Approximative Real-Time Analysis

DISSERTATION

zur Erlangung des akademischen Grades eines
Dr. rer. nat.
der Fakultat fir Ingenieurwissenschaften und Informatik
der Universitat Ulm

vorgelegt von
Karsten Albers
aus Erlangen

Institut fir Eingebettete Systeme / Echtzeitsystem, 2011

ulm university un|ver5|tat

U

Amtierender Dekan: Prof. Dr.-Ing. Klaus Dietmayer
Universitat Ulm, Deutschland

Gutachter: Prof. Dr.-Ing. Frank Slomka
Universitat Ulm, Deutschland
Gutachter: Prof. Dr. Helmuth A. Partsch

Universitat Ulm, Deutschland
Externer Gutachter: Prof. Dr. Lothar Thiele
ETH Zurich, Schweiz

Tag der Promotion: 08.04.2011

Contents

List of Figures

List of symbols

Chapter 1. Introduction

Chapter 2. Related Work

2.1
2.2,
2.3.

Schedulability analysis for task sets with static ftiies
Schedulability analysis for task sets with dynamioities
Event models

Chapter 3. Approximation for dynamic priorities

3.1
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.

Periodic task system

Capacity calculation for the period task model
Event Stream Model

Proofs

Approximation error

Complexity

Comparison to related work

Chapter 4. Adaptive schedulability tests

4.1.
4.2.
4.3.
4.4,

Dynamic error analysis

All-approximated algorithm

Generalization of the maximum test interval
Complexity

Chapter 5. Approximation for static priority scheduling

5.1
5.2.
5.3.
5.4,
5.5.

Exact schedulability analysis
Exceeding costs

Approximation of Static Priorities
Dynamic adaptive test
Complexity

Chapter 6. Evaluations

6.1.
6.2.
6.3.
6.4.

General setup of the experiments

Superposition approximation

Dynamic Approximation Approaches

Approximation and Dynamic approximation for statiopties

3

11

15
17
20
32

49
50
56
57
60
66
69
70

73
73
77
82
82

85
85
91
95
99
103

105
105
107
116
127

4 CONTENTS
6.5. Previous approaches

Chapter 7. Hierarchical event spectra
7.1. Limitations of the event stream model
7.2. Spectra
7.3. Reduction and normalization of hierarchical eventspe
7.4. Capacity Function
7.5. Modeling common event models with event spectra
7.6. Event Spectra Algebra
7.7. Schedulability analysis
7.8. Limitations of the hierarchical event stream model

Chapter 8. Approximation of hierarchical event spectra
8.1. First approach: Separate approximation for each eleme
8.2. Second approach: Global approximation for each elemen
8.3. Summarizing Examples

Chapter 9. Case-Study

Chapter 10. Summary and Outlook

Zusammenfassung

Bibliography

132

139
139

141
148
150

152
154
161

165

167
168
172
183

189

197

201

211

1.0.1

201
221
222
23.1
2.3.2
2.3.3
234
235
2.3.6

3.11
3.1.2
3.1.3
34.1
3.5.1

41.1
41.2
421

5.1.1
51.2
5.2.1

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

List of Figures

Example of a distributed hard-real time system phbtisn [77]

Example task set

Example demand bound function

Example demand bound function with large ratio
Example Event Sequence

Example event bound function

Example event streams ([60])

Transformation periodic event sequence into evesaist
Scheduling network for real-time calculus

Real-Time Calculus of single task

Approximation of a single task

Adding two approximated demand bound functions
Visualization of the approximation bound
Visualization of lemma 3.4.3

Approximation related to the time

Exact demand bound function

Graphical visualization for an example of the dynaenior test

Graphical visualization of the all-approximatiogaithm

Example of satisfaction intervals
Worst-case response-time with satisfaction interva

Task set example for exceeding costs

Superposition: ratio of schedulable task sets fdedint utilizations

Superposition: ratio of schedulable task sets (3G}as

Superposition: ratio of schedulable task sets (56Kk)a

Superposition: ration of schedulable task sets fteréint average gaps

Superposition: ratio of schedulable task sets fdemiht ratios between the
largest and smallest task in the task set (100 tasks pere#isk s

5

12

17
23
31
34
35
37
37
44
44

52
53
54
63
68

73
74
79

89
90
92

107
108
109

110

111

6 LIST OF FIGURES

6.2.6 Superposition: average run-time for different mditions 111
6.2.7 Superposition: average run-time for different maitions (500 tasks) 112
6.2.8 Superposition: average run-time for different méitions for only the
schedulable task sets 113
6.2.9 Superposition: maximum run-time for different atliions (with PDC) 114
6.2.10 Superposition: maximum run-time for differentiagtions (50 tasks) 114

6.2.11 Superposition: maximum run-time for differentiatitions with PDC (500

tasks) 115
6.2.12 Superposition: maximum run-time for differentoatbetween smallest and
largest task in the task set 115
6.2.13 Superposition: Average run-time for differentiméitions with exponential
distribution of periods 116
6.2.14 Superposition: maximum run-time for differentiattions with exponential
distribution of periods 117
6.2.15Superposition: run-time for different number ok&am the task sets 117
6.3.1 Adaptive analysis: maximum run-time 118
6.3.2 Maximum computation time of adaptive analysis (5@gps 119

6.3.3 Adaptive analysis: maximum run-time - exponentiatritiution of periods 119

6.3.4 Adaptive analysis: average run-time 120
6.3.5 Adaptive analysis: maximum run-time (500 tasks) 121
6.3.6 Adaptive analysis: average run-time (500 tasks) 121

6.3.7 Adaptive analysis: maximum run-time for differertioa between largest and
smallest period for 98% utilization 122

6.3.8 Adaptive analysis: maximum run-time of the test fdfedent number of tasks

in the task set for 98% utilization 124
6.3.9 All-approximation test: different kind of orders 124
6.4.1 Static analysis: ratio schedulable task sets - nadistalbution of periods 128

6.4.2 Static analysis: maximum required computation tioreekact static analyses -

normal distributed periods 128
6.4.3 Static analysis: average run-time - normal disteyteriods 129
6.4.4 Static analysis: average run-time - normal distedyteriods (500 tasks) 130

6.4.5 Static analysis: maximum run-time for different nienbf tasks - normal

distributed periods 130
6.4.6 Static analysis: maximum required run-time for agpnative static analyses

algorithms - exponential distributed periods 131
6.4.7 Static analysis: average run-time - exponentiatidigied periods 131

6.5.1 EDF: acceptance ratio of the approach of Masrur ehatnfal distribution) 132

LIST OF FIGURES 7

6.5.2 EDF: max run-time compared of approach of Masrur gnalkmal distribution) 133

6.5.3 EDF: acceptance ratio of the approach of Masrur eeap. (distribution) 133
6.5.4 EDF: max run-time compared of approach of Masrur deap. distribution) 134
6.5.5 EDF: average run-time of the previous approaches 134
6.5.6 EDF: maximum run-time of the previous approaches 135
6.5.7 Static priorities: average run-time of previous apghes 136
6.5.8 Static priorities: maximum runtime of previous agiroes 136
7.1.1 Example Event Spectrum 140
7.1.2 Example task graph generating bursts 141
7.2.1 Hierarchical event spectnfﬁ@ 143
7.2.2 Example for overlapping events of different periods 451
7.2.3 Example event spectrum 146
7.2.4 Example simple periodic event sequence 147
7.4.1 Example service bound functions 151
8.1.1 Approximated hierarchical spectrum bound function 701
8.2.1 Case one simple event spectrum element 173
8.2.2 One-level event spectrum element 175
8.2.3 Approximation for hierarchical event spectra 179
8.3.1 Example 8.1.2: Approximated hierarchical event labfumction 184
8.3.2 Example 8.1.2: Periodic model with minimum separediistance 185
8.3.3 Example 8.1.2: Approximation of the real-time calsul 186
9.0.1 Example of a distributed hard-real time system pbbtisn [77] 189
10.0.1 Approximation einer einfachen Task 207
10.0.2 Anteil der als planbar klassifizierten Tasksets 208

10.0.3 Maximale Laufzeit der Echtzeitanalysen fiir versdbn Approximationstufen 208

10.0.4 Rechenzeiten der dynamischen Approximation undPdesessor-Demand-
Criterion 209

List of symbols

descriptor meaning First defined in

T task chapter2

r task set chapter 2

Ti j j- th job of a taska; chapter 2

p period chapter 2

c execution-time chapter 2

ct worst-case execution-time chapter 2

c” best-case execution-time chapter 2

d relative deadline chapter 2

U utilization chapter 2

At interval section 2.1

r response time section 2.1

hp(1) set of tasks with a higher priority than section 2.1

] jitter section 2.1

S scheduling point set section 2.1
o() demand bound function section 2.2.2
X0 capacity bound function section 2.2.2
Atmax maximum test interval section 2.2.3
At cm least-common multiple of periods interval section 2.2.3
AB() busy period function section 2.2.3
n number of tasks section 2.2.4
nQ event bound function section 2.3.2
© periodic event sequence section 2.3.2
6 event element section 2.3.2
a offset / initial interval section 2.3.2
Y() interval bound function section 2.3.2
S minimum separation distance section 2.3.4
o arrival curve section 2.3.6
a upper arrival curve section 2.3.6
a' lower arrival curve section 2.3.6
B service curve section 2.3.6
BY upper service curve section 2.3.6
B' lower service curve section 2.3.6

10 LIST OF SYMBOLS

‘ descriptor‘ meaning First defined in
y either arrival or service curve section 2.3.6
P resource section 2.3.6

inf() infimum section 2.3.6
sup() supremum section 2.3.6
o'() approximated demand bound function section 3.1
£ approximation error section 3.1
k number of exact evaluated test intervals section 3.1
C capacity section 3.2
PO request bound function section 5.1
&() exceeding costs function section 5.2
6 event spectrum section 7.2
Ok approximated event spectrum wkhexact evaluated test intervadls section 8
ot upper event spectrum section 7.2
6 lower event spectrum section 7.2
6 event spectrum element section 7.2
n limitation (amount of costs / number of events) section 7.2
L limitation (length of interval) section 7.2
f slope section 7.2

CHAPTER 1

Introduction

An average car of today has a large number of embedded sybmdting applica-
tions. The requirements to reduce fuel consumption concbivith the pollution reduction
leads to complex motor management systems. A growing numibeériver assistance
systems like the break management, the electronic statiizprogram, the potential col-
lision detection and so on, are integrated in modern cars.

The result of all these new features is the integration ofaid ECUs (electronic
control units) with hundreds of functions in a modern car(i@121] speaks of up to 100
ECUs) and that the embedded systems are responsible fomoétee than 20% of the total
costs of a car. All these embedded car systems are connextedmmunicate with each
other. In future there will be a lot more of such systems ligeto-car communication to
get a complete picture of the traffic ahead.

Cost reduction is a very important topic for today’s autoneindustry. One way
to do this would be to reduce the number of different systemasta substitute expensive
systems with inexpensive ones, if possible. Nowadays, néttye systems build in cars
are designed independently of each other, often from diffesuppliers. They form a
separate unit of hardware and software. In the future, tiegation of several applications
on one system will be required. For example AUTOSAR is an aggh of the automotive
industry in this direction [120]. It allows the separatidritte functionality from the ECUs
and enables therefore the integration of functionalityrfrdifferent vendors on the same
ECUs.

But, as many of these applications can be critical for safegyneed to be able to
rely on these kinds of systems. It is not only necessary tiestet systems always deliver
the correct results but it is required that they do this waittiie available time. For such
real-time systems methods are required to prove and pnetiihility. The best would be
to have formal methods that can proof mathematically thetie requirements. This is
not an easy task, especially if several embedded systeneceanected and work together
or interfere with each other.

The module-based design processes make it possible toetaedtomplexity in soft-
ware and hardware designs. Systems are constructed ushgfactosed modules. These
modules can be designed and developed separately. Thespuspmodularization is to
split the challenging job of designing the whole system intdtiple smaller jobs. Another
purpose is to allow the reuse of modules in different desigiso for using IP (Intellectual
property) components, which are developed by third-paetydors, it is necessary to have
a module-based design concept.

11

12

1. INTRODUCTION

Hierarchical Round Robin ERCOSEK
round = 10
TDMA
round = 10
slot =6 tn)
e He)
hight ow v N
— : " :
ol o5 o9
T1
P =150 ED = [20, 20] ¢) harwa!'e
] =450 i : priority = highest
D=0 q H ED = [5, 15]
B2y : 3 10
< > a2 \‘/\ : o6 \Y\ 10 14
S5 = T2 je { C2 |= Té
ED = [20, 20]: slot = 3 preemptive P =150
ED = [8, 16] priority = high J =300
ED = [4, 4] D=0
g7 11

-
s3 g \;f\

o7

all

ol2

cooperative
priority = low

ED = [9, 12]
12

~ cPuL
FIGURE 1.0.1.
lished in [77]

b
(56 >‘ a4 \Y.:\A a8

cooperative
priority = lowest
ED = [10, 11]

N ERUN— -

Example of a distributed hard-real time system pub-

For each set of modules a well-defined interface-conceptdonecting the different
modules is required. For developing real-time systems wiiith a modular approach it
would be interesting to have a concept for analyzing theesysthich can handle the real-
time aspects of the different modules separately. Withdbigept it is possible to hide the
details of the scheduling and its real-time analysis infidemodules and to abstract the
interface from the construction of the modules. For the global-time analysis it is nec-
essary to propagate the analyses results of the differettil@®in an abstract way through
the system. The global analysis can than be build by commetite local analyses of the
single modules by well-defined interfaces. Therefore itsiseatial to have an expressive
and efficient interface describing the influence in time of emodule to the next module.
One aspect of this interface is the timing description ohésewhich are produced by one
module to activate the next following module. Another asfethe remaining computa-

tion capacity for the next module left over by the previoudules.

Consider for example a system as shown in figure 1.0.1. Clodaskst; that can be
located on different resourcgs process the activations. There are three chains of tasks.
The tasks are distributed on two processors and one congdais. Each of these tasks
can be considered as one separate module. The resquoegsbe processors, dedicated

1. INTRODUCTION 13

hardware or the communication network. The tasks are detiveither by events from
other tasks or events from dedicated sources (in the mod&B.resource CPU2 uses a
fixed-priority scheduling. The available capacity for edask on CPU2 depends on the
totally available capacity for CPU2 and on the consumedaipaf all tasks with a higher
priority on the same resource. See chapter 9 for a detailettigéon of the example.

First, we need an accurate but compact model to describeséregsein the network.
We need an event model to describe the incoming and outgeiigt streams and we
need a model for the existing and remaining capacities. rgkage need a methodology
to analyze each task together with his incoming streamss igithodology requires not
only to proof the real-time constraints of the task itself &iso to calculate the outgoing
streams.

Having many different modules and the requirement of codticBon in mind we
need an optimization process to find the cheapest set of aaedeomponents that can
handle all the tasks and the best distribution of the taskgd®n hardware and software
components that keeps the costs low but still achieves edisgary real-time requirements.
For the optimization it is necessary to analyze thousandgfefent possible distributions
and therefore to perform a complex real-time analysis fahes# them. The previously
available real-time analysis approaches are either orfficgmnt or have a exponential or
pseudo-polynomial complexity. Sufficient means that ttaeeemany schedulable systems,
especially those leading to a high utilization of the systemhich cannot be classified
correctly with these approaches. Therefore an efficienhatkfor real-time analysis is
required that reduces the run-time of the previous methods.

The purpose of this thesis is to develop such a new efficiepforaeal-time analysis.
The idea is to allow a faster analysis by using a bit of unagtaAn approximation algo-
rithm solves this. The advantage of this approximation el (polynomial) complexity
than the one of previous results and that it can guarantéetbetmaximum run-time and
the degree of uncertainty. In chapter 3 we propose such awxipgation for the optimal
EDF scheduling, in chapter 4 we propose fast exact analigisithms based an the ap-
proximation algorithms using a dynamically changing degrEexactness and in chapter
5 we extend both kinds of algorithms to static priority sahéd).

Additionally, we contribute to the theory of event modelsheTreal-time calculus
and the sub-additive and super-additive event bound fomst{and also service / capac-
ity bound functions) on which the real-time calculus is lthaee the key concept for the
schedulability analysis. The answer on the question howyreaants can occur at most /
at least within any possible interval of lengkhfor each interval lengtit leads to a inte-
grated theory on schedulability analysis. These functéxtisact the worst-case situations
of all possible concrete schedules into one single desanipiVe call this concept event
spectrum, because an event spectrum contains all possiloét-vase event densities like
the light spectrum contains all possible wavelengths oflifierent colors of light. Having
an efficient and compact description for event spectra whildws a fast calculation of
the values for each interval leads to an efficient real-timadyssis. Many proposed models
in the real-time community are concrete descriptions ohespectra or can be interpreted

14 1. INTRODUCTION

as a description of event spectra. Examples are the eveatistnodel [61] (introduced in
section 2.3.2), the periodic model with jitter and minimueparation distance (introduced
in section 2.3.4), the concrete description and the appration of the real-time calculus
curves (introduced in section 2.3.6). Also most of the asialproposed for the periodic
model, the periodic model with jitter and the recurring e task model are fulfilling
the conditions of event spectra. Of course our approximatia all the analysis algorithm
proposed for them in chapter 3, chapter 4 and chapter 5 aeel ladso on event spectra.

In this work we propose a new concrete description for eveattsa, the hierarchical
event spectra model. It is a general model that overcomes $iaritations of the event
stream model and is especially suitable for modeling alllkifibursts efficiently.

We have already published several ideas and concepts gupothis thesis. In [5]
we have presented the superposition approximation asdiysEDF systems. An early
idea of the approximation was developed in our master tHé$isn [6] we have extended
this analysis to new fast exact analysis and proposed thandignerror test and the all-
approximation analysis. Also we have outlined there thati@hships of the superposition
analysis to previous work. This covers a sufficient analgpjgroach proposed by U. Devi
[46] and a proposed approximation for the real-time caksalpproach [37, 38]. We have
proposed our extension of the approximation to static fiyischeduling and also of a fast
exact analysis algorithm to static priority scheduling. [8first version of the hierarchical
event spectra model, which we will introduce in chapter 3 l@en published in [2], an
advanced version in [4].

CHAPTER 2

Related Work

Despite that the first fundamental work in the area of scraddllitly analysis is more
than 30 years old, many questions in this area are still ddest achievements have been
made in the past 10 to 15 years. Nearly all work in the area tite seminal work of Liu
and Layland [88]. Liu and Layland consider a simple task nhtftl consists of a set of
independent preemptive tasks bounded on one processimgmieEach task is described
by a worst-case execution time and a deadline. A task is etvokultiple times and the
invocation rate is described by a single period only. Thekwsrestricted to task sets in
which the deadline of each task is equal to the period of itedation rate. So, a new
invocation can only occur in this model after the processifitpe previous invocation has
finished.

Each invocation is called an event of the task and leads teereeution of the task
called a job of the task. The event pattern of a task deschbesevents of this task can
occur. It is assumed in the model that in the worst-case,tewafnall tasks can occur
concurrently. Liu and Layland proved for this model the oratiity of the deadline mono-
tonic priority assignment for static priority schedulinggks with a smaller deadline gets
a higher priority, those with a longer deadline a lower pgtyor They also proved the opti-
mality of earliest deadline first (EDF) scheduling; a scHeduwith dynamic priorities, in
the sense that every task set that cannot be scheduled by &f®Rdall of its deadlines
cannot be scheduled by any other scheduling strategy. iaddity, they give a sufficient
schedulability condition for the deadline monotonic asgignt and proved that systems
using preemptive EDF scheduling meet all their deadlindsssrthey are overloaded, e.g.
their utilization exceeds 100%.

Unfortunately, most of these results are no longer validiwthe restrictions of the task
model are relaxed. The utilization conditions are stilidéh case of extended deadlines
but they are no longer valid for tasks having deadlines smé#flan their corresponding
periods. For such task sets the optimality condition of EBfains true but the RM
priority assignment has to be exchanged with the deadlineotoaic assignment (DM)
[84], giving those tasks a higher priority having a smalleadline assigned to the task.
Note that the RM priority assignment is only a special casb®DM priority assignment
in case of the simple task model having only tasks with a deadqual to the task period.

The schedulability analysis tells whether a given task #btawgiven scheduling keeps
always all of its deadlines. The result of the schedulabditalysis is independent of the
concrete schedule and the concrete stimulation of a systdong as both are within the

15

16 2. RELATED WORK

given bounds of the task set and the scheduling scheme. @warof this area are given
in [33, 34, 82, 90].

We have to distinguish between the analysis of distributetiat uni-processor sys-
tems. Distributed systems can be distinguished into nputicessor systems and hetero-
geneous distributed systems. In multi-processor systhare exist no fixed distribution
of the tasks on the single processors and also no or only f@erakencies between the
tasks. This leads to a centralized scheduling scheme. 1h1[7,5, 36, 54] approaches for
different scheduling schemes with or without task migmatoe introduced. We will not
consider multi-processor systems without a fixed taskibigipn despite that some of the
proposed approaches are useful also for this area [11, 54].

For the analysis for heterogeneous distributed systemsotiisideration of dependen-
cies between the tasks is required. Normally system arthitewith a fixed distribution of
the tasks on the processing units of the system is used. $trdodtion (and partitioning) of
the system can be done separately for the analysis by théogever with an optimization
process [29, 44, 45, 48, 49]. The schedulability analysistban use a fixed distribution
of the tasks. The holistic scheduling analysis [130], aremesion of the response-time
analysis for single processor systems, which will be exgdiin the following section,
uses the jitter to cover the dependencies between the faskas improved and extended
by several subsequent approaches [64, 97, 99, 100, 1121 13},To cover dependencies
between tasks on the same processing unit the transactidal nj®29] was developed.
The key concept is to group dependent tasks into transactibhe approached was im-
proved and combined with the holistic scheduling analysi§0, 98, 99, 111, 112, 113].
Approaches for calculating certain kinds of task depenigsnare for example given in
[65, 74, 75].

In several approaches the analysis of task sets with spet@aacteristics have been
considered. This includes for example task sets with regoeonstraints [85], mixed time-
and event-activated tasks [107, 108, 109], self-suspegrdigks [116] and task sets with
selectable offsets [59]. All these approaches are speethtb cover one characteristic of
the system only.

General holistic approaches for the schedulability anslgs distributed systems are
given for example with the extended periodic model [50, &,689, 70, 71, 72, 110, 117,
118] and the real-time calculus approach [31, 39, 76, 78,198, 128, 131, 132, 133].
These approaches, and there relationship to this worknaaduced later in detail.

In the following sections we will give a closer look on the sdulability analysis
for uni-processor systems. The schedulability analysi®ithe worst-case situations,
especially the worst-case densities of events. Relaxiagettworst-case situations will
preserve the schedulability condition. These circum&ardiow the integration of tasks
which do not have a constant invocation rate or for which trenepattern is not known.
Those tasks are called sporadic tasks. For these tasks thieum time between two
events of the task is used as period in the schedulabilitg.téote, that this might lead
to a very pessimistic analysis for tasks having a minimurtadise between events that is
much lower than the average distance between consecutwsanf the task.

2.1. SCHEDULABILITY ANALYSIS FOR TASK SETS WITH STATIC PRI®RITIES 17

P
T
o A =) =)
T H 1
ct T T T T
LR 12 13 14

Too

3 | --*+_ *

ms
T31

31

FIGURE2.0.1. Example task set

Let I be a task set having taskse " with T = (pr,¢{,d;) and T, be then-th job
of taskT;. Letd; be the relative deadling; be the worst-case execution time gmdbe
the period of (or minimum distance between) the eventsaigr. LetU; = %—i be the
utilization of taskt andUr = ¥ ;cr Ur = Srer ‘;—{ be the utilization of the complete task
set. A task set is called rate monotonic if for all tagkia the task sef the period is equal
to the deadline of the tagk/'t € I" : p; = dr) and the task with the smaller period/ deadline
gets the higher priority.

2.1. Schedulability analysis for task sets with static pridties

Let us first consider the previous results in the area of fixeatipy scheduling.

THEOREM2.1.1. [88] Let n= |I'| be the number of tasksin I'. All tasks of an rate
monotonic task set meet their deadlines if

Ur <n(V2-1)
PROOF See [88]. O

The analysis guarantees the schedulability of task setadpatilization not larger than
the given bound. For large numbers of tasks in the task sehe-ge the test bound will
convergeto In2, that is approximately a utilization of 68.3For task sets with utilizations
larger than 68% it is uncertain whether they meet all deadlines or not. r@toee the
analysis is only sufficient.

This first schedulability condition for RM scheduling of Land Layland was im-
proved several times. In [42] the test bound was improveddmsiclering possible rela-
tionships between the periods of different tasks of thesask The results of [102, 63, 89]
are based on a similar idea. The latest result in this ardeislyperbolic Bound (HB), a
schedulability condition proposed by Bini et al. [22, 23, 23, 28]:

18 2. RELATED WORK

THEOREM2.1.2. A rate monotonic (RM) task set (deadline equal to the periddise
tasks) is schedulable with fixed priority scheduling and a BtMrity assignment if

Ur+1)<2
vrel

PROOF See [27] O

This bound is better than the previous bounds and improeeadbeptance ratio up to
/2 compared to the bound proposed by Liu and Layland. All tisekedulability bounds
can be evaluated fast even for large task sets. Unfortynétely are only sufficient, e.g.
not all schedulable task sets can be recognized as such tasthadditionally, the bounds
mentioned are only valid for the restricted RM task model.

For an analysis which is both sufficient and necessary thetveaise response-time
analysis was developed initially by Joseph and Pandya [ii8]later improved in [9].
It calculates the worst-case response times of each taskagely by using a fixed-point
iteration, taking the interferences by higher priorityksito account:

THEOREM?2.1.3. [73] For the worst-case response timgaf a taskr € I' is given by
the smallest value forrfulfilling the following equation:

It
rr=cf + Z {—-‘ cl
vr'ehp(t,l) Pr

PrROOF The fixed-point iteration is necessary because the resgone depends on
the number of tasks interfering within this time, which agdépends on the response-time
itself. The calculation would start with e.g. the executiiome of taskr as initial value for
the response time. All interferences within this executiore are then considered and the
initial response time is extended by the delay caused by timsrferences. For a fixed-
priority scheduling scheme only interferences by tasks wihigher priority are relevant
(hp(t,)). In the worst case each of these interferences causes yawidathe worst-
case execution time of the task causing the interferenctheaworst-case length of the
delay. Extending the calculated initial response time legédelays leads to a new (longer)
response time, that can result in new additional interfeeen These interferences cause
additional delays leading to a longer response time and sorbe fixed-point iteration
finishes when there are no new interferences or the responeeof a task exceeds its
deadline. O

The response time analysis was the origin for a lot of workeding this result. The
introduction of a jitter was necessary to model variablesti. With jitter the arrival of
events is still assumed to be periodic in general but singdats can arrive a bit earlier
or later compared to the strict periodic arrival scheme. ifiterval in which these earlier
or later arrival can happen is denoted jitter interval. Efi@re the stimuli of a task is
described by the periog and the jitterj. The events generally occur periodically but the
arrival of each event can vary within Therefore the average distance between two events
is p. Due to the jitter the minimum distance between two eventshmp — j and the
maximum distance can @+ j.

2.1. SCHEDULABILITY ANALYSIS FOR TASK SETS WITH STATIC PRI®RITIES 19

A jittering high-priority task can cause more interferetez@ lower-priority task than
a non-jittering periodic high-priority task. Thereforestmtroduction of the jitter leads to
a modified worst-case response-time calculation. The nuofdaterferences$(At, 7) of
a taskr within an intervalAt can be calculated by:

|(At7'[) = ’714, w—‘ — ’714, M—‘ — ’71+M _ _p—‘ — [M—‘
p p p p p

Therefore the introduction of jitter leads to the followimpdified response time anal-

ysis:

THEOREM 2.1.4. [9] For a task T with a period p a jitter j; and a worst-case
execution time £ the response time is given by the minimum value fdulfilling:

fr= C;r +ijr+ ’V
vr'ehp(t,l) Pr

PrRoOF Follows directly out of the previous considerations. O

These results are only valid for task sets in which all taskgeha deadline smaller
or equal than their period. In case of larger deadlines, thistacase response time is not
necessarily the response time of the first job of a task. A ppbrig a response time being
longer than the period of the task can finish its executicer itan the arrival of the next
following job. It can postpone the execution of this follagijob and therefore can cause
an even longer response time for this job. The previous aisatan be extended to solve
also these arbitrary deadline systems [79, 130]. The id&adalculate the response time
of the first, second, third, job of a task until a job is fiduthat finishes before the
invocation of the next following job. The resulting resperigne of the task is than the
maximum of all these job response times.

THEOREM2.1.5. [79, 129] LetT; q be the first job of task; having a response time
smaller than the invocation time of the next following ewa (r; < (q+ 1)p;i) in a set
of jobs following a simultaneous release of a job of all taiskthe task set. The response
time 1 of 7; is given by:

Il = Mah<q(jr +n—(N—1)pr)

r +./
rm=n-cf + n JT-‘C*

T/
vr'ehp(t,l) ’V Pr

PROOF See [79]. O

In [122] some improvements for a faster implementation and32] better initial
start values are proposed. In [21] the response time of akwensecutive jobs and in
[91] for transactions of tasks is considered.

An alternative analysis is the scheduling point test [80]scheduling poin& for a
taskt is a pointin time in which all existing jobs of tasks with e¢jaehigher priority than
T and the task itself are finished. For the task itself it is amgessary that the currently
considered job is finished. In this case, the schedulabiiity regard to a specific deadline

20 2. RELATED WORK

dy, is given when there exists a scheduling point with regard that is equal or smaller
thandy,.

THEOREM 2.1.6. (similar to [80, 81]) A task sel is schedulable with respect to a
taskt when there exists a time pointSd; with:
S< [E-‘ cl,

vr'ehp(t,lN)Ut

PROOF. See [80]. O

This test can be extended to the arbitrary case. Due to tlsip@existence of several
concurrentinstances of a task the first scheduling poinhhaigcur later than the deadlines
of the first instances of a task. It is then necessary to axhditiy prove for all deadline®
occurring before the first scheduling poBithat there exists a reduced scheduling p&int
with regard to all tasks of higher priority and all such imatas of the task that have to be
finished at deadlin®.

Manabe and Aoyagi [92] reduce the set of relevant schedpligts and proved that
in all cases in which a scheduling point exists, at least dement of the reduced set is
also a scheduling point.

THEOREM2.1.7. [92] If there exists a scheduling point with regard to a tasthan
one point in R is also a scheduling point

R= |J Q&

' ehp(t,lNUt

t t
v ={lo=Jprlte(U Qu At < [—|pr+dv)}
Pe rehp(t.M)\hp(T',1) Pr

Q§ :{dr}

PROOF See [92] O

Other than in previously introduced analysis conceptssitreeof this set and therefore
the complexity of this test only depends on the number ofgaskthe task set and is
independent of the periods and deadlines involved. Thed$ittes set is exponential in the
number of tasks and therefore the analysis has an expohemtiplexity too.

2.2. Schedulability analysis for task sets with dynamic prities

Allowing a dynamic change of the priorities of tasks takiig ttoncrete schedule
into account can lead to a higher possible utilization of apssor and therefore to the
schedulability of more tasks on the same processor. The impsirtant scheduling rule
using dynamic priorities is earliest deadline first sched[EDF). Liu and Layland proved
in [88] that EDF is an optimal scheduling in the sense thatéfsk set is schedulable on a
processor and keeps all its deadlines, it is schedulabig &DF scheduling.

2.2. SCHEDULABILITY ANALYSIS FOR TASK SETS WITH DYNAMIC PRORITIES 21

2.2.1. Analysis with linear complexity. For the simple task and event model in
which every task has a stimulation period being larger oraétm the deadline of the
task, EDF allows a utilization of 100% (without consideoatiof the scheduling over-
head). Therefore each task set that does not overload arcessischedulable with EDF
scheduling. Remember, that this bound is as low as 69.3%xal-fpriority scheduling.

The only step required for a schedulability analysis for Bilh this bound is calcu-
lating the utilization of the task set on its resource. Asasktset that overloads a resource
is schedulable this simple test is sufficient and necesdamjortunately, the situation is
not that easy when using a more restricted task or event mddehe case that a task
set includes at least one task having a deadline smallerttieaperiod of its events, the
utilization-based analysis is no longer sufficient.

There are simple sufficient schedulability analyses eveness restricted models
available. One can be followed out of the utilization-baaedlysis by exchanging the
period with the deadline of the task.

THEOREM2.2.1. [90] A task setl” containing taskg € I' with deadline ¢d smaller
than their period p is schedulable on a given resource if
C+

T <1

vTer dr

PROOR Assume a more restricted task §éin which all tasks are assigned a period
py with pp = min(de, pr). For this task set the following condition holdS:,;<r % >

2
2vrer’ o Ur.

T/
"
If Svrer % < 1then alsdy vy ;—TT/, < 1, which means that the task $étis schedu-
lable if the task seft fulfills the lemma.l’ is only a restricted version &fand sd™ can be
generated out df’ by relaxing some periods. AS is schedulable and relaxing periods of

a schedulable task set leads again to a schedulable tagkisasthedulable. O

Unfortunately, this test is only sufficient and many schablld task sets cannot be rec-
ognized as schedulable by this test. The utilizations aebie by the recognized schedu-
lable task sets are quite lower than the average utilizatidall schedulable task sets. For
example, if a task set includes a task having a deadline ¢qutl worst-case execution
time, the test would allow no other tasks in the task set efvitis task only needs a low
fraction of the available processor time. Therefore a meadistic analysis was required.

Devi improved the sufficient analysis in [46].

THEOREM?2.2.2. [46] Atask sefl is schedulable if for each tagke I the following
condition holds:

Z C_;r’+di Z (pr’min(pr’adr’))cj/gl
vier P Goy Pr

T'el
dy<dr dy <dr

PROOF See [46] O

22 2. RELATED WORK

This test is more accurate than the previous test. It wagata@d that this test returns
“schedulable” in all those cases in which the previous tetsirns also “schedulable”. Un-
fortunately, the test is still only sufficient. In sectiorY 3ve will investigate the sufficiency
of the test and show interesting relationships of this tedtrasults achieved in this theses.

Recently Masrur et al. proposed another sufficient test lwvie will introduce at the
end of section 2.2.3 as it requires some more theory in a@dvanc

For a sufficient and necessary proof of the schedulability tafsk set having at least
one task with a deadline smaller than the period of the tasléats a more complex anal-
ysis is necessary. An inefficient approach is the transféh@fvorst-case response-time
analysis on dynamic priority scheduling approaches [47128]. The processor demand
criterion is much more efficient.

2.2.2. Processor Demand Criterion.The processor demand criterion was, in a sim-
plified version, proposed by Leung & Merill [83] and improveyd Baruah et al. [19]
for the periodic task model. Later Gresser [60] proposedjpetidently a similar test for
a more advanced event model, the event streams. The problexdiced to an efficient
computation of one function; the demand bound function.

The idea is to calculate for each possible length of intefyathe maximum demand
of computation time that has to be processed in any intefudli®length in any possible
schedule. This demand belongs to jobs having both, thearcamon and their absolute
deadline within the interval. This demand can be descrilyedrbabstract demand bound
function.

DEFINITION 2.2.3. (Demand Bound Functiay) [13, 19, 60, 61, 83]

Letl be a simple periodic task set. The demand bound fundan,I") returns for
each interval-lengti\t the worst-case demand that has to be processed by all thbbse j
for which both, the release time and the deadline is includeit.

COROLLARY 2.2.4.([83, 60]) The maximum demand bound function for any interva

lengthAt is given by:
At - dT

Pr

S(AL,T) = L
vér
At>dy

+1J cf

PROOF Let1; be the set of jobs generated by task I andt;; € 1; be one of those
jobs. Letry ; be the release time of the job abd, ; be the absolute deadline of the job.
Let there be a schedule for the task$ dfaving a point of timeg in which one job of each
T; is released, so all tasks are released simultaneousdy ifhe demand bound function
O(At,I) consists of the sum of the worst-case execution times oha#ie jobs having a
release-timer,; > to and an absolute deadlifi, ; <to+ At. The number of these jobs
for a taskr is given bytmp;rdr + 1J if At>d;.

The conditionAt > d; prevents negative numbers of events. The first job being full
included into an interval is the first job that starts at thgib®f the interval and ends at its
deadline. So the minimum interval including one jobrdias the lengtld; and is also the
minimum interval for which the calculation returns one. ®aeond job ofr starts at the

2.2. SCHEDULABILITY ANALYSIS FOR TASK SETS WITH DYNAMIC PRORITIES 23

¢ (ms)

X@t,) oAb D

At (ms)

FIGURE2.2.1. Example demand bound function

time point 0+ p; and ends ap; +d;. The calculation returns two for the interval of length
pr +dr, and so on. So, the calculation returns the exact numberoskttjobs of a task
occurring withinAt for the case in which the start point of the first job and of titerival

is the same.

Obviously, a job that is released at or after the start of tarwal and has to be finished
at or before the end of this interval needs to be processegletely within this interval.
Therefore the job needs, in the worst case, as much progassia within the interval as
it has as worst-case execution time. As it is allowed to sdedl tasks simultaneously the
schedule calculated by the lemma can occur. So, it only mesriaiprove that this schedule
leads directly to the worst-case value for the demand bawumction and that there exists no
other schedule leading to more demand. Such a schedule vemulate that for at least one
task more jobs are released and finished witkiias with the schedule above. As the first
release of each job is exactly at the start of the intervalvlwauld mean that postponing
this release could lead to more jobs. That is not possiblete Nbat we consider each
interval-length separately, so we have not to consider abyiith either release time or
deadline outside dft. Therefore the intervals starting at the simultaneoudgase of jobs
of all tasks describes the worst-case contributions fod#maand bound function. [

EXAMPLE 2.2.5. Consider the task set= {11, T2, T3, T4} With T = (pr,ci,d;) and
71 =(8ms4ms4ms), T, = (22ms3ms 7ms), 13 = (19ms3ms 17ms), 74 = (30ms 1ms 26ms).
The task set is visualized in figure 2.0.1. The demand boumctifon of this task set is vi-
sualized in figure 2.2.1.

For the simple period task model the worst-case demand foima@rval At is given
by one worst-case schedule of the task set. This is not a seayesondition for the de-
mand bound function, as we will see later. The worst-cas@tsiins for different intervals
can result out of different worst-case schedules. The ddrbannd function is than a
combination of all worst-case schedules.

