schedulability analysis for EDF. Liu and Layland [88] proved that for a

simple periodic task model with all tasks having a deadline equal to their period all task

sets with a utilization equal or lower 100% are feasible (∑τ∈Γ
c+

τ
pτ
≤ 1). As the response

times for a task set with a utilization larger than 100% becomes infinitely large, this test is

also necessary. The task model only allows tasks activated by periodic events and having

a relative deadline equal to the period of the tasks. The advantage of this analysis is the

linear complexityO(n).

For more generalized periodic models, having deadlines smaller than the periods of the

tasks or a more powerful event model, this test is no longer sufficient. A good sufficient

analysis with also linear complexity was developed [90].

THEOREM 3.7.1. [90] For a task set with tasks activated by periodic events with a

period p and having a relative deadline d,∑τ∈Γ
c+

τ
min(pτ ,dτ) ≤ 1 is a sufficient schedulability

analysis.

PROOF. Given is a task setΓ = {τ1, ...,τn}. Let us assume a task setΓ′ with Γ′ =
{τ ′1, ...,τ ′n}, pτ ′i

= min(pτi ,dτi), dτ ′i
= min(pτi ,dτi), c+

τ ′i
= c+

τi
. From the theorem we know

3.7. COMPARISON TO RELATED WORK 71

that

∑
∀τ∈Γ

c+
τ

min(pτ ,dτ)
≤ 1

⇒ ∑
∀τ ′∈Γ′

c+
τ ′

pτ ′
≤ 1

SoΓ′ is schedulable if the condition of the theorem holds forΓ. Without loosing the

schedulability we can enlargepτ ′i
to pτi anddτ ′i

to dτi . So if Γ′ is schedulableΓ is also

schedulable. �

Based on this approach Devi [46] has developed a new sufficient analysis. It is a

variation of the test above, but has to check one in-equationfor each task.

THEOREM 3.7.2. ([46]) A task setΓ, arranged in order of non-decreasing relative

deadlines is feasible using EDF scheduling if n= |Γ| and

∀k≤ n|
(

k

∑
i=1

c+
τi

pτi

+
1

dτk

k

∑
j=1

pτ j −min(pτi j ,dτ j)

pτ j

c+
τ j
≤ 1

)

PROOF. (See [46]) �

Despite that it is necessary for the analysis to test one in-equation for each task, it still

has a linear complexity. For all task sets this analysis leads to equal or higher bounds than

the previous sufficient analysis.

LEMMA 3.7.3. A task set recognized as schedulable by the analysis proposed in

lemma 3.7.1 is also recognized as schedulable by the analysis of Devi [46] (theorem 3.7.2).

PROOF. (See [46]) �

With the superposition approximation we can generalize this result even further and

prove that the superposition is a generalization of the testof Devi.

THEOREM 3.7.4. The task sets that are recognized as schedulable by the analysis

proposed in lemma 3.7.2 are also recognized as schedulable by using the superposition

analysis with the approximative demand bound functionδ ′(∆t,Γ,k) with k= 1.

PROOF. For the analysis withδ ′(∆t,Γ,1) only one test interval needs to be considered

for each taskτ ∈ Γ. In general we have

δ ′(∆t,Γ,1) = ∑
∀τ∈Γ







(

∆t−dτ
pτ

)

c+
τ + δ (dτ ,τ) ∆t ≥ dτ

0 ∆t < dτ

∑
∀τ∈Γ
dτ≤∆t

(

c+
τ

pτ
(∆t−dτ)+c+

τ

)

= ∑
∀τ∈Γ
dτ≤∆t

c+
τ + ∆t ∑

∀τ∈Γ
dτ≤∆t

c+
τ

pτ
− ∑
∀τ∈Γ
dτ≤∆t

dτ
pτ

c+
τ

72 3. APPROXIMATION FOR DYNAMIC PRIORITIES

The test of theorem 3.7.2 can be transformed:

dτk ≥ dτk

k

∑
i=1

c+
τi

pτi

+
k

∑
i=1

(

pτi −min(pτi ,dτi)

pτi

)

c+
τi

≥ dτk ∑
∀τ∈Γ

dτ≤dτk

c+
τ

pτ
+ ∑
∀τ∈Γ

dτ≤dτk

(

pτ −dτ

pτ

)

c+
τ

≥ ∑
∀τ∈Γ

dτ≤dτk

c+
τ +dτk ∑

∀τ∈Γ
dτ≤dτk

c+
τ

pτ
− ∑
∀τ∈Γ

dτ≤dτk

dτ

pτ
c+

τ

The test of Devi has to be performed one time for each taskτk ∈ Γ. The calculation

for δ ′(∆t,Γ,1) has to be done also one time for each task at the first deadlinedτk of each

task. Usingδ ′(dτk,Γ,1)≤ dτk as test leads to an equal calculation for both tests. �

In other words, the test by Devi is only a special case of the superposition approach.

As we have already seen the processor demand criterion is also only a special case of the

superposition approximation, the case withk = ∞. Therefore the superposition approxi-

mation bridges the gap between the fast but only sufficient test of Devi and the accurate

but slow processor demand criterion and therefore between the best sufficient and the best

exact analysis and combines them in one consistent approach.

3.7.2. Asynchronous task sets.The problem of schedulability analysis for asynchro-

nous task sets, e.g. task sets in which the tasks can have different offsets, for EDF sched-

uling is CO-NP hard [18]. In [106, 104, 105] a sufficient schedulability analysis was

proposed for these asynchronous task sets scheduled with EDF. This approaches requires a

repeated use of the processor demand criterion. In [68] it was shown that by a combination

of the approach given by Pellizzoni and Lipari in [104] with the introduced approximation

and the dynamic approximation proposed in the next chapter,a significant reduction of the

run-time of the analysis could be achieved.

CHAPTER 4

Adaptive schedulability tests

Approximative schedulability tests are only sufficient. Not all schedulable systems

are recognized as such by these analyses. Even that the degree of exactness can be chosen

does not help. The selection of the exactness has to be done inadvance. Choosing a high

degree of exactness can lead to a long execution time of the analysis whereas choosing a

low degree might result in a failure to classify correctly the systems in question.

But the proposed approximative superposition test can be used to achieve fast exact

schedulability test algorithms. The idea is to adapt the error dynamically on the hardness

of the problem. Systems being classified correctly by an inexact approximation should be

evaluated fast by the new analysis and only systems needing ahigh degree of exactness

for their correct classification will need a long evaluationtime. Therefore the proposed

algorithm uses different levels of approximation, starting with an inexact but fast approxi-

mation. In this chapter we will, based on the proposed approximation algorithms, introduce

exact feasibility analysis for dynamic priority systems.

We will propose two exact feasibility analyses, the dynamicerror analysis and the all

approximation analysis. We will consider the period task model with jitter and the event

stream model.

4.1. Dynamic error analysis

The idea behind the dynamic error analysis is to use different levels of approximation

having different degrees of exactness. The test starts at anapproximation level with a low

degree of exactness resulting in a fast schedulability test. The test switches to a level with

a higher degree of exactness if it fails at the lower level.

The example in figure 4.1.1 shows an exact demand bound function. In figure 4.1.2

the dynamic test for the same function is shown. The test starts with an approximation

level of one test interval for each event stream element or task. The first test interval is

(ms)c

∆ t (ms)

t,δ (∆’ 8Γ,)

FIGURE 4.1.1. Exact demand bound function

73

74 4. ADAPTIVE SCHEDULABILITY TESTS

(ms)c

(ms)c (ms)c

(ms)c (ms)c

(ms)c

∆ t (ms)

∆ t (ms) ∆ t (ms)

∆ t (ms) ∆ t (ms)

∆ t (ms)

t,δ (∆’ 8Γ,) t,δ (∆’ 8Γ,) t,δ (∆’ 8Γ,)

t,δ (∆’ 8Γ,)

t,δ (∆’ 8Γ,)

t,δ (∆’ 8Γ,)

t,δ (∆’ Γ, 1) t,δ (∆’ Γ, 1) t,δ (∆’ Γ, 1)

t,δ (∆’ Γ, 4) t,δ (∆’ Γ, 4) t,δ (∆’ Γ, 4)

d)

Violation

c)b)

e) f)

a)

FIGURE 4.1.2. Graphical visualization for an example of the dynamic
error test

considered exactly (figure 4.1.2 a) and then the approximation starts for this task (figure

4.1.2 b). Considering the first test interval for the second task results in a violation due to

the previous approximation of the first task (figure 4.1.2 c).Therefore the approximation

level is raised (to two test intervals for each task) and the value for the first test interval of

the second task is recalculated (figure 4.1.2 d) . The test continues with the new approxi-

mation level (figure 4.1.2 e) and now does not lead to any more violation (figure 4.1.2 f),

so the test returns “schedulable”.

It is not necessary to recalculate the value of the demand bound functionδ (∆t,Γ,k′)

for the new approximation level. It is only necessary to calculate the difference to the

previous value ofδ (∆t,Γ,k). This difference depends on those tasks only for which an

approximated value is included in the total value on the previous level and which are no

longer approximated on the new level.

LEMMA 4.1.1. Calculating the demand bound function for a new approximation level

Let ko = 1
εold

,kn = 1
εnew

be two approximation levels andΓdi f f be the set of tasks that

are not approximated on levelεnew and have previously be approximated on levelεold with

regard to an interval∆t. The demand bound function of the new level can be calculated:

δ ′(∆t,Γ,kn) = δ ′(∆t,Γ,ko)−



 ∑
∀τ∈Γdi f f

(

∆t + jτ −dτ
pτ

−
⌊

∆t + jτ −dτ
pτ

⌋)





or for the event stream model:

δ ′(∆t,Γ,kn) = δ ′(∆t,Γ,ko)−



 ∑
∀τ∈Γdi f f

∑
∀θ∈Θτ

(

∆t−aθ −dτ
pθ

−
⌊

∆t−aθ −dτ
pθ

⌋)





PROOF. We need to consider the definition of the approximated demand bound func-

tion. It is sufficient to do the proof for the event stream model, as the periodic model is

4.1. DYNAMIC ERROR ANALYSIS 75

included in it as special case.

δ ′(∆t,Γ,ko)− δ ′(∆t,Γ,kn) = ∑
∀τ∈Γ

δ ′(∆t,τ,ko)− ∑
∀τ∈Γ

δ ′(∆t,τ,kn)

Due to the definition ofΓdi f f we have the condition:

∀τ /∈ Γdi f f | δ ′(∆t,τ,ko) = δ ′(∆t,τ,kn)

Therefore we achieve:

δ ′(∆t,Γ,ko)− δ ′(∆t,Γ,kn) = ∑
∀τ∈Γdi f f

δ ′(∆t,τ,ko)− ∑
∀τ∈Γdi f f

δ ′(∆t,τ,kn)

= ∑
∀τ∈Γdi f f

∑
∀θ∈Θτ

∆t−aθ −dτ
pθ

− ∑
∀τ∈Γdi f f

∑
∀θ∈Θτ

⌊

∆t−aθ −dτ
pθ

⌋

= ∑
∀τ∈Γdi f f

∑
∀θ∈Θτ

(

∆t−aθ −dτ

pθ
−
⌊

∆t−aθ −dτ

pτ

⌋)

�

The problem is whether the whole analysis has to be repeated when switching to a

higher approximation level and therefore the previously considered (and skipped) test in-

tervals have to be reconsidered or not. Fortunately this is unnecessary.

THEOREM 4.1.2. Let interval∆t be a test interval on the approximation level k. Let

∆t′ be the largest test interval on the approximation level k′ < k with a size smaller than

∆t. If δ (∆t,Γ,k) > ∆t thanδ (∆t ′,Γ,k) > ∆t′.

In other words, if the analysis on the new approximation level would have failed for

any test intervals it would have also failed for the previoustest interval on a lower ap-

proximation level and therefore for one of the considered test intervals. Therefore it is not

necessary to reconsider the skipped test intervals.

PROOF. If the analysis fails for an interval∆t using an approximation levelk it fails

for ∆t also with each approximation levelk′ < k. The remaining part of the lemma is

equivalent to lemma 3.4.3 therefore the proof is also the same. �

In case of a level switch it is possible to continue the analysis at the considered test

interval. It is necessary to complete thetestlistby the test intervals of those tasks that are

no longer approximated due to the change of the approximation level. LetΓnext be again

the set of tasks that are no longer approximated on levelknext at interval∆t.

LEMMA 4.1.3. Let τ ∈ Γnext be a task being approximated at approximation level

kprev and being no longer approximated at level knext. NextInt(∆t,τ) gives the smallest test

interval for taskτ with a size larger than∆t.

NextInt(∆t,τ) = max

(

dτ ,

(⌊

∆t + jτ −dτ
pτ

⌋

+1

)

pτ +dτ − jτ

)

or for the event stream model with the event elementθ :

NextInt(∆t,θ) = (

⌊

∆t−aθ −dτθ

pθ

⌋

+1)pθ +aθ +dτθ

76 4. ADAPTIVE SCHEDULABILITY TESTS

PROOF. It is again sufficient to do the proof only for the event stream model. The

intervals generated by an event stream elementθ are given by

∆ttest = kpθ +aθ +dτθ k∈ N

For a specific value ofk we get:

k =
∆ttest−aθ −dτθ

pθ

Only natural numbers are allowed fork. As it is required for the next larger interval

∆ttest to the interval∆t being not equal to∆t we get fork:

k =

⌊

∆ttest−aθ −dτθ

pθ

⌋

+1

This leads to the above calculation ofNextInt(∆t,θ). �

The dynamic error schedulability test is formulated in algorithm 6. The test starts at

test levelk1 in which one test interval is considered for each task. Same as in the original

superposition algorithm, the smallest test interval for each task has to be collected in the

testlist. The algorithm considers the intervals intestlist in increasing order. For each of

these intervals the approximated demand bound functionδ ′ is calculated and compared

with the available computation time for this interval. If the available computation time is

equal or larger than the required computation time given by the demand bound function,

schedulability is proven with regard to this test interval.

In general the next larger test interval for the task responsible for the checked test

interval is added. This last step is skipped in cases where the maximum number of test

intervals for this task on the actual approximation level isreached. In this case no more

test intervals are considered and therefore added totestlistfor this task. For compensation

it is necessary to add an approximated demand for this task toeach demand of further

test intervals. This approximated demand is calculated using the specific utilization of the

approximated task on the difference between the consideredtest interval and the previous

test interval.

The test runs on this approximation level until either all relevant test intervals have

been checked, a maximum test interval is reached or the approximated demand bound

function exceeds the available capacity for a test interval∆t f ail . In the last case, the ap-

proximation level is raised step-by-step to a higher approximation levelεnext. Only those

approximation levels are of interest in which at least one ofthe approximated tasks of the

previous level is not approximated any more. For each approximation level a new ap-

proximated demand bound function is calculated with exact values for those tasks that are

no longer approximated. When the new approximated demand bound function does not

exceed the available computation time the test interval is finished and the analysis is con-

tinued with the new level. Otherwise the approximation level is raised further. If there are

no more approximated tasks at a level, the task set is not schedulable. For each task that

is no longer approximated on the new approximation level, the smallest test interval being

4.2. ALL-APPROXIMATED ALGORITHM 77

Algorithm 6 Dynamic Error Schedulability Test

Algorithm DYNAMIC_ERROR

Given: task set Γ
IF UΓ = ∑∀τ∈Γ

c+
τ

pτ
> 1⇒ not schedulable

k := 1
∆tmax := maximum test interval

testlist:= {}
approxlist:= {}
∆told := 0
∀τ ∈ Γ : ADD te= (NextInt(0,τ),τ) TO testlist
WHILE (testlist 6= {} and ∆t ≤ ∆tmax)

te=TEST LIST ELEMENT WITH SMALLEST ∆t IN testlist
∆t =INTERVAL OF te
τ =TASK BELONGING TO te
REMOVE te FROM testlist
δ ′ := δ ′+c+

τ +(∆t−∆told)Uready

WHILE (δ ′ > ∆t)
IF (approxlist = {})

⇒ not schedulable
k := 2k

/** It is possible to use another

/** strategy here for rising the level

FOR ALL τ ′ in approxlist with ∆t ≤ dτ ′+ pτ ′k

δ ′ := δ ′− (
∆t+ jτ ′−dτ ′

pτ ′
−
⌊

∆t+ jτ ′−dτ ′
pτ ′

⌋

)c+
τ ′

ADD te := (NextInt(∆t,τ ′),τ ′) TO testlist
REMOVE τ ′ FROM approxlist

Ur := Ur −
c+

τ ′
pτ ′

END FOR

END WHILE

IF (∆t = dτ)
ADD te := (∆t + pτ − jτ ,τ) TO testlist

ELSE IF (∆t < dτ + pτk)
ADD te := (∆t + pτ ,τ) TO testlist

ELSE

Ur := Ur + c+
τ

pτ
τ ADD TO approxlist

END IF

∆told := ∆t
END WHILE

⇒ schedulable

larger than∆t f ail has to be added totestlist(but only if it does not exceed the global max-

imal test interval). The algorithm is continued until either testlist is empty or the analysis

fails for a considered test interval.

The event stream version of this test is given in algorithm 7.

4.2. All-approximated algorithm

Once the dynamic error schedulability test has switched to ahigher approximation

level it remains there. This is especially a problem for cases in which the demand bound

78 4. ADAPTIVE SCHEDULABILITY TESTS

Algorithm 7 Dynamic Error Schedulability Test - Event Stream Version

Algorithm DYNAMIC_ERROR_EVENT_STREAM

Given: task set Γ
IF UΓ = ∑∀τ∈Γ ∑∀θ∈Θτ

c+
τ

pθ
> 1⇒ not scheduable

k := 1
∆tmax := maximum test interval of Γ
testlist:= {}
approxlist:= {}
∆told := 0
∀τ ∈ Γ,∀θ ∈ Θτ : ADD te= (NextInt(0,θ),θ) TO testlist
WHILE (testlist 6= {} and ∆t ≤ ∆tmax)

te=TEST LIST ELEMENT WITH SMALLEST ∆t IN testlist
∆t =INTERVAL OF te
θ= EVENT ELEMENT BELONGING TO te
τ = TASK BELONGING TO θ
REMOVE te FROM testlist
δ ′ := δ ′+c+

τ +(∆t−∆told)Uready

WHILE (δ ′ > ∆t)
IF (approxlist = {})

⇒ not scheduable
k := 2k

/** It is possible to use another

/** strategy here for rising the level

FOR ALL θ ′ in approxlist with ∆t ≤ dτ ′+a+ pθ ′k

Uready := Uready−
c+

τ ′
pθ ′

δ ′ := δ ′− (
∆t−dτ ′−aθ ′

pθ ′
−
⌊

∆t−dτ ′−aθ ′
pθ ′

⌋

)c+
τ ′

ADD te := (NextInt(∆t,θ ′),θ ′) TO testlist
REMOVE τ ′ FROM approxlist

Ur := Ur −
c+

τ ′
pθ ′

END FOR

END WHILE

IF (∆t < dτ +aθ + pθ k)
ADD te := (∆t + pθ ,θ) TO testlist

ELSE

Ur := Ur + c+
τ

pθ
θ ADD TO approxlist

END IF

∆told := ∆t
END WHILE

⇒ scheduable

function do nearly exceed the available capacity for some test intervals and for which there-

fore it is not allowed to approximate any, even the smallest task, for these test intervals. In

these cases it is necessary to raise the approximation levelto a highest value required for

any interval of the demand bound function. The approximation level has to cover the num-

ber of test intervals necessary for the smallest task. In thefurther execution of the analysis

this level is used for all tasks. This could require to test a large number of test intervals.

Often only few test intervals are critical and nearly exceedthe available execution time.

4.2. ALL-APPROXIMATED ALGORITHM 79

(ms)c

(ms)c

∆ t (ms)

∆ t (ms)

t,δ (∆’ 8Γ,)

t,δ (∆’ 8Γ,)

t,δ (∆’ Γ, 1)

t,δ (∆’ Γ, 1)

t,δ (∆’ Γ, 4)

Violation

k=1 a)

k=4 b)

FIGURE 4.2.1. Graphical visualization of the all-approximation algorithm

Only for them the highest approximation level is required. The other test intervals could

be approximated using a small approximation level. These considerations lead to a new

approach for the analysis.

The idea behind the all-approximation algorithm is to assign to each task an approxi-

mation level individually and to raise this level only as faras necessary. Instead of using

fixed levels for the complete task set, approximation is doneas much as possible. In the

algorithm each task is approximated after each of its test intervals. Figure 4.2.1 shows this

for an example. Until the first violation the algorithm worksin the same way as the dy-

namic error algorithm. After this violation the approximation restarts for each task as soon

as possible again, this means at the next job of each task. Test intervals are only generated

and considered at the beginning and when violations have occurred previously.

Therefore no new test interval is inserted intotestlist after the analysis of any test

interval. In the algorithm new test intervals are added totestlistonly in those cases in which

the calculated approximated demand of a test interval exceeds the available computation

time.

The algorithm 8 implements these considerations. At the start of the algorithm the

first test interval of each task is inserted intotestlist. The test intervals intestlistare pro-

cessed in ascending order. All the following test intervalsof the tasks are approximated

first. Therefore each task is added toapproxlist(and their specific utilization toUr) after

analyzing its test interval. Whenever the approximated demand bound functionδ ′ exceeds

the available execution time for a test interval∆t, a step-by-step revision of the approxima-

tions of the single tasks is necessary. Only if an approximation of a task is revised in this

step, it is necessary to insert a new test interval for this task. It is necessary to insert the

first test interval of the task that is larger than∆t. Lemma 4.1.3 gives its calculation. Note

80 4. ADAPTIVE SCHEDULABILITY TESTS

Algorithm 8 All Approximated Test

Algorithm All-Approximated

Given: task set Γ
IF UΓ = ∑∀τ∈Γ

c+
τ

pτ
> 1⇒ not schedulable

testlist:= {}
approxlist:= {}
∆told := 0
∀τ ∈ Γ : ADD te= (NextInt(0,τ),τ) TO testlist
WHILE (testlist 6= {})

te=TEST LIST ELEMENT WITH SMALLEST ∆t IN testlist
∆t =INTERVAL OF te
τ =TASK BELONGING TO te
REMOVE te FROM testlist
δ ′ := δ ′+c+

τ +(∆t−∆told)Uready

WHILE (δ ′ > ∆tact)
IF (approxlist = {})

⇒ not schedulable
τ ′ = TASK WITH LARGEST (pτ −dτ) OF approxlist

/** Other orders of

/** revised elements possible

δ ′ := δ ′− (
∆t+ jτ ′−dτ ′

pτ ′
−
⌊

∆t+ jτ ′−dτ ′
pτ ′

⌋

)c+
τ ′

ADD te := (NextInt(∆t,τ ′),τ ′) TO testlist
REMOVE τ ′ FROM approxlist

Ur := Ur −
c+

τ ′
pτ ′

END WHILE

Ur := Ur + c+
τ

pτ
ADD τ TO approxlist
∆told := ∆t

END WHILE

⇒ schedulable

that all skipped intervals smaller than∆t are covered by the previous tested intervals, so it

is only necessary to consider intervals larger than∆t. The revision is done by replacing the

approximated execution time of a task by its exact executiontime using lemma 4.1.1. The

revision is done task by task, testing for each task whether the new approximated demand

is now covered by the available computation time or not. Onlyif the execution time still

exceeds the capacity at the time when the approximation for all tasks is revised, the system

is not schedulable. A task system is recognized as schedulable if there is a test interval

∆t in which all tasks can be approximated successfully and therefore thetestlist is empty.

Essential for the number of test intervals is, in which orderthe revision of the task is done.

The best would be to choose that set of tasks for revision thatleads to the largest follow-

ing test interval. Always choosing this set would lead to thelargest differences between

consecutive test intervals and therefore to the smallest possible number of test intervals.

Unfortunately the construction of the set that leads to these largest test intervals is not sim-

ple. It can be necessary to consider the test intervals and the exact approximation errors

of all other tasks. Even worse, a task with a large following test interval will usually lead

only to a small approximation error, whereas a task with a test interval close by can have a

4.2. ALL-APPROXIMATED ALGORITHM 81

Algorithm 9 All Approximated Test - Event Stream Version

Algorithm All-Approximated-Event-Stream

Given: task set Γ
IF UΓ = ∑∀τ∈Γ ∑∀θ∈Θ

c+
τ

pθ
> 1⇒ not schedulable

testlist:= {}
approxlist:= {}
∆told := 0
∀τ ∈ Γ,∀θ ∈ Θτ : ADD te= (NextInt(0,θ),θ) TO testlist
WHILE (testlist 6= {})

te=TEST LIST ELEMENT WITH SMALLEST ∆t IN testlist
∆t =INTERVAL OF te
θ = EVENT ELEMENT OF te
τ =TASK BELONGING TO θ
REMOVE te FROM testlist
δ ′ := δ ′+c+

τ +(∆t−∆told)Uready

WHILE (δ ′ > ∆tact)
IF (approxlist = {})

⇒ not schedulable
θ ′ = EVENT ELEMENT WITH LARGEST pθ −

dτθ OF approxlist
τ ′ = TASK BELONGING TO θ ′

/** Other orders of

/** revised elements possible

δ ′ := δ ′− (
∆t−aθ ′−dτ ′

pθ ′
−
⌊

∆t−aθ ′−dτ ′
pθ ′

⌋

)c+
τ ′

ADD te := (NextInt(∆t,θ ′),θ ′) TO testlist
REMOVE θ ′ FROM approxlist

Ur := Ur −
c+

τ ′
pθ ′

END WHILE

Ur := Ur + c+
τ

pθ
ADD θ TO approxlist
∆told := ∆t

END WHILE

⇒ schedulable

large concrete approximation error. This is the case if the periods of the two tasks are in the

same range. A large distance to the following test interval of a task means a small distance

to the previous test interval. This means a small concrete approximation error because it

directly depends on the difference between the actual test interval∆t and the previous test

interval of the task.

As the order in which the approximation of the tasks should berevised we propose the

sizes of the difference between period and deadline of the task. Tasks with large periods

have the potential of a large approximation error and will inaverage lead to large following

test intervals. These tasks are therefore most suitable forrevising the approximation. In

chapter 6 we have compared the run-time of the analysis usingdifferent orders for the task

for revision.

The event stream version is given in algorithm 9.

82 4. ADAPTIVE SCHEDULABILITY TESTS

4.3. Generalization of the maximum test interval

For the all-approximation analysis it is interesting to consider the test interval after

which no violation can happen any more. For a schedulable task set this test interval is not

larger than the maximum test intervals proposed by Baruah etal. [19] and by Ripoll et al.

[119] (lemma 2.2.13).

LEMMA 4.3.1. The largest test interval being analyzed by the all-approximation anal-

ysis is equal or smaller than the test bound given by Ripoll etal. [119] (lemma 2.2.13)

To prove this, we need:

LEMMA 4.3.2. The all-approximation analysis finish its execution at the following

test interval(∀τ ∈ Γ : ∆ta > dτ):

∆ta = ∑
∀τ∈Γ

(

∆ta + pτ −dτ
pτ

)

cτ

This lemma follows directly out of the definitions. With thislemma it is easy to prove

the previous lemma.

PROOF. We can do the following calculations (conditiondτ < pτ):

∆ta = ∆ta ∑
∀τ∈Γ

cτ
pτ

+ ∑
∀τ∈Γ

(

pτ −dτ
pτ

)

cτ

∆ta(1−UΓ) = ∑
∀τ∈Γ

(

pτ −dτ
pτ

)

cτ

∆ta =
∑∀τ∈Γ

(

1− dτ
pτ

)

cτ

1−UΓ

The test bound given by Ripoll et al. [119] is the same as the bound resulting of the

all-approximation algorithm in the case that all tasks in the task set have a deadline being

equal or smaller than their period. If the task set contains tasks having a deadline larger

than their period, the bound of the all-approximation algorithm is tighter than the bound

given by Ripoll et al. [119]. �

Only the busy period condition can result in a smaller upper bound for the test inter-

vals. But the effort required to calculate the busy period has an exponential complexity and

can therefore become quite larger than the whole all-approximation test.

4.4. Complexity

The resulting complexity of the all-approximation test is unknown. Considering one

test-interval has a complexity ofO(nlogn) with n being the number of tasks. In the worst

case the effort for one test interval consists of undoing theapproximation of all tasks ex-

cept the actual task and to insert for each of it the next larger test interval into the sorted

test list. The problem for complexity analysis is that the number of test intervals needed

by the all-approximation algorithm in the worst-case is still unknown. An upper bound

for this number of test intervals is the number needed by the original processor demand

4.4. COMPLEXITY 83

criterion. This original processor demand criterion has a pseudo-polynomial complexity.

The number of test intervals depends on the number of tasks inthe task set as well as on

their parameters. Again the ratio between the smallest and the largest tasks in the task set

plays an important role for the number of test intervals.

No tighter complexity bound than pseudo-polynomial is known for the all-approximated

algorithm so far. We have used experiments with randomly generated task sets to find a

lower bound on the complexity of the all-approximated analysis. We have found out that

the new algorithm needs a lot less effort than all previouslyknown exact and approximated

analyses. It also seems that its effort is independent of theratio of the parameters of the

tasks and only depends on the number of tasks in a task set and the utilization of the task

set. See the evaluations given in chapter 6 for the results.

CHAPTER 5

Approximation for static priority scheduling

Although the EDF scheduling scheme is proved to be optimal and therefore it allows

a high utilization of the processing elements, many applications and methods are based on

scheduling with static priorities. On the one side, the implementation for this scheduling

scheme is said to be simple and it is not necessary to assign deadlines to the tasks. On

the other side, static priorities do not allow high utilizations as achievable with EDF. An

interesting comparison of the two scheduling schemes can befound in [35]. This paper

contradicts many prejudices against the EDF scheduling scheme. Despite that, it is still in-

teresting to find efficient approximative and exact tests forstatic priorities. In this chapter

we want to extend our approximative schedulability test to static priority systems. We pro-

pose an approximative test and also an efficient exact test byextending the approximation.

Based on the idea of the superposition approach presented in[5] Fisher and Baruah

have proposed an approximative schedulability test for static priority systems, too [51, 52,

53] .

In contrary to their approaches we propose a test based on thesame elements we used

for EDF scheduling, the sub-additive functions. These functions can be regarded as an

abstraction layer between the event models and the test algorithm. Therefore the new test

algorithms are suitable for powerful event models, not onlyfor the periodic task model. For

example they are suitable for the event stream model. They also allow to easily combine

the tests for both scheduling schemes to an integrated powerful overall-test.

5.1. Exact schedulability analysis

Let us first consider some already existing schedulability tests for the preemptive

scheduling scheme with static priorities. Each task in a task set has one priority. A task

with a higher priority will be preferred over a task with a lower priority. In a preemptive

scheduling scheme the execution of a task can be interruptedby a task with a higher pri-

ority and be postponed until the execution of this higher-priority task has finished. For the

purpose of the following considerations and without loss ofgenerality we will order the

tasks with increasing priorities. We demand that each task has a unique priority. There-

fore we assume, again without loss of generality, that taskτ1 has a higher priority thanτ2

having a higher priority thanτ3 and so on.

DEFINITION 5.1.1. Let prio(τ) be a function giving the priority of taskτ. Let hp(τ,Γ)

be the task set containing all those tasks ofΓ having a priority higher thanτ

hp(τ,Γ) = {τx | prio(τx) > prio(τ)}

85

86 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

For static priority schedulability analysis it is not sufficient to consider only the de-

mand bound function, which covers the amount of workload finished within the given in-

terval. For EDF it is sufficient to consider the demand bound function, as only the workload

covered by this function has priority and is therefore preferred to all remaining workload.

For static priority scheduling, workload that has to be finished later than other workload

can originate from tasks having a higher priority then the tasks responsible for the other

workload and is then preferred over this other workload. Thetotal amount of the preferred

workload can be captured by the request bound function.

DEFINITION 5.1.2. Request Bound Function

The request bound functionρ(∆t,Γ) returns for each interval-length∆t the cumulated

worst-case workload of all jobs of all task getting ready forexecution within the interval

∆t.

ρ(∆t,Γ) = ∑
∀τ∈Γ

⌈

∆t
pτ

⌉

cτ

This request consists of the execution time of those jobs forwhich the invocation

time is within the interval I. For a single task we will writeρ(∆t,τ). For an interval∆t

and a taskτ a chain of consecutive jobs of the task contributes fully to the request bound

functionρ(∆t,τ) if the difference between the release time of the first job of the chain and

the release time of the last job is equal or smaller than the length of∆t.

The execution of a job of a task is postponed by the request of all tasks having a higher

priority which is given by the request bound function for these tasks (ρ(∆t,hp(τ,Γ)).

Therefore it is necessary to consider the feasibility test for each task separately.

We will first consider the case that the possible execution intervals for the jobs of task

τ cannot overlap.

DEFINITION 5.1.3. (Task separation constraint) A taskτ fullfills the task separation

condition if the possible execution interval (e.g. the interval including every point in time

in which the job can execute) of each job ofτ does not overlap with the execution intervals

of the previous and of the next following job of the same task.This is the case if the absolute

deadline of each job of the task occurs earlier than the release of the next following job.

The task separation constraint allows simplifying feasibility analysis. We will intro-

duce and prove a schedulability analysis with the followingdefinitions and lemmas

DEFINITION 5.1.4. (Satisfaction interval - schedule formulation) Let jobτi, j belong

to a taskτi bound on a resourceρ holding the task separation condition. Each interval∆t

for which the following condition holds is called a satisfaction interval forτ:

• The interval starts at an idle point with respect to the task and all tasks with

higher priorities. That means that exactly at the start point of the interval only

those jobs are ready for execution that have just arrived at the start point. Tasks

with a lower priority thanτ are not considered.

• The jobτi, j becomes ready exactly at the start of the interval

5.1. EXACT SCHEDULABILITY ANALYSIS 87

• The capacity for∆t does meet or exceed the sum of the request bound function

for ∆t with respect to the higher priority task set ofτ bound on one resourceρ
and the execution time for the job itself.

χ(∆t,ρ)≥ ρ(∆t,hp(τ,Γ))+c+
τ

This satisfaction interval is based on one concrete (worst-case) schedule only. In the fol-

lowing lemmas we will show how the satisfaction interval is used for schedulability anal-

ysis. The separation condition allows reducing the complete schedulability analysis to a

check of the satisfaction intervals for every first job of each task.

In those cases in which the separation constraint does not apply, it is not longer pos-

sible to check only the first job of each task. Instead it is necessary to analyze every job

within the first busy period of each task. In definition 5.1.7 we will propose a modified

functional description of a satisfaction interval for which the separation condition is no

longer necessary. But let us first continue with the schedulability analysis and the proof of

it.

LEMMA 5.1.5. A job is always executed completely within its satisfactioninterval.

PROOF. Let us assume there is a job of a taskτ and an interval∆t fulfilling the con-

dition of the satisfaction intervals of definition 5.1.4. The job is not executed fully, despite

that the capacity meets or exceeds the execution time of the job and the request bound

function for the higher priority tasks. By definition of the satisfaction interval, the job

gets ready at the start of the interval and remains ready during the complete length of∆t.

Therefore the processor is not idle at any point of time within ∆t as the job would execute

at this point of time. Also tasks with lower priorities cannot be executed within∆t, asτ
would execute instead of them. No job that has arrived beforethe start of∆t can execute

in ∆t as this would be in contradiction to the idle point conditionfor the start point of the

satisfaction interval. So, as the capacity is fully used by the job and the tasks with is higher

priority thanτ either the execution time of the job would exceedc+
τ or the sum of the exe-

cution time of the tasks with is higher priority thenτ would exceedρ(∆t,hp(τ,Γ)). Both

are in contradiction to the definitions of the two values. Therefore the assumption does not

hold. �

With this lemma we can now formulate and prove the schedulability analysis itself.

THEOREM 5.1.6. A taskτ holding the task separation condition is schedulable (fin-

ishes always its execution before its deadline) if there exists a satisfaction interval∆t ≤ dτ

for the simultaneous release of the first job ofτ and a job of each task having a higher

priority than τ.

∀τ ∈ Γ : ∃∆t ≤ dτ |χ(∆t,ρ)≥ c+
τ + ρ(∆t,hp(τ,Γ))

PROOF. Let us first prove, that the simultaneously release of all tasks of a task set

is the worst-case situation for the task with the lowest priority within the task set. The

worst-case situation for a job occurs if it’s processing achieves the longest delay. Consider

the top two tasksτ1,τ2 with the highest priorities and assume that they are not released

88 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

simultaneously. The release of a job ofτ2 can occur either during the processing of a job

of τ1 or during an idle time of the processor. In the first case the release time of the job of

τ2 can be moved to the release time of the running job ofτ1 without changing the concrete

schedule. In the second case the release time of the job can bemoved to the release time

of the next job ofτ1. The amount of workload that was originally processed between the

original release time and the new release time of the job will, in the modified schedule,

have to be also moved. It will fill the idle time following the new simultaneous release

time in a size that is equal to the difference between the original and the new release time.

Therefore the shift operation to a simultaneous release of tasks cannot lead to a shorter

delay for one of the tasks. The same proof can now be used recursively on all following

tasks. Therefore the simultaneous release of all tasks is the worst-case situation.

As we know by lemma 5.1.5 the execution of a job is completely finished within each

of its satisfaction intervals in those cases in which the task separation condition holds. If

there exists a satisfaction interval that does not exceed the relative deadline and the task

separation condition holds, each job finishes within the relative deadline of the task and the

task is schedulable. �

The problem is that the possible satisfaction intervals aresomewhere between the

worst-case execution time of the task and its relative deadline. Neither of these values

needs to be such a satisfaction interval. The satisfaction interval is similar to the definition

of a scheduling point in [80]. It can be time consuming to find one satisfaction interval.

The question is, if there is a more efficient way to prove schedulability than calculating the

worst-case response time.

For the general deadline case, in which the task separation condition does not hold, it

is necessary to use an extended definition of satisfaction interval and to find these intervals

for several jobs of the same task. The satisfaction intervals still have to start at an idle point

but can include several jobs of the considered task.

DEFINITION 5.1.7. (Satisfaction interval - functional formulation) Let us consider

each taskτ separately. An interval∆t’ is a satisfaction interval for a taskτ and an interval

∆t if ∆t′ ≤ ∆t and the sum of the demand of the task for∆t and the request bound function

for ∆t′ of all tasks with a higher priority thenτ does not exceed the capacity with respect

to ∆t ′:

χ(∆t′,ρ)≥ δ (∆t,τ)+ ρ(∆t′,hp(τ,Γ))

The satisfaction intervals are visualized in figure 5.1.1. In it the functionF(∆t ′) =

δ (∆t,τ)+ ρ(∆t′,hp(τ,Γ)) is plotted together with the capacity functionχ(∆t′,ρ). There

are three spaces of satisfaction intervals.

This is the general description for a satisfaction interval. For a complete real-time

analysis it is necessary to find such a satisfaction interval∆t′ for all jobs of each task. Let

∆tτ,k = (k−1)pτ +dτ be the interval of the k-th job ofτ.

5.1. EXACT SCHEDULABILITY ANALYSIS 89

(ms)c

∆ t (ms)

F(∆ t)

Satisfaction Intervals

FIGURE 5.1.1. Example of satisfaction intervals

LEMMA 5.1.8. A task set is feasible if for each task and each of its intervals∆tτ,i such

a satisfaction interval exists.

∀∆t|δ (∆t,τ) > 0 : ∃∆t′ ≤ ∆t|χ(∆t′,ρ)≥ δ (∆t,τ)+ ρ(∆t′,hp(τ,Γ))

PROOF. Let, without loss of generality,∆t ′ be an satisfaction interval belonging to a

taskτ and an interval∆tτ,i with ∆t′ ≤ ∆tτ,i . The unified starting point of both∆tτ,i and∆t ′

is set to the last idle point of their processor before the endpoint of ∆t′. Assume that the

job τi of taskτi having its absolute deadline given by the end of∆tτ,i misses its deadline

despite that the condition of the satisfaction interval∆t′ holds. By definition the complete

costs of the job are included in the value of the demand bound functionδ (∆t,τ). For

missing the deadline it is necessary that at least one part ofthe demanded workload cannot

be processed within∆t. The sum of the demand bound function and the request bound

function for∆t′ does not exceed the minimal available supply of computational capacity.