The idea behind the processor demand test is to prove favaiseof each possible
length that the maximum demand of computation time can hisfigak by the available
computation time within the interval.

24 2. RELATED WORK

The available computation time depends on the resogroa which the task set is
mapped. It can be described by a function similar to the derbannd function.

DEFINITION 2.2.6. Capacity bound function

The capacity bound functign(At, p) returns for each interval-lengtht the minimum
amount of computation time that is available for the exexutf tasks on a resourge
within any interval of lengtlit.

The given worst-case execution time is measured on an aelirocessor witfy (At) =
At for all interval-lengthght. For simplicity, x (At) = At is considered as capacity bound
function by the processor demand test.

THEOREM2.2.7. Processor Demand Test

A task sef is schedulable if and only if for all possible interval-lehg | the demand
bound functiom(At,I") is smaller or equal than the amount of execution time avéglab
within At on the resourc@. p is the resource on which is executed:

O(At,IN) < x(At,p)

So, in the simplified case we have to chéxlit,I") < At. For the example of above
the test is visualized again in figure 2.2.1.

PrROOF The proof follows [60]. Let us assume that the conditiords@nd that there
is at least one deadline miss. Let us consider a reducedel®e@liminating all jobs with
a deadline later than the missed deadline. We consider thar:bound function for an
interval At that ends at the point of time where the deadline is missedtnt at the last
idle time of the reduced scheduBebefore the missed deadline. There exists an idle time at
least at the origin. The existence of an idle time requirasdhthis time there are no jobs
available for processing. Therefore all jobs being proegasgithin At are also released
within At. As we have no tasks within the reduced sche@utaving a deadline later than
the end ofAt, all jobs being executed withifit contribute to the demand bound function.
If a deadline is missed withiAt at least one time unit of the processing time required by
the job that misses the deadline is not processed withiithere are only two possibilities
to reach such an additional processing time @ffter its deadline. First, the jobs require
more processing time than available witlih In this case the demand bound function
would exceed the capacity bound function for this interwddich is in contradiction to the
assumption. Second, there exists at least one time uniinwithin which the processor is
either idle or a task is executed which does not belorg.tdhat means that there exists
an idle time withinAt in relation to the reduced sched8e But this is in contradiction to
the definition ofAt. O

The question is which intervals have to be considered by thegssor demand test.
These are all those intervals for which the value of the dehm@mund function can change.
The concrete values depend on the task set and the chosammedsl. For the periodic
task model these values are all those interval sizes thathneadactly with the minimum
difference between the occurrence times of several joldseo§ame task. Collecting these

2.2. SCHEDULABILITY ANALYSIS FOR TASK SETS WITH DYNAMIC PRORITIES 25

times for all tasks and all number of instances gives thefdesbintervals for the processor
demand criterion. For the periodic task model the set fortaslert is given by

with k € Np. The union of all sets of all tasks gives the complete set.

The problem of the test is reduced to an efficient computaifdhe demand bound
function. In this version the processor demand criterionldloequire to check all intervals
up to an infinite size.

2.2.3. Maximum test interval. To make the test feasible it is necessary to limit the
maximum considered interval. To give a complete overviewsilebriefly summarize in
the following the results and the proofs for the results e so far in literature. We will
start with a definition of the term “maximum test interval”.

DEFINITION 2.2.8. Maximum test intervahtmay

Letl be a task set with J< 1. A maximum test interval is an interval-lengity,ax
so that in case of the existence of an interval-lergthvith 6(At, ') > x (At, p) and At >
Atmaxthere exists also an intervat’ < AtmaxWith d(At',) > x (At', p).

For the periodic task model there are several maximum testials available.
The first one is the least common multiple of the event-perafdll tasks.

THEOREM2.2.9. [83] The least common multiplier (LCM) of the event-perioéiall
tasks in the task set is a maximum test interval.

PROOF By definition the first event of taskoccurs at time-point zero. As the pattern
of the following events are given by their periods, the faflog event occurs at timg;, the
next at time 2 p; and so on. So one event of a taskccurs at every multiple of its period
p:. Therefore an event of the task occurs at the least commaotiptier of all periods of
all tasks. Therefore an event of each task occurs at thig pbiime.

The request of executiod® cm within At cwm is given byCiem = Svrer [Atgfﬂ ct.
As [2] = (2) if bdividesa,

At At cf
Z ’V LCM-‘ C;-r _ Z (LCM) C;-r _ AtLCM Z bt
vrer Pz vrer Pr

vrer FT

AS Syrer Cp—ft < 1 there has to be an end of the first busy period withipcy and
therefore if there exists a miss of a deadline somewheredrsthedule, one miss exist
within At cm. O

The disadvantage to use the least common multiple as maxiestrimterval is that its
length heavily depends on the concrete values of the periodbe case that the periods
are neither integer-values nor multiples of one common-siep it can be impossible to
find an LCM smaller than the product of all periods. For evendsis with offsets the
maximum offset has to be added to the LCM for the maximum testval.

Another maximum test interval is the general busy periodidan, which is also not
limited to the simple periodic task model.

26 2. RELATED WORK

DEFINITION 2.2.10. [119]Busy period

The busy period is the length of the maximum interval whigksdwt include an idle
point. An idle point is a point of time in which no job is readylte processed, e.g. the
processing for each job for which the activating event hasioed is already finished. The
idle point can be an infinitely small moment of time if the clatipn of the last available
job and the invocation of the first new job happen at the sana pbtime.

THEOREM2.2.11. [119] Busy period condition
The busy period of a task set in which the first events of diistascur simultaneous
at the start of the busy period is a maximum test interval &mhekind of task set.

PROOF We have to proof that in those cases in which a failure of aliteaoccurs,

a failure occurs within the first busy period. Let us assuneedbntrary, e.g. that the
first failure occurs in one of the following busy periods. @thhan for the first busy
period the first events of the task do not have to occur simetiasly in the following busy
periods. They can occur with any pattern. Only events amgiwithin the busy period
can contribute to the execution time that has to be procesgkih this busy period. This
follows out of the idle point that has to occur by definitioght before the start of the busy
period and prevents the existence of any unfinished job.eftws each busy period can be
considered separately, only distinguished by their evattem. The worst-case pattern is
the simultaneous release of events of all tasks, which ipdktern for the first busy period.
So if any pattern leads to a missed deadline, the synchroetase would lead to such a
miss t0o, so a miss would have to occur within the first busjoper O

For the periodic task model the busy period is the smalldsievaf At for which the
following condition holds:

, AT
A() =min (At|At > v;r {E-‘ C;)

The disadvantage to calculate the maximum test intervahisyformula is that a fix-
point iteration is required which can result in many caltiolas to achieve the result.

There are some other maximum test intervals available sd fferfirst one was devel-
oped 1990 by Baruah et al. [19]:

THEOREM2.2.12. [19] The interval
Ur
1-Ur

Atmax= max(pr —dr)
vrel
with Ur = Svrer Cp—ft is @ maximum test interval for the task et

Later Ripoll et al. [119] showed another maximum test ind¢ltgading to a stricter
bound:

THEOREM2.2.13. [119] The interval:

dr
2vrer (1_ E) C?L

Atmax: 1*UF

2.2. SCHEDULABILITY ANALYSIS FOR TASK SETS WITH DYNAMIC PRORITIES 27
is a maximum test interval for the task §eif VT € I : d; < py.

If a task set is not feasible, a deadline is missed before #reamum test interval of
Ripoll et al. The proofs for these two maximum test intengaa be done together:

ProOF (Following the proof in [19]) LetAt be the interval for which the analysis
fails, e.g. the demand bound function exceeds the intéosgethich models the available
computation time. That mea#$ fulfills the following conditions:

At—d
A<y { d +1J ¢
vier L Pr
a< Y (AthJrl)ci
vrer Pr

VTEr Pr

A<ty £+ > E(|0r—dr)
vrer Pt vrer Pr
+
< ZVTEF%_TT(pT_dT)

1 o
- ZVTEF pr

At

This result can easily be transferred into the maximum tgstrval of Ripoll et al.
[119]:
ZVTEF (1 - %) C;r

1-Ur

So, the demand bound function can only exceed the inteoseftti values smaller or
equal toAt.

The goal for Baruah et al. [19] was to prove the complexityhafanalysis. Therefore
they used an upper bound of the above in-equation dependiidynon the utilization:

At <

C+
Yvrer pr (Pr—dr)
< T
C.
1—Yvrer 5o

ot
< ZVTGF p_TT ma@r’er(pr’ - dr’)

At

At ¥
Cr

1= Svrer pr

At < Ur max(pr — dr)
1—Ur vrer Pr =G

O

George et al. [55] extended the maximum test interval of Rigtcal. [119] to task
sets with tasks having deadlines larger than their periods.

THEOREM2.2.14. [55] The interval
i dT; T
Yvrer (1* 7mm(pr 5)) cf
1-Ur
is a maximum test interval for the task $et

Atmax =

28 2. RELATED WORK

PROOF The proof is quite similar to the proof above but now the d¢bod VT € T :
d; < pr is not required any more.

At—d
M< Y { TJrlJc;r
vrel

Pr
At>dr—pr

At < z {At —min(d¢, pr) +1J ot
vrer Pr
Yvrer (1* 7”"”(3:’&)) cf

At <
1-Ur

Park and Cho proposed in [103] another maximum test interval
THEOREM2.2.15. [103] The interval

N +
Atmax= min | At|At > Z ({—IJ C;HLC—Tmin(dT,At modpr)>
vrer Pr dr

is a maximum test interval for the task et
PROOF See [103] O

The problem with this bound is that the condition for the maxim test interval has
to be calculated for every intervat separately. This leads to a high effort during the
analysis.

Recently Masrur et al. [93] improved the maximum test ind¢of Ripoll et al. by
showing that the interval itself can be excluded, so the diestdline miss has to happen
before this bound. This conclusion is applicable to all tleximum test intervals described
before.

THEOREM2.2.16. (Similar to [93]) For a non-feasible task set a deadline issgad
before the maximum test interval is reached.

PROOF. Let At be the smallest interval leading to a deadline miss. Thezetme
available computation time fakt is not sufficient to cover the requested demafd<
O0(At,IM)). As already shown in the proofs of above this leads to anvateeally smaller
than the maximum test intervals. O

Masrur and Farber proposed in [94] a bound quite similar eolitbund proposed
by Ripoll et al. [119]. For improving this bound, Masrur andrber use the fact that
an infeasible task set leads to a deadline-miss in size @aat bne time unit. They are
considering the inverse synchronous schedule (e.g. thedsthbuild in a way that it
contains a job of each task with a deadline at the end of therhgeriod). In case that a
task set is not feasible and has an utilization equal or lawé&00%, at least one deadline
is missed at the end of the hyper-period when using the ieveyachronous schedule.
Therefore an additional idle time with size of at least oneetunit exists within this hyper-
period. It exists additional to the idle time that occursvitebly for task sets having a
utilization lower than 100%.

2.2. SCHEDULABILITY ANALYSIS FOR TASK SETS WITH DYNAMIC PRORITIES 29

THEOREM?2.2.17.(Similar to [94]) A task sefl is feasible if and only if the requested
processor demand for all tasks in the inverse synchroncexhde is larger than the avail-
able computation time for all intervals smaller or equal th@ximum test intervahtyr
(using a discrete time scale):

Zrer(l_ %)Ci -1
1-Ur
PROOF See [94] O

Atmax =

To prove schedulability using this new maximum test intef\ta .« Masrur and Farber
propose to complete the task set with a task covering thizatidn gap between the uti-
lization of the task set itself and 100% utilization and theak for every possible interval
up Atye if an idle time can occur.

The bound is that it requires a discrete time scale, so eaatlide, period and worst-
case execution time is a multiple of a common time unit. Itisaot suitable for ap-
proximative analysis, as for finding the additional idle dinit is necessary to close the
gap between the utilization of the task set and a utilizatibh00% leaving no space for
approximation.

Masrur et al. [93] extended this result also to a new sufficieasibility test. The
test is partly based on the relationship between the tesewof 16] and the test bound of
George et al. [55] as indirectly shown in [6]. The idea is ttcakate a maximum test
interval separately for each task based only on the taskestiqn and all tasks having an
equal or smaller deadline than the task in question. In dedddr each task the maximum
test interval is equal or smaller than the deadline of thie tias schedulability is proved.

THEOREM 2.2.18. (Generalization of [93]) LeiAt] ., be a test interval based only
on the taskr € I and all tasks in"; = {7’ € I'|dy < d;}. The schedulability is given if
At].«<dr holdsforallT €T.

PROOF As we know from [88] the simultaneous release of all tasklkésvorst-case
situation. So due to the EDF scheduling scheme a task caempmdiponed by a task with
a larger deadline so these tasks can be ignored completelg rAsult we can useUTl ;
for calculatingAtmax. From definition 2.2.8 we know that a non-feasible task sestda
deadline miss within the maximum test interval and therefdso before the deadline of
T. O

Using the maximum test interval of George et al. [55] and thésorem results in the
test of Devi [46]. Masrur et al. used a new, tighter, maximest interval which is an
improvement of theorem 2.2.17.

THEOREM 2.2.19. [93] Let there be a task sdt with n taskst € I sorted by their
increasing deadline, so< j = dr, < drj. The intervaIAtﬁ]ax is a maximum test interval
with B,] _
Ct, + 3 j—kt1(Pr; —min(pg, dy;))Uy

1-Ur 45K, Uq

k(i
k Zizlx'
Atmax: I

30 2. RELATED WORK

X = max(o {L'j“ax ds -‘)
7 P

andAt? ., = Atmaxas the maximum test interval of theorem 2.2.14.

with

PROOF The proofis given in [93]. Starting point is again that foriafeasible task
set the deadline miss has to happen before the maximumtestihof theorem 2.2.14. For
this maximum test intervalthax the maximum effort for a concrete task can be bounded
by the exact number ofjobé processed at most within the maximum test interval.(]

In chapter 6 we have compared the execution times for thedstdiality analysis for
all these different maximum test intervals for a huge setaoflomly generated task sets
and compared them with our results.

2.2.4. The Problem of complexity.Let us now consider the complexity of the pro-
cessor demand criterion, which will give a motivation foistthesis. It depends on the
effort to calculate and evaluate the demand bound functiorofie interval and on the
number of those intervals, test intervals, being necededrg tested to decide the problem
of feasibility. See [16] for an overview of the previous rigswn complexity analysis.

For feasibility analysis we need to consider the worst-t¢aseintervals of each pos-
sible length. From the definition of the demand bound fumcti@ know that each test
interval starting at the origin of the demand bound funci®the worst-case test inter-
val of its specific length. Each test interval requires thaleation of the demand bound
function for one value only. The complexity for the evaloatis O(n) wheren = || is
the number of tasks in the task sef’. The problem is that the number of test intervals
does not only depend on the number of tasks in a task set. Thbanof test intervals is
determined by the maximum test interval on the one side andhximum density of test
intervals on the other side.

The length of the maximum test intervals depends mainly eruthization of the task
sets. The maximum test intervals of Ripoll et al. [119] an®afuah et al. [19] depend
directly on the utilization. The length of the busy peridthttcovers the interval up to the
first idle point of the system, depends on how often such angdint or such an idle time
occurs (An idle point is defined as a point in time at which alilble jobs are finished;
only jobs arriving at exactly this point of time are allowedexist. It can be regarded as
an idle time with length zero). The density of idle pointspedtively idle times (and their
length) is closely related to the utilization. A system wii®% utilization has much more
idle times than one with 99% utilization. The distance tofir& idle point is normally
smaller in systems with 50% utilization than in those wit@atilization.

The test interval of lemma 2.2.9 is independent of the @ifion value. 1t depends only
on the tasks of the task set. But this test interval is nognmailch larger than the previously
considered test intervals. It cannot be bound using thizatiibn. In the worst case the
“least common multiple” is equal to the product of the pesiad all tasks. Therefore we
can bound its length only with an exponential valoeag p;) ™).

2.2. SCHEDULABILITY ANALYSIS FOR TASK SETS WITH DYNAMIC PRORITIES 31
¢ (ms)

5(At,T)

i

FIGURE2.2.2. Example demand bound function with large ratio

At (ms)

The problem is that a task set can contain tasks of very diftegizes. The size of the
task is determined by the value of all parameters of the tesgeriod, its deadline and its
worst-case execution time. Consider for example a taskith p;, = 10, d;, = 8msand
c;, = 3msand a taskr, with py, = 1000ms dr,, = 800msand c;; = 300ms Both tasks
lead to the same utilization of 30% and the hardness of sdhieitity is also the same for
both tasks. But they have different sizesgss 100 times larger than,.

It is possible to have very large tasks and very small taske@single task set. The
maximum test interval depends somehow on the largest task tire average size of the
tasks. For example the value of the maximum test intervabotiBh et al. [19] depends on
the maximum of the differences between the period and thalideaof any task of the task
set maxr<r (pr — dr)). The maximum test interval of Ripoll et al. [119] depend<ios
ratio between the deadline and the period of the task butcaighe worst-case execution
time and therefore on the size of the task itself. In conttahat, the density of the test
intervals depends on the smallest tasks of the task set.

The problem is that the maximum test interval depends on tm@lerask set. But
every task of the task set, even the smallest, requires d et dntervals that has to cover
the complete length of the maximum test interval. So, a tatkaving tasks with a large
size and therefore a large maximum test interval and at wastvery small task would
need a large number of test intervals for this task. This remalill dominate the overall
number of test intervals. For example, having a maximunitésitval of 100 ms and a task
with a period of 20 ms would lead to no more than five test irgtlsrfor this task whereas
having a maximum test interval of 100 s can lead to up to 5080néervals for the same
task. A demand bound function for such a task set is visualizéigure 2.2.2.

A larger ratio between the sizes of the tasks in one task adsl® a larger effort for
the schedulability analysis. Its complexity depends ornr#tti® of the sizes and therefore
on the values of the parameters of the task.

An algorithm has a pseudo-polynomial complexity if it rumsgolynomial time in
case that the parameters are represented by unary numbeisisunot run in polynomial
time if the parameters are represented by binary numbergh&aomplexity for pseudo-
polynomial algorithms does not depend on the value of onglesiparameter but on the

32 2. RELATED WORK

values of all parameters. In our example the complexity dedsdepend only on the
number of tasks but also on the size of the task. The size issepted by the period, the
deadline and the worst-case execution time of the task. fratgorithm with polynomial
complexity it can depend on one parameter only, for examplae number of tasks in the
task set.

If the utilization is bounded by a valudnax < 1, the processor demand criteria, in
the form we have introduced so far, has a worst-case com@@(nZW)
wheren is the number of tasks in the task $etlt is sufficient to use only the maximum
respectively minimum periods of all tasks and ignore thedtiees and the worst-case
execution times. If its utilization value is bounded, theqassor demand analysis has a
pseudo-polynomial complexity.

For a general schedulability analysis the dependency afdahglexity on the param-
eters of the tasks and especially on the ratio between €ifféasks is a problem. The
run time of the analysis becomes unpredictable. The prohksralso a practical implica-
tion. Such task sets with a large ratio occur in many reallsh@pplications. For example
consider an embedded system with a small real-time opgrsystem. The tasks of the op-
erating system like task switching and the scheduling @@tisinctions as well as polling
requests for sensor data can have run-times in the area of@eonds or less whereas
complex tasks for the evaluation of the sensor data or cong#eision algorithms can
have run-times in the area of seconds or minutes.

We will propose in chapter 3 and chapter 4 solutions for thidbfgm.

2.3. Event models

After the introduction of different schedulability anailysnethods we will now con-
sider the existing possibilities to describe the stimutitfee tasks.

We distinguish between tasks models and event models, veeighrates the stimuli
from the other parameters of the tasks.

A huge set of specialized task models have been proposed. sBxXamples for ad-
vanced task models are the multi-frame task model [41, 98]isrextension the gener-
alized multi-frame task model [14]. These models allow theation of the execution
time, the deadlines and the periods of the tasks. The modsiste of a periodically re-
peated chain of tasks with a fixed order where each task isiassd with separate values
for its parameters. For the analysis it is necessary to lstid-wise the worst-case situa-
tions. The recurring real-time task model [12, 13] geneedithis approach by allowing
branches in the chain.

In literature several event models relaxing the strictlyiquk stimuli model of Liu
and Layland [88] where proposed. The first one was the inttiolu of sporadic tasks,
having a minimum inter-arrival time instead of the periotieTdistance between events of
sporadic tasks may be longer than their minimum inter-aftime, but not shorter.

We are using the same symhwfor both, the period of strictly periodic tasks and the
minimum inter-arrival time of sporadic tasks. In the pef@thsk model the events have
to occur exactly at the period whereas in the sporadic tastteiribe events are allowed

2.3. EVENT MODELS 33

to occur later than the time given by their periods. Theretbdse at least the distance
of one period-length to the next following event, so therates of one event will lead to

the lateness of all following events. The previously intioed schedulability analyses are
applicable to both models.

Widely accepted is the introduction of a jitter interval.elbccurrences of the events
are no longer strictly periodic. Instead, around the plddd@®expected occurrence of an
event a jitter intervaj is defined and the event is allowed to occur anywhere withirhe
interval is normally defined in a way that the occurrence efdhient in the strictly period
case would be in the middle of the jitter interval so the eveallowed to occur earlier or
later by the same amount of time. Since each event is allowsgittdr in the same way,
the minimum distance between two events becomeg and the maximum distance (for
strictly periodic tasks) becomgst j.

2.3.1. Periodic task model.We will reconsider the periodic task model first. This
model was originally described in the seminal work of Liu &agland [88]. In this work
the tasks of one processor are modeled by a task sensisting of independent tasks
One task can be invoked continuously. Each invocation ofk igcalled a job. Théth
job of then-th task is denoted, ;. The workload of the task is bounded by the worst-case
execution timec*, the available time to process this workload is bounded bglative
deadlined. A system in which the execution of a job has to be finishediwitlis deadline
is called a hard real-time system. In the model the sameweldeadline is assigned to
each job of a task. The absolute deadline of a job is given &éyithe of invocation of the
job and its relative deadline. It describes the point of taherhich the execution of a task
has to be finished.

In the periodic task model each taskf a task sef is assigned a periogd, a deadline
d and a worst-case execution tirae and, optionally, a maximum jitter interv@l This is
sufficient for strictly periodic stimuli. Sensors monitogithe environment and doing mea-
surements with a constant rate can for example generateaskiokl of stimuli. Sporadic
tasks can be modeled by the periodic task model sufficientielting the period equal to
the minimum distance between either two invocations of als&.t

2.3.2. Event Streams.Event streams where first defined by Gresser [60]. In the fol-
lowing we will give our own introduction of the event-streanodel. The purpose of the
event-stream model was to give a generalized descriptiostifouli. The basic idea is to
provide an efficient general notation for the event boundfion. The event-streams are a
general model that can describe each kind of stimuli exalttly therefore an extension of
the previously described periodic model. This model is hydiased on one function; the
event bound function.

For every intervalAt the event bound function(l) calculates the maximum number
of those events which can occur witHinFor this function only the length dfis relevant,
not a specific begin and end point. In the following, the tenterival refers to its length
only.

34 2. RELATED WORK

Events

BB ITL NN L

R RARIN

5 25 30ms

FIGURE2.3.1. Example Event Sequence

The goal of the event stream model is to provide an efficienega notation for this
event bound functiony. Let us start with a general notation for sets of events.

DEFINITION 2.3.1. Event sequend®
An event sequend® is a set of events being notated by their distance to a common
origin of time.

The distance can also be regarded as a time interval betweestart time and the
event. We will call this set an event sequence. Let, for exanmpe se© = {2 ms, 3 ms,
5ms, 8 ms, 9ms, 11 ms, 14 ms, 15 ms, 17 ms, 20 ms, 21 ms, 23 ms, 28 ms, 29 ms}
be an event sequence. The first event of the sequence arftise ans, the second 1 ms
later and the third event additionally 2 ms later. The grephiepresentation for this small
event sequence is given in figure 2.3.1.

Note that it is not possible to notate an infinite number ohes @ this way. Therefore
events are grouped into periodic sequences. Such a pesegience can be modeled by
a single tuple consisting of a period and an interval. Theriral describes the distance for
the first event of the sequence to the common origin.

DEFINITION 2.3.2. Event elemenfl

An event elemert = (p,a) defines a set of periodic events. It consists of a period p
and an initial interval (or offset) a. Each valueka+ np (n € Np) describes an event
of the set having k as the distance of the event to the comnigin of time. A periodic
event sequend@ is a set of event elemerfisand the union of the events described by each
0 € Ois the set of events belongingéb

An event tuple modeling only a single event can be notatedguah infinite pe-
riod (p = o), if it has no offset it can be notated &®,0). Each possible event se-
guence can be described by a set of event elements. The exabwple can be notated
asO={(ws,2ms), (0s,3msg), (0s,5ms), (0s,8ms), (c05,9Ms), (c05,11ms), (c0s,14ms),
(005,15ms), (00s,17m9), (c0s,20mg), (0s,21msg), (00S,23ms), (00S,26mMs), (c0s,27m9),
(c0s5,29M9)}

The set can include the same event element several timest wihidd mean that
several events could occur at exactly the same time.

In case that the event pattern®fis continued for an infinite time the event sequence
can be notated in a much shorter way:

0, = {(6ms2ms), (6ms3mg,(6ms5mg}

The periodic event sequence consists of three event elemihtoffsets of 2 ms, Bis
and 5 ms and a common period of 6 ms. The first event elemenhdgpga 2 ms, 8 ms,

2.3. EVENT MODELS 35

¢ (ms)

15¢
10

3(At,T)

\ \ \ \ \ \
5 10 15 20 25 30 At(ms

FIGURE2.3.2. Example event bound function

14 ms, 20 ms, 26 ms, 32 ms, ..., the second to 3 ms, 9 ms, 15 mss,227ims, 33 ms,

. and the third to 5 ms, 11 ms, 17 ms, 23 ms, 29 ms, 35 ms, ...getfer they form
the infinite extension of the sequen®e This possibility to note infinite event sequences
shortly leads to an efficient schedulability analysis.

The periodic event sequences are an extension of the petasi model. The stimuli
for a taskt with a period of 10 ms can be modeled by the periodic eventessmp® =
{(10ms0msg)}. The stimuli for every task set described with the periodgktmodel can
be also described exactly with one periodic event sequesrceaith task of the task set
containing one event element.

DEFINITION 2.3.3. Event Bound Function
An event bound function provides the number of events doguwithin the interval
At located at the start of the sequence.

COROLLARY 2.3.4. The event bound functiap(At, ©) for a periodic event sequence
© and an interval | is given by:

At —
ag +1J

n(AL,8) = Se% { Pe

At>ag

PrRooF Follows directly out of the definition of the periodic evesstjuence. O

The event bound function for the periodic event sequedges depicted in figure
2.3.2. The event bound function always has a monotonic maneésing behavior. A
periodic event sequence is called homogeneous if all elemiants share the same period
or have an infinite period.

DEeFINITION 2.3.5. Homogeneous periodic event sequence

A homogeneous periodic event sequence having a commod pas@ periodic event
sequence in which all event elements either share this conperdod p or have an infinite
period.

For example®; = {(c0s,1m9), (c0s,2ms), (10ms5msg), (10ms7ms} is such a ho-
mogeneous periodic event sequence. The periods of theresmjaee either or have
10 ms as common value. A homogeneous periodic event sequensists of two parts,

36 2. RELATED WORK

an aperiodic part containing all event elements withs period and a periodic part con-
taining the other event elements. It is possible to traresdeh periodic event sequence into
a homogeneous one by exchanging the periods within the sequry the least common
multiple of the periods. To compensate this step it is nergs® insert additional event
elements.

ExAaMPLE 2.3.6. Consider the inhomogeneous periodic event seqi@ed (10ms 3ms),
(15ms 7mg)}. The corresponding homogeneous periodic event sequeasc@hms as the
common period and needs therefore additional elementghEdirst event element of the
original sequencélOms 3ms) three elements are required in the homogeneous sequence
to generate the same set of events. These are the ele(38nts 3ms), (30ms 13msg),
(30ms23mg). For the second event elemefitsms 7mg) two elements(30ms7ms),
(30ms 22mg are required. The complete homogeneous periodic evenerequs given
by ©, ={(30ms3ms), (30ms 7ms), (30ms 13ms), (30ms 22ms), (30ms 23ms)}.

In general a periodic event sequer@eavith p as the LCM of all periods (except)
can be transferred to a homogeneous periodic event seq@émgth
0" = Ugeo Ukpy<p(P:KPs +ag) andk € No.

For real-time analysis it is necessary that the event boundtion gives for each
interval the worst-case density of events. These dengitesl no longer belong to one
concrete schedule only. They are the summary of the wosgt-dansities of all possible
schedules. For the event bound function it is not necessatythere exist one single
schedule containing the worst case for every possibleviateThe worst-case densities
can result from different scenarios and concrete timewaisr To model this event bound
function for real-time analysis it is necessary to definelairact event sequence modeling
this cumulated worst-case densities, the event stream.

DEFINITION 2.3.7. Event Stream
An event sequencé®is called event stream if for all intervalst, J:

n(at+3,0) <n(At,0)+n(J,0)

The event stream is an event sequence in which the highesityleh events occurs
always at the start of the sequence. Together with the eeemitbfunction the event stream
gives for each possible interval length the worst-caseitjeofsthose events that can occur
anywhere in any possible schedule of the task set.

In figure 2.3.3 some examples for event streams can be fouhd.fifst one is the
event strean®s having a strictly periodic stimulus with a perigd The event stream can
be notated a®s = {(p,0)}. So event streams having one event element only can model
the event pattern activating a task of the simple periodik taodel. In the second example
Og a periodic stimulus in which the single events can jitterhivita jitter interval of size
j is depicted.©g = {(,0), (p,p— j)} is a description for this event stream. The third
example®; is an event stream with an irregular behavior, three evettarong at the
same time and the fourth occurring after a titneThis pattern is repeated with a period
of p. The notation i97 = {(p,0), (p,0), (p,0), (p,t) } or shorter®; = {3(p,0), (p,t)}.

2.3. EVENT MODELS 37

vty v v vy,

% ¢~ P Ty ' v B
ods by b b bk
FIGURE2.3.3. Example event streams ([60])
EJ¢¢ iwi i¢i¢*¢* *W‘ s
T I

77777777777777777777777777777777777777

FIGURE 2.3.4. Transformation periodic event sequence into evezdIs

Event streams can describe all these examples in an easytaitidyé way. The offset
value of the first event element is always zero. The reasdmaisthis value models the
shortest interval in which one single event can occur. Agtbstion of the interval can
be chosen freely it is possible to choose the start of thevatfust before the event and
the end just after the event. Then the length of the interamalle an infinitely small value
being notated as zero for the purpose of simplicity.

Each homogeneous periodic event sequence can be tradsferesm event stream
with an equal number of elements by reordering the eventesi¢sn(and recalculating
the offsets). Note, that for the purpose of real-time arigligss not necessary to extract
the event stream out of a periodic event sequence, becaueedht stream can be directly
extracted out of the system description in most cases. Ldéousxample, consider again
O, = {(6ms2m9g, (6ms3msg), (6ms5ms}. The corresponding event stream@s =
{(6ms0ms), (6ms1ms), (6ms3ms}. The transfer from a homogeneous periodic event
sequence to the corresponding event stream keeps the nofrdant elements and the
period the same. Fd®), = {(30ms3ms), (30ms7ms), (30ms13ms), (30ms22ms),
(30ms 23ms9)} the corresponding event stream read®gs={ (30ms0ms), (30ms 1ms),
(30ms 10msg), (30ms 15msg), (30ms20mg}. The transformation of the periodic event
sequenc@ﬁ1 to the event strearé)ﬁ1a is visualized in figure 2.3.4. One event can occur
within an interval of an infinitely small length so the firstest element has an offset of

38 2. RELATED WORK

zero. Two events can occur in the original sequence at gidr&tween the time points
22 ms and 23 ms. The offset for the second event element isftlierone. All other
distances between two events as for example between thdesesian or between 23 ms
and 33 ms (the second event of the first event element) aredombree events can occur
at shortest between the time points three and 13 ms or betive¢ime points 13 ms and
23 ms. In both cases the interval length, in which three eveah occur, is 10 ms and
therefore the offset of the third event elemen@jf, is 10 ms. The fourth event element
has the offset 15 ms, that is the interval between the timetp@2 ms and 37 ms. In this
case the smallest interval containing four events crogse®€darder of the period. The
distance between 3 ms and 22 ms would be 19 ms, between 7 m8 ansl\Rould be 16,
between 13 ms and 33 ms would be 20 ms and between 23 ms and 48uiasalso be
20 ms. All these interval lengths are longer than 15 ms antharefore not the worst case.

With an infinite number of elements it would be possible toctiée each set of events
by an event stream. With a bounded number of elements it isssecy that the event
sequence is either bounded too or has a part that is repeatiedipally. For some sets of
events the number of elements required to describe the ezegtrence of the events can
become quite large. For example a burst of 100 events thapéeated periodically would
require 100 event elements for description. To solve thoblem we will extend the event
streams to hierarchical event streams (or event spectciigipter 7.

For the purpose of evaluation it is not necessary to find tlaetaxinimum intervals.
It is sufficient to find for all intervals a lower bound. Additially it is possible to simplify
an event stream by using a pessimistic description with f@lements than in the original
event stream.

LEmMMA 2.3.8. Letl be a task set having taskseach one activated by a periodic
event sequend®. The utilization of this task set is given by:

¢
Ur=2 2 s
vrer véco, Po

For task sets having only homogeneous event streams withfinite periods activat-
ing the tasks a more simpler calculation is possible. pgbe the common period of all
event elements d®. The utilization is then given by:

¢
Ur = Z L0
vrer MO

Let us, for example, consider a task §etvith one taskr activated by the periodic
event sequend®, of example 2.3.6. Let us assume a worst-case executiorclimet ms.
The utilizationUr can be calculated by = % + 1% = 66.6%. Using its homogeneous
counter-parBg, leads to the following calculatiotdr = 3#40 -5 =66.6%. The calculation
for the event stream and for its homogeneous counter-@ats o the same results for the
utilization. The utilization is independent of the offsetdatherefore the utilization of a
periodic event sequence is the same as the utilization afdtresponding event stream.

LeEmMA 2.3.9. (Demand Bound Function - event stream version)[Lbe a task set
having taskst each one activated by an event stre®n The maximum demand of the

2.3. EVENT MODELS 39

task set for each intervdit can be calculated by:

S(ALT) = S n(At—dr,O0)c = > {7+1J ¢
vér ! vér vico, Pe '
At>ag+dr

PrRoOOF Follows directly out of the definitions. O

The demand bound function can be tested for every intervathn it exceeds the
intersection(d(At,I") < At). If this is not the case for every possible interval, the sk
is feasible.

Same as for the periodic task set, only those intervals arelefance for which the
value of the demand bound function changes. This set ofriestvals is given by the set
of all intervals for all event stream elements with

At = ag +Kpg +d;

with k € Ng. Consider again the event stred@a, = {(30ms0ms), (30ms1ms),
(30ms 10mg), (30ms15ms), (30ms20mg} and assume a deadliry, = 7 ms. The
relevant intervals would berdis 8ms 17ms 22ms 27ms 37ms 38ms 47ms 52ms
57ms 67ms 68ms

Gresser [60, 61] proposes a schedulability analysis ubiagémand bound function.
In contrary to the processor demand analysis he did not usaxammam test interval. In-
stead he proposes an alternating test of the demand bouaticiuimand a special upper
bound of the demand bound function. This leads to unneges$art compared to the
processor demand test.

A better way would be to calculate a maximum test intervaltierevent stream model.
It is possible to modify the existing test interval of Ripetlal. [119] and, of cause, also
the one of Baruah et al. [19], to work with the event stream ehodet us re-consider
again the proof for the test interval of Ripoll et al:

At—ag—d
n< S SZ {#JAJC#
vier véeco, Pe

Atzag+d@
At—ag—d
n<y gze <#+1) cf

vTer véco; Pe
At>ag+dg

c —ag—d

al1-y BZ Ll<y GZ <L+1)cr+
vier véeo, Pe vier véeo, Pe

At>ag+dg At>ag+dg

Limiting At on At > max(ag + dg) leads to the following maximum test interval:

ag+d
Yvrer 2v0co; (1— ~Po T) cr

At
- 1-Ur

40 2. RELATED WORK

For the exampl®,, with ¢, =4 ms anot:lei1 = 7 ms the maximum test interval has

e,
the value:
(1 OTm) Ams+ (1 L9SmS) Amst ..+ (1 ZBSI0S) 4ms
Atmax= 1 2ms =13.8ms
~ 3ms

Remember that this maximum test interval is only valid, iitarger thamaxycr (ag +
MCISC)
d;). This result completes the schedulability analysis of esgeam based task sets using

EDF scheduling. We only have to check whetbéht,I") < 1 for all intervalsAt up to the
maximum of the maximum test interval amXy<r (ag + dr).

The complexity of the processor deman\gea?]alysis for eveaasts is quite similar
to the complexity for the periodic task model. The only diffiece is that the set of test
intervals for each task can be larger.

The processor demand analysis for event streams whisréhe number of taskg is
the maximum number of event elements for any event streaiwatiog one of the tasks
andmax pr — d;) the maximum difference between the period and the deadinarfy
of the tasks has a complexity @f(n-e-maxp—d)) if Ur < c andc is a fixed constant
0 < c < 1. Using the maximum test interval of Ripoll et al. [119] Isead a complexity in
an equal range.

For the sake of completeness we will now discuss the invensetibn for the event
bound function; the interval bound function.

DEFINITION 2.3.10. The interval bound function calculates for a given number of
events the minimum interval in which this number can occur:

W(n,©) = min(At|(n (4t ©) =)

This function is required in the following chapters. For artageneous sequence
evaluating the interval bound function is easy. It is onlge®sary to calculate first the
number of totally completed periods. This can be done byddig the given number of
events by the number of those events generated by the sequithin a single period.
The remaining events are then distributed on the event eleniethe ascending order of
their offsets. The interval is given by the sum of first the f@mof completed periods
multiplied with the length of the period and of second theseffof the last event element
generating an event.

Let © be a homogeneous event stream wWih,| be the number of elements with an
infinite period. Let© first contain the elements with the infinite period and aftent the
remaining elements with the common peripd Let the elements be sorted within each
of both groups by their ascending offset Let ©¢ denote thek—th element of®. Let
mod(X,y) = X— L%J y. We can rewritey(n,©) by

Ao, n< |@|
L[J(n,@) = N—|O|
be\f\ew\ J Po +80 6.,/ modn-(owljol-ow)) EISE

In general it is necessary to use an optimization approaftihdahe correct distribu-
tion of the events on the different event elements.

2.3. EVENT MODELS 41

Mathematically the concept behind the events stream madebe defined by the
concept of sub-additive functions.

DEeFINITION 2.3.11. [31] (Sub-additive function) A function f is sub-additiyef iis
a monotonic increasing function and if and only (i fJ) < f(1)+ f(J) forall 1,3 >0
In other words:

LEMMA 2.3.12. The event bound function of an event stream is a sub-addime
tion.

PROOF Assume the above condition does not apply. In this case thweuld exist
an intervalAt + J having more events thalt andJ together. By definition both intervals
contain each the maximum number of those events that camiv@iced by any interval of
their respective length. In case that the complete intekival J is split into two intervals
At andJ, all events ofAt 4 J have to exist in one of the parts. The assumption would there-
fore require that at least one pait, J contains less events than its respective counterpart
within the sum. This is contradiction to the definition of taeent stream and therefore not
possible. O

The event stream model is a flexible model to describe theutitioh an embedded
real-time system. The event stream describes an upper lmoutheé density of events. Itis
allowed for events to occur later and with less density thadligted by the event stream.

This lateness not only has an impact on the density of evaftsdthe arrival of the
late event but of course also on the density of events behisdatrival. It is not allowed
that such lateness leads locally to a higher density of evitrain allowed by the event
stream. The event stream was constructed in a way that itdeslfor each interval an
upper bound of the maximum number of those events that caur @gthin this interval.
This is independent of the concrete start and end pointseofritervals and also of the
concrete scenario generating the events. Generally spitkemecessary to consider the
densities for each possible scenario. For each scenarimdlienum possible number of
events can be calculated for each interval separately. idrg stream function is an upper
bound for the maximum number of events occurring within thterival in any possible
scenario. The worst case of adjacent intervals can restotalfy different scenarios.

Therefore in those cases where the lateness of an event leawldo a higher density
in the part following the event, some of the following eveh#ve also to be delayed to
keep the densities on the allowed level.

The event stream model is a general model but the efficientig¢ion of event stimuli
containing bursts of events can require many elements.

2.3.3. Sporadically periodic tasks.Bursts consist of a number of events arriving
within a short amount of time. They are normally followed hynae interval with no events
or a much lower density of events. To extend the periodic tasllel with the capabilities
to model bursts the sporadically periodic task model waéhtced by Audsley et al.
[8, 126]. Two different periods are assigned to one task,naeri period to model the
distances between the events within a burst and an outesdprimodel the distances

42 2. RELATED WORK

between the bursts. Additionally the length of the bursingteéd by a maximum number
of events.

As the periodic task model this model is also limited in itpa&hilities too. Only
simple periodic bursts can be described. The hierarchigaitestream model (chapter 7)
will extend the event stream model with the capabilities twdei all kind of bursts. Itis
therefore a generalization of this model and of the eveaastrmodel.

2.3.4. Periodic with jitter and minimum separation. Richter etal. [117] proposed
an extension of the periodic task model by adding a minimypasgion distance between
two consecutive events. A tagkis given in this model byr = (p, j,s,c",d) wherep is
the period,j is the jitter,sis the minimum separation time? is the worst-case execution
time andd is the relative deadline of the task.

The reason for this extension is the holistic schedulatdlitalysis of distributed sys-
tems proposed by Tindell & Clark [130] and improved by Reé¢lal. [113, 114, 115].
This model consists of chains of tasks allocated on a sesofrees with a fixed distribu-
tion of the tasks on the resources. The initial tasks of tlenshare triggered by periodic
stimulis with jitter and each task generates an event atndeoéeach of its jobs. These
outgoing events activate the following tasks in the chaai tan be assigned to a different
resource. The activating event sequences for the followdasls are also modeled by a
period and a jitter. In the holistic approach the period efitttoming event sequence for a
following task is the same as the period of the previous takk.jitter instead is increased
by the difference of the best-case and the worst-case resytiome of the previous task. A
job can finish somewhere between the best-case responsartihtiee worst-case response
time of its task, so the jitter of the following task has to eothe space between these
response times. The response time of the following taskrtépeirectly on its jitter value
as proved in section 2.1. A larger jitter leads to a largepoase time. The last task of the
chain can have large jitter values, so the analysis can etk sets in which the jitter of
a task can be several times larger than the period of this task

The problem of the simple periodic model is that it assumasath events of the same
task within the jitter interval can occur simultaneoustyslobvious that this simultaneous
occurrence of events cannot happen in the scenario of alsdkie gobs of one task are pro-
cessed one after the other and therefore two outgoing evktfite same task are separated
at least by the best-case execution time of the task. Thishvea®ason for introducing the
minimum separation distance in the model proposed by Riettal. [117].

With the new model the minimum separation distance can agpé#ne jobs of the
following task, so that they can be handled one after theroffigis reduces the required
resources for the following tasks. Despite that this moslal tlear advantage to the pe-
riodic model it does not have the general modeling capaaitfehe event stream model.
Unfortunately the separation condition cannot be moddfadently with the event stream
model. This problem will also be solved with the hierarchédension of the event stream
model (chapter 7).

2.3. EVENT MODELS 43

2.3.5. Streaming application model.A more expressive model for bursts was pro-
posed by Chakraborty and Thiele in [40]. An event streamsgidieed by a set of elements
each containing an interval and the maximum number of ewghish can occur within
this interval. The different elements limit each other,lsat only the minimum number of
events allowed by all elements can occur in the event stréldre.main problem of this
model is the expensive evaluation, as it is necessary td farilevaluation all possible lin-
ear combinations of each possible pair of elements. It cemradt model efficiently event
streams with several bursts having different minimum saan times within the bursts.

A related but less expressive approach is the rate-baset@exeomodel [56, 57, 67].
In it each task has as parameters only one interval and théewof events generated at
most within this interval.

2.3.6. Real-Time calculus.A methodology for the real-time analysis of a network
of modules is the real-time calculus by [39, 127, 128, 131]s based on the network
calculus approach defined by [43] and [101]. The real-timeutas is an approach for
a compositional real-time analysis based on the concepteofrtin-plus and the max-
plus algebra. It splits the whole distributed system intmcpssing components having an
incoming upper and lower arrival and upper and lower caparitve and provides the
equations to calculate the outgoing upper and lower arcivales and the remaining upper
and lower capacity curve out of theses incoming curves.

The event pattern is modeled by an arrival cusvéAt) denoting the number of those
events arriving within a time interval of lengtkt. For this functiona{(At) denotes the
upper bound and} (At) the lower bound for the arrival curve. These functions aglfor
everyAt the maximum respective the minimum number of those evenithwdan occur in
any interval of length\t. Therefore these functions are also sub-additive funstamthe
event bound function of the event stream model.

The real-time calculus also defines service cuf¥€At) similar to the arrival curves.
They model the number of computational requirements thabeghandled by the resource
during a time interval of lengtiAt. Again Y(At) and B! (At) define the upper and lower
bound of the service curve.

The processing ability is measured in computation time aflaalized resource. This
is in consistency to previous work in real-time analysis mehalso computation time is
used to measure the computational effort required by a resou

To explain the functionality of the real-time calculus apgeh figure 2.3.5 shows an
example scheduling network. A scheduling network is a systensisting of several
chains of tasks and a set of resources. Each tagkthe task chain is mapped to one
resourcep. The tasks mapped on the same resource are scheduled wilhpfixeity
scheduling. Different tasks of a chain can be mapped onrdifteresources. In the fig-
ure 2.3.5 the tasks, 14, 7 form a task chain and the tasks 14, 77 form another task
chain. Each task is activated by an upper and lower arrival cund4At) anda (At) and
the available computational effort for this task is desedilby an upper and lower service
curveBY(At) andBl(At).

44 2. RELATED WORK

FIGURE2.3.5. Scheduling network for real-time calculus

umoﬁmotdmo ‘o
ot Ot '
O('T(At) @

. . ar (B
amwtamw

FIGURE 2.3.6. Real-Time Calculus of single task

Each task of the system is considered as a so-called greedggsing component
(GPC). Figure 2.3.6 gives a closer look on a greedy procgssimponent (GPC). For each
task we have an incoming (upper and lower) arrival curyéAt) and al(At) modeling
the workload forr. We also have an (upper and lower) service cygeit) and Bl (At)
modeling the amount of workload that can be handled by theures.

The analysis of a task generates outgoing (upper and lowevpla(ay(At)’ and
al(At)") and service curvegf(At)’ andBl(At)"). The outgoing arrival curve is a modifi-
cation of the incoming arrival curves and is also the incapairrival curve of the following
task in the chain. The outgoing service curve is the incoraargice curve reduced by the
workload handled by the task. It is the incoming service euor the task with the next
lower priority on the same resource.

The real-time calculus provides the equations to deschiber¢lationships between
the incoming and outgoing curves [39]. The curves can be oftipes, event based
or resource based. The arrival curves are normally evergtdbasd the service curves
are resource based. Each of the two types can be transfatcethé other. The curves
used for each equation have to be of the same type. As thalaruwes are event based
and the service curves are resource based it is preferabketthe event-based types for
calculating the outgoing arrival curves and the resouset type for the outgoing service
curves. For the calculation the functions sup and inf arelege The functions give the
maximum or minimum value. The difference to the functimaxandminis thatsupand
inf provides upper and lower bounds. Their value can be reaehaln need not to be.

2.3. EVENT MODELS 45

The outgoing upper arrival curve of the basic module in the-tiee calculus, the
greedy processing component (GPC), is given by [39]:
ay(at) =min(_inf { sup [af(At' +v) - Br(v)] + B (At — At)}, BH(AY)

O<At’' <At 0<v<oo

The outgoing arrival of is limited by the available capacif$}'(At). No more work-
load can be handled withifst despite how much has arrived. In case the maximum avail-
able capacity is not reached we have to split the total iatekt into two partsAt’ and
At — At’. At is the part in which the system is not completely utilizAt- At’ is the part
in which a full utilization occurs. The splitting point isa@Hast idle point of the system,
e.g. the last point in which no processable workload is alséél. Therefore for the second
part we can limit the outgoing arrival flow by the availablgaeity B¢ (At — At’). For the
first part all available workload is handled.

The available workload consists of the workload arrivinghivi At’ and the maximum
available workload at the start af. This is that amount of workload that has arrived pre-
viously but was not processed by the system so far. The edionlof these workloads
is done together by sgp, . .[af (At + V) — Bl(v)]. Itis necessary to find the interval
providing the maximum amount of remaining workload. Thisvisrkload that can arrive
within v at most @r¥(v)) reduced by the workload being processed withi least 8! (v)).
The intervalsy andAt’ are considered together. Therefore the workload avaikaban-
dle within At’ is calculated by the maximum amount of workload arrivinghiitAt’ + v
reduced by the minimum amount of workload processed withifio find the maximum
amount of workload foAt” we have to consider every possible intervab get an upper
bound foral(At’ 4-v) — Bl (v).

The interesting splitting intervalt’ of At is given by the minimum of the calculated
workloads for allAt’. It is the last idle point of the system. The reason why we havese
it is that all other splitting points overestimate the prsable workload as we assume a
total utilization for the remaining intervait — At’. Note that this value is bounded by the
maximum available capacity withifit (3y(At)).

The outgoing lower arrival curve is given by [39]:

al(aty = inf {al(at)+plat— o)}
0<At' <At

For the outgoing lower arrival curve the intervslis again split into two partat’ and
At — A, At is again the part that is not fully utilized (with regard t@tlower incoming
service curveBl(At)). At —At' is the fully utilized part (again with regard to the lower
incoming service curvg!(At)). The minimum outgoing arrival is given by the minimum
sum of these parts for all intervals’.

The outgoing service curves, which give the available ciypéar the task with the
next lower priority on the same processor, can be calculaydd9]:

Bi(ot) =max_ sup {B(At') —af(At')},0)
0<At' <At

BY(At) =max_ sup {Bf(At')—ay(at')},0)
0<At' <At

46 2. RELATED WORK

The minimum remaining capacif (At) can be found in an intervalt’ for which the
minimum available capacity exceeds the maximum arrivingdlead. Only if this is the
case some capacity is remaining. The maximum calculateceviak all intervalsit’ is
the overall remaining capacity. For the interdl— At the maximum arriving workload
requires fully the minimum available capacity, therefdris tinterval does not contribute
to the remaining capacity. Note, that capacity remainingsfame intervalg\t’ is also
remaining for any larger intervals because none of theiagiworkload can be executed
in the past. So, even if the total workload fsr exceeds the available capacity witlinh
there can still exist remaining capacity fh.

For the maximum remaining capacity we have the same schehveebare using the
maximum available capacity and the minimum required wadlo

For example in [131] the convolution and the deconvolutioas @efined as central
operations in the theory of the min-plus and max-plus algebety be eithera or 3.

DEFINITION 2.3.13. Min-plus convolutio® / deconvolution®
The min-plus convolutione = ya ® s and the min-plus deconvolutiog = ya © ¥
is given by:
ya(Bt) @ ye(At) = inf {ya(At—AU) 4 ys(At)}

0<At' <At

ya(At) 0 ye(At) = sup {ya(At+At) —ys(At')}

0<At' <co

DEFINITION 2.3.14. Max-plus convolutiom / deconvolution?
The max-plus convolutioge = ya®ys and the max-plus deconvolutign = yaQ s is
given by:

yAA)RYs(At) = sup {ya(At—At)+ys(At)}
O<At' <At

ya(dt)oys(At) = inf {ya(At+At) —ye(At)}
0<At’ <oo

The above curves can also be calculated using the convolartid deconvolution:

%’ = min{(a} Bf) Br. B}
= min{(a; @ Bt) @ By, B}

B =max{ (0% (B; —ay),0)}
(0 (B - ay),0)}

The calculation for the outgoing curves is based only onrtieerning curves and the
values of the task itself. No other values are required. Tiakes it possible to con-
sider each task separately from each other. Each incomiivglaor service curve of the
scheduling network is an incoming arrival or service curiverte tasks of the scheduling
network. These curves are transformed with the transfoomatguations of these tasks
to new arrival and service curves. These can be incomingesun¥ other tasks of the
scheduling network, transformed again for the next follayviasks and so on.

BY = max{

2.3. EVENT MODELS a7

It is possible to calculate a value somewhere in the scheglaktwork by recursively
evaluating the transformation equations until the oribinaoming curves are reached.
Obviously such an approach is expensive to compute. So,ghatiens describing the
relationship between the functions are expensive to comfautgeneral functions, too.
To calculate the modification equations independently feach other, an event model is
needed that can characterize the modified curves.

No concrete description for the functions themselves isigea in the real-time cal-
culus. As the time is defined for all values up t® it is not possible to simply enumerate
all values. A good finite description for this function is essary. The complexity of the
relationship equations depends directly on the complefithis description.

In [39, 76] an approximation for the arrival and service @gwas proposed in which
each curve is described by three straight line segments.s@graent describes the initial
offset or arrival time, one a possible initial bursts and tdreelong time rate. As outlined
in [6] this approach is to inaccurate to be suitable for canglystems.

In [131] an exact characterization for the curves is givehe Turves are described
by two sets of segments, one set for the aperiodic first pdhtsofurve and one describing
the periodic part. The number of segments in each of the anist bounded in general.
Operations performed on two curves with different periodd/ar different length of the
aperiodic parts requires the hyper-period as the periodeofdsulting stream. In the worst
case, the hyper-period is the product of all periods. Thislead to an explosion of event
segments and an uncontrollable run-time of the proposextitigs.

The new model described in this work is quite suitable to beféinient description
for the real-time calculus. Therefore the real-time calsu$ extended to an event stream
calculus in this work.

We will discuss this model later and show how an new extenaesion of the event
stream model, the hierarchical event streams can be usetigva an explicit description
for the curves of the real-time calculus.

CHAPTER 3

Approximation for dynamic priorities

To overcome the problem of the evaluation complexity asrilesd in section 2.2.4 we
will propose in the following an approximative schedulépilest. Approximative tests are
inexact tests. A range of systems exists for which the teatsmat be able to answer the
guestion whether the systems meets all deadlines or notadventage to use such tests
is that the approximative tests run much faster than theicesounterparts and therefore
allow to solving problems that would be unsolvable otheetiecause of their complexity.

The main characteristic of an approximative algorithmhstthe area of uncertainty
is bounded. Only for the exact solution and solutions cloghé¢ exact one the algorithm
might not be able to make a decision.

Take for example the knapsack problem. Given is a probletaricge

{b7W17W27---;WmCl,CZv---;Cn}

There exists a set of goods having different siweand costg;. The problem is to pack
a knapsack having a sizewith these goods getting as much value into the knapsack as
possible. In its exact general form this problem is a NP-logtimization problem [66].

But nevertheless the knapsack problem becomes tractatbl@ wmall modification of
the requirements [66]. We do not consider a knapsack ofdize allow that the size of the
knapsack can vary with an errer The knapsack can have a size uptpb- €. In this case
an approximation exists that is solvable in polynomial tif&$]. The resulting solution
may not be optimal to a knapsack of the sizbut it is optimal to at least one knapsack
having a size within the intervgb,b+b- ¢]. So even if we have not found the optimal
solution for the knapsack in question we have found an optiolaition for a knapsack
with a size close to the size of the knapsack in question. &betris therefore close to the
optimal solution of the problem and can be reasonably usepréztical applications.

Different types of approximations are available. Theraseaigorithms having a fixed
maximum error depending on the problem. Better are thoswitligns for which the error
value and therefore the size of the area of uncertainty amdyfiselectable. It should be
possible that the error can become as small as desirableaudéca reduction of the error
increases the worst-case run-time of the test in many cases.

Algorithms having a polynomial run-time complexity withsggect to the problem size
are called polynomial time approximation schemes. Algong having a polynomial run-
time complexity with respect to both, the problem size arMddue of the error are called
fully polynomial-time approximation schemes [66]. They aormally the best kind of

49

50 3. APPROXIMATION FOR DYNAMIC PRIORITIES

approximation algorithm possible. Polynomial with respecthe error means that a de-
crease of the error by a certain factoffor example reducing it by half) can only lead to
an increase of the run-time that is polynomial bounded vatpect tdk.

The approximative analysis is only sufficient, but the degrieexactness is adjustable.
An approximative analysis can have a much smaller compi¢kéan the exact analysis
with only a small change in the requirements. An optimizagwoblem is considered
tractable if there “exists a polynomial-time approximatibat solves the problem with a
reasonable error’[66].

A feasibility analysis is sufficient if it classifies all sgsts that do not fulfill the real-
time requirement correctly. An infeasible schedule is gsu@cognized as infeasible. Itis
only possible that a sufficient test does not recognize adsglble system as schedulable;
it will never classify a non-schedulable system as schétdiela

In [37, 38] it was proposed to consider two other kinds of agpnations, those be-
ing only necessary and those being neither necessary Haiesof. Necessary tests give
a correct classification for non-schedulable systems, edstests being neither necessary
nor sufficient cannot guarantee either side. The idea batondidering these two addi-
tional types of approximations is that due to the limitatafrthe approximation error the
uncertainty only affects a small number of systems beingtkxt close to the boarder be-
tween schedulable and non-schedulable systems. The assaiisghat non-schedulable
systems close to this boarder do only lead to small missesaulthes. We will consider
in the following only sufficient approximations. The propdsapproximations therefore
always guarantee the real-time requirement despite af tineertainty.

In the following we will present an approximative scheduligbanalysis for single
processor systems scheduled with EDF scheduling. It is thedpproximation for this
problem fulfilling the definition of a fully polynomial-timapproximation scheme.

The main idea is to limit the maximum number of test intenfalseach task sepa-
rately by constructing an approximated demand bound fandbtr each task and to add
all approximative functions resulting in an approximatesnénd bound function for the
task set.

The idea behind the approximated demand bound functiontaslais to analyze for
each function only a limited number of jobs (the first k jobsae&tly. The following jobs
are approximated. We call the interval that includes all-approximated jobs (e.g. the
boarder between the non-approximated and the approxijuitethe maximum exact test
interval. For the approximation we use the specific utilaabf the task. In the following
we will give the formal definition of the approximated demdzdind function.

3.1. Periodic task system

Let us first consider the approximation for the periodic tsygdtem as given in section
2.3.1. We have a task setand taskg € I' with T = (p,a,c™,d) wherepis the periodais
the offsetc™ is the worst-case execution time athds the relative deadline af. The de-
mand bound functiod(At,I") gives the maximum demand on computation time for a task
setl” within any interval of lengti\t and the demand bound functidfAt, 7) gives the part

3.1. PERIODIC TASK SYSTEM 51

of the maximum demand which is generated by tasKherefore the sum of the demand
bound functions of all tasks of a task set gives the completeathd bound function of the
task set §(At,IN) = Svrer O(AL, T)). The effort to calculate these demand bound functions
depends not only on the number of tasks but also on the cengaeameters of the tasks.
These are the period, deadline and worst-case executienEigpecially the ratio between
the values of the largest and the smallest task in the taslos&ibutes substantially to the
computational effort required for analyzing the task set.

Consider for example the tasks= (10, O0ms 5s, 7s) and1, = (10ms O0ms 2ms
3ms. Let us assume that we need a test bafiighy having a size of about ten times, .
ThereforeAthax= 100s. We need ten test intervals for (7s, 17s, 27s, ..., 87s, 97s). For
T, many more test intervals are necessary. The demand bouciibiuhas to be tested for
the intervals: 3ns13ms33ms...,99983ms99993ns In total we requir(f;%;‘X = 10000
test intervals forr, compared to 10 for;. Thereforer, dominates the total number of
test intervals. If we increase all parametergpby the factor 10 the total number of test
intervals will increase by the same factor. Reducing theup&ters ofr; by the same
factor will result in a reduction of the maximum test boundrigarly the same factor and
therefore to a reduction of the number of test intervals iregifor 1, and of the necessary
total number of test intervals. Therefore the total numietest intervals depends on
the concrete values of the tasks and the fraction betweevathes of the largest and the
smallest tasks.

To avoid these problems we propose to approximate the debwamdl functions. The
idea is to evaluate the firkttest intervals (jobs) for each task exactly and approxirtrete
remaining test intervals using the specific utilizationtwd task. In the following we first
present the concepts and explain them informally. The fopr@ofs are given later in
section 3.4 to cover a more general model.

DerINITION 3.1.1. Approximated demand bound function of a task
Let T be a task and k be a chosen number of those jobs that shouldhs&leced for
the task exactly. Leit;x = dr x = (k— 1) pr +dr. We calld’(At, 7, k) with

"
N (At — A At >N
o' (at,T,k) = O(Atry T) + 5 (AL —Atry) - AL> Ay
O(At, 1) At < Aty
the approximated demand bound function. This formula cao lé transformed in
+
(At —dr)+cf At> Atk
O(At, 1) Ot < Aty

o' (A, T,K) =

Figure 3.1.1 shows an example of an approximated demandifonationd’ (At, 7, k)
with k = 4 and the comparable exact demand bound fundii@x, t). The first four test
intervals are evaluated exactly and the remaining testvial® are approximated using a
straight line. The slope of the line is the specific utilipatdf the task.

The interesting point of this approximation is the resgjtapproximation error. As
shown in Figure 3.1.1 the maximum distance between the appated and the real de-
mand bound function is one time the worst-case executioa ¢in The approximation

52 3. APPROXIMATION FOR DYNAMIC PRIORITIES

¢ (ms)

5(At,T)
}kc;f

At (ms)

FIGURE3.1.1. Approximation of a single task

starts at theé-th test interval. The demand bound function has forkttle test interval a

value ofk- ¢f therefore the demand bound function has for all those iatsizes for which

an approximation error can occur at least this value. Thadivel approximation error is
the maximum distance between the approximated and the drawand bound function
divided by the value of the exact demand bound function. Th&gimum approximation
error is the maximum relative error. For the proposed appration it is easy to find an
upper bound to the approximation error:

o'(At,T,k)—o(at,T) cf 1
Erk= <—F=-
’ O(At, 1) ket k
The overall approximation error can be bounded by the satneva
_o'(At,T k) — 5(At,T) < 1
o(At,IN) ~—k
The proof follows in section 3.4. The error is independenthef parameters of the
task and the system and does only depend on the selectablenofmexactly analyzed
test intervals. The value of the approximated function iefch intervalit equal or larger
than the value of the exact function for the same intefftalThe analysis compares this
value of the function with the available capacity. To procfiedulability the value of the
demand bound function (approximated or not) has always &gl or smaller than the
available capacity.
The approximated demand bound functions of the single teaksbe added to an
approximated demand bound function of the complete task set

DEFINITION 3.1.2. The approximated demand bound function of a tasi gstthe
sum of the separated approximated demand bound functicaiktagkst € I'.

Stk =3 &A1k
vrel

This definition is outlined in figure 3.1.2. For usability dieise functions as approx-
imation it is necessary for them to keep two conditions. thirs have to guarantee that

3.1. PERIODIC TASK SYSTEM 53

c (ms) ¢ (ms)

\At(mS) / At (ms)

c (ms)

At (ms)
FIGURE 3.1.2. Adding two approximated demand bound functions

the demand is never underestimated by the approximatiaohvwieans the approximated
demand bound function is always greater or equal the readddround function.

LEmMA 3.1.3. Sufficiency condition
The approximated demand bound functi®@at, I, k) has for each possible interval
At and each value of k at least the same amount of demand thax#oe demand bound
functiond(At, 7).
o(At, M) < &' (At,T k)

Second it is necessary that the error of the approximatiboismded.

THEOREM3.1.4. Letp; be a processor with a capacity given by the available execu-
tion time functiory (At, p;) andp, be a processor with a slightly higher capacity given by
X(At,p2) = x (A, p1) + %X(At, p1). If the schedulability analysis fgr; using the exact de-
mand bound function results “schedulable”, the approxiathttemand bound function is
guaranteed to result also “schedulable” if tested agaiins tapacity function of processor
P2, the processor with the slightly higher capacity, so if

O(At,IN) < x(At,py)
= &'(At,I,k) < x(At, p2)

The relative difference between the capacityppfindps is simply:

X(At p2) — X(At,p1) _ X(BLp1) + kX (AL p1) — X (At p1) _ 1
- =k

X(At,p1) X(At,p1)

54 3. APPROXIMATION FOR DYNAMIC PRIORITIES

c (ms) XAt po) o XAt py)

|

(At T, k) L
= .1
™~
5(At,T)
— =1
At (ms)

FIGURE 3.1.3. Visualization of the approximation bound

The proofs for the lemma and the theorem will follow also iotem 3.4. The theorem
3.1.4is visualized in figure 3.1.3. It shows an example ofxaceand an approximated
demand bound function. The approximation is done after ¢oversd test interval. The
exact demand bound functi@{At, T) stays always below the capacity functig(it, p;1)
of p1 while the approximated demand bound functidft, 7,2) exceeds this capacity
function. But it does not exceed the area between this cypaciction and the capacity
function x (At, p2) of p,. p2 has only a slightly higher capacity thgm. The difference
between these capacities depends on the error value asdiiefieenma 3.1.4.

For an efficient implementation of the test it is not necessaicalculated’ (At, I, k)
for each test intervakt separately. The intervals can be calculated stepwise tyycom-
sidering the differences between the single intervals. Asfide implementation of the
superposition analysis is shown in algorithm 1.

The algorithm works as follows: First it initializes thest-listwith the first test in-
terval of each task. The first test interval of a task is thellesiainterval for which it is
necessary to have completely processed one job of the tésklefgth of this interval is
the smallest distance between the release time of any jdtedésk and the absolute dead-
line of this job and is exactly the relative deadline of thektaThe worst-case scenario is
that the invocation of the task and the start of the intergalio simultaneously. In this case
the deadline of the task occurs simultaneously with the dnideointerval and, of cause,
processing the task has to be finished by this point of timerdfore the interval with the
length equal to the deadline of the task is the smallestiatén which the task has to be
processed completely. This step has to be done for eachtdis& fask set. The algorithm
processes the list of test intervals in ascending orderesf tangth. For each test interval
it adds to the cumulated demand the computation time of gieltelonging to the interval.
Initially this demand is empty. If the cumulated demand extsethe length of the actual
interval, the analysis deliverot schedulabléen this case more computation time as being
available within the interval is required to process allgetithin the interval. Therefore at
least one job would miss its deadline.

3.1. PERIODIC TASK SYSTEM 55

Algorithm 1 Superposition Analysis

Algorithm Superposition
Given: task set I, k
C+
IF Ur = Yyrer &= >1
= notschedulable

END IF
testlist:= {}
Atgg:=0

1-90) et
Atmax:: Z\frel'l(iurpr> T

VT el : ADD te= (d;,T) TO testlist
WHILE (Atgg < Atmax
te=TEST LIST ELEMENT WITH SMALLEST At IN testlist
At =INTERVAL OF te
T =TASK BELONGING TO te
REMOVE te FROM testlist
o = 5/4-0;r + U (At — Atoig)
IF (&' > At)
= notschedulable
END IF

IF (At=d;)
ADD te= (At+ pr—jr) TO testlist
ELSE IF (At < (dr+ prk))
ADD te= (At+ p;,T) TO testlist
ELSE N
U :=U, + ‘;)—TT
END IF
Atgg = At
END WHILE
= schedulable

As next step it is checked whether the maximum number of Bxaealuated test in-
tervals for the task is reached. If it is not reached, the feger test interval of the task
is added tdest-list It is calculated by adding the period of the tgskto the length of the
actual test interval. Therefotest-listcontains at most one test interval for each task at one
time. If the maximum number of exactly evaluated test irdésdor this task is reached, all
further test intervals of the task are skipped due to the@gpration. For compensation
this skipping of test intervals an approximative value foeg lemand of the task has to be
considered at each following test interval. Therefore whdask is approximated, its spe-
cific utilization % is added tdJ;. U, contains the cumulated utilization of all approximated
tasks and is initially empty. It is used to calculate the tiddal approximated execution
times for all approximated tasks by

C;rdd,r' = Ur (Atact — Atoid)

The analysis ends and delivesshedulabléf either test-listis empty (when all tasks are
approximated) or if the maximum overall test interdél,ax is reached.

56 3. APPROXIMATION FOR DYNAMIC PRIORITIES

The proof for the exactness of this algorithm and the questaf complexity and the
error are discussed in the sections 3.4 and 3.6.

3.2. Capacity calculation for the period task model

During the system design process it is often necessary toseha processor for a
certain task set. Therefore it is interesting to calculbgedapacity necessary for this task
set. If we assume a scalable processing element for whictetagonship between the
execution times of all tasks is fixed, we can achieve suchaulzlon efficiently. We only
need a small modification of the proposed superpositiorrifgo.

We need to assume a standard processing element to meas@petiution time on
it. The question for the calculation is, which ratio the aapaof the minimum required
processing element has to the capacity of this standare&gsory element. We can still
calculate the demand bound function in the same way usingt#melard processing ele-
ment for measuring the execution times. But the calculatfaeach kind of the maximum
test interval, with exception of the LCM (least common npi#) of the periods, requires
the utilization of the task set and therefore the capacityefresource. The way to avoid
the maximum test interval is to use the approximation. We theed to calculate the de-
mand bound function for each test interval required by thgr@gmation. In case of an
approximation error of 1% we have to calculate 100 testwatisrfor each task in the task
set, in case of an error of 0.1% we need 1000 test intervakssioh task and so on.

We then only have to calculate the utilization for each tetsrival separately and store
the maximum one. It determines the necessary capacity éopribcessing element. The
necessary capacity is at least the utilization of the tatk Biee algorithm 2 implements
this idea.

Chproc is the capacity of the minimal processor necessary to hahdleask set and
fulfilling all real-time requirements. The main idea of tHgaithm is to calculate for each
test interval the dimension of the processor required totneereal-time requirements
of the test interval. We measure the dimension of the testuats comparing its demand
with a generic processing element. We call the demand of esteiriterval it's specific
utilization and measure it in percent of the capacity of theeagic processing element. The
required dimension is the maximum of all specific utilizago It can be quite larger than
100% leading to a larger processing element than the gemeessing element.

We can improve the above algorithm by reconsidering the mami test bound. In-
stead of using a fixed pre-calculated maximum test bound \Weegalculate it every time
the value of the necessary capacity changes. The calautsttbe test interval differs from
the known calculation, as the execution times are measuredstandard processor and
not longer on the analyzed processor. Let us reconsider #xénmam test interval given
by Ripoll et al. [119] introduced in lemma 2.2.13 for the negfided execution times. Let
Cn be the new capacity arés = 1 be the standard capacity in which the execution times
are measured. Létr be the utilization of the task set compared@@ Then the maximum

3.3. EVENT STREAM MODEL 57

Algorithm 2 Dimensioning a processing element

Algorithm DimProcSimple
Given: task set I, K
testlist:= {}

Cresult := Uproc = Yvrer %—TT
Mog:=0; 0:=0
Uready:=0
VT el : ADD te= (d;,T) TO testlist
WHILE (test-list#{})
te=ELEMENT WITH SMALLEST At IN testlist
At =INTERVAL OF te
T =TASK BELONGING TO te
REMOVE te FROM testlist
=0+ C;r + (At — Atold)Uready

Cact := %

IF (Cact > Cresult)
Cresult := Cact

END IF

IF (At < (dr + pik)
ADD te= (At+ p;,T) TO testlist
ELSE
. cf
Uready-: Uready+ p_TT
END IF
Atgg := At
END WHILE
= Cresult

test interval looks as follows:

d Cs ~t d +
2 vrer (1* pf) oGOt Xvrer (1* pf) ¢

l—g—":‘ N Cn—Ur

Mmax:=

The only difference is the exchange of the capacity. In thgimal form we had a
capacity of “1” now we hav€y. Thisis nota surprise. The maximum test interval depends
obviously directly on the remaining capacity. If it gets yamall the problem becomes
more difficulty leading to a larger maximum test interval.ifgsthis new maximum test
interval we achieve the improved algorithm 3.

The hyper-period as maximum test bound, given in lemma &ar@lependent of the
capacity. The problem with this interval is that it becomegeylarge in most cases and that
we cannot limit the number of test intervals for this bounde Wverefore do not consider
this maximum test interval here.

3.3. Event Stream Model

In the following we will extend the superposition approxiina to the advanced event
stream model. Instead of the simple periodic activatiometasks, the event streams allow
a more powerful description of the stimuli of the tasks. Nthat the periodic task model
is included as a special case in the event stream model. E@xtknsion we have mainly

58 3. APPROXIMATION FOR DYNAMIC PRIORITIES

Algorithm 3 Dimensioning a processing element

Algorithm DimProcAdvanced
Given: task set I, K
testlist:= {}

o

Ur = Yvrer p_TT

Cresult := Ur

Mtog:=0; 0 :=0;

Atmax = ;

Uready:=0

Vrel: ADD te= (d;,T) TO testlist

WHILE (testlist {} AND Atogq < Atmay)
te=ELEMENT WITH SMALLEST At IN testlist
At =INTERVAL OF te
T =TASK BELONGING TO te
REMOVE te FROM testlist
=90+ C;r + (At — Atold)Uready

A
Uact := Z_t
IF (Uget > Cresult)
Cresult := Uact
. Jvrer (lf ﬁ—i)C?
Atmax:= max W,dmax
END IF

IF (At < (dr + pik)
ADD te:= (At+ p;,T) TO testlist
ELSE
o
Uready := Uready+ P
END IF
Atgg := At
END WHILE
= Cresult

to exchange the demand bound functions for the periodic iwog¢he corresponding
functions for the event stream model.
Let us first repeat the demand bound function definition feraent streams:

o(At,IN) = n(At —dr,O7)ci = {7+1J cf
Z nmvT vér vsger Po !

vrel
At>ag+dr

Let 8 be an event element belonging to the event str@®arwhich belongs to the task
1. For a single event element the demand bound function loeksllaws:

m+1JCT+ . At >ag+dr

6(At,9,r):{t Po

0 : else

So we have:

st =y ez 5(At,6,1)
€0¢

vrelrv

3.3. EVENT STREAM MODEL 59

Algorithm 4 Superposition Analysis for Event Streams

Algorithm SuperpositionEventStream
Given: task set I, K

C+
IF Ur = Yvrer Yvoco, p; > 1
= notschedulable

END IF
testlist:= {}
Atgg:=0
Uready:=0
d
At max = ZVTEI— ZVGE@T (17 aapz -)C#

-U
VTel Ve eOr: ADD te= (NextInt{0,0),0) TO testlist
WHILE (testlist# {} AND At < Atmay

te=TEST LIST ELEMENT WITH SMALLEST At IN testlist

At =INTERVAL OF te

0 =EVENT-ELEMENT BELONGING TO te

T:=Tg

REMOVE te FROM testlist

o =0+ C;r + (At — Atold)Uready

IF (&' > Atact)

= notschedulable
END IF

IF (At < (d; + pek))
ADD At+ pg,6 TO testlist
ELSE
N
Uready = Uready+ (;)_Te
END IF
Atgg = At
END WHILE
= schedulable

We assume that exactly one event stream is connected to &dchQases in which
several independent event streams activate a task can bedaither by unifying these
event streams to one event stream or copying the task forexactt stream.

For the calculation of the demand bound function the orde¢hefevent elements or
even to which event stream a concrete event element bel@egsrt play a role. So we
can simplify the above calculation by unifying the evenéam elements of all tasks in one
big set of event elements.

We can define an approximated demand bound function in the saay as we have
done for the periodic task model.

DerINITION 3.3.1. Approximated demand bound function for an event element

Let T be a task activated by an event stre@ntaving an event elemefitand k be a
chosen number of those test intervals that should be camsider the task exactly. Let
Atg = dr +ag + (k—1)p. We calld’(At, 8, T,k) with

5(At9!k, 0, T) + g—;(At — Atgyk) At > Atgyk

5'(Ot,6,7,K) =
o(At,0,1) At < Atg

60 3. APPROXIMATION FOR DYNAMIC PRIORITIES

the approximated demand bound function for a single evemeht. Using(Atg x, 0, T) =
% (Atg — ag — dr) we can also get:

n
;—TQ(A'[—ag—dy) At> Dtg i

5'(At,0,T,k) =
o(At,0,T1) At < Atg

The complete approximated demand bound function for thetesteeam model is
the sum of the approximated demand bound functions for teateslements of the event
stream:

Jtrk=y gz 5'(At,0,7,K)
€0¢

vYTelr v

The error of each demand bound function for a single eventei0 can be bounded
separately t@&g x = % leading to an overall error of alsgp x = %

The approximated demand bound function for the event streadel has always the
same or a larger value than the corresponding exact funcliogrefore it can be used for
a sufficient schedulability analysis.