As one part of the demand bound function is not processed within ∆t ′ either the processor

is idle somewhere within∆t′ or it processes tasks that are not covered by the demand and

the request bound function. The processor cannot be idle as otherwise the job that misses

its deadline would be processed at the idle time. Also no taskwith a lower priority can

execute within∆t ′ for the same reason. No job occurring before the start of∆t′ can execute

within ∆t ′ as the start point of∆t ′ is an idle point of the processor. By the definition of

an idle point there is no processable job at this point of timehaving arrived before this

point of time. All tasks with higher priorities arriving within ∆t ′ are included in the request

bound function and therefore covered by the service function. The jobs of the task itself

have all the same relative deadline. All jobs having an arrival time before the arrival time

of τ also have a deadline before the deadline ofτ. Those jobs of the task having arrived

before the start of∆t′ are completely executed before the start of∆t ′ due to the idle point

condition. The computational effort of all those jobs of thesame task having arrived within

∆t′ but beforeτ and can therefore delay the execution ofτ is covered by the demand bound

functionδ (∆t,τ) and therefore also by the service bound function. It is not possible to find

a schedule in whichτ misses its deadline. �

This results in a huge effort for the analysis. The concept ofthe satisfaction intervals

can also be used to determine the worst-case response time ofa task. Again we consider the

90 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

rτ

(ms)c

∆ t (ms)

F(∆ t)

FIGURE 5.1.2. Worst-case response-time with satisfaction intervals

cases in which the task separation condition holds or not separately. In case the condition

holds we only have to consider the first job of the task.

THEOREM 5.1.9. The worst-case response time of a task rτ for which the separation

condition (definition 5.1.3) holds is given by the smallest satisfaction interval as defined in

definition 5.1.7.

r(τ) = min(∆t|ρ(∆t,hp(τ,Γ))+c+
τ ≤ χ(∆t,ρ))

PROOF. As the satisfaction intervals are sufficient to prove schedulability, the worst-

case response time cannot be larger than this interval. So the remaining question is, if it can

be smaller than the first satisfaction interval. The job can only be executed if no job with

a higher priority is ready to execute and have a remaining execution demand. This is the

case for those intervals in which the execution of all higherpriority jobs can be completely

satisfied by the service bound function. To complete the execution of the job itself it is

additionally necessary that the service function also provide enough capacity for this job

and all previous jobs of the task. This is the case at the first satisfaction interval. It is

therefore the worst-case response time of the task. �

The theorem is visualized in figure 5.1.2. The worst-case response-time is the first

satisfaction interval.

In case that the separation condition does not hold, the worst-case response time can

be the response time of any job within the first busy period. Inthis case it is necessary to

calculate it for every one of these jobs.

LEMMA 5.1.10. (similar to [130]) The worst-case response time for a specific job (the

first, second, third,....) is given by the difference between the smallest interval in which

the job can arrive (given by the interval bound functionψ(i,τ)) and the next following

satisfaction interval(ρ(∆t,hp(τ,Γ))+ c+
τ i ≤ χ(∆t,ρ)). The overall worst-case response

time is given by the maximum of all worst-case response timesof the jobs.

rτ = max∀i∈N(rτ,i−ψ(i,τ))

rτ,i = min(∆t|ρ(∆t,hp(τ,Γ))+c+
τ i ≤ χ(∆t,ρ))

We can also reformulate this calculation so that it is independent of the jobs and is

only based on intervals.

5.2. EXCEEDING COSTS 91

THEOREM 5.1.11. The overall worst-case response time r(τ) for a taskτ is given by:

r(τ) = max(∆t|r(∆t,τ)−∆t)

r(∆t,τ) = min(∆t′|η(∆t,τ)rτ + ρ(∆t′,hp(τ,Γ))≤ χ(∆t′,ρ))

PROOF. Let us assume that there exists a jobτi with a longer response time than given

by the equations above. By definition of the fixed-priority scheduling the resourceρ has

to be completely busy between the release ofτi and the finishing time ofτi . Let ∆t′′ be the

interval between the finishing time ofτi and the last previous idle time. Let us assume a

synchronous release of jobs of all tasks at the start of∆t′′. All other release pattern would

only lead to equal or less costs within∆t and therefore to an equal or smaller∆t′′. Let us

also, without loss of generality, denote the job ofτ released at the begin of∆t′′ with τ1. Due

to the assumption there exists an interval∆t ′ fulfilling η(ψ(i,τ),τ)rτ +ρ(∆t′,hp(τ,Γ))≤
χ(∆t′,ρ) with ∆t′ < ∆t′′. As ∆t ′ is an idle point with regard toτ andhp(τ) the jobτi has

finished at∆t ′ which is in contradiction to the assumption. �

To find the worst case it is necessary to analyze all jobs within the busy period of the

tasks and all higher priority tasks.

5.2. Exceeding costs

The disadvantage of all the approaches proposed in the last section is that it is nec-

essary for proving the schedulability of one interval∆t to find or prove the existence of

an additional interval∆t′ with unknown size. For integrating the analysis in an analysis

framework it would be better if it would be possible to use only one interval∆t for all

functions. To find a schedulability analysis satisfying this constraint an additional function

is required, the exceeding-cost function.

DEFINITION 5.2.1. (Exceeding Cost Function)E (∆t,Γ)

The exceeding costs are those part of the execution times of all jobs of all tasks in the

task set, arriving within∆t that cannot be processed within∆t independently of the used

scheduling scheme of the processor.

The exceeding costs are those costs of the different jobs that cannot be processed

within the test interval due to the late arrival time of the jobs.

EXAMPLE 5.2.2. Consider the example given in figure 5.2.1. It is the task setΓ =

{τ1,τ2,τ3,τ4} with τ = (pτ ,c+
τ ,dτ) and τ1 = (8ms,4ms,4ms), τ2 = (22ms,3ms,7ms),

τ3 = (19ms,3ms,17ms), τ4 = (30ms,1ms,26ms). Let us consider the exceeding costs for

the first jobτ4,1 of taskτ4. Let dτ4 = 50 ms therefore∆t = 50 ms is the considered interval

for the exceeding costs. The jobτ1,4 of taskτ1 arrives at time 48 ms (or more exactly not

before the end of an interval with length 48) having an execution time of 4 ms. Even if

this job can use fully the available capacity in the remainder of the interval for execution

it is only possible that this job executes for two ms within∆t. So it is not possible for

the remaining two ms to be executed within∆t. They belong to the exceeding costs. A

set of jobs arriving late can contribute even more to the exceeding costs than the single

92 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

τ1

τ4

τ1
τ1,1

τ4,1

τ
3,1

τ
2,1

τ3,2

τ
1,4

∆ t
2

∆ t
3

∆ t
1

∆ t (ms)

∆ t (ms)

∆ t (ms)

∆ t (ms)

τ

τ

2

3

20

20

20 30

30

30

3020

Exceeding Costs

τ1,3 τ1,5

τ
2,2

τ

τ

3,3

4,2
τ4,1

d

d

FIGURE 5.2.1. Task set example for exceeding costs

jobs of the set. They cannot execute concurrently. In the example the jobτ2, j arriving

at time point 45 ms having an execution time of 5 ms would not lead to exceeding costs

when considered alone. Together with jobτ1,i it leads to a value of 4 ms for the exceeding

costs, even more thanτ1,i produces alone. Two milliseconds are the exceeding costs of

τ1,i the other two milliseconds occur becauseτ2, j cannot be executed fully within∆t due

to its postponing by jobτ1,i . Note that the scheduling of these two jobs is not relevant

here. One of the two jobs is shifted partly out of the boardersof the interval by the other

job. For the exceeding cost function it is not important which job is shifted and therefore

contributes to the exceeding costs. Only the sum of all computation time that is guaranteed

to be not within the interval is of relevance. In the example the jobτ3,k also contributes to

the exceeding costs but only when its delay by the jobτ1,i−1 is taken into account. This

shows that, especially to the concurrency of the jobs of different tasks, several jobs of a

task can cause a contribution to the exceeding costs. Each job between the last idle point

within an interval and the end of the interval can cause exceeding costs and has therefore

to be taken into account for the exact calculation of them.

LEMMA 5.2.3. The exceeding costs for an interval∆t and a task setΓ are given by

E (∆t) = ρ(∆t,Γ)−ρ(∆t′,Γ)− (χ(∆t)− χ(∆t′))

∆t′ = max(∆t′′|∆t′′ ≤ ∆t ∧ρ(∆t′′,Γ)≤ χ(∆t′′))

PROOF. Let ∆t1 be the requested interval∆t, ∆t2 be the interval∆t′. The intervals are

visualized again in figure 5.2.1. A necessary condition for the existence of exceeding costs

is that in an interval∆t3 more computation is requested byΓ than capacity is available.

The exceeding costs of interval∆t3 are those part of the costs requested within∆t3 that

exceeds the capacity available within∆t3. Relevant for∆t3 are only those intervals starting

5.2. EXCEEDING COSTS 93

after the last idle point, as no costs occurring before this idle point can contribute to the

exceeding costs. So we have∆t3≥ ∆t1.

To prove the condition we assume that an interval∆t3 exists with∆t3 > ∆t2 leading to

more exceeding costs than∆t2. Any job arriving between the start of∆t2 and the start of

∆t3 and which is not completely finished processing at the start of interval∆t3 contributes

to the exceeding costs. So a necessary condition for∆t3 is that no such job exists. But then

the end of∆t3 is an idle point which is in contradiction to the assumption that the end of

∆t′ is the last idle point. �

A new schedulability test can be formulated using the exceeding cost function.

THEOREM 5.2.4. Let τ be a task of task setΓ. τ always meets its deadline if the sum

of the demand bound function of the task and the request boundfunctions of hp(τ,Γ) is

lower or equal to the available execution time in∆t and the exceeding costs of hp(τ,Γ):

δ (∆t,τ)+ ρ(∆t,hp(τ,Γ))≤ χ(∆t)+E (∆t,hp(τ,Γ))

PROOF. The exceeding costs cannot by definition be executed within∆t, but they are

included inδ (∆t,τ)+ρ(∆t,hp(τ,Γ)). Therefore a virtual capacity in size of the exceeding

costs is additionally available within∆t to satisfyδ (∆t,τ)+ ρ(∆t,hp(τ,Γ)). �

The algorithm calculating the exceeding costs exactly is given in algorithm 10. It

covers the period task model with jitter. Having no jitter, the jitter can be set to zero and it

is only necessary to check whether the first job for every taskkeeps its deadline.

The idea behind the algorithm is quite simple. The jobs occurring in the interval∆t

are considered step-by-step backwards, starting with the last job. We consider a set of last

jobs of the interval being increased by one job at each step. The interval in which all these

jobs occur is called the remaining interval∆tr . It is given by the difference of the end

of the complete interval and the release time of the first one of the last jobs. We have to

consider two kinds of values here. First, there is the execution time of these last jobs. One

part of the cumulated execution times of these jobs are handled within the remaining part

of the interval, the other part of the cumulated execution times forms the exceeding costs.

As already mentioned the exceeding costs cannot be executedwithin the interval∆t. To

calculate the size of these parts we have to consider the maximum amount of execution time

that can be handled within the remaining interval. This amount of processable execution

time is given by the difference of the capacity of the complete interval∆t and the capacity

of an interval∆t ′ = ∆t−∆tr . Note that both capacities deliver the minimum processable

execution time, so the difference of these functions can exceed the minimum execution

time that is available for any interval of length∆tr .

This remaining execution time is also calculated step-by-step in the proposed algo-

rithm by considering the service bound function at the release times of the jobs. The

exceeding costs are calculated by subtracting this difference of the service bound functions

from the cumulated execution times of the considered jobs. The event stream version is

given in algorithm 11 .

94 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

Algorithm 10 Exceeding-Cost Analysis

Algorithm Exceeding-Cost-Analysis

Given: task set Γ, τ
IF UΓ = ∑∀τ∈Γ

c+
τ

pτ
> 1⇒not schedulable

∆tbp = BusyPeriod(τ∪Γhp(τ))
∆tbase:= dτ
while (∆tbase≤ ∆tbp)

testlist:= {}
∆told := ∆tbase

Cr = δ (∆told,τ)+ ρ(∆t + jτ ,Γhp(τ))− χ(∆told)

∀τ ′ ∈ Γhp(τ) : ADD te :=
(

(
⌊

∆told+ jτ ′
pτ ′

⌋

pτ ′− jτ ′),τ ′
)

TO testlist

WHILE (testlist 6= {})
IF (Cr ≤ 0)
⇒schedulable

END IF

te=TEST LIST ELEMENT WITH SMALLEST ∆t IN testlist
∆tact =INTERVAL OF te
τ =TASK BELONGING TO te
REMOVE te FROM testlist
Cr := Cr −c+

τ +(χ(∆tact)− χ(∆told))
IF (∆tact > 0)

ADD te := (max(0,∆tact− pτ),τ) TO testlist
END IF

∆told := ∆tact

END WHILE

IF (∆tbase= dτ)
∆tbase:= ∆tbase+ pτ − jτ

ELSE

∆tbase:= ∆tbase+ pτ
END IF

END WHILE

⇒ not schedulable

Note, that it is only necessary to proceed with the calculation of the exceeding cost

function until it covers completely the difference betweenthe request bound function of

the higher priority tasks and the demand bound function of the task in question on the

one side and the service function on the other side. Then it isproven that there is enough

processable execution time available within∆t for the job in question to keep its deadline.

In the case that the sum of the request and the demand bound function does not exceed the

service bound function for the interval∆t no calculation of the exceeding costs is needed

at all. The advantage of this approach is that only in case of avery high utilization of the

processor it is necessary to calculate the exceeding cost function accurately requiring an

effort comparable to the effort for the previous existing tests.

It is possible to re-define the existing schedulability analysis using sub-additive de-

mand, request and exceeding cost function. In doing this therelationships between the

different approaches will become more obviously.

5.3. APPROXIMATION OF STATIC PRIORITIES 95

Algorithm 11 Exceeding-Cost Analysis - Event stream Version

Algorithm Exceeding-Cost-Analysis

Given: task set Γ, τ, θ
IF UΓ = ∑∀τ∈Γ ∑∀θ∈Θτ

c+
τ

pτ
> 1⇒ not schedulable

∆tbp = BusyPeriod(τ∪Γhp(τ))
∆tbase:= dτ +aθ
while (∆tbase≤ ∆tbp)

testlist:= {}
∆told := ∆tbase

Cr = δ (∆told,τ)+ ρ(∆t,Γhp(τ))− χ(∆told)

∀τ ′ ∈ Γ,∀θ ′ ∈ Θτ : ADD te :=
(

(
⌊

∆told−aθ ′
pθ ′

⌋

pθ ′+aθ ′),θ
)

TO testlist

WHILE (testlist 6= {})
IF (Cr ≤ 0)
⇒schedulable

END IF

te=TEST LIST ELEMENT WITH SMALLEST ∆t IN testlist
∆tact =INTERVAL OF te
θ ′ = EVENT ELEMENT OF te
τ =TASK BELONGING TO θ ′
REMOVE te FROM testlist
Cr := Cr −c+

τ +(χ(∆tact)− χ(∆told))
IF (∆tact > 0)

ADD te := (∆tact− pθ ′),τ) TO testlist
END IF

∆told := ∆tact

END WHILE

∆tbase:= ∆tbase+ pθ
END WHILE

⇒ not schedulable

5.3. Approximation of Static Priorities

For an approximative analysis for static priority scheduling we have to distinguish

between the case of non-arbitrary deadlines and arbitrary deadlines. In the non-arbitrary

deadline case only tasks with a deadline smaller than their period are allowed. A schedula-

ble task set with non-arbitrary deadline fulfills the separation condition of definition 5.1.3

and to prove schedulability it is only necessary to check fortask sets with non-arbitrary

deadlines the first job of each task within a synchronous release of all tasks of the task set.

In the case of task sets with arbitrary deadlines, tasks are allowed having a deadline larger

than their period, so the possible execution window of several jobs of a task can overlap.

To prove schedulability for task sets with arbitrary deadlines it is necessary to prove several

jobs of each task. In the worst case it is necessary to prove the schedulability of all jobs

within the busy period of the task set.

5.3.1. Non-arbitrary deadline case.Fisher and Baruah [51], [52] have exchanged

the request bound function with an approximated request bound function following the

96 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

same ideas as already introduced for the approximated demand bound function. The spe-

cific approximated request bound function for a task is equalto the specific exact request

bound function for the same task up to a limited number of jobsof the task which is de-

termined by the approximation error. After these jobs the exact request bound function is

approximated by the specific utilization of the task, same aswith the approximated demand

bound function.

The complete request bound function is given by the sum of allspecific request bound

functions, so the complete approximated request bound function is also given by the sum

of all specific approximated request bound functions.

For feasibility analysis of task sets with non-arbitrary deadlines it is only necessary to

exchange in theorem 5.1.6 the request bound functionρ(∆t,Γ) by the approximated request

bound functionρ(∆t,Γ,k) with k being the number of exactly considered test intervals. It

is necessary to find an interval∆t′ being equal or smaller than the first deadline of the task

and in which the sum of the request bound function of all taskswith a higher priority and

the execution time of one job of the task does not exceed the available capacity given by

the service bound function for the interval∆t′.

LEMMA 5.3.1. [51] A taskτ in accordance to the task separation condition for which

no interval∆t′ exists with∆t ′ ≤ dτ and with

c+
τ + ρ(∆t′,Γh(τ,Γ),k) ≤ χ(∆t′)

is not schedulable on a processor with a capacity functionχ ′(∆t) = (1− 1
k)χ(∆t).

PROOF. The proof for this lemma is corresponding to the proof for theorem 3.1.4 and

can also be found in [51]. �

We will now propose an approximative analysis using the exceeding cost function,

shown in algorithm 12.

The algorithm uses the approximative request and demand bound functions. It starts

at the deadline of the first job and calculates the exceeding costs step-by-step untilc+
τ +

ρ(dτ ,hp(τ,Γ),k)≤ χ(dτ)+E (dτ ,hp(τ,Γ),k). The exceeding costs are the part of the sum

of the worst-case execution times which exceeds the available capacity. For the calcula-

tion of the exceeding costs we have to consider the last jobs occurring beforedτ , one by

one. For each job we have to consider its worst-case execution time c+
τ ′ and the amount

of capacity available within the remaining part ofdτ . The algorithm calculates an initial

amount of uncovered costsCr at dτ and than adapts this value with each job considered

for the exceeding costs. Therefore the last jobs of each taskoccurring beforedτ are in-

serted intotestlist. It is also necessary to register which higher priority tasks are already

approximated atdτ . For them not the last job is inserted intotestlistbut the last job that is

considered exactly.

The valueCr is reduced by the worst-case execution time of the jobc+
τ ′ and the ad-

ditional available capacity is addedχ(∆told)− χ(∆tact). Furthermore, to take care of the

approximation, the amountCr is reduced by an additional lower bound of the costs re-

quired at least by the approximated tasks. This value((∆told−∆tact)Ur) is calculated with

5.3. APPROXIMATION OF STATIC PRIORITIES 97

Algorithm 12 Exceeding-Cost Approximation I

Algorithm Exceeding-Cost-Approximation

(non-arbitrary case)

Given: task set Γhp(τ), τ, k

IF UΓ = ∑∀τ∈Γ
c+

τ
pτ

> 1⇒ not schedulable
testlist:= {}
approxlist:= {}
Ur := 0
∆told := dτ
Cr = c+

τ + ρ(∆t + jτ ,Γhp(τ),k)− χ(∆told)

FOR ALL ∀τ ′ ∈ Γhp(τ)

IF (kpτ ′− jτ ′ ≤ ∆told)

ADD θ ′ TO approxlist
ADD te := (max(0,(kpτ ′ − jτ ′)),θ ′) TO testlist

Ur := Ur +
c+

τ ′
pτ ′

ELSE

ADD te :=
(

max
(

0,
(⌊

∆told+ jτ ′
pτ ′

⌋

pτ ′ − jτ ′
))

,θ
)

TO testlist
END IF

END FOR

WHILE (testlist 6= {})
IF (Cr ≤ 0)
⇒schedulable

END IF

te=TEST LIST ELEMENT WITH LARGEST ∆t IN testlist
∆tact =INTERVAL OF te
τ ′ = TASK OF te
REMOVE te FROM testlist
Cr := Cr +(χ(∆told)− χ(∆tact))− (∆told−∆tact)Ur

IF (τ ′ ∈ approxlist)
REMOVE τ FROM approxlist

Ur := Ur −
c+

τ ′
pτ ′

ELSE

Cr := Cr −c+
τ ′

END IF

IF (∆tact > 0)
ADD te := (max(0,∆tact− pτ ′),θ) TO test-list

END IF

∆told := ∆tact

END WHILE

⇒ not schedulable

the cumulated specific utilization of all approximated tasksUr , same as in the algorithm 1

for the approximative analysis of dynamic priority scheduling. It can happen that we reach

the starting point of the approximation for one of the approximated tasks. A test point for

this task intestlist markes this point. So, if a test point is related to a task in the list of

approximated tasks, the approximation for this task is withdrawn and the task is handle

exactly during the further calculations. A task is schedulable if Cr ≤ 0 for any considered

job, so the algorithm can stop when the condition is reached for the first time.

98 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

Algorithm 13 Exceeding-Cost Approximation I - Event Stream Version

Algorithm Exceeding-Cost-Approximation - Event-Stream-Version

(non-arbitrary case)

Given: task set Γhp(τ), τ, k

IF UΓ = ∑∀τ∈Γ ∑∀θ∈Θτ
c+

τ
pθ

> 1⇒ not schedulable
testlist:= {}
approxlist:= {}
Ur := 0
∆told := dτ
Cr = c+

τ + ρ(∆t,Γhp(τ),k)− χ(∆told)

FOR ALL ∀τ ′ ∈ Γhp(τ) ∀θ ′ ∈ Θτ :
IF (aθ ′+kpθ ′ ≤ ∆told)

ADD θ ′ TO approxlist
ADD ((aθ ′+kpθ ′),θ ′) TO testlist

Ur := Ur +
c+

τ ′
pθ ′

ELSE

ADD te :=
(

(
⌊

∆told−aθ ′
pθ ′

⌋

pθ ′+aθ ′),θ
)

TO testlist
END IF

END FOR

WHILE (testlist 6= {})
IF (Cr ≤ 0)
⇒schedulable

END IF

te=TEST LIST ELEMENT WITH SMALLEST ∆t IN testlist
∆tact =INTERVAL OF te
θ ′ =EVENT ELEMENT OF te
τ ′ = TASK BELONGING TO θ ′
REMOVE te FROM testlist
Cr := Cr +(χ(∆told)− χ(∆tact))− (∆told−∆tact)Ur

IF (θ ′ ∈ approxlist)
REMOVE θ ′ FROM approxlist

Ur := Ur −
c+

τ ′
pθ ′

ELSE

Cr := Cr −c+
τ ′

END IF

IF (∆tact > 0)
ADD te := (∆tact− pθ ′ ,θ) TO testlist

END IF

∆told := ∆tact

END WHILE

⇒ not schedulable

The version for event streams is given in algorithm 13.

This algorithm matches with our approach for EDF scheduling.

5.3.2. Arbitrary case. For the arbitrary cases the algorithm is more complicated as

it is necessary to consider more than one job of each task. Theproblem is, that a job of

a task that is not processed completely before the arrival ofthe next following job of the

same task will delay this next following job. As by the release time of the first job no other

5.4. DYNAMIC ADAPTIVE TEST 99

job of the task is pending, this job is not affected by any delay due to previous jobs of the

same task. The following jobs of the task can receive a delay and therefore may require a

longer response time than the first job. Therefore we have to consider in the arbitrary case

the response time of more than one job for each task.

The worst-case response time has to happen somewhere withinthe first busy period

of a task set consisting only of the task in question and all tasks with a equal or higher

priority. All jobs of the task in question having arrived within this first busy period are also

processed completely within this interval. The following jobs will not receive any delay

from these jobs.

THEOREM 5.3.2. Let Γ be a task set andτi ∈ Γ be the task with the lowest priority

within Γ. If any job ofτi fails to meet its deadline also one job ofτi fails to meet its deadline

within the first busy period ofΓ.

PROOF. We will prove the contra-positive. Letτ f be the job that fails to meet its

deadline. Each job belongs to one busy period starting at an idle point of the system. In

case that the busy period ofτ f starts with a simultaneous release of all higher-priority

tasks it would be equal to the first busy period and therefore one job within the first busy

period would fail to meet its deadline. In case that the busy period ofτ f does not start with

a synchronous release of all higher-priority tasks we can shift the release times of these

tasks until we get a synchronous release. As shown in [88] a shift of release-times to a

synchronous release can only lead to more interruptions of lower-priority tasks, therefore

only to longer delays. The jobτ f would still fail its deadline and, as the busy period with

the synchronous release is equal to the first busy period, a job within the first busy period

would also fail its deadline. �

For proving the schedulability forτ we have to check every job ofτ within its first

busy period. Fisher and Baruah [52] propose a complicated solution of this problem, but

using the approximated request bound function a bound for the maximum number of test

intervals is given in a more natural way.

The number of test intervals needed to describe the completeapproximated request

bound function is bounded, depending only on the number of tasks and the error. So, using

the approximated functions instead of the exact function for analysis will automatically

bound the number of test intervals. Using again the exceeding costs we can do the analysis

with the algorithm 14. It is a small extension of the algorithm for the non-arbitrary case.

The version for event streams is given in algorithm 15.

5.4. Dynamic adaptive test

To improve the run-time of the exact test, an adaptive analysis is proposed. The idea

behind this is to use the approximation for skipping as many test intervals as possible. We

assume that there are only few parts of the functions having ashort distance and therefore

require to be analyzed exactly. We use the same ideas as for the efficient dynamic priority

scheduling analysis.

100 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

Algorithm 14 Exceeding-Cost Approximation II

Algorithm Exceeding-Cost-Approximation (arbitrary case)

Given: task set Γ, τ, k

IF UΓ = ∑∀τ∈Γ
c+

τ
pτ

> 1⇒ not schedulable

∆ttest := dτ
WHILE (∆ttest≤ kpτ − jτ)

testlist:= {}
approxlist:= {}
Ur := 0
∆told := ∆ttest

Cr = δ (∆told,τ,k)+ ρ(∆told + jτ ,Γhp(τ),k)− χ(∆told)

FOR ALL τ ′ ∈ Γ
IF (pτ ′k− jτ ′ ≤ ∆told)

ADD τ ′ TO approxlist
ADD te= ((pτ ′k− jτ ′),τ) TO testlist

Ur := Ur +
c+

τ ′
pτ ′

ELSE

ADD te=
(

(
⌊

∆told+ jτ ′
pτ ′

⌋

pτ ′− jτ ′),τ ′
)

TO testlist
END IF

END FOR

IF (∆ttest = dτ)
∆ttest := dτ + pτ − jτ

ELSE

∆ttest := ∆ttest+ pτ
END IF

WHILE (testlist 6= {} AND Cr > 0)
te= TEST LIST ELEMENT WITH SMALLEST ∆t IN testlist
∆tact = INTERVAL OF te
τ ′ = TASK BELONGING TO te
REMOVE te FROM testlist
Cr := Cr − (χ(∆told)− χ(∆tact))−Ur(∆told−∆tact)
IF (τ ′ ∈ approxlist)Cr = {})

REMOVE τ ′ FROM approxlist

Ur := Ur −
c+

τ ′
pτ ′

ELSE

Cr := Cr −c+
τ ′

END IF

IF (∆tact− pτ ′ < 0∧∆tact > 0)
ADD te := (0,τ ′) TO testlist

ELSE IF (∆tact > 0)
ADD te := (∆tact− pτ ′ ,τ ′) TO testlist

END IF

∆told := ∆tact

END WHILE

IF (Cr > 0)
⇒ not schedulable

END IF

END WHILE

⇒ schedulable

5.4. DYNAMIC ADAPTIVE TEST 101

Algorithm 15 Exceeding-Cost Approximation II - Event Stream Version

Algorithm Exceeding-Cost-Approximation (arbitrary case)

Event-Stream-Version

Given: task set Γ, θ, k

IF UΓ = ∑∀τ∈Γ ∑∀θ∈Θτ
c+

τ
pθ

> 1⇒ not schedulable
τ := τθ
∆ttest := dτ
WHILE (∆ttest≤ aθ +kpθ)

testlist:= {}
approxlist:= {}
Ur := 0
∆told := ∆ttest

Cr = δ (∆told,θ ,k)+ ρ(∆told,Γhp(τ),k)− χ(∆told)

FOR ALL ∀τ ′ ∈ Γhp(τ) ∀θ ′ ∈ Θτ :
IF (aθ ′+ pθ ′k≤ ∆told)

ADD θ ′ TO approxlist
ADD te= ((pθ ′k+aθ ′),θ) TO testlist

Ur := Ur +
c+

τ ′
pθ ′

ELSE

ADD te=
((⌊

∆told−aθ ′
pθ ′

⌋

pθ ′+aθ ′
)

,θ
)

TO testlist
END IF

END FOR

∆ttest := ∆ttest+ pτ
WHILE (testlist 6= {} AND Cr > 0)
te=TEST LIST ELEMENT WITH SMALLEST ∆t IN testlist
∆tact =INTERVAL OF te
θ ′ := EVENT ELEMENT OF te
τ ′ :=TASK BELONGING TO θ
REMOVE te FROM testlist
Cr := Cr − (χ(∆told)− χ(∆tact))−Ur(∆told−∆tact)
IF (θ ′ ∈ approxlist)Cr = {})

REMOVE θ ′ FROM approxlist

Ur := Ur −
c+

τ ′
pθ ′

ELSE

Cr := Cr −c+
τ ′

END IF

IF (∆tact > 0)
ADD te := (∆tact− pθ ,τ) TO testlist

END IF

∆told := ∆tact

END WHILE

IF (Cr > 0)
⇒ not schedulable

END IF

END WHILE

⇒ schedulable

102 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

Algorithm 16 Adaptive test for static priorities with non-arbitrary deadlines

Algorithm static-adaptive

Given: task set Γ, τ
IF UΓ = ∑∀τ∈Γ

c+
τ

pτ
> 1⇒ not schedulable

testlist:= {}
approxlist:= {}
∆told := dτ

∀τ ∈ Γ : ADD te=
((

max
(

0,
⌊

∆told−aτ
pτ

⌋

pτ +aτ

))

,τ
)

TO testlist

cost:= ρ(∆told,Γhp(τ))+c+
τ

service:= χ(∆told)
WHILE (testlist 6= {})

te=TEST LIST ELEMENT WITH SMALLEST ∆t IN testlist
∆tact =INTERVAL OF te
τ =TASK BELONGING TO te
REMOVE te FROM testlist
exCosts:=

exCosts+c+
τ − (χ(∆told)− χ(∆tact))+Ur(∆told−∆tact)

WHILE (exCosts> (costs−service))
IF (approxlist = {})

⇒ scheduable
τ ′ = FIRST ELEMENT OF approx-list

exCosts:= exCosts− (
⌊

∆tact−aτ ′
pτ ′

+1
⌋

− ∆tact−aτ ′
pτ ′

)c+
τ ′

ADD te :=
((

max
(

0,
⌊

∆tact−aτ ′
pτ ′

⌋

pτ ′+aτ ′
))

,τ ′
)

TO testlist

REMOVE τ ′ FROM approxlist

Ur := Ur −
c+

τ ′
pτ ′

END WHILE

Ur := Ur + c+
τ

pτ
τ ADD TO approxlist
∆told := ∆tact

END WHILE

⇒ not schedulable

Unfortunately, we cannot use the approximated request bound function for such an

analysis. The reason is that only a few intervals∆t ′ fulfill the condition of lemma 5.1.6,

for the remaining intervals the calculated value exceeds the available capacity. As the

approximated request bound function is always equal or larger than the exact request bound

function, it could likely be that for some of these intervalsthe approximated request bound

function remains above the capacity despite that the exact one steps below the capacity.

These intervals would be missed by a dynamic analysis using the above approximated

request bound function.

It is necessary to underestimate the exact value of the request bound function to guar-

antee that an existing interval∆t ′ is found by the adaptive test. Using the exceeding cost

approach we can achieve an adaptive test for static priorities. We will use an approxima-

tion of the exceeding cost bound function. With this function we still can overestimate the

costs. The algorithm for this analysis for non-arbitrary deadlines is given in algorithm 16.

5.5. COMPLEXITY 103

For the arbitrary deadline case we need to consider the algorithm for each job within

the first busy period of each task.

5.5. Complexity

The complexity of the new static priority analysis is unknown. We can only give a

few provisions. The complexity has to cover at least the calculation of the busy period and

the maximum number of tasks within it. The busy period is calculated, as the worst-case

response-time, with a fixed-point analysis. The busy periodis the smallest value of∆t for

which the following condition holds:

min(∆t|∆t ≥ ∑
∀τ∈Γ

∑
∀θ∈Θτ

⌈

∆t−aθ
pθ

⌉

c+
τ)

The length of this busy period cannot be bounded in polynomial time, same as the

calculation complexity. Therefore the arbitrary analysishas a pseudo-polynomial or expo-

nential complexity at least out of these conditions.

For the non-arbitrary case it is only necessary to consider the first job for each task.

The complexity for doing this can be bound by the maximum possible number of calcula-

tion points for the exceeding cost function. In the worst case, to proof a taskτ, we have to

consider to all jobs of all tasks (with equal and higher priority thanτ) occurring withindτ,1.

As each of these jobs can be the last job required to fulfill theschedulability condition of

theorem 5.2.4 we need to calculate the exceeding cost function step-wise. The contribution

of each job is considered separately. A specific job can either contribute to the exceeding

costs or reduce the exceeding cost function. Again, the number of jobs from tasks with

small periods and deadlines within the deadline of a task with a large period and deadline

depends on the ratio between the larger and the smaller periods and deadlines. Therefore

the number of occurring jobs of higher priority tasks cannotbe bound in general and can

become quite large. Therefore the upper bound for the complexity is pseudo-polynomial.

For the approximative analysis of course a smaller bound on the complexity can be

given. The approximation error bounds the number of test intervals that have to be con-

sidered exactly for each task and each of the involved functions separately. During the

analysis no more test intervals have to be considered, even in the arbitrary case. As we do

the analysis for each task separately we can bound the overall complexity for the approxi-

mative analysis byO(n2 lnn1
ε).

To estimate the real effort required for the analysis we use again tests with randomly

generated task sets. We compare the effort for the analysis with the response time analysis

in the efficient implementation by Sjödin and Hansson [122].The real effort needed for

the new analysis is quite lower than the theoretical bound. The experimental results are

given in chapter 6.

CHAPTER 6

Evaluations

To evaluate the proposed tests and algorithms and to learn about their strengths and

weaknesses we have done a set of experiments with randomly generated task sets. A task

set has several characteristic parameters like the number of tasks, utilization, the ratio

between the largest and smallest period in the task set and soon. In our experiments we

investigate task sets with different parameters and we showhow the variation of just one

parameter affects the run-time and the recognition rate of the various analysis algorithms.

We have not only implemented our new algorithms but also manyof the existing al-

gorithms to compare them with our results under the same experimental conditions.

6.1. General setup of the experiments

In the following we will describe the setup of our experiments.

6.1.1. Technical setup.All experiments where performed on a computer with two

Intel 3 Ghz Quad-Core processors but using only one core for each algorithm. The experi-

mental framework and the algorithms where implemented in Java.

6.1.2. Generation of random task sets.In the following we will explain in detail

the generation of random task sets behind all our experiments. First we have to choose for

each task set the number of tasks, either randomly or by selection.

For each taskτ we have to choose randomly:

• The periodpτ

• the worst-case execution timec+
τ

• the deadlinedτ

There exist dependencies between the values of a task and between the values of the differ-

ent tasks in a task set. These dependencies have to be taken into account to achieve realistic

task sets and task sets close on the boarder between schedulability and non-schedulability.

Therefore our random task-set generation has the followingsteps:

(1) Choose (or draw) a number of tasks

(2) Choose (or draw) the total utilization of the task setUΓ. For uni-processor sys-

tems the utilization has to be smaller or equal to 100%.

(3) Distribute the utilization on the tasks of the task setUτ . We present the available

algorithm for a realistic distribution in section 6.1.3.

(4) Draw for each task a periodpτ .

(5) Calculate the worst case execution timec+
τ for each taskτ from the chosen period

pτ and specific utilizationUτ . (c+
τ = pτUτ)

105

106 6. EVALUATIONS

Algorithm 17 UUniFast Algorithm [24]

Algorithm UUniFast

sumU:= UΓ
nextSum:= 0
for i from 1 to |UΓ|

nextSum:= sumU· rand(1
n−i)

U [i] := sumU−nextSum
sumU:= nextSum

end for

return U[];

(6) Draw a deadline for each task. The deadline of a task has tobe larger than its

worst-case execution time. For uni-processor systems withEDF or fixed prior-

ity scheduling without jitter only those deadlines are relevant which are smaller

than the corresponding period. Therefore we distribute thedeadline somewhere

between the worst-case execution time and the period of a task. We call the ratio

of the deadline and the period of a task the gap of the task. Forthe experiments

an average value for this gap can be set. The gap is measured inpercent of the

period of the task. A task with for example a period of 100 ms and a deadline of

30 ms has a gap of 70%, a task with a period of 50 ms and a deadlineof 40ms

has a gap of 20% and a task with a period of 10 s and a deadline of 5s has a gap

of 50%. Tasks with a small gap are more likely to be schedulable than tasks with

a large gap.

6.1.3. Distribution of utilization. There are several ways to distribute the utilization

of a task set on its tasks, see [24], [26] for a complete discussion of the problem. In the

following we will shortly summarize the different possibleapproaches introduced there.

The first approach (UScaling) is to simply draw for each taskτ ∈ Γ, one after another, a

part of the remaining utilization. In this approach the firsttaskτ1 gets a utilization between

zero andUΓ, the second task between zero andUΓ−Uτ1 and so on. The last task gets the

remaining utilization. Also the resulting utilization is the requested one, the probability

is quite high that the first tasks gets nearly the whole remaining utilization which leaves

nearly nothing for the remaining tasks. The probability to achieve a task set with a few

large tasks (the first ones) and many tasks sharing only a small fraction of the utilization is

quite high.

The second approach is to draw for each task independently a value (between 0 and 1

for example), add these values and scale the result with the total utilization of the task set.

In this algorithm each task has an equal chance for the same fraction of utilization but with

a high probability no tasks with a large utilization will occur. For example in a task set

with 100 tasks the probability for individual tasks with a specific utilization of much more

than 2% is quite low.

The problem is to generate realistic and non-trivial distributions. In [24] an efficient

algorithm was proposed to generate a realistic distribution, the UUniFast algorithm. It is

given in algorithm 17. The algorithm is an efficient implementation of the second approach

6.2. SUPERPOSITION APPROXIMATION 107

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

ra
tio

 s
ch

ed
ul

ab
le

 ta
sk

se
ts

 (
%

)

utilization (%)

10 million tasksets with 100 tasks

PDC, exact
Superposition (1)
Superposition (2)
Superposition (4)

Superposition (10)
Superposition (100)

Devi

FIGURE 6.2.1. Superposition: ratio of schedulable task sets for
different utilizations

but using an exponential distribution which allows large specific utilizations even for task

sets with many tasks. This algorithm is used in the followingexperiments.

6.2. Superposition approximation

First of all we will focus on the superposition approximation for one-processor sys-

tems with EDF scheduling as introduced in chapter 3.

6.2.1. Setup.In the first experiment we compare the ratio of schedulable task sets

versus all generated task sets for a specific utilization. Onthe x-axis we have the utilization

of the tasks set running from 0% to 100%, on the y-axis we have the proportion of task sets

recognized as schedulable on all task sets generated with this utilization. The gap between

period and deadline has an average value between 5% and 95% ofthe period and both the

period and the gap is chosen using a normal distribution. Theperiods have a value between

10 ns and 10 s. For the experiment we generated 10 million tasksets with 100 tasks each

and a utilization between 1% and 99%.

We analysed these task sets using the superposition approximation with one, two,

four, ten and 100 exactly considered test intervals for eachtask, using the exact processor

demand criterion (PDC) and using the previous best sufficient analysis, the test of Devi

[46]. Note, that the drawn task sets do not contain tasks having a deadline smaller than

their worst-case execution time.

6.2.2. Results.Figure 6.2.1 shows the ratio of schedulable task sets detected by each

of the analysis algorithms for the first experiment. Note that all analysis algorithms run on

108 6. EVALUATIONS

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

ra
tio

 s
ch

ed
ul

ab
le

 ta
sk

se
ts

 (
%

)

utilization (%)

10 million task sets with 50 tasks

PDC, exact
Superposition (100)

Superposition (10)
Superposition (4)
Superposition (2)
Superposition (1)

Devi

FIGURE 6.2.2. Superposition: ratio of schedulable task sets (50 tasks)

the same task sets. The difference between the ratio of schedulable task sets for a specific

approximation degree and the ratio for the exact processor demand criterion (PDC) is a

good indication for the quality of the approximation and helps for a reasonable choice of

the approximation degree.

In figure 6.2.2 the results for an experiment with the same setup as above but using

task sets with 50 tasks is depicted. For figure 6.2.3 the same experiment with one million

task sets with 500 tasks each is used. The setup for figure 6.2.4 is again the 10 million task

sets with 100 tasks but the figure shows the ratio in dependency of the average gap instead

of the utilizations.

A higher number of exactly considered test intervals(k) is leading to a higher ratio

of schedulable task sets. As we can see the ratio for each superposition approximation

is in all figures between the sufficient test of Devi [46] and the exact processor demand

test. The approximation withk = 1 is equivalent to the test of Devi and therefore leads to

the same ratio of schedulable task sets (see section 3.7). The approximations with higher

values for the number of exactly considered test intervals close the gap between the test of

Devi and the exact analysis quite fast. In these experimentsmore than 50% of those task

sets being schedulable and which have not been recognized asschedulable by the test of

Devi are recognized as schedulable by the next better approximation with k = 2. Values

for k larger than 10 are sufficient to classify nearly all schedulable task sets correctly. The

approximation withk = 100 classifies all task sets correctly in this experiment. Task sets

not classified correctly as schedulable are mainly those having a high utilization. Despite

that the test of Devi fails to classify nearly the entire schedulable task sets with a utilization

of 80%, the approximation withk = 2 classify nearly all of them as schedulable. Up to a

6.2. SUPERPOSITION APPROXIMATION 109

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

ra
tio

 s
ch

ed
ul

ab
le

 ta
sk

se
ts

 (
%

)

utilization (%)

1 million task sets with 500 tasks

PDC, exact
Superposition (100)

Superposition (10)
Superposition (4)
Superposition (2)
Superposition (1)

Devi, exact

FIGURE 6.2.3. Superposition: ratio of schedulable task sets (500 tasks)

utilization of 85% nearly all classifications of the approximation withk = 2 are correct,

for higher utilization the correct-classification rate drops fast and for the schedulable task

sets with a utilization of more than 90% nearly non are classified as schedulable by this

approximation. The approximation withk = 4 is good enough for task sets with a utiliza-

tion up to 90% but fails for utilizations of more than 95%, theapproximation withk = 10

is working satisfactorily for utilizations up to 98% and foran approximation withk = 100

there are nearly no wrongly classified task sets in this experiment. Comparing the figures

it can be seen that the correct-classification rate is a bit higher for task sets with few tasks

than for task sets with many tasks.

The figure 6.2.4 depicts for the experiment of figure 6.2.1 (10million task sets with

100 tasks in each task set) the dependency of the acceptance ratio of the different algo-

rithms and the average gap between deadline and period of a task. It is measured in percent

of the period of the task. A task with a period of 100 ms and a deadline of 30 ms has a

gap of 70%. Of cause, tasks having a small average gap betweendeadline and period and

therefore a large average gap between worst-case executiontime and deadline are more

likely to be schedulable than other tasks. Therefore of the tasks with an average gap of 5%

nearly 80% are schedulable whereas of the tasks with an average gap of 95% less than 65%

are schedulable. The utilizations of the task sets are between 5% and 99%. The probability

for a wrong classification is nearly equal for all values of the average gap for each of the

algorithms and approximation errors. It is a bit lower for task sets with a small gap. The

reason for this is that most of schedulable task sets with very high utilizations have a small

value for the average gap and, as we have seen, those task setsare hard to distinguish for

110 6. EVALUATIONS

 55

 60

 65

 70

 75

 80

 85

 0 10 20 30 40 50 60 70 80 90 100

ra
tio

 s
ch

ed
ul

ab
le

 ta
sk

se
ts

 (
%

)

average gap (%)

10 million tasksets with 100 tasks

PDC, exact
Superposition (100)

Superposition (10)
Superposition (4)
Superposition (2)
Superposition (1)

Devi

FIGURE 6.2.4. Superposition: ration of schedulable task sets for
different average gaps

the approximation algorithms. The effect of approximationseems to be independent of the

average gap alone.

In figure 6.2.5 the result of an experiment measuring the dependency of the acceptance

rate on the ratio between the shortest and largest period of any task within one task set is

presented. A task set having as smallest period of tasks the period 100 ms and as largest

period of tasks the period 10.000 ms has a ratio of 100. The acceptance rate seems to be

for all algorithms independent of the ratio between the shortest and largest period.

6.2.3. Results for analyses runtime.Let us now consider the run-times of the anal-

yses algorithms. This experiment shows the quality of the approximation and therefore

whether the approximation is suitable for certain applications. We have measured the

worst-case and the average runtime in dependency of certaincriteria of the task set, like

the utilization, the ratio between the smallest and largesttask, the gap and of course the

number of tasks in a task set. We have calculated for each analysis the average and the

maximum runtime required by the analysis algorithm in dependency of the chosen criteria

for the previous experiments.

In figure 6.2.6 the average computation time for each of the approximation algorithm

in dependency of the utilization is depicted and compared with the average effort for the

processor demand criterion and the test of Devi [46]. The task set size was 100 tasks and

the gap again between 5% and 95% with a normal distribution. The approximation with

k = 2 requires only about 15% more effort than the test of Devi, despite that it has a much

better recognition rate. The approximation requires in theaverage less than 30% of the

6.2. SUPERPOSITION APPROXIMATION 111

 64

 66

 68

 70

 72

 74

 76

 10 100 1000 10000 100000 1e+06 1e+07 1e+08

ra
tio

 s
ch

ed
ul

ab
le

 ta
sk

se
ts

 (
%

)

ratio (%)

2.5 million task sets with 100 tasks

PDC, exact
Superposition (100)
Superposition (10)

Superposition (4)
Superposition (2)
Superposition (1)

Devi

FIGURE 6.2.5. Superposition: ratio of schedulable task sets for differ-
ent ratios between the largest and smallest task in the task set (100 tasks
per task set)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

10 million tasksets with 100 tasks

PDC, exact
Superposition (100)

Superposition (10)
Superposition (4)
Superposition (2)
Superposition (1)

Devi

FIGURE 6.2.6. Superposition: average run-time for different utilizations

112 6. EVALUATIONS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

1 million task sets with 500 tasks

PDC, exact
Superposition (100)

Superposition (10)
Superposition (4)
Superposition (2)
Superposition (1)

Devi

FIGURE 6.2.7. Superposition: average run-time for different utiliza-
tions (500 tasks)

effort required for the processor demand criterion. Even the approximation withk = 100

requires only about half of the effort of the processor demand criterion (but about twice as

much as the test of Devi).

Another interesting point is that the variation of the effort is much higher for the pro-

cessor demand criterion than for the approximations. For the algorithms the average com-

putation time starts on a highest level at 5% and decreases slowly until about a utilization

of 80%. For higher utilizations the effort rises again but declines for utilizations of nearly

100% for all approximations. The reason for these results ismainly the falling degree of

schedulability with increasing utilization. On the one side in the average a non-schedulable

tasks set requires not much effort to be classified as non-schedulable by the tests. Therefore

the average effort declines with rising utilization. But onthe other side the effort depends

on the utilization as the maximum test interval depends onU
1−U . Therefore the effort for

schedulability analysis increases for many task sets. As limU→100%
U

1−U = ∞ the effort will

increase faster when the utilization gets closer to 100%. Byabout 80% this increasing of

the effort becomes larger than the decreasing of the effort as of the lower schedulability

rate, therefore the overall effort starts rising again. Forall approximations the recognition

rate declines fast after reaching a certain level of utilization and therefore the effort de-

clines too. Note, that, in contrary to the processor demand test, for the approximations the

maximum effort is limited by the valuek. In figure 6.2.7 the average effort for 1 million

task sets with 500 tasks each is depicted.

6.2. SUPERPOSITION APPROXIMATION 113

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

10 million tasksets with 100 tasks

PDC, exact
Superposition (100)

Superposition (10)
Superposition (4)
Superposition (2)
Superposition (1)

Devi

FIGURE 6.2.8. Superposition: average run-time for different utiliza-
tions for only the schedulable task sets

Figure 6.2.8 shows the average effort for only the schedulable task sets. The effort

is comparable but does not decline before 80% utilization asit is the case for the average

effort for all task sets.

More interesting than the average computation time is the worst-case for which we

have measured the maximum computation time. Figure 6.2.9 shows the maximum effort

for the superposition approximation with ak of 10 and 100 and the processor demand

criterion compared again with the test of Devi. Note that this figure uses a logarithmic

scale.

The measured approximations withk = 2, k = 4 andk = 10 have a maximum effort

between 0.250 ms and 1 ms for most of the utilizations, only the approximationk = 10

requires once 1.75 ms. The effort for the approximation withk = 100 is a bit higher for

most utilizations and rises significantly to up to 8 ms for very high utilizations. Only for

these utilizations do the approximations require their available budget. In the other cases

the number of really required test intervals is much lower than the number of allowed test

intervals byk.

In figure 6.2.10 the maximum effort for 50 tasks and in figure 6.2.11 the maximum

effort for 1 million task sets with 500 tasks each is depicted.

Compared to the maximum effort required for the processor demand test the effort

required for the approximations is very low. The effort for the processor demand test is

between 50msand 500msfor most of the utilizations rising to up to 1.5sat the maximum.

Note, that we have allowed periods between 10 ms and 10 million ms here. Increasing or

114 6. EVALUATIONS

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

10 million tasksets with 100 tasks

Devi
Superposition (1)

Superposition (10)
Superposition (100)

PDC, exact

FIGURE 6.2.9. Superposition: maximum run-time for different uti-
lizations (with PDC)

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

M
ax

im
al

 b
en

ˆ¶
tig

te
 R

ec
he

nz
ei

t (
m

s)

Auslastung (%)

10 Millionen Tasksets mit 50 Tasks

PDC, exact
Approximation: k = 100
Approximation: k = 10

Approximation: k = 1 / Devi (2003)

FIGURE 6.2.10. Superposition: maximum run-time for different uti-
lizations (50 tasks)

6.2. SUPERPOSITION APPROXIMATION 115

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

1 million task sets with 500 tasks

PDC, exact
Superposition (100)

Superposition (10)
Superposition (1)

Devi, exact

FIGURE 6.2.11. Superposition: maximum run-time for different uti-
lizations with PDC (500 tasks)

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000 1e+06 1e+07 1e+08

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

ratio (%)

2.5 million task sets with 100 tasks

PDC, exact
Superposition (100)
Superposition (10)
Superposition (4)
Superposition (2)
Superposition (1)

Devi

FIGURE 6.2.12. Superposition: maximum run-time for different ra-
tios between smallest and largest task in the task set

reducing this value has a significant impact on the required computational effort for the

processor demand criterion, as we will show in the next experiment.

116 6. EVALUATIONS

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

1 million task sets with 100 tasks and exp. distr. period

PDC, exact
Superposition (100)
Superposition (10)

Superposition (4)
Superposition (2)
Superposition (1)

Devi

FIGURE 6.2.13. Superposition: Average run-time for different uti-
lizations with exponential distribution of periods

In figure 6.2.12 the dependency of the computation effort on the ratio between the

smallest and largest task in the task set is shown. For this experiment we have used a

normal distribution for the periods. The approximation algorithm and the sufficient test

are independent of the ratio between smallest and largest task but the processor demand

criterion depends clearly on the ratio. In figure 6.2.13 and figure 6.2.14 we have repeated

the experiment with an exponential distribution of the periods. The advantage of the ap-

proximations is even higher in this case as the processor demand test requires more effort.

The last question is the dependency of the computational effort on the number of tasks.

It is shown in figure 6.2.15. Of cause, all algorithms requirea larger computation time with

an increasing number of tasks. It seems that this increase islinear for all algorithms. For the

superposition approximation this confirms the complexity of O(nlog(n)k) which depends

nearly linear on the number of tasks.

We have seen that the proposed approximations deliver good results even for small

values ofk and are much faster than the previous exact processor demandtest. Compared

to the sufficient test of Devi the run-time is larger but stillacceptable, but the recognition

rates are much higher especially for task sets with utilization between 80% and 95%.

6.3. Dynamic Approximation Approaches

In the following we will consider the run-time of the new adaptive tests introduced

in chapter 4. We have proposed the dynamic-error test, whichstarts with a low degree of

exactness and only adapt this degree as far as necessary to distinguish between schedulable

and non-schedulable task sets and the all-approximation algorithm in which approximation

6.3. DYNAMIC APPROXIMATION APPROACHES 117

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

1 million task sets with 100 tasks and exp. distr. period

PDC, exact
Superposition (100)

Superposition (10)
Superposition (1)

Devi

FIGURE 6.2.14. Superposition: maximum run-time for different uti-
lizations with exponential distribution of periods

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

number of tasks (#)

5 million task sets with 98% util

PDC, exact
Superposition (100)
Superposition (10)

Superposition (4)
Superposition (2)
Superposition (1)

Devi

FIGURE 6.2.15. Superposition: run-time for different number of
tasks in the task sets

118 6. EVALUATIONS

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

10 million tasksets with 100 tasks

Devi
Superposition (100)

All-Approximation , exact
DynamicError , exact

PDC, exact

FIGURE 6.3.1. Adaptive analysis: maximum run-time

is used as much as possible. In the all-approximation algorithm all tasks are considered

approximated and only for test intervals for which the test fails with this assumption the

approximation of the tasks is removed task-by-task until the test does not fail for these test

intervals any more.

6.3.1. Setup for utilization based generation of random task-sets. For the experi-

mental setup 5 million task sets with 100 tasks each are generated to compare the run-time

of the different algorithms. In figure 6.3.1 and figure 6.3.3 we have measured the max-

imum run-time required to analysis task sets with certain utilizations for all algorithms

using again a logarithmic scale. The upper-most curve showsthe required effort for the

processor demand analysis (PDC), the second curve with the large fluctuation the effort for

the dynamic error approximation. The third curve shows the superposition approximation

with k = 100. The lowest curve is the test of Devi and the all-approximation algorithm

is the curve that is equal to the test of Devi at the beginning and leads to a higher effort

starting by about 75%.

6.3.2. Results for utilization-based generation of randomtask-sets.The success

ratio is, of course, equal for all the tests. In the maximum the processor-demand test

requires about 50-100 times more run-time than all adaptiveanalyses. This difference in

run-time depends, as we will see later, on the allowed range of periods, which was 10 ns -

10 million ns here. In the run-time of the processor demand analysis and also the dynamic-

error analysis we have a large fluctuation even for small changes of the utilization. The

run-time of the all-approximation test seems to be relatively constant for small changes of

the utilization. The dynamic-error analysis requires significantly more run-time. In this

6.3. DYNAMIC APPROXIMATION APPROACHES 119

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

10 million task sets with 50 tasks

PDC, exact
DynamicError , exact

All-Approximation , exact
Superposition (100)

Devi

FIGURE 6.3.2. Maximum computation time of adaptive analysis (50 tasks)

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

1 million task sets with 100 tasks and exp. distr. period

PDC, exact
DynamicError , exact

All-Approximation , exact

Superposition (100)
Devi

FIGURE 6.3.3. Adaptive analysis: maximum run-time - exponential
distribution of periods

120 6. EVALUATIONS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

10 million tasksets with 100 tasks

PDC, exact
Superposition (100)

Superposition (10)
Superposition (2)

Devi
All-Approximation , exact

DynamicError , exact

FIGURE 6.3.4. Adaptive analysis: average run-time

experiment the requirement for significant run-time startsat about 60% utilization and has

a peek between 80% and 95% utilization. It seems that the concrete values for the tasks

have a larger influence on the run-time than the utilization.In the area up to 95% utilization

we have a significant level on schedulable task sets (as shownin figure 6.2.1) and therefore

a large chance to have a task set in each drawing requiring a large run-time. The peeks

of the run-time are somewhere between 20 ms and 140 ms compared with less than 1 ms

for the all-approximation algorithm at the same utilizations levels. The run-time for the

all-approximation test goes up to 27 ms in this experiment but is always much lower than

the effort for the dynamic error test. For all-approximation analysis the run-time is in the

same region as the run-time of the test of Devi for the utilization up to 75%. After this

utilization the tests require significantly more run-time.With rising utilization the increase

of the maximum required run-time gets larger and the run-time seems to explode for task

sets with utilizations very close to 100%. But note that for such high utilizations the test of

Devi cannot classify any schedulable task set correctly.

In figure 6.3.4 we have measured the average effort for the same experiment. The

processor demand criterion starts between 0.4 ms and 0.5 ms for small utilizations and

requires, after a short declining, run-times between 0.3 msand 0.75 ms in the average for

very large utilizations. The all-approximation algorithminstead requires less than 0.1 ms

for small utilizations and rises to 0.16 ms in the average forlarge run-times.

In the figures 6.3.5 and 6.3.6 we have depicted the maximum respectively average

run-time for 1 million task sets and with 500 tasks each. The curves looks similar but the

absolute values for the curves and the distance between the curves become larger.

6.3. DYNAMIC APPROXIMATION APPROACHES 121

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

1 million task sets with 500 tasks

PDC, exact
All-Approximation , exact

Superposition (100)
Devi, exact

FIGURE 6.3.5. Adaptive analysis: maximum run-time (500 tasks)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

1 million task sets with 500 tasks

PDC, exact
Superposition (100)

Superposition (10)
Superposition (2)

All-Approximation , exact
Devi

FIGURE 6.3.6. Adaptive analysis: average run-time (500 tasks)

6.3.3. Setup for ratio-based generation of task sets.In the next experiment (figure

6.3.7) we have evaluated the dependency of the run-time on the ratio between tasks with

small and large parameters within the task sets. We have considered ratios between the

smallest period of any task and the largest period of any taskin the task set from 10 to

122 6. EVALUATIONS

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000 1e+06 1e+07 1e+08

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

ratio (%)

2.5 million task sets with 100 tasks

PDC, exact
All-Approximation , exact

Superposition (100)
Superposition (10)

DynamicError , exact
Devi

FIGURE 6.3.7. Adaptive analysis: maximum run-time for different
ratios between largest and smallest period for 98% utilization

max(p)
min(p) PDC All Approx. All-approx. period all-approx. inverse

100 9.941 ms 0.620 ms 1.269 ms 6.912 ms
1,000 104.4 ms 0.768 ms 0.796 ms 17.268 ms
10,000 665.1 ms 0.650 ms 0.684 ms 8.860 ms
100,000 4.287 s 0.525 ms 0.637 ms 6.950 ms

1,000,000 22.03 s 0.521 ms 0.500 ms 6.198 ms
10,000,000 267.2 s 0.530 ms 0.773 ms 7.452 ms
100,000,000 1375.7 s 0.605 ms 0.554 ms 4.295 ms

TABLE 1. Adaptive analysis: Maximum execution time (ms) for 100
task and 98% utilization

100,000,000. We have done two experiments, one with a normaldistribution of the period,

but at least one task small enough to guarantee the ratio, theother with an exponential

distribution. We have used a utilization of 98%.

6.3.4. Results for ratio-based generation of task-sets.The run-time of the proces-

sor demand test depends directly on the ratio and doubles when the ratio is doubled. The

all-approximation test is independent of the ratio betweenthe largest and smallest period

of any task of the task set.

Table 1 and table 2 show the results of an experiment where theperiod of the task

is exponentially distributed. Each task set has 100 tasks and a total utilization of 98%

and we have generated 20,000 task sets for each ratio. The table 1 shows the measured

maximum execution times for each ratio/ algorithm combination. The largest period in

6.3. DYNAMIC APPROXIMATION APPROACHES 123

max(p)
min(p) PDC All Approx. All-approx. period all-approx. inverse

10 0.121 ms 0.0986 ms 0.0956 ms 0.145 ms
100 0.261 ms 0.0902 ms 0.0881 ms 0.234 ms

1,000 1.050 ms 0.0907 ms 0.0884 ms 0.288 ms
10,000 5.544 ms 0.0915 ms 0.0887 ms 0.272 ms
100,000 34.53 ms 0.0925 ms 0.0894 ms 0.237 ms

1,000,000 237.2 ms 0.0934 ms 0.0902 ms 0.197 ms
10,000,000 1.985 s 0.0961 ms 0.0926 ms 0.173 ms
100,000,000 30.980 s 0.0999 ms 0.0957 ms 0.159 ms

TABLE 2. Adaptive analysis: average run-time (ms) for 100 task and
98% utilization

a task set is 10, 100, 1000, ..., 100 million times larger thanthe smallest period within

the same task set. The execution times for the all-approximation algorithm and the all-

approximation algorithm with an approximation queue sorted by the period of the tasks

are mostly constant in the rage of 0.5 to 0.8 ms. Even using theinverse order for the

approximation queue requires only 17 ms run-time at most. The processor demand test

instead requires only for small ratios a comparable low execution time, for ratios in the

area of 1 million it requires up to 22 seconds execution time and for ratios of 10 million

or 100 million it requires 4 minutes respectively 22 minutes. The run-time grows a bit less

than the ratio but still becomes unacceptably large very soon.

The table 2 shows the average execution times for all generated 20,000 task sets. Of

course these values are all much smaller than the maximum execution times as the 20,000

task sets surly contain many “easy” task sets. For the all-approximation algorithms they

are more constant than their maximum execution times with values between 0.09 ms and

0.10 ms for the standard respectively 0.15 ms to 0.3 ms for theinverse case. The effort for

the processor demand criterion grows from 0,1 ms for a ratio of 10 to 31 seconds for a ratio

of 100 million.

Therefore the run-time of the all-approximation algorithmcan be bounded in the

worst-case only with the utilization and the number of tasks, independently of the other

parameters of the task set.

6.3.5. Dependency on the number of task in the task set.Figure 6.3.8 shows the

dependency of the run-time on the number of tasks in the task set. Of course the run-time

depends on the number of tasks. As we have to consider each task at least once to prove

schedulability we have at least a linear increase of the required run-time. The measured

increase is a bit higher thanO(n). The dependency can be bounded byO(n· log(n)1.5), see

the following section for details.

6.3.6. Variations of the all-approximation algorithm. The order of the tasks in

which their approximation is removed when the test fails at acertain test interval can

be important for the run-time of the test. For simplicity of the implementation we have

considered only fixed orders. The first and most promising order is by the difference be-

tween deadline and period of the tasks(p−d). The approximation is removed for those

124 6. EVALUATIONS

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

number of tasks (#)

5 million task sets with 98% util

PDC, exact
Superposition (10)
Superposition (4)
Superposition (2)
Superposition (1)

Devi
Superposition (100)

All-Approximation , exact
DynamicError , exact

FIGURE 6.3.8. Adaptive analysis: maximum run-time of the test for
different number of tasks in the task set for 98% utilization

 1

 10

 100

 1000

 97.8 98 98.2 98.4 98.6 98.8 99 99.2 99.4 99.6 99.8 100

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

2 million task sets with 100 tasks

All-Approximation , exact
All-Approximation Period, exact
All-Approximation Invers , exact

FIGURE 6.3.9. All-approximation test: different kind of orders

tasks first having the largest difference between period anddeadline and therefore likely

a large distance between two consecutive test intervals. Another order would be to take

only the periods. In figure 6.3.9 we have compared the required maximum run-time for the

6.3. DYNAMIC APPROXIMATION APPROACHES 125

all-approximation algorithm using these two kinds of orders and, to get an impression of

the influence of the kind of order, also of an all-approximation algorithm using an inverse

order of the period, which means that the approximation is removed first for the task with

the smallest period.

6.3.7. Conclusion.Overall the all-approximation algorithm seems to be a very good

choice for nearly all applications. For online-schedulinganalysis, when it is necessary to

guarantee a very fast evaluation and it is possible to have task sets with very high utiliza-

tions the approximation can be a better choice.

6.3.8. Complexity of All-Approximation. In the following we will extract an esti-

mation for the run-time complexity out of the experimental results. No formal proof for

the complexity better than pseudo-polynomial exists so far. The problem for this formal

proof is to find a close upper bound on the number of test intervals required by the all-

approximation analysis. But calculating an estimated complexity out of the experimental

data can also give hints for an upper bound on the complexity and therefore for a formal

proof.

The run-time complexity for the all-approximation analysis depends on two parts.

First, it depends on the run-time required (at most) for eachtest interval considered during

the analysis and second on the maximum number of these test intervals. The run-time for

each test-interval can be bounded formally by considering the algorithm 8 given in chapter

4. As we have stated there the run-time for one test-intervalis bounded byO(log(n)). Each

test interval causes two inserting operations in priority queues, one when it is inserted into

the “test-list” at a previous test interval or at the begin ofthe algorithm and one when it

is inserted into the “approx-list”. The complexity of theseoperations isO(log(n)). The

remaining operations can be bounded by a constant executiontime. This is even true for the

“loop” as each iteration of the loop leads to an additional new test interval and therefore,

for the consideration of complexity, the effort for this loop-iteration can be assigned to this

generated test interval.

So, for the estimation of complexity, it is only necessary tofind an upper bound on the

number of test intervals.

We will investigate the dependency of the number of test-intervals on the various pa-

rameters separately to extract the different parts of the complexity. We know that the

complexity depends on the number of tasks (figure 6.3.8, table 1) in the task set and also

on the utilization of the task set (figure 6.3.1, 6.3.5). In contrary to the processor demand

test it does not depend on the ratio between the smallest and largest periods of tasks in a

task set (figure 6.3.7).

In figure 6.3.8 the dependency of the run-time on the number oftask in the task set

is depicted. The run-time has to scale at least linear with the number of tasks as a test

run with the result “schedulable” requires to consider at least one test interval for each

task. We have done an experiment with task sets having a utilization of 98% and 20-1000

tasks (figure 6.3.8). The average numbers of test intervals for one task are for all task set

sizes in the same range and only have a variation of about 8% around their medium value.

126 6. EVALUATIONS

U run-time test points(t) t(1−U)
U

t·(1−U)·log
(

1
(1−U)

)

U

98.0 % 3.488 ms 1,091 22.265 37.828
98.1 % 3.173 ms 1,112 21.537 37.070
98.2 % 3.730 ms 1,201 22.014 38.409
98.3 % 2.788 ms 1,263 21.842 38.651
98.4 % 3.180 ms 1,289 20.959 37.640
98.5 % 3.616 ms 1,458 22.203 40.496
98.6 % 3.803 ms 1,441 20.460 37.931
98.7 % 4.054 ms 1,534 20.204 38.107
98.8 % 4.215 ms 1,675 20.344 39.077
98.9 % 4.058 ms 1,810 20.131 39.430
99.0 % 4.609 ms 1,911 19.303 38.606
99.1 % 4.474 ms 2,075 18.844 38.551
99.2 % 5.225 ms 2,282 18.403 38.590
99.3 % 6.267 ms 2,533 17.856 38.478
99.4 % 5.981 ms 2,992 18.060 40.127
99.5 % 9.897 ms 3,493 17.552 40.389
99.6 % 8.413 ms 4,211 16.912 40.553
99.7 % 13.933 ms 5,305 15.963 40.272
99.8 % 20.943 ms 7,316 14.659 39.565
99.9 % 26.825 ms 14,223 14.237 42.712
99.99 % 127.80 ms 93,320 9.333 37.331

TABLE 3. All-approximation analysis: number of test-intervals in
relation to some utilization dependent values

Therefore we can assume that the number of test intervals depends in the worst case linear

on the number of tasksn. So we have a complexity ofO(C · n · log(n)) whereC do not

depends on the number of tasks.

Next we will investigate the dependency of the complexity onthe utilization of the

task set. Figure 6.3.1 shows the maximum run-time of the testfor task sets with 100

tasks for distinguished utilizations of the task sets. The run-time is quite low for the all-

approximation test for utilizations up to 80% but it increases significantly for utilizations

close to 100%. We know that the complexity of the processor demand test depends on the

maximum test interval and we have also proven that the last test interval considered by the

all-approximation analysis is the same maximum test interval (see chapter 4). This maxi-

mum test interval (of Ripoll et al. [119], see section 2.2.3)depends on U
1−U , therefore it is

valid to assume that the run-time for the all-approximationanalysis also depends somehow

on this value. In table 3 we have given the maximum required test-intervals of the experi-

ment for some different utilization and the relation between these numbers of test intervals

and U
1−U . In table 4 we have given the middle distance, the variation and the medium

values for the columns of table 3. Let us concentrate on the values with a considerable

number of test intervals, so all utilizations above 98%. We see that in the experiment the

fraction U
1−U overestimates the increase rates of the number of test intervals. The measured

increase is less than the fraction would assume. Using the fraction U
(1−U)·log(1

1−U)
we get

6.4. APPROXIMATION AND DYNAMIC APPROXIMATION FOR STATIC PRIORITIES 127

100 tasks per task set t(1−U)
U

t·(1−U)·log
(

1
(1−U)

)

U

2 million task sets
medium inter-distance 11.74% 3.76%

variation (%) 41.44% 11.15%
medium value 18.498 36.678

200 million task sets
medium inter-distance 10.88% 3.29%

variation (%) 36.98% 6.73%
medium value 19.667 39.230

TABLE 4. All-approximation analysis: medium inter-distance, varia-
tion and medium values for the columns of table 3

a better estimation of the increase. The variation is about 11.15% and for 100 times more

task sets it declines to 6.73%.

Our estimation achieves a complexity for the all-approximation test of

O

(

U

(1−U) · log(1
1−U)

·n · log(n)

)

whereU is the utilization andn is the number of tasks in the task set. In comparison the

processor demand criterion has a complexity ofO(maxτ∈Γ(pτ −dτ) ·n) when the utiliza-

tion U is bounded by a valueUmax< 1.

6.4. Approximation and Dynamic approximation for static pr iorities

In the following we will consider the run-time of the analysis algorithm for scheduling

with static priorities proposed in chapter 5. We proposed the new exact exceeding cost

analysis, the approximation based on it and the dynamic approximation leading to a new

more efficient exact analysis. We have compared these analyses with the well known worst-

case response time analysis, using the same experimental environment as in the previous

sections.

Figure 6.4.1, 6.4.2 and 6.4.3 show the results of an experiment with 10 million tasks

sets each having 100 tasks, a gap between 5% and 95%, a utilization between 5% and

99%. The period is chosen between 10 and 10 million ms using a normal distribution. In

figure 6.4.1 the ratio of schedulable task sets is depicted. All algorithms for the analysis

of static priority scheduling lead to nearly the same ratio in these figures. The ratio starts

at 100% for a low utilization and drops fast at a utilization of about 80%. For comparison

the figure also shows the ratio for the exact EDF scheduling calculated by the processor

demand criterion (PDC), which is always larger than the ratio for static priority scheduling.

In figure 6.4.2 the maximum required computation time for thedifferent exact algorithms

is shown. The most worst-case run-time required the previous worst-case response time

and the new exact exceeding costs analysis. The worst-case response time requires a large

run-time over all utilizations whereas the exceeding costsanalysis only requires a large

run-time for task sets with a high utilization (utilizations higher than 70%). For these

utilizations the required run-time for the exceeding cost arbitrary analysis is often larger

128 6. EVALUATIONS

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

ra
tio

 s
ch

ed
ul

ab
le

 ta
sk

se
ts

 (
%

)

utilization (%)

10 million tasksets with 100 tasks

PDC, exact
WCRT (Classic), exact

Exceeding-Costs Approx. Arbitrary (4)
Exceeding-Costs Approx. Arbitrary (2)
Exceeding-Costs Approx. Arbitrary (1)

Exceeding-Costs Exact Arbitrary , exact
Exceeding-Costs Approx. Arbitrary (10)

WCRT (Sjodin & Hansson), exact
Exceeding-Costs Approx. Arbitrary , (100)

FIGURE 6.4.1. Static analysis: ratio schedulable task sets - normal
distribution of periods

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

10 million tasksets with 100 tasks

WCRT (Sjodin & Hansson), exact
Exceeding-Costs Arbitrary , exact

Exceeding-Costs Dynamic Approx. , exact

FIGURE 6.4.2. Static analysis: maximum required computation time
for exact static analyses - normal distributed periods

6.4. APPROXIMATION AND DYNAMIC APPROXIMATION FOR STATIC PRIORITIES 129

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

10 million tasksets with 100 tasks

WCRT (Sjodin & Hansson), exact
WCRT (Classic), exact

Exceeding-Costs Arbitrary , exact
Exceeding-Costs Approx. Arbitrary (1)

Exceeding-Costs Approx. Arbitrary (100)
Exceeding-Costs Dynamic Approx. , exact

FIGURE 6.4.3. Static analysis: average run-time - normal distributed periods

than for the worst-case response-time analysis. But the approximation and the dynamic

approximation of the exceeding costs analysis, which is again an exact analysis, have a

better run-time than the worst-case response-time analysis. These algorithms require, in

the worst-case, a run-time that is only about 20% of the run-time of the response-time

analysis. It is even lower for task sets with utilizations of70% and lower. The results are

even better considering the average run-time required for task sets in the analysis as shown

in figure 6.4.3.

In figure 6.4.4 the average run-time for 1 million task sets with 500 tasks each is

depicted. In figure 6.4.5 the dependency of the computation time on the number of tasks

in the task set is depicted. The interesting point is that theeffort even for the exact non-

adaptable static exceeding cost analysis drops below the effort for the worst-case response-

time analysis for large task sets.

We focus on exponentially distributed periods next. Figure6.4.6 shows the run-times

of the same experiment with exponential distribution for the periods. At a utilization of

40% the top curve in the figure is the exceeding-costs arbitrary analysis, followed by the

variation of the worst-case response time analysis, which leads to equal results and cannot

be distinguished in the figure. The next lower curve at 40% utilization is the exceeding

costs approximation with an approximation degree of 100 exact test intervals followed by

the approximation with one exact test interval. The lowest curve is the exact dynamic

exceeding-cost approximation. The advantage of the new approximation and dynamic-

approximation is even higher than in the previous case. The exponential distributions lead

to task sets requiring more effort for the response-time analysis but not for the dynamic-

approximated exceeding-cost analysis. The advantage is again even higher considering

130 6. EVALUATIONS

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

1 million task sets with 500 tasks

WCRT (Classic), exact
WCRT (Sjodin & Hansson), exact
Exceeding-Costs Arbitrary , exact

Exceeding-Costs Approx. Arbitrary (100)
Exceeding-Costs Approx. Arbitrary (1)

Exceeding-Costs Dynamic Approx. , exact

FIGURE 6.4.4. Static analysis: average run-time - normal distributed
periods (500 tasks)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500 600 700 800 900 1000

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

number of tasks (#)

5 million task sets with 98% util

Exceeding-Costs Exact Arbitrary , exact
WCRT (Sjodin & Hansson), exact

WCRT (Classic), exact
Exceeding-Costs Dynamic Approx. , exact

FIGURE 6.4.5. Static analysis: maximum run-time for different num-
ber of tasks - normal distributed periods

6.4. APPROXIMATION AND DYNAMIC APPROXIMATION FOR STATIC PRIORITIES 131

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

1 million task sets with 100 tasks and exp. distr. period

Exceeding-Costs exact Arbitrary , exact
WCRT (Classic), exact

WCRT (Sjodin & Hansson), exact
Exceeding-Costs Approx. Arbitrary (100)

Exceeding-Costs Approx. Arbitrary (1)
Exceeding-Costs Dynamic Approx. , exact

FIGURE 6.4.6. Static analysis: maximum required run-time for ap-
proximative static analyses algorithms - exponential distributed periods

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

1 million task sets with 100 tasks and exp. distr. period

Exceeding-Costs Exact Arbitrary , exact
WCRT (Classic), exact

WCRT (Sjodin & Hansson), exact
Exceeding-Costs Approx. Arbitrary (100)

Exceeding-Costs Approx. Arbitrary (1)
Exceeding-Costs Dynamic Approx. , exact

FIGURE 6.4.7. Static analysis: average run-time - exponential dis-
tributed periods

the average required run-time for the whole experiment as shown in figure 6.4.7. For the

utilization of 0% the highest curve is here the result of bothworst-case response time

132 6. EVALUATIONS

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

ra
tio

 s
ch

ed
ul

ab
le

 ta
sk

se
ts

 (
%

)

utilization (%)

test masrur norm

All-Approximation , exact
Devi

Superposition (2)
Superposition (4)

Superposition (10)
Superposition (100)

Masrur n^2
Masrur nlogn-100

FIGURE 6.5.1. EDF: acceptance ratio of the approach of Masrur et al.
(normal distribution)

analyses followed by the arbitrary exceeding-costs analysis. The lower curves are both

approximations (100 and 1 exactly considered test interval) and the lowest curve is again

the dynamic exceeding-cost analysis. In contrary to the processor demand criterion the

ratio between the smallest and largest task of a task set has no large influence on the run-

time of the response-time analysis.

Although results are not as convincing as the results of the analysis for dynamic prior-

ities the new algorithm is still an improvement over the existing approaches.

6.5. Previous approaches

Finally we will consider the run-time of the other exact analysis approaches introduced

in chapter 2 and compare them with our approach.

6.5.1. Analysis of Masrur et al. [93].

In figure 6.5.1 and figure 6.5.2 we have depicted the acceptance ratio and the maximum

required run-time for the sufficient test of Masrur et al. [93] for EDF scheduling and

compared them with the other approaches. Both, the acceptance ratio and the effort is

located between the sufficient test of Devi which is equal to the approximation with one

considered test interval and the approximation with two considered test intervals. Using an

exponential distribution the sufficient test performs better (figure 6.5.3 and figure 6.5.4).

6.5.2. Exact analysis algorithms for EDF.In figure 6.5.5 the average and in figure

6.5.6 the maximum run-time for the different schedulability analyses and maximum test

intervals for EDF scheduling are compared. In both cases theprocessor demand test with

6.5. PREVIOUS APPROACHES 133

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50 60 70 80 90 100

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

test masrur norm

All-Approximation , exact
Devi

Masrur n^2
Superposition (2)

FIGURE 6.5.2. EDF: max run-time compared of approach of Masrur
et al. (normal distribution)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

ra
tio

 s
ch

ed
ul

ab
le

 ta
sk

se
ts

 (
%

)

utilization (%)

test masrur exp

All-Approximation , exact
Devi

Superposition (2)
Masrur n^2

Masrur nlogn-100

FIGURE 6.5.3. EDF: acceptance ratio of the approach of Masrur et al.
(exp. distribution)

134 6. EVALUATIONS

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70 80 90 100

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

test masrur exp

All-Approximation , exact
Devi

Superposition (2)
Masrur n^2, exact

FIGURE 6.5.4. EDF: max run-time compared of approach of Masrur
et al. (exp. distribution)

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

1 million task sets

PDC with Park & Cho, exact
PDC with Busy Period, exact

PDC with Baruah, exact

PDC, exact
All-Approximation , exact

FIGURE 6.5.5. EDF: average run-time of the previous approaches

6.5. PREVIOUS APPROACHES 135

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

1 million task sets

PDC with Park & Cho, exact
PDC with Baruah, exact

PDC with Busy Period, exact

PDC, exact
All-Approximation , exact

FIGURE 6.5.6. EDF: maximum run-time of the previous approaches

the test interval of Park & Cho [103] requires the most effort. The reason is that the test

requires a recalculation of its maximum test interval at each test interval. In the average

the PDC with the maximum test interval of Baruah et al. [19] requires the same effort as

the PDC with the test bounds of Ripoll et al. [119] or George etal. [55] (shown as “PDC,

exact” in the figure and used in the previous sections) for lowutilizations but it requires

significantly more effort for utilizations of more than 50% as it leads to longer maximum

test intervals. The PDC with the busy period as maximum test interval ([119]) has for very

low utilizations an average run-time comparable with the run-time of all-approximation

but requires with rising utilization a higher run-time. Forutilizations close to 100% the

average required run-time is even comparable to the run-time of the test of Park & Cho

[103]. The all-approximation analysis requires the least effort of all approaches.

For the maximum run-time the situation is comparable to the average case except that

all previous approaches have a large fluctuation in their required run-times.

6.5.3. Exact analysis algorithms for static priority scheduling. In figure 6.5.7 and

figure 6.5.8 we have compared the average and the maximum required run-time for exact

schedulability analysis for static priorities. The scheduling-point test requires the maxi-

mum runtime for the relevant utilizations between 75% and 100% followed by the reduced

scheduling-point test. The worst-case response-time analysis is the next with a required

maximum runtime of around 10 ms followed by the exceeding-cost dynamic approxima-

tion. But for utilizations between 50% and 75% the situationis a little different as here

the scheduling-point test and the reduced scheduling-point test often require even less run-

time than the exceeding-cost dynamic approximation. The situation is different for the

136 6. EVALUATIONS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

1 million task sets

Sched. Point Test, exact
red. Sched. Point Test, exact

WCRT (Classic), exact
WCRT (Sjodin & Hansson), exact

Exceeding-Costs Dynamic Approx. , exact

FIGURE 6.5.7. Static priorities: average run-time of previous approaches

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

1 million task sets

Sched. Point Test, exact
red. Sched. Point Test, exact

WCRT (Classic), exact
Exceeding-Costs Dynamic Approx. , exact

FIGURE 6.5.8. Static priorities: maximum runtime of previous approaches

average runtime. Here the runtime for the reduced scheduling-point test is, with some

exceptions, even for utilizations larger than 80% comparable with the exceeding-costs dy-

namic approximation, but it has a larger fluctuation. The effort for the scheduling-point

6.5. PREVIOUS APPROACHES 137

test increases suddenly at about 78% utilization and exceeds even the effort for the worst-

case response-time analysis there. Note, that the average case of course includes many

uninteresting task sets far away from the border between schedulable and non-schedulable

task sets. Concluding, the effort for the scheduling-pointtest and the reduced scheduling-

point test seems to be unpredictable due to their large fluctuation and the exceeding-costs

dynamic approximation seems to be the best choice.