In algorithm 4 the new superposition analysis for the eveatsn model is given. The
only difference to the analysis for the periodic model isittdusion of the event streams.

Algorithm 5 is the corresponding algorithm for calculatihg capacity for the event
stream model.

If we have a more complex capacity function thgff\t) = At it is necessary to con-
sider additionally those test intervals at which the ratthefadditional available execution
time changes. A capacity stream can describe such functibhs event stream model
is not capable to model complex capacity functions. We wilegn chapter 7 a more
advanced event model, the hierarchical event streamswilidte able to handle even
complex capacity functions.

3.4. Proofs

In the following we will proof the correctness and the appneation characteristic of
the superposition approach. We will prove therefore theréms of the previous sections.
Itis sufficient to do this proof for the event stream modethesperiodic task model is only
a special case of it. A periodic tagkwith T = (p,c",d) can be modeled also by using
the event strear®; = {(p,0)} so1 = (©r,c;,d;) and a periodic task’ having a jitter
("= (p,j,c",d)) can be modeled usin@, = {(,0),(p,p—j)} soT’ = (Oy,c},,dy).
First it is necessary to prove the condition of lemma 3.1.8r évery possible interval
At the approximated demand bound functiifAt, I, k) has to meet or exceed the exact
demand bound functiod(At,).

LeEmmA 3.4.1. If the approximated demand bound function of each eventezieth
of the event streai® of each tasks of a task sef’ (&'(At, 8, 1,k)) is larger or equal than
the exact demand bound function of this event ele¢atAt, 6, 7,k)), the approximated
demand bound function of the task Eefd’(At,I)) is also larger or equal than the exact
demand bound function of the task &&(At,T")).

VIeTAVOEO, : &(A0,T,K>5(A6,T) = & (AtTK) >8(AtTN

3.4. PROOFS 61

Algorithm 5 Dimensioning a processing element (event stream model)

Algorithm DimProcEvent
Given: task set I, K

testlist:= {}

"
Ur = Svrer Yvoco, oy
Cresut := Ur
Mog:=0; &:=0
Uready:= 0

VT elv0 €O : ADD te= (NextInt0,0),0) TO testlist
WHILE (testlist {} AND At < Atmay
At :=NEXT INTERVAL OF testlist
6 :=EVENT STREAM ELEMENT BELONGING TO At
T:i=Tp
REMOVE (At,T) FROM testlist
o =0+ C;r + (At — Atold)Uready

Cont 1= &
act -= A
IF (Cyet > Cresult)
Cresult := Cact)
T,
Tvtlervelco,, (1* pg,/)C?G,
Atmax = Cact—Ur
END IF

IF (At < (dr + pek))
ADD At+ pg,T TO testlist
ELSE N
Uready = Uready+ ?)_Te
END IF
Atgg = At
END WHILE
= Cresult

PrROOF The proof for this lemma follows directly out of the defioiti 3.3.1 of the
approximated demand bound function of a task set:

VIETAVO €O, : &(AL06,T,K >5(At6,1)

5/(At, 91,11, 11, k) + ...+ 5/(At, 9k71—1, 11, k)+
o' (At, Orr,, T2, K) + ...+ o' (At, B 1., Tn, K) >0(At, O ¢, T1, K) + ... + O(AL, B 1y, T1, K)+
O(At, 01 r,,T2,K) + ...+ (AL, B ¢, Tn, K)

5'(0t,6,1,K) > 5(At,6,T)

Both complete demand bound functions, the exact and theziopated one, consist
of the same set of elements either in its exact or in its apprated form. They are the
sum of these elements. Each element of the both sums hasdpelsgtrone corresponding
element for the other sum. Both sums have therefore the sameg) the same number of
elements. If a sum has the same size then another sum andfémsobl@ments is equal or

62 3. APPROXIMATION FOR DYNAMIC PRIORITIES

larger than its corresponding element of the other sum, tfh@sum is also equal or larger
than the other sum. O

Therefore we can concentrate our considerations in theWolg on the approximated
demand bound function of an event element.

LEmMMA 3.4.2. The exact demand bound functid(it, 6, 1) is for any event element
0, any intervalAt and any value of k equal or smaller than the approximated atem
bound functiond’ (At, 6, T,k).

PrROOF With regard to the definition of the approximated demandnidofunction
given in definition 3.3.1 we have to distinguish two casese Phoof for the first case,
covering all intervals being evaluated exacty & ag + d; + kp = Atg), follows directly
out of definition 3.1.1. The second case covers all intertreds are equal or larger than
Atg and that are therefore approximatédl & Atg). The proof for these cases is given by:

+
&' (4,0, T,K) = 5(Atoy, T)+; (Ot — Atey)

At c

:(Ok~ +1) C++p—(A'[A'[g,k)
Atg —ag — dr + At — At

_ (ok —ag r+ 0.k +1) ot
At —

(= 1) o

> {7‘* +1J o = 5(At,6,7)
Pe

As consequence the approximated demand bound functiowéysigreater or equal than
the exact demand bound function. O

The next step is to prove that it is sufficient to check the agpipnated demand bound
function for the remaining test intervals to proof schediliy. We have to distinguish
between two cases. The first case is that the capacity fumistiequal to the intersection

(x(At) = At).

LEMMA 3.4.3. Let Atj,At; be two consecutive test intervals for the approximated
demand bound functiod of the task sef. If there exists an intervalt’ with Atj < At’ <
At andd(At',T) > At’ and U- < 100%then the value of the approximated demand bound
function exceeds the available execution time also atvalet;, therefored’ (At;, I, k) >
At;.

In the case that the exact demand exceeds the availabletiexetime at some interval
t’ and this intervalAt’ is not a test interval for an approximated demand bound fomgt
this approximated demand bound function will also exceedaVailable execution time
for the largest interval being smaller thAff and being a test interval of the approximated
demand bound function. The situation is visualized in fighirel.

PROOF The proof for lemma 3.4.3 is given in the following.

3.4. PROOFS 63

¢ (ms) A

3t T, K

X@at p)

i i i —
At. At Atj At (ms)

FIGURE3.4.1. Visualization of lemma 3.4.3

Let us assume thdit’ is a test interval of the non-approximated demand bound-func
tion with 5(At’,I") > At’ and thatdt; is the largest test interval being smaller titsthfor a
certain approximative demand bound funct®n

For the approximated demand bound funct®rthe event strear®; of each task is
split up into those event elements being considered ex@gtlyand those event elements
being approximate®? with regard to interval\t;. The event elements of a task can be
distributed in both groups. We know th@t = ©F U ©2 and©$ N 62 = 0, therefore

(A, T) = GZ O(At,0,1)+ SZ o(At,0,1)
VO] VOEO?
Let us rewrite the demand bound function fif using the split task set:
(A, 0,1,k) + (A, 0,T1) > At

Because due to the condition in lemma 3.4.3 there is no testval betweer\t; andAt’
with regard to the tasks considered exactly, so we know that:

VOe©® : 5(A,0,T)=5(At,0,T)

We also know from lemma 3.4.2 that the approximated demamehddunctions have
always an equal or larger value than the exact demand bouddas(d'(At,0,T,k) >
O(At, 6, 1)). With these conditions the inequality can be rewriten:

o' (A, 6,1,K) + o'(at',6,1,k) > At
v;r vege‘ﬁ v;r veg@

By using definition 3.1.2 of the approximated demand boumdtion the demand of the
approximated event stream elements can be split. As theitafanction is equal to the
intersection we only allow utilizations lower than the dable capacity of 100% here.

Therefore
C+
bl

cr
P I-EDIPN-EE
viervdeos Po vizrvdeo, Pe

With this condition we achieve:

o' (AL, T K) + At — At > A

64 3. APPROXIMATION FOR DYNAMIC PRIORITIES
5/(Ati,r, k) > At

In case that the demand bound function exceeds the intemsgathich models the avail-
able capacity, for any intervalt the approximated demand bound function also exceeds
the intersection at the test interval befdite O

The proof of the algorithms 2, 3 and 5 which calculate the mimn possible capacity
of a resource requires a different lemma than lemma 3.4.3.h&Ve to proof for these
algorithms that the skipped test intervals cannot lead tiglaeh required capacity than the
previous considered test-interval. Alsdds< 1 no longer a valid assumption.

LEMMA 3.4.4. Let Atj,At; be two consecutive test intervals for the approximated
demand bound functiod of the task seff. Let G be a required capacity with,C> Ur. If
there exists an intervait’ with At; < At’ < Atj andd(At’,I") = C;At’ then the value of the
approximated demand bound function reaches at least the saquired capacity also at
interval At;, therefored’ (At;, I, k) > C/At;.

PrROOF The proof for this lemma is quite similar to the proof for leva 3.4.3. We
have

Z BZ (A, 6,T,k) + Z GZ (A, 6,T) =CAt
VTErvOcos VTer voco?

Following the proof of above we achieve
o' (A, 0,T,K) + o'(at',6,1,k) > C A
vér vege;% vér veéa%

As the utilization does not exce@d we can assume
+ +
Cr

c
> éz <3y QZ L <G
viervdeea Po viervdeo, Po

and achieve with this condition
&' (AL, T k) + At — At > CAt
5/(Ati,r,k) > G At

The capacity required for a skipped test interval is alsairegl for the previous considered
test interval O

General capacity functions are considered in chapter 7 ewverpresent models for
these functions.
Let us now consider the proof of the approximation condition

LEMMA 3.4.5. The relative error between the approximated demand boumctifun
and the exact demand bound function is boundeél.by
o' (At,T,k) — o(At,IN)
o(At,IN)

IN

1
k

First we will determine the maximum absolute approximagaor.

3.4. PROOFS 65

LEMMA 3.4.6. For an event stream elemeétthe maximum difference between any
approximated demand bound functiéf{At, 8, 7,k) and the corresponding exact demand
bound functiord(At, 8, 7) is bounded by one time the execution time of the tégsk c

PROOF Let, without loss of generalityt be any interval and be any number of
exactly analyzed test intervals:

+

Cr

o'(At,0,1,k) — O(At,0,T) = 5(Atgk, 6) + o (At —Atg k) — O(At, 0)

Mgy—ag—d —ap—
_Hok—8 G C+ Jr (At —Atgy) — LiAt 29 er ¢
0

p T
cr o
+
_—(At ag—d [—1-‘0;r
Pe
+ _
< C—(—ag—d (At 8 — —1) cr
Pe
<cf

O

Therefore the maximum error of an approximative demanditlefunctiond’ (At, 8, k)
is limited to one time the execution time of the tagk It only applies if the task is approx-
imated, therefore i\t > kpg + dr, +ag. Using this result the error of the approximated
demand bound functiod' (At, I, k) and thereforé’ (At, I, k) can be bounded too.

LEMMA 3.4.7. The error of the approximated demand bound function is bedry:

datrk-s@ar< y SZ (oay
VTEr V8eb,
At>Atg g

PrROOF The proof for the lemma follows out of the previous statetaen d
LEMMA 3.4.8. For an intervalAt the demand bound function has at least the value:

s>y ket
vTel VOO
At>Atg

PROOF

S(r) = y SZ 5(Mtg, 0,T)
vrel VOeOr

At>Atg

kp9+dr—dr +
25 5 [t efe
Vtel VOeO

At>Atg

> gz (k+1)cf
vVTel VOO
At>Atg

>y S ke
vTel VOO
At>Atg

66 3. APPROXIMATION FOR DYNAMIC PRIORITIES

With these two bounds it is possible to prove theorem 3.h.4tich it is assumed that if
atask sef is schedulable on a resourgeg it is guaranteed for the approximative analysis
to return “schedulable” for a resourpe with a slightly higher capacity tham:
5(At,T) < x(At, pr)
= &'(At,7,K) < X(At, pa)

The relationship between the capacities is given by

1
X (Dt p2) = X (Bt p1) + L X (Bt p1)
We haved (At,IN) < x(At,p1). It follows:
1

1

- 5(At,.7)

Using definition 3.3.1 we get:

(88,7 K) < X(Bt,p1) + (A7)

1
o'(At,.7,K) < X (&t pr) + 1 X (B, pa)
o'(at,.7 k) < x(At, p2)
The relative difference between the capacitiepodndp; is simply:

X(Bt,p2) = X(Bt,p1) _ X(Btp1) + kX (Bt 1) — X (At p1) _ 1
X (At pa) X (At pa) ~k
which is equal to the maximum difference between the demanwahd functiond (At, ")

and the approximated demand bound funcg@t, I',k) and therefore to the error:

Svrer Y voeo, Cf

6,(At,r,k)*6(At,r) < At>Atg _ 4
o(At,I) T Swrer Y veeo, kK&t K
At>Atg k
The error of the approximation for the complete task setvisgé bounded b)i. O

3.5. Approximation error

Itis necessary to investigate the term of error used in tipecegimation schemes more
closely. This term is not as clear as it seems on the first view.

3.5.1. General remarks. The error somehow depends on the question to solve. For
example the backpacking-problem has the question whetligpbssible to pack items
with a certain value in a backpack with a given size. For theedalability analysis the
guestion is whether it can be guaranteed for a given task seeét all its deadlines while
executed on a processing element with a certain capacitgserfjuestions are true/false
decisions.

Each of these questions can be transferred into a correspogtimization problem.

For the backpacking problem, the goal of the optimizatiggoethms would be to find

3.5. APPROXIMATION ERROR 67

either the maximum value of those goods which could be pairied given backpack or
the minimum backpack which can accept a set of goods withengralue.

Each of these optimization problems leads to a possibleoappation scheme with a
different kind of error. For the first problem the error wollel measured in percentage of
the value of the goods, for the second problem the error wogllcheasured in the size of
the backpack.

For example, if the optimal solution allows goods for 100G&pproximation scheme
with an error of 1% has to find a solution with a value of at |2 $. In the second case
the approximation scheme would allow a slightly larger lpeadk than the optimal. The
difference between these backpacks is bounded by the error.

Those are two different questions leading to different atgms for the approximation
(of cause only if such approximations exists).

For our schedulability problem we cannot vary the lengthhaf tasks. Perhaps it
would be possible to vary the length of the deadlines, but waat have a measurement
to compare the deadlines of different task sets.

In soft real-time systems an optimization criterion couddd minimize the maximum
latency or the average latency of tasks. But for hard read-8ystems we do not allow any
latency at all.

So we have as only adjustable parameter the capacity of theentprocessor. The
optimization question is to find the processor with the mimimcapacity for which it is
possible to guarantee the deadlines of all tasks in the &sK kis leads to an approxima-
tion scheme in which the error is measured in the size of thaaity of the processor.

An algorithm fulfilling this approximation scheme will guartee that a task set wrongly
classified to be “not schedulable” on some processors isagteed to be “not schedulable”
on another processor with a slightly lower capacity. Thizawdty of the other processor is
given by the previous capacity and the approximation error.

This definition of the error is similar to the definition giveg Axelsson [10] p. 82
ff. He uses the term “minimum required speed-up”. This munimrequired speed-up is
defined as how much additional capacity for the process@gaded to reach schedulability.

3.5.2. Approximation error for schedulability analysis. For the schedulability anal-
ysis two different concepts for the approximation erroristsx

The first concept is related to the time in the system and wasgsed by Chakraborty
etal. [38]. The maximum test interval, a value of time, isidiéd into equally distributed
test intervals. Every demand occurring between two of thestantervals is considered as
having occurred either in the smaller one or the larger orbesfe test intervals.

Considering the demand as having occurred in the smalleintesval leads to a pes-
simistic analysis, which means an overestimation of thaired resources or an underesti-
mation of the response times. Considering the demand asdaecurred in the larger test
interval leads to an optimistic analysis, which means aretgstimation of the response
times or the necessary resources. Note, that this oveastimand underestimations are
bounded by the approximation error. An analysis having fedifice of 10 ms between
two consecutive test intervals can lead to deadline midsespectively 10 ms at most.

68 3. APPROXIMATION FOR DYNAMIC PRIORITIES

¢ (ms)

3(at,T)

a)

¢ (ms) ¢ (ms)

T T e T T 17 T

b) c)

FIGURE 3.5.1. Approximation related to the time
a) Exact case b) pessimistic approximation c) optimistjgragimation

Figure 3.5.1 shows an example for this approximation. Iha)xact demand bound
function and its test intervals are given. In the Figure I&) diotted line shows the same
demand bound function using a pessimistic approximatich wgually distributed test
intervals. Any value of the approximated demand bound fanabccurs at an equal or
earlier time than the same value of the exact demand bourtidan

The approximated demand bound function is still feasibtbéexample but meets the
capacity for the second test interval. In ¢) an optimistigragimation of the same demand
bound function is shown. The values for the approximatedadehibound function occur
later or at the same time than the same values of the exactdeboaind function. This
can lead to deadline misses as the response of a task can éndterlihan predicted by
the analysis.

The distance between two consecutive test intervals detesthe error of the time
related approximation. This distance depends on two ciemgit the chosen maximum
number of allowed test intervals and therefore the chodent&br the analysis on the one
side, and the length of the maximum test interval on the ctiuer.

The maximum test interval depends not on the number of tasksdsk set but on the
parameter of these tasks and on the utilization of the campdsk set. A high utilization
or large periods leads to a long maximum test interval andcefbee to a long distance

3.6. COMPLEXITY 69

between consecutive test intervals. This distance is équhk error so a long maximum
test interval leads to a large error.

The size of the maximum test interval depends of the paramefethe task in the
task set. For this reason, the error of the time related apation also depends on these
parameters. The problem is that this error is the same asedlue for all tasks in the
task set independently whether they are small or large .sTafskery different sizes in one
task set can lead to a large maximum test interval. For thdentasks in the task set the
error can be quite large compared to their periods and deslli

For example having a task set with a taskvith d;; = 10 ms and tasks with periods
of 1,000 ms leading to a maximum test interval of 2,500 ms.uAs8eg an allowed effort
of 1,000 test intervals leads to an error of 0.1% and an atesdifierence between the test
intervals of 2.5 ms. Despite that the error seems to be veajl $on the complete task set,
2.5 ms is 25% of the deadline of. The task is either allowed to miss its deadline by 2.5
ms so to end at 12.5 ms or the task has to respond within 7.5 msat@antee its deadline
using this approximation. The error of this approach is tleximum additional demand
allowed to occur between any two test intervals.

The second kind of approximation error is the one used in ppraach. The approx-
imation is bounded by a fraction of the capacity, not a valtignoe. The value of the
approximated demand bound function is always equal or tahga the value of the exact
demand bound function. We only consider the pessimistie faaghis approximation. The
resulting performance, especially for the adaptive apipraton, which we will introduce
in chapter 4, is so satisfactory that an optimistic apprawitthits potential deadline misses
is not necessary. The error of our approximation does nbérdhan the error of the time
related approximation, depend on the parameters of thesesk

By definition of approximations the type of error of the appnoation need to be
measured with the same type of value as for the optimizatiorour approach the error
is of type “capacity of the resource” and the optimizatiomigeto minimize this capacity.
For the goal to minimize the latency of the task an error oktiwould be adequate. For
achieving a small error a price has to be paid in increasiegnécessary effort. The
advantage is that the approximation allows a trade-off betwthe degree of exactness
and the required evaluation effort.

We have an error that can be chosen and reduced as near &gl detire exact solu-
tion. To prove that the superposition algorithm ifully polynomial time approximation
schemeave only have to show that the superposition algorithm hasympmial complexity
with regard to the number of tasks and the chosen approxamatior.

3.6. Complexity

The complexity of the schedulability problem for the syrartous uni-processor case
is unknown. The best available exact analysis has a pseoigagamial complexity if the
utilization is bound by a value smaller than 100% [17, 84].e@xample for such an
algorithm is the processor demand criterion given in [19].

70 3. APPROXIMATION FOR DYNAMIC PRIORITIES

The complexity of our algorithm 4 depends, same as for edwdr @pproximation, on
two values: The number of tasks of the considered task seth@nchosen approximation
error. Letn be the number of tasks in the task set and % be the chosen approxima-
tion error. The consideration of a single test interval riseselreral operations with linear
complexity (addition, multiplication, comparison) andeoaperation for inserting a new
element into a sorted list. Due to the required priority cquigwe overall complexity for
considering a single test interval@nlogn). The maximum number of test intervals that
have to be considered during one run of the algorithm can badby the number of tasks
multiplied with the maximum number of exactly considerest t@tervals for each task.
This number ik = % and therefore depends directly on the approximation e@ailculat-
ing the maximum test interval, with exception of the busyigeawhich we therefore have
not used, and the initialization requires also not more tharlogn). Therefore the overall
complexity of the superposition algorithm can be bounded)bylogn%).

The complexity of our algorithm depends polynomial on thenber of tasks and on
the chosen error. It is a fully polynomial time approximatscheme.

3.7. Comparison to related work

Comparing the superposition algorithm to previous relatedck leads to interesting
results. In the following chapter we will discuss the radatof the superposition algorithms
to the best sufficient analysis and the best exact analydigrawe that both are only special
cases of the superposition analysis.

3.7.1. Best sufficient analysesin this chapter we will show and prove the relation-
ship of the superposition approach to the best availabfeemrft test for EDF scheduling,
that was proposed by Devi in [46].

We will show that the superposition approach is a genetédizaf the previously
existing sufficient schedulability analysis for EDF. Liudabayland [88] proved that for a
simple periodic task model with all tasks having a deadliqeat to their period all task
sets with a utilization equal or lower 100% are feasitje Cp—ft < 1). As the response
times for a task set with a utilization larger than 100% beesimfinitely large, this test is
also necessary. The task model only allows tasks activateetiodic events and having
a relative deadline equal to the period of the tasks. Theradyga of this analysis is the
linear complexityO(n).

For more generalized periodic models, having deadlinefientlaan the periods of the
tasks or a more powerful event model, this test is no longficent. A good sufficient
analysis with also linear complexity was developed [90].

THEOREM 3.7.1. [90] For a task set with tasks activated by periodic event\ai
period p and having a relative deadline ¥, W{M < 1is a sufficient schedulability

analysis.

PROOF. Given is a task seff = {13,...,Tn}. Let us assume a task detwith ' =
{11, T}, Py = min(pg, dy), dy = min(py;, dy), c;, = ¢f. From the theorem we know

3.7. COMPARISON TO RELATED WORK 71

that

cr

———— <1

vrel min(pz, dr)

c

= L <1
vt'el’ Pr

Sol” is schedulable if the condition of the theorem holdslfoiWithout loosing the
schedulability we can enlarg@{ to pg anddri/ tod;. Soif " is schedulablé is also

schedulable. 0

Based on this approach Devi [46] has developed a new suffiaiealysis. It is a
variation of the test above, but has to check one in-equétiosach task.

THEOREM 3.7.2. ([46]) A task setl”, arranged in order of non-decreasing relative
deadlines is feasible using EDF scheduling #nl"| and

kK of k —mi . dy
vk < n| <Zi+iz Pr; mm(pr”, TJ)Ci Sl)
pA i

S Py dy =1 Pr;

PROOF. (See [46]) O

Despite that it is necessary for the analysis to test ongiraon for each task, it still
has a linear complexity. For all task sets this analysisdeaequal or higher bounds than
the previous sufficient analysis.

LEmMMA 3.7.3. A task set recognized as schedulable by the analysis prdpiose
lemma 3.7.1is also recognized as schedulable by the asali/Bievi [46] (theorem 3.7.2).

PROOF. (See [46]) O

With the superposition approximation we can generalize tbsult even further and
prove that the superposition is a generalization of theaeBevi.

THEOREM 3.7.4. The task sets that are recognized as schedulable by the sisaly
proposed in lemma 3.7.2 are also recognized as schedulablesing the superposition
analysis with the approximative demand bound funcéitiht, I, k) with k= 1.

PrROOF. For the analysis witd’(At, ", 1) only one test interval needs to be considered
for each task € T'. In general we have

(M) ¢ +6(dr,) At>d

5 (At,r,1) = Pr
vrer | O At < dy
oF
> (—T(At—dr)+cr+)
vier \Pr
dr <At
ay d
= 5 oy “o S ¢l
vTer vTer Pr vTer Pr

dr <At dr <At dr <At

72 3. APPROXIMATION FOR DYNAMIC PRIORITIES

The test of theorem 3.7.2 can be transformed:

d, >drkZ +Z(pﬂ RG]) o

>d i (pr T)c+
* v;r Pr v;r Pr !

de<dg dr<dg
+
c d
+ T T+
> Y CAdy Y —— Y —c
vier vier Pt vier Pr
dr<dq de<dg dr<dg

The test of Devi has to be performed one time for each trekl". The calculation
for &'(At,I,1) has to be done also one time for each task at the first deat]jre each
task. Usingd’ (dy,,I",1) < dy, as test leads to an equal calculation for both tests. [0

In other words, the test by Devi is only a special case of tipemuosition approach.
As we have already seen the processor demand criterioroi®alg a special case of the
superposition approximation, the case wkth . Therefore the superposition approxi-
mation bridges the gap between the fast but only sufficiesttdEDevi and the accurate
but slow processor demand criterion and therefore betweehést sufficient and the best
exact analysis and combines them in one consistent approach

3.7.2. Asynchronous task setsThe problem of schedulability analysis for asynchro-
nous task sets, e.g. task sets in which the tasks can haeeetifioffsets, for EDF sched-
uling is CO-NP hard [18]. In [106, 104, 105] a sufficient schiadbility analysis was
proposed for these asynchronous task sets scheduled WithTHI¥ approaches requires a
repeated use of the processor demand criterion. In [68]stskawn that by a combination
of the approach given by Pellizzoni and Lipari in [104] wittetintroduced approximation
and the dynamic approximation proposed in the next chagp®égnificant reduction of the
run-time of the analysis could be achieved.

CHAPTER 4

Adaptive schedulability tests

Approximative schedulability tests are only sufficient. thdl schedulable systems
are recognized as such by these analyses. Even that thedégreactness can be chosen
does not help. The selection of the exactness has to be dalwamce. Choosing a high
degree of exactness can lead to a long execution time of tgsi®m whereas choosing a
low degree might result in a failure to classify correctlg gystems in question.

But the proposed approximative superposition test can bd tesachieve fast exact
schedulability test algorithms. The idea is to adapt theredynamically on the hardness
of the problem. Systems being classified correctly by andneapproximation should be
evaluated fast by the new analysis and only systems needinghadegree of exactness
for their correct classification will need a long evaluatiome. Therefore the proposed
algorithm uses different levels of approximation, startiith an inexact but fast approxi-
mation. In this chapter we will, based on the proposed appration algorithms, introduce
exact feasibility analysis for dynamic priority systems.

We will propose two exact feasibility analyses, the dynaemior analysis and the all
approximation analysis. We will consider the period tasldeiavith jitter and the event

stream model.

4.1. Dynamic error analysis

The idea behind the dynamic error analysis is to use diffdesels of approximation
having different degrees of exactness. The test starts apioximation level with a low
degree of exactness resulting in a fast schedulability Tést test switches to a level with
a higher degree of exactness if it fails at the lower level.

The example in figure 4.1.1 shows an exact demand bound éumdtn figure 4.1.2
the dynamic test for the same function is shown. The testsstéth an approximation
level of one test interval for each event stream elementak. tdhe first test interval is

¢ (ms)

5t T,)

At (ms)

FIGUrRe4.1.1. Exact demand bound function

73

74 4. ADAPTIVE SCHEDULABILITY TESTS

¢ (ms) ¢ (ms) c (ms)
T - T - Violation oo
2l s,) 2l s, o) G, o)
! ’ ! 1
ST T S(At, T, ; 5(Aat, T i
I_ - (S | e = -
a) At (ms) b) At (ms) ©) At (ms)
¢ (ms) SaLre) | ms)
-
ST, 4 3
d) At (ms) e) At (ms) f) At (ms)

FIGURE4.1.2. Graphical visualization for an example of the dyrami
error test

considered exactly (figure 4.1.2 a) and then the approximatiarts for this task (figure
4.1.2 b). Considering the first test interval for the sec@sl results in a violation due to
the previous approximation of the first task (figure 4.1.2Td)erefore the approximation
level is raised (to two test intervals for each task) and #iaefor the first test interval of
the second task is recalculated (figure 4.1.2 d) . The tesimeoas with the new approxi-
mation level (figure 4.1.2 e) and now does not lead to any miaiation (figure 4.1.2 f),
so the test returns “schedulable”.

It is not necessary to recalculate the value of the demanddfunctiond(At, I, k')
for the new approximation level. It is only necessary to ahte the difference to the
previous value oB(At,I",k). This difference depends on those tasks only for which an
approximated value is included in the total value on the iptevlevel and which are no
longer approximated on the new level.

LEMMA 4.1.1. Calculating the demand bound function for a new approxioralével
Let k = ﬁ, kn = ﬁv be two approximation levels arth;;; be the set of tasks that
are not approximated on leveleyand have previously be approximated on lesgg] with

regard to an intervalAt. The demand bound function of the new level can be calallate

St k) =AM ko)— Y (At—i—]r—dr B {At—i— JT_dTJ)
vrel gift

Pr Pr

or for the event stream model:

AtangLAtaeer)

o' (AT, kn) = &' (AL, T, ko) — (
We%,iffveger Pe Pe

PROOF We need to consider the definition of the approximated derbannd func-
tion. It is sufficient to do the proof for the event stream mnlpds the periodic model is

4.1. DYNAMIC ERROR ANALYSIS 75

included in it as special case.

(AT ko)~ S (AT k) = T S(BtTk)— T &(ALT k)

vrel vrel
Due to the definition of 4js+ we have the condition:

VT ¢ gits | 5/(AI,T,kO) = 5/(A'[, T,kn)
Therefore we achieve:

3T k)~ FBLI k)= §F SAtTk)— T (AT k)

vrel gif VTel git
vreTuine veger Pe o veger Pe

Atagdr_{Ataeer)

B VTGZdiffvﬂgOT (p9 pT

O

The problem is whether the whole analysis has to be repeatet wwitching to a
higher approximation level and therefore the previousiysidered (and skipped) test in-
tervals have to be reconsidered or not. Fortunately thiagoessary.

THEOREM4.1.2. Let intervalAt be a test interval on the approximation level k. Let
At’ be the largest test interval on the approximation levekk with a size smaller than
At. If 5(At, T k) > At thand(At', k) > At

In other words, if the analysis on the new approximationllex@uld have failed for
any test intervals it would have also failed for the previtest interval on a lower ap-
proximation level and therefore for one of the considerstlitéervals. Therefore it is not
necessary to reconsider the skipped test intervals.

PrROOF If the analysis fails for an intervdit using an approximation levélit fails
for At also with each approximation levkl < k. The remaining part of the lemma is
equivalent to lemma 3.4.3 therefore the proof is also theesam O

In case of a level switch it is possible to continue the arslgsthe considered test
interval. It is necessary to complete ttastlistby the test intervals of those tasks that are
no longer approximated due to the change of the approximégicel. Letl ex be again
the set of tasks that are no longer approximated on lexglat intervalAt.

LEMMA 4.1.3. Let T € Mnext be a task being approximated at approximation level
Kprev and being no longer approximated at levgbl NextIn{At,) gives the smallest test
interval for taskr with a size larger thaut.

NextIn{At,7) = max(dr, ({WJ +1) Pr+dr — jr)

T

or for the event stream model with the event elenfent

A — —
NextIntAt, 6) = ({%%J +1)pg+ag+dy,
6

76 4. ADAPTIVE SCHEDULABILITY TESTS

PROOF It is again sufficient to do the proof only for the event stnemodel. The
intervals generated by an event stream elerfaare given by

Attest: kp9+a6+d'[9 kE N

For a specific value df we get:
_ Dtrest—ag —dy,
Pe

Only natural numbers are allowed fer As it is required for the next larger interval

Atiest to the intervaldt being not equal tét we get fork:
K — LAttest ag — dy,
Pe
This leads to the above calculationMéxtIntAt, 6). O

k

|+

The dynamic error schedulability test is formulated in aiidpon 6. The test starts at
test levelk; in which one test interval is considered for each task. Sasrie the original
superposition algorithm, the smallest test interval farhetask has to be collected in the
testlist The algorithm considers the intervalstastlistin increasing order. For each of
these intervals the approximated demand bound fundiida calculated and compared
with the available computation time for this interval. Iethvailable computation time is
equal or larger than the required computation time giverhieydemand bound function,
schedulability is proven with regard to this test interval.

In general the next larger test interval for the task resiipdador the checked test
interval is added. This last step is skipped in cases wherenximum number of test
intervals for this task on the actual approximation levalgached. In this case no more
test intervals are considered and therefore addésstbstfor this task. For compensation
it is necessary to add an approximated demand for this tasladh demand of further
test intervals. This approximated demand is calculateaiusie specific utilization of the
approximated task on the difference between the considestéhterval and the previous
test interval.

The test runs on this approximation level until either alevant test intervals have
been checked, a maximum test interval is reached or the =ippaited demand bound
function exceeds the available capacity for a test intetwal;. In the last case, the ap-
proximation level is raised step-by-step to a higher apipnation levelgyex. Only those
approximation levels are of interest in which at least onthefapproximated tasks of the
previous level is not approximated any more. For each apmation level a new ap-
proximated demand bound function is calculated with exatitas for those tasks that are
no longer approximated. When the new approximated demaunddfunction does not
exceed the available computation time the test intervahisHed and the analysis is con-
tinued with the new level. Otherwise the approximation léseaised further. If there are
no more approximated tasks at a level, the task set is notdatdide. For each task that
is no longer approximated on the new approximation level stinallest test interval being

4.2. ALL-APPROXIMATED ALGORITHM 77

Algorithm 6 Dynamic Error Schedulability Test

Algorithm DYNAMIC_ERROR
Given: task set I
IF Ur = Syrer & > 1= notschedulable
k=1
A max:= maximum test interval
testlist:= {}
approxlist:= {}
Atgg:=0
VT el : ADD te= (NextInt0,7),7) TO testlist
WHILE (testlist# {} and At < Atmax
te=TEST LIST ELEMENT WITH SMALLEST At IN testlist
At =INTERVAL OF te
T =TASK BELONGING TO te
REMOVE te FROM testlist
=0+ C;r + (At — Atold)Uready
WHILE (&' > At)
IF (approxlist = {})
= notschedulable
k:= 2k
/** It is possible to use another
/** strategy here for rising the level
FOR ALL 7/ in approxlist with At <dy+ prk
At+j—dy At+j o —dy
§ = (A | My)
ADD te:= (NextIntAt,1'),7’) TO testlist
REMOVE 1/ FROM approxlist
+

—U -

Ur i=Ur — 55
END FOR
END WHILE
IF (At=d;)

ADD te:= (At+pr—jr,T) TO testlist
ELSE IF (At < d+ prk)
ADD te:= (At+ p;,T) TO testlist
ELSE
C+
U =U, + Pr
T ADD TO approxlist
END IF
Atgg = At
END WHILE
= schedulable

larger thamit ¢5; has to be added testlist(but only if it does not exceed the global max-
imal test interval). The algorithm is continued until eithestlistis empty or the analysis
fails for a considered test interval.

The event stream version of this test is given in algorithm 7.

4.2. All-approximated algorithm

Once the dynamic error schedulability test has switched tiigher approximation
level it remains there. This is especially a problem for sdravhich the demand bound

78 4. ADAPTIVE SCHEDULABILITY TESTS

Algorithm 7 Dynamic Error Schedulability Test - Event Stream Version

Algorithm DYNAMIC_ERROR_EVENT_STREAM
Given: task set [.
IF Ur = Syrer Sveco, ‘;—Te > 1= notscheduable
k=1
Atmax:= maximum test interval of [
testlist:= {}
approxlist:= {}
Atgg =0
VT el,V0 € ©;: ADD te= (NextInt(0,0),0) TO testlist
WHILE (testlist# {} and At < Atmax
te=TEST LIST ELEMENT WITH SMALLEST At IN testlist
At =INTERVAL OF te
6= EVENT ELEMENT BELONGING TO te
T = TASK BELONGING TO 6
REMOVE te FROM testlist
o =9 —i—C;r + (At _Atold)Uready
WHILE (&' > At)
IF (approxlist = {})
= notscheduable
k:= 2k
/** It is possible to use another
/** strategy here for rising the level
FOR ALL 6’ in approxlist with At <dp +a+ pgk

. Sy
Uready-: Uready* p_e'

! e N/ At—d_,—ag At—d_ —ay +
0:=0—(F’Te/ s F’Ta/ ?)Cy
ADD te:= (NextInt{At,6'),6’) TO testlist

REMOVE 1/ FROM approxlist
+

. Co

Ur .—Ur—pLe/
END FOR
END WHILE

IF (At < d;+ag+ pgk)
ADD te:= (At+ pg,0) TO testlist
ELSE
C+
U =U, + p—fe
6 ADD TO approxlist
END IF
Atgg = At
END WHILE
= scheduable

function do nearly exceed the available capacity for sorsigriéervals and for which there-
fore it is not allowed to approximate any, even the smalksi tfor these test intervals. In
these cases it is necessary to raise the approximationtteaghighest value required for
any interval of the demand bound function. The approxinmdéwel has to cover the num-
ber of test intervals necessary for the smallest task. Ifuttiber execution of the analysis
this level is used for all tasks. This could require to tesirgé number of test intervals.
Often only few test intervals are critical and nearly exctezlavailable execution time.

4.2. ALL-APPROXIMATED ALGORITHM 79

¢ (ms)
V|o|at|on\ < ! ST, o
3t 1) ,'I
/L
- a) At (ms)

k=4 b) At (ms)

FIGURE4.2.1. Graphical visualization of the all-approximatidgaithm

Only for them the highest approximation level is requirethe Dther test intervals could
be approximated using a small approximation level. Thesmiderations lead to a new
approach for the analysis.

The idea behind the all-approximation algorithm is to ass@each task an approxi-
mation level individually and to raise this level only as & necessary. Instead of using
fixed levels for the complete task set, approximation is damenuch as possible. In the
algorithm each task is approximated after each of its téstvals. Figure 4.2.1 shows this
for an example. Until the first violation the algorithm woriksthe same way as the dy-
namic error algorithm. After this violation the approxinuat restarts for each task as soon
as possible again, this means at the next job of each taskinfewals are only generated
and considered at the beginning and when violations haveremtpreviously.