CHAPTER 7

Hierarchical event spectra

Sub-additive and super-additive event bound functions (and also service bound - ca-

pacity bound functions) are a key concept for the schedulability analysis. The answer

of the question how many events can occur at most - at least within any possible inter-

val of length∆t leads to a integrated theory on schedulability analysis. These functions

extract the worst-case situations of all possible concreteschedules into one single descrip-

tion. We call this concept event spectrum, because an event spectrum contains all possible

worst-case event densities like the light spectrum contains all possible wavelengths of the

different colors of light. An efficient and compact description for event spectra, allowing

a fast calculation of the values for each interval, leads to an efficient real-time analysis.

Many proposed models in the real-time community are, in reality, concrete descriptions

of event spectra or are used in the same way. Examples are the event stream model [61]

(introduced in section 2.3.2), the periodic model with jitter and minimum separation dis-

tance [117] (introduced in section 2.3.4), the concrete description and the approximation

of the real-time calculus curves [39, 76] (introduced in section 2.3.6). But also most of the

analysis proposed for the periodic model, the periodic model with jitter and the recurring

real-time task model are based somehow on event spectra. Of course, the approximation

and the analysis algorithm proposed for these models in chapter 3, chapter 4 and chap-

ter 5 are also based on event spectra. One possible description model for event spectra is

the event stream model; another is the periodic model with jitter and minimum separation

distance between events.

In this chapter we will present a new advanced concrete description model to overcome

the limitations of the event stream model, the hierarchicalevent spectra model. The model

allows the efficient concrete description of event spectra containing various kinds of bursts

and capacity bound functions.

7.1. Limitations of the event stream model

The event stream model is a general event model. In principlean event stream can

describe each possible event pattern. But for the description of certain event patterns by

an event stream a large number of event elements are required. Consider for example an

event pattern in which 100 events occurs with a period of 10 msfollowed by a break of

1010 ms. After the break the next 100 events arrived followedby the break and so on. The

description of this pattern with a periodic event sequence would be:

Θ = {(2000ms,0),(2000ms,10),(2000ms,20),(2000ms,30),,(2000ms,990)}
139

140 7. HIERARCHICAL EVENT SPECTRA

∆ t (ms)

Events

FIGURE 7.1.1. Example Event Spectrum

The description of such a pattern with a periodic event sequence requires 100 event

elements. As the event pattern has a very regular appearanceit should be possible to

describe the pattern in a more compact way.

Bursts can be found in the activating event patterns for certain systems. They occur

also within a system itself.

EXAMPLE 7.1.1. Consider for example a robot with a camera sending frequently pic-

tures to a processor using a bus. Every time the camera sends apicture, a burst occurs on

the bus. The burst consists of the data-packages with the information for one picture. After

the bursts a delay occurs on the bus until the next picture is send. Note, that the single

data packages of a picture are not necessarily of the same size or need not to occur with a

strict periodic pattern. They can contain quite different information, picture data as well as

protocol or header information and it might be useful or necessary to describe the bursts

itself also by an event pattern.

A burst is a large but limited number of events occurring within a short amount of time.

It can be regarded as a limited event pattern having a high density of events. Modeling

bursts with the event stream model can require a large numberof event elements.

EXAMPLE 7.1.2. An example for a system in which bursts occur is a resourceρ with

a task setΓ bound on it for which the completion ofτ can jitter due to delays caused by

preempting tasksτ ′ ∈ Γ with higher priorities(τ ′ ∈ hp(τ)). In case of a large jitter value

j several jobs ofτ can be delayed at the same point of time. These jobs can be processed

and finished quickly in a row after the execution of the jobs ofthe preempting tasks has

been completed. The outgoing events fired by these jobs than occur one after another also

within a short amount of time, forming a burst. This example was the motivation for the

development of the periodic event model with bursts by Richter et al. [117], which is

introduced in section 2.3.4. But the periodic model with bursts cannot describe efficiently

the event patterns for the robot with a camera example.

EXAMPLE 7.1.3. Bursts can also be the result of loops in the control flow graph of

previous tasks. Consider a task having a control flow with a loop in its control-flow in

which one event is generated at each of the iterations of the loop. In case, that the number of

iterations of the loop can be bounded, the number of events occurring out of one activation

of the task is bounded too. The set of events generated by a single activation of the loop

can be regarded as a burst.

In Figure 7.1.2 we present an example task graph to illustrate bursts.τ1 is activated

by a periodic event stream. It activates two other taskτ2 andτ3. The event stream for both

tasks consists mainly of bursts. The control flow graph ofτ1 consists of two nested loops.

7.2. SPECTRA 141

3

0

Θ 1

τ
1

τ 2

τ 3

v
v

v

v
v

v

v

v

v

v

1

2

3
4

6

5

7

8

9

10

Θ

Θ 2

v

FIGURE 7.1.2. Example task graph generating bursts

In the outer loop nodev1 generates the events activatingτ2. v4 is the node belonging to

the inner loop that generates the events activatingτ3. One event is generated at each of the

iterations of the inner loop. Therefore the event streamΘ2 activatingτ2 mainly consists of

bursts, whereasΘ3 activatingτ3 consists of nested bursts due to the nested loops. A new

model is required that is able to describe such event patterns in an easy and efficient way

and allows also an efficient real-time analysis.

The event stream model is not appropriate to model efficiently the systems with bursts

introduced in the examples. The problem is that it is necessary to model each event in the

burst with an extra event stream element. For an event pattern containing a burst with 10

events, at least 10 event stream elements are required. In case of a burst containing 1000

events, at least 1000 event stream elements are necessary. The size of the description for

an event pattern depends in the event stream model on the sizeof its bursts.

Another limitation of the event stream model becomes visible due to the proposed

approximations. It is not possible to describe the approximation of event stream elements

within the event stream model. Therefore it was necessary todevelop a special approxi-

mative feasibility test algorithm, implementing a fixed test limit for all tasks. It would be

more useful to integrate the approximation in the model to describe the event stream with

both, its exact and its approximated part. The new model would allow a higher flexibility

in choosing the test limits for the individual event stream elements and give the freedom to

propagate the approximation through a distributed system.

In the following we will propose such a model: The hierarchical event spectra model.

7.2. Spectra

Looking to the previous work to analyze real-time systems shows that the analysis

complexity and the model accuracy are central points of the ongoing research. Because of

the limitations of the models a lot of extensions to cover jitter, burst and other effects of

events are discussed in the literature. The new hierarchical spectra or hierarchical event

142 7. HIERARCHICAL EVENT SPECTRA

spectra model presented in this thesis will cover all aspects in a new single model. It is

based on event streams and their approximations [5]. Event spectra are a hierarchical

extension of the event stream model (previously referred toas hierarchical event streams)

combined with results from the real-time calculus. The new model is called event spectra,

because an event spectrum contains all possible worst-caseevent densities like the light

spectrum contains all possible wavelengths of the different colors of light.

We will first give a definition for the general spectrum model,which can cover many

aspects of a system. A spectrum can model for example the number of events, the amount

of required computation time, the amount of available capacity or the amount of required

or available energy, in relation to time intervals. A spectrum describing events is denoted

event spectrum, when it is describing costs it is denoted cost spectrum and it is denoted

capacity spectrum when it describes the (available or remaining) capacity. To describe

many different system stimuli the event spectrum has, for example, to model a sequence of

events in an accurate and complete way.

DEFINITION 7.2.1. Spectrum

Let a spectrum̂Θ model the relation between an amount of a parameter (like number

of events, required computation time, available capacity,required energy, ...) and a time-

interval length∆t. Let the hierarchical spectrum̂Θ = {θ̂} consist of a set of hierarchical

spectrum elements. Let the hierarchical spectrum elementθ̂ = (pθ̂ ,aθ̂ ,Lθ̂ , fθ̂ ,Θ̂θ̂} be de-

scribed by a period p̂θ , an offset âθ and a limitation L̂θ of the amount generated within

one single period. The slope fθ̂ is describing a constantly growing amount with fθ̂ as the

growing rate.Θ̂θ̂ is a child hierarchical spectrum which is recursively embedded.

The amount of the parameter that can be generated byΘ̂θ̂ within one period of its

parent spectrum̂θ is also bounded by the limitation of its parent Lθ̂ . Θ̂θ̂ can be an empty

element (̂Θθ̂ = /0).

θ̂ is a valid hierarchical spectrum element, if and only ifθ̂θ̂ is either a valid hierar-

chical spectrum or an empty element and the interval∆t required for the slope and̂Θθ̂
to generate the amount of the limitation Lθ̂ is not larger than the period p̂θ (Separation

Condition, see condition 7.2.6 for a mathematical definition) and either f̂θ = 0 or Θ̂θ̂ = /0.

The event bound function (as defined in definition 2.3.3) calculates the maximum

number of events that can be generated by a given event spectrum Θ̂ within an interval

of a given length∆t. The spectrum bound functionη(∆t,Θ̂) has the same definition as

the event bound function of the event stream model. The separation condition allows an

efficient calculation of the values for this function.

LEMMA 7.2.2. Spectrum Bound Function:

Let for any∆t, p define mod(∆t, p) = ∆t−
⌊

∆t
p

⌋

p. For a hierarchical spectrum fulfill-

ing the separation condition the spectrum bound function can be determined as follows:

η(∆t,Θ̂) = ∑
θ̂∈Θ̂

∆t≥aθ̂

η(∆t, θ̂)

7.2. SPECTRA 143

∆ t (ms)10 20 30 40 50 60 70

10

20

30
#Events

FIGURE 7.2.1. Hierarchical event spectrum̂Θ6

η(∆t, θ̂) =











































Lθ̂ pθ̂ = ∞, fθ̂ = ∞

min(Lθ̂ ,(∆t−aθ̂) fθ̂ + η(∆t−aθ̂ ,Θ̂θ̂)) pθ̂ = ∞, fθ̂ 6= ∞
⌊

∆t−aθ̂
pθ̂

+1
⌋

Lθ̂ pθ̂ 6= ∞, fθ̂ = ∞
⌊

∆t−aθ̂
pθ̂

⌋

Lθ̂ +min(Lθ̂ ,mod(∆t−aθ̂ , pθ̂) fθ̂ +

+η(mod(∆t−aθ̂ , pθ̂),Θ̂θ̂)) pθ̂ 6= ∞, fθ̂ 6= ∞

with

η(∆t, /0) = 0

PROOF. Due to the separation condition it is always possible to include the maximum

allowed amount for completed periods
(⌊

∆t−aθ̂
pθ̂

⌋

Lθ̂

)

. Only the last incomplete fraction of

a period has to be considered separately. This remaining interval is given by subtracting

all completed periods, and the offseta from the interval∆t
(

mod(∆t−aθ̂ , pθ̂
)

. It has to

be distinguished whether the slope or the sub-spectrum generates the events. In case of

the sub-spectrum, the possible amount is calculated by using the same spectrum bound

function with the remaining interval and the new embedded hierarchical event spectrum as

parameters. In case of the slope the amount is simply the product of the slopef and the

remaining interval length(mod(∆t−aθ̂ , pθ̂)). The maximum allowed amount within one

period limits both values. �

Independently on which hierarchical level a hierarchical spectrum element is located it

is visited only once during the calculation of the value for one interval. This characteristic

limits the complexity of the calculation.

It is not necessary for the spectra to be homogeneous.

EXAMPLE 7.2.3. Let us consider the hierarchical spectrum

Θ̂6 = {(20ms,6ms,10,0
1
s
,{(3ms,0ms,2,1

1
s
, /0)}

The event bound function for this spectrum is given in figure 7.2.1. The value for∆t = 33

ms is given by

η(33ms,Θ̂6) =

⌊

27ms
pθ̂

⌋

Lθ̂ +min(Lθ̂ ,mod(27ms, pθ̂) fθ̂ + η(mod(27ms, pθ̂),Θ̂θ̂))

144 7. HIERARCHICAL EVENT SPECTRA

=

⌊

27ms
20ms

⌋

·10+min(10,0+ η(7ms,Θ̂θ̂)) = 10+min(10,η(7ms,Θ̂θ̂))

η(7ms,Θ̂θ̂) = η(7ms, θ̂ ′) =

⌊

7ms
3ms

⌋

·2+min(2,mod(7,3) ·1+0)= 4+1= 5

η(33ms,Θ̂6) = 10+min(10,5) = 15

The spectrum bound functionη(∆t,Θ̂) allows calculating the amount for a given

interval-length∆t. It provides for each interval-length∆t the amount belonging to∆t.

It is a monotonic rising function(∆t i > ∆t j → η(∆t i) ≥ η(∆t j). An interval∆t i has to

include at least all the amount of∆t j because in the worst-case∆t j can be part of∆t i .

The spectrum bound function allows to calculate the amount for a given interval-

length.

DEFINITION 7.2.4. Interval bound function

The interval bound functionψ calculates the time interval∆t for a given event spec-

trum and a given number of events.

ψ(x,Θ̂) = min(∆t|x = η(∆t,Θ̂))

LEMMA 7.2.5. ψ is the inverse of the spectrum bound function so we haveη(ψ(x,Θ̂),Θ̂)=

x andψ(η(∆t,Θ̂),Θ̂)≤ ∆t.

PROOF. Let us assume, without loosing the generality,∆t ′ being the interval fulfilling

∆t′= min(∆t|x= η(∆t,Θ̂)). Thereforeη(ψ(x,Θ̂),Θ̂)= η(∆t′,Θ̂)= xandψ(η(∆t,Θ̂),Θ̂)=

ψ(x,Θ̂) = ∆t ′ ≤ ∆t. �

The separation condition prohibits that the amounts of different periods of a spectrum

element overlaps. The separation condition is required foran efficient calculation of the

spectrum bound function. It can be mathematically expressed as

CONDITION 7.2.6. (Separation Condition) A spectrum elementθ̂ fulfills the separa-

tion condition if for each element the interval in which events are generated is equal or

smaller than its period:

η(Lθ̂ , θ̂)+
Lθ̂
fθ̂
≤ pθ̂

or

pθ̂ ≤ η(pθ̂ ,Θ̂θ̂)+
pθ̂
Lθ̂

The condition 7.2.6 does not reduce the space of event patterns that can be modeled

by an event spectrum. An event spectrum that does not meet theseparation condition can

easily be transferred to one meeting this condition.

COROLLARY 7.2.7. A spectrum element̂θ that does not meet the separation condition

can be exchanged by a set of spectrum elementsθ̂1, ..., θ̂k with k =

⌈

ψ(Lθ̂ ,θ̂)

pθ̂

⌉

and θ̂i =

(kpθ̂ ,(i−1)pθ̂ +aθ̂ ,Lθ̂ , fθ̂ ,Θ̂θ̂).

PROOF. For any spectrum element we can find a multiple of its periodkpθ̂ that is

larger than the interval in which events are generated by this element. For each period of

7.2. SPECTRA 145

...

∆ t (ms)
0 10 20 30 40

FIGURE 7.2.2. Example for overlapping events of different periods

the original spectrum element, a seperate spectrum elementis used with the periodkpθ̂
and the events of the original element. Each of these new elements fulfills the separation

condition. �

EXAMPLE 7.2.8. Consider the following example event spectrum:

θ̂ = {(28ms,0ms,15,0
1
s
,{(3ms,0ms,1,∞

1
s
, /0)})}

The limitation intervalLθ̂ has the lengthLθ̂ = (15− 1) · 3ms= 42ms. The event

pattern of this event spectrum is shown in figure 7.2.2. The first and the second period of

the event spectrum element overlap. In the interval[0,42] ms the events for the first period

are generated, in the interval[28,70] ms the events of the second period. Both intervals are

overlapping in the interval[28,42] ms in which events of both periods are generated.Θ̂
can be transferred into the following event spectrumΘ̂′ meeting the separation condition:

Θ̂′ = {(56ms,0ms,15,0
1
s
,{(3ms,0ms,1,∞

1
s
, /0)}),

(56ms,28ms,15,0
1
s
,{(3ms,0ms,1,∞

1
s
, /0)})}

Note that this separation condition does not prevent the intervals for event generation

of different spectrum elements to overlap. It is only not allowed that intervals for event

generation of two periods of the same spectrum element can overlap.

DEFINITION 7.2.9. Upper spectrum̂Θ+

Θ̂ is an upper spectrum̂Θ+ if, and only if, each of its spectrum elements are valid

spectrum description elements and the condition of sub-additivity

∀∆t,∆t ′ : η(∆t + ∆t′,Θ̂+)≤ η(∆t,Θ̂+)+ η(∆t′,Θ̂+) is fulfilled.

DEFINITION 7.2.10. Lower spectrum̂Θ−

Θ̂ is a lower spectrum̂Θ− if, and only if, each of its spectrum elements are valid

spectrum description elements and the condition of super-additivity

∀∆t,∆t ′ : η(∆t + ∆t′,Θ̂−)≥ η(∆t,Θ̂−)+ η(∆t′,Θ̂−) is fulfilled.

The spectrumΘ̂+ models the maximum amount that can occur in an interval∆t and

Θ̂− models the minimum amount that can occur within∆t.

A value fθ̂ = 1 of the slope means that after one time unit one event has occurred,

after two time units two events and so on. The slope allows modeling approximated event

streams as well as modeling the capacity of resources. Both cases can be described by a

number of events which occur respectively can be processed within one time unit.

EXAMPLE 7.2.11. An event spectrumΘ1 = {(10ms,5ms,1,∞, /0)} with one element

with an offsetaθ = 10 ms and a periodpθ = 5 ms can be approximated by a slopef = 1
5ms.

146 7. HIERARCHICAL EVENT SPECTRA

∆ t (ms)1 5 10 15

1

5

1
1

1

Θ

Θ

#Events

FIGURE 7.2.3. Example event spectrum

In case that this event pattern is approximated after the first event it can be described by

the approximated event spectrum

Θ̂1 = {(∞s,10ms,1,∞
1
s
, /0),(∞s,10ms,∞,

1
5ms

, /0)}

The approximated pattern is visualized in figure 7.2.3. As the original event spectrum

produces an unlimited number of events the approximated event spectrum is not bounded,

too and has therefore an infinite limitation (Lθ̂1.1
= ∞) . This unlimited slope is not repeated

periodically, thereforepθ̂1,1
= ∞. To guarantee that̂θ1 leads to an equal or larger amount of

events for each interval thanΘ1 the approximation has to start at the right level guaranteed

by the first element of̂Θ1. ThenΘ̂1 leads to a value of two events when the second event

of Θ1 occurs at 15 ms.

EXAMPLE 7.2.12. One event which occurs immediately requires an infinite slope

(fθ̂ = ∞) and a limitation of one (Lθ̂ = 1). It can be described by the following hierarchical

event spectrum element:

e = {(∞s,0s,1,∞
1
s
, /0)}

A recursively embedded event spectrum with a slope off = ∞ would lead to the

generation of an infinite number of events in no time, but due to the limitation only the

generation of one event is possible. Due to the offset zero the generation of events can start

immediately, thereforeegenerates one single event at time zero.

EXAMPLE 7.2.13. A capacity function of a resource which can handle one second

processing time in one second can be described by this model with one capacity spectrum

elementθ̂2 = (∞s,0s,∞,1 1
s, /0).

With the recursively embedded event spectrum any possible pattern of events within

a burst can be described. The event pattern consists of a limited set of events that can be

repeated by the period of the parent hierarchical event spectrum element.

EXAMPLE 7.2.14. An event pattern with a burst of five events which is repeated after

50 ms and in which the elements within the burst have an intra-arrival rate of 2 ms can be

simply described bŷΘ3 = {(50ms,0ms,5,0 1
s ,{(2ms,0ms,1,∞ 1

s , /0)})}.

7.2. SPECTRA 147

∆ t (ms)1 5 10

5

1

#Events

FIGURE 7.2.4. Example simple periodic event sequence

We use the same description model for the limited event pattern as for the repetition

of the event pattern. Therefore the event pattern itself canalso consist of repeated sub

event-patterns that can be described by a sub-sub event spectrum.

EXAMPLE 7.2.15. An event pattern in which the pattern of elementΘ̂3 is repeated 20

times and then a break of about 1000 ms occurs would be described by

Θ̂4 = {(2000ms,0ms,100,0
1
s
,Θ̂3)}

An event spectrum can have several hierarchical levels. On the lowest level only the

slope is available to describe the occurring event pattern,but as we have seen, this is suf-

ficient for basic event patterns, even for single events. On the other levels limited periodic

repetitions of the event pattern of the sub-hierarchical levels are available. With this con-

cept it is possible to model (and analyze) even complex eventpatterns efficiently.

CONDITION 7.2.16. For each spectrum elementθ̂ eitherΘ̂θ̂ = /0 or fθ̂ = 0

Therefore it is not necessary to distribute the limitation between the slope and the

sub-spectrum. This simplifies the analysis without restricting the modeling capabilities.

The periodp and the offseta follow the same definition as in the event stream model.

So the arrival of the first event occurs aftera time units and ata+ p, a+ 2p, a+ 3p, ...,

a+ ip the other events occur.

In the following we will give a few examples to show the usage and the possibilities

of the new model.

EXAMPLE 7.2.17. A simple periodic event sequence with periodp = 5msand offset

a = 2mscan be modeled by a single event spectrum element:

Θ̂5 = {(5ms,2ms,1,∞
1
s
, /0}

This example is outlined in figure 7.2.4.

Each periodic event sequence can be directly modeled with the event spectrum model

by replacing each previous event element with a spectrum element having the same period

and offset and additionally a limitationL = 1 and a slopef = ∞.

LEMMA 7.2.18. Let Θ be an event stream withΘ = {θ1, ...,θn}. The event pattern

of Θ is also modeled by a hierarchical event spectrumΘ̂ with Θ̂ = {θ̂1, ..., θ̂n} and with

θ̂i = (pθi ,aθi ,1,∞, /0)

148 7. HIERARCHICAL EVENT SPECTRA

PROOF. Each of the event stream elements generates exactly one event at each of its

periods due toL = 1 following the pattern of the corresponding event element.Therefore

the complete event spectrum follows the pattern of the eventstream. �

EXAMPLE 7.2.19. The same event element as above, but now approximated after 10

events would be modeled in the following way:

Θ̂10
5 = {(∞s,0ms,10ms,0

ms
ms

,{(5ms,2ms,1,∞
1
s
, /0)}),(∞s,47ms,∞,

1
5ms

, /0)}

Note that 47ms= 2ms+ 5ms(10−1) is the point in time in which the last regular

event occurs and therefore the start of the approximation.

There exist two possible concepts for the description of thelimitation, an amountL

as chosen for the proposed model or the length of the intervalin which the events of the

sub-spectrum element occur. Having a slopef = ∞, like in the basic element, the amount

generated cannot be bounded by any interval. Every intervalwould lead to an infinite

amount. Only for an interval of length zero it would be a question of definition whether

the interval would lead to an amount of zero or infinity. But nointerval would lead to the

amount of limitation. The length of the limitation intervalcan be calculated out of the

number of events and the generation pattern using the interval bound functionψ :

∆t = ψ(L,Θ̂θ̂)+L fθ̂

with

ψ(L, /0) = 0

Note that this calculation requires the condition 7.2.16 (either fθ̂ = 0 or Θ̂θ̂ = /0).

CONDITION 7.2.20. Let θ̂n, θ̂n+i be two event elements witĥθn+i be the i-th child of

event element̂θn. For each possible child i, the child elementθ̂n+i is unequal to the parent

elementθ̂n: θ̂n 6= θ̂n+i

Condition 7.2.20 prevents that the recursion can have an infinite depth. The condition

also results out of the separation condition, at least for non-trivial cases having not only

the same limitations on all levels or not only infinite periods.

7.3. Reduction and normalization of hierarchical event spectra

To allow an easy composition of event spectra and to formulate mathematical opera-

tions for the real-time analysis in an easy way a normal form of event spectra is formulated.

Also an operator to reduce any spectrum to this normal form isprovided. For the normal

form we allow only recursively embedded spectra that are either empty or have only one

spectrum element.

EXAMPLE 7.3.1. For example an event spectrumΘ̂ = {(100ms,0ms,20ms,0 ms
ms,Θ̂a)}

with Θ̂a = {(5ms,0ms,2ms,∞ ms
ms, /0),(7ms,2ms,3ms,1 ms

ms, /0)} can be rewritten aŝΘ =

{(100ms,0ms,10ms,0 ms
ms, θ̂a,1), (100ms,0ms,10ms,0 ms

ms, θ̂a,2)} with

θ̂a,1 = (5ms,0ms,2ms,∞ ms
ms, /0) andθ̂a,2 = (7ms,2ms,3ms,1 ms

ms, /0).

7.3. REDUCTION AND NORMALIZATION OF HIERARCHICAL EVENT SPECTRA 149

LEMMA 7.3.2. A spectrumΘ̂A = {(pa,aa,La,0,Θ̂′a)} with a child spectrum element

Θ̂′a = {(p′1,a
′
1,L
′
1, f ′1,Θ̂1), ...,(p′k,a

′
k,L
′
k, f ′k,Θ̂k)} can be transferred into an equivalent spec-

trum Θ̂B with several spectrum elementsΘ̂B = {θ̂b,1, θ̂b,2, ..., θ̂b,n, θ̂b,x} having only child

spectra with one element where

θ̂b,i = (pa,aa,η(∆ta, θ̂ ′a,i),0, θ̂ ′a,i)

∆ta = lim
ε→0
ε>0

(ψ(La,Θ̂′a)− ε)

θ̂b,x =



∞,ψ(La,Θ̂′a),La− ∑
∀θ̂∈Θ̂′a

η(∆ta, θ̂),∞, /0





PROOF. ForΘ̂A only the second case(pθ̂ = ∞, fθ̂ 6= ∞) and fourth case(pθ̂ 6= ∞, fθ̂ 6=
∞) of the spectrum bound functionη(∆t,Θ̂a) is relevant (see lemma 7.2.2). Let us consider

an event spectrum̂ΘA with pa = ∞ first:

η(∆t,Θ̂a) = min(La,(∆t−aa) fa + η(∆t−aa,Θ̂′a))

= min(La,η(∆t−aa,Θ̂′a))

=







La η(∆t−aa,Θ̂′a)≥ La

η(∆t−aa,Θ̂′a) η(∆t−aa,Θ̂′a) < La

Only for η(∆t−aa,Θ̂′a) < La the sub-spectra of̂Θa are relevant. Then we have

η(∆t−aa,Θ̂′a) = ∑
∀θ̂a,i∈Θ̂a

η(∆t−aa, θ̂a,i)

Let us consider now the corresponding event spectrumΘ̂b. We have

η(∆t,Θ̂b) = ∑
i≤n

η(∆t, θ̂b,i)+ η(∆t, θ̂b,x)

= ∑
i≤n

min(Lb,i ,η(∆t−aa, θ̂ ′a,i))+ η(∆t, θ̂b,x)

The interval∆tb at which the limitation is reached is the same for each of the spec-

trum elements. It is∆tb = min(∆t|∆t > ∆ta) = min

(

∆t|∆t > limε→0
ε>0

(ψ(La,Θ̂′a)− ε)

)

=

ψ(La,Θ̂′a) and therefore also the same as the interval for which the limitation is reached

for Θ̂b. For∆t < ∆tb we also knowη(∆t, θ̂b,x) = 0. With this knowledge we get

η(∆t,Θ̂b) =







∑i≤nLb,i +Lb,x ∆t ≥ ∆tb

∑i≤nη(∆t−aa, θ̂ ′a,i)+0 ∆t < ∆tb

For∆t < ∆tb it is obvious thatη(∆t,Θ̂a)= η(∆t,Θ̂b). For∆t≥∆tb we haveη(∆t,Θ̂b)=

∑i≤nLb,i +Lb,x = ∑i≤n η(∆ta, θ̂ ′a,i)+ (La−∑i≤n η(∆ta, θ̂ ′a,i) = La = η(∆t,Θ̂a).

The proof for the other case(pθ̂ 6= ∞, fθ̂ 6= ∞) follows in the same way. �

To normalize the event spectrum̂Θa by splitting the child event spectrâΘ′a into it’s

elements and add one separate event element in the normalized event spectrum̂Θb for each

event element of̂Θa we have to distribute the limitationLa on the elements of the child

150 7. HIERARCHICAL EVENT SPECTRA

event spectra. First we have to find the interval∆t′ for which the limitation of the parent

elementLa is reached by the child event spectrumΘ̂′a. ∆t′ is given by the interval-bound

functionψ(La,Θ̂′a) for the child event spectrum̂Θ′a. Then we have to calculate the amount

of costs required for each of the child event spectrum elements for ∆t′. This amount of

costs is given in general by the event bound functionη(∆t ′, θ̂i) for ∆t′. The problem is that

several elements can have a slope of∞ exactly at the end of this interval. In this situation

the sum of the event bound function for all child event elements for ∆t′ may exceed the

allowed limitationLa of the parent element. The total amount of costs generated bythese

elements is then bounded by the global limitationLa rather than by their own limitationsL′i .

To take this effect into account we exclude the costs occurring exactly at the end of∆t′ for

each hierarchical event element and we handle these costs separately modeling them with

the hierarchical event elementθ̂a,x. To do so we calculate the limitation not byη(∆t′, θ̂ ′i)
but by η(∆t ′− ε, θ̂ ′i) whereε is an infinite small value excluding only costs occurring

exactly at the end of∆t′.

Another point for the normalization, also resulting out of the separation condition is

that the limitation of an embedded event stream element doesnot exceed the limitation of

each of its parent.

CONDITION 7.3.3. The limitation of a hierarchical event elementθ̂n Lθ̂n
should not

exceed the limitation of any parent event elementsθ̂n−i :

∀θ̂n−i Lθ̂n−i
≤ Lθ̂n

An exceeding limitation would be blocked by the limitation of the parent and therefore

would have no effect on the resulting stimuli or cost function. In case the limitation is equal

to the limitation of the parent, the period of the child can beset to∞ as the second period

would have also no effect on the resulting stimuli or cost function.

7.4. Capacity Function

The proposed spectrum model can also describe the capacity of resources and allows

describing systems with fluctuating capacity over the time.The processor demand analysis

and the event stream approach assume that the available amount of resources is the same in

each time interval with equal length. Consequently, the workload of the tasks is measured

in execution time on the given resource, and the function to model the available amount

of resources for each interval length is the intersection. An ideal processor can handle one

time unit execution time during one time unit real time. For many resources the capacity

is not constant. The reason for a fluctuating capacity can be for example operation-system

tasks or variable processor speeds due to energy constraints.

Also the modularization of the analysis requires complex capacities. Consider, for

example, a fixed priority scheduling. In a modular approach each priority level gets the

remaining capacity of the previous priority level as available capacity. The remaining

capacity can be calculated step-wise for each priority level taking only the remaining ca-

pacities of the next higher priority level into account. Such an approach is only possible

with a model that can describe the remaining capacities exactly.

7.4. CAPACITY FUNCTION 151

∆ t (ms)

∆ t (ms)

∆ t (ms)

∆ t (ms)

(ms)c

(ms)c

(ms)c

(ms)c

1000 2000

1000

2000

3000

1000 2000

1000

2000

3000

t

100 200

100

200

300

a)
b)

c) d)

FIGURE 7.4.1. Example service bound functions

DEFINITION 7.4.1. The spectrum bound functionη(∆t,Θ̂−ρ) of a lower spectrum̂Θ−ρ
of a resourceρ gives for each interval∆t the minimum amount of processing time that is

available for processing tasks in any interval of size∆t.

An approach covering this concepts are the service curves ofthe real-time calculus

(section 2.3.6).

In the following we will show, with a few examples, how to model fluctuating service

functions with the spectrum model.

EXAMPLE 7.4.2. The constant capacity, as shown in 7.4.1 a) can be modeled by a

hierarchical event spectrum with only one element:

sbasic= {(∞,0,∞,1, /0)}

EXAMPLE 7.4.3. Blocking the service for a certain timet, as shown in figure 7.4.1 b)

is also easy to model using the offseta:

sblock = {(∞,t,∞,1, /0)}

EXAMPLE 7.4.4. A constantly growing service curve in which the service is blocked

periodically each 100 ms for 5 ms (for example by an task of theoperating system), as

shown in figure 7.4.1 c), has the following description:

spblock= {(100ms,5ms,95ms,1
ms
ms

, /0)}

EXAMPLE 7.4.5. The service for a processor that can handle only 1000 ms with full

speed and then have to slow down for 1000 ms in which only half the speed is available,

as shown in figure 7.4.1 d), is also easy to model:

svary = {(2000ms,1000ms,500ms,
1ms
2ms

, /0),(2000ms,0ms,1000ms,1
ms
ms

, /0)}

These are only a few examples how to model complex capacities.

Capacity can be described either by an amount processable within ∆t or by a number

of events processable within∆t. Operations are required to calculate one form out of the

other.

152 7. HIERARCHICAL EVENT SPECTRA

7.5. Modeling common event models with event spectra

To show the universality of the event spectra we will consider in the following section

how standard well known event models published in the last years can be described by

using event spectra. The idea is to give an impression that event spectra are a fundamental

approach to event modeling.

7.5.1. Periodic/sporadic task model with jitter. The most common task model is

the periodic / sporadic task model with jitter. The periodictask model was introduced by

[88]. In this model the events are occurring strictly periodically with a fixed periodp. For

this model the maximum event spectrum is given byΘ̂+ = (p,0,1,∞, /0). As in the periodic

model the events are thought of occurring strictly periodically, the maximum distance be-

tween any two consecutive events is one period and thereforethe minimum event spectrum

in the periodic model is simplŷΘ− = (p, p,1,∞, /0). Other than in the periodic task model,

the maximum distance between the events in the sporadic model is not limited by the pe-

riod. The sporadic task model requires only a minimum separation distancesbetween any

two consecutive events. Considering the periodp and the minimum separation distance be-

tween eventss (p = s) as equivalent, it is possible to apply the periodic model andits anal-

ysis directly on the sporadic model. As only the minimum separation distance is available,

the minimum event spectrum̂Θ− has to be modeled aŝΘ− = (∞,∞,1,∞, /0). In case that

some information about the minimum occurrence of events exists, a better minimum event

spectrumΘ̂− can be given, other than with the sporadic task model. A widespread exten-

sion of these models is the introduction of a jitterj. The arrival of events occurs generally

periodically but the events can occur a bit early or later than expected by the period. The

interval in which their occurrence can happen is called jitter interval with the lengthj and

is situated around the expected periodic time of occurrenceof the event. The jitter is espe-

cially valuable for the analysis of distributed systems. The reason is that the finishing time

of a task activated by incoming periodic events can vary between the worst-case response

time and the best-case response time of the task, therefore the outgoing event stream of the

task can be modeled having a jitter of the worst-case response time minus the best-case re-

sponse time. For a jitter smaller than the period the minimumdistance between two event

is simply p− j and all following events occur with the distancep in the worst case, there-

fore Θ̂+ = (∞,0,1,∞, /0),(p, p− j,1,∞, /0) andΘ̂− = (p, p+ j,1,∞, /0). For a jitter larger

than the period, the events with a regular occurrence somewhere within the jitter interval

can all occur at the same time. This number is given byn =
⌊

j
p +1

⌋

therefore the, max-

imum event spectrum iŝΘ+ =
{(

∞,0,
⌊

j
p

⌋

,∞, /0
)

,
(

p, p+
(

j
p−
⌊

j
p

⌋)

p,1,∞, /0
)}

. The

minimum event spectrum is again̂Θ− = (p, p+ j,1,∞, /0).

7.5.2. Sporadically period task model.Another model proposed in [8] which was

specifically designated for single bursts can also be described by event spectra. The event

sequence is described by an inner periodpi describing the distance between events within

the burst, a number of eventsn occurring within the burst and an outer periodpo describing

the distance between the starts of two consecutive bursts. An event spectrum with one level

7.5. MODELING COMMON EVENT MODELS WITH EVENT SPECTRA 153

of hierarchy is required. The maximum event spectrum is

Θ̂+ = {(po,0,n,0,{(pi,0,1,∞, /0)})}

the minimum event spectrum is

Θ̂− = {(po, po−npi,n,0,{(pi , pi ,1,∞, /0)})}

.

7.5.3. Periodic task model with initial burst. The assumption of a concurrently oc-

currence of several events in the periodic task model with jitter is an overestimation for

the distributed analysis. For example, consider a chain of two tasks bounded on different

resources. The first taskτ1 is activated by a periodic event sequence with jitter and gener-

ates an event each time it finishes its execution. With these events the second task on the

other resource is activated. Several of the outgoing eventsof τ1 cannot occur concurrently

as the instances ofτ1 are executed one after another. Therefore the minimum separation

time between the activating events of the second task is at least as large as the minimum

execution time of the first task.

DEFINITION 7.5.1. (Compare [69])Periodic task model with initial burst

In the periodic task model with initial bursts the occurrence of events is described by

an event model E= (p, j,s) with a period p, a jitter j and a minimum separation distance

s between any events.

This event model can be covered exactly by the maximum event spectrumΘ̂max =

inf({(s,0,1,∞, /0)},{(∞,0,n,∞, /0),(p,s,1,∞, /0)}) with n =
⌊

j
p +1

⌋

andd = np− j, and

the minimum event spectrum̂Θ−= {(p, p+ j,1,∞, /0)}which is equivalent to the minimum

spectrum of the periodic task model with jitter. For the definition of inf see section 7.6.

7.5.4. Approximation of the real-time calculus. The real-time calculus requires a

concrete description of the upper and lower arrival and service curves. One possibility

is to approximate each curve by three consecutive segments,one for the initial event,

one for the initial burst and one for the overall arrival or service rate, each given by

the coordinatesx,y of its start point and an event slopes. This approximation can be

very easily transferred into a corresponding event spectrum with three elements (Θ̂ =

(∞,x1,y2,s1, /0),(∞,x2,y3−y2,s2, /0),(∞,x3,∞,s3, /0)). The transformation is of course the

same for the upper and lower real-time calculus curves into their corresponding event spec-

trum curves. As this description is very pessimistic a more accurate approximation of the

curves is used. The curves consist of an initial non-periodic and a periodic part. Each part

is modeled by a set of consecutive line segments. Each line segmentw is given by the

coordinated x,y of its start point and a slope s. Starting theslope at the starting point leads

to the coordinates x’,y’ of the next following segmentw′. The periodic part is described

by its starting coordinatesxp,yp, again by a set of line segments with relative coordinates

x,y to the starting point, and by an offset∆x,∆y between two periods. The transfer to the

154 7. HIERARCHICAL EVENT SPECTRA

event spectrum is easy with:

Θ̂ = {(∞,x1,y1,∞, /0),(∞,x1,s1(x2−x1),s1, /0),(∞,x2,y2−s1(x2−x1)−y1,∞, /0), ...,

(∞,xn,sn(xp−xn),sn, /0),(∞,xp,yp−sn(xp−xn)−yn,∞, /0),(∆x,xp +xu,

su(xu+1−xu),su, /0),(∆x,xp +xu,yu−su(xu+1−xu),su, /0), ...,(∆x,

xp +xu+v,su+v(∆x−xv),sv, /0),(∆x,xp +xu+v,∆y−su+v(∆x−xv)−yv,∞, /0)}

The maximum and the minimum curves are transferred in the same way.

7.6. Event Spectra Algebra

In the following we will introduce some necessary operations on event spectra. By us-

ing these operations it is possible to define the real-time analysis in a formal mathematical

way on event spectra. Some operations are keeping the properties of upper and/or lower

spectra. The step-wise infimum and supremum operator, the add- and scale-operator are

examples for this kind of operators. Also the convolution⊗ and deconvolution� belongs

to this kind of operators. The other kind of operators is leading only to spectra. The shift

operator belongs to this kind. All operators are keeping theproperties of a spectrum, which

are the monotonic non-decreasing spectrum bound function and the separation condition.

7.6.1. Upper and lower spectra keeping operations.Let us first consider operators

keeping the properties of event spectra. This means if the operator is used on upper re-

spectively lower event spectra the resulting spectrum is also an upper respectively a lower

spectrum. Then the resulting spectrum keeps the condition of sub- or super-additivity.

7.6.1.1.Add-operation.The add operation for two event streams can be simply real-

ized by a merger of the sets of event elements of the two event streams:

DEFINITION 7.6.1. (+ operation) IfΘ̂C = Θ̂A+ Θ̂B then for each interval∆t the equa-

tion η(∆t,Θ̂C) = η(∆t,Θ̂A)+ η(∆t,Θ̂B) is true.