Therefore no new test interval is inserted inéstlist after the analysis of any test
interval. In the algorithm new test intervals are addegstlistonly in those cases in which
the calculated approximated demand of a test interval elsciee available computation
time.

The algorithm 8 implements these considerations. At the efahe algorithm the
first test interval of each task is inserted in#stlist The test intervals inestlistare pro-
cessed in ascending order. All the following test interadlshe tasks are approximated
first. Therefore each task is addedayaproxlist(and their specific utilization ttJ;) after
analyzing its test interval. Whenever the approximatedateiibound functiod’ exceeds
the available execution time for a test inters| a step-by-step revision of the approxima-
tions of the single tasks is necessary. Only if an approdonaif a task is revised in this
step, it is necessary to insert a new test interval for ttgk.tdt is necessary to insert the
first test interval of the task that is larger thain Lemma 4.1.3 gives its calculation. Note

80 4. ADAPTIVE SCHEDULABILITY TESTS

Algorithm 8 All Approximated Test

Algorithm All-Approximated
Given: task set I
IF Ur = Syrer & > 1= notschedulable
testlist:= {}
approxlist:= {}
Atgg =0
Vrel: ADD te= (NextInt(0,7),7) TO testlist
WHILE (testlist {})
te=TEST LIST ELEMENT WITH SMALLEST At IN testlist
At =INTERVAL OF te
T =TASK BELONGING TO te
REMOVE te FROM testlist
o =9 —i—C;r + (At _Atold)Uready
WHILE (9 > Ata)
IF (approxlist = {})
= notschedulable
7' = TASK WITH LARGEST (pr—d;) OF approxlist
/** Other orders of
/** revised elements possible
At+j.,—dy At+j—dy
o = 6/_(JpTT, v Jprr/ T)ij,
ADD te:= (NextIntAt,1'),7’) TO testlist
REMOVE T’/ IiROM approxlist
Up:=U, —
Py
END WHILE .
Uri=Ur+ 5
ADD T TO approxlist
Atg)g := At
END WHILE
= schedulable

that all skipped intervals smaller th&h are covered by the previous tested intervals, so it
is only necessary to consider intervals larger thanThe revision is done by replacing the
approximated execution time of a task by its exact execuime using lemma 4.1.1. The
revision is done task by task, testing for each task whetteenew approximated demand
is now covered by the available computation time or not. Qinllge execution time still
exceeds the capacity at the time when the approximationlfasks is revised, the system
is not schedulable. A task system is recognized as schddufahere is a test interval
At in which all tasks can be approximated successfully ancefber thetestlistis empty.
Essential for the number of test intervals is, in which otttierrevision of the task is done.
The best would be to choose that set of tasks for revisionli¢laals to the largest follow-
ing test interval. Always choosing this set would lead to Idrgest differences between
consecutive test intervals and therefore to the smallesdiple number of test intervals.
Unfortunately the construction of the set that leads togh@&gest test intervals is not sim-
ple. It can be necessary to consider the test intervals andxact approximation errors
of all other tasks. Even worse, a task with a large followiegt interval will usually lead
only to a small approximation error, whereas a task with gitésrval close by can have a

4.2. ALL-APPROXIMATED ALGORITHM 81

Algorithm 9 All Approximated Test - Event Stream Version

Algorithm All-Approximated-Event-Stream
Given: task set [.
IF Ur = Sver Svoco ‘;—Te > 1= notschedulable

testlist:= {}
approxlist:= {}
Atgg =0
VT el V0 € O;: ADD te= (NextInt0,0),6) TO testlist
WHILE (testlist{})
te=TEST LIST ELEMENT WITH SMALLEST At IN testlist
At =INTERVAL OF te
6 = EVENT ELEMENT OF te
T =TASK BELONGING TO 6
REMOVE te FROM testlist
o =9 —i—C;r + (At _Atold)Uready
WHILE (&' > Ataqt)
IF (approxlist = {})
= notschedulable
6’ = EVENT ELEMENT WITH LARGEST Pe —
dr, OF approxlist
7/ = TASK BELONGING TO 6’
/** Other orders of
/** revised elements possible
At—ag —dy At—ag —dy
0 =0~ (T~ e)c
ADD te:= (NextIn{At,6’),0') TO testlist

REMOVE 6’ FROM approxlist
C+

U :=U, — PLe//
END WHILE
Ur:=Ur + ;—TG
ADD 6 TO approxlist
Atgg := At
END WHILE
= schedulable

large concrete approximation error. This is the case if #réogds of the two tasks are in the
same range. A large distance to the following test interfaltask means a small distance
to the previous test interval. This means a small concrgtecegmation error because it
directly depends on the difference between the actualriestvial At and the previous test
interval of the task.

As the order in which the approximation of the tasks shoulcebessed we propose the
sizes of the difference between period and deadline of tle téasks with large periods
have the potential of a large approximation error and widiierage lead to large following
test intervals. These tasks are therefore most suitableetising the approximation. In
chapter 6 we have compared the run-time of the analysis dsffiegent orders for the task
for revision.

The event stream version is given in algorithm 9.

82 4. ADAPTIVE SCHEDULABILITY TESTS

4.3. Generalization of the maximum test interval

For the all-approximation analysis it is interesting to sider the test interval after
which no violation can happen any more. For a schedulabiesttsthis test interval is not
larger than the maximum test intervals proposed by Baruah €i.9] and by Ripoll et al.
[119] (lemma 2.2.13).

LEmMMA 4.3.1. The largest test interval being analyzed by the all-appration anal-
ysis is equal or smaller than the test bound given by Ripall.e{119] (lemma 2.2.13)

To prove this, we need:

LEMMA 4.3.2. The all-approximation analysis finish its execution at thkofving
testinterval(Vt € I : Aty > d;):

Ma= Y <A7ta+ Pr dT) Cr
vrel Pr

This lemma follows directly out of the definitions. With thHemma it is easy to prove
the previous lemma.

PrRoOOF We can do the following calculations (conditidp < py):

. Cr pr—dr
Ma=A0ta) — +v;r (—pr) Cr

vrer Pr
Ma(1-Ur) = ¥ (pr —dr) o
vrer Pr
ZVTGF (1* %) Cr
Ata =
1-Ur

The test bound given by Ripoll et al. [119] is the same as thendaesulting of the
all-approximation algorithm in the case that all tasks i tifisk set have a deadline being
equal or smaller than their period. If the task set contaskd having a deadline larger
than their period, the bound of the all-approximation aildpon is tighter than the bound
given by Ripoll et al. [119]. O

Only the busy period condition can result in a smaller upmemi for the test inter-
vals. But the effort required to calculate the busy periocsldraexponential complexity and
can therefore become quite larger than the whole all-appration test.

4.4. Complexity

The resulting complexity of the all-approximation test iknown. Considering one
test-interval has a complexity @(nlogn) with n being the number of tasks. In the worst
case the effort for one test interval consists of undoingaiyeroximation of all tasks ex-
cept the actual task and to insert for each of it the next faegd interval into the sorted
test list. The problem for complexity analysis is that thentner of test intervals needed
by the all-approximation algorithm in the worst-case ifl staiknown. An upper bound
for this number of test intervals is the number needed by tiggnal processor demand

4.4, COMPLEXITY 83

criterion. This original processor demand criterion haseuglo-polynomial complexity.
The number of test intervals depends on the number of tadkeitask set as well as on
their parameters. Again the ratio between the smallestlamtatgest tasks in the task set
plays an important role for the number of test intervals.

No tighter complexity bound than pseudo-polynomial is knder the all-approximated
algorithm so far. We have used experiments with randomlersrd task sets to find a
lower bound on the complexity of the all-approximated asisly We have found out that
the new algorithm needs a lot less effort than all previokslywn exact and approximated
analyses. It also seems that its effort is independent ofétie of the parameters of the
tasks and only depends on the number of tasks in a task sehamndiltzation of the task
set. See the evaluations given in chapter 6 for the results.

CHAPTER 5

Approximation for static priority scheduling

Although the EDF scheduling scheme is proved to be optimeitherefore it allows
a high utilization of the processing elements, many aptitioa and methods are based on
scheduling with static priorities. On the one side, the enpéntation for this scheduling
scheme is said to be simple and it is not necessary to assagimkes to the tasks. On
the other side, static priorities do not allow high utilibais as achievable with EDF. An
interesting comparison of the two scheduling schemes cdaw®l in [35]. This paper
contradicts many prejudices against the EDF schedulingrnseh Despite that, it is still in-
teresting to find efficient approximative and exact testsfatic priorities. In this chapter
we want to extend our approximative schedulability testatis priority systems. We pro-
pose an approximative test and also an efficient exact testteyding the approximation.

Based on the idea of the superposition approach presen{&fi kisher and Baruah
have proposed an approximative schedulability test faicgpaiority systems, too [51, 52,
53].

In contrary to their approaches we propose a test based @athe elements we used
for EDF scheduling, the sub-additive functions. These fions can be regarded as an
abstraction layer between the event models and the tegitaigo Therefore the new test
algorithms are suitable for powerful event models, not doyhe periodic task model. For
example they are suitable for the event stream model. Teeyalow to easily combine
the tests for both scheduling schemes to an integrated fueeerall-test.

5.1. Exact schedulability analysis

Let us first consider some already existing schedulabiésts for the preemptive
scheduling scheme with static priorities. Each task in & & has one priority. A task
with a higher priority will be preferred over a task with a lespriority. In a preemptive
scheduling scheme the execution of a task can be interripytectask with a higher pri-
ority and be postponed until the execution of this higheéo#ity task has finished. For the
purpose of the following considerations and without losg@fierality we will order the
tasks with increasing priorities. We demand that each taskahunique priority. There-
fore we assume, again without loss of generality, that tagias a higher priority tham,
having a higher priority thamg and so on.

DeFINITION 5.1.1. Let prio(t) be a function giving the priority of task Let h(,I")
be the task set containing all those task§ dfaving a priority higher tharr

hp(t,I") = {1« | prio(1x) > prio(1)}

85

86 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

For static priority schedulability analysis it is not suiiot to consider only the de-
mand bound function, which covers the amount of workloadlfiad within the given in-
terval. For EDF itis sufficient to consider the demand bowmtfion, as only the workload
covered by this function has priority and is therefore pmefe to all remaining workload.
For static priority scheduling, workload that has to be fieid later than other workload
can originate from tasks having a higher priority then theksaresponsible for the other
workload and is then preferred over this other workload. fBit@ amount of the preferred
workload can be captured by the request bound function.

DEFINITION 5.1.2. Request Bound Function

The request bound functigAt,) returns for each interval-lengtht the cumulated
worst-case workload of all jobs of all task getting ready éxecution within the interval
At.

peen) = 5 |2
vrer | Pr

This request consists of the execution time of those jobsmuch the invocation
time is within the interval I. For a single task we will wrifg(At, 7). For an intervalit
and a task a chain of consecutive jobs of the task contributes fullyhe tequest bound
functionp(At, 1) if the difference between the release time of the first jothef¢hain and
the release time of the last job is equal or smaller than thgtheofAt.

The execution of a job of a task is postponed by the requedittaits having a higher
priority which is given by the request bound function for shetasks @(At,hp(z,I")).
Therefore it is necessary to consider the feasibility tesehch task separately.

We will first consider the case that the possible executitervals for the jobs of task
T cannot overlap.

DEFINITION 5.1.3. (Task separation constraint) A tagkfullfills the task separation
condition if the possible execution interval (e.g. therwmdincluding every point in time
in which the job can execute) of each jobrafoes not overlap with the execution intervals
of the previous and of the next following job of the same takis is the case if the absolute
deadline of each job of the task occurs earlier than the redeaf the next following job.

The task separation constraint allows simplifying fedijbanalysis. We will intro-
duce and prove a schedulability analysis with the followdiedinitions and lemmas

DEFINITION 5.1.4. (Satisfaction interval - schedule formulation) Let jo belong
to a taskt; bound on a resourcg holding the task separation condition. Each intersl
for which the following condition holds is called a satigiaa interval fort:

e The interval starts at an idle point with respect to the taskl all tasks with
higher priorities. That means that exactly at the start paihthe interval only
those jobs are ready for execution that have just arrivedhatstart point. Tasks
with a lower priority thant are not considered.

e The jobr; ; becomes ready exactly at the start of the interval

5.1. EXACT SCHEDULABILITY ANALYSIS 87

e The capacity foiAt does meet or exceed the sum of the request bound function
for At with respect to the higher priority task set obound on one resourge
and the execution time for the job itself.

X(At,p) > p(At,hp(t,T)) +¢f

This satisfaction interval is based on one concrete (wease) schedule only. In the fol-
lowing lemmas we will show how the satisfaction interval ged for schedulability anal-
ysis. The separation condition allows reducing the comeptehedulability analysis to a
check of the satisfaction intervals for every first job of eéask.

In those cases in which the separation constraint does pbt, apis not longer pos-
sible to check only the first job of each task. Instead it isassary to analyze every job
within the first busy period of each task. In definition 5.1.€ will propose a modified
functional description of a satisfaction interval for whithe separation condition is no
longer necessary. But let us first continue with the schdxlitiaanalysis and the proof of
it.

LeEmMA 5.1.5. Ajob is always executed completely within its satisfaciiderval.

PROOF Let us assume there is a job of a tas&nd an interval\t fulfilling the con-
dition of the satisfaction intervals of definition 5.1.4.fjob is not executed fully, despite
that the capacity meets or exceeds the execution time ofothennd the request bound
function for the higher priority tasks. By definition of thattsfaction interval, the job
gets ready at the start of the interval and remains readygtinie complete length dft.
Therefore the processor is not idle at any point of time witkti as the job would execute
at this point of time. Also tasks with lower priorities canre executed withidt, ast
would execute instead of them. No job that has arrived beferestart ofAt can execute
in At as this would be in contradiction to the idle point conditfonthe start point of the
satisfaction interval. So, as the capacity is fully usedh®yjob and the tasks with is higher
priority thant either the execution time of the job would exceddor the sum of the exe-
cution time of the tasks with is higher priority therwould exceegb(At,hp(t,I")). Both
are in contradiction to the definitions of the two values. rEfiere the assumption does not
hold. O

With this lemma we can now formulate and prove the schedlitiabnalysis itself.

THEOREM5.1.6. A taskt holding the task separation condition is schedulable (fin-
ishes always its execution before its deadline) if therstex satisfaction intervalt < d;
for the simultaneous release of the first jobtoénd a job of each task having a higher
priority than 1.

VT el 30t <d¢|x(At,p) >cf +p(At,hp(T,T))

PROOF Let us first prove, that the simultaneously release of altgeof a task set
is the worst-case situation for the task with the lowestnisionithin the task set. The
worst-case situation for a job occurs if it's processingiewos the longest delay. Consider
the top two taskgy, 12 with the highest priorities and assume that they are noasele

88 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

simultaneously. The release of a jobmfcan occur either during the processing of a job
of 1y or during an idle time of the processor. In the first case thease time of the job of
T, can be moved to the release time of the running job, efithout changing the concrete
schedule. In the second case the release time of the job cawoved to the release time
of the next job ofr;. The amount of workload that was originally processed betwtbae
original release time and the new release time of the joh Wilthe modified schedule,
have to be also moved. It will fill the idle time following theew simultaneous release
time in a size that is equal to the difference between thér@ignd the new release time.
Therefore the shift operation to a simultaneous releasasidstcannot lead to a shorter
delay for one of the tasks. The same proof can now be usedsieelyron all following
tasks. Therefore the simultaneous release of all taske iedinst-case situation.

As we know by lemma 5.1.5 the execution of a job is completeigfied within each
of its satisfaction intervals in those cases in which th& separation condition holds. If
there exists a satisfaction interval that does not exceedetative deadline and the task
separation condition holds, each job finishes within thatied deadline of the task and the
task is schedulable. O

The problem is that the possible satisfaction intervalssamaewhere between the
worst-case execution time of the task and its relative deadINeither of these values
needs to be such a satisfaction interval. The satisfaati@mial is similar to the definition
of a scheduling point in [80]. It can be time consuming to fime @atisfaction interval.
The question is, if there is a more efficient way to prove saladallity than calculating the
worst-case response time.

For the general deadline case, in which the task separatinditton does not hold, it
is necessary to use an extended definition of satisfactienvial and to find these intervals
for several jobs of the same task. The satisfaction inteistéll have to start at an idle point
but can include several jobs of the considered task.

DEFINITION 5.1.7. (Satisfaction interval - functional formulation) Let usn=ider
each taskr separately. An intervalt’ is a satisfaction interval for a task and an interval
At if At < At and the sum of the demand of the taskfband the request bound function
for At’ of all tasks with a higher priority them does not exceed the capacity with respect
to At':
X&', p) > 8(At,) + p (At hp(,IM))

The satisfaction intervals are visualized in figure 5.14.itlthe functionF (At') =
O(At,T) + p(At',hp(t,I)) is plotted together with the capacity functigiiAt’, p). There
are three spaces of satisfaction intervals.

This is the general description for a satisfaction intervabr a complete real-time
analysis it is necessary to find such a satisfaction intext/br all jobs of each task. Let
Aty = (K— 1)p; +d; be the interval of the k-th job df.

5.1. EXACT SCHEDULABILITY ANALYSIS 89

¢ (ms)

Satisfaction Intervals

At (ms)

FIGURES.1.1. Example of satisfaction intervals

LEMMA 5.1.8. Atask set is feasible if for each task and each of its integl; such
a satisfaction interval exists.

VAL|O(AL,T) >0 JAY < At|x (A, p) > S(At, T) + p(A hp(T,T))

PROOF. Let, without loss of generalitylt’ be an satisfaction interval belonging to a
taskt and an interval\t; ; with A < Atqj. The unified starting point of botfit andAt’
is set to the last idle point of their processor before the@oidt of At’. Assume that the
job 7; of taskt; having its absolute deadline given by the end\tf; misses its deadline
despite that the condition of the satisfaction intefélholds. By definition the complete
costs of the job are included in the value of the demand boundtion d(At, 7). For
missing the deadline it is necessary that at least one pareafemanded workload cannot
be processed withiat. The sum of the demand bound function and the request bound
function for At’ does not exceed the minimal available supply of computaticapacity.
As one part of the demand bound function is not processednith either the processor
is idle somewhere withift’ or it processes tasks that are not covered by the demand and
the request bound function. The processor cannot be idlthasvase the job that misses
its deadline would be processed at the idle time. Also no vtk a lower priority can
execute withimit’ for the same reason. No job occurring before the statt’'ofan execute
within At” as the start point ofit’ is an idle point of the processor. By the definition of
an idle point there is no processable job at this point of timaging arrived before this
point of time. All tasks with higher priorities arriving wiin At’ are included in the request
bound function and therefore covered by the service functithe jobs of the task itself
have all the same relative deadline. All jobs having an attime before the arrival time
of T also have a deadline before the deadling.ofThose jobs of the task having arrived
before the start o’ are completely executed before the staritfdue to the idle point
condition. The computational effort of all those jobs of Haene task having arrived within
At’ but beforer and can therefore delay the executiorr éé covered by the demand bound
functiond(At, T) and therefore also by the service bound function. Itis nesie to find
a schedule in whiclr misses its deadline. O

This results in a huge effort for the analysis. The concephefsatisfaction intervals
can also be used to determine the worst-case response tartasif. Again we consider the

90 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

c (ms)

[=——=| At (ms)

FIGURES.1.2. Worst-case response-time with satisfaction imderv

cases in which the task separation condition holds or natrsg¢gly. In case the condition
holds we only have to consider the first job of the task.

THEOREM5.1.9. The worst-case response time of a taskor which the separation
condition (definition 5.1.3) holds is given by the smallasis$action interval as defined in
definition 5.1.7.

(1) = min(At|p(At, hp(T,7)) +¢f < x(At,p))

PROOF As the satisfaction intervals are sufficient to prove scifeuility, the worst-
case response time cannot be larger than this interval.eSetthaining question is, if it can
be smaller than the first satisfaction interval. The job caly be executed if no job with
a higher priority is ready to execute and have a remainingwgi@n demand. This is the
case for those intervals in which the execution of all higrérity jobs can be completely
satisfied by the service bound function. To complete the @@t of the job itself it is
additionally necessary that the service function also ideenough capacity for this job
and all previous jobs of the task. This is the case at the fati$faction interval. It is
therefore the worst-case response time of the task. O

The theorem is visualized in figure 5.1.2. The worst-casparse-time is the first
satisfaction interval.

In case that the separation condition does not hold, thetwarse response time can
be the response time of any job within the first busy periodhis case it is necessary to
calculate it for every one of these jobs.

LEmMMA 5.1.10. (similar to [130]) The worst-case response time for a speguid (the
first, second, third,....) is given by the difference betwie smallest interval in which
the job can arrive (given by the interval bound functigni, 7)) and the next following
satisfaction intervalp(At,hp(t,IN)) +cfi < x(At,p)). The overall worst-case response
time is given by the maximum of all worst-case response trig jobs.

e =maXien(rei — Y(i,7))
rei = min(At|p(At,hp(T,T)) +cfi < x(At, p))

We can also reformulate this calculation so that it is indejest of the jobs and is
only based on intervals.

5.2. EXCEEDING COSTS 91

THEOREMS5.1.11. The overall worst-case response tine)rfor a taskr is given by:
r(t) = maxAt|r(At, 1) — At)
r(At,) = min(At'|n (At, T)re + p (At hp(T,IN)) < X (A, p))

PROOF Let us assume that there exists ajptvith a longer response time than given
by the equations above. By definition of the fixed-priorithaduling the resource has
to be completely busy between the releasg aid the finishing time of;. Let At” be the
interval between the finishing time af and the last previous idle time. Let us assume a
synchronous release of jobs of all tasks at the staft’af All other release pattern would
only lead to equal or less costs withi and therefore to an equal or smallgf’. Let us
also, without loss of generality, denote the jolroéleased at the begin Af” with 1;. Due
to the assumption there exists an inteselfulfilling n (@ (i, 1), 7)r; +p (A, hp(t,IN)) <
X (At p) with At < At”. As At' is an idle point with regard to andhp(t) the jobt; has
finished atAt’ which is in contradiction to the assumption. O

To find the worst case it is necessary to analyze all jobs witiné busy period of the
tasks and all higher priority tasks.

5.2. Exceeding costs

The disadvantage of all the approaches proposed in thedasbss is that it is nec-
essary for proving the schedulability of one interlto find or prove the existence of
an additional intervalit’” with unknown size. For integrating the analysis in an analys
framework it would be better if it would be possible to useyoahe intervalAt for all
functions. To find a schedulability analysis satisfyingtbonstraint an additional function
is required, the exceeding-cost function.

DEFINITION 5.2.1. (Exceeding Cost Functioj(At,I")

The exceeding costs are those part of the execution timdkjolbs of all tasks in the
task set, arriving withinAt that cannot be processed withitt independently of the used
scheduling scheme of the processor.

The exceeding costs are those costs of the different joliscranot be processed
within the test interval due to the late arrival time of thbgo

ExampLE 5.2.2. Consider the example given in figure 5.2.1. It is the& &etl =
{11, 72,13, T4} With T = (pr,cf,d;) and 13 = (8ms4ms4ms), T, = (22ms3ms7ms),
3= (19ms3ms 17m9), 74 = (30ms 1ms 26ms). Let us consider the exceeding costs for
the first jobty 1 of taskt. Letd;, = 50 ms thereforét = 50 ms is the considered interval
for the exceeding costs. The ja, of taskt; arrives at time 48 ms (or more exactly not
before the end of an interval with length 48) having an exeouime of 4 ms. Even if
this job can use fully the available capacity in the remairadehe interval for execution
it is only possible that this job executes for two ms witlin So it is not possible for
the remaining two ms to be executed witlih They belong to the exceeding costs. A
set of jobs arriving late can contribute even more to the editey costs than the single

92 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

11 9 T3 20 T4 30 s At (ms)

LY 20032 30 T3 At (ms)
N ; Y —
Ty At 20 d 30 T42 At (ms)
2 Y41
At
| 3 |
| | At

FIGURES.2.1. Task set example for exceeding costs

jobs of the set. They cannot execute concurrently. In thengkathe jobt, ; arriving

at time point 45 ms having an execution time of 5 ms would nadl v exceeding costs
when considered alone. Together with jok it leads to a value of 4 ms for the exceeding
costs, even more than; produces alone. Two milliseconds are the exceeding costs of
11, the other two milliseconds occur becausg cannot be executed fully withiat due

to its postponing by jolry;. Note that the scheduling of these two jobs is not relevant
here. One of the two jobs is shifted partly out of the boardéthe interval by the other
job. For the exceeding cost function it is not important vihjab is shifted and therefore
contributes to the exceeding costs. Only the sum of all cdatjgun time that is guaranteed
to be not within the interval is of relevance. In the exampkejobts also contributes to
the exceeding costs but only when its delay by thetph is taken into account. This
shows that, especially to the concurrency of the jobs ofdiifit tasks, several jobs of a
task can cause a contribution to the exceeding costs. Ebdbejween the last idle point
within an interval and the end of the interval can cause ekiogecosts and has therefore
to be taken into account for the exact calculation of them.

LEMMA 5.2.3. The exceeding costs for an intervstland a task seff are given by

&(At) = p(At,T) — p(A',T) — (x(At) — x (At))
At = maxAt” |At" < AtAp(AYYT) < x (A7)

PROOF. LetAt; be the requested intervat, At, be the intervalit’. The intervals are
visualized again in figure 5.2.1. A necessary conditiontieraxistence of exceeding costs
is that in an intervalAtz more computation is requested bythan capacity is available.
The exceeding costs of intervAt; are those part of the costs requested withiig that
exceeds the capacity available witlity. Relevant forAt; are only those intervals starting

5.2. EXCEEDING COSTS 93

after the last idle point, as no costs occurring before tls point can contribute to the
exceeding costs. So we haflte; > At;.

To prove the condition we assume that an inteffglexists withAts > At, leading to
more exceeding costs tham,. Any job arriving between the start ét, and the start of
Atz and which is not completely finished processing at the sfanterval At contributes
to the exceeding costs. So a necessary conditioftfois that no such job exists. But then
the end ofAts is an idle point which is in contradiction to the assumptibattthe end of
At is the last idle point. O

A new schedulability test can be formulated using the exiogeebst function.

THEOREMb5.2.4. Let T be a task of task sét. T always meets its deadline if the sum
of the demand bound function of the task and the request bfwnations of hpr,I") is
lower or equal to the available execution timeAhand the exceeding costs of (Tpl"):

O(At, T) + p(At,hp(t,IN)) < x(At) + &(At,hp(T,TM))

PROOF The exceeding costs cannot by definition be executed withibut they are
included ind(At, 7) 4+ p(At,hp(t,T)). Therefore a virtual capacity in size of the exceeding
costs is additionally available withifst to satisfyd(At, 7) + p(At,hp(t,I)). O

The algorithm calculating the exceeding costs exactly vemiin algorithm 10. It
covers the period task model with jitter. Having no jittése jitter can be set to zero and it
is only necessary to check whether the first job for every kaglps its deadline.

The idea behind the algorithm is quite simple. The jobs aiegiin the intervalAt
are considered step-by-step backwards, starting withasstgdb. We consider a set of last
jobs of the interval being increased by one job at each steg.ifterval in which all these
jobs occur is called the remaining intervat,. It is given by the difference of the end
of the complete interval and the release time of the first drtbelast jobs. We have to
consider two kinds of values here. First, there is the exectime of these last jobs. One
part of the cumulated execution times of these jobs are kdniithin the remaining part
of the interval, the other part of the cumulated executioret forms the exceeding costs.
As already mentioned the exceeding costs cannot be exewittdd the intervalAt. To
calculate the size of these parts we have to consider thenmiaxamount of execution time
that can be handled within the remaining interval. This amiaif processable execution
time is given by the difference of the capacity of the complatervalAt and the capacity
of an intervalAt’ = At — At,;. Note that both capacities deliver the minimum processable
execution time, so the difference of these functions caredtdhe minimum execution
time that is available for any interval of lenght, .

This remaining execution time is also calculated steptey-&n the proposed algo-
rithm by considering the service bound function at the detimes of the jobs. The
exceeding costs are calculated by subtracting this difteef the service bound functions
from the cumulated execution times of the considered jobb®e @vent stream version is
given in algorithm 11 ..

94 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

Algorithm 10 Exceeding-Cost Analysis
Algorithm Exceeding-Cost-Analysis
Given: task set [, T
IF Ur = Yvrer %—T: > 1=-not schedulable
Atpp = BusyPeriodt Ul pyq))

Atpase:= dr
while (Atpase< Atpp)
testlist:= {}

Atgg i= Atpase
Cr = 0(Atoid, T) + (At + jr, Thp(r)) — X (Btola)
VT € Mhpr) © ADD te:= (({%:“’J Py — jr/),r’) TO testlist
WHILE (testlist#{})
IF (C <0)
=>schedulable
END IF
te=TEST LIST ELEMENT WITH SMALLEST At IN testlist
Aty =INTERVAL OF te
T =TASK BELONGING TO te
REMOVE te FROM testlist
Cr :=Cr —¢f + (X (Dtact) — X (Atoid))
IF (Atae > 0)
ADD te:= (max0,Atact — pr), T) TO testlist
END IF
Atgg 1= Dtagt
END WHILE
IF (Atpase= do)
Atpase= Atpaset Pr — jr
ELSE
Atpase:= Atpaset Pr
END IF
END WHILE
= not schedulable

Note, that it is only necessary to proceed with the calomfatf the exceeding cost
function until it covers completely the difference betweba request bound function of
the higher priority tasks and the demand bound function eftésk in question on the
one side and the service function on the other side. Therpitigen that there is enough
processable execution time available withinfor the job in question to keep its deadline.
In the case that the sum of the request and the demand bouttibfudoes not exceed the
service bound function for the intervAt no calculation of the exceeding costs is needed
at all. The advantage of this approach is that only in casevefwhigh utilization of the
processor it is necessary to calculate the exceeding costidmn accurately requiring an
effort comparable to the effort for the previous existingtse

It is possible to re-define the existing schedulability gsal using sub-additive de-
mand, request and exceeding cost function. In doing thisdlaionships between the
different approaches will become more obviously.

5.3. APPROXIMATION OF STATIC PRIORITIES 95

Algorithm 11 Exceeding-Cost Analysis - Event stream Version

Algorithm Exceeding-Cost-Analysis
Given: task set I, T, O
IF Ur = Yvrer Yvoco, ‘;—i > 1= notschedulable
Atpp = BusyPeriodt Ul pyq))
Atpase:= dr +ag
while (Atpase< Atpp)
testlist:= {}
Atoig 1= Atpase
Cr = O(Atoig, T) + P(AL, Mhpr)) — X (Atola)
VT'el,V0' € ©r: ADD te:=

(q%;w pe/+ae/)79) TO testlist

WHILE (testlist#{})
IF (G <0)
=schedulable
END IF
te=TEST LIST ELEMENT WITH SMALLEST At IN testlist
Atget =INTERVAL OF te
6’ = EVENT ELEMENT OF te
T =TASK BELONGING TO 6’
REMOVE te FROM testlist
Cr:=Cr —¢f + (X (Dtact) — X (Dtoid))
IF (Atae > 0)
ADD te:= (Ataet — pgr),T) TO testlist
END IF
Atglg 1= Atact
END WHILE
Atpase:= Atpaset Po
END WHILE
= notschedulable

5.3. Approximation of Static Priorities

For an approximative analysis for static priority schedglive have to distinguish
between the case of non-arbitrary deadlines and arbitraglthes. In the non-arbitrary
deadline case only tasks with a deadline smaller than tleeiogh are allowed. A schedula-
ble task set with non-arbitrary deadline fulfills the sepiaracondition of definition 5.1.3
and to prove schedulability it is only necessary to checkdsk sets with non-arbitrary
deadlines the first job of each task within a synchronousisel®f all tasks of the task set.
In the case of task sets with arbitrary deadlines, taskslirmeed having a deadline larger
than their period, so the possible execution window of s#\ebs of a task can overlap.
To prove schedulability for task sets with arbitrary dea€li it is necessary to prove several
jobs of each task. In the worst case it is necessary to pravedhedulability of all jobs
within the busy period of the task set.

5.3.1. Non-arbitrary deadline case.Fisher and Baruah [51], [52] have exchanged
the request bound function with an approximated requeshddunction following the

96 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

same ideas as already introduced for the approximated debwamd function. The spe-
cific approximated request bound function for a task is etputiie specific exact request
bound function for the same task up to a limited number of johihe task which is de-
termined by the approximation error. After these jobs theceéxequest bound function is
approximated by the specific utilization of the task, sam&itisthe approximated demand
bound function.

The complete request bound function is given by the sum spatific request bound
functions, so the complete approximated request boundifumis also given by the sum
of all specific approximated request bound functions.

For feasibility analysis of task sets with non-arbitraradines it is only necessary to
exchange in theorem 5.1.6 the request bound fungtiéi, ") by the approximated request
bound functiorp(At, I, k) with k being the number of exactly considered test intervals. It
is necessary to find an interval’ being equal or smaller than the first deadline of the task
and in which the sum of the request bound function of all tasikis a higher priority and
the execution time of one job of the task does not exceed thiéahle capacity given by
the service bound function for the intervsl.

LEmMA 5.3.1. [51] Ataskr in accordance to the task separation condition for which
no intervalAt’ exists withAt’ < d; and with

cf +p (A, Tp(1,MN),k) < x(At)
is not schedulable on a processor with a capacity funcitiat) = (1—) x (At).

PrROOF The proof for this lemma is corresponding to the proof fetem 3.1.4 and
can also be foundin [51]. O

We will now propose an approximative analysis using the edi® cost function,
shown in algorithm 12.

The algorithm uses the approximative request and demanadbfoctions. It starts
at the deadline of the first job and calculates the exceedists step-by-step uniilf +
p(de,hp(t,T),K) < x(dr)+&(dr,hp(t,T),k). The exceeding costs are the part of the sum
of the worst-case execution times which exceeds the almitapacity. For the calcula-
tion of the exceeding costs we have to consider the last jobsrang befored;, one by
one. For each job we have to consider its worst-case exectimne cj, and the amount
of capacity available within the remaining partaf The algorithm calculates an initial
amount of uncovered cos atd; and than adapts this value with each job considered
for the exceeding costs. Therefore the last jobs of eachdesirring befored; are in-
serted intaestlist It is also necessary to register which higher priority tagke already
approximated ad;. For them not the last job is inserted in@stlistbut the last job that is
considered exactly.

The valueC; is reduced by the worst-case execution time of thecj;bkand the ad-
ditional available capacity is addedAteq) — X (Atact). Furthermore, to take care of the
approximation, the amour@; is reduced by an additional lower bound of the costs re-
quired at least by the approximated tasks. This vé{f&, g — Atact)Ur) is calculated with

5.3. APPROXIMATION OF STATIC PRIORITIES 97

Algorithm 12 Exceeding-Cost Approximation |

Algorithm Exceeding-Cost-Approximation
(non-arbitrary case)
Given: task set Ihpyq), T, K

IF Ur = Yvrer % > 1= notschedulable
testlist:= {}
approxlist:= {}
U =0
Atoig :=dy
Cr =¢f +p(Bt+ jr,Thp(r),K) — X (Dtoid)
FOR ALL VT’ € Thy
IF (kpy — jo < Atoid)
ADD 6’ TO approxlist
ADD te:= (maxO, (kpy — jy)),0’) TO testlist
+

Uri=U, + ;—
ELSE .
ADD te:= (max(O, QWJ pr — jr/)) ,9) TO testlist
END IF !
END FOR
WHILE (testlist#{})
IF (G <0)
=schedulable
END IF

te=TEST LIST ELEMENT WITH LARGEST At IN testlist
Ataet =INTERVAL OF te

7' = TASK OF te

REMOVE te FROM testlist

G =G + (X (Atoig) — X (Atact)) — (Atgig — Atact)Ur

IF (7' € approxlist

REMOVE T FROM approxlist
ct

U i=Ur - o
ELSE
C :=C—c},
END IF
IF (Ataet > 0)
ADD te:= (max0,Atact— py),0) TO test-list
END IF
Qtgg 1= Atact
END WHILE
= notschedulable

the cumulated specific utilization of all approximated tdk, same as in the algorithm 1
for the approximative analysis of dynamic priority schedgl It can happen that we reach
the starting point of the approximation for one of the apjrated tasks. A test point for
this task intestlist markes this point. So, if a test point is related to a task enli$t of
approximated tasks, the approximation for this task is dvitvn and the task is handle
exactly during the further calculations. A task is schebldédf C; < 0 for any considered
job, so the algorithm can stop when the condition is reachethg first time.

98 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

Algorithm 13 Exceeding-Cost Approximation | - Event Stream Version

Algorithm Exceeding-Cost-Approximation - Event-Stream-Version
(non-arbitrary case)
Given: task set Mpyq), T, K

IF Ur = Svrer Yvoco, % > 1= notschedulable
testlist:= {}
approxlist:= {}
Ur:=0
Atoig :=dr
G = C;r + p(Ata rhp(T)a k) - X(Atold)
FOR ALL VT' € thm Ve ¢ O::
IF (ag +kpg < Atgg)
ADD 6’ TO approxlist
ADD ((ag+kpg),0’) TO testlist
+

U :=U; + ;—e
ELSE
ADD te:= ((\;At%;a@/J pe/-i-ag/),e) TO testlist
END IF
END FOR
WHILE (testlist#{})
IF (G <O
=schedulable
END IF

te=TEST LIST ELEMENT WITH SMALLEST At IN testlist
Ataet =INTERVAL OF te
6’ =EVENT ELEMENT OF te
7' = TASK BELONGING TO O’
REMOVE te FROM testlist
G =G+ (X(Atoig) — X (Atact)) — (Atgig — Atact)Ur
IF (6 € approxlisd
REMOVE 6’ EROM approxlist

. Co
U =U; — PLe/
ELSE
C :=C—c}
END IF

IF (Ataet > 0)
ADD te:= (Atact — pgr, 6) TO testlist
END IF
Atgg 1= Atact
END WHILE
= notschedulable

The version for event streams is given in algorithm 13.
This algorithm matches with our approach for EDF scheduling

5.3.2. Arbitrary case. For the arbitrary cases the algorithm is more complicated as
it is necessary to consider more than one job of each task.piidi@em is, that a job of
a task that is not processed completely before the arrivedefiext following job of the
same task will delay this next following job. As by the reledéisne of the first job no other

5.4. DYNAMIC ADAPTIVE TEST 99

job of the task is pending, this job is not affected by any yelae to previous jobs of the
same task. The following jobs of the task can receive a deldytlaerefore may require a
longer response time than the first job. Therefore we havertsider in the arbitrary case
the response time of more than one job for each task.