THEOREM 7.6.2. (+ operation) The sum̂ΘC = Θ̂A + Θ̂B can be calculated by the

union of the event stream elements ofΘ̂A,Θ̂B: Θ̂C = Θ̂A∪ Θ̂B

PROOF.

η(∆t,Θ̂C) = η(∆t,Θ̂A)+ η(∆t,Θ̂B)

= ∑
θ̂∈Θ̂A

η(∆t, θ̂)+ ∑
∀θ̂∈Θ̂B

η(∆t, θ̂)

= ∑
∀θ̂∈Θ̂A∪Θ̂B

η(∆t, θ̂)

= η(∆t,Θ̂A∪ Θ̂B)

�

LEMMA 7.6.3. The+ operator keeps the properties of upper and lower spectra. So

we haveΘ̂+ = Θ̂+ + Θ̂+ andΘ̂− = Θ̂−+ Θ̂−. But we also havêΘ = Θ̂+ Θ̂+, Θ̂ = Θ̂+ Θ̂−

andΘ̂ = Θ̂+ + Θ̂−. Of causeΘ̂ = Θ̂ + Θ̂ is also valid.

7.6. EVENT SPECTRA ALGEBRA 155

PROOF. Let us consider the casêΘ+
C = Θ̂+

A + Θ̂+
B and two intervals∆t,∆t ′. We know

due to the sub-additivity thatη(∆t +∆t′,Θ̂A)≤η(∆t,Θ̂A)+η(∆t′,Θ̂A) andη(∆t+∆t′,Θ̂B)≤
η(∆t,Θ̂B)+ η(∆t′,Θ̂B) therefore

η(∆t + ∆t′,Θ̂+
C) = η(∆t + ∆t′,Θ̂+

A)+ η(∆t + ∆t′,Θ̂+
B)

≤ η(∆t,Θ̂+
A)+ η(∆t′,Θ̂+

A)+ η(∆t,Θ̂+
B)+ η(∆t′,Θ̂+

B)

≤ η(∆t,Θ̂+
A)+ η(∆t,Θ̂+

B)+ η(∆t′,Θ̂+
A)+ η(∆t′,Θ̂+

B)

≤ η(∆t,Θ̂+
C)+ η(∆t′,Θ̂+

C)

The other combinations follows in a similar way. �

7.6.1.2. Infimum (inf) and supremum (sup). The other important operator for the min-

plus dioid is the step-wise infimum (or minimum) operation, for the max-plus dioid the

stepwise supremum (or maximum) operator.

DEFINITION 7.6.4. (inf- infimum (or minimum) operator

If Θ̂C = inf(Θ̂A,Θ̂B) then for each interval∆t η(∆t,Θ̂C) = inf(η(∆t,Θ̂A),η(∆t,Θ̂B)).

DEFINITION 7.6.5. (sup - supremum (or maximum) operator)

If Θ̂C = sup(Θ̂A,Θ̂B) then for each interval∆t η(∆t,Θ̂C) = sup(η(∆t,Θ̂A),η(∆t,Θ̂B)).

As

sup(η(∆t,Θ̂A),η(∆t,Θ̂B)) = sup(η(∆t,Θ̂B),η(∆t,Θ̂A))

and

inf(η(∆t,Θ̂A),η(∆t,Θ̂B)) = inf(η(∆t,Θ̂B),η(∆t,Θ̂A))

the operations are commutative and as

sup(sup(η(∆t,Θ̂A),η(∆t,Θ̂B)),η(∆t,Θ̂C)) = sup(η(∆t,Θ̂B),sup(η(∆t,Θ̂A),η(∆t,Θ̂C))

as well as

inf(inf(η(∆t,Θ̂A),η(∆t,Θ̂B)),η(∆t,Θ̂C)) = inf(η(∆t,Θ̂B), inf(η(∆t,Θ̂A),η(∆t,Θ̂C))

the operations are associative.

For both operators it can be necessary to combine one elementof one event spec-

trum with several elements of the other event spectrum. Therefore these operations can be

expensive.

7.6.1.3.Scaling with a cost value(·). Another operation on a spectrum is to scale the

total spectrum by a cost value. This is for example necessaryfor the integration of the

worst-case execution times into the analysis, so for a transfer of an event-base spectrum to

a cost-base spectrum.

DEFINITION 7.6.6. Let Θ̂′ be the spectrum̂Θ scaled by the cost value c+ (Θ̂′ = c+Θ̂).

For each interval∆t the corresponding event bound functions have the relationship

η(∆t,Θ̂′) = c+η(∆t,Θ̂)

156 7. HIERARCHICAL EVENT SPECTRA

LEMMA 7.6.7. η(∆t,Θ̂′) = c+η(∆t,Θ̂) if the child set ofΘ̂′ contains and only con-

tains for each element̂θ of the child set ofΘ̂ an elementθ̂ ′ ∈ Θ̂′ having the following

relations toθ̂ : pθ̂ ′ = pθ̂ , aθ̂ ′ = aθ̂ , nθ̂ ′ = c+nθ̂ , Θ̂θ̂ ′ = c+Θ̂θ̂ , fθ̂ = c+ fθ̂

All parts of the spectra elements related to the number of events are scaled by the

variablec+.

PROOF.

c+η(∆t,Θ̂) = ∑
θ̂∈Θ̂

∆t≥aθ̂

c+η(∆t, θ̂)

c+η(∆t, θ̂) =































min(c+Lθ̂ ,c+ fθ̂ (∆t−aθ̂)+c+η(∆t,Θ̂θ̂) pθ̂ = ∞

c+Lθ̂ | fθ̂ |= ∞
⌊

∆t−aθ̂
pθ̂

⌋

c+Lθ̂ +min(c+Lθ̂ ,c+ fθ̂ mod(∆t−aθ̂ , pθ̂)+

+c+η(mod(∆t−aθ̂ , pθ̂),Θ̂θ̂)) pθ̂ 6= ∞

=































min(Lθ̂ ′ , fθ̂ ′(∆t−aθ̂)+ η(∆t,Θ̂θ̂ ′) pθ̂ = ∞

Lθ̂ ′ | fθ̂ |= ∞
⌊

∆t−aθ̂
pθ̂

⌋

Lθ̂ ′ +min(Lθ̂ , fθ̂ ′mod(∆t−aθ̂ , pθ̂)+

+η(mod(∆t−aθ̂ , pθ̂),Θ̂θ̂ ′)) pθ̂ 6= ∞

= η(∆t, θ̂ ′)

�

The operation is appropriate when having a single worst-case execution time. In real-

istic systems the execution time of two or more consecutive executions of the same job can

be smaller than two or more times the worst-case execution time value. In [95] it was pro-

posed for such systems to model the worst-case execution times as a function of the number

of consecutive executions of the jobs having the maximum total costs for two, three, four,

... consecutive executions. One way to combine such an execution-time function with the

(hierarchical) event stream model is to do it within the analysis algorithms. The analysis

would first calculate the number of events using the (hierarchical) event bound function

and after that calculate the amount of execution time required for this number of events.

7.6.2. Convolution and Deconvolution.The real-time calculus relies on the min-

plus-dioid(R ∪∞, in f ,+) and the max-plus-dioid(R ∪∞,sup,+). The following opera-

tors and proofs for them can be found in [131].

DEFINITION 7.6.8. Min-Plus Convolution⊗ / deconvolution�
The min-plus convolution̂ΘC = Θ̂A⊗Θ̂B and the min-plus convolution̂ΘC = Θ̂A�Θ̂B

is given by:

η(∆t,Θ̂A⊗ Θ̂B) = inf
0≤∆t′≤∆t

{η(∆t−∆t′,Θ̂A)+ η(∆t′,Θ̂B)}

η(∆t,Θ̂A� Θ̂B) = sup
0≤∆t′<∞

(η(∆t + ∆t′,Θ̂A)−η(∆t′,Θ̂B)}

7.6. EVENT SPECTRA ALGEBRA 157

DEFINITION 7.6.9. Max-plus Convolution̄⊗ / deconvolution�̄
The max-plus convolution̂ΘC = Θ̂A�̄Θ̂C and the max-plus deconvolutionΘ̂C = Θ̂A�̄Θ̂B

is given by:

η(∆t,Θ̂A⊗̄Θ̂B) = sup
0≤∆t′≤∆t

{η(∆t−∆t′,Θ̂A)+ η(∆t′,Θ̂B)}

η(∆t,Θ̂A�̄Θ̂B) = sup
0≤∆t′≤∆t

{η(∆t + ∆t′,Θ̂A)−η(∆t′,Θ̂B)}

LEMMA 7.6.10. These convolutions and deconvolutions can be used for obtaining

the outgoing arrival and service curves of a greedy processing component (GPC) out of

incoming arrival and service curves (see [131] and section 2.3.6 for more details).

DEFINITION 7.6.11. The outgoing arrival(Θ̂+
α ′ ,Θ̂

−
α ′) and the service curveŝΘ+

β ′ ,Θ̂
−
β ′

of a greedy processing component (GPC) can be calculated by:

Θ̂+
α ′ = min{(Θ̂+

α ⊗ Θ̂+
β)� Θ̂−β ,Θ̂+

β }

Θ̂−α ′ = min{(Θ̂−α � Θ̂+
β)⊗ Θ̂−β ,Θ̂−β }

Θ̂+
β ′ = max{(0⊗ (Θ̂+

β − Θ̂−α),0)}

Θ̂−β ′ = max{(0⊗ (Θ̂−β − Θ̂+
α),0)}

PROOF. See [131] �

7.6.3. Spectra keeping operation: shift operation(←,→). The shift operation can

be realized by adding or subtracting the shift-value from each offset of all top-level ele-

ments of the spectrum. When subtracting, the shift value hasnot necessarily to be equal

or smaller than the smallest offset. The spectrum bound function η(∆t,Θ̂) with ∆t ≥ 0 can

handle negative offsets despite that negative intervals are not defined.

DEFINITION 7.6.12. (→ late shift) LetΘ̂ be a hierarchical event spectrum that is

shifted right by the value t resulting in the hierarchical event spectrum̂Θ′ = Θ̂→ t . The

event bound functions have the following relationship:

η(∆t,Θ̂′) =







η(∆t− t,Θ̂) ∆t ≥ t

0 else

LEMMA 7.6.13. η(∆t,Θ̂)→ t = η(∆t,Θ̂′) if Θ̂′ contains and only contains for each

elementθ̂ of Θ̂ an element̂θ ′ ∈ Θ̂′ having the following relations tôθ : pθ̂ ′ = pθ̂ , aθ̂ ′ =

aθ̂ + t , nθ̂ ′ = nθ̂ , Θ̂θ̂ ′ = Θ̂θ̂ , fθ̂ ′ = fθ̂

The operation̂Θ′ = Θ̂→ t can be performed by only adding the valuet to the offset

aθ̂ for each spectrum elementθ̂ ∈ Θ̂ for its corresponding counter-elementθ̂ ′ ∈ Θ̂′.

PROOF.

η(∆t− t,Θ̂) = ∑
θ̂∈Θ̂
∆t≥t

η(∆t− t, θ̂)

158 7. HIERARCHICAL EVENT SPECTRA

= ∑̂
θ∈Θ̂

∆t≥aθ̂ +t

η ′(∆t− t−aθ̂ , θ̂)

= ∑̂
θ∈Θ̂

∆t≥aθ̂ +t

η ′(∆t− (aθ̂ + t), θ̂)

= ∑̂
θ∈Θ̂

∆t≥aθ̂ +t

η ′(∆t−aθ̂ ′ , θ̂)

= η(∆t,Θ̂′)

�

The operation to shift a value left by the value t (Θ̂← t) can be defined in a similar

way.

DEFINITION 7.6.14. (← early shift) LetΘ̂ be a spectrum that is shifted left by the

value t resulting in the spectrum̂Θ′ = Θ̂← t . The spectrum bound functions have the

following relationship:

η(∆t,Θ̂′) = η(∆t + t,Θ̂)

LEMMA 7.6.15. η(∆t,Θ̂)← t = η(∆t,Θ̂′) if Θ̂′ contains and only contains for each

elementθ̂ of Θ̂ an element̂θ ′ ∈ Θ̂′ having the following relations tôθ : pθ̂ ′ = pθ̂ , aθ̂ ′ =

aθ̂ − t , nθ ′ = nθ , Θ̂θ̂ ′ = Θ̂θ̂ , fθ̂ ′ = fθ̂

PROOF.

η(∆t + t,Θ̂) = ∑̂
θ∈Θ̂

η(∆t + t, θ̂)

= ∑
θ̂∈Θ̂

∆t≥aθ̂−t

η ′(∆t + t−aθ̂ , θ̂)

= ∑
θ̂∈Θ̂

∆t≥aθ̂−t

η ′(∆t− (aθ̂ − t), θ̂)

= ∑
θ̂∈Θ̂

∆t≥aθ̂−t

η ′(∆t−aθ̂ ′, θ̂) = η(∆t,Θ̂′)

�

THEOREM 7.6.16. The operators(←,→) are associative with the(+) operator and

with Θ̂ = {} and t= 0 as identity elements, so we have(Θ̂A+Θ̂B)→ t = (Θ̂A→ t)+(Θ̂B→
t) and (Θ̂A + Θ̂B) ← t = (Θ̂A ← t) + (Θ̂B ← t). For (Θ̂ → t) → v we can write also

Θ̂→ (t +v).

PROOF. We will show the proof for(Θ̂A+ Θ̂B)→ t = (Θ̂A→ t)+ (Θ̂B→ t).

(η(∆t,Θ̂A + Θ̂B)← t = η(∆t + t,Θ̂A+ Θ̂B)

= η(∆t + t,Θ̂A)+ η(∆t + t,Θ̂B)

= η(∆t,Θ̂A← t)+ η(∆t,Θ̂B← t)

7.6. EVENT SPECTRA ALGEBRA 159

The proof for all other conditions follows in a similar way. �

7.6.4. Order of spectra. There are groups of spectra for which the order between

the spectra is undecidable. For these groups its impossibleto define whether a spectrum is

smaller or larger than another spectrum. For other groups ofspectra the order is decidable

as the relationship between the y-values of two spectra is always the same. For this second

group the spectra form a partially ordered set.

DEFINITION 7.6.17. (Θ̂A < Θ̂B)

Θ̂A < Θ̂B if and only if ∀∆t ≥ 0:

η(∆t,Θ̂A) < η(∆t,Θ̂B)

DEFINITION 7.6.18. (Θ̂A > Θ̂B)

Θ̂A > Θ̂B if and only if ∀∆t ≥ 0:

η(∆t,Θ̂A) > η(∆t,Θ̂B)

DEFINITION 7.6.19. (Θ̂A≤ Θ̂B)

Θ̂A≤ Θ̂B if and only if ∀∆t ≥ 0:

η(∆t,Θ̂A)≤ η(∆t,Θ̂B)

DEFINITION 7.6.20. (Θ̂A≥ Θ̂B)

Θ̂A≥ Θ̂B if and only if ∀∆t ≥ 0:

η(∆t,Θ̂A)≥ η(∆t,Θ̂B)

DEFINITION 7.6.21. (Θ̂A = Θ̂B)

Θ̂A = Θ̂B if and only if ∀∆t ≥ 0:

η(∆t,Θ̂A) = η(∆t,Θ̂B)

THEOREM7.6.22.The binary relation over a set of spectra defined in definition7.6.17

to definition 7.6.21 is reflexive antisymmetric and transitive and therefore a partially or-

dered set. That means for spectraΘ̂A,Θ̂B,Θ̂C we have

Θ̂A≤ Θ̂A

Θ̂A≤ Θ̂B∧ Θ̂B≤ Θ̂A⇒ Θ̂A = Θ̂B

Θ̂A≤ Θ̂B∧ Θ̂B≤ Θ̂C⇒ Θ̂A≤ Θ̂C

PROOF. The proof for these relationships follows out of the definitions: Θ̂A ≤ Θ̂A as

η(∆t,Θ̂A) = η(∆t,Θ̂A)⇒ η(∆t,Θ̂A)≤ η(∆t,Θ̂A). The other relations follows in the same

way. �

THEOREM 7.6.23. The add operation, scale operation, in f and sup operations and

the shift operations keeps the order, therefore for exampleΘ̂A≤ Θ̂B⇒ (Θ̂A→ x)≤ (Θ̂B→
x).

PROOF. As η(∆t,Θ̂A)≤ η(∆t,Θ̂B)⇒ η(∆t,Θ̂A→ x)≤ η(Θ̂B→ x) the proof is obvi-

ous for the shift operation. The proof for the other operations follows correspondingly.�

160 7. HIERARCHICAL EVENT SPECTRA

7.6.5. Utilization. An important value for the feasibility analysis is always the uti-

lization of a task set. LetΓ be a task set and let the tasksτ ∈ Γ be described by a spectrum

Θτ including the worst-case execution times.

LEMMA 7.6.24.The utilization UΓ of a task set in which the event generation patterns

are described by spectrum is given by((∀τ ∈ Γ)Λ (∀θ̂ ∈ Θ̂τ)|(Lθ̂ 6= ∞∨ pθ̂ = ∞)):

UΓ = ∑
∀τ∈Γ

∑
∀θ̂∈Θ̂τ
pτ 6=∞

nθ̂
pθ̂

+ ∑
∀τ∈Γ

∑
∀θ̂∈Θ̂τ
Lθ̂ =∞
pθ̂ =∞

(

UΘ̂θ̂
+ fθ̂

)

Note that as in the spectrum-model spectrum-elements with an infinite period do not

make any contribution to the utilization. Their contribution gets infinitely small in the long

run.

PROOF. The proof is based on the fact that in the long run the contribution of the last

period gets infinitely small compared to the rest.

UΓ = lim
∆t→∞

(

η(∆t,Θ̂Γ)

∆t

)

= lim
∆t→∞

(

∑∀τ∈Γ ∑∀θ̂∈Θ̂τ
η(∆t, θ̂)

∆t

)

= ∑
∀τ∈Γ

lim
∆t→∞









∑∀θ̂∈Θ̂τ
pτ 6=∞

⌊

∆t−aθ̂
pθ̂

⌋

Lθ̂ +min(...)

∆t
+

∑∀θ̂∈Θ̂τ
pτ=∞
Lτ 6=∞

min(Lθ̂ ,(∆t−aθ̂) fθ̂ + η(∆t−aθ̂ ,Θ̂θ̂)

∆t
+

∑∀θ̂∈Θ̂τ
pτ=∞
Lτ=∞

(∆t−aθ̂) fθ̂ + η(∆t−aθ̂ ,Θ̂θ̂)

∆t











= ∑
∀τ∈Γ









lim
∆t→∞

∑∀θ̂∈Θ̂τ
pτ 6=∞

(

∆t−aθ̂
pθ̂

)

Lθ̂

∆t
+

lim
∆t→∞

∑∀θ̂∈Θ̂τ
pτ=∞
Lτ 6=∞

Lθ̂

∆t
+

lim
∆t→∞

∑∀θ̂∈Θ̂τ
pτ=∞
Lτ=∞

(∆t−aθ̂) fθ̂ + η(∆t−aθ̂ ,Θ̂θ̂)

∆t











7.7. SCHEDULABILITY ANALYSIS 161

= ∑
∀τ∈Γ

∑
∀θ̂∈Θ̂τ
pτ 6=∞

nθ̂
pθ̂

+ ∑
∀τ∈Γ

∑
∀θ̂∈Θ̂τ
Lθ̂ =∞
pθ̂ =∞

(

UΘ̂θ̂
+ fθ̂

)

�

Even a task set with a low utilization might nevertheless be infeasible. And, of course,

task sets having utilization higher than 100% are infeasible too.

7.7. Schedulability analysis

For the schedulability analysis of uni-processor system using the spectrum model,

approaches similar to those proposed in chapter 3, 4 and 7 canbe used. But with the

spectrum model and the operations defined on it we can integrate the approximation and

the available capacity into the analysis.

In the following we will show how an exact schedulability test can be realized with

the introduced model and operations. We will first discuss the schedulability test for a uni-

processor system using EDF (Earliest Deadline First) scheduling. Later we will extend the

result to fixed priority scheduled systems.

7.7.1. Schedulability analysis for dynamic priority systems. The general schedu-

lability analysis for EDF is again the processor demand criterion but using the demand

bound function for the spectra. LetΓ be a task set completely bounded on the resourceρ
that hasΘ̂+

ρ as upper and̂Θρ as lower available capacity. Let each taskτ ∈ Γ be a task of

the task set with a deadlinedτ activated by an upper event spectrumΘ̂+
τ and a lower event

spectrumΘ̂−τ .

A system scheduled with EDF is feasible if for all intervals∆t the demand bound

function does not exceed the service function:

δ (∆t,Γ)≤ η(∆t,Θ̂−ρ)

Both, the demand bound and the service function can be described by and calculated

out of hierarchical event spectra.

The overall demand bound function of the task set is the sum ofthe demand bound

functions of the single tasks:

δ (∆t,Γ) = ∑
∀τ∈Γ

δ (∆t,Θ̂+
τ)

The demand bound function of a single task can be derived out of the events bound

function of this task by shifting this function (or the underlying event stream) by the value

of the tasks deadline and scaling it with the tasks executiontime:

δ (∆t,Γ) = ∑
∀τ∈Γ

η(∆t−dτ ,Θ̂τ)c
+
τ

δ (∆t,Γ) = η

(

∆t, ∑
∀τ∈Γ

(

Θ̂+
τ → dτ

)

c+
τ

)

162 7. HIERARCHICAL EVENT SPECTRA

This leads to the test:

η

(

∆t, ∑
∀τ∈Γ

(

Θ̂+
τ → dτ

)

c+
τ

)

≤ η(∆t,ρ)

or

∑
∀τ∈Γ

(

Θ̂+
τ → dτ

)

c+
τ ≤ Θ̂−ρ

An upper bound for∆t, a maximum test interval, is required to limit the run-time of

the test. The concept of the maximum test interval was introduced in section 2.2.3. For the

spectrum model one maximum test interval available is the busy period. An upper bound

for it is given by:

B(Γ) = min(∆t|χ(∆t)≥ η

(

∆t, ∑
∀τ∈Γ

(

Θ̂+
τ → dτ

)

c+
τ

)

7.7.2. Response-time calculation for static priority scheduling. In the following

we will show how a worst-case response time analysis for scheduling with static priori-

ties can be performed with the new model. This shows the capabilities of the spectrum

model and allows the integration of many previous concepts.The request bound function

calculates the amount of computation time of a higher priority tasks that can interfere and

therefore delays a lower-priority task within an interval∆t. It is closely related to, but a

bit different from the product of the spectrum bound function and the worst-case execution

time of the task. The difference is the exclusion of events atthe end point of the interval.

The event spectrum bound function contains all events generated within∆t including the

events at the start and the end point of the interval. The request bound function instead

only contains the events of the start, not the events of the end point of the interval. For the

request bound function the computation time of events becomes relevant after the event has

occurred. The computation time of those events occurring exactly at the end of the interval

∆t and therefore the events themselves are not relevant for∆t. The request bound function

can be calculated using the event bound function in the following way:

ρ(∆t,τ) = lim
∆→∆t

0≤∆<∆t

(η(∆,Θτ)c
+
τ)

In the event stream model the difference between the calculation of the event bound func-

tion and the request bound function is that for calculating the event bound function the

lower ceiling function and for calculating the request bound function the upper ceiling

function is used.

For the event spectrum model a similar approach can be used. It is only necessary to

handle the cases∆t = 0 differently than in the calculation of the spectrum bound function:

ρ(∆t,Γ) = ∑
∀τ∈Γ

c+
τ ρ(∆t,Θ̂τ)

with

ρ(∆t,Θ̂) = ∑
∀θ̂∈Θ̂
∆t>aθ̂

ρ(∆t, θ̂)

7.7. SCHEDULABILITY ANALYSIS 163

with

ρ(∆t, θ̂) =











































Lθ̂ pθ̂ = ∞, fθ̂ = ∞
⌈

∆t−aθ̂
pθ̂

⌉

Lθ̂ pθ̂ 6= ∞, fθ̂ = ∞

min(Lθ̂ , fθ̂ (∆t−aθ̂)+ ρ(∆t−aθ̂ ,Θ̂θ̂) pθ̂ = ∞, fθ̂ 6= ∞
⌊

∆t−aθ̂
pθ̂

⌋

Lθ̂ +

min(Lθ̂ , fθ̂ (∆t−aθ̂)+ ρ(mod(∆t−aθ̂ , pθ̂),Θ̂θ̂)) pθ̂ 6= ∞, fθ̂ 6= ∞

With this function it is possible to calculate the worst-case response times for the tasks:

THEOREM 7.7.1. Let τ be a task scheduling with fixed priority scheduling andΓhp(τ)

be the task set containing all task with a higher priority than τ. The response time r(τi,1)

of the first event ofτi is given by:

r(τi,1) = min(∆t|η(∆t,ρ)≥ c+
τ + ρ(∆t,Γhp(τ)))

The value for∆t can be calculated by a fix-point iteration starting with∆t = c+
τ and re-

inserting the calculated values for∆t into the equation above until the value does not change

any more. To calculate the maximum response time it is necessary to do the calculation for

all events within the busy period.

The busy period of a task set is the maximum interval in which the resource is com-

pletely busy, so in which there exists no idle time for the resource. It can be calculated

using the request bound function:

B(Γ) = min(∆t|η(∆t,ρ)≥ ρ(∆t,Γ))

THEOREM 7.7.2. The worst-case response time of a taskτ can be found in the busy

period of any task set containingτ and all tasks with a higher priority thanτ. It is the

maximum response time of all r(J,τ) where:

r(J,τ) = min
∀0≤∆t<∞

(∆t|η(J+ ∆t,ρ)≥ η(J,τ)c+
τ + ρ(J+ ∆t,Γhp(τ)))

r(τ) = max∀0≤J≤B(Γ)(r(J,τ))

J is lower or equal to the busy period (J ≤B(Γ)). The only point remaining is to

check for every task if this minimum response time is lower than the deadline of the task

(∀τ ∈ Γ|dτ ≥ rτ). If this is the case the task set activated by event spectra and scheduling

with fixed priority scheduling is feasible.

7.7.3. End-to-End Response time analysis.Having a distributed system in which

tasks activate other tasks, the end-to-end worst-case response time for a whole task chain

is often required. This is the time an event requires at most from occurring in the activating

event stream until its result is available at the end of the task chain. One possibility is to

calculate the worst-case response-times for each task separately and then add the resulting

response times. In situations, in which the response time ofan event is large due to delays

by previous events of the same event stream this calculationcan lead to pessimistic results.

The worst-case response times of the following task is calculated taking the upper outgoing

event spectrum of the previous task (with the highest density) into account whereas the

164 7. HIERARCHICAL EVENT SPECTRA

worst-case response time of this previous task would lead toan event spectrum with a lower

density. Or, in other words, the worst-case response-time of the following task allows such

a late arrival of its event (due to the delays by previous events) that the worst-case response-

time of the previous task does not play a role. The task chainτ6→ τ2 given in figure 9.0.1

is an example for such an situation. It is discussed in more detail in the case study section.

THEOREM 7.7.3. Let taskτ1 to τn be a chain of consecutive tasks activated by the

event spectrum̂Θ. Let rx, j denote the worst-case response-time of the j-th event on task

x and let r1, j→x, j denote the total response time of the j-th event fromτ1 to τx. The total

worst-case response time of the i-th instance of an event spectrumΘ̂ for a task chainτ1 to

τn (n > 1) is given by the maximum of

r1,1→n,i = max
∀1≤ j≤i

{(rn,i− rn, j−1+ rn−1, j),(rn, j + rn−1,i− j+1)}

PROOF. Each end-to-end response time of the task chain can be splitinto a response

time Rn on τn and a response timeR1→n−1 on the remaining task chain. In a first case

where the response timeRn ≤ rn, the total response time is bounded byrn + r1→n−1,1. In

caseRn > rn a delay has to occur somewhere withinRn. The reason for this delay can only

be the late arrival of an event at taskτn due to the response-times on this task. �

7.7.4. Response time analysis for TDMA and RR.In the following we will show

the transfer of the calculation to further scheduling approaches. As examples we will con-

sider time division multiple access (TDMA) and the round robin (RR) scheduling. TDMA

divides the available processing time into a fixed set of single slots repeated with a pe-

riod p. Each task has access to one or more of these slots. Deriving the upper and lower

service bound out of a TDMA schedule is easy. Having a period of p and a slot-length

s leads to an upper service bound ofΘ̂+ = (p,0,s,1, /0) and a lower service bound of

Θ̂− = (p, p−s,s,1, /0). In the best case the event occurs just at the start of its slot, there-

fore having the processor for the next s time units and then repeatedly again afterp time

units. In the worst-case the event occurs exactly when the slot is finished and it processing

is therefore delayed byp−s time units. The round-robin scheduling checks the tasks in a

fixed order whether they have available jobs for execution. In such a case these jobs are ex-

ecuted for at most the slot length for the task. Same as with TDMA a job can be distributed

on several slots and several jobs can be executed within one slot. Other than with TDMA,

having nothing to execute for a task does not lead to an idle time for the processor but the

slots for the following tasks are brought forward. Therefore the available capacity for one

task depends on the incoming event spectra for the other tasks in the RR-cycle. Each time

unit not used by one of the tasks reduces all response times inwhich the time unit occurs

of all other tasks by one time unit. The worst-case response time for RR is similar to the

worst-case response time analysis for static priorities, only the calculation of the higher

priority processing time differs. This can be calculated by"simulating" the worst-case RR

approach on the interval-base event spectrum model.

7.7.5. Hierarchical Scheduling.Different scheduling approaches can be combined

to a hierarchical scheduling. The child scheduling approaches can be considered as tasks

7.8. LIMITATIONS OF THE HIERARCHICAL EVENT STREAM MODEL 165

of their parent scheduling approach. The top-most parent scheduling gets the completely

available capacity of its resource and distribute this capacity on its child scheduling ap-

proaches. The distribution follows the same schema as if these child scheduling approaches

where simple tasks. The child scheduling approaches get theses distributed capacity as

their incoming service event spectrum and can then be considered as being bounded on a

resource of its own with a bit more complicated capacity. They can also have other em-

bedded child scheduling approaches and so on. In the example9.0.1 the fixed-priority

scheduling between the tasksτ1 and taskτ2 is embedded into a TDMA scheduling. Both

scheduling approaches can be handled separately. The fixed-priority scheduling gets the

outgoing capacity bound function for its TDMA cycle as incoming capacity bound func-

tion.

7.8. Limitations of the hierarchical event stream model

The problem with the hierarchical event stream model definedso far and also with the

previous concrete description for event spectra, especially with the exact description of the

real-time calculus, is that the resulting description sizeof operations on them depends on

the concrete values of their parameters. Especially for task sets with different periods for

the tasks, the resulting description can depend on the hyper-period of these periods. As the

run-time of the operations and the analysis depends directly on the size of the description

it can become quite large.

To solve this problem and to limit the number of elements of the resulting hierarchical

event streams the approximation introduced in the previouschapters can be applied also

to the hierarchical event stream model. In chapter 8 we will present an efficient way to

approximate the hierarchical event spectra which allows anefficient analysis.

CHAPTER 8

Approximation of hierarchical event spectra

The hierarchical event spectrum model allows to generalizethe approximation as in-

troduced in chapter 3 to 5. With this model it is possible to integrate the approximation into

the curves themselves and therefore to transfer each event spectrum into an approximated

event spectrum without leaving the model. For the analysis function as the event spectrum

bound function the approximated curves expands only to a limited set of test intervals even

without considering upper bounds as, for example, the busy period. The approximated

curves are also represented by an event spectrum without further knowledge of the ap-

proximation and the chosen degree of exactness. Therefore it is possible to use the same

operations of the event spectral algebra (see section 7.6) for the approximated curves as

for the non-approximated curves, propagate the approximated curves without knowledge

of the approximation error and even combine approximated curves with different degrees

of exactness and with exact curves.

This approach is especially important for the modularized analysis of distributed sys-

tems. It allows calculating the event spectra of a module using only the calculated event

spectra of the previous modules. This is an abstraction fromhow these previous spectra

have been calculated and whether an approximation was used or not.

In the following we will show a general way to transfer event spectra into approxi-

mated event spectra bounded with a given degree of exactness. The maximum approxima-

tion error for such spectra is guaranteed and for the analysis of these spectra only a strictly

limited number of values have to be considered. Like in the superposition approximation

for event streams the approximation is done for each event spectrum element separately.

In the following we will introduce two attempts to integratethe approximation in the

event spectrum model. In the first one each element is approximated independently of

its position in the hierarchy and especially independent ofits parent and child elements.

Therefore each period of the element leads to a restart of theapproximation for the child

elements and to a new set of test intervals. In case that the number of test intervals for

an element within one period of the parent element is smallerthan the number of exactly

considered test intervals by the approximation, only the original element without approx-

imation would be used. This is a straight forward way for doing the approximation, but

the number of exactly considered values required for such approximated curves depends

on the level of hierarchy. In the second attempt the number oftest intervals is bounded for

each element globally. Therefore in one period of the parentelement the exact element of

the child is used, in another period of the parent element an approximated version of the

child element is taken. With this approximation the number of test intervals is bounded

167

168 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

globally depending only on the number of elements of the original event spectrum and the

choosen degree of exactness.

8.1. First approach: Separate approximation for each element

First we will consider to approximate each event spectrum element on each hierar-

chical level separately. The approximation of each elementis done independently of the

child and parent element. The general idea of the approximation is to analyze for each

element the smallestn test intervals exactly and approximate the larger test intervals using

the specific utilization of the hierarchical event spectrumelement.

8.1.1. Method. Let us first consider the approximation for a simple event spectrum

element.

LEMMA 8.1.1. Let Θ̂ be an event spectrum witĥΘ = {θ̂1, ..., θ̂n} and let k= 2
⌈

1
ε
⌉

.

Θ̂k is an approximation of̂Θ with ε = 1
k andη(∆t,Θ̂)≤ η(∆t,Θ̂k)≤ (1+ε)η(∆t,Θ̂) if for

each element̂θi = {pθ̂i
,aθ̂i

,Lθ̂i
, fθ̂i

,Θ̂θ̂i
} of Θ̂ a set of elements{θ̂ k

i,1, θ̂
k
i,2, θ̂

k
i,3} exists inΘ̂k

i

with

θ̂ k
i,1 = (∞,0,kLθ̂i

,0,{(pθ̂ ,aθ̂ ,Lθ̂ , fθ̂ ,Θ̂k
θ̂)})

θ̂ k
i,2 = (∞,kpθ̂i

+aθ̂i
,Lθ̂ ,∞, /0)

θ̂ k
i,3 = (∞,kpθ̂i

+aθ̂i
,∞,

Lθ̂i

pθ̂i

, /0)

PROOF. For the proof we have to distinguish two cases. We have to distinguish be-

tween intervals∆t < kpθ̂i
+ aθ̂i

and between intervals∆t ≥ kpθ̂i
+ aθ̂i

. For both cases we

have to prove that the event bound function of the approximated event spectrum is always

between the event bound function and(1+ ε)-times the event bound function of the exact

event spectrum.

Case 1: For the first case only the first of the three event spectrum elementŝΘk
i,1, Θ̂k

i,2

,Θ̂k
i,3 is relevant as the offset of the other elements is larger than∆t. The offset of both

other elementskpθ̂i
+aθ̂i

is larger than the considered intervals and therefore the resulting

event bound function of these elements is always zero. We getfor the approximated event

spectrum element for the first case(∆t < kpθ̂i
+aθ̂i

) the value:

η(∆t, θ̂ k
i) = η(∆t, θ̂ k

i,1)+ η(∆t, θ̂ k
i,2)+ η(∆t, θ̂ k

i,3)

= min(Lθ̂k
i,1

, fθ̂k
i,1

(∆t−aθ̂k
i,1

)+ η(∆t−aθ̂k
i,1

,Θ̂θ̂k
i,1

))+0+0

= min(kLθ̂i
,0+ η(∆t, θ̂i))

As η(∆t, θ̂) is a monotonic non-decreasing function and

η(kpθ̂i
+aθ̂i

, θ̂i) =

⌊

kpθ̂i

pθ̂i

⌋

Lθ̂i
+min(Lθ̂i

, fθ̂i
mod(kpθ̂i

, pθ̂i
)+

η(mod(kpθ̂ ,, pθ̂i
), θ̂i))

= kLθ̂i
+min(Lθ̂i

,0+0)

= kLθ̂i

8.1. FIRST APPROACH: SEPARATE APPROXIMATION FOR EACH ELEMENT 169

the value ofη(∆t ′, θ̂i) is for ∆t < kpθ̂i
+aθ̂i

always smaller thankLθ̂i
, therefore

η(∆t, θ̂ k
i) = η(∆t, θ̂i)

Of course this trivial result fulfills the approximation condition (η(∆t, θ̂i)≤η(∆t, θ̂ k
i)≤

(1+ ε)η(∆t, θ̂i))

2. Case: (∆t ≥ kpθ̂i
+aθ̂i

)

The event spectrum functionη(∆t, θ̂ k) for the approximated event element includes

contributions of all three elements of the approximated element:

η(∆t, θ̂ k
i) =η(∆t, θ̂ k

i,1)+ η(∆t, θ̂ k
i,2)+ η(∆t, θ̂ k

i,3)

=min(kLθ̂i
,η(∆t−kpθ̂i

−aθ̂i
, θ̂i))+

min(Lθ̂i
,∞)+min(∞,

Lθ̂i

pθ̂i

(∆t−kpθ̂i
−aθ̂i

))

Due to the monotonic non-decreasing behavior ofη and due to the separation condition

we haveη(∆t, θ̂i)≥ η(kpθ̂i
+aθ̂i

, θ̂i)≥ kLθ̂i
. Therefore we get:

η(∆t, θ̂ k
i) = kLθ̂i

+Lθ̂i
+

Lθ̂i

pθ̂i

(∆t−kpθ̂i
−aθ̂i

)

= kLθ̂i
+Lθ̂i

+ ∆t
Lθ̂i

pθ̂i

−kLθ̂i
−aθ̂i

Lθ̂i

pθ̂i

= Lθ̂i
+(∆t−aθ̂i

)
Lθ̂i

pθ̂i

It is now necessary to prove the approximation condition:

η(∆t, θ̂i)≤ η(∆t, θ̂ k
i)≤ (1+ ε)η(∆t, θ̂i)

We have

η(∆t, θ̂i) =

⌊

∆t−aθ̂
pθ̂

⌋

Lθ̂i
+min(Lθ̂i

, fθ̂i
mod(∆t−aθ̂i

, pθ̂i
)+ η(mod(∆t−aθ̂i

.pθ̂),Θ̂θ̂i
)

≤
⌊

∆t−aθ̂
pθ̂

⌋

Lθ̂i
+Lθ̂i

≤
(

∆t−aθ̂
pθ̂

)

Lθ̂i
+Lθ̂i

= η(∆t, θ̂ k
i)

The proof for unequation(1+ ε)η(∆t, θ̂i)≥ η(∆t, θ̂ k) of lemma 8.1.1 is similar:

(1+ ε)η(∆t, θ̂i) = (1+ ε)

(⌊

∆t−aθ̂i

pθ̂i

⌋

Lθ̂i
+min(...)

)

≥
⌊

∆t−aθ̂i

pθ̂i

⌋

Lθ̂i
+ ε

⌊

∆t−aθ̂i

pθ̂i

⌋

Lθ̂i
≥
⌊

∆t−aθ̂i

pθ̂i

⌋

Lθ̂i
+

2
k

⌊

kpθ̂i

pθ̂i

⌋

Lθ̂i

≥
⌊

∆t−aθ̂i

pθ̂i

⌋

Lθ̂i
+2Lθ̂i

≥
(

∆t−aθ̂i

pθ̂i

)

Lθ̂i
+Lθ̂i

≥ Lθ̂i
+(∆t−aθ̂i

)
Lθ̂i

pθ̂i

≥ η(∆t, θ̂ k
i)

170 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

∆ t (ms)

(ms)c

original demand bound function

approximated demand bound function

FIGURE 8.1.1. Approximated hierarchical spectrum bound function

We have proven that the proposed approximation for one eventspectrum element is

sufficient. �

EXAMPLE 8.1.2. Consider for example fig. 8.1.1 that shows the spectrum bound

function of the hierachical event spectrum

Θ7 = {(20ms,0ms,10ms,0
s
s
,(2ms,0ms,2ms,∞

s
s
, /0))}

.

The hierarchical spectrum consists of bursts with five events. Each event needs two

ms computation time and the distance between the events within the bursts is also two ms.

The bursts occur periodically with a period of 20 ms. The distance between the end of one

burst and the begin of the next following burst is 10 ms. The approximated hierarchical

event spectrum with an approximation after three events hasthe following description:

Θ̂3
7,b ={(∞s,0ms,6ms,0

s
s
,(2ms,0ms,2ms,∞

s
s
, /0)),(∞s,4ms,4ms,1

s
s
, /0)}

Θ̂3
7 ={(∞s,0ms,30ms,0

s
s
,(20ms,0ms,10ms,0

s
s
,Θ̂3

7,b)),

(∞s,48ms,10ms,∞
s
s
, /0),(∞s,48ms,∞s,

1ms
2ms

, /0)}

The original hierarchical spectrum element is split up intothree separate parts. The

first element̂θ 3
7,1 = (∞s,0ms,30ms,0 s

s,(20ms,0ms,10ms,Θ̂3
7,b)) models the non- approx-

imated part of the original element. It is equal to the non-approximated hierarchical spec-

trum element except that the approximation boarderkLθ limits its length and that the ap-

proximative description̂Θ3
7,b of the child spectrum element is used. The second spectrum

elementθ̂ 3
7,2 = (∞s,48ms,10ms,∞ s

s, /0) adds one time the limitationLθ̂7
. The approxima-

tion can be done for each spectrum element of the hierarchical spectrum separately. The

exact distribution of the costs within the intervals depends on the child spectra and/or the

slope and is therefore unknown when considering only the hierarchical spectrum element

itself. We have to assume for the approximation as worst-case situation that the costs occur

completely at the start of the interval. To make sure that theapproximated spectrum bound

8.1. FIRST APPROACH: SEPARATE APPROXIMATION FOR EACH ELEMENT 171

function does always meet or exceed the original spectrum bound function the second

spectrum element is required.

The third spectrum element̂θ 3
7,3 = (∞s,48ms,∞s, 1ms

2ms, /0) models the approximated

part of the spectrum. Like in chapter 3 it is done by the specific utilization as slope.

The maximum amount of costs for which the approximated and the original event

bound function for one event stream element of the event stream model can differ is one

event (see chapter 3). For the hierarchical event spectrum model the maximum difference

between the approximated and the original spectrum bound function for an hierarchical

spectrum element̂θ with no child spectrum element is one time the limitationLθ̂ . For

a hierarchical event spectrum element with a child spectrumelement this amount can be

larger as the exact distribution of the limitation within the child spectrum element is un-

known. This missing knowledge of the exact distribution is compensated by the second

spectrum element̂θ k
i,2 by adding one timeLθ̂ . So the difference can be bounded by 2Lθ̂ .

The relative error resulting of this difference is bounded by ε =
2Lθ̂
kLθ̂

= 2
k as fork test in-

tervals the spectrum bound function includes at leastkLθ̂ events. This error remains the

same for complete hierarchical event spectrum even with several levels of hierarchy. To

achieve the same relative error, as with the event stream model it is required to consider 2k

test intervals exactly.

8.1.2. Complexity. Substituting each original spectrum element with its approxima-

tive counterpart consisting of the three approximated spectrum elements limits the required

number of test intervals. For hierarchical spectra this number depends not only on the

number of elements and the chosen approximation error, but also on the maximum level

of hierarchy. In the cases that the hierarchical spectrum elementθ̂ has a recursively em-

bedded event spectrum̂Θθ̂ this spectrum element is evaluated for each test interval ofθ̂
from the beginning. Therefore for each test interval ofθ̂ which is not approximated, the

child event spectrum̂Θθ̂ contributes a whole set of test intervals. For this approximation

of θ̂ only the periodpθ̂ and the limitationLθ̂ is relevant, not the concrete shape of the

embedded sub event spectrumΘ̂θ̂ .

As the child spectrum can again contain hierarchical spectrum elements with own

child spectra, the necessary number of test intervals can increase substantially. Having

a system with a sum ofn spectrum elements and a maximum recursion level ofd, the

maximum number of test intervals in its approximated description with errorε is bounded

by k = (n
⌈

2
ε
⌉

)d.

EXAMPLE 8.1.3. The problem is illustrated with the following example:

θ̂8 = {1000ms,0ms,150ms,0
s
s
,{θ̂9}}

θ̂9 = {10ms,0ms,5ms,∞
s
s
, /0}

172 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

We have a child spectrum elementθ̂9 with 30 test intervals in each period of its parent

spectrum element̂θ8. We allow the approximation after 100 test-intervals. The approxi-

mation ofθ̂ 100
8 using lemma 8.1.1 reads as follows:

θ̂ 100
8 = {(∞s,0s,15s,0, θ̂8),(∞,100s,150ms,∞

s
s
, /0),(∞s,100s,

150ms
1000ms

, /0)}

The total number of test-intervals needed for evaluation the spectrum bound function

of this event spectrum is 100+100·30= 3100.

8.2. Second approach: Global approximation for each element

To limit the number of test intervals further we propose another approach. The ap-

proximation of a spectrum element starts after the necessary number of test intervals is

reached globally for this spectrum element. The start of theapproximation is independent

of in which period of the parent spectrum element the necessary number of test intervals

is reached. In this approach we generally split the parent spectrum element into the part

in which the child spectrum is approximated and the part in which it is modeled exactly.

So in case that the event elementθ̂ is a child element of another (parent) event elementθ̂ ′

we have to distinguish for̂θ ′ between those periods in whicĥθ is evaluated exactly and

those in whichθ̂ is approximated. To do this it is necessary to splitθ̂ ′ at the last exactly

considered interval of̂θ .

8.2.1. Simple event spectrum element.Let us consider first a simple hierarchical

event element:

θ̂ = {(p,a,L, f , /0)}

LEMMA 8.2.1. θ̂ k is the approximative counter-part for̂θ = {(p,a,L, f , /0)} starting

with the approximation after k exactly considered test intervals. θ̂ k is modeled by:

θ̂ k ={(∞,0,LA,0, θ̂),

(∞,aA,L, f , /0),(∞,aB,∞,
L
p
, /0)}

with

LA = kL

aA = a+kp

aB = aA+
L
f

For the special case with f= ∞ we have aA = aB.

PROOF. We have to prove thatη(∆t,Θ̂)≤ η(∆t,Θ̂k) and that

η(∆t,Θ̂k)−η(∆t,Θ̂)

η(∆t,Θ̂)
≤ 1

k
η(∆t,Θ̂k)≤ k+1

k
η(∆t,Θ̂)

Let us first consider the intervals up to the approximation, so ∆t < a+kp

η(∆t, θ̂ k) = min(η(∆t, θ̂),kL)+0+0

8.2. SECOND APPROACH: GLOBAL APPROXIMATION FOR EACH ELEMENT 173

∆ t (ms)

(ms)c

a
A

a
B

approximated demand bound function

original demand bound function

a a+P

FIGURE 8.2.1. Case one simple event spectrum element

= η(∆t, θ̂)

asη(a+kp, θ̂)≤ kL as the function is monotonically rising.

Fora+kp≤ ∆t < a+kp+ L
f the second element of the approximated event spectrum

becomes relevant. Let∆t ′ = ∆t− (a+kp). Then∆t ′ < L
f and with the separation condition

∆t′ < p:

η(∆t, θ̂) =

⌊

(∆t ′+a+kp)−a
p

⌋

L+min(∆t′ f ,L)

=

⌊

∆t ′

p

⌋

L+kL+min(∆t′ f ,L)

= kL+min((∆t−a−kp) f ,L)+0

= η(∆t, θ̂ k)

For∆t ≤ aA both functions are equal so both conditions are fulfilled. For aA≤ ∆t ≤ aB

we haveη(∆t,Θ̂) = kL+min(L,(∆t−kp) f) andη(∆t,Θ̂k) = LA +min(L,(∆t−aA) f) =

η(∆t,Θ̂).

The remaining proof is visualized in figure 8.2.1. For∆t > aB we haveη(∆t,Θ̂) ≤
η(∆t,Θ̂k) andη(∆t,Θ̂k)−η(∆t,Θ̂) is bounded byL. As η(aB,Θ̂) = (k+ 1)L we have
η(∆t,Θ̂k)−η(∆t,Θ̂)

η(∆t,Θ̂)
≤ L

(k+1)L ≤
1
k . �

EXAMPLE 8.2.2. Let us, for example consider the event spectrum

Θ̂ = {(10ms,0ms,3ms,
1ms
2ms

, /0)}

.

The approximation̂Θ5 for Θ̂ afterk = 5 exactly considered test intervals is given by

Θ̂5 ={(∞s,0ms,15ms,0
s
s
,{(10ms,0ms,3ms,

1ms
2ms

, /0)}),

(∞s,50ms,3ms,
1ms
2ms

, /0),(∞s,56ms,∞s,
3ms
10ms

, /0)}

where

LA = 5 ·3ms= 15ms

174 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

aA = 0ms+5 ·10ms= 50ms

aB = 50ms+
3ms
1ms
2ms

= 56ms

We can simplify to:

Θ̂5 = {(∞s,0ms,18ms,0
s
s
,{(10ms,0ms,3ms,

1ms
2ms

, /0)}),(∞s,56ms,∞s,
3ms
10ms

, /0)}

EXAMPLE 8.2.3. Consider another example event spectrum

Θ̂ = {(10ms,2ms,3ms,∞
s
s
, /0)}

with f = ∞. The approximation̂Θ10 afterk = 10 exactly considered test intervals is given

by:

Θ̂10 ={(∞s,0ms,30ms,0
s
s
,{(10ms,2ms,3ms,∞

s
s
, /0)},

(∞s,103ms,3ms,∞
s
s
, /0),(∞s,103ms,∞s,

3ms
10ms

, /0)}

or shorter:

Θ̂10 = {(∞s,0ms,33ms,0
s
s
,{(10ms,2ms,3ms,∞

s
s
, /0)},(∞s,103ms,∞s,

3ms
10ms

, /0)}

8.2.2. Approximation of one-level child element.Let us consider an event spectrum

with one child element:

θ̂ = (p,a,L,0, θ̂ ′)

θ̂ ′ = (p′,a′,L′, f ′, /0)

LEMMA 8.2.4. θ̂ k is the approximative counter-part for̂θ = {(p,a,L,0, θ̂ ′)} with

θ̂ ′ = {(p′,a′,L′, f ′, /0)} starting with the approximation after k exactly consideredtest in-

tervals.θ̂ k is modeled by:

Θ̂k ={(∞,0,LA,0, θ̂°),

(∞,aA,kL−LA,0,{(p,a′,L′,0,{

(∞,0,L′, f ′, /0),(p,
L′

f ′
,L−L′,

L′

p′
, /0)})},

(∞,aB,∆y,∞, /0),(∞,aB,∞,
L
p
, /0)}

or shorter by

Θ̂k ={(∞,0,LA,0, θ̂°),

(∞,aA,kL−LA,0,{(p,a′,L′, f ′, /0),

(p,a′+
L′

f ′
,L−L′,

L′

p′
, /0)}),

(∞,aB,∆y,∞, /0),(∞,aB,∞,
L
p
, /0)}

8.2. SECOND APPROACH: GLOBAL APPROXIMATION FOR EACH ELEMENT 175

∆ t (ms)

(ms)c

∆ y

aA a
B

FIGURE 8.2.2. One-level event spectrum element

with

θ̂° =







θ̂ L≤ kL′

{(p,0,L,0, θ̂ ′k)} L > kL′

θ̂ ′k = {(∞,0,kL′,0, θ̂),(∞,kp′,L′, f ′, /0),(∞,kp′+
L′

f ′
,∞,

L′

p′
, /0)}

LA =







⌈

kL′
L

⌉

L L≤ kL′

L L > kL′

aA =







⌈

kL′
L

⌉

p+a L≤ kL′

p+a L > kL′

aB = kp+a+a′

∆y = L− p′L2

pL′
+

p′L
p
− a′L

p

PROOF. The proof for this lemma is visualized in figure 8.2.2.∆y is a cost-offset re-

quired to ensure that the spectrum bound function of the approximated spectrum is always

equal or greater than the spectrum bound function of the exact spectrum. The limitation

of the parent spectrum element can be reached by the child spectrum element somewhere

within the period of the parent spectrum element. This can happen early or late within the

period of the parent spectrum element.

The first spectrum element of the approximated spectrumΘ̂k models the part in which

the child spectrum elementθ̂ ′ of the exact spectrum is considered exactly. In case that the

first possible approximation interval for̂θ ′ occurs within the first period of̂θ , we have to

start the approximation within this first period ofθ̂ . Otherwise it would not be possible to

find a reasonable bound for the number of considered test intervals for θ̂ ′. Soθ̂° depends

on whetherL≤ kL′ or L > kL′.

The approximation of̂θ ′ can be done by an elementθ̂ ′k with a slopefθ̂ ′k = L′
p′ . This

element has a value close to the value of the original spectrum bound function ofθ̂ ′ each

time when the limitation of̂θ ′ is reached. The element restarts for every period ofθ̂ . We

separate between the approximation of every first event ofθ̂ ′ and the remaining events of

176 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

θ̂ ′. The first events are approximated using the period ofθ̂ , so only the element covering

the remaining events has to restart for every period ofθ̂ .

When starting finally the approximation of̂θ a cost-offset∆y is required to ensure

that the approximated functionη(∆t, θ̂ k) is always equal or higher than the exact spectrum

bound functionη(∆t, θ̂). This cost-offset is necessary as a new period of the parent spec-

trum element splits the approximation of the child spectrumelement. The calculation of

∆y is visualized in figure 8.2.3 and can be done as follows:

L−∆y = ∆x
L
p

∆y = L
p−∆x

p

∆y = L

(

1− ∆x
p

)

∆x gives the interval between the start of the child spectrum elementθ̂ ′ and the point

of time in which the limitation ofθ̂ is reached. The reaching of the limitation is calculated

using the approximative description of the child elements of θ̂ with the separate consid-

eration of every first event of̂θ . For a simple child element̂θ = {(p,a,L,0, θ̂ ′)} with

θ̂ ′ = {(p′,a′,L′,∞, /0)} this valuey is given by

(∆x−a′) · (L′

p′
) = L−L′

∆x =
L−L′

L′
p′

+a′ = p′
L
L′
− p′+a′

Therefore we get for∆y:

∆y = L− p′L2

pL′
+

p′L
p
− a′L

p

When we additionally approximate every first event of the child spectrum we get the

following description:

Θ̂k ={(∞,0,LA,0, θ̂°),

(∞,aA,kL−LA,0,{(∞,a′,L′, f ′, /0),

(∞,a′,∞,
L′

p
, /0),(p,a′+

L′

f ′
,L−L′,

L′

p′
, /0)}),

(∞,aB,∆y,∞, /0),(∞,aB,∞,
L
p
, /0)}

�

EXAMPLE 8.2.5. Let us consider the example hierarchical spectrum:

Θ̂ = {(80ms,2ms,16ms,0
s
s
,Θ̂′)}

Θ̂′ = {(10ms,2ms,3ms,∞
s
s
, /0)}

8.2. SECOND APPROACH: GLOBAL APPROXIMATION FOR EACH ELEMENT 177

For the approximation̂Θ10 with at leastk= 10 test intervals considered exactly we get

the values:

LA =

⌈

kL′

L

⌉

L =

⌈

10·3ms
16ms

⌉

16ms= 32ms

aA =

⌈

kL′

L

⌉

p+a=

⌈

10·3ms
16ms

⌉

80ms+2ms= 162ms

aB = kp+a+a′= 10·80ms+2ms+2ms= 804

∆x = p′
L
L′
− p′+a′ = 10ms

16ms
3ms

−10ms+2ms= 45.3333ms

∆y = L

(

1− ∆x
p

)

= 16ms

(

1− 45.333ms
80ms

)

= 6.9333ms

The spectrum can be written as:

Θ̂10 ={(∞s,0ms,32ms,0
s
s
,{(80ms,2ms,16ms,0

s
s
,{(10ms,2ms,3ms,∞

s
s
, /0)})}),

(∞s,162ms,128ms,0
s
s
,{(∞s,2ms,3ms,∞

s
s
, /0),{∞s,2ms,∞s,

3ms
80ms

, /0),

(80ms,2ms,13ms,
3ms
10ms

, /0)},

(∞s,804ms,6.9333ms,∞
s
s
, /0),(∞s,804ms,∞s,

16ms
80ms

, /0)}

8.2.3. Approximation of two-level child element.Let us consider the following hi-

erarchical spectrum element with two levels of child spectral elements:

θ̂ = {(p,a,L,0, θ̂ ′)}

θ̂ ′ = {(p′,a′,L′,0, θ̂ ′′)}

θ̂ ′′ = {(p′′,a′′,L′′, f ′′, /0)}

We consider the approximation̂θ k.

LEMMA 8.2.6. θ̂ k is given by

θ̂ k ={(∞,0,LA,0, θ̂°1),(∞,aA,LB,0, θ̂°2),

(∞,aB,LC,0,{(p,a,L,0,{(∞,a′,∆y′,∞, /0),(p,a′,∞,
L′

p′
, /0)})}),

(∞,aC,∆y,∞,0),(∞,aC,∞,
L
p
, /0)}

θ̂°1 depends on whether L′ ≤ kL′′ or L′ > kL′′. We have

θ̂°1 =







θ̂ L′ ≤ kL′′

{(∞,0,L′,0, θ̂ ′′k)} L′ > kL′′

with θ̂ ′′k as the stand-alone approximated event spectrum ofθ̂ ′′

θ̂ ′′k = {(∞,0,kL′′,0, θ̂),(∞,kp′′,L′′, f ′′, /0),(∞,kp′′+
L′′

f ′′
,∞,

L′′

p′′
, /0)}

178 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

θ̂°1 depends on whether L≤ kL′ or L > kL′. We have

θ̂°2 =































/0 nL≤ kL′′ < kL′ ≤ (n+1)L

{(p′,0,L′,0, θ̂ ′′a)} L≤ kL′

{(∞,0,kL′−LA,0,{(p′,0,L′,0, θ̂ ′′a)}),
(∞,kp′−aA,L−kL′,0, θ̂ ′a)} kL′ < L

whereθ̂ ′′a is the approximated part of̂θ ′′:

θ̂ ′′a = {(∞,a′′,L′′, f ′′,0),(∞,a′′+
L′′

f ′′
,∞,

L′′

p′′
, /0)}

and θ̂ ′a is the approximated part of̂θ ′:

θ̂ ′a = {(∞,a′,∆y′,∞,0),(∞,a′+
L′

f ′
,∞,

L′

p′
, /0)}

The calculation of LA, aA and LB is easy and straight forward:

LA =



















L′ kL′′ < L′
⌈

kL′′
L′

⌉

L′ L′ ≤ kL′′ < L
⌈

kL′′
L

⌉

L L < kL′′

LB =







⌈

kL′
L

⌉

L−LA L≤ kL′

L−LA L > kL′

LC = kL− (LA +LB)

aA =







⌈

kL′′
L

⌉

p+a′+a L≤ kL′′
⌈

kL′′
L′

⌉

p′+a′+a L > kL′′

aB =







⌈

kL′
L

⌉

p L≤ kL′

p L > kL′

aC = kp+a

The calculation of∆y′ is the same as the calculation for∆y in the previous section. We

have

∆x′ = p′′
L′

L′′
− p′′+a′′

∆y′ = L′
(

p′−∆x′

p′

)

The calculation of∆y and∆x is similar but using the approximation ofθ̂ ′′. We have

(∆x−a) · (L′

p′
) = L−∆y′

∆x =
L−∆y′
(

L′
p′

) +a′

8.2. SECOND APPROACH: GLOBAL APPROXIMATION FOR EACH ELEMENT 179

(ms)c

∆ t (ms)

∆ y

∆ y∆ x

∆ x

I

c

limitation

o

l l

limitation
period

P−

FIGURE 8.2.3. Approximation for hierarchical event spectra

∆x =
Lp′

L′
− ∆y′p′

L′
+a′

∆y = L

(

p−∆x
p

)

PROOF. The first spectrum element(∞,0,LA,0, θ̂°1) models the part of the result in

which the spectrum elementθ̂ ′′ is completely not approximated (CaseL′ < kL′′) or is ap-

proximated in a way as if it exists alone. For the second spectrum element(∞,aA,LB,0, θ̂°2)

only the approximated part of̂θ ′′ is used. Herêθ ′ is either completely not approximated

or handled as if onlŷθ ′ andθ̂ ′′ exists. The proofs for the first and second element are the

same as in the previous section.

The following elements are the same as in the one-level case except for the calcula-

tion ∆y and∆y′. Therefore the proof for the one-level case can be used also here. The

calculation of∆y is visualized in figure 8.2.3. When setting∆y′′ = L′′ the calculation of

∆y′ and∆x′ on the one side and∆y and∆x on the other side are the same. The proof for the

correctness of these values follows directly out of their calculation. Therefore the proposed

description forΘ̂k can be generalized to handle hierarchical event spectra with n-level child

event spectra.

�

In the following we will give a small example by extending theexample 8.2.5.

EXAMPLE 8.2.7. Let us consider the example hierarchical event spectrum Θ̂:

Θ̂ = {(1000ms,10ms,100ms,0
s
s
,Θ̂′)}

180 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

Θ̂′ = {(80ms,2ms,16ms,0
s
s
,Θ̂′′)}

Θ̂′′ = {(10ms,2ms,3ms,∞
s
s
, /0)}

For an approximation̂Θ10 in whichk = 10 test intervals are considered exactly we get

the values:

∆x′ =
16ms−3ms
(

3ms
10ms

) +2ms= 45.3333ms

∆y′ = 16ms·
(

80ms−45.3333ms
80ms

)

= 6.9333ms

∆x =
100ms−6.9333ms

(

16ms
80ms

) +2ms= 467.333ms

∆y = 100ms·
(

1000ms−67.3335ms
1000ms

)

= 53.2667ms

Θ̂10 can be written as:

Θ̂10 ={(∞s,0ms,32ms,0
s
s
,Θ̂),(∞s,162ms,168ms,0

s
s
,{(80ms,0ms,16ms,0

s
s
,

{(∞s,2ms,3ms,∞
s
s
, /0),(∞s,2ms,∞ms,

3ms
80ms

, /0)})},

(∞s,2010ms,800ms,0
s
s
,{(∞s,2ms,6.9333ms,∞

s
s
, /0),

(∞s,2ms,∞s,
6.9333ms
1000ms

, /0),(10s,2,93.0667ms,
16ms
80ms

, /0)})

,(∞s,10010ms,53.2667ms,∞
s
s
, /0),(∞s,10010ms,∞s,

100ms
1000ms

, /0)}

8.2.4. Approximation of n-level spectra.Let us now consider the approximation of

normalized event spectra with more than two levels of hierarchy.

DEFINITION 8.2.8. An element̂θi is a subsequent child of an elementθ̂1, if it is related

to θ̂1 in such a way that a chain exists withθ̂1→ ...→ θ̂i whereθ̂ j → θ̂ j+1 denotes that̂θ j

is parent ofθ̂ j+1.

For each level we have to distinguish between the non-approximated and the approx-

imated parts. An event spectrum element which covers for onesubsequent child element

both, intervals for which this subsequent child element is approximated and intervals for

which it is not approximated, has to be split into two event spectrum elements, so that one

of these two covers all non-approximated and one of these twoall approximated intervals

of the sub-sequence child element. Not only the element alone, but all of its parent ele-

ments may need to be split, too. So first it is necessary to calculate these separation points,

which are the interval bounds at which the parent element is split to distinguish between

the non-approximated and the approximated part of one of itschild elements. In the fol-

lowing we give an approach leading to a limited number of new elements but still keeping

the approximation.

Let us consider a parent elementθ̂ with a subsequent child elementθ̂ ′. In general

in this approach,̂θ is split to cover the approximation of̂θ ′ at the first of its completed

periods which is larger than the first possible approximation interval ofθ̂ ′.

8.2. SECOND APPROACH: GLOBAL APPROXIMATION FOR EACH ELEMENT 181

In those cases in which the approximation of the child element starts within the com-

pletion of the first period of the parent element we cannot postpone it until the first period

of the parent. It would not be possible to limit the number of test intervals for the child

hierarchical event element.

EXAMPLE 8.2.9. Consider the following example:

θ̂10 = {10s,0ms,4000ms,0
s
s
,{θ̂11}}

θ̂11 = {10ms,0s,5ms,∞
s
s
, /0}

Again the approximation may start after 100 test-intervals. The approximated event

element can be written as follows:

θ̂ 100
10 ={(∞s,0ms,4000ms,0ms,{θ̂ 100

11 }),

(∞s,10s,396s,0,{(∞s,0ms,5ms,∞
s
s
, /0),(∞s,0ms,∞s,

5ms
10000ms

, /0),

(10s,0s,3995ms,
5ms
10ms

, /0)}),

(∞s,1000s,804ms,∞
s
s
, /0),(∞s,1000s,∞s,

4s
10s

, /0)}

θ̂ 100
11 ={(∞s,0ms,500ms,0

s
s
,{(10ms,0ms,5ms,∞

s
s
, /0)}),(∞s,1000ms,5ms,∞

s
s
, /0),

(∞s,1000ms,∞s,
5ms
10ms

, /0)}

Postponing the approximation of the child up to the end of thefirst period of the parent

would cost 3000 additional test intervals.

Still we only need to split the parent element into two parts,one for the first period and

one for all following periods. For the first period before thesplitting point we use the child

in its original approximated description having an exact and an approximated part. For the

following periods only the approximated part of the childθ̂ 100
11,3, where it is described by

the slope, is required.

In cases in which the parent element has again a parent element, the periods of the

upper-most parent are determining the splitting points forall of its descendants in our

approach, so for its child element, the child element of its child element and so on. Only in

those cases in which the first possible approximation point of a hierarchical event element

θ̂ falls within the first period of this top-level parent element θ̂ ′′′ the splitting point is

determined by the upper-most parent elementθ̂ ′′ for which the first approximation point

tθ̂ of the child element̂θ falls within the second or later period of the parent elementθ̂ ′′.
If there isn’t any such parent element, the splitting point is the first period of the direct

parent of the child element. The child element is substituted by its combined exact and

approximative description. This propagation of the splitting point to the top-most parent

does not change the upper bound of the required maximum number of test intervals.

8.2.5. Approximation of elements with several heterogeneous child elements.To

handle the approximation of an element with several heterogeneous child elements we

182 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

can normalize these elements. The normalization is introduced in section 7.3. For the

normalization it is necessary to distribute the limitationof the parent element. The result is

an event spectrum in which only the upper-most parent spectrum can contain several event

elements. Every of these parent elements can than be approximated seperately using the

introduced methods.

8.2.6. Required number of test intervals.The purpose of the approximation is to

limit the number of test intervals resulting from a hierarchical event spectrum.

There exists a simple bound on the required number of test intervals. For those cases

in which the approximation is postponed, so it does not startwithin the first period, the

number of test intervals for one period of the parent event element has to be less than the

approximation boundk. Otherwise the approximation would be allowed somewhere within

the first period. Therefore the maximum number of test intervals we have to additionally

consider due to the postponing is bounded also byk, leading to a total bound of 2k.

LEMMA 8.2.10. Delaying the start of the approximation tθ̂ for a hierarchical event

elementθ̂ up to the first period of the upper-most parentθ̂ ′ of θ̂ for which tθ̂ > aθ̂ + pθ̂
leads to a required number of test intervals forθ̂ which is bounded by2k where k is the

chosen number of test intervals for the approximation.

PROOF. In all cases in which the top-most parentθ̂ ′ determines the splitting point for

a child θ̂child less thank test intervals of the child occurs within one period ofθ̂topparent.

Otherwise the first possible approximation interval would be within the first period of

θ̂topparent. Therefore the delay of the approximation up to the next period of the top-most

parent element requires at mostk additional test intervals for the child. The value 2k is

therefore the bound for the total number of test intervals required for the child. �

Each element can require as many splitting points as its total child-set has members.

The total child-set contains its children and its children’s children.

For reason of simplification we consider only normalized hierarchical event spectra,

so spectra in which each hierarchical event element can onlyhave one direct child element

at most.

8.2.7. Description model for the real-time calculus.For an exact description for

the real-time calculus as proposed in [131] the real-time calculus curves are modeled by

an initial non-periodic and a periodic part. Each part is modeled by a set of consecutive

piecewise linear curve segments. Each curve segmentw is given by the coordinatesx,y of

its start point and a slopes. Starting the slope at the starting point leads to the coordinates

x′,y′ of the next following segmentw′. The periodic part is described by its starting coor-

dinatesxp,yp, again by a set of piecewise linear curve segments with relative coordinates

x,y to the starting point, and by an offset∆x,∆y between two periods.

DEFINITION 8.2.11. (similar to [131]) A piecewise linear curve segment S= (x,y,s)

is given by the coordinates x,y of its start point and a slope s and specifies a straight line

starting from the coordinates x,y with a slope s.

8.3. SUMMARIZING EXAMPLES 183

Each curve of the real-time calculus can be described by suchsets.

DEFINITION 8.2.12. (similar to [131]) An arrival or service curve of the real-time

calculus can be described by v= {A,P, px, py,ax,ay} where A and P are two sets of piece-

wise linear curve segments, a periodic part P= {S} and an aperiodic part A= {S}. The

offset ax,ay gives the start of the periodic part. Each segment of A has to have smaller

values than ax,ay. P gives a set of segments describing the periodic part of thecurve. Its

coordinates are given relative to the offset, so the elementi occurs at ax +xi ,ay +yi . The

periodic segment is repeated after px, py.

On the one side the curve can be transformed into a special event spectrum. On the

other side adding y-values can complete the description of the event spectrum. Then this

description is directly a special case of the event spectrumdescription.

The problem is that each operation on two or more incoming curves requires equal-

izing the periodic and aperiodic part of the curves first to enable the calculation of the

outgoing curves. This equalization requires using the hyper-period of the periods of the

incoming curves as the new period. This hyper-period can become quite large and with it

the number of segments necessary to describe the curves. To prevent this possible grow of

the number of segments it is necessary to bound this number independently of the concrete

parameter of the incoming event sequences.

8.2.8. Combined description for the curves.To overcome the problem of hyper-

periods we propose to combine the concrete description model of the real-time calculus

with the concept of approximation proposed in this thesis. Therefore we propose to use

again the idea of approximation and the event spectrum modeland to generate a new flat

description out of approximated event spectra. The approximated event stream and event

spectra lead to a finite set of segment elements with no periodpart necessary any more.

8.3. Summarizing Examples

EXAMPLE 8.3.1. Fig. 8.3.1 (example 8.1.2) shows the advanced approximation for

the spectrum bound function of the event spectrum:

Θ̂7 = {(20ms,0ms,10ms,0
s
s
,(2ms,0ms,2ms,∞

s
s
, /0))}

The event spectrum consists of bursts with five events. The advanced approximated

event spectrum with an approximation after three events hasthe following separation

points:

s1,0 = 0ms

s1,1 = 20ms

s2,0 = 0ms

s2,1 = 4ms

s2,2 = 60ms

184 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

Costs

t∆original demand bound function

approximated demand bound function

FIGURE 8.3.1. Example 8.1.2: Approximated hierarchical event
bound function

For ∆x and∆y we have the values:

∆x =
L−L′

L′
p′

+a′ =
10ms−2ms

2ms
2ms

+0ms= 8ms

∆y = L

(

1− ∆x
p

)

= 10ms

(

1− 8ms
20ms

)

= 6ms

Therefore the approximated event spectrum has following description:

Θ̂3
7 ={(∞s,0ms,10ms,0

s
s
,{(20ms,0ms,10ms,0

s
s
,(2ms,0ms,2ms,∞

s
s
, /0)),

(∞s,10ms,4ms,1
s
s
, /0)}),(∞s,20ms,12ms,0

s
s
,{(∞s,0ms,2ms,∞

s
s
, /0)

,(∞s,0ms,∞s,
2ms
20ms

, /0),(20ms,0ms,8ms,1
s
s
, /0)}),

(∞s,60ms,6ms,∞
s
s
, /0),(∞s,60ms,∞s,

1s
2s

, /0)}

The result is visualized in figure 8.3.1. The exact event spectrum element is re-

placed by an approximative event spectrumΘ̂3
7 consisting of five event spectrum elements

θ̂ 3
7,1, θ̂

3
7,2, θ̂

3
7,3, θ̂

3
7,4. The first event spectrum element

θ̂ 3
7,1 =(∞s,0ms,10ms,0

s
s
,{(20ms,0ms,10ms,0

s
s
,(2ms,0ms,2ms,∞

s
s
, /0)),

(∞s,10ms,4ms,1
s
s
, /0)})

describes the non-approximated part. It ends somewhere within the first period of̂θ 3
7 . The

second child spectrum element ofθ̂ 3
7,1, the spectrum elementθ̂ 3

7,1,2 = (∞s,10ms,4ms,1 s
s, /0)

describes the start of the approximation ofθ̂7 for the remaining events of the first period of

θ̂7.

The second spectrum elementθ̂ 3
7.2 describes the part in which the child spectrum el-

ement is approximated but the parent spectrum element is notapproximated. It has three

child spectrum elementŝθ 3
7,2,1, θ̂

3
7,2,2 and θ̂ 3

7,2,3 where the first child spectrum element

θ̂ 3
7,2,1 = (∞s,0ms,2ms,∞ s

s, /0) describes the initial event of the embedded event spectrum

element once to allow the approximation of this initial event by the second child spectrum

8.3. SUMMARIZING EXAMPLES 185

(ms)c

∆ t (ms)original demand bound function

approximated demand bound function

FIGURE 8.3.2. Example 8.1.2: Periodic model with minimum sepa-
ration distance

elementθ̂ 3
7,2,2 = (∞s,0ms,∞s, 2s

20s, /0). These first events of the child spectrum element

are considered separately from the remaining events of the child spectrum element. They

are approximated using the period of the parent spectrum element θ̂7. This separate ap-

proximation of the first child-events guarantees that the spectrum bound function of the

approximated spectrum elementθ̂ 3
7 meets or exceeds the spectrum bound function of the

original element̂θ7 at every first event of the child element.

The remaining events of the child spectrum element can than be approximated by

a slope starting at these first events.θ̂ 3
7,2,2 is the approximation for every first event of

the child spectrum element. The elementθ̂ 3
7,2,3 = (20ms,0ms,8ms,1 s

s, /0)) models the

approximation of the rest of the child spectrum element. Note that, as the approximation

of every first event is already done by the elementsθ̂ 3
7,2,1 andθ̂ 3

7,2,2, the approximation of

the child spectrum element has to include one event less thanthe original child spectrum

element.

The third and the fourth element of the approximated parent spectrum describe finally

the approximation of the parent spectrum element. The thirdspectrum element̂Θ3
7,3 =

(∞s,60ms,6ms,∞ s
s, /0) gives the cost offset necessary to start the approximation at the

right cost level. The fourth spectrum elementθ̂ 3
7,4 = (∞s,60ms,∞ms, 1s

2s, /0) models the

part in which also the parent spectrum element is approximated. This spectrum element is

independent of the child spectrum element; only the periodpθ̂7
and the limitationLθ̂7

of

the parent spectrum elementθ̂7 are required to calculate the approximating slope.

A characteristic of such a description is the separate limitation of the maximum num-

ber of test intervals for each spectrum element. In the example five test intervals for the

child element and four test intervals for the parent elementare required.

To demonstrate the advantages of the new model and the approximation we give the

description ofΘ̂7 for the periodic model with minimum separation distance (figure 8.3.2),

for the exact and for the approximative description of the real-time calculus (figure 8.3.3).

The nearest description ofΘ̂7 with the periodic model with minimum separation dis-

tance is periodp = 4ms, a minimum separation distances = 2ms, a worst-case execu-

tion time of c+ = 2msand a jitter j = 8ms. The first burst is modeled exactly by this

186 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

∆ t (ms)

(ms)c

original demand bound function

approximated demand bound function

FIGURE 8.3.3. Example 8.1.2: Approximation of the real-time calculus

description. The remaining events are approximated by a periodic function. The worst

absolute approximation error occurs for example at interval ∆t = 16msand has the value

c =
(⌊16ms+8ms

4ms +1
⌋

2ms
)

−10ms= 4ms. The worst relative approximation error occurs

for the same interval∆t = 16msand is 4ms
10ms = 40%.

Despite that the overestimation of the periodic model is up to 40% of the real demand,

the number of test intervals required in the worst case by theperiodic model is not bounded.

The model can produce an infinitely set of test intervals. So,for the analysis, other bounds

as a busy period or a good fixed-point iteration are required.

For the approximation of the real-time calculus [39] each curve is described by three

linear segmentsw1,w2,w3 with w= (x,y,s) wherex,y are the coordinates of the start point

of the segment ands is the slope of the segment. For the example the description would by

w1 = (0ms,0ms,∞ s
s), w2 = (0ms,2ms,1 s

s) andw3 = (8ms,10ms, 1s
2s). So we only have

three test intervals for the analysis. The maximum absoluteapproximation error for this

model occurs directly before interval∆t = 20msso at the interval∆t = 19,999999...ms.

The size of the error is nearlyc = 10ms+ 12ms
2s
1s
−10ms= 6msleading to a relative error

of 6ms
10ms = 60%. The worst case relative error occurs unfortunately very early just before

interval∆t = 2mswith a relative error of2ms
2ms = 100%.

Due to this inexactness an exact description is used for the real-time calculus [131]. It

was introduced in chapter 2.3.6. The curve is described by anaperiodic and a periodic part,

both containing a set of piecewise linear segments. For the example event spectrum̂Θ7 only

the periodic part is required with the segmentsw1 = (0ms,2ms,0 s
s), w2 = (2ms,2ms,0 s

s),

w3 = (4ms,4ms,0 s
s), w4 = (6ms,6ms,0 s

s) andw5 = (8ms,8ms,0 s
s). The segments are

repeated with an an offset∆x = 20msand∆y = 10ms. This description models the event

spectrumΘ̂7 exactly. But the number of test intervals required for schedulability analysis

can become quite high and the description suffers from the same problems as the descrip-

tion of event streams (see 2.3.2). A burst with more events would require one additional

segment for each additional event within the burst, so a burst of 1000 events would require

for example 1000 segments.

8.3. SUMMARIZING EXAMPLES 187

The error for the approximation of the hierarchical event spectrum is bounded by the

chosen degree of exactness. In this example with an approximation after 3 events the error

is 33%, choosing an approximation after 10 test intervals reduces the error to 10% and 1%

for an approximation after 100 events. The required number of test intervals is bounded

and is 8 test intervals for the approximation after 3 events and about 30 test intervals in the

case of 10 events and not more than 3000 test intervals after 100 events.

EXAMPLE 8.3.2. Let us reconsider example 8.1.3. We have an event spectrum ele-

mentθ̂8 = {1000ms,0ms,150ms,0 s
s,{θ̂8,b}} with a child event spectrum elementθ̂8,b =

{10ms,0ms,5ms,∞ s
s, /0}. The approximation is set to 100 test intervals, that means it

starts within the 4-th period of thêθ8.

We have:

∆x =
Lθ̂8
−Lθ̂8,b

Lθ̂8,b
pθ̂8,b

−aθ̂8,b
=

150ms−5ms
5ms
10ms

−0ms= 290ms

∆y = Lθ̂8

(

1− ∆x
pθ̂8

)

= 150ms

(

1− 290ms
1000ms

)

= 106.5ms

For the example the resulting approximated event spectrumθ̂ 100
8 reads as follows:

θ̂ 100
8 ={(∞s,0ms,600ms,0

s
s
, θ̂8),

(∞s,4000ms,14400ms,0
s
s
,{(∞s,4000ms,5ms,∞

s
s
, /0),

(∞s,4000ms,∞s,
5ms

1000ms
, /0),(1000ms,0ms,145ms,

5ms
10ms

, /0)}),

(∞,100s,106.5ms,∞
s
s
, /0),(∞s,100s,∞,

150ms
1000ms

, /0)}

First the exact description is used for the first four periodsof θ̂8. Then the approx-

imation of the child spectrum elementθ̂8,b starts. Each first event of the child spectrum

is approximated bŷθ 100
8,2,1 = (∞ s,4s,5ms,∞ s

s, /0) andθ̂ 100
8,2,2 = (∞s,4s,∞s, 5ms

1000ms, /0), the

remaining events are approximated separately for each period of θ̂8 with

θ̂ 100
8,2,3 = (1s,0ms,145ms, 5ms

10ms, /0)}). The next two spectrum elementsθ̂ 100
8,3 andθ̂ 100

8,4

model the approximation of the parent spectrum elementθ̂8.

In the periodic model with minimum separation distance the example would be ap-

proximated by the periodp = 1s
30, the minimum separation distances = 10ms, a jitter

j = 1000ms− 1000ms
30 −270msand the worst-case execution timec+ = 5ms. The maxi-

mum absolute error occurs just before interval∆t = 1s and has a size of 120msresulting

in a maximum relative error of120
150 = 80%.

The approximation of the real-time calculus has for this example the segmentsw1 =

(0ms,0ms,∞ s
s), w2 = (0ms,5ms, 1s

2s) andw3 = (270ms,150ms, 150ms
1000ms) resulting in a rel-

ative error of 120msand an absolute error of 73%.