The worst-case response time has to happen somewhere thighfirst busy period
of a task set consisting only of the task in question and akgawith a equal or higher
priority. All jobs of the task in question having arrived iit this first busy period are also
processed completely within this interval. The followiradp$ will not receive any delay
from these jobs.

THEOREM5.3.2. Letl" be a task set and < I' be the task with the lowest priority
within ™. If any job oft; fails to meet its deadline also one jobmfails to meet its deadline
within the first busy period df.

PrRoOOF We will prove the contra-positive. Lat; be the job that fails to meet its
deadline. Each job belongs to one busy period starting adlarpoint of the system. In
case that the busy period of starts with a simultaneous release of all higher-priority
tasks it would be equal to the first busy period and therefaeejob within the first busy
period would fail to meet its deadline. In case that the bueyool of 7 does not start with
a synchronous release of all higher-priority tasks we cdit e release times of these
tasks until we get a synchronous release. As shown in [88]faddlrelease-times to a
synchronous release can only lead to more interruptionsvedr-priority tasks, therefore
only to longer delays. The jobr would still fail its deadline and, as the busy period with
the synchronous release is equal to the first busy periody wighin the first busy period
would also fail its deadline. O

For proving the schedulability for we have to check every job afwithin its first
busy period. Fisher and Baruah [52] propose a complicatkedico of this problem, but
using the approximated request bound function a bound &éntaximum number of test
intervals is given in a more natural way.

The number of test intervals needed to describe the comajeteoximated request
bound function is bounded, depending only on the numbeis&tand the error. So, using
the approximated functions instead of the exact functioraftalysis will automatically
bound the number of test intervals. Using again the exceemtists we can do the analysis
with the algorithm 14. It is a small extension of the algamtfor the non-arbitrary case.

The version for event streams is given in algorithm 15.

5.4. Dynamic adaptive test

To improve the run-time of the exact test, an adaptive aimiggproposed. The idea
behind this is to use the approximation for skipping as masyintervals as possible. We
assume that there are only few parts of the functions havatgéa distance and therefore
require to be analyzed exactly. We use the same ideas asfeffitient dynamic priority
scheduling analysis.

100 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

Algorithm 14 Exceeding-Cost Approximation Il

Algorithm Exceeding-Cost-Approximation (arbitrary case)
Given: task set I, T, k
IF Ur = Svrer % > 1= not schedulable
Attest:= dr
WHILE (Attest < Kpr—jr)
testlist:= {}
approxlist:= {}
U =0
Dtgig i= Atest
Cr = O(Atoi, T,K) + P (Atoid + jr; Thpr),K) — X (Ator)
FOR ALL T’ €l
IF (pr’k* jr/ < Atoig)
ADD T/ TO approxlist
ADD te= ((ppk—jp),T) TO testlist
+

Uy = u,+;—fr’/
ELSE .

ADD te= (({WJ pr/fjr/),r’) TO testlist
END IF !
END FOR

IF (Attest=dr)
Dtiest:=dr + pr — j1
ELSE
Atiest := Attest+ Pr
END IF
WHILE (testlist {} AND C; > 0)
te= TEST LIST ELEMENT WITH SMALLEST At IN testlist
Aty = INTERVAL OF te
T/ = TASK BELONGING TO te
REMOVE te FROM testlist
G =G — (X(Atoig) — X (Atact)) — Ur (Atog — Atact)
IF (7' € approxlisDC; ={})
REMOVE T/ FROM approxlist
+

C
Ur :UripLT/
ELSE
C:=C-—c}
END IF

IF (Atact — pr < OAAtae > 0)
ADD te:= (0,7’) TO testlist
ELSE IF (Ataet > 0)
ADD te:= (Atact— P, T') TO testlist
END IF
Dtoig 1= Dtact
END WHILE
IF (G >0)
= notschedulable
END IF
END WHILE
= schedulable

5.4. DYNAMIC ADAPTIVE TEST

101

Algorithm 15 Exceeding-Cost Approximation Il - Event Stream Version

Algorithm Exceeding-Cost-Approximation (arbitrary case)
Event-Stream-Version
Given: task set I, 8, kK

IF Ur = Yvrer Yvoco, % > 1= notschedulable
T:=Tg
Dtiest:= dr
WHILE (Attest <ag+Kkpg)

testlist:= {}

approxlist:= {}

Ur:=0

Dtgig i= Atest

Cr = 0(Atoid, 6,K) + p(Atoid, Mhp(r), K) — X (Atoid)

FOR ALL VT’ € [y V0 € Or :

IF (ag + pgrk < Atgg)
ADD 6’ TO approxlist
ADD te= ((pg'k+ag),0) TO testlist
+

Up 1= Uy + o
ELSE
ADDte::<(Léh%%ﬂ£pr4%ag),9) TO testlist
END TF ?
END FOR

Attest := Altest+ Pr
WHILE (testlist {} AND C; >0)

te=TEST LIST ELEMENT WITH SMALLEST At IN testlist
Ataet =INTERVAL OF te

0’ := EVENT ELEMENT OF te

T/ :=TASK BELONGING TO 6

REMOVE te FROM testlist

G =G — (X(Atoig) — X (Atact)) — Ur (Atgg — Atact)

IF (0’ eapproxlistC, = {})

REMOVE 6’ EROM approxlist

. Co
Up 1= Uy — o
ELSE
C :=C—c}
END IF

IF (Atae > 0)
ADD te:= (Atact — pg,T) TO testlist
END IF
Qtgg 1= Atact
END WHILE
IF (G >0)
= notschedulable
END IF
END WHILE
= schedulable

102 5. APPROXIMATION FOR STATIC PRIORITY SCHEDULING

Algorithm 16 Adaptive test for static priorities with non-arbitrary diiaes

Algorithm static-adaptive

Given: task set [, T

IF Ur = Yvrer Cp—ft > 1= notschedulable

testlist:= {}

approxlist:= {}

Atog :=dy

VTel: ADD te= ((max(o, {NLT’E‘TJ Pr +ar)) ,r) TO testlist

p
cost:= p(Atoid, Mhp(r)) +CF
service:= x(Atorq)
WHILE (testlist {})
te=TEST LIST ELEMENT WITH SMALLEST At IN testlist
Atact =INTERVAL OF te
T =TASK BELONGING TO te
REMOVE te FROM testlist
exCosts=
exCostst ¢ — (X (Atoig) — X (Atact)) + Ur (Atorg — Atact)
WHILE (exCosts> (costs— service)
IF (approxlist = {})
= scheduable
T’ = FIRST ELEMENT OF approz-list

exCosts= exCosts- ({Ata“*af’ 1| - Hetryes

Py Py T
ADD te:= ((max(o, {magf/aﬁ pr +ar/)) ,T’) TO testlist
T
REMOVE 1/ FROM approxlist
+
Ur = Ur - i
Py
END WHILE

C+
Ur:=Ur+ o
T ADD TO approxlist
At = Atag
END WHILE
= notschedulable

Unfortunately, we cannot use the approximated requestdéumction for such an
analysis. The reason is that only a few intenaSfulfill the condition of lemma 5.1.6,
for the remaining intervals the calculated value exceedsatfailable capacity. As the
approximated request bound function is always equal oetalgn the exact request bound
function, it could likely be that for some of these intervidle approximated request bound
function remains above the capacity despite that the exaetsteps below the capacity.
These intervals would be missed by a dynamic analysis usiagabove approximated
request bound function.

It is necessary to underestimate the exact value of the stgoend function to guar-
antee that an existing intervat’ is found by the adaptive test. Using the exceeding cost
approach we can achieve an adaptive test for static pasritiVe will use an approxima-
tion of the exceeding cost bound function. With this funetiee still can overestimate the
costs. The algorithm for this analysis for non-arbitrargdléenes is given in algorithm 16.

5.5. COMPLEXITY 103

For the arbitrary deadline case we need to consider theitgofor each job within
the first busy period of each task.

5.5. Complexity

The complexity of the new static priority analysis is unkmow\e can only give a
few provisions. The complexity has to cover at least theudaton of the busy period and
the maximum number of tasks within it. The busy period is elalted, as the worst-case
response-time, with a fixed-point analysis. The busy pesgdhbe smallest value dfit for
which the following condition holds:

min(Atjat >y A {MW ch)
VTEr veeo, Pe

The length of this busy period cannot be bounded in polynbtimee, same as the
calculation complexity. Therefore the arbitrary analyss a pseudo-polynomial or expo-
nential complexity at least out of these conditions.

For the non-arbitrary case it is only necessary to constuefitst job for each task.
The complexity for doing this can be bound by the maximum jpbssiumber of calcula-
tion points for the exceeding cost function. In the worsegas proof a task, we have to
consider to all jobs of all tasks (with equal and higher ptyahant) occurring withindy ;.
As each of these jobs can be the last job required to fulfilkttteedulability condition of
theorem 5.2.4 we need to calculate the exceeding cost umstiép-wise. The contribution
of each job is considered separately. A specific job can redbetribute to the exceeding
costs or reduce the exceeding cost function. Again, the eumbjobs from tasks with
small periods and deadlines within the deadline of a task witarge period and deadline
depends on the ratio between the larger and the smallerdsesitd deadlines. Therefore
the number of occurring jobs of higher priority tasks canp@bound in general and can
become quite large. Therefore the upper bound for the coditpis pseudo-polynomial.

For the approximative analysis of course a smaller bounchercomplexity can be
given. The approximation error bounds the number of testvals that have to be con-
sidered exactly for each task and each of the involved fanstseparately. During the
analysis no more test intervals have to be considered, eve iarbitrary case. As we do
the analysis for each task separately we can bound the beenaplexity for the approxi-
mative analysis bp(n?Inni).

To estimate the real effort required for the analysis we gsgnatests with randomly
generated task sets. We compare the effort for the analytsigive response time analysis
in the efficient implementation by Sjodin and Hansson [122]e real effort needed for
the new analysis is quite lower than the theoretical bourtte @xperimental results are
given in chapter 6.

CHAPTER 6

Evaluations

To evaluate the proposed tests and algorithms and to leawrt #teir strengths and
weaknesses we have done a set of experiments with randomdyajed task sets. A task
set has several characteristic parameters like the nunfitassks, utilization, the ratio
between the largest and smallest period in the task set aod.slm our experiments we
investigate task sets with different parameters and we d$tawthe variation of just one
parameter affects the run-time and the recognition ratee¥arious analysis algorithms.

We have not only implemented our new algorithms but also nudrikie existing al-
gorithms to compare them with our results under the sameriempital conditions.

6.1. General setup of the experiments

In the following we will describe the setup of our experingent

6.1.1. Technical setup.All experiments where performed on a computer with two
Intel 3 Ghz Quad-Core processors but using only one coreaftdr algorithm. The experi-
mental framework and the algorithms where implementedva.Ja

6.1.2. Generation of random task setsln the following we will explain in detalil
the generation of random task sets behind all our expersn€irst we have to choose for
each task set the number of tasks, either randomly or bytasiec

For each task we have to choose randomly:

e The periodp;
e the worst-case execution tingg
o the deadlinal;

There exist dependencies between the values of a task amedrethe values of the differ-
ent tasks in a task set. These dependencies have to be tikandount to achieve realistic
task sets and task sets close on the boarder between sdfiigudad non-schedulability.
Therefore our random task-set generation has the folloategs:

(1) Choose (or draw) a number of tasks

(2) Choose (or draw) the total utilization of the task det For uni-processor sys-
tems the utilization has to be smaller or equal to 100%.

(3) Distribute the utilization on the tasks of the taskldet We present the available
algorithm for a realistic distribution in section 6.1.3.

(4) Draw for each task a periqut.

(5) Calculate the worst case execution tichefor each task from the chosen period
pr and specific utilizatiot;. (¢i = p;U¢)

105

106 6. EVALUATIONS

Algorithm 17 UUniFast Algorithm [24]
Algorithm UUniFast
sumU:=Ur
nextSum=0
for i from 1 to |Ur|

nextSum= sumU- rand(-L-)

U[i] := sumU— nextSum
sumU:= nextSum
end for

return U[];

(6) Draw a deadline for each task. The deadline of a task hbs targer than its
worst-case execution time. For uni-processor systemskith or fixed prior-
ity scheduling without jitter only those deadlines are valg which are smaller
than the corresponding period. Therefore we distributeltealline somewhere
between the worst-case execution time and the period oka\és call the ratio
of the deadline and the period of a task the gap of the taskthiecgxperiments
an average value for this gap can be set. The gap is measupedcient of the
period of the task. A task with for example a period of 100 n adeadline of
30 ms has a gap of 70%, a task with a period of 50 ms and a deadl4@ms
has a gap of 20% and a task with a period of 10 s and a deadline b&5 a gap
of 50%. Tasks with a small gap are more likely to be schedeltizn tasks with
a large gap.

6.1.3. Distribution of utilization. There are several ways to distribute the utilization
of a task set on its tasks, see [24], [26] for a complete dEonf the problem. In the
following we will shortly summarize the different possildgproaches introduced there.
The first approach (UScaling) is to simply draw for each taskl", one after another, a
part of the remaining utilization. In this approach the fiestk 7, gets a utilization between
zero andJr, the second task between zero &id—- Uy, and so on. The last task gets the
remaining utilization. Also the resulting utilization ibe requested one, the probability
is quite high that the first tasks gets nearly the whole reingiatilization which leaves
nearly nothing for the remaining tasks. The probability thiave a task set with a few
large tasks (the first ones) and many tasks sharing only d Baxation of the utilization is
quite high.

The second approach is to draw for each task independendipa (between 0 and 1
for example), add these values and scale the result wittothkutilization of the task set.
In this algorithm each task has an equal chance for the sawigdin of utilization but with
a high probability no tasks with a large utilization will agc For example in a task set
with 100 tasks the probability for individual tasks with asfiic utilization of much more
than 2% is quite low.

The problem is to generate realistic and non-trivial disttions. In [24] an efficient
algorithm was proposed to generate a realistic distribytioe UUniFast algorithm. It is
given in algorithm 17. The algorithm is an efficient implertegion of the second approach

6.2. SUPERPOSITION APPROXIMATION 107

10 million tasksets with 100 tasks

100 TR !. L] L] L] L] L L]
s PDC, exact
' “'“-»u.._” Superposition (1)
"W”T"‘ Superposition (2) --------
Tt Superposition (4) -
Rl Superposition (10)
80 | i, Superposition (100) -
.“.ﬁ-l,.(DEVI ettt
th, W
g .‘v"" o,
) N e
@ oy
& 60 | " M"». b
8 Y &
o n h"“‘(f‘
g YR
= L fgh
e} 1 W
2 s} '
S %
2 y
3 \
20 b Y
"
\, B -‘\
0 L L L L L L L L i ;
0 10 20 30 40 50 60 70 80 90 100
utilization (%)
FIGURE 6.2.1. Superposition: ratio of schedulable task sets for

different utilizations

but using an exponential distribution which allows largedfic utilizations even for task
sets with many tasks. This algorithm is used in the follonergeriments.

6.2. Superposition approximation

First of all we will focus on the superposition approximatimr one-processor sys-
tems with EDF scheduling as introduced in chapter 3.

6.2.1. Setup.In the first experiment we compare the ratio of schedulaldk s@ts
versus all generated task sets for a specific utilizationth®x-axis we have the utilization
of the tasks set running from 0% to 100%, on the y-axis we Haw@toportion of task sets
recognized as schedulable on all task sets generated vsthtilization. The gap between
period and deadline has an average value between 5% and 95&mdriod and both the
period and the gap is chosen using a normal distribution.pEnieds have a value between
10 ns and 10 s. For the experiment we generated 10 millionstetskwith 100 tasks each
and a utilization between 1% and 99%.

We analysed these task sets using the superposition apmatian with one, two,
four, ten and 100 exactly considered test intervals for ¢ask, using the exact processor
demand criterion (PDC) and using the previous best sufti@ealysis, the test of Devi
[46]. Note, that the drawn task sets do not contain tasksnigazideadline smaller than
their worst-case execution time.

6.2.2. Results.Figure 6.2.1 shows the ratio of schedulable task sets eetégteach
of the analysis algorithms for the first experiment. Note gibanalysis algorithms run on

108 6. EVALUATIONS

10 million task sets with 50 tasks

100 —
v " "”‘*m.m'»)))) PDC, exact
T, Superposition (100)
M) Superposition (10) --------
T SUPErPOSItion (4) -
Superposition (2)
80 Superposition (1) L
Devi = - - -
g
[%] y
é 60 S "y
X - i,“ Ty -
8 L
o
3 A
=
2 B
2 L \ -
& i ‘5&
8 % ’h
5] 5 4
W
\ J
20 N kN 1
O Il Il Il Il Il Il Il Il ‘h Il G
0 10 20 30 40 50 60 70 80 90 100

utilization (%)

FIGURE 6.2.2. Superposition: ratio of schedulable task sets (&k)a

the same task sets. The difference between the ratio of glzize task sets for a specific
approximation degree and the ratio for the exact processmadd criterion (PDC) is a
good indication for the quality of the approximation anddselor a reasonable choice of
the approximation degree.

In figure 6.2.2 the results for an experiment with the samepsas above but using
task sets with 50 tasks is depicted. For figure 6.2.3 the saperiement with one million
task sets with 500 tasks each is used. The setup for figurei6.2gain the 10 million task
sets with 100 tasks but the figure shows the ratio in deperydsiibe average gap instead
of the utilizations.

A higher number of exactly considered test interv@sis leading to a higher ratio
of schedulable task sets. As we can see the ratio for eachpmgion approximation
is in all figures between the sufficient test of Devi [46] and #xact processor demand
test. The approximation witk= 1 is equivalent to the test of Devi and therefore leads to
the same ratio of schedulable task sets (see section 3.&)afroximations with higher
values for the number of exactly considered test interdaksecthe gap between the test of
Devi and the exact analysis quite fast. In these experinraote than 50% of those task
sets being schedulable and which have not been recognizshadulable by the test of
Devi are recognized as schedulable by the next better ajppation withk = 2. Values
for k larger than 10 are sufficient to classify nearly all schebleltéask sets correctly. The
approximation withk = 100 classifies all task sets correctly in this experimenskets
not classified correctly as schedulable are mainly thosabavhigh utilization. Despite
that the test of Devi fails to classify nearly the entire stiilable task sets with a utilization
of 80%, the approximation witk = 2 classify nearly all of them as schedulable. Up to a

6.2. SUPERPOSITION APPROXIMATION 109

1 million task sets with 500 tasks

100 TR,
R """"f?”'«‘v?:,‘.‘ﬁn,’,,ﬁ;&‘ '))) PDC, exact
,-‘m“‘s_.f,.‘.&i_,* . Superposition (100)
& J‘\%'& g Superposition (10) -------
Wik, Superposition (4) e
Superposition (2)
80 Superposition (1) L
Devi, exact -- - -- -
g
[%]
k]
2 60
(%]
8
k)
Qo
)
=
e}
2 s}
[S]
2]
il
S
20
0 L L L L L L L -y 1 A
0 10 20 30 40 50 60 70 80 90 100

utilization (%)

FIGURE 6.2.3. Superposition: ratio of schedulable task sets (&8Ks)

utilization of 85% nearly all classifications of the appmgtion withk = 2 are correct,
for higher utilization the correct-classification rate plsdast and for the schedulable task
sets with a utilization of more than 90% nearly non are clegbias schedulable by this
approximation. The approximation with= 4 is good enough for task sets with a utiliza-
tion up to 90% but fails for utilizations of more than 95%, #y@proximation withk = 10

is working satisfactorily for utilizations up to 98% and fam approximation wittk = 100
there are nearly no wrongly classified task sets in this éxygart. Comparing the figures
it can be seen that the correct-classification rate is a gitdrifor task sets with few tasks
than for task sets with many tasks.

The figure 6.2.4 depicts for the experiment of figure 6.2.1r(ilion task sets with
100 tasks in each task set) the dependency of the acceptiwefrthe different algo-
rithms and the average gap between deadline and periods.dt#& measured in percent
of the period of the task. A task with a period of 100 ms and allilea of 30 ms has a
gap of 70%. Of cause, tasks having a small average gap betieaeitine and period and
therefore a large average gap between worst-case exetmierand deadline are more
likely to be schedulable than other tasks. Therefore ofdkks with an average gap of 5%
nearly 80% are schedulable whereas of the tasks with angevgep of 95% less than 65%
are schedulable. The utilizations of the task sets are leet®® and 99%. The probability
for a wrong classification is nearly equal for all values af Hverage gap for each of the
algorithms and approximation errors. It is a bit lower faskaets with a small gap. The
reason for this is that most of schedulable task sets with high utilizations have a small
value for the average gap and, as we have seen, those taskesbtrd to distinguish for

110 6. EVALUATIONS

10 million tasksets with 100 tasks
85 T T T T T T

PDC, exact.
Superposition (100)
Superposition (10) --------
Superposition (4) e
80 Superposition (2) L
Superposition (1)
Devi - - - -
S
W T5F -
k]
L
(%]
8
3 70}]
©
=
e}
2
3
o 65k -
@
60 | -
55 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
average gap (%)
FIGURE 6.2.4. Superposition: ration of schedulable task sets for

different average gaps

the approximation algorithms. The effect of approximaserms to be independent of the
average gap alone.

In figure 6.2.5 the result of an experiment measuring the miggrecy of the acceptance
rate on the ratio between the shortest and largest periodyatfaak within one task set is
presented. A task set having as smallest period of tasksati@dpl00 ms and as largest
period of tasks the period 10.000 ms has a ratio of 100. Thepsance rate seems to be
for all algorithms independent of the ratio between the ®sbiand largest period.

6.2.3. Results for analyses runtimelLet us now consider the run-times of the anal-
yses algorithms. This experiment shows the quality of ther@dmation and therefore
whether the approximation is suitable for certain applicet. We have measured the
worst-case and the average runtime in dependency of ceriénia of the task set, like
the utilization, the ratio between the smallest and lartgst, the gap and of course the
number of tasks in a task set. We have calculated for eachysamdlhe average and the
maximum runtime required by the analysis algorithm in dejegity of the chosen criteria
for the previous experiments.

In figure 6.2.6 the average computation time for each of th@@mation algorithm
in dependency of the utilization is depicted and compareH thie average effort for the
processor demand criterion and the test of Devi [46]. Thie sassize was 100 tasks and
the gap again between 5% and 95% with a normal distributidre dpproximation with
k = 2 requires only about 15% more effort than the test of Devdpde that it has a much
better recognition rate. The approximation requires inaherage less than 30% of the

ratio schedulable tasksets (%)

average computation time (ms)

6.2. SUPERPOSITION APPROXIMATION 111

2.5 million task sets with 100 tasks

74 -
72 ¢ -
70 k -
68 -
64 L L L L L L
10 100 1000 10000 100000 1le+06 1le+07 1e+08
ratio (%)
PDC, exact Superposition (4) e Devi - - - -
Superposition (100) ------- Superposition (2)
Superposition (10) -------- Superposition (1)

FIGURE6.2.5. Superposition: ratio of schedulable task sets féerdi
ent ratios between the largest and smallest task in the ¢agk@0 tasks
per task set)

10 million tasksets with 100 tasks

0-8 L] L] L] L] L] L] L] L]
PDC, exact ——
Superposition (100)
Superposition (10) -- -
07 F Superposition (4)
Superposition (2)
Superposition (1)
06 k Devi - - - - ‘
0.5 '{
04
03
02k LRSI RSN, cu-~t~-vv‘..-vv‘tn¢\v\vh..«vh . -
... T v vwpreatth Ty,
0.1 - -
0 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

utilization (%)

FIGURE6.2.6. Superposition: average run-time for differentzations

112 6. EVALUATIONS

1 million task sets with 500 tasks

8 T T T T T T T T
PDC, exact ——
Superposition (100)
Superposition (10) --------
F Superposition (4)
Superposition (2)
Superposition (1)
6 Devi - - -

average computation time (ms)
N
L]

0 10 20 30 40 50 60 70 80 90 100
utilization (%)

FIGURE6.2.7. Superposition: average run-time for differentiza
tions (500 tasks)

effort required for the processor demand criterion. Evenapproximation wittk = 100
requires only about half of the effort of the processor dedr@iterion (but about twice as
much as the test of Devi).

Another interesting point is that the variation of the efisrmuch higher for the pro-
cessor demand criterion than for the approximations. Foatgorithms the average com-
putation time starts on a highest level at 5% and decreasetysintil about a utilization
of 80%. For higher utilizations the effort rises again butlaees for utilizations of nearly
100% for all approximations. The reason for these resultsamly the falling degree of
schedulability with increasing utilization. On the oneesid the average a non-schedulable
tasks set requires not much effort to be classified as noedstable by the tests. Therefore
the average effort declines with rising utilization. Buttbe other side the effort depends
on the utilization as the maximum test interval dependq{éﬁq. Therefore the effort for
schedulability analysis increases for many task sets.mtsjjloo%% = oo the effort will
increase faster when the utilization gets closer to 100%alByut 80% this increasing of
the effort becomes larger than the decreasing of the effodf dhe lower schedulability
rate, therefore the overall effort starts rising again. &bapproximations the recognition
rate declines fast after reaching a certain level of utiimaand therefore the effort de-
clines too. Note, that, in contrary to the processor demaesit for the approximations the
maximum effort is limited by the valuk. In figure 6.2.7 the average effort for 1 million
task sets with 500 tasks each is depicted.

6.2. SUPERPOSITION APPROXIMATION 113

10 million tasksets with 100 tasks
100 T T T T T T

L] L]
PDC, exact ——
Superposition (100)
Superposition (10) --------
Superposition (4) e
Superposition (2)
Superposition (1)
Devi - - - -

10

average computation time (ms)

O X 01 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

utilization (%)

FIGURE6.2.8. Superposition: average run-time for differentizai
tions for only the schedulable task sets

Figure 6.2.8 shows the average effort for only the schedil@sk sets. The effort
is comparable but does not decline before 80% utilization iashe case for the average
effort for all task sets.

More interesting than the average computation time is thesta@ase for which we
have measured the maximum computation time. Figure 6.2@skhe maximum effort
for the superposition approximation withkaof 10 and 100 and the processor demand
criterion compared again with the test of Devi. Note thas figure uses a logarithmic
scale.

The measured approximations wkh= 2, k = 4 andk = 10 have a maximum effort
between 0.250 ms and 1 ms for most of the utilizations, ondyapproximatiork = 10
requires once 1.75 ms. The effort for the approximation With 100 is a bit higher for
most utilizations and rises significantly to up to 8 ms forwhigh utilizations. Only for
these utilizations do the approximations require theiilalée budget. In the other cases
the number of really required test intervals is much lowantthe number of allowed test
intervals byk.

In figure 6.2.10 the maximum effort for 50 tasks and in figur2 Bl the maximum
effort for 1 million task sets with 500 tasks each is depicted

Compared to the maximum effort required for the processaratel test the effort
required for the approximations is very low. The effort fbetprocessor demand test is
between 5Gnsand 50ansfor most of the utilizations rising to up ta3sat the maximum.
Note, that we have allowed periods between 10 ms and 10 mittis here. Increasing or

114

maximum computation time (ms)

Maximal ben {tigte Rechenzeit (ms)

6. EVALUATIONS

10 million tasksets with 100 tasks
10000 L] L] L] L] L] L] L] L] L]

Superposition (1)

Superposition (10) -

Superposition (100) -
PDC, exact

1000

100 §-

Devi ——

0 10 20 30 40 50 60 70 80 90
utilization (%)

FIGURE 6.2.9. Superposition: maximum run-time for different uti-

lizations (with PDC)

10 Millionen Tasksets mit 50 Tasks

100

10000 L L L J L] L L L L
PDC, exact

Approximation: k = 100
Approximation: k= 10 ---
Approximation: k = 1 / Devi (2003)

1000

100

10

i

5 \‘l‘ .m. !

'4‘-1‘4." i

;

0.1 V . . .

Auslastung (%)

FIGURE 6.2.10. Superposition: maximum run-time for different uti
lizations (50 tasks)

100

6.2. SUPERPOSITION APPROXIMATION 115

1 million task sets with 500 tasks

10000 T T T T T T T T
PDC, exact
Superposition (100) -------
Superposition (10)
Superposition (1)
Devi, exact
1000
)
E
(]
£
pt 100
K=l
8
3
Q.
£
[=}
o
E 10 |
3
3 g o M bl
A o4 TN L O LY
= l&afa,“w) _{v_g,ﬂ,-;,m
l”é‘? 7 “’«é'}%%**;;‘f%mﬁr,ﬂ; vnp}%«&v}zﬁ
1k ™) " !
0.1 Il Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100

utilization (%)
FIGURE6.2.11. Superposition: maximum run-time for different uti
lizations with PDC (500 tasks)

2.5 million task sets with 100 tasks
10000

L L
PDC, exact
Superposition (100) --
Superposition (10)
Superposition (4)
Superposition (2)

1000 Superposition (1) -
Devi - - - -

maximum computation time (ms)

01 L L L L L L
10 100 1000 10000 100000 1le+06 le+07 1e+08

ratio (%)

FIGURE 6.2.12. Superposition: maximum run-time for different ra-
tios between smallest and largest task in the task set

reducing this value has a significant impact on the requitedprtational effort for the
processor demand criterion, as we will show in the next érpant.

116 6. EVALUATIONS

1 million task sets with 100 tasks and exp. distr. period

10000 L] L] L] L] L] L] L] L] L]
va“”,,,ur‘mx AN RN WY TRUTTIRTR T I—. "

1000 m
o
E
) 100 -
g 00
c
k=]
g 10 .
Qo
£
Q
(5]
S
g 1k .
g
5

01 e L T T SRR ...:'.. PR ..'M P
001 Il Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100
utilization (%)
PDC, exact Superposition (4) e Devi - - - -
Superposition (100) Superposition (2)
Superposition (10) -------- Superposition (1)

FIGURE 6.2.13. Superposition: Average run-time for different uti
lizations with exponential distribution of periods

In figure 6.2.12 the dependency of the computation efforttenratio between the
smallest and largest task in the task set is shown. For tlgererent we have used a
normal distribution for the periods. The approximationaalthm and the sufficient test
are independent of the ratio between smallest and largasthta the processor demand
criterion depends clearly on the ratio. In figure 6.2.13 agdré 6.2.14 we have repeated
the experiment with an exponential distribution of the pdsi. The advantage of the ap-
proximations is even higher in this case as the processoaneémest requires more effort.

The last question is the dependency of the computatioratefii the number of tasks.
Itis shown in figure 6.2.15. Of cause, all algorithms reqaitarger computation time with
an increasing number of tasks. It seems that this increéine#s for all algorithms. For the
superposition approximation this confirms the complexftpénlog(n)k) which depends
nearly linear on the number of tasks.

We have seen that the proposed approximations deliver gemdts even for small
values ofk and are much faster than the previous exact processor demsin€Compared
to the sufficient test of Devi the run-time is larger but siticeptable, but the recognition
rates are much higher especially for task sets with utibrabetween 80% and 95%.

6.3. Dynamic Approximation Approaches

In the following we will consider the run-time of the new adiap tests introduced
in chapter 4. We have proposed the dynamic-error test, wstantts with a low degree of
exactness and only adapt this degree as far as necessastinguish between schedulable
and non-schedulable task sets and the all-approximatymnitim in which approximation

maximum computation time (ms)

maximum computation time (ms)

6.3. DYNAMIC APPROXIMATION APPROACHES 117

1 million task sets with 100 tasks and exp. distr. period

100000

10000

1000

100 E

R

0.1
0.01 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
utilization (%)
PDC, exact Superposition (10) Devi
Superposition (100) ------- Superposition (1)

FIGURE 6.2.14. Superposition: maximum run-time for different uti
lizations with exponential distribution of periods

5 million task sets with 98% util

10000
1000 p
100 | -1
10
1pF
0.1 - L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
number of tasks (#)
PDC, exact Superposition (4) e Devi - - -
Superposition (100) ------- Superposition (2)
Superposition (10) -------- Superposition (1)
FIGURE 6.2.15. Superposition: run-time for different number of

tasks in the task sets

118 6. EVALUATIONS

10 million tasksets with 100 tasks
10000 T T T T T T T T

L]
Devi
Superposition (100)
All-Approximation , exact --------
DynamicError , exact -
PDC, exact

T
i

1000

maximum computation time (ms)

0 10 20 30 40 50 60 70 80 90 100
utilization (%)

FIGURE6.3.1. Adaptive analysis: maximum run-time

is used as much as possible. In the all-approximation dtgarall tasks are considered
approximated and only for test intervals for which the tedsfwith this assumption the
approximation of the tasks is removed task-by-task untiltést does not fail for these test
intervals any more.

6.3.1. Setup for utilization based generation of random tdssets. For the experi-
mental setup 5 million task sets with 100 tasks each are g&tketo compare the run-time
of the different algorithms. In figure 6.3.1 and figure 6.3.8 lmave measured the max-
imum run-time required to analysis task sets with certailizations for all algorithms
using again a logarithmic scale. The upper-most curve shioevsequired effort for the
processor demand analysis (PDC), the second curve witathe fluctuation the effort for
the dynamic error approximation. The third curve shows tipegposition approximation
with k = 100. The lowest curve is the test of Devi and the all-appratiom algorithm
is the curve that is equal to the test of Devi at the beginnimgjlaads to a higher effort
starting by about 75%.

6.3.2. Results for utilization-based generation of randontask-sets. The success
ratio is, of course, equal for all the tests. In the maximum piocessor-demand test
requires about 50-100 times more run-time than all adajptinadyses. This difference in
run-time depends, as we will see later, on the allowed rafgeriods, which was 10 ns -
10 million ns here. In the run-time of the processor demaradyais and also the dynamic-
error analysis we have a large fluctuation even for small gbamf the utilization. The
run-time of the all-approximation test seems to be reltigenstant for small changes of
the utilization. The dynamic-error analysis requires gigantly more run-time. In this

maximum computation time (ms)

maximum computation time (ms)

10000

6.3. DYNAMIC APPROXIMATION APPROACHES 119

10 million task sets with 50 tasks

1000

100

10

L] L] L] L] L] L] L]
PDC, exact
DynamicError , exact -------
All-Approximation , exact - -
Superposition (100)
Devi

0 10 20 30 40 50 60 70 80 90 100

utilization (%)

FIGURE 6.3.2. Maximum computation time of adaptive analysis (5B

100000

10000

1000

100

10

1 million task sets with 100 tasks and exp. distr. period

utilization (%)

PDC, exact
DynamicError , exact -------
All-Approximation , exact --------

Superposition (100) -
Devi

FIGURE 6.3.3. Adaptive analysis: maximum run-time - exponential
distribution of periods

120 6. EVALUATIONS

10 million tasksets with 100 tasks

0-8 L] L] L] L] L] L] L] L L]
PDC, exact
Superposition (100)
Superposition (10) --------
07 F Superposition (2)
Devi
All-Approximation , exact
0s k DynamicError , exact -- - -- -
)
é ‘
£ o5 |
E '{
R
£ o4}
(=3
£
o
(]
g 03
I
9]
g
02 -
0 Il Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100

utilization (%)

FIGURE 6.3.4. Adaptive analysis: average run-time

experiment the requirement for significant run-time statsbout 60% utilization and has
a peek between 80% and 95% utilization. It seems that theretangalues for the tasks
have a larger influence on the run-time than the utilizatiothe area up to 95% utilization
we have a significant level on schedulable task sets (as sindigure 6.2.1) and therefore
a large chance to have a task set in each drawing requiringie tan-time. The peeks
of the run-time are somewhere between 20 ms and 140 ms codwéheless than 1 ms
for the all-approximation algorithm at the same utilizagdevels. The run-time for the
all-approximation test goes up to 27 ms in this experimenialways much lower than
the effort for the dynamic error test. For all-approximatanalysis the run-time is in the
same region as the run-time of the test of Devi for the uticraup to 75%. After this
utilization the tests require significantly more run-tiriéth rising utilization the increase
of the maximum required run-time gets larger and the rure-ti@ems to explode for task
sets with utilizations very close to 100%. But note that feetshigh utilizations the test of
Devi cannot classify any schedulable task set correctly.

In figure 6.3.4 we have measured the average effort for the speriment. The
processor demand criterion starts between 0.4 ms and 0.®mssniall utilizations and
requires, after a short declining, run-times between 0.2untk0.75 ms in the average for
very large utilizations. The all-approximation algorithinstead requires less than 0.1 ms
for small utilizations and rises to 0.16 ms in the averagédiaye run-times.

In the figures 6.3.5 and 6.3.6 we have depicted the maximupectsely average
run-time for 1 million task sets and with 500 tasks each. Timses looks similar but the
absolute values for the curves and the distance betweenitheschecome larger.

maximum computation time (ms)

average computation time (ms)

10000

1000

100

10

6.3. DYNAMIC APPROXIMATION APPROACHES 121

1 million task sets with 500 tasks

1J L]

PDC, exact
All-Approximation , exact
Superposition (100)
Devi, exact

g Bt .-':i' o el y s bl LBl E L
o,x:ﬁ”',.v;-#»«.irf,x-}i'ﬁ-w . SRAA w&ﬁi, :
1 Laed caitetlb o 20 L 'h‘ At ol e sl l
Fuotpbirbhunois: el bbbt
01 L L L L L L L L L
0 10 20 30 40 50 60 70 80 2 100
utilization (%)
FIGURE 6.3.5. Adaptive analysis: maximum run-time (500 tasks)
1 million task sets with 500 tasks
8 L] L] L] L] L] L] L] L]
PDC, exact
Superposition (100)
Superposition (10)
F Superposition (2)
All-Approximation , exact
Devi
6
5k
4k
3k -
2k -
1F. et eyt e e‘.~..,_.._W_'_m”m“.‘.".‘.Nawn...»-w,.,,.,“”m_u N "M_M’"‘V,YMN\‘A"’V v
0 L L L L L L L L L
0 10 20 30 40 50 60 70 80 20 100
utilization (%)
FIGURE 6.3.6. Adaptive analysis: average run-time (500 tasks)
6.3.3. Setup for ratio-based generation of task setdn the next experiment (figure

6.3.7) we have evaluated the dependency of the run-timeeratio between tasks with
small and large parameters within the task sets. We havedmad ratios between the
smallest period of any task and the largest period of any itashe task set from 10 to

122 6. EVALUATIONS

2.5 million task sets with 100 tasks
10000 T

PDC, exact
All-Approximation , exact
Superposition (100) --------
Superposition (10) e
DynamicError , exact
1000 Devi L
)
E
(]
£
pt 100 |
K=l
8
3
Q
£
Q
o
IS 10
3
£
x
©
€
1k
0.1 L L L L L L
10 100 1000 10000 100000 1le+06 le+07 1le+08

ratio (%)

FIGURE 6.3.7. Adaptive analysis: maximum run-time for different
ratios between largest and smallest period for 98% utitimat

:‘mg ‘ PDC ‘ All Approx. | All-approx. period| all-approx. inverse*
100 9.941 ms| 0.620 ms 1.269 ms 6.912 ms
1,000 104.4 ms| 0.768 ms 0.796 ms 17.268 ms
10,000 665.1 ms| 0.650 ms 0.684 ms 8.860 ms
100,000 4.287s | 0.525ms 0.637 ms 6.950 ms
1,000,000 | 22.03s | 0.521ms 0.500 ms 6.198 ms
10,000,000 267.2s | 0.530ms 0.773 ms 7.452 ms
100,000,000 1375.7s| 0.605ms 0.554 ms 4.295 ms

TaBLE 1. Adaptive analysis: Maximum execution time (ms) for 100
task and 98% utilization

100,000,000. We have done two experiments, one with a natistabution of the period,
but at least one task small enough to guarantee the ratiatttee with an exponential
distribution. We have used a utilization of 98%.