The exact description of the real-time calculus has an errorof 0%. For this description

only the periodic part is required with the segments

w1 = (0ms,5ms,0
s
s
),w2 = (10ms,10ms,0

s
s
),w3 = (20ms,15ms,0

s
s
)

188 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

w4 = (30ms,20ms,0
s
s
), ...,w30 = (270ms,150ms,0

s
s
)

and the periodic offsets∆x = 1000msand∆y = 150ms. Its is obvious how the description

size depends on the length of bursts.

The approximation of the hierarchical event spectra has an error of 1% and a number

of considered test intervals of 300ms.

CHAPTER 9

Case-Study

In order to show the generality of the new event spectra modelwe will conduct a case

study. The system we explore has been published in [77] and isdepicted in figure 9.0.1

(all times in ms). In the paper the system has been analyzed bytwo different compositional

analysis methods. The first one is the Modular Performance Analysis (MPA) implementing

the real-time calculus [131] and the other one the extended periodic model [117]. The

two approaches had been combined in order to get tighter bounds in the real-time analysis

[77]. We will show that we are able to conduct an analysis withour model and get tighter

bounds as well. However, to show how tight the approach is in general we have simulated

the task set, too.

FIGURE 9.0.1. Example of a distributed hard-real time system pub-
lished in [77]

189

190 9. CASE-STUDY

The system consists of two CPUs connected by a bus. CPU 1 executes four tasks

scheduled by a hierarchical scheduler. At the top-level a TDMA policy is implemented.

The tasksτ1 andτ2 have got 60% of the TDMA cycle available. Within this slot a fixed-

priority scheduler schedules both tasks. The remaining tasks τ3 andτ4 have each 20% of

the TDMA cycle available. The bus uses a round robin scheduler for the communication.

Four tasks with different time slots are provided. CPU 2 executes also four tasks. The

tasks are scheduled by the priority-based scheduler of theERCOSEK operating system.

The special point which has to be considered in this example is the cooperative behavior

of the tasksτ7 andτ8. The taskτ7 has got a higher priority thanτ8 but whenτ8 is executed

the taskτ7 can only interrupt the taskτ8 at specific points in time. These points are 2, 3, 4,

6 or 11 ms.

Three paths are given in this distributed system:S1→ S4, S2→ S5 andS3→ S6.

The first pathS1→ S4 consists of the tasksτ1, c1 and τ5. Task τ1 activates over the

communication taskc1 the taskτ5. The second pathS2→ S5 starts on CPU 2. The taskτ6

activates over the communication taskc2 the taskτ2. The last pathS3→ S6 begins with

the taskτ3 activating the communication taskc3 that then activates the taskτ7. The taskτ7

activates the cooperative taskτ8. Finally, the taskτ8 activates via the communication task

c4 the taskτ4 on the CPU 1.

For all three paths hard real-time constraints are given. The first pathS1→ S4 must

not exceed 200 ms. The two other paths must not exceed 400 ms. The aim of the analysis

is to calculate for each path its latency as accurately as possible. To solve the problem we

have to determine all the necessary event spectra and service spectra in the system. We

will describe only those spectra of the system that are necessary for the latency of the three

paths. Thereby we choose different domains for the illustration of the event spectra and

service spectra. The event spectra describe for each interval the number of events and the

service spectra describe for each interval the available execution time. This illustration is

better to read, but for the calculation we have to transform the descriptions into a common

domain. This means, for example, we scale the event spectra with the execution times.

We will explore the latency of the pathS1→ S4 first. This is necessary, because the

results have a direct influence of the other paths. The results of the spectra of path one are

represented in Table 1.

τ1 [ms]
αu

1 {(∞,0,4,∞, /0),(150,150,1,∞, /0)}
α l

1 {(150,600,1,∞, /0)}
β u

1 {(10,0,6,1, /0)}
β l

1 {(10,4,6,1, /0)}
αu

5 {(∞,0,3,0,{(32,0,1,∞, /0)}),(∞,100,1,∞, /0),(150,150,1,∞, /0)}
α l

5 {(150,604,1,∞, /0)}
β u

2 {(∞,0,340,0,{(10,0,6,1, /0)}),(150,600,70,0,{10,0,6,1, /0})}
β l

2 {(∞,136,4,1, /0),(∞,144,6,1, /0),(150,186,4,1, /0),
(150,194,66,0,{(10,0,6,1, /0)})}
TABLE 1. Results of the computed event spectra of the pathS1→ S4 (I)

9. CASE-STUDY 191

c1 [ms]
αu

5 {(∞,0,3,0,{(32,0,1,∞, /0)}),(∞,100,1,∞, /0),(150,150,1,∞, /0)}
α l

5 {(150,604,1,∞, /0)}
β u

5 {(∞,0,∞,1, /0)}
β l

5 {(10,7,3,1, /0)}
αu

9 {(∞,0,1,∞, /0),(∞,18,2,0,{(32,0,1,∞, /0)}),
(∞,86,1,∞, /0),(150,136,1,∞, /0)}

α l
9 {(150,618,1,∞, /0)}

TABLE 2. Results of the computed event spectra of the pathS1→ S4 (II)

τ5 [ms]
αu

9 {(∞,0,1,∞, /0),(∞,18,2,0,{(32,0,1,∞, /0)}),
(∞,86,1,∞, /0),(150,136,1,∞, /0)}

α l
9 {(150,618,1,∞, /0)}

β u
9 {(∞,0,∞,1, /0)}

β l
9 {(∞,0,∞,1, /0)}

β u
10 {(∞,0,613,1, /0),(150,618,145,1, /0)}

β l
10 {(∞,15,3,1, /0),(∞,33,17,1, /0),(∞,65,21,1, /0),

(∞,101,35,1, /0),(150,151,135,1, /0)}
TABLE 3. Results of the computed event spectra of the pathS1→ S4 (III)

We start the calculation with the taskτ1 on CPU 1. The task has got the highest

priority within its TDMA-slot. So the completely availablecapacity ofβ1 can be used.

According to chapter 7.6 we can determine the event spectrumof α5. Additionally, we

have to determine the remaining capacity for taskτ2, so that we can determine the latency

of the pathS2→ S5.

The next step is to determine the event spectrum ofα9. To do this we have to de-

termine the capacity ofβ5 first. The upper bound for a round robin policy can be simply

approximated by the full processor capacity, because the best case occurs when all other

tasks (c2,c3,c4) have no jobs to execute. The lower bound, in this case, must be approx-

imated by a TDMA policy. The worst case for a task in a round robin scheduler occurs

when all other tasks use in every cycle their full slot time. Obviously, this is equal to a

TDMA policy. Since we do not know the arrival curves of the tasksc2,c3 andc4, we have

to assume that the bus is completely busy.

The last task in the chain isτ5. This task has the full processor capacity and is activated

by α9. The outgoing event spectrumα13 is not necessary for the path latency. So the only

spectrum we have to determine is the remaining capacity for the taskτ6, so that we are able

to calculate the other paths. Finally, we determine the end-to-end deadline. According to

the theorem in chapter 7.7.3 about the end-to-end response-times the resulting latency of

the first path is 170 ms. The taskτ1 has a worst case response time of 136 ms,c1 of 19 ms

andτ5 of 15 ms.

The second path we will explore is the pathS2→ S5. The results of this path are

equally important for the analysis of the last path as the first path. The results are repre-

sented in Table 4. Again we have only calculated the spectra necessary for the path latency.

192 9. CASE-STUDY

τ6 [ms]
αu

14 {(∞,0,3,∞, /0),(150,150,1,∞, /0)}
α l

14 {(150,450,1,∞, /0)}
β u

10 {(∞,0,613,1, /0),(150,618,145,1, /0)}
β l

10 {(∞,15,3,1, /0),(∞,33,17,1, /0),(∞,65,21,1, /0),(∞,101,35,1, /0),
(150,151,135,1, /0)}

αu
10 {(∞,0,3,∞,{(4,0,1,∞, /0)},(150,121,1,∞, /0)}

α l
10 {(150,480,1,∞, /0)}

β u
11 {(∞,0,450,1, /0),(150,455,145, /0)}

β l
11 {(∞,42,8,1, /0),(∞,65,21,1, /0),(∞,101,35,1, /0),(150,151,131,1, /0)}

TABLE 4. Event spectra of the pathS2→ S5 taskτ6

c2 [ms]
αu

10 {(∞,0,3,∞,{(4,0,1,∞, /0)},(150,121,1,∞, /0)}
α l

10 {(150,480,1,∞, /0)}
β u

6 {(∞,0,∞,1, /0)}
β l

6 {(∞,7,12,0,{(33,0,3,1, /0),(33,9,3,1, /0),(33,16,3,1, /0),(33,23,3,1, /0)}),
(∞,106,3,1, /0),(∞,115,3,1, /0),(∞,122,12,0,{(7,0,3,1, /0)}),(150,153,3,1, /0),
(150,162,3,1, /0),(150,169,57,0,{(7,0,3,1, /0)}}

αu
6 {(∞,0,3,0,{(8,0,1,∞, /0)}),(150,70,1,∞, /0)}

α l
6 {(150,523,1,∞, /0)}

TABLE 5. Event spectra of the pathS2→ S5 taskC2

τ2 [ms]
αu

6 {(∞,0,3,0,{(8,0,1,∞, /0)}),(150,70,1,∞, /0)}
α l

6 {(150,523,1,∞, /0)}
β u

2 {(∞,0,340,0,{(10,0,6,1, /0)}),(150,600,70,0,{10,0,6,1, /0})}
β l

2 {(∞,136,4,1, /0),(∞,144,6,1, /0),(150,186,4,1, /0),
(150,194,66,0,{(10,0,6,1, /0)})}

TABLE 6. Event spectra of the pathS2→ S5 taskτ2

The incoming event spectrumα14 of τ6 on CPU 2 is given and the remaining capacity

β10 has been calculated during the first path calculation. So we can straightforward deter-

mine the event spectrumα10. Furthermore, we have to determine the remaining capacity

β11 which will be used during the third path calculation.

To calculate the event spectrumα6 we have to determine the capacity spectrumβ6

first. The upper bound ofβ6 is the full capacity of the processor likeαu
5 . The lower bound

of β6 of the capacity can be approximated by a TDMA policy. Since the arrival curveα5

is known, we are able to include the real round robin policy atthis point and not only the

TDMA-approximation. This leads to more capacity compared to β5, because the taskc1 is

not busy in every cycle. Consequently, this leads to a more relaxedα6.

For the last taskτ2 we have all information in order to determine the maximum latency.

The remaining capacity has no influence of the last pathS3→ S6.

We are able to determine the end-to-end deadline of the pathS5→ S2. According

to the theorem in chapter 7.7.3 about the end-to-end response time the resulting latency

9. CASE-STUDY 193

of the second pathS5→ S2 is 366 ms. In the example it is the result of the worst-case

response time of the first job ofτ6, the third job ofc2 and again the first job ofτ2. The

reason to take the third job ofc2 is that response-times forc2 are much longer than for

τ6 and therefore the second and third job ofτ6 arrive before they are required byc2. The

worst-case occurs whenτ2 experiences its worst-case delay exactly at the time whenc2

finishes the execution of its third job. The calculation of the other end-to-end response

times follows a corresponding scheme. The taskτ6 has a worst-case response time of 34

ms,c2 of 132 ms andτ2 of 200 ms.

τ3 [ms]
αu

3 {(∞,0,1,∞, /0),(250,125,1,∞, /0)}
α l

3 {(250,375,1,∞, /0)}
β u

3 {(10,0,2,1, /0)}
β l

3 {(10,8,2,1, /0)}
αu

7 {(∞,0,1,∞, /0),(250,117,1,∞, /0)}
α l

7 {(250,383,1,∞, /0)}
TABLE 7. Event spectra of the pathS3→ S6 taskτ3

The last path we have to explore isS3→S6. The event spectra are given in Table 7 and

Table 10. We start with the taskτ3. Here we have only to determine the outgoing spectrum

c3 [ms]
αu

7 {(∞,0,1,∞, /0),(250,117,1,∞, /0)}
α l

7 {(250,383,1,∞, /0)}
β u

7 {(∞,0,∞,1, /0)}
β l

7 {(∞,8,12,0,{(33,0,2,1, /0),(33,9,2,1, /0),(33,16,2,1, /0),(33,23,2,1, /0)}),
(∞,107,2,1, /0),(∞,116,2,1, /0),(∞,123,8,0,{(7,0,2,1, /0)}),
(∞,154,2,1, /0),(∞,163,2,1, /0),(∞,170,2,1, /0),(∞,175,2,1, /0),
(∞,181,46,1,0,{(4,0,2,1, /0)})(150,274,10,0,{(7,0,2,1, /0)}),

αu
11 {(∞,0,1,∞, /0),(250,82,1,∞, /0)}

α l
11 {(250,418,1,∞, /0)}

TABLE 8. Event spectra of the pathS3→ S6 taskC3

τ7 [ms]
αu

11 {(∞,0,1,∞, /0),(250,82,1,∞, /0)}
α l

11 {(250,418,1,∞, /0)}
β u

11 {(∞,0,450,1, /0),(150,455,145, /0)}
β l

11 {(∞,42,8,1, /0),(∞,65,21,1, /0),(∞,101,35,1, /0),(150,151,131,1, /0)}
αu

15 {(∞,0,1,∞, /0),(250,22,1,∞, /0)}
α l

15 {(250,478,1,∞, /0)}
β u

12 {(∞,0,418,1, /0),{(∞,427,23,1, /0),(750,455,145,1, /0),
(750,605,63,1, /0),(750,677,73,1, /0),(750,755,145,1, /0),

β l
12 {(∞,69,13,1, /0),(∞,109,27,1, /0),(750,151,131,1, /0),(750,301,31,1, /0),

(750,344,88,1, /0),(750,451,31,1, /0),(750,594,88,1, /0),(750,601,131,1, /0),
(750,601,131,1, /0),(750,751,31,1, /0),(750,744,88,1, /0)}

TABLE 9. Event spectra of the pathS3→ S6 taskτ7

194 9. CASE-STUDY

τ8 [ms]
αu

15 {(∞,0,1,∞, /0),(250,22,1,∞, /0)}
α l

15 {(250,475,1,∞, /0)}
β u

12 {(∞,0,418,1, /0),{(∞,427,23,1, /0),(750,455,145,1, /0),(750,605,63,1, /0),
(750,677,73,1, /0),(750,755,145,1, /0),(750,905,13,1, /0),(750,927,123,1, /0),
(750,1055,113,1, /0),(750,1177,23,1, /0)}

β l
12 {(∞,69,13,1, /0),(∞,109,27,1, /0),(750,151,131,1, /0),(750,301,31,1, /0),

(750,344,88,1, /0),(750,451,31,1, /0),(750,594,88,1, /0),(750,601,131,1, /0),
(750,601,131,1, /0),(750,751,31,1, /0),(750,744,88,1, /0)}

αu
12 {(∞,0,1,∞, /0),(∞,11,1,∞, /0),(250,216,1,∞, /0)}

α l
12 {(∞,0,531,1, /0),(250,781,1, /0)}

TABLE 10. Event spectra of the pathS3→ S6 taskτ8

c4 [ms]
αu

12 {(∞,0,1,∞, /0),(∞,11,1,∞, /0),(250,216,1,∞, /0)}
α l

12 {(∞,0,531,1, /0),(250,781,1, /0)}
β u

8 {(∞,0,∞,1, /0)}
β l

8 {(∞,8,2,1, /0),(∞,17,2,1, /0),(∞,24,2,1, /0),(∞,31,2,1, /0),(∞,41,2,1, /0),
(∞,48,2,1, /0),(∞,53,2,1, /0),(∞,58,2,1, /0),(∞,63,2,1, /0),(∞,81,2,1, /0),
(∞,88,2,1, /0),(∞,93,2,1, /0),(∞,98,2,1, /0),(∞,106,2,1, /0),
(∞,113,14,0,{7,0,2,1, /0}),(∞,159,2,1, /0),(750,274,10,0,
{(5,0,2,1, /0)}),(750,297,2,1, /0),(750,299,2,1, /0),(750,304,2,1, /0),
(750,308,59,1, /0),(750,424,10,0,{(5,0,2,1, /0)}),(750,447,2,1, /0),
(750,449,2,1, /0),(750,454,2,1, /0),(750,458,114,1, /0),(750,574,10,0,
{(5,0,2,1, /0)}),(750,602,2,1, /0),(750,604,2,1, /0),(750,609,2,1, /0),
(750,613,4,1, /0),(750,369,10,0,{(4,0,2,1, /0}),(750,387,34,1, /0),
(750,619,10,0,{(4,0,2,1, /0}),(750,637,84,1, /0)}

αu
8 {(∞,0,1,∞, /0),(∞,5,1,∞, /0),(250,176,1,∞, /0)}

α l
8 {(∞,0,571,1, /0),(250,821,1, /0)}

TABLE 11. Event spectra of the pathS3→ S6 taskc4

τ4 [ms]
αu

8 {(∞,0,1,∞, /0),(∞,5,1,∞, /0),(250,176,1,∞, /0)}
α l

8 {(∞,0,571,1, /0),(250,821,1, /0)}
β u

4 {(∞,0,∞,1, /0)}
β l

4 {(∞,8,∞,1, /0)}
TABLE 12. Event spectra of the pathS3→ S6 taskτ4

α8. The same applies for the communication taskc3. Here we have only to determineα11.

The capacity for the task can be determined like the scheme used forβ6. The upper bound

is the full processor capacity. For the lower bound we use theround robin policy for tasks

having a calculated arrival curve and for the other one the TDMA policy.

Now we have to consider the cooperative tasksτ7 andτ8. Since we have the capac-

ity β11 from the second path and the incoming event spectrum, we can straightforwardly

determine the remaining capacity and the event spectrum fortaskτ8. But at this point we

have to consider a further fact. The taskτ8 can only be activated when the taskτ7 has been

executed. By means of this we are able to calculate the outgoing event spectrumα12. It

9. CASE-STUDY 195

can be seen that taskτ7 cannot influence the taskτ8. So it is not necessary to consider the

cooperative behavior.

In order to calculate the results of the communication taskc4 we can use the same

policy as for taskc3. When the event spectrumα8 is calculated, we have all necessary

spectra computed. The outputs from taskτ4 are not important for the path latency.

Now we are able to determine the end-to-end worst-case response time. According to

the theorem 7.7.3 about the end-to-end response time in chapter 7.7.3 the resulting latency

of the second pathS3→ S6 is 321 ms. The taskτ3 has a worst case response time of 71

ms,c3 of 45 ms,τ7 of 69 ms,τ8 of 80 ms,c4 of 45 ms andτ4 of 11 ms.

Finally, we compare our results versus the modular performance analysis (MPA) and

the extended periodic model and their combination. In orderto quantify our exactness we

have simulated the example model, too. This simulation has been done with the real-time

simulator chronSim [123, 124] and gives a (tight) lower bound on the worst-case response-

times. The results of the different approaches are presented in Table 13. ESC means the

Event Spectra Calculus.

PATH MPA extended
Periodic

MPA &
extended
Periodic

ESC Constraint ChronSim

S1→ S4 170 ms 170 ms 170 ms 170 ms 200 ms 155 ms
S2→ S5 430 ms 376 ms 376 ms 366 ms 400 ms 242 ms
S3→ S6 412 ms 422 ms 389 ms 321 ms 400 ms 206 ms

TABLE 13. Results of the MPA, extended Periodic, the combination
MPA and extended Periodic, ESC and ChronSim

It can be seen that our approach delivers tighter bounds for the pathsS2→ S5 and

S3→ S6. This is founded by the facts that we only use one model and that we are capable

to include dependencies into the analysis. The next table shows the improvement in percent

versus extended periodic, MPA and the combination of both.

PATH MPA extended periodic MPA& extended
Periodic

S1→ S4 0% 0% 0%
S2→ S5 17,4% 2,7% 2,7%
S3→ S6 28% 31% 21%

TABLE 14. Improvement of the ESC approach in percent versus ext.
Periodic, MPA and the combination of both

CHAPTER 10

Summary and Outlook

In this thesis a new integrated and efficient schedulabilityanalysis methodology for

uni-processor systems with static and dynamic priorities is proposed.

First some of the existing schedulability approaches were introduced, as there are the

approach of Liu & Layland [88], the response time analysis [73], [80] and the scheduling

point analysis [92] for static priority systems. For systems with dynamic priorities we

have introduced an approach of Liu & Layland [88], the processor demand criterion [19]

and the test of Devi [46]. A disadvantage of most of these approaches is the algorithm

complexity. The run-time of these algorithms does not only depend on the number of task

sets but also on the variables of the concrete task sets and especially on the ration between

the smallest and largest tasks in the task sets. Only exceptions are the scheduling point

analysis (for non-arbitrary systems), which has an exponential complexity instead and is

therefore not suitable for large task sets, and the approaches of Liu & Layland [88] and

Devi [46], which are only sufficient or use a limited model. The fixed-priority analysis of

Liu & Layland and the EDF analysis of Devi are not usable for systems with utilization

larger than 69.3% and 80%, respectively. The EDF analysis ofLiu & Layland does only

support tasks with simple periodic stimuli and a deadline for each task that is equal or

larger than the period of the task’s stimuli.

The reason to consider the problem of the run-time of the schedulability analysis is,

that the analysis is needed as one step in the design flow of real-time systems. One chal-

lenge of the design-flow is to find a good hardware and softwaredesign to meet all re-

quirements for the system. For this challenge it is necessary to decide on the hardware-/

software- distribution of the tasks of the system, the allocation of hardware components

and their connection network, the partitioning and the binding of the software on the hard-

ware components and the scheduling of the software tasks. Todo all these decisions it is

necessary to have an optimization-step within the design flow. This step considers a huge

number of different candidate systems to find a good one meeting the requirements. A

real-time analysis for each of the candidate solutions is required. As the real-time analysis

will run quite often, a significant difference in the run-time of the real-time analysis will

have a significant impact on the overall performance of the design flow respectively on the

number of candidate solutions which can be considered.

The processor demand criterion for the sufficient and necessary analysis of systems

with earliest deadline first scheduling has for example a pseudo-polynomial complexity

when its utilization is bounded by an upper bound. Its complexity depends on the fraction

197

198 10. SUMMARY AND OUTLOOK

between the largest difference between period and deadlineof one task in the task set on

the one side and the smallest period of a task in the task set onthe other side.

To overcome the disadvantage of complexity we have introduced in chapter 3 the con-

cept of approximations and proposed the superposition approximation. It is a fast schedu-

lability analysis with a polynomial run-time being sufficient and nearly necessary. Each

system recognized as schedulable is guaranteed to be schedulable. Systems that are not

schedulable are therefore also recognized as not schedulable. There might be some systems

being schedulable but being not recognized as schedulable by the approximative analysis.

The number of such not correctly classified systems depends on a selectable error. We can

guarantee that all these systems are quite near to be not schedulable in a sense that they

are not schedulable on a processing element with a slightly smaller capacity. Beingχ(∆t)

the capacity bound function of the original processor andε be the chosen approximation

error we guarantee that these systems are not schedulable ona processor with a capac-

ity of (1− ε)χ(∆t). The complexity and therefore the run-time of the algorithmdepends

polynomial on the number of tasks and polynomial on the selected errorε and on nothing

else.

Therefore the proposed superposition analysis is a fully polynomial time approxima-

tion scheme for the schedulability problem of systems with dynamic priority scheduling.

Also an algorithm was proposed to calculate the minimum necessary capacity for a

system to be acceptable by the superposition approximation. This algorithm is quite suit-

able for on-line analysis for the possibility of using dynamic voltage scaling (DVS).

The superposition algorithm was introduced first for the simply period (sporadic) task

model. Then the algorithm was extended to the more advanced event-stream model. This

model was introduced by Gresser in [60] and [61] and is quite suitable for modeling gen-

eral event patterns. It was modified and extended in this work. For example, the concept of

periodic event sequences was introduced to give the model a solid theoretical background.

A periodic event sequenceΘ consists of a set of event elementsθ each described by a

periodp and an offseta. Each element models a set of periodical events having a initial

distance ofa and each a distancep to their neighboring elements of the same element. A

periodic event sequence consists of a set of such elements having a common starting point.

We can also interpret the distance as an interval∆t having the common starting point as its

start point and the occurrence of the event as the end point ofthe interval. The event bound

functionη(∆t,Θ) calculates for each interval-length∆t the possible number of events for

the periodic event sequenceΘ. An event stream is a specialized event sequence fulfilling

the condition of sub-additivity. That means the shortest intervals have the highest densities

of events. Formally, when an event bound function fulfills the condition of sub-additivity

for every set of intervals∆tA,∆tB the conditionη(∆tA,Θ)+ η(∆tB,Θ)≥ η(∆tA + ∆tB,Θ)

holds.

In chapter 4 this approach was extended to develop new fast sufficient and neces-

sary schedulability analyses for systems with dynamic priority scheduling. The extension

is based on the selectable approximation error. The approximation uses a large approx-

imation error and achieves therefore a low run-time as long as possible and reduces the

10. SUMMARY AND OUTLOOK 199

error only when necessary to distinguish between schedulable and non-schedulable sys-

tems. The results are two new schedulability approaches, the dynamic-error algorithm and

the all-approximation algorithm. The second one additionally returns to approximation

as soon as possible after it was necessary to analyze one partexactly. Experiments with

randomly generated task-sets show that these algorithms are much faster than the previous

approaches (for some task sets by the order of magnitudes) and that the required run-time

seems to be independent of the concrete values of the tasks. It seems only to depend on the

number of tasks and their utilization.

In chapter 5 an approach for approximative and dynamic approximative analysis for

systems with static priority scheduling were introduced. In contrary to previous solutions

it is solely based on functions and allows an adaptive schedulability analysis. It required

a new function; the exceeding cost function. It gives for each interval∆t that part of the

requested costs within∆t that cannot be processed within∆t due to the later arrival time

of its generating job. A job arriving two ms before the end of the interval and requiring

five ms execution time will contribute at least 3 ms of them to the exceeding costs. Again

the dynamic approximation outperforms the previous worst-case response time analysis

also the results of the worst-case response time analysis might be more valuable as the

new analysis achieves only a schedulable - non-schedulabledecision. The exceeding cost

function is a new idea that has shown to be also quite useful inlater chapters.

In chapter 6 we have done experiments with randomly generated task sets to inves-

tigate the performance and the acceptance rates of the new algorithms and concepts. We

have compared them with the performance of other existing approaches. The experiments

give also some hints on the likely complexity of the algorithms.

In chapter 7 we have focused on the event model and to generalize the analysis ap-

proaches. The previous event stream model is quite powerfulbut it is not possible to

describe bursts efficiently with this model. The event stream model requires a separate

event element for each event of a burst. To overcome this disadvantage we have extended

the event stream model to a hierarchical event spectra model.

We have introduced hierarchical event spectra consisting of hierarchical event ele-

ments. A hierarchical event element generates complete event patterns. These event pat-

terns can be described either by an embedded (hierarchical)event spectrum or by a slope.

Additionally, the hierarchical event elements have a limitation valueL limiting the number

of events that can be generated by the pattern within one period of the hierarchical event

spectrum element. Important for an efficient calculation ofthe hierarchical event spectrum

bound function is the separation condition, which preventsthe overlapping of different pe-

riods of the same event element. We have provided the basic functions for the hierarchical

event spectra. Note, that the previous event streams are only a special case of the hier-

archical spectra. We have developed an approximation for the event spectra. The special

characteristic of this approximation is that the number of test intervals for each embedded

event spectra element is bounded globally. A hierarchical embedded event spectra element

starts the generation of events from the beginning for each period of its parent spectra ele-

ment. Bounding the number of test intervals for each spectrum element separately would

200 10. SUMMARY AND OUTLOOK

result in starting the exact evaluation again for each period of the parent. This would result

in a global bound for maximum number of test intervals being exponential in the number

of levels of the hierarchy.

We proposed a method that bounds the number of exactly evaluated test intervals glob-

ally for each event element. To do this we may require splitting the parent element near

the maximum exact test interval of the child element. We haveprovided the method and

the equations necessary to allow the global bound approximation.

The hierarchical event spectrum allows integrating the approximation in the spectra.

Operations on these approximated spectra do not have to careof the approximation and the

chosen degree of exactness but nevertheless benefit from theapproximation. Last but not

least the approximated hierarchical event spectra can be transformed into a curve consist-

ing of simple consecutive piecewise linear curve segments in which the number of these

elements is strictly limited by the approximation.

Concluding we have developed efficient schedulability analysis methods and an in-

tegrated schedulability analysis concept for uni-processor systems for both static and dy-

namic priority scheduling.

This work gives several opportunities for further research. First the integration of other

scheduling algorithms into the framework is possible. Thiscan be for example TDMA or

Round-Robin. It would be necessary to extract how these algorithms modify the spectra.

This would allow the analyzing of every possible combination of scheduling algorithms.

The event model and the algorithm can be used also for energy analysis [86] and

energy saving [87] in embedded systems.

Another opportunity is the schedulability analysis for distributed systems. The differ-

ent processing elements of such a system can have a multitudeof scheduling algorithm to

handle the tasks bound to them. They can be a mixture of scheduling with dynamic and

static priorities. Task chains can be distributed on several elements requiring communica-

tion between the tasks and therefore between the processingelements.

The concept of event spectra can be extended to distributed systems. It is necessary

to develop the transformation algorithm to extract outgoing event spectra of tasks from

their incoming event spectra ([30]). Another interesting aspect for such an analysis is the

dependencies between tasks on the same or different processing elements. Taking these

dependencies into account can relax the schedulability problem and allow scheduling the

tasks on less expensive processing elements.

In the real-time calculus it was proposed to model the flow between the tasks with

arrival and service curves and equations were provided to calculate the outgoing curves

of a task from the incoming ones. We used this concept in this work but we focus on the

concrete possibility for an efficient implementation of this concept.

The proposed model and methodology offers many possibilities for further research.

It may be interesting looking for them.

Zusammenfassung

Moderne Fahrzeuge haben oftmals mehr als 70 elektronische Steuergeräte (ECUs)

welche miteinander kommunizieren müssen und eine Vielzahlunterschiedlicher Funktio-

nen erfüllen. Diese Systeme müssen dabei nicht nur korrekteErgebnisse liefern, son-

dern die Ermittlung der Ergebnisse muss meist innnerhalb fester Zeitschranken erfolgen,

um rechtzeitige Reaktionen des Fahrzeuges auf eine sich veränderte Umwelt oder auf

Steuerungsanweisungen des Fahrers sicherzustellen (Echtzeitanforderungen). Dabei sind

in einer Funktionalität oftmals eine ganze Reihe von Steuergeräten involviert, welche über

Busse miteinander kommunizieren. Aus Kostengründen ist esnotwendig die Menge der

Steuergeräte und Busse zu begrenzen, was dazu führt, dass sich viele Funktionen Steuerg-

eräte und Busse teilen müssen und auf ihnen um die Rechenzeitund die Übertragungska-

pazität konkurrieren. Zur Steuerung dieser Konkurrenz werden verschiedene Ablaufpla-

nungsverfahren (Schedulingstrategien) eingesetzt und den einzelnen Funktionen und Teil-

funktionen (Tasks) teilweise unterschiedliche Prioritäten zugewiesen. Die sich daraus

ergebenden möglichen zeitlichen Abläufe, Verdrängungen der verschiedenen Funktionen

untereinander und letzlich der Antwortzeiten der einzelnen Funktionen und ihre Einhaltung

von Echtzeiteigenschaften sind nicht einfach zu überblicken.

Verfahren der Echtzeitanalyse können für solche Systeme mit mathematischen Metho-

den die Einhaltung von Echtzeiteigenschaften verifizierenund obere und untere Schranken

für Antwortzeiten bestimmen. Diese Verfahren ermöglichensomit fundierte Entscheidun-

gen zur Dimensionierung der Steuergeräte, Verteilung der Funktionalität, Wahl der Ablauf-

planungsverfahren und Verteilung der Prioritäten.

Ausgehend von einer zentralen Arbeit von Liu und Layland [88] wurden in den ver-

gangenen 30 Jahren eine Reihe von Echtzeitanalyseverfahren und Echtzeitmodellen unter-

schiedlicher Qualität und Komplexität für verschiedene Ablaufplanungsverfahren sowohl

für Ein-Prozessor-Systeme als auch für verteilte Systeme entwickelt.

Bei den Ablaufplanungsverfahrenwird zwischen statischerAblaufplanung, bei welchen

die Tasks in einer vorab festgelegten Reihenfolge abgearbeitet werden und dynamischer

Ablaufplanung, bei welcher die Anregungen der Tasks zusammen mit einer bestimmten

Strategie den Ablaufplan der Tasks zur Laufzeit dynamisch bestimmt, unterschieden. Dy-

namische Ablaufplanungsverfahren kann man wiederum unterteilen in solche bei denen

die Tasks eine feste Priorität bekommen und solche bei denensich die Priorität dynamisch

ändern kann. Als letztes wird unterschieden ob die Abarbeitung einer Task durch eine an-

dere mit einer höheren Priorität unterbrochen werden kann (preemptives Scheduling) oder

nicht (non-preemptives Scheduling).

In [88] wurde unter anderem gezeigt, dass das preemptive Ablaufplanungsverfahren

Earliest-Deadline-First (EDF), ein Verfahren mit dynamisch veränderlichen Prioritäten, bei

dem immer diejenige Task die höchste Priorität erhält, welche der absoluten Zeitschranke

am nächsten liegt, ein optimales Ablaufplanungsverfahrendarstellt, zumindestens sofern

man den Aufwand für die Ablaufplanung selbst unberücksichtigt lässt. Optimalität be-

deutet dabei, dass wenn es überhaupt einen Ablaufplan für das System gibt der alle Zei-

tanforderungen einhält, ein auf EDF basierender Ablaufplan auch alle Zeitanforderungen

203

einhalten würde. In der Praxis wichtiger ist, wegen ihrer einfacheren Implementierbarkeit,

die Vergabe von festen Prioritäten als Ablaufplanung.

Bei den Echtzeitanalyseverfahren kann man zwischen exakten Verfahren, welche im

Rahmen der Modellgenauigkeit exakt zwischen Systemen unterscheiden können, welche

alle Echtzeitkriterien einhalten oder nicht, und hinreichenden Verfahren, welche nur die

nicht-echtzeitfähigen Systemen korrekt klassifizieren können, unterscheiden. Vertreter für

hinreichende Verfahren für Ein-Prozessor Systeme sind dieTests von Liu und Layland

[88] für EDF und statische Prioritäten, der Test von Devi [46] für EDF und von Bini et al.

[23] für statische Prioritäten. Für exakte Verfahren für Ein-Prozessor-Systeme seien die

Antwortzeitanalyse für statische Prioritäten [73, 79] unddas Processor-Demand-Criterion

für EDF [19] genannt.

Analysen verteilter Systeme können entweder aus den exakten Analysen für Ein-

Prozessor-Systemen aufgebaut werden, wie dies bei der Holistic-Scheduling Analyse und

den darauf aufbauenden Verfahren der Fall ist oder einen in sich geschlossenen Ansatz

wie beim Real-Time-Calculus verfolgen. Vom Real-Time-Caclulus gibt es wiederum eine

hinreichende und eine exakte Variante.

Die Analyseverfahren benötigen jeweils Echtzeitmodelle welche eine Abstraktion der

realen Systeme darstellen. Ein mögliches Modell ist die Darstellung des Systems über

miteinander kommunizierende Tasks, wobei die Tasks durch Ereignisse angeregt werden.

Den Tasks wird jeweils eine maximale Ausführungszeit (Worst-Case execution Timec+)

und eine minimale Ausführungszeit (Best-case Executione Time, c−) zugeordnet. Zusät-

zlich können Tasks einen lokale Zeitschranke (deadlined) zugeordnet werden. Die An-

regungen, welche von außen erfolgen können oder sich zwischen Tasks ergeben, können

dabei durch Ereignismodelle beschrieben werden. Beispiele sind das Periodische Modell,

das Periodische Modell mit Mindestabstand, das Ereignisstrommodell und die Real-Time

Calculus Curves.

Im fortgeschrittenen periodischen Modell können die Anregungen durch eine Periode

p und einen Jitterj beschrieben werden. Für jedes Ereignis gibt es ein Intervall der Länge

j innerhalb dessen das Ereignis an einer beliebigen Stelle auftreten kann. Die Mittelpunkte

der Intervalle folgen periodisch mit einem Abstand bzw. einer Periodep aufeinander. Vere-

infacht gesprochen kommen die Ereignisse eigentlich periodisch mit PeriodeT können

aber, im Rahmen ihres Jitterintervalls, etwas früher oder später kommen. Die Ereignisse

haben im fortgeschrittenen periodischen Modell einen maximalen Abstand vonp+ j und

eine minimalen Abstand von max(0, p− j). Für ein Intervall der Länge∆t ergeben sich

maximal
⌊

∆t+ j
p +1

⌋

und minimal max
(

0,
⌊

∆t− j
p +1

⌋)

Ereignisse.

Im periodischen Modell mit Mindestabstand kann zusätzlichnoch ein Mindestab-

standszwischen zwei Ereignissen beschrieben werden. Dafür müssen die obigen Formeln

nur geringfügig modifiziert werden. Unter der (sinnvollen)Bedingungs≤ p ändern sich

lediglich der minimale Abstand zwischen Ereignissen auf min(s, p− j) und die maximal

sich für ein Intervall der Länge∆t ergebende Anzahl von Ereignissen auf:

min

(⌊

∆t
s

+1

⌋

,

⌊

∆t + j
p

+1

⌋)

204

Verwendet man nur das periodische Modell ohne Mindestabstand ergeben sich bei den

Analysen keine falschen sondern nur zu konservative Ergebnisse, d.h. es werden weniger

Systeme die alle Echtzeitbedingungen einhalten als solcheerkannt.

Das Ereignisstrommodel wurde in [60, 61] von Gresser eingeführt. Es ermöglicht

die genaue Modellierung komplexer Anregungen. Ein EreignisstromE besteht aus einer

Menge von TupelnE = {ES1,ES2, ...,ESn} wobei jedes Tupel durch eine Periodep und

einen Offseta zu einem gemeinsamen Nullpunkt beschrieben wirdESi =

(

pi

ai

)

. Die

Periode kann auch unendlich(pi = ∞) sein (aperiodische Elemente). Ein Sonderfall sind

die homogenen Ereignisströme bei denen alle Elemente als Periode entweder eine gemein-

same Periode des Ereignisstroms oder unendlich haben. Die Anzahl der Ereignisse für ein

Intervall der Länge∆t wird über die EreignisstromfunktionES(∆t,E) berechnet, wobei

ES(∆t,E) = ∑ESi∈E ES(∆t,ESi) :

ES(∆t,ESi) =



















⌊

∆t−ai
pi

+1
⌋

pi 6= ∞

1 pi = ∞∧∆t ≥ ai

0 pi = ∞∧∆t < ai

Die maximale und die minimale Menge von Ereignissen kann durch jeweils einen

maximalen und einen minimalen Ereignisstrom beschrieben werden. Die Ereignisstrom-

funktion ermittelt für jede möglich Intervalllänge die Anzahl von Ereignissen. Die sich

dabei ergebende monoton steigende Funtion ist essentiell für das Ereignisstrommodell

und für die Echtzeitanalysetheorie. Die Modellerung der Ereignisströme muss so erfol-

gen, dass ein maximaler Ereignisstrom die Sub-Additivitäterfüllt, d.h. ES(∆t + ∆t′) ≤
ES(∆t)+ES(∆t′).

Im Real-Time Calculus werden die Ereignissmodelle durch maximale und minimale

Arrival- und Service-Curves beschreiben. Diese Kurven sind Funktionen equivalent zur

Ereignisstromfunktion. In der Theorie können diese Kurvenjedes beliebige Ereignismod-

ell exakt erfassen und beschreiben. Für die Anwendbarkeit werden konkrete Beschrei-

bungsmodelle für diese Kurven benötigt. Es stehen bisher zwei konkrete Beschreibungsmod-

elle zur Verfügung. Im ersten Modell werden die Kurven jeweils durch maximal drei

aufeinanderfolgende geradlinige Segmentelementen beschrieben. Dabei beschreibt das er-

ste Segment den Bereich bis zum ersten Ereignis, das zweite Element einen initialen Burst

und das dritte Element die langfristige Rate. Im zweiten exakten Beschreibungsmod-

ell wird die Kurve in einen anfänglichen aperiodischen Teilund einen sich daran an-

schliessenden und sich wiederholenden periodischen Teil aufgeteilt. Jedes dieser Teile

wird durch eine beliebig große Menge von aufeinanderfolgenden Segmentelementen be-

schrieben.

Das Ereignisstrommodell hat eine größere Modellierungsmächtigkeit und -genauig-

keit als das fortgeschrittene periodische Modell. Die Genauigkeit einer Beschreibung

mit Periode und Jitter lässt sich im Ereignisstrommodell mit vergleichbaren Aufwand

erreichen. Der Mindestabstand überfordert allerdings dieModellierungsfähigkeiten des

Ereignisstrommodells, wohingegen viele Anregungen mit dem Ereignisstrommodell genauer

205

erfasst werden können als mit dem periodischen Modell mit Mindestabstand. Das erste

Beschreibungsmodell für den Real-Time Calculus hält die Berechnungskomplexität der

Analyse niedrig, stellt allerdings eine sehr konservativeApproximation des realen Systems

dar. Das zweite Beschreibungsmodell kann beliebige reale Anregungen exakt abbilden,

allerdings kann die Menge der zur Beschreibung benötigten Segmente schnell wachsen, so

dass sich ein Komplexitätsproblem für die Echtzeitanalyseergibt. Benötigt wird aber ein

Ereignismodell welches gleichzeitig beschreibungsmächtig als auch effizient ist.

Die Echtzeitanalyseverfahren Antwortszeitanalyse und Processor Demand Criterion,

welche ursprünglich beide für das fortgeschrittene periodische Modell entwickelt wurden,

lassen sich einfach auf das periodische Modell mit Mindestabstand und das Ereignisstrom-

modell übertragen.

Das Processor Demand Criterion zur Analyse von Ein-Prozessor-Systemen mit EDF-

Scheduling funktioniert wie folgt. Es wird für einen konkreten Ablaufplan untersucht ob

alle Zeitschranken eingehalten werden. Start dieses Ablaufplans ist eine synchrone Ak-

tivierung aller Tasks, d.h. alle Tasks werden unabhängig voneinander zeitgleich aktiviert.

Sind die Tasks unabhängig, kann eine solche Situation tatsächlich auftreten, ansonsten

stellt sie eine obere Schranke für die dichtestmögliche Aktivierung dar. Dieser Ablaufplan

wird nun mathematisch simuliert und jede Zeitschranke wirdauf ihre Einhaltung über-

prüft. Diese Simulation und Überprüfungen geschehen in einem Intervall, das von der

synchronen Aktivierung einerseits und einer Testgrenze andererseits begrenzt wird. In der

Literatur wurden verschiedene Testgrenzen entwickelt undjeweils nachgewiesen, dass für

nicht-echtzeitfähige Systeme Echtzeitverletzungen innerhalb des durch die Testgrenze be-

grenzten Intervalls auftreten müssen. Beispiele sind die in [17] vorgestellte Testgrenze

∆tmax= max
∀τ∈Γ

(pτ −dτ)
UΓ

1−UΓ

mit UΓ als Auslastung des Systems und die [119] in vorgestellte Testgrenze:

∆tmax=
∑∀τ∈Γ

(

1− dτ
pτ

)

c+
τ

1−UΓ

Allen Testgrenzen gemeinsam ist die Abhängigkeit ihrer Lage von den konkreten Pa-

rametern der Ereignismodelle. So ist die erste Testgrenze vom maximalen Abstandpτ−dτ

abhängig, die zweite vom maximalen Verhältnis von der Zeitschrankedτ zur Periodepτ

abhängig. Die Anzahl der in einem Intervall zu untersuchenden Zeitschranken hängt für

jede Task vom Verhältnis des durch die Testgrenze begrenzten Intervalls zur Periodepτ

der Task ab. Hat man in einem System Tasks mit sehr kurzen und sehr langen Peri-

oden oder Zeitschranken, so kann dies zu einer späten Testgrenze, somit einem langen

Testintervall mit gleichzeitig sehr vielen zu untersuchenden Zeitschranken führen. Daraus

ergibt sich ein hoher Rechenaufwand für die Analyse. DiesesProblem ergibt sich aber

für alle drei Ereignismodelle gleichermaßen. Dies führt selbst für Systeme mit einer be-

grenzten maximalen Auslastung zu einer pseudo-polynomialen Analysekomplexität. Der

Analyseaufwand ist somit nicht nur von der Anzahl der Tasks im System und der Aus-

lastung sonder zusätzlich von den konkreten Parametern derTask und dem zugehörigen

206

Ereignismodell abhängig. Dies macht die Laufzeit für allgemein verwendbare Werkzeuge

zur Echtzeitanalyse nicht voraussehbar und kann zu hohem Rechenaufwand führen.

Ziel dieser Arbeit ist die beiden vorgenannten Probleme grundsätzlich zu lösen.

In dieser Arbeit machen wir dafür die folgenden Beiträge:

• Wir stellen das erste approximative Echtzeitanalyseverfahren mit polynomialer

Komplexität vor, dessen maximaler Analyseaufwand unabhängig ist von den Pa-

rametern des Echtzeit- und Ereignismodells, sondern nur von der Anzahl der

Tasks und der gewählten Genauigkeit abhängt und dessen Genauigkeit sich nur

durch die Kapazität der gewählten Prozessoren ausdrücken lässt.

• Wir stellen ein neues Ereignismodell, die hierarchischen Ereignisspektren vor,

welches die Modellierungsmächtigkeitder oben genannten Ereignismodelle vere-

inigt und denoch zu einer kompakten und effizienten Beschreibung führt.

• Wir wenden die Approximation auf das neue Ereignismodell an, wobei die Ap-

proximation in die Beschreibung des Ereignismodells vollständig integriert wird.

Das resultierende Modell kann zu einer einfachen aber, dankder Approximation,

dennoch kompakten neuen Beschreibung für die Kurven des Real-Time Calculus

ausgerollt werden.

Daneben werden noch die folgenden Beiträge gemacht:

• Ein effizientes approximatives Echtzeitanalyseverfahrenfür EDF.

• Ein auf die Dynamisierung der Approximation beruhendes Analyseverfahren für

EDF welches teils um Größenordnungen schneller arbeitet als alle bisher bekan-

nten Analyseverfahren.

• Ein neues effizientes Analyseverfahren für Prioritätsscheduling für Ein-Prozessor-

Systeme.

• Mehr Verständnis für die Zusammenhänge zwischen den einzelnen Modellen

und für die Theorie der Echtzeitanalyse.

Im folgenden stellen wir den ersten Beitrag, die approximative Echtzeitanalyse am Beispiel

eines mit EDF geplanten Ein-Prozessor-Systems vor. In der Approximation wird, durch

gezielte Einführung von Ungenauigkeit in die Analyse, der Aufwand für dieselbe reduziert.

In Abbildung 10.0.1 ist die Idee der Approximation dargestellt. Zu sehen ist die Ereign-

isfunktion für eine Task und die vorgeschlagene Approximation derselben. Ebenfalls

dargestellt ist die verfügbare Kapazität in Form der Winkelhalbierenden. Die Ereignis-

funktion ist für das periodische Modell eine einfache Treppenfunktion wobei die Trep-

penbreite durch die Periode der Task und die Treppenhöhe durch die maximale Aus-

führungszeit gegeben ist. Um die Echtzeiteigenschaften zubeweisen wird die Rechenzei-

tanforderungsfunktion mit der verfügbaren Kapazität verglichen (vgl. Processor-Demand-

Criterion). Dazu muss die Rechenzeitanforderungsfunktion an allen für den Vergleich rel-

evanten Werten (Testpunkten) berechnet werden. Relevant sind dabei alle Treppenstufen.

Es müssen alle Testpunkte bis zum maximalen Testintervall als obere Schranke berück-

sichtigt werden. Der Aufwand der Analyse hängt von der Anzahl der Testpunkte, also der

207

∆ t (ms)

δ (∆ t, Γ)

(ms)c

t, Γ,)kδ (∆’ +
τc

τ
+k c

}

FIGURE 10.0.1. Approximation einer einfachen Task

Anzahl der Treppenstufen ab. Die approximierte Ereignisfunktion ist für die ersten k Trep-

penstufen identisch mit der exakten Ereignisfunktion. Dieweiteren Treppenstufen werden

durch eine Gerade approximiert. Die Steigung der Geraden entspricht dabei der relativen

Auslastung der Resources durch diese Task(c+

p).

Die Gerade berührt die exakte Ereignisfunktion bei jeder Treppenstufe. Die daraus

resultierende maximale Abweichung der approximierten Rechenzeitanforderungsfunktion

von der exakten Rechenzeitanforderungsfunktion beträgt einmal c+. An dem Punkt, an

dem die approximierte Funktion von der exakten Funktion beginnt abzuweichen, beträgt

der Funktionswert mindestenskc+ da für die ersten k Treppenstufen beide Funktionen

identisch sind. Daraus ergibt sich ein maximaler relativerFehler von:

ε =
c+

kc+
=

1
k

Der Fehler ist nur abhängig vom gewählten Approximationsfaktor k und nicht von

den Parametern der Taskc+ und p. Interessant wird die Approximation erst bei mehreren

Tasks. Dabei werden mathematisch die approximierten Rechenzeitanforderungsfunktio-

nen der einzelnen Tasks addiert. Algorithmisch kann die Berechnung der addierten Funk-

tionen gemeinsam erfolgen. Entscheidend ist, dass sowohl die Anzahl der Testpunkte als

auch die Approximationsgenauigkeit bei der Addition der approximierten Funktionen der

einzelnen Tasks erhalten bleibt. Für Tasks mit kleiner Periode (und daher meist kleiner

maximaler Ausführungszeit) beginnt die Approximation früher, führt aber auch nur zu

einer kleinen absoluten Ungenauigkeit, bei Tasks mit großen Periode (und dabei meist

langen maximalen Ausführungszeiten) beginnt die Approximation erst später, wenn die

größere absolute Ungenauigkeit sich relativiert. Somit wird bei einer gewählten Genauigkeit

vonk die Anzahl der maximal zu berechnenden Stützpunkte der Funktion aufnk begrenzt

wobein die Anzahl der Tasks ist. Die maximale Ungenauigkeit bleibtbei 1
k .

Die neue Approximation fügt sich nahtlos in die existierenden Echtzeitanalysever-

fahren für EDF ein. Es kann bewiesen werden, dass das Verfahren von Devi einen Spezial-

fall der Approximation mit einem Approximationsfaktorvonk= 1 darstellt. Das Processor-

Demand-Criterion ist natürlich auch nur ein Spezialfall der Approximation mitk = ∞.

208

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

ra
tio

 s
ch

ed
ul

ab
le

 ta
sk

se
ts

 (
%

)

utilization (%)

10 million tasksets with 100 tasks

PDC, exact
Superposition (1)
Superposition (2)
Superposition (4)

Superposition (10)
Superposition (100)

Devi

FIGURE 10.0.2. Anteil der als planbar klassifizierten Tasksets

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

10 million tasksets with 100 tasks

Devi
Superposition (1)

Superposition (10)
Superposition (100)

PDC, exact

FIGURE 10.0.3. Maximale Laufzeit der Echtzeitanalysen für ver-
schieden Approximationstufen

In Abbildung 10.0.2 wird die Genauigkeit und in Abbildung 10.0.3 die Laufzeit der

209

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

m
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s)

utilization (%)

1 million task sets with 100 tasks and exp. distr. period

PDC, exact
DynamicError , exact

All-Approximation , exact

Superposition (100)
Devi

FIGURE 10.0.4. Rechenzeiten der dynamischen Approximation und
des Processor-Demand-Criterion

approximativen Analyse für verschiedene Werte von k dargestellt und mit anderen Echtzei-

tanalyseverfahren verglichen. Für die Genauigkeit wird dabei der Anteil der von dem jew-

eiligem Verfahren als echtzeitfähig klassifizierten Systemen im Verhältnis zu den gesamten

untersuchten Systemen dargestellt. Das Processor-Demand-Criterion begrenzt dabei, als

exaktes Verfahren, den Raum der echtzeitfähigen Systeme. Auffällig ist, dass schon für

relative kleine Werte vonk nahezu alle echtzeitfähig Systeme auch als solche klassifiziert

werden. Die Rechenzeit der Approximation ist hingegen geringer als die der exakten Anal-

yse.

Durch eine Dynamisierung der Approximation ergeben sich neue schnelle exakte Echt-

zeitanalyseverfahren. Bei der Dynamic-Error Analyse wirddie Analyse zunächst mit rel-

ativ geringer Genauigkeit (k = 1) gestartet und nur wenn notwendig wird die Genauigkeit

schrittweise gesteigert. Dadurch können Systeme mit hohenEchtzeitreserven schnell analy-

siert werden und nur für Systeme im Grenzbereich zur Nichtechtzeitfähigkeit werden län-

gere Analysezeiten benötigt. Die All-Approximation Analyse geht noch einen Schritt

weiter und wendet die Approximation immer an soweit sie möglich ist.

In Abbildung 10.0.4 wird die Rechenzeit dieser neuen exakten Analyse mit der Rechen-

zeit des Processor-Demand-Criterion verglichen. Es zeigtsich, dass die Rechenzeiten ins-

besondere der All-Approximation Analyse die Rechenzeit der bisher besten Analyse teil-

weise um Größenordnungen unterschreitet.

Die Approximation dient ebenfalls als Grundlage für neue Echtzeitanalyseverfahren

für Ein-Prozessor-Systeme mit statischen Prioritäten.

210

Um die Probleme des Ereignisstrommodells zu überwinden wird ein neues Ereignis-

modell, die hierarchischen Ereignisspektren, vorgeschlagen. Es ermöglicht eine effiziente

Modellierung von allen Arten von Ereignisschüben (Bursts). Ein hierarchisches Ereignis-

spektrumΘ̂ besteht aus einer Menge von hierarchischen Ereignisspektrumelementen̂θ
mit θ̂ = (p,a,L, f ,Θ̂′) wobei p die Periode,a den Offset,L die Begrenzung der in einer

Periode maximal von dem Ereignisspektrumelement erzeugbaren Kosten,f eine Erzeu-

gungsrate von Kosten und̂Θ′ ein Sub-Ereignisspektrum darstellt.L begrenzt dabei die

entweder durchf oder durchΘ̂′ in einer Periode erzeugbaren Kosten, wobei per Definition

in einem Element nur entweder die Erzeugungsrate oder das Sub-Element aktiv ist (also

entwederf = 0 oderΘ̂′ = /0). Ebenfalls per Definition wird die Seperationsbedingung

gefordert, welche einer Überlappung verschiedener Perioden eines Ereignisspektrumele-

ments verhindert. Dabei wird die Modellierungsmächtigkeit der hierarchischen Ereignis-

spektren nicht eingeschränkt aber eine effiziente Berechnung der zugehörigen Funktionen

ermöglicht.

Die hierarchischen Ereignisspektren ermöglichen auch eine Integration der Approxi-

mation in das Echtzeitmodell. Damit können bei der Propagierung von Ereignisspektren

diese gezielt durch Approximation vereinfacht werden und nur die vereinfachten Spek-

tren in der weiteren Analyse verarbeitet werden, ohne dass in der weiteren Analyse die

verwendete Approximationgenauigkeit bekannt sein muss.

Bibliography

[1] K. Albers. Erweiterung eines multikriteriellen optimierungsverfahrens für einge-

bettete systeme um ein verfahren zur echtzeitanalyse. Master’s thesis, Friedrich-

Alexander-Universität Erlangen, 2002.

[2] K. Albers, F. Bodmann, and F. Slomka. Hierachical event streams and event de-

pendency graphs. InProceedings of the 18th Euromicro Conference on Real-Time

Systems (ECRTS’06), pages 97–106, 2006.

[3] K. Albers, F. Bodmann, and F. Slomka. Run-time efficient feasibility analysis of

uni-processor systems with static priorities. InPoceedings of the International Em-

bedded Systems Symposium (IESS 2007), 2007.

[4] K. Albers, F. Bodmann, and F. Slomka. Advanced hierarchical event-stream

model. InProceedings of the 20th Euromicro Conference on Real-Time Systems

(ECRTS’08), 2008.

[5] K. Albers and F. Slomka. An event stream driven approximation for the analysis

of real-time systems. InIEEE Proceedings of the 16th Euromicro Conference on

Real-Time Systems (ECRTS’04), pages 187–195, Catania, 2004.

[6] K. Albers and F. Slomka. Efficient feasibility analysis for real-time systems with

edf-scheduling. InProceedings of the Design Automation and Test Conference in

Europa (DATE’05), pages 492–497, 2005.

[7] J. Anderson, P. Holmann, and A. Srinivasan.Handbook of Scheduling, chapter Fair

Scheduling of Real-Time Tasks on Multiprocessors. Chapman& Hall, 2004.

[8] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J.Wellings. Applying new

scheduling theory to static priority pre-emptive scheduling. InSoftware Engineering

Journal, 1993.

[9] N.C. Audsley, A.R. Burns, M.F. Richardson, and A.J. Wellings. Hard real-time

scheduling: The deadline monotonic approach. InProceedings of the 8th IEEE

Workshop on Real-Time Operating Systems and Software. IEEE Computer Society

Press, 1991.

[10] J. Axelsson. Analysis and Synthesis of Heterogeneous Real-Time Systems. Phd

thesis, Linköping, 1997.

[11] S. Baruah and N. Fisher. The feasibility analysis of multiprocessor real-time sys-

tems. InProceedings of the 18th Euromicro Conference on Real-Time Systems

(ECRTS’06), pages 85–94, 2006.

[12] S.K. Baruah. A general model for recurring real-time tasks. InProceedings of the

Real-Time Systems Symposium, pages 114–122, Madrid, 1998.

211

212 Bibliography

[13] S.K. Baruah. Dynamic- and static-priority schedulingof recurring real-time tasks.

International Journal of Real-Time Systems, 24:98–128, 2003.

[14] S.K. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized multiframe tasks.The

International Journal of Time-Critical Computing Systems, 17:5–22, 1999.

[15] S.K. Baruah and N. Fisher. The partitioned scheduling of the sporadic real-time

tasks on multiprocessor platforms. InProceedings of the International Conference

on Parallel Processing Workshop (ICPPW’05), 2005.

[16] S.K. Baruah and J. Goossens.Handbook of Scheduling, chapter Scheduling Real-

Time Tasks: Algorithm and Complexity. Chapman & Hall, 2004.

[17] S.K. Baruah, R.R. Howell, and L.E. Rosier. Algorithms and complexity concerning

the preemptive scheduling of periodic, sporadic, real-time tasks on one processor.

International Journal of Real-Time Systems, 2:301–324, 1990.

[18] S.K. Baruah, R.R. Howell, and L.E. Rosier. Feasibilityproblems for recurring tasks

on one processor.Theoretical Computer Science, 118:3–20, 1993.

[19] S.K. Baruah, A. Mok, and L.E. Rosier. Preemptive scheduling hard-real-time spo-

radic tasks on one processor. InProceedings of the Real-Time Systems Symposium,

pages 182–190, 1990.

[20] I. Bates and A. Burns. An integrated approach to scheduling in safty-critical em-

bedded control systems. InReal-Time Systems, volume 25, pages 5–37, 2003.

[21] G. Bernat. Response time analysis of asynchronous real-time systems. InReal-Time

Systems, volume 25, pages 131–156, 2003.

[22] E. Bini and S. Baruah. Efficient computation of responsetime bounds under fixed-

priority scheduling. InProceedings of the 15th International Conference on Real-

Time and Network Systems, 2007.

[23] E. Bini and G.C. Buttazzo. The space of rate monotonic schedulability. InProceed-

ings of the 23th Real-Time Systems Symposium, 2002.

[24] E. Bini and G.C. Buttazzo. Biasing effects in schedulability measures. InPro-

ceedings of the 16th Euromicro Conference on Real-Time Systems. IEEE Computer

Society Press, 2004.

[25] E. Bini and G.C. Buttazzo. Scheduling analysis for periodic fixed priority systems.

In IEEE Transactions on Computers, number 53(11), pages 1462–1473, 2004.

[26] E. Bini and G.C. Buttazzo. Measuring the performance ofschedulability tests. In

Real-Time Systems, volume 30 (1-2), pages 129–154. IEEE Computer Society Press,

May 2005.

[27] E. Bini, G.C. Buttazzo, and G.M. Buttazzo. A hyperbolicbound for the rate mono-

tonic algorithm. InProceedings of the 13th Euromicro Conference on Real-Time

Systems. IEEE Computer Society Press, 2001.

[28] E. Bini, Giorgio. C. Buttazzo, and Giuseppe Buttazzo. Rate monotonic analysis:

the hyperbolic bound. InIEEE Transactions on Computer, number 52(7), pages

933–942, 2003.

[29] T. Blickle, J. Teich, and L. Thiele. Systems-level synthesis using evolutionary algo-

rithms. Design Automation For Embedded Systems, 3(1):23–58, 1998.

Bibliography 213

[30] F. Bodmann, K. Albers, and F. Slomka. Analyzing the timing characteristic of task

activations. InProceedings of the IEEE Symposium on Industrial Embedded Systems

(IES’06), 2006.

[31] J-Y. Le Boudec and P. Thiran. Network calculus: A theoryof determinstic queuing

systems for the internet. InLecture Notes in Computer Science. Springer, 2001.

[32] R. Bril, W. Verhaegh, and E. Pol. Initial values for on-line response time calculation.

In Proceedings of the 15th Euromicro Conference on Real-Time Systems, pages 13–

22, 2003.

[33] A.R. Burns and A.J. Wellings.Real-Time Systems and Programming Languages.

Addison Wesley, 2nd edition, 1996.

[34] G.C. Buttazzo.Hard Real-Time Computing Systems. Kluwer Academic, 1997.

[35] Giorgio C. Buttazzo. Rate monotonic vs. edf: judgment day. InReal-Time Systems,

volume 29, pages 5–26, Norwell, MA, USA, 2005. Kluwer Academic Publishers.

[36] J. Carpenter, S. Funk, P. Holmann, A. Srinivasan, J. Anderson, and S.K. Baruah.

Handbook of Scheduling, chapter A Categorization of Real-Time Multiprocessor

Scheduling Problems and Algorithm. Chapman & Hall, 2004.

[37] S. Chakraborty, T. Erlebach, and L. Thiele. On the complextiy of scheduling condi-

tional real-time code. TIK Report 107, ETH Zürich, 2001.

[38] S. Chakraborty, S. Künzli, and L. Thiele. Approximate schedulability analysis. In

23rd IEEE Real-Time Systems Symposium (RTSS’02), pages 159–168, 2002.

[39] S. Chakraborty, S. Künzli, and L. Thiele. Performance evaluation of network pro-

cessor architectures: Combining simulation with analytical estimations.Computer

Networks, 41(5):641–665, 2003.

[40] S. Chakraborty and L. Thiele. A new task model for streaming applications and its

schedulability analysis. InIEEE Proceedings of the Design Autionation and Test in

Europe Conference (DATE’05), pages 486–491, 2005.

[41] D. Chen, A. K. Mok, and S. Baruah. On modeling real-time task systems. InLec-

tures on Embedded Systems, European Educational Forum, School on Embedded

Systems, pages 153–169, 1996.

[42] D. Chen, A. K. Mok, and T.-W. Kuo. Utilization bound revisited. InProceedings of

the 6th Real-Time Computing Systems and Applications, pages 295–302, 1999.

[43] R.L. Cruz. A calculus for network delay. InIEEE Transactions on Information

Theory, volume 37, pages 114–141, 1991.

[44] B.P. Dave and N.K. Jha. COHRA: Hardware-software co-synthesis on hierarchical

heterogeneous distributed embedded systems: Hardware-software cosynthesis on

hierarchical heterogeneous distributed embedded systems. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 17(10):900–919, 1998.

[45] B.P. Dave, G. Lakshminarayana, and N.K. Jha. COSYN: Hardware-software co-

synthesis of heterogeneous distributed embedded systems.IEEE Transactions on

Very Large Scale Integration (VLSI), 7(1):92–104, 1999.

[46] U. Devi. An improved schedulability test for uniprocessor periodic task systems. In

IEEE Proceedings of the 15th Euromicro Conference on Real-Time Systems. IEEE

214 Bibliography

Computer Society Press, 2003.

[47] R. Devillers and J. Goossens. General response time computation for the deadline

driven scheduling of periodic tasks. InFundamenta Informaticae, volume 40, pages

199–219, 1999.

[48] R.P. Dick and N.K. Jha. MOGAC: A multiobjective geneticalgorithm for hardware-

software co-synthesis of distributed embedded systems.IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 17(10):920–935, 1998.

[49] M. Dörfel, A. Mitschele-Thiel, and F. Slomka. CORSAIR:HW/SW-codesign von

kommunikationssystemen mit SDL.Praxis der Informationsverarbeitung und Kom-

munikation (PIK), 23(1):3–13, 2000.

[50] R. Ernst, M. Jersak, K. Richter, and F. Slomka. Transformation of sdl specifi-

cations for systems-level timing analysis. InInternational Symposium on Hard-

ware/Software Co-Design, Estes Park, 2002.

[51] N. Fisher and S. Baruah. A polynomial-time approximation scheme for feasilbility

analysis in static-priority systems. InWork-in-Progress Proceedings of the IEEE

International Real-Time Systems Symposium, Lissabon, December 2004.

[52] N. Fisher and S. Baruah. A polynomial-time approximation scheme for feasibility

analysis in static-priority systems with arbitrary relative deadlines. InProceedings

of the 17th Euromicro Conference on Real-Time Systems, Palma de Mallorca, July

2005.

[53] N. Fisher and S. Baruah. A polynomial-time approximation scheme for feasibility

analysis in static-priority systems with bounded relativedeadlines. InProceedings

of the 13th International Conference on Real-Time Systems, Paris, April 2005.

[54] N. Fisher, S. Baruah, and T. P. Baker. The partitioned scheduling of sporadic tasks

according to static-priorities. InProceedings of the 18th Euromicro Conference on

Real-Time Systems (ECRTS’06), pages 118–127, 2006.

[55] L. George, N. Rivierre, and M. Spuri. Preemptive and non-preemptive real-time

uni-processor scheduling. Rapport de Recherche RR-2966, INRIA, 1996.

[56] S. Goddard.On the Management on Latency in the Synthesis of Real-Time Process-

ing Systems from Process Graphs. Ph. d. dissertation, University of North Carolina

at Chapel Hill, Department of Computer Science, 1998.

[57] S. Goddard and X. Liu. A variable rate execution model. In Proceedings of the 16th

Euromicro Conference on Real-Time Systems, pages 135–143, 2004.

[58] J. Goossens. Worst case response time versus worst caseoffset configuration using

the deadline driven scheduler. InProceedings of the 9th International Conference

on Real-Time Systems, pages 123–132, 2001.

[59] J. Goossens. Scheduling of offset-free systems. InReal-Time Systems, volume 24,

pages 239–258, 2003.

[60] K. Gresser. Echtzeitnachweis ereignisgesteuerter Realzeitsysteme. Phd thesis (in

german), Düsseldorf, 1993.

[61] K. Gresser. An event model for deadline verification of hard real-time systems. In

Proceedings of the 5th Euromicro Workshop on Real-Time Systems, 1993.

Bibliography 215

[62] A. Hamann, M. Jersak, K. Richter, and R. Ernst. Design space exploration and

system optimization with symta/s-symbolic timing analysis for systems. InPro-

ceedings of 25th International Real-Time Systems Symposium (RTSS’04), December

2004.

[63] C.-C. Han and H.-Y. Tyan. A better polynomial-time schedulability test for real-time

fixed priority scheduling algorithms. InProceedings of the 18th IEEE Real-Time

Systems Symposium (RTSS ’97), pages 36–45, 1997.

[64] W. Henderson, D. Kendell, and A. Robson. Improving the accuracy of schedul-

ing analysis applied to distributed systems.International Journal of Time-Critical

Computing Sysemts, 20:5–25, 2001.

[65] R. Henia and R. Ernst. Context-aware scheduling analysis of distributed systems

with tree-shaped task-dependencies. InProceedings of the Design Automation and

Test Conference in Europa (DATE’05), pages 480–485, 2005.

[66] J. Hromkovic. Algorithmics for Hard Problems. Texts in Theoretical Computer

Science. Springer, 2nd edition, 2003.

[67] K. Jeffay and S. Goddard. A theory of rate-based execution. InProceedings of the

20th IEEE Real-Time Systems Symposium, pages 304–314, Phoenix, 1999.

[68] D. Jelkmann, K. Albers, and F. Slomka. Improved feasibility tests for asynchronous

real-time periodic task sets. In Christian Haubelt and Jürgen Teich, editors,Metho-

den und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen

und Systemen, 2007.

[69] M. Jersak.Compositional Performance Analysis for Complex Embedded Applica-

tions. Phd thesis, TU Braunschweig, 2005.

[70] M. Jersak and R. Ernst. Enabling scheduling analysis ofheterogeneous systems

with multi-rate data dependencies and rate intervals. InProceedings 40th Design

Automation Conference (DAC’03), Juny 2003.

[71] M. Jersak, R. Henia, and R. Ernst. Context-aware performance analysis for efficient

embedded system design. InProceedings Design Automation and Test in Europe

(DATE’04). IEEE Computer Society Press, 2004.

[72] M. Jersak, K. Richter, and R. Ernst. Performance analysis for complex embedded

applications.International Journal of Embedded Systems, 2004. Special Issue on

Codesign for SoC.

[73] M. Joseph and P. Pandya. Finding response times in a real-time system.BCS Com-

puter Journal, (29 (5)):390–395, 1986.

[74] S. Kollmann, K. Albers, F. Bodmann, and F. Slomka. Modifications of event streams

for the real-time analysis of distributed fixed-priority systems. In13th IEEE Inter-

national Conference and Workshop on the Engineering of Computer Based Systems

(ECBS’06), Potsdam, 2006.

[75] S. Kollmann, K. Albers, and F. Slomka. Dependencies aware event-driven real-time

analysis for distributed fixed-priority systems. InternalReport 289-vts-60593, Ulm

University, 2007.

216 Bibliography

[76] S. Künzli. Efficient Design Space Exploration for Embedded Systems. Phd thesis,

ETH Zürich No. 16589, 2006.

[77] S. Künzli, A. Hamann, R. Ernst, and L. Thiele. Combined approach to system level

performance analysis of embedded systems. InPoceedings of the 5th IEEE/ACM

International Confernence on Hardware/Software Codesignand System Synthesis,

pages 63–68, 2007.

[78] T.-W. Kuo and A. K. Mok. Load adjustment in adaptive real-time systems. In

Proceedings of the IEEE Real-Time Systems Symposium, 1991.

[79] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitary deadlines.

In Proceedings of the 11th IEEE Real-Time Systems Symposium (RTSS’90), pages

201–209, 1990.

[80] J. Lehoczky, L. Sha, and Y. Ding. The rate-monotonic scheduling algorithm: Ex-

act characterization and average case behaviour. InProceedings of the Real-Time

Systems Symposium, 1989.

[81] J. Lehoczky, L. Sha, J. Strosnider, and H. Tokuda. Fixedpriority scheduling theory

for hard real-time systems. InFoundations of Real-Time Computing: Scheduling

and Resource Management, pages 1–30. Kluwer Academic Publishers, 1991.

[82] J. Leung, editor.Handbook of Scheduling: Algorithm, Models and Performance

Analysis. Chapman & Hall, 2004.

[83] J. Leung and M.Merril. A note on preemptive scheduling of periodic real-time tasks.

In Information Processing Letter, volume 11, pages 115–118, 1980.

[84] J. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of peri-

odic real-time tasks.Performance Evaluation, 2(4):237–250, 1982.

[85] G. Lipari and G.C. Buttazzo. Schedulability analysis of periodic and aperiodic tasks

with ressource constraints.Journal of System Architecture, (46):327–338, 2000.

[86] H. Lipskoch, K. Albers, and F. Slomka. Battery discharge aware energy feasibility

analysis. InProceedings of the 4th international conference on Hardware/ Software

Codesign and system synthesis, pages 22–27, New York, NY, USA, November 2006.

ACM Press.

[87] H. Lipskoch, K. Albers, and F. Slomka. Fast calculationof permissable slowdown

factors for hard real-time systems. InProceedings of the 17th International Work-

shop on Power and Timing Modeling, Optimization and Simulation (PATMOS’07),

number 4644 in Springer Lecture Notes in Computer Science (LNCS), 2007.

[88] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in hard real-

time enviroments.Journal of the ACM, 20(1):46–61, 1973.

[89] H. Liu and X. Hu. Efficient performance estimation for general real-time task sys-

tems. In International Conference on Computer Aided Design, pages 464–471,

2001.

[90] J.W.S. Liu.Real-Time Systems. Prentice-Hall Inc., Upper Saddle River, New Jersey,

2000.

[91] J. Maki-Turja and M. Nolin. Efficient response-time analysis for tasks with offsets.

In 10th IEEE Real-Time and Embedded Technology and Applications Symposium

Bibliography 217

(RTAS’04), pages 462–471, 2004.

[92] Y. Manabe and S. Aoyagi. A feasibility decision algorithm for rate monotonic and

deadline monotonic scheduling.Real-Time Systems, (14):171–181, 1998.

[93] A. Masrur, S. Drössel, and G. Färber. Improvements in polynomial-time feasibility

testing for edf. InProceedings of the Design Automation and Test Conference in

Europa (DATE’08), pages 1033–1038, 2008.

[94] A. Masrur and G. Färber. Ideas to improve the performance in feasibility testing

for edf. In Tei-Wei Kuo, editor,Proceedings Work-In-Progress Session of the 18th

Euromicro Conference on Real-Time Systems, pages 17–20, 2006.

[95] A. Maxiaguine, S. Künzli, and L. Thiele. Workload characterization model for

tasks with variable execution demand. InProceeding Design Automation and Test

in Europa (DATE’04), pages 1040–1045. IEEE Computer Society, 2004.

[96] A. Mok and D. Chen. A multiframe model for real-time tasks. IEEE Transactions

on Software Engineering, 23(10), 1997.

[97] M. Di Natale and J. Stankovic. Dynamic end-to-end guarantees in distributed real-

time systems. InProceedings of the IEEE Real-Time Systems Symposium, pages

216–227, 1994.

[98] J. C. Palencia and M. González Harbour. Offset-based response time analysis of

distributed systems scheduled under edf. InIEEE Proceedings of the 15th Euromicro

Conference on Real-Time Systems (ECRTS’03), 2003.

[99] J. C. Palencia Gutiérrez, J. J. Gutiérrez García, and M.González Harbour. On the

schedulability analysis for distributed hard real-time systems. InIEEE Proceedings

of the 9th Euromicro Workshop on Real-Time Systems, pages 136–143, 1997.

[100] J. C. Palencia Gutiérrez, J. J. Gutiérrez García, and M. González Harbour. Best

case analysis for improving the worst-case schedulabilitytest for distributed hard

real-time systems. InProceedings of the 10th Euromicro Workshop on Real-Time

Systems, pages 35–44, Berlin, 1998.

[101] A.K. Parekh and R.G.Gallager. A generalized processor sharing approach to flow

control in integrated service networks. InIEEE/ACM Transactions on Networking,

volume 1, pages 344–357, 1993.

[102] D. Park, S. Natarajan, and M.J. Kim. A generalized utilization bound test for fixed-

priority real-time scheduling. InProceedings of the 2nd International Workshop on

Real-time Systems and Applications, pages 73–76, 1995.

[103] M. Park and Y. Cho. An efficient feasibility test methodfor hard real-time periodic

tasks. InThe 21th IEEE Real-Time Systems Symposium, 2000.

[104] R. Pellizzoni and G. Lipari. A new sufficient feasibility test for asynchronous pe-

riodic real-time task sets. InProceedings of the 16th Euromicro Conference on

Real-Time Systems, pages 204–211, 2004.

[105] R. Pellizzoni and G. Lipari. Feasibility analysis of real-time periodic tasks with

offsets.Journal of Real-Time Systems, 30(1-2):105–108, 2005.

[106] R. Pellizzoni and G. Lipari. Improved schedulabilityanalysis of real-time trans-

actions with earliest deadline scheduling. In11th IEEE Real-Time and Embedded

218 Bibliography

Technology and Application Systems, pages 65–75, 2005.

[107] P. Pop, P. Eles, and Z. Peng. Schedulability analysis for heterogenous time/event

triggered real-time systems. InIEEE Proceedings of the 15th Euromicro Conference

on Real-Time Systems (ECRTS’03), 2003.

[108] P. Pop, P. Eles, Z. Peng, and V. Izosimov. Schedulabilityy-driven partitioning and

mapping for multi-cluster real-time systems. InIEEE Proceedings of the 16th Eu-

romicro Conference on Real-Time Systems (ECRTS’04), 2004.

[109] P. Pop, P. Eles, Z. Peng, and T. Pop. Scheduling and mapping in an incremental

design methodology for distributed real-time systems. InIEEE Transactions on

Very Large Scale Integration (VLSI), volume 12(8), pages 793–811, 2004.

[110] R. Racu, M. Jersak, and R. Ernst. Applying sensitivityanalysis in real-time dis-

tributed systems. In11th IEEE Real-Time and Embedded Technology and Applica-

tion Symposium, pages 160–169, 2005.

[111] O. Redell. Accounting for precedence constraints in the analysis of tree-shaped tran-

scations in distributed real-time systems. trita-mmk 4, Royal Institute of Technology

(KTH), Stockholm, 2003.

[112] O. Redell.Response Time Analysis for Implementation of Distributed Control Sys-

tems. Phd thesis, trita-mmk 17, Royal Institute of Technology (KTH), Stockholm,

2003.

[113] O. Redell. Analysis of tree-shaped transactions in distributed real time systems.

In IEEE Proceedings of the 16th Euromicro Conference on Real-Time Systems

(ECRTS’04)), pages 239–248, 2004.

[114] O. Redell and M. Sanfridson. Exact best-case responsetime analysis of fixed prority

scheduled tasks. InProceedings of the 14th International Conerence on Real-Time

Systems (ECRTS’02), pages 165–172, Vienna, 2002.

[115] O. Redell and M. Törngren. Calculating exact worst-case response times for static

priority scheduled tasks with offsets and jitter. InProceedings of the 8th Real-Time

and Embedded Technology and Application Symposium (RTAS’02), pages 164–172,

San Jose, 2002.

[116] P. Richard. On the complexity of scheduling real-timetasks with self-suspension on

one processor. InIEEE Proceedings of the 15th Euromicro Conference on Real-Time

Systems (ECRTS’03), 2003.

[117] K. Richter.Compositional Scheduling Analysis Using Standart Event Models. Phd

thesis, TU Braunschweig, 2005.

[118] K. Richter and R. Ernst. Event model interfaces for heterogeneous system anal-

ysis. In Proceedings of the Design Automation and Test Conference inEurope

(DATE’02), 2002.

[119] I. Ripoll, A. Crespo, and A. Mok. Improvement in feasibility testing for real-time

tasks.Real-Time Systems, 11(1):19–39, 1996.

[120] M. Rudorfer, T. Ochs, M. Thiede, M. Missmer, O. Scheickl, and H. Heinecke. Re-

altime system design using autosar methodology. InElektronik automotive: Special

issue AUTOSAR, 2007.

Bibliography 219

[121] P. Scholz.Softwareentwicklung eingebetteter Systeme. Springer, 2005.

[122] M. Sjödin and H. Hansson. Improved response-time analysis calculations. InIEEE

Proceedings of the 19th Real-Time Systems Symposium (RTSS’98), 1998.

[123] F. Slomka. New techniques for the design of distributed embedded real-time sys-

tems. InProceedings of the Embedded World Conference, 2005.

[124] F. Slomka. Simulation of distributed embedded real-time systems. In13th GI/ITG

Conference on Measurement, Modeling and Evaluation of Computer and Commu-

nication Systems, pages 449–452, 2006.

[125] M. Spuri. Analysis of deadline scheduled real-time systems. Interner Bericht 2772,

INRIA, 1996.

[126] J.A. Stankovic, M. Spuri, K. Ramamriham, and G.C. Buttazzo.Deadline Scheduling

for Real-Time Systems: EDF and Related Algorithms. Kluwer Academic, 1998.

[127] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. Design space exploration for

the network processor architectures. In1st Workshop on Network Processors at the

8th International Symposium for High Performance ComputerArchitectures, 2002.

[128] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard

real-time systems. InProceedings of the IEEE Conference of Circiuts and Systems,

2000.

[129] K. Tindell. Adding time-offsets to schedulability analysis. Technical Report YCS

221, University of York, Dep. of Computer Science, England,1994.

[130] K. Tindell and J. Clark. Holistic schedulability analysis for distributed hard real-

time systems.Microprocessing and Mircoprogramming, 40(23):117–134, 1994.

[131] E. Wandler.Modular performance analysis and interface-based design for embed-

ded real-time systems. Phd-thesis nr. 16819, ETH Zürich, 2006.

[132] E. Wandler, A. Maxiaguine, and L. Thiele. Quantitative characterization of event

steams in analysis of hard real-time applications. InProceedings of the 10th

IEEE Real-Time and Embedded Technology and Application Symposium (RTAS’04),

pages 450–459, Toronto, 2004.

[133] E. Wandler and L. Thiele. Characterizing workload correlations in multi processor

hard real-time systems. InProceedings of the 11th IEEE Real-Time and Embedded

Technology and Application Symposium (RTAS’05), pages 46–55, San Francisco,

2005.