6.3.4. Results for ratio-based generation of task-set& he run-time of the proces-
sor demand test depends directly on the ratio and doubles thleeratio is doubled. The
all-approximation test is independent of the ratio betwienlargest and smallest period
of any task of the task set.

Table 1 and table 2 show the results of an experiment wherpahied of the task
is exponentially distributed. Each task set has 100 tasHsaatotal utilization of 98%
and we have generated 20,000 task sets for each ratio. Tleeltaihows the measured
maximum execution times for each ratio/ algorithm combarat The largest period in

6.3. DYNAMIC APPROXIMATION APPROACHES 123

'rmgg)) ‘ PDC ‘ All Approx. | All-approx. period| all-approx. inverse*
10 0.121 ms| 0.0986 ms 0.0956 ms 0.145ms
100 0.261 ms| 0.0902 ms 0.0881 ms 0.234 ms
1,000 1.050 ms| 0.0907 ms 0.0884 ms 0.288 ms
10,000 5.544 ms| 0.0915ms 0.0887 ms 0.272ms
100,000 | 34.53ms| 0.0925ms 0.0894 ms 0.237 ms
1,000,000 | 237.2ms| 0.0934 ms 0.0902 ms 0.197 ms
10,000,000| 1.985s | 0.0961 ms 0.0926 ms 0.173ms
100,000,000 30.980s| 0.0999 ms 0.0957 ms 0.159 ms

TABLE 2. Adaptive analysis: average run-time (ms) for 100 task and
98% utilization

a task set is 10, 100, 1000, ..., 100 million times larger tthensmallest period within
the same task set. The execution times for the all-apprdiomalgorithm and the all-
approximation algorithm with an approximation queue sbiig the period of the tasks
are mostly constant in the rage of 0.5 to 0.8 ms. Even usingnthe¥se order for the
approximation queue requires only 17 ms run-time at moske fiocessor demand test
instead requires only for small ratios a comparable low etien time, for ratios in the
area of 1 million it requires up to 22 seconds execution time far ratios of 10 million
or 100 million it requires 4 minutes respectively 22 minufélse run-time grows a bit less
than the ratio but still becomes unacceptably large verm soo

The table 2 shows the average execution times for all gestb 41,000 task sets. Of
course these values are all much smaller than the maximucugaee times as the 20,000
task sets surly contain many “easy” task sets. For the @lteapmation algorithms they
are more constant than their maximum execution times withegbetween 0.09 ms and
0.10 ms for the standard respectively 0.15 ms to 0.3 ms fantlezse case. The effort for
the processor demand criterion grows from 0,1 ms for a rdtiddo 31 seconds for a ratio
of 100 million.

Therefore the run-time of the all-approximation algoritlmen be bounded in the
worst-case only with the utilization and the number of taskdependently of the other
parameters of the task set.

6.3.5. Dependency on the number of task in the task sekigure 6.3.8 shows the
dependency of the run-time on the number of tasks in the &islOf course the run-time
depends on the number of tasks. As we have to consider edchttkesst once to prove
schedulability we have at least a linear increase of theireguun-time. The measured
increase is a bit higher tha&®(n). The dependency can be boundedlfy-log(n)*®), see
the following section for details.

6.3.6. Variations of the all-approximation algorithm. The order of the tasks in
which their approximation is removed when the test fails @egain test interval can
be important for the run-time of the test. For simplicity betimplementation we have
considered only fixed orders. The first and most promisingoigiby the difference be-
tween deadline and period of the taglgs— d). The approximation is removed for those

124

maximum computation time (ms)

maximum computation time (ms)

6. EVALUATIONS

5 million task sets with 98% util

10000

1000

100

01f -
0.01 L A L L L L L » M
0 100 200 300 400 500 600 700 800 900 1000
number of tasks (#)
PDC, exact Devi

Superposition (10) Superposition (100) -- - -- -

Superposition (4) -------- All-Approximation , exact -——--

Superposition (2) DynamicError , exact - - -

Superposition (1)

FIGURE 6.3.8. Adaptive analysis: maximum run-time of the test for
different number of tasks in the task set for 98% utilization

2 million task sets with 100 tasks

1000 L] L] L] L] L] LJ LI L L]
All-Approximation , exact
All-Approximation Period, exact
All-Approximation Invers , exact --------
100

W M v
A eyl W

R
R T
3 Woted

\(\/"‘/\)\;/‘W

1
97.8 98 98.2 98.4 98.6 98.8 99 99.2 99.4 99.6 99.8 100
utilization (%)

FIGURE6.3.9. All-approximation test: different kind of orders

tasks first having the largest difference between perioddmadiline and therefore likely
a large distance between two consecutive test interval@thtn order would be to take
only the periods. In figure 6.3.9 we have compared the reduirgximum run-time for the

6.3. DYNAMIC APPROXIMATION APPROACHES 125

all-approximation algorithm using these two kinds of osdand, to get an impression of
the influence of the kind of order, also of an all-approximatlgorithm using an inverse
order of the period, which means that the approximationrisoneed first for the task with
the smallest period.

6.3.7. Conclusion.Overall the all-approximation algorithm seems to be a verydy
choice for nearly all applications. For online-schedulimglysis, when it is necessary to
guarantee a very fast evaluation and it is possible to hakesets with very high utiliza-
tions the approximation can be a better choice.

6.3.8. Complexity of All-Approximation. In the following we will extract an esti-
mation for the run-time complexity out of the experimentdults. No formal proof for
the complexity better than pseudo-polynomial exists so Tée problem for this formal
proof is to find a close upper bound on the number of test iatemequired by the all-
approximation analysis. But calculating an estimated derity out of the experimental
data can also give hints for an upper bound on the compleriiytlaerefore for a formal
proof.

The run-time complexity for the all-approximation anay/siepends on two parts.
First, it depends on the run-time required (at most) for ¢ashinterval considered during
the analysis and second on the maximum number of these testats. The run-time for
each test-interval can be bounded formally by considetir@tgorithm 8 given in chapter
4. As we have stated there the run-time for one test-intés\munded byD(log(n)). Each
test interval causes two inserting operations in prioritgues, one when it is inserted into
the “test-list” at a previous test interval or at the begirtted algorithm and one when it
is inserted into the “approx-list”. The complexity of thesgerations igO(log(n)). The
remaining operations can be bounded by a constant exe¢imienThis is even true for the
“loop” as each iteration of the loop leads to an additional test interval and therefore,
for the consideration of complexity, the effort for this pderation can be assigned to this
generated test interval.

So, for the estimation of complexity, it is only necessarfinid an upper bound on the
number of test intervals.

We will investigate the dependency of the number of tesrirgtls on the various pa-
rameters separately to extract the different parts of thepbexity. We know that the
complexity depends on the number of tasks (figure 6.3.8¢tapin the task set and also
on the utilization of the task set (figure 6.3.1, 6.3.5). Intcary to the processor demand
test it does not depend on the ratio between the smallesizageist periods of tasks in a
task set (figure 6.3.7).

In figure 6.3.8 the dependency of the run-time on the numbéasif in the task set
is depicted. The run-time has to scale at least linear wighntbmber of tasks as a test
run with the result “schedulable” requires to consider asteone test interval for each
task. We have done an experiment with task sets having aattiin of 98% and 20-1000
tasks (figure 6.3.8). The average numbers of test interaalsrfe task are for all task set
sizes in the same range and only have a variation of about 8&tditheir medium value.

126 6. EVALUATIONS

t-(1-U)-log(155
U run-time | test pointgt) | *2-Y) ()Eg(“"”)

98.0% | 3.488ms 1,091 22.265 37.828
98.1% | 3.173ms 1,112 21.537 37.070
98.2% | 3.730 ms 1,201 22.014 38.409
98.3% | 2.788 ms 1,263 21.842 38.651
98.4% | 3.180ms 1,289 20.959 37.640
98.5% | 3.616 ms 1,458 22.203 40.496
98.6 % | 3.803ms 1,441 20.460 37.931
98.7 % | 4.054 ms 1,534 20.204 38.107
98.8% | 4.215ms 1,675 20.344 39.077
98.9% | 4.058 ms 1,810 20.131 39.430
99.0% | 4.609 ms 1,911 19.303 38.606
99.1% | 4.474ms 2,075 18.844 38.551
99.2% | 5.225ms 2,282 18.403 38.590
99.3% | 6.267 ms 2,533 17.856 38.478
99.4% | 5.981ms 2,992 18.060 40.127
99.5% | 9.897 ms 3,493 17.552 40.389
99.6 % | 8.413ms 4,211 16.912 40.553
99.7 % | 13.933ms 5,305 15.963 40.272
99.8 % | 20.943 ms 7,316 14.659 39.565
99.9% | 26.825ms 14,223 14.237 42.712
99.99 %| 127.80 ms 93,320 9.333 37.331
TABLE 3. All-approximation analysis: number of test-intervais i
relation to some utilization dependent values

Therefore we can assume that the number of test intervaendispn the worst case linear
on the number of tasks. So we have a complexity @(C-n-log(n)) whereC do not
depends on the number of tasks.

Next we will investigate the dependency of the complexitytioa utilization of the
task set. Figure 6.3.1 shows the maximum run-time of theftestask sets with 100
tasks for distinguished utilizations of the task sets. Tiretime is quite low for the all-
approximation test for utilizations up to 80% but it increasignificantly for utilizations
close to 100%. We know that the complexity of the processoradel test depends on the
maximum test interval and we have also proven that the lasirtterval considered by the
all-approximation analysis is the same maximum test irsig(see chapter 4). This maxi-
mum test interval (of Ripoll et al. [119], see section 2.2i8pends oqE—, thereforeitis
valid to assume that the run-time for the all-approxima#oalysis also depends somehow
on this value. In table 3 we have given the maximum requirstditgervals of the experi-
ment for some different utilization and the relation betwéeese numbers of test intervals
and % In table 4 we have given the middle distance, the variatioh the medium
values for the columns of table 3. Let us concentrate on theegawith a considerable
number of test intervals, so all utilizations above 98%. \&e that in the experiment the
fraction 1E—U overestimates the increase rates of the number of testaée™he measured

increase is less than the fraction would assume. Using ﬁmidinW we get
—U)log(Ly

6.4. APPROXIMATION AND DYNAMIC APPROXIMATION FOR STATIC PRORITIES 127

1
100 tasks per task set t<1LjU) t'(liu)'lzg(m)
2 million task sets
medium inter-distance 11.74% 3.76%
variation (%) 41.44% 11.15%
medium value 18.498 36.678
200 million task sets
medium inter-distance 10.88% 3.29%
variation (%) 36.98% 6.73%
medium value 19.667 39.230

TaBLE 4. All-approximation analysis: medium inter-distanceriaa
tion and medium values for the columns of table 3

a better estimation of the increase. The variation is abdui5P6 and for 100 times more
task sets it declines ta B3%.
Our estimation achieves a complexity for the all-approxioratest of

U
° ((1U) -log(r15) -n-Iog(n))

whereU is the utilization andh is the number of tasks in the task set. In comparison the
processor demand criterion has a complexitpPdmax.cr (pr — dr) - n) when the utiliza-
tionU is bounded by a valugmax < 1.

6.4. Approximation and Dynamic approximation for static priorities

In the following we will consider the run-time of the analysilgorithm for scheduling
with static priorities proposed in chapter 5. We proposedribw exact exceeding cost
analysis, the approximation based on it and the dynamicoxppation leading to a new
more efficient exact analysis. We have compared these asakyth the well known worst-
case response time analysis, using the same experimenitarenent as in the previous
sections.

Figure 6.4.1, 6.4.2 and 6.4.3 show the results of an expatimith 10 million tasks
sets each having 100 tasks, a gap between 5% and 95%, atiatilizeetween 5% and
99%. The period is chosen between 10 and 10 million ms usirgyraal distribution. In
figure 6.4.1 the ratio of schedulable task sets is depictdidalgorithms for the analysis
of static priority scheduling lead to nearly the same ratithiese figures. The ratio starts
at 100% for a low utilization and drops fast at a utilizatidrabout 80%. For comparison
the figure also shows the ratio for the exact EDF schedulitgutzed by the processor
demand criterion (PDC), which is always larger than therfali static priority scheduling.
In figure 6.4.2 the maximum required computation time fordfferent exact algorithms
is shown. The most worst-case run-time required the prewaearst-case response time
and the new exact exceeding costs analysis. The worst-esjgernse time requires a large
run-time over all utilizations whereas the exceeding castalysis only requires a large
run-time for task sets with a high utilization (utilizatiemigher than 70%). For these
utilizations the required run-time for the exceeding cabiteary analysis is often larger

128

ratio schedulable tasksets (%)

maximum computation time (ms)

6. EVALUATIONS

10 million tasksets with 100 tasks

100 T
80 |
60 |
40
20
\
0 L L L L L L L Lo L
0 10 20 30 40 50 60 70 80 90 100
utilization (%)
PDC, exact
WCRT (Classic), exact
Exceeding-Costs Approx. Arbitrary (4) ---
Exceeding-Costs Approx. Arbitrary (2)
Exceeding-Costs Approx. Arbitrary (1)
Exceeding-Costs Exact Arbitrary , exact
Exceeding-Costs Approx. Arbitrary (10) - -- - -
WCRT (Sjodin & Hansson), exact
Exceeding-Costs Approx. Arbitrary , (100)
FIGURE 6.4.1. Static analysis: ratio schedulable task sets - norma

distribution of periods

10 million tasksets with 100 tasks
1000 T T T T T T T

100

Al .,..,_. TR d f-Y
L e R Bt
A

15

10

1k -
i;i N
P
Ol Il Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100
utilization (%)
WCRT (Sjodin & Hansson), exact
Exceeding-Costs Arbitrary , exact -------
Exceeding-Costs Dynamic Approx. , exact --------
FIGURE 6.4.2. Static analysis: maximum required computation time

for exact static analyses - normal distributed periods

6.4. APPROXIMATION AND DYNAMIC APPROXIMATION FOR STATIC PRORITIES 129

10 million tasksets with 100 tasks

average computation time (ms)

0 | DY S W T L L L L
0 10 20 30 40 50 60 70 80 90 100
utilization (%)

WCRT (Sjodin & Hansson), exact

WCRT (Classic), exact

Exceeding-Costs Arbitrary , exact --------

Exceeding-Costs Approx. Arbitrary (1) e
Exceeding-Costs Approx. Arbitrary (100)
Exceeding-Costs Dynamic Approx. , exact

FIGURE 6.4.3. Static analysis: average run-time - normal disteityeriods

than for the worst-case response-time analysis. But theoajpation and the dynamic
approximation of the exceeding costs analysis, which isnag@a exact analysis, have a
better run-time than the worst-case response-time asalyi$iese algorithms require, in
the worst-case, a run-time that is only about 20% of the nme-tof the response-time
analysis. It is even lower for task sets with utilizations7686 and lower. The results are
even better considering the average run-time requirecdrdets in the analysis as shown
in figure 6.4.3.

In figure 6.4.4 the average run-time for 1 million task setthwa00 tasks each is
depicted. In figure 6.4.5 the dependency of the computaitio@ on the number of tasks
in the task set is depicted. The interesting point is thateffert even for the exact non-
adaptable static exceeding cost analysis drops below e fefr the worst-case response-
time analysis for large task sets.

We focus on exponentially distributed periods next. Fighire6 shows the run-times
of the same experiment with exponential distribution far geriods. At a utilization of
40% the top curve in the figure is the exceeding-costs arpitmaalysis, followed by the
variation of the worst-case response time analysis, wigialld to equal results and cannot
be distinguished in the figure. The next lower curve at 40%zation is the exceeding
costs approximation with an approximation degree of 10@iebest intervals followed by
the approximation with one exact test interval. The loweswe is the exact dynamic
exceeding-cost approximation. The advantage of the newoajppation and dynamic-
approximation is even higher than in the previous case. Xpereential distributions lead
to task sets requiring more effort for the response-timeyarsabut not for the dynamic-
approximated exceeding-cost analysis. The advantageais agen higher considering

130

average computation time (ms)

maximum computation time (ms)

250

6. EVALUATIONS

1 million task sets with 500 tasks

200

150

IR IRRY F ST PR R ";\-"" f
100 rsbagbpen T *ﬁ“‘“";“l“wﬁ"‘b’q‘"ﬁﬂ“‘p M \T&- ‘v!""" s "&}t '}' .h’ 'v‘:?-‘;. i
S 0 N
?"".-
50 h o N -
R, WY
""-n.(._‘ 'L' A}
O Il Il Il Il Il Il Il Il Il !
0 10 20 30 40 50 60 70 80 90 100
utilization (%)
WCRT (Classic), exact
WCRT (Sjodin & Hansson), exact
Exceeding-Costs Arbitrary , exact
Exceeding-Costs Approx. Arbitrary (100)
Exceeding-Costs Approx. Arbitrary (1)
Exceeding-Costs Dynamic Approx. , exact
FIGURE 6.4.4. Static analysis: average run-time - normal disteu
periods (500 tasks)
5 million task sets with 98% util
1600 ™ T ™ T T T T
Exceeding-Costs Exact Arbitrary , exact
WCRT (Sjodin & Hansson), exact
WCRT (Classic), exact =------- 3
1400 Exceeding-Costs Dynamic Approx. , exact - N ‘
1200 ' .
1000 b
800 -
600
400
200
0
400 500 600 700 800 900 1000
number of tasks (#)
FIGURE 6.4.5. Static analysis: maximum run-time for different rum

ber of tasks - normal distributed periods

6.4. APPROXIMATION AND DYNAMIC APPROXIMATION FOR STATIC PRORITIES 131

1 million task sets with 100 tasks and exp. distr. period
100000 L] L] L] L] L] L] L] L] L]

10000

1000

100

maximum computation time (ms)

0 X 01 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

utilization (%)

Exceeding-Costs exact Arbitrary , exact
WCRT (Classic), exact

WCRT (Sjodin & Hansson), exact --
Exceeding-Costs Approx. Arbitrary (100)
Exceeding-Costs Approx. Arbitrary (1)
Exceeding-Costs Dynamic Approx. , exact

FIGURE 6.4.6. Static analysis: maximum required run-time for ap-
proximative static analyses algorithms - exponentiatitisted periods

1 million task sets with 100 tasks and exp. distr. period
1000

L L L] L
Exceeding-Costs Exact Arbitrary , exact
WCRT (Classic), exact --
WCRT (Sjodin & Hansson), exact
Exceeding-Costs Approx. Arbitrary (100) -~
Exceeding-Costs Approx. Arbitrary (1)
Exceeding-Costs Dynamic Approx. , exact

100

10

average computation time (ms)

1k 4
olF . .(;z,.,-,.ﬁ;»ﬁmiﬁi‘:"%‘""#ﬂw 1
0.01 'l 'l 'l 'l 'l 'l 'l 'l 'l

0 10 20 30 40 50 60 70 80 90 100

utilization (%)
FIGURE 6.4.7. Static analysis: average run-time - exponential dis
tributed periods

the average required run-time for the whole experiment as/shn figure 6.4.7. For the
utilization of 0% the highest curve is here the result of batbrst-case response time

132 6. EVALUATIONS

test masrur norm
100

TV WV, IS .’."' A L] T AII-Ap'proximati(')n ' exact'
‘\)' ANV AN '.\/.\ N DeVi
’ ! A wre
A Superposition (2) --------
SUperposition (4) s
s Superposition (10)
or \ ,f"“ Superposition (100) -
VO g Masrur nA2 - - - -
g ¥ 1% AsY Masrur nlogn-100 ---—-—
o AR
2 1
@
2 60]
[%2]
8
@
Qo
<
g o
8 K
2 4f VoA J
c 1
] :
: i
\
i
20 = .l]
i
i
"\
|
0 L L L [3 2 N . \~_~ 5, s
0 10 20 30 40 50 60 70 80 90 100

utilization (%)

FIGURE6.5.1. EDF: acceptance ratio of the approach of Masrur et al.
(normal distribution)

analyses followed by the arbitrary exceeding-costs aisalyBhe lower curves are both
approximations (100 and 1 exactly considered test intearad the lowest curve is again
the dynamic exceeding-cost analysis. In contrary to thegssor demand criterion the
ratio between the smallest and largest task of a task setdiasge influence on the run-
time of the response-time analysis.

Although results are not as convincing as the results oftla¢yais for dynamic prior-
ities the new algorithm is still an improvement over the 8rgapproaches.

6.5. Previous approaches

Finally we will consider the run-time of the other exact as& approaches introduced
in chapter 2 and compare them with our approach.

6.5.1. Analysis of Masrur et al. [93].

Infigure 6.5.1 and figure 6.5.2 we have depicted the acceptatio and the maximum
required run-time for the sufficient test of Masrur et al.][$& EDF scheduling and
compared them with the other approaches. Both, the acaaptatio and the effort is
located between the sufficient test of Devi which is equah®dpproximation with one
considered test interval and the approximation with twosidered test intervals. Using an
exponential distribution the sufficient test performs éefigure 6.5.3 and figure 6.5.4).

6.5.2. Exact analysis algorithms for EDF.In figure 6.5.5 the average and in figure
6.5.6 the maximum run-time for the different schedulapitinalyses and maximum test
intervals for EDF scheduling are compared. In both casepribeessor demand test with

maximum computation time (ms)

ratio schedulable tasksets (%)

6.5. PREVIOUS APPROACHES

test masrur norm

133

1.6 T T T T T T - T L
All-Approximation , exact
Devi
Masrur n?2 ----e-e-
14 1

Superposition (2)

O Il Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90
utilization (%)
FIGURE 6.5.2. EDF: max run-time compared of approach of Masrur

et al. (normal distribution)

test masrur exp

100

100 s T T T
AMAAVA AV, All-Approximation , exact
\ Devi
Superposition (2)
Masrur n"2
Masrur nlogn-100
80 L
60 |- L
40 -
20 b
0 Il Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90
utilization (%)
FIGURE6.5.3. EDF: acceptance ratio of the approach of Masrur et al.

(exp. distribution)

100

134

maximum computation time (ms)

average computation time (ms)

6. EVALUATIONS

test masrur exp

0.3 T T T T T T . i L
All-Approximation , exact
Devi -------
: Superposition (2) - -
Masrur n*2, exact

A
I\ N4

LT B WA, AV ’

NSRS ST e
~

[

N [N n
1N NoAln

AR R

=~

0 X 05 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

utilization (%)

FIGURE 6.5.4. EDF: max run-time compared of approach of Masrur
et al. (exp. distribution)

1 million task sets
100 L] L] L] L] L] L] L] L] L]

il U é dd .

iﬁ#&“\#"#y SR o [Ea- L
i e AL

»'J'.mi,',’k'.‘.;).".%,‘.l-&».p‘.-‘.},%,}ﬁ. 4, A

01§ __A#l.i—-v""'."x""‘m"’ ' |
0.01 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

utilization (%)

PDC with Park & Cho, exact PDC, exact -«
PDC with Busy Period, exact ------- All-Approximation , exact
PDC with Baruah, exact --------

FIGURE 6.5.5. EDF: average run-time of the previous approaches

6.5. PREVIOUS APPROACHES 135

1 million task sets
100000 L] L] L] L] L] L] L] L] L]

10000
1000

{

100 K

10

maximum computation time (ms)

o 10 20 30 40 50 60 70 80 90 100
utilization (%)
PDC with Park & Cho, exact PDC, exact -«

PDC with Baruah, exact ------- All-Approximation , exact
PDC with Busy Period, exact --------

FIGURE 6.5.6. EDF: maximum run-time of the previous approaches

the test interval of Park & Cho [103] requires the most effdithe reason is that the test
requires a recalculation of its maximum test interval athe@st interval. In the average
the PDC with the maximum test interval of Baruah et al. [1@juiees the same effort as
the PDC with the test bounds of Ripoll et al. [119] or Georgalef55] (shown as “PDC,
exact” in the figure and used in the previous sections) forudilizations but it requires
significantly more effort for utilizations of more than 50% i&leads to longer maximum
test intervals. The PDC with the busy period as maximum tgstval ([119]) has for very
low utilizations an average run-time comparable with the-time of all-approximation
but requires with rising utilization a higher run-time. Rdilizations close to 100% the
average required run-time is even comparable to the rue-tifithe test of Park & Cho
[103]. The all-approximation analysis requires the le#fsireof all approaches.

For the maximum run-time the situation is comparable to tfegage case except that
all previous approaches have a large fluctuation in theirired run-times.

6.5.3. Exact analysis algorithms for static priority schediling. In figure 6.5.7 and
figure 6.5.8 we have compared the average and the maximurinedqun-time for exact
schedulability analysis for static priorities. The schigdypoint test requires the maxi-
mum runtime for the relevant utilizations between 75% an@Pa@ollowed by the reduced
scheduling-point test. The worst-case response-timeysisak the next with a required
maximum runtime of around 10 ms followed by the exceedingf-dgnamic approxima-
tion. But for utilizations between 50% and 75% the situai®a little different as here
the scheduling-point test and the reduced schedulingtpEshoften require even less run-
time than the exceeding-cost dynamic approximation. Theason is different for the

136 6. EVALUATIONS

1 million task sets

average computation time (ms)
N
L]

3k

2k

1k

0 L L 1
0 40 50 60

utilization (%)

Sched. Point Test, exact

red. Sched. Point Test, exact -------

WCRT (Classic), exact - .-

WCRT (Sjodin & Hansson), exact -
Exceeding-Costs Dynamic Approx. , exact

FIGURE 6.5.7. Static priorities: average run-time of previousrapghes

1 million task sets

10000 T T

L] 1) L]
Sched. Point Test, exact
red. Sched. Point Test, exact -------
WCRT (Classic), exact - -
Exceeding-Costs Dynamic Approx. , exact

1000 p

[

o

o
T

*"‘:. ,r‘.'f.: 1” A l l
LB ~iins g
| H\’;J‘l "*”*f-:e,;{f‘ 3

1
10 Pt '_ﬂ‘,,}_.h.'m_l.“a,.;.;_d‘ <l

b il B .‘)_\.:.'
Mﬁ“,}&‘wﬂu.\w;, JRRUTNIAIT SN ‘
b

5 MUl
i || }

Ui J

maximum computation time (ms)

0.01 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

utilization (%)

FIGURE 6.5.8. Static priorities: maximum runtime of previous apgmhes

average runtime. Here the runtime for the reduced schegiplirint test is, with some
exceptions, even for utilizations larger than 80% comparelith the exceeding-costs dy-
namic approximation, but it has a larger fluctuation. Thereffor the scheduling-point

6.5. PREVIOUS APPROACHES 137

test increases suddenly at about 78% utilization and esoeeash the effort for the worst-
case response-time analysis there. Note, that the aveasgeof course includes many
uninteresting task sets far away from the border betweestsdhble and non-schedulable
task sets. Concluding, the effort for the scheduling-ptast and the reduced scheduling-
point test seems to be unpredictable due to their large #iticluand the exceeding-costs
dynamic approximation seems to be the best choice.

CHAPTER 7

Hierarchical event spectra

Sub-additive and super-additive event bound functiond @so service bound - ca-
pacity bound functions) are a key concept for the schedithalainalysis. The answer
of the question how many events can occur at most - at leakinndiny possible inter-
val of lengthAt leads to a integrated theory on schedulability analysiseséHunctions
extract the worst-case situations of all possible conetedules into one single descrip-
tion. We call this concept event spectrum, because an epentrsm contains all possible
worst-case event densities like the light spectrum costalinpossible wavelengths of the
different colors of light. An efficient and compact desddptfor event spectra, allowing
a fast calculation of the values for each interval, leadsnt@fficient real-time analysis.
Many proposed models in the real-time community are, initsgaloncrete descriptions
of event spectra or are used in the same way. Examples areghestream model [61]
(introduced in section 2.3.2), the periodic model withejitand minimum separation dis-
tance [117] (introduced in section 2.3.4), the concretemgson and the approximation
of the real-time calculus curves [39, 76] (introduced intigec2.3.6). But also most of the
analysis proposed for the periodic model, the periodic rhwité jitter and the recurring
real-time task model are based somehow on event spectraoutde; the approximation
and the analysis algorithm proposed for these models inteh&p chapter 4 and chap-
ter 5 are also based on event spectra. One possible demcniptidel for event spectra is
the event stream model; another is the periodic model witr jand minimum separation
distance between events.

In this chapter we will present a new advanced concrete ii¢iscrmodel to overcome
the limitations of the event stream model, the hierarctégaht spectra model. The model
allows the efficient concrete description of event speatrdaining various kinds of bursts
and capacity bound functions.

7.1. Limitations of the event stream model

The event stream model is a general event model. In prinaiplevent stream can
describe each possible event pattern. But for the desumijti certain event patterns by
an event stream a large number of event elements are req@metsider for example an
event pattern in which 100 events occurs with a period of 1Gatewed by a break of
1010 ms. After the break the next 100 events arrived follolmethe break and so on. The
description of this pattern with a periodic event sequenceldbe:

© = {(2000ms 0), (2000ms 10), (2000ms 20), (2000ms 30), ..., (2000ms 990) }

139

140 7. HIERARCHICAL EVENT SPECTRA

Events

yrvwvrw Y vrv o,

‘ At (ms)

FIGURE7.1.1. Example Event Spectrum

The description of such a pattern with a periodic event secgieequires 100 event
elements. As the event pattern has a very regular appeaitasiceuld be possible to
describe the pattern in a more compact way.

Bursts can be found in the activating event patterns folagegystems. They occur
also within a system itself.

ExAamMPLE 7.1.1. Consider for example a robot with a camera sendirgi&etly pic-
tures to a processor using a bus. Every time the camera squctsige, a burst occurs on
the bus. The burst consists of the data-packages with theiation for one picture. After
the bursts a delay occurs on the bus until the next picturerisl.s Note, that the single
data packages of a picture are not necessarily of the samersireed not to occur with a
strict periodic pattern. They can contain quite differ@ribrmation, picture data as well as
protocol or header information and it might be useful or 3seey to describe the bursts
itself also by an event pattern.

Aburstis a large but limited number of events occurring wignshort amount of time.
It can be regarded as a limited event pattern having a highkityeof events. Modeling
bursts with the event stream model can require a large nuafleent elements.

ExampLE 7.1.2. An example for a system in which bursts occur is a nesguwith
a task sef” bound on it for which the completion af can jitter due to delays caused by
preempting tasks’ € I" with higher priorities(t’ € hp(1)). In case of a large jitter value
j several jobs of can be delayed at the same point of time. These jobs can begsext
and finished quickly in a row after the execution of the jobshaf preempting tasks has
been completed. The outgoing events fired by these jobs ttamr one after another also
within a short amount of time, forming a burst. This exampbkeswthe motivation for the
development of the periodic event model with bursts by Riclet al. [117], which is
introduced in section 2.3.4. But the periodic model withdtsicannot describe efficiently
the event patterns for the robot with a camera example.

ExXAMPLE 7.1.3. Bursts can also be the result of loops in the contral §oaph of
previous tasks. Consider a task having a control flow withagp lim its control-flow in
which one eventis generated at each of the iterations obthe Iin case, that the number of
iterations of the loop can be bounded, the number of evertaong out of one activation
of the task is bounded too. The set of events generated bygke sintivation of the loop
can be regarded as a burst.

In Figure 7.1.2 we present an example task graph to illestratsts.t; is activated
by a periodic event stream. It activates two other tgsknd1s. The event stream for both
tasks consists mainly of bursts. The control flow grapmafonsists of two nested loops.

7.2. SPECTRA 141

0]
-
-

| 2]
/i - 9, C‘DVB
Ve :%Vl L

vZl T~ .

o

st Lvlo

l

FIGURE7.1.2. Example task graph generating bursts

In the outer loop node; generates the events activating v, is the node belonging to
the inner loop that generates the events activatin®ne event is generated at each of the
iterations of the inner loop. Therefore the event str&nactivatingr, mainly consists of
bursts, wherea®;3 activatingrs consists of nested bursts due to the nested loops. A new
model is required that is able to describe such event pattaran easy and efficient way
and allows also an efficient real-time analysis.

The event stream model is not appropriate to model effigi¢hd systems with bursts
introduced in the examples. The problem is that it is neegdeanodel each event in the
burst with an extra event stream element. For an event pattertaining a burst with 10
events, at least 10 event stream elements are requiredsémota burst containing 1000
events, at least 1000 event stream elements are neceshargiz€ of the description for
an event pattern depends in the event stream model on thefsigdursts.

Another limitation of the event stream model becomes \sitlie to the proposed
approximations. It is not possible to describe the appraxiom of event stream elements
within the event stream model. Therefore it was necessatdgvelop a special approxi-
mative feasibility test algorithm, implementing a fixedttésit for all tasks. It would be
more useful to integrate the approximation in the model &cdbe the event stream with
both, its exact and its approximated part. The new model dvallbw a higher flexibility
in choosing the test limits for the individual event stredem@ents and give the freedom to
propagate the approximation through a distributed system.

In the following we will propose such a model: The hierarethi&vent spectra model.

7.2. Spectra

Looking to the previous work to analyze real-time systenmaghthat the analysis
complexity and the model accuracy are central points of tigping research. Because of
the limitations of the models a lot of extensions to coveeijtburst and other effects of
events are discussed in the literature. The new hieratdcpertra or hierarchical event

142 7. HIERARCHICAL EVENT SPECTRA

spectra model presented in this thesis will cover all aspect new single model. It is

based on event streams and their approximations [5]. Eyetts are a hierarchical
extension of the event stream model (previously referreabtbierarchical event streams)
combined with results from the real-time calculus. The nevdel is called event spectra,
because an event spectrum contains all possible worstevasg densities like the light

spectrum contains all possible wavelengths of the diffiecetors of light.

We will first give a definition for the general spectrum modehich can cover many
aspects of a system. A spectrum can model for example theenwhlevents, the amount
of required computation time, the amount of available capac the amount of required
or available energy, in relation to time intervals. A spestrdescribing events is denoted
event spectrum, when it is describing costs it is denotetl spesctrum and it is denoted
capacity spectrum when it describes the (available or neimgli capacity. To describe
many different system stimuli the event spectrum has, fangle, to model a sequence of
events in an accurate and complete way.

DEFINITION 7.2.1. Spectrum

Leta spectrun@ model the relation between an amount of a parameter (likeb@arm
of events, required computation time, available capacitguired energy, ...) and a time-
interval lengthAt. Let the hierarchical spectru® = {8} consist of a set of hierarchical
spectrum elements. Let the hierarchical spectrum eleréeﬂ(pé,aé, La, fé,éé} be de-
scribed by a period p, an offset g and a limitation Ly of the amount generated within
one single period. The slopg is describing a constantly growing amount with ds the
growing rate.(:)é is a child hierarchical spectrum which is recursively emied.

The amount of the parameter that can be generateé)g)wvithin one period of its
parent spectrun@ is also bounded by the limitation of its parerg.LC:)é can be an empty
element®, = 0).

6 is a valid hierarchical spectrum element, if and onlyé'gf is either a valid hierar-
chical spectrum or an empty element and the inteMatequired for the slope ané)é
to generate the amount of the limitatio is not larger than the period p(Separation
Condition, see condition 7.2.6 for a mathematical definitiand either § =0 or éé =0.

The event bound function (as defined in definition 2.3.3) Wates the maximum
number of events that can be generated by a given event spe@mwithin an interval
of a given lengthAt. The spectrum bound functiap(At,®) has the same definition as
the event bound function of the event stream model. The adparcondition allows an
efficient calculation of the values for this function.

LEMMA 7.2.2. Spectrum Bound Function:
Let for anyAt, p define modt, p) = At — L%J p. For a hierarchical spectrum fulfill-
ing the separation condition the spectrum bound functianlmadetermined as follows:

naLe)= 3 (o)
6co
Atza@

7.2. SPECTRA

143

#Events
30
20
10+
H—t—t—F+—F+—F+—+—+—+—F+ —
10 20 30 40 50 60 70At (Ms)
FIGURE7.2.1. Hierarchical event spectru®g
min(Lé,(Atfaé)féJrr](Atfaé,éé)) pg =0, fg #
A At7 ,\
At-ay .
{ o5 "J Lg +min(Ls, modAt —ag, pg) f5+
+n(mod(At —ag, pg),Op)) P # . fg # o0
with

n(at,0)=0

PROOF Due to the separation condition it is always possible touithe the maximum

allowed amount for completed perioé%

At—
P

aéJ Lé). Only the last incomplete fraction of

a period has to be considered separately. This remainiegvaitis given by subtracting
all completed periods, and the offsefrom the intervalAt (mod(At —ay, pé). It has to

be distinguished whether the slope or the sub-spectrunratsethe events. In case of
the sub-spectrum, the possible amount is calculated by ukim same spectrum bound
function with the remaining interval and the new embeddeddnthical event spectrum as

parameters. In case of the slope the amount is simply theuptad the slopef and the
remaining interval lengtiimod(At — ag, pg)). The maximum allowed amount within one
period limits both values.

O

Independently on which hierarchical level a hierarchipaictrum element is located it
is visited only once during the calculation of the value foeanterval. This characteristic
limits the complexity of the calculation.

It is not necessary for the spectra to be homogeneous.

ExAMPLE 7.2.3. Let us consider the hierarchical spectrum

A 1 1
O = {(20ms6ms 10,05,{(3ms Oms 2’15’0)}

The event bound function for this spectrum is given in figuée 7. The value foAt = 33

ms is given by

27m
6

~ S . ~
n(33msQg) = LD—J L +min(Lg,mod27ms py) f5 +n(mod27ms p;),03))

144 7. HIERARCHICAL EVENT SPECTRA

= Eg—nmwj <10+ min(10,0+n(7mséé)) =10+ min(lO,n(?mséé))
N Py ms .
n(7Tms©y) =n(7Tms@’) = 3ms -2+ min(2,mod7,3)-1+0)=4+1=5

n(33ms) = 10+ min(10,5) = 15

The spectrum bound function(At,é) allows calculating the amount for a given
interval-lengthAt. It provides for each interval-lengtht the amount belonging tét.
It is a monotonic rising functiotiAt; > Atj — n(At;) > n(Atj). An interval At; has to
include at least all the amount 4fj because in the worst-caAg; can be part of\t;.

The spectrum bound function allows to calculate the amoant&afgiven interval-
length.

DEFINITION 7.2.4. Interval bound function
The interval bound functiog calculates the time intervait for a given event spec-
trum and a given number of events.

W(x,0) = min(Atjx = n(At,©))

LEMMA 7.2.5. i is the inverse of the spectrum bound function so we haygx, ©),) =
x andy(n(At,0),0) < At.

PROOF. Let us assume, without loosing the generality,being the interval fulfilling
A = min(At|x= n(At,©)). Therefore (@(x,0),0) = n(At',0) = xandy(n (At,0),0) =
P(x,0) = At <At 0

The separation condition prohibits that the amounts oédifit periods of a spectrum
element overlaps. The separation condition is requiredifoefficient calculation of the
spectrum bound function. It can be mathematically expoease

CONDITION 7.2.6. (Separation Condition) A spectrum elemériulfills the separa-
tion condition if for each element the interval in which etgeare generated is equal or
smaller than its period:

~ La
n(Ls 0)+ ff’ < pg
°]
or
~ p”
Ps < N(Pg.0p) + o
6

The condition 7.2.6 does not reduce the space of event pattieat can be modeled
by an event spectrum. An event spectrum that does not meséfaration condition can
easily be transferred to one meeting this condition.

COROLLARY 7.2.7. A spectrum elemeskthat does not meet the separation condition
can be exchanged by a set of spectrum elem@nts, G with k= PJ(;—‘ZG)W and 6 =
(kpg, (i—1)pg+ag, Ly, f5,05).

PROOF. For any spectrum element we can find a multiple of its pekipgl that is
larger than the interval in which events are generated lsydl@ment. For each period of

7.2. SPECTRA 145

3 I i10+ | i2+0i HQOMHW 1 vy
At (ms)

FIGURE7.2.2. Example for overlapping events of different periods

the original spectrum element, a seperate spectrum elesesed with the perioép;
and the events of the original element. Each of these newesienfulfills the separation
condition. O

ExampLE 7.2.8. Consider the following example event spectrum:

6 = {(28msOms 15,0%,{(3ms 0Oms 1,00 é,@)})}

The limitation intervalL; has the length.; = (15— 1) -3ms= 42ms The event
pattern of this event spectrum is shown in figure 7.2.2. Tls¢ dind the second period of
the event spectrum element overlap. In the intej@12) ms the events for the first period
are generated, in the intenf@B, 70| ms the events of the second period. Both intervals are
overlapping in the interval28,42] ms in which events of both periods are genera@d.
can be transferred into the following event spect@hmeeting the separation condition:

~ 1 1
o = {(56m50ms15,05,{(3m30m51,oo§,0)}),
(56ms 28ms 15,07 {(3msOms Lo, 0)})}

Note that this separation condition does not prevent trexvats for event generation
of different spectrum elements to overlap. It is only nobakd that intervals for event
generation of two periods of the same spectrum element oattaqv

DEFINITION 7.2.9. Upper spectrun®*

© is an upper spectru®™ if, and only if, each of its spectrum elements are valid
spectrum description elements and the condition of sulitieityl

VAL AL 0 (At+AY,OT) < n(At,OF) + n(at',6t) is fulfilled.

DEFINITION 7.2.10. Lower spectrun®—

O is a lower spectrun@* if, and only if, each of its spectrum elements are valid
spectrum description elements and the condition of sugeitiaity

VAL ALY n(At+AY,07) > (A, O7) 4+ n(At,67) is fulfilled.

The spectrun®™ models the maximum amount that can occur in an intevand
©~ models the minimum amount that can occur withtn

A value fz = 1 of the slope means that after one time unit one event hasreccu
after two time units two events and so on. The slope allowsetiogl approximated event
streams as well as modeling the capacity of resources. Bxstassccan be described by a
number of events which occur respectively can be procesigbthwne time unit.

ExXAMPLE 7.2.11. An event spectru@; = {(10ms5ms1,,0)} with one element
with an offsetag = 10 ms and a periodg =5 ms can be approximated by a sldpe 5%“5

146 7. HIERARCHICAL EVENT SPECTRA

#Events

1 5 10 15 At (ms)

FIGURE7.2.3. Example event spectrum

In case that this event pattern is approximated after thiedirmnt it can be described by
the approximated event spectrum

- 1 1

©1 = {(c0s,10ms 1’°°g’®)’ (00s,10ms oo, S—ms,(l))}
The approximated pattern is visualized in figure 7.2.3. Asdhiginal event spectrum
produces an unlimited number of events the approximateut epectrum is not bounded,
too and has therefore an infinite Iimitatidqg,g1 = 00) . This unlimited slope is not repeated
periodically, thereforqa)él‘1 = oo, TO guarantee thah leads to an equal or larger amount of
events for each interval thay the approximation has to start at the right level guaranteed
by the first element 0@1. Then(:)l leads to a value of two events when the second event
of ®; occurs at 15 ms.

ExAMPLE 7.2.12. One event which occurs immediately requires aniiafsiope
(fz =) and a limitation of onel(z = 1). It can be described by the following hierarchical
event spectrum element:

e = {(c0s0s,1,00 é,@)}

A recursively embedded event spectrum with a slopd ef « would lead to the
generation of an infinite number of events in no time, but dughe limitation only the
generation of one event is possible. Due to the offset zergéimeration of events can start
immediately, therefore generates one single event at time zero.

ExampPLE 7.2.13. A capacity function of a resource which can handie second
processing time in one second can be described by this mattebne capacity spectrum
elementd, = (c0s,0s,00,11 0).

With the recursively embedded event spectrum any possditenn of events within
a burst can be described. The event pattern consists of direét of events that can be
repeated by the period of the parent hierarchical eventspaelement.

ExamPLE 7.2.14. An event pattern with a burst of five events which jreeged after
50 ms and in which the elements within the burst have an itrigal rate of 2 ms can be
simply described bPs = {(50ms0ms 5,02, {(2ms0ms 1,00 1,0)})}.

7.2. SPECTRA 147

#Events
5

1 5 10 At (ms)

FIGURE7.2.4. Example simple periodic event sequence

We use the same description model for the limited event pa#te for the repetition
of the event pattern. Therefore the event pattern itselfatao consist of repeated sub
event-patterns that can be described by a sub-sub eveittspec

ExamMpPLE 7.2.15. An event pattern in which the pattern of elen@qis repeated 20
times and then a break of about 1000 ms occurs would be deddrip

- 1 -
O, = {(2000ms 0ms 100,03, 65)}

An event spectrum can have several hierarchical levels.h®totvest level only the
slope is available to describe the occurring event patternas we have seen, this is suf-
ficient for basic event patterns, even for single events.i@rother levels limited periodic
repetitions of the event pattern of the sub-hierarchicadleare available. With this con-
cept it is possible to model (and analyze) even complex eyatterns efficiently.

CONDITION 7.2.16. For each spectrum elemérgither®; = 0 or f; =0

Therefore it is not necessary to distribute the limitatieiween the slope and the
sub-spectrum. This simplifies the analysis without reitricthe modeling capabilities.

The periodp and the offsea follow the same definition as in the event stream model.
So the arrival of the first event occurs aftetime units and aa+ p, a+2p, a+ 3p, ...,
a+ip the other events occur.

In the following we will give a few examples to show the usagd &he possibilities
of the new model.

EXAMPLE 7.2.17. A simple periodic event sequence with pepod 5msand offset
a = 2mscan be modeled by a single event spectrum element:
R 1
This example is outlined in figure 7.2.4.
Each periodic event sequence can be directly modeled wéth\tbnt spectrum model
by replacing each previous event element with a spectrumesiehaving the same period
and offset and additionally a limitatidn= 1 and a slopd = o.

LEMMA 7.2.18. Let © be an event stream wit® = {64, ...,6,}. The event pattern
of © is also modeled by a hierarchical event spectrémwith © = {8y, ..., 6,} and with
é' = (p9|aa9|5150070)

148 7. HIERARCHICAL EVENT SPECTRA

PrROOF Each of the event stream elements generates exactly oneatwaach of its
periods due td. = 1 following the pattern of the corresponding event elem&herefore
the complete event spectrum follows the pattern of the esteeam. O

EXAMPLE 7.2.19. The same event element as above, but now approximfiee 10
events would be modeled in the following way:
610 = {(c0s,0ms 10msoﬂs,{(5ms, 2ms 1,w},0)}), (00s,47ms oo, i,(l))}
ms S 5ms
Note that 4ts= 2ms+5ms(10— 1) is the point in time in which the last regular
event occurs and therefore the start of the approximation.

There exist two possible concepts for the description oflith@ation, an amount.

as chosen for the proposed model or the length of the intérwahich the events of the
sub-spectrum element occur. Having a sldpe o, like in the basic element, the amount
generated cannot be bounded by any interval. Every intevaeald lead to an infinite
amount. Only for an interval of length zero it would be a qigesbf definition whether
the interval would lead to an amount of zero or infinity. Butinterval would lead to the
amount of limitation. The length of the limitation interve&n be calculated out of the
number of events and the generation pattern using the ateound functiony:

At = (L, Op) +LT,

with
Y(L0)=0
Note that this calculation requires the condition 7.2.ithéz f; = 0 or (:)é =0).

CONDITION 7.2.20. Let B, Bni be two event elements widh..; be the i-th child of
event elemerﬁn. For each possible child i, the child elemefmi is unequal to the parent
elemen6y: 6, # 6.

Condition 7.2.20 prevents that the recursion can have anmitmfilepth. The condition
also results out of the separation condition, at least fortiwial cases having not only
the same limitations on all levels or not only infinite pesod

7.3. Reduction and normalization of hierarchical event spetra

To allow an easy composition of event spectra and to forrautsthematical opera-
tions for the real-time analysis in an easy way a normal foravent spectra is formulated.
Also an operator to reduce any spectrum to this normal forprasided. For the normal
form we allow only recursively embedded spectra that ateeeiempty or have only one
spectrum element.

EXAMPLE 7.3.1. For example an event spectréra: {(100ms 0ms 20ms 0™, @,)}

ms’

with ©, = {(5ms0ms2ms o 1 @) (7ms2ms3ms 1™)} can be rewritten a® =

ms’ ms’

{(100ms0ms 10ms 0™ 4, ;), (100ms0ms 10ms 0™ §,,)} with

ms? ms’

éa,l = (5ms0ms2ms o 1%) andéaﬁg = (7ms2ms3ms 1T 0).

ms’ ms’

7.3. REDUCTION AND NORMALIZATION OF HIERARCHICAL EVENT SPETRA 149

LEMMA 7.3.2. A spectrun®a = {(Pa, aa, La,0,0,)} with a child spectrum element
©,={(p},a},L], 1,01), ..., (P, &, L, i, ©k) } can be transferred into an equivalent spec-
trum ©p with several spectrum elemer@g = {61,652, ..., B n, Box} having only child
spectra with one element where

Bbi = (Pas@a, N (Dta, 851),0,85))
Mg = lim ((La, ©) — &)

>0

vheco,

éb,X: (ooaq-’(l—aaé/a)vl-a_ Z I‘[(Ata,é),oo,(D)

PROOFE For®, only the second cag@y = », f #) and fourth casép, # o, f5 #
) of the spectrum bound functiop(At, @,) is relevant (see lemma 7.2.2). Let us consider
an event spectrur@A with pa = oo first:

N (At,04) = min(La, (At — ag) fa+ 1 (At — aa, 6}))
= min(La, N (At — 85, 64))
La (Bt —a,,0,) > La
N(Dt—aq,0,) n(it—ag,0)) < La

Only for n (At — ag, é;) < Lg the sub-spectra (@a are relevant. Then we have
N(t—aa,0) = 5 n(At—aa,bai)
Véavie(:)a

Let us consider now the corresponding event specfﬂgnWe have

n(8t,0p) = 3 n(At, 6yi) +n (AL,)

i<n

=S min(Lp,, (At —aa, 65;)) + 1 (A, 6)

i<n
The intervalAty, at which the limitation is reached is the same for each of pezs
trum elements. It idt, = min(At|At > At,) = min (At|At > Iimgﬂg(w(La,ég) - e)) =
£>
W(La, @) and therefore also the same as the interval for which theation is reached
for ©p. ForAt < Aty, we also known (At, éb,x) = 0. With this knowledge we get

Yi<nblbji+Lpx At > Aty

n(at,6p) = A
Yi<nN (Bt —aa,605;) +0 At <Aty

ForAt < Aty itis obvious that) (At, ©,) = n (At, ©y,). ForAt > Aty, we haven (At,0y,) =

Si<nlbj +Lbox = Si<nn(Ata, é:;i) + (La— Ji<n N (Ata, é,g/u) =Lla= W(At7éa)-
The proof for the other caggy # «, f5 # o) follows in the same way. O

To normalize the event spectru@y by splitting the child event spect@, into it's
elements and add one separate event element in the nordheliget spectrur®; for each
event element oéa we have to distribute the limitatiob; on the elements of the child

150 7. HIERARCHICAL EVENT SPECTRA

event spectra. First we have to find the intedlIfor which the limitation of the parent
element, is reached by the child event spectré@. At is given by the interval-bound
functiony(La, ©,) for the child event spectru®,. Then we have to calculate the amount
of costs required for each of the child event spectrum elésnfem At’. This amount of
costs is given in general by the event bound functj¢at’, é.) for At'. The problem is that
several elements can have a slopecaxactly at the end of this interval. In this situation
the sum of the event bound function for all child event eletador At’ may exceed the
allowed limitationL, of the parent element. The total amount of costs generat¢adsye
elements is then bounded by the global limitatigrrather than by their own limitatioris.
To take this effect into account we exclude the costs oaugekactly at the end dft’ for
each hierarchical event element and we handle these cpstsagely modeling them with
the hierarchical event elemeég[’x. To do so we calculate the limitation not bj(At’, éi’)
but by n (At — e,éi’) wheree¢ is an infinite small value excluding only costs occurring
exactly at the end oft’.

Another point for the normalization, also resulting out lo¢ tseparation condition is
that the limitation of an embedded event stream element nloesxceed the limitation of
each of its parent.

CoNDITION 7.3.3. The limitation of a hierarchical event eleme@{ L@n should not
exceed the limitation of any parent event eleménts:

Vén,i Lénfi < Lén

An exceeding limitation would be blocked by the limitatiditloe parent and therefore
would have no effect on the resulting stimuli or cost funititm case the limitation is equal
to the limitation of the parent, the period of the child carsbétow as the second period
would have also no effect on the resulting stimuli or costtion.

7.4. Capacity Function

The proposed spectrum model can also describe the capaciégaurces and allows
describing systems with fluctuating capacity over the tifitee processor demand analysis
and the event stream approach assume that the availableaofoesources is the same in
each time interval with equal length. Consequently, thekiead of the tasks is measured
in execution time on the given resource, and the function edehthe available amount
of resources for each interval length is the intersectiamid®al processor can handle one
time unit execution time during one time unit real time. Faany resources the capacity
is not constant. The reason for a fluctuating capacity calmbexample operation-system
tasks or variable processor speeds due to energy constraint

Also the modularization of the analysis requires complegacities. Consider, for
example, a fixed priority scheduling. In a modular approaamthepriority level gets the
remaining capacity of the previous priority level as avaldacapacity. The remaining
capacity can be calculated step-wise for each priorityll@aléng only the remaining ca-
pacities of the next higher priority level into account. Bun approach is only possible
with a model that can describe the remaining capacitiestigxac

7.4. CAPACITY FUNCTION 151
3000 4 (Ms) 4 c(ms)
2000

1000 |

4 } ——
1000 2000 At (ms) ' b) At (ms)
a)

300§ c(ms) 3000 4 ¢ (ms)
2000 |

1000 |

4 ———
100 200 At (ms) 1000 p 2000 At (ms)

FIGURE7.4.1. Example service bound functions

DEFINITION 7.4.1. The spectrum bound functiop(At, ©,) of a lower spectrun®,
of a resourcep gives for each intervaht the minimum amount of processing time that is
available for processing tasks in any interval of side

An approach covering this concepts are the service curvéseofeal-time calculus
(section 2.3.6).

In the following we will show, with a few examples, how to mdflactuating service
functions with the spectrum model.

ExamPLE 7.4.2. The constant capacity, as shown in 7.4.1 a) can be latbdyg a
hierarchical event spectrum with only one element:

Spasic= {(,0,00,1,0) }

ExampLE 7.4.3. Blocking the service for a certain times shown in figure 7.4.1 b)
is also easy to model using the offset

Solock = {(00,]:700,1, 0)}

ExamPLE 7.4.4. A constantly growing service curve in which the sesvis blocked
periodically each 100 ms for 5 ms (for example by an task ofdperating system), as
shown in figure 7.4.1 c), has the following description:

ms
Spblock= {(100ms5ms 95ms 1 ms 0)}

ExampPLE 7.4.5. The service for a processor that can handle only 130@ith full
speed and then have to slow down for 1000 ms in which only helspeed is available,
as shown in figure 7.4.1 d), is also easy to model:

Svary = {(2000ms 1000ms 500ms ;—”m"z 0),(2000ms Oms 1000ms 1 %2 0))

These are only a few examples how to model complex capacities

Capacity can be described either by an amount processatblie Wt or by a number
of events processable withikt. Operations are required to calculate one form out of the
other.

152 7. HIERARCHICAL EVENT SPECTRA

7.5. Modeling common event models with event spectra

To show the universality of the event spectra we will consid¢he following section
how standard well known event models published in the laats/ean be described by
using event spectra. The idea is to give an impression tleitepectra are a fundamental
approach to event modeling.

7.5.1. Periodic/sporadic task model with jitter. The most common task model is
the periodic / sporadic task model with jitter. The perioisk model was introduced by
[88]. In this model the events are occurring strictly pertadly with a fixed periodp. For
this model the maximum event spectrum is giveréjy: (p,0,1,0,0). As in the periodic
model the events are thought of occurring strictly periatlyc the maximum distance be-
tween any two consecutive events is one period and thergferainimum event spectrum
in the periodic model is simpl®— = (p, p,1,,0). Other than in the periodic task model,
the maximum distance between the events in the sporadiclrisodet limited by the pe-
riod. The sporadic task model requires only a minimum sejoardistances between any
two consecutive events. Considering the pepaahd the minimum separation distance be-
tween events (p = s) as equivalent, it is possible to apply the periodic modelitsdnal-
ysis directly on the sporadic model. As only the minimum sapan distance is available,
the minimum event spectrué* has to be modeled &~ = (00,00,1 00, 0). In case that
some information about the minimum occurrence of eventt®xa better minimum event
spectrum®~ can be given, other than with the sporadic task model. A vpickesd exten-
sion of these models is the introduction of a jitjefThe arrival of events occurs generally
periodically but the events can occur a bit early or latentbgpected by the period. The
interval in which their occurrence can happen is calledijithterval with the length and
is situated around the expected periodic time of occurrenhtee event. The jitter is espe-
cially valuable for the analysis of distributed systemse Té&ason is that the finishing time
of a task activated by incoming periodic events can vary betwthe worst-case response
time and the best-case response time of the task, therbfooritgoing event stream of the
task can be modeled having a jitter of the worst-case reggome minus the best-case re-
sponse time. For a jitter smaller than the period the minindistance between two event
is simply p— j and all following events occur with the distanpén the worst case, there-
fore @ = (0,0,1,00,0), (p,p— j,1,%0,0) and®~ = (p,p+ j,1,00,0). For a jitter larger
than the period, the events with a regular occurrence soem@nkithin the jitter interval
can all occur at the same time. This number is givemby H) + 1J therefore the, max-
imum event spectrum O+ = {(oo,o, H)J ,oo,(l)) , (p, p+ (é) - HD p, 1,00,0)}. The

minimum event spectrum is aga®n = (p,p+ j,1,,0).

7.5.2. Sporadically period task model.Another model proposed in [8] which was
specifically designated for single bursts can also be desgitdy event spectra. The event
sequence is described by an inner pefppdescribing the distance between events within
the burst, a number of evemi®ccurring within the burst and an outer periagidescribing
the distance between the starts of two consecutive burstevént spectrum with one level

7.5. MODELING COMMON EVENT MODELS WITH EVENT SPECTRA 153

of hierarchy is required. The maximum event spectrum is

©" = {(po,0,n,0,{(pi,0,1,0,0)})}

the minimum event spectrum is

éi = {(p07 pO_ npvnvov{(pia pi,l,OO,O)})}

7.5.3. Periodic task model with initial burst. The assumption of a concurrently oc-
currence of several events in the periodic task model witérjis an overestimation for
the distributed analysis. For example, consider a chaiwoftasks bounded on different
resources. The first tagk is activated by a periodic event sequence with jitter ancgen
ates an event each time it finishes its execution. With thesete the second task on the
other resource is activated. Several of the outgoing e ntscannot occur concurrently
as the instances afi are executed one after another. Therefore the minimum stqar
time between the activating events of the second task isaat &s large as the minimum
execution time of the first task.

DEFINITION 7.5.1. (Compare [69]eriodic task model with initial burst

In the periodic task model with initial bursts the occurreraf events is described by
an event model E= (p, j,s) with a period p, a jitter j and a minimum separation distance
s between any events.

This event model can be covered exactly by the maximum e\;mftttlsum(:)maxz
inf({(s,0,1,%,0)},{(2,0,n,,0),(p,5 1,,0)}) with n= | 1 + 1| andd = np- j, and
the minimum event spectru®— = {(p, p+ j, 1,,0)} which is equivalent to the minimum
spectrum of the periodic task model with jitter. For the débn of inf see section 7.6.

7.5.4. Approximation of the real-time calculus. The real-time calculus requires a
concrete description of the upper and lower arrival andisergurves. One possibility
is to approximate each curve by three consecutive segmenésfor the initial event,
one for the initial burst and one for the overall arrival orvéee rate, each given by
the coordinates,y of its start point and an event sloge This approximation can be
very easily transferred into a corresponding event spectnith three elementsd =
(00,X1,¥2,51,0), (00,%X2, Y3 — ¥2,5,0), (0, X3,,53,0)). The transformation is of course the
same for the upper and lower real-time calculus curves Irgw torresponding event spec-
trum curves. As this description is very pessimistic a ma®isate approximation of the
curves is used. The curves consist of an initial non-peciadd a periodic part. Each part
is modeled by a set of consecutive line segments. Each ligmeatw is given by the
coordinated x,y of its start point and a slope s. Startingstbpe at the starting point leads
to the coordinates x',y’ of the next following segmemit The periodic part is described
by its starting coordinates,,yp, again by a set of line segments with relative coordinates
X,y to the starting point, and by an offs&t, Ay between two periods. The transfer to the

154 7. HIERARCHICAL EVENT SPECTRA

event spectrum is easy with:

0= {(0,x1,y1,%,0),(2,X1,51(X2—X1), 51,0), (0, %, Y2 = $1 (%2 = X1) — Y1, %,0), ..,
(%0, %n, Sn(Xp — Xn), S, @), (22, Xp, Yp — S$n(Xp — Xn) — Yn, %, 0), (AX, Xp + Xy,

Su(Xu+1 —Xu),Sus 0), (AX, Xp + Xu, Yu — Su(Xut1 — Xu), Sus 0), ..., (AX,

Xp + Xutvs Sutv(AX = Xv), Sy, 0), (AX, Xp + Xuv, AY — Suv(AX — Xy) — Y, 0, 0) }

The maximum and the minimum curves are transferred in the seany.

7.6. Event Spectra Algebra

In the following we will introduce some necessary operation event spectra. By us-
ing these operations it is possible to define the real-tinadyais in a formal mathematical
way on event spectra. Some operations are keeping the giespef upper and/or lower
spectra. The step-wise infimum and supremum operator, ttheaadl scale-operator are
examples for this kind of operators. Also the convolutipand deconvolutiom belongs
to this kind of operators. The other kind of operators is ieganly to spectra. The shift
operator belongs to this kind. All operators are keepingtioperties of a spectrum, which
are the monotonic non-decreasing spectrum bound functiditree separation condition.

7.6.1. Upper and lower spectra keeping operationsLet us first consider operators
keeping the properties of event spectra. This means if tleeadqr is used on upper re-
spectively lower event spectra the resulting spectrunsis ah upper respectively a lower
spectrum. Then the resulting spectrum keeps the condifisate or super-additivity.

7.6.1.1. Add-operation.The add operation for two event streams can be simply real-
ized by a merger of the sets of event elements of the two etrewairss:

DEFINITION 7.6.1. { operation) 11©c = ©a+ Og then for each intervait the equa-
tion n(At,6c) = n(At,O4) + n(At,Bg) is true.

THEOREM 7.6.2. (+ operation) The sun®c = ©a + Og can be calculated by the
union of the event stream elementaf Og: Oc = OaU Og

PROOF
n(at,0c) = n(At,0a) + n(At,Op)
=3 n(at, 6) + Y n(At, 6)

CISCIN VOcOp
= Yy n@h
VéGOAUéB

= f](A'[,éAUéB)
(|

LEMMA 7.6.3. The+ operator keeps the properties of upper and lower spectra. So
we havedt =0t + 0" and® =0~ +6~. Butwe also hav® =0+ 6+, 0 =0+6"
and® =61+ 6. Of caused = O+ O is also valid.

7.6. EVENT SPECTRA ALGEBRA 155

PROOF: Let us consider the cagg = O +OF and two intervalé\t, At'. We know
due to the sub-additivity that(At +At', ©4) < 1 (At,0p) +n (At',64) andn (At+At',Op) <
n(At,0g) + n(At', Og) therefore

n(At+ 4, 0%) = (At + A, 05) + n (At + A, 0F)
< n(&t,63) +n(at',6x) +n (A, OF) +n (A, OF)
< n(At,6x) +n(At, 9*) +n(At,05) +n(at',6f)
< n(aL,68) +nt,6
The other combinations follows in a similar way. O

7.6.1.2. Infimum {nf) and supremuns(iy. The other important operator for the min-
plus dioid is the step-wise infimum (or minimum) operatioor, the max-plus dioid the
stepwise supremum (or maximum) operator.

DEFINITION 7.6.4. (inf- infimum (or minimum) operator
If ©c = inf(Ga, Gg) then for each intervalt n(At,Oc) = inf(n(At,04),n (At,Og)).

DEFINITION 7.6.5. (sup - supremum (or maximum) operator)
If ©c = sup©a, O) then for each intervait n (At,O¢c) = sug(n (At,0a), N (At,Og)).

As
sup(n (At, ©a),n(At, Op)) = supn (At,Og), n(At,04))
and
inf(17(At,0a), n(At,08)) = inf(n (At,), N (At,Op))

the operations are commutative and as
SUH(sU(n (At, ©4), N (At,Og)), N (At,Oc)) = sup(n (At, Os),sup(n (At,Oa), N (At,Oc))
as well as

inf(inf (17 (At, ©a), n (At,Og)), N (At,Oc)) = inf(n (At,Og),inf(n (At,04), n(At,Oc))

the operations are associative.

For both operators it can be necessary to combine one eleshemte event spec-
trum with several elements of the other event spectrum.&fboes these operations can be
expensive.

7.6.1.3. Scaling with a cost valug). Another operation on a spectrum is to scale the
total spectrum by a cost value. This is for example necedsarthe integration of the
worst-case execution times into the analysis, so for afiean$an event-base spectrum to
a cost-base spectrum.

DEFINITION 7.6.6. Let®’ be the spectrur® scaled by the cost valué (& =c*®).
For each intervalAt the corresponding event bound functions have the relakign

n(ae, @) =ctn(at,0)

156 7. HIERARCHICAL EVENT SPECTRA

LEMMA 7.6.7. n(At,®') = ctn(At,©) if the child set 0f contains and only con-
tains for each elemerfl of the child set of an elemen®’ € & having the following
relations to8: py = pg, 8y = a5, Ny =C'ny, Oy =ctO; , fy =c 1,

All parts of the spectra elements related to the number ofitevare scaled by the
variablect.

PROOF,
ctn(at,®) = Z cn(at,)
6cO
Atzaé
min(ctLg,c* fa(At—ag) +ctn(At,0p) Py =
. cL, fal = o0
cn(at,8) = o ?

{MJ ctLg+min(ctLy,ct famodAt —ay, py)+

Pa
+ctn(modAt—ay,ps),05)) Py # ©

min(Lé,, fé, (At — aé) +n(At, éé,) pg =
- At—aj .
{ 5 GJ Lg +min(Lg, famodAt —ay, pg)+

+n(modAt —ag, py),Oy)) Py #
=n(4t, 8"

O

The operation is appropriate when having a single worsg-eascution time. In real-
istic systems the execution time of two or more consecutiee@tions of the same job can
be smaller than two or more times the worst-case executiomvalue. In [95] it was pro-
posed for such systems to model the worst-case executies tisia function of the number
of consecutive executions of the jobs having the maximuai twists for two, three, four,
... consecutive executions. One way to combine such an Baeeiime function with the
(hierarchical) event stream model is to do it within the gis&l algorithms. The analysis
would first calculate the number of events using the (hidriaed) event bound function
and after that calculate the amount of execution time regfior this number of events.

7.6.2. Convolution and Deconvolution.The real-time calculus relies on the min-
plus-dioid(# U, inf,+) and the max-plus-dioiZ U, sup+). The following opera-
tors and proofs for them can be found in [131].

DEFINITION 7.6.8. Min-Plus Convolutiory / deconvolutiorp
The min-plus convolutio®c = Oa® Og and the min-plus convolutioBc = Oa) Og
is given by:

N(At,Ga®Gg) = inf {n(At—At,0p)+n(At,0g)}
O<At' <At
N(&t,0a00s) = sup (n(At+4t,0a)—n(At,Og)}

0<At' <o

7.6. EVENT SPECTRA ALGEBRA 157

DEFINITION 7.6.9. Max-plus Convolutiom / deconvolutioro
The max-plus convolutioéc = (:)Aé(:)c and the max-plus deconvolutiéa; = (:)Aé(:)g
is given by:
N(&t,0a208) = sup {n(At—At',0a)+n (A, O8)}
0<At' <At

n(at,Ba008) = sup {nN(At+AY,6a) — n(At,Gg)}
O0<At' <At

LEMMA 7.6.10. These convolutions and deconvolutions can be used forrobtai
the outgoing arrival and service curves of a greedy procegssomponent (GPC) out of
incoming arrival and service curves (see [131] and sectich@for more details).

DEFINITION 7.6.11. The outgoing arrlvaDa,, ~,) and the service curv@B,,OB,
of a greedy processing component (GPC) can be calculated by:

o) = mm{(@*@@*)@ E,éz;}

0, =min{(6 @O*)@ g,ég}
(aJr :max{(0®(6+f(:);),0)}
6 =max{ (0@ (95 —67),0)}
PROOF See [131] =

7.6.3. Spectra keeping operation: shift operatiorf<, —). The shift operation can
be realized by adding or subtracting the shift-value fromheaffset of all top-level ele-
ments of the spectrum. When subtracting, the shift valuenbésecessarily to be equal
or smaller than the smallest offset. The spectrum boundifamg (At, ®) with At > 0 can
handle negative offsets despite that negative intervalsar defined.

DEFINITION 7.6.12. (— late shift) Let® be a hierarchical event spectrum that is
shifted right by the value t resulting in the hierarchicabev spectrun® = © —t . The
event bound functions have the following relationship:

. A—t,0) At>t
nae@) - { 1ETHO) B
0 else

LEMMA 7.6.13. n(At,0) —t = n(At, @) if @ contains and only contains for each
element of © an elemend’ € @ having the following relations t6: ps = pg , a3 =
aéth yNgr =Nj ,éé, :éé , fé, = fé

The operatior® = © — t can be performed by only adding the vatu® the offset
ag for each spectrum elemeéitc © for its corresponding counter-elemdite ©'.

PrROOF

n(at—t,0) = Z” (At —t,0)

6O
At>t

158 7. HIERARCHICAL EVENT SPECTRA

= z n'(At—t—ag, 6)
6o
At>ay+t

= 5 n't—(ag+t),6)
6o
At>ag+t

= z r;’(Atfaé,,é)
6co
At>ag+t

=n(at,9)
0

The operation to shift a value left by the valueft { t) can be defined in a similar
way.

DEFINITION 7.6.14. (— early shift) Let® be a spectrum that is shifted left by the
value t resulting in the spectru® = © —t . The spectrum bound functions have the
following relationship:

n(ae, @) =n(at+t,0)

LEMMA 7.6.15. n(At,0) —t = n(At,®) if @ contains and only contains for each
elementd of © an elemen®’ € & having the following relations té: Py =Pg,ay =
aéft,ng/:ng ,éé/:éé , fé/: fé

PROOF.

n(at+t,0) = Zn(Atth,é)
6co
= Z n'(At+t—ag,0)

6O
At>ay—t

= Y n't-(a-1).0)
6c0o

At>ag—t

= Y n'(8t-ay.8)=n(at,0)
6c0o

At>ag—t

O
THEOREM 7.6.16. The operatorg«—, —) are associative with thé+) operator and
with® = {} andt= 0 as identity elements, so we hg@+Og) —t = (Op — 1)+ (Og —
t) and (Gp+Op) «— t = (Ga — t) + (G — t). For (6 —t) — v we can write also
6 — (t+v).

PROOF. We will show the proof fo(&a+ Gg) — t = (Gp — 1) + (O — 1).
(n(Dt,0a+ Gg) —t =N (At +1,05+ Op)
=N (At +1,0n) +n(At+t,0p)
= n(At,Bp —t)+n(At,Op —1t)

7.6. EVENT SPECTRA ALGEBRA 159

The proof for all other conditions follows in a similar way. O

7.6.4. Order of spectra. There are groups of spectra for which the order between
the spectra is undecidable. For these groups its impogsiblefine whether a spectrum is
smaller or larger than another spectrum. For other grouppe@dtra the order is decidable
as the relationship between the y-values of two spectravigyal the same. For this second
group the spectra form a partially ordered set.

DEFINITION 7.6.17. (@4 < Op)
éA < éB if and only if VAt > O:

n(At,6n) < n(At,Gp)

DEFINITION 7.6.18. (@5 > Og)
éA > éB if and only if VAt > O:

n(At,0n) > n(At,Op)
DEFINITION 7.6.19. (©4 < Op)
Oa < B if and only if VAt > 0:

n(At,64) < n(At,6g)
DEFINITION 7.6.20. (O > Op)
éA > éB if and only if YAt > O:

n(at,64) > n(At,Op)
DEFINITION 7.6.21. (5 = Op)
éA = éB if and only if VAt > O:

n(at,6a) = n(At, Gg)
THEOREM7.6.22.The binary relation over a set of spectra defined in definifidhl7

to definition 7.6.21 is reflexive antisymmetric and transitand therefore a partially or-
dered set. That means for spec@a, ©g, Oc we have

Oa<6n
Oa< OO <Opr=Opr=0p
Oa<BpABp <bOc=6a< b
PROOF. The proof for these relationships follows out of the deiimis: ©5 < Oa as

n(At,04) = n(At,64) = n(At,64) < n(At,B4). The other relations follows in the same
way. (|

THEOREM 7.6.23. The add operation, scale operation, inf and sup operatiam$ a
the shift operations keeps the order, therefore for exar@mlg éB = (éA —X) < (éB —
X).

PROOF Asn(At,0p) < n(At,0p) = n(At,04 — X) < (6 — x) the proof is obvi-
ous for the shift operation. The proof for the other operatitollows correspondingly.]

160 7. HIERARCHICAL EVENT SPECTRA

7.6.5. Utilization. An important value for the feasibility analysis is alwaye tlti-
lization of a task set. Ldt be a task set and let the tasks I" be described by a spectrum
O including the worst-case execution times.

LEMMA 7.6.24.The utilization 4 of a task set in which the event generation patterns
are described by spectrum is given gy € M)A (V6 e (:)T)|(Lé F#00V pg =)):

nA
Ur = Z —eJr Z (UéAqué)
Vrervggér pé Wervégér 0
pr#co béf‘”
6700

Note that as in the spectrum-model spectrum-elements withfaite period do not
make any contribution to the utilization. Their contrilmrtigets infinitely small in the long
run.

PrROOF The proof is based on the fact that in the long run the camiob of the last
period gets infinitely small compared to the rest.

At—oo At

i (ZvTeeréeérn(Ahé))

Ur = lim ("I(Ati,ér))

At—o0 At

At—aj; .
Svbeod, L—pé GJ L +min(...)

—_ lim pr#® +
V;r At—o0 At

Yyped, Min(Lg, (At —ay)fa+n(At—ay Op)

e
At +
Svbeco, (Bt —ay)fa+n(At—ay,0p)
pr=o
L=

At

Svheo, (Bt —ag)fa+n (At —ay, Op)

At—oo At

7.7. SCHEDULABILITY ANALYSIS 161

nA
6
=y 3 245 5 (Vs +Ts)
V;Fveeér Pg Vérveeér ¢
pr#£e béf‘”
6700

O

Even a task set with a low utilization might neverthelesgibedsible. And, of course,
task sets having utilization higher than 100% are infeaditd.

7.7. Schedulability analysis

For the schedulability analysis of uni-processor systemguthe spectrum model,
approaches similar to those proposed in chapter 3, 4 and bearsed. But with the
spectrum model and the operations defined on it we can irteetira approximation and
the available capacity into the analysis.

In the following we will show how an exact schedulability ttesn be realized with
the introduced model and operations. We will first discussstthedulability test for a uni-
processor system using EDF (Earliest Deadline First) adivegd Later we will extend the
result to fixed priority scheduled systems.

7.7.1. Schedulability analysis for dynamic priority systens. The general schedu-
lability analysis for EDF is again the processor demandddh but using the demand
bound function for the spectra. LEtbe a task set completely bounded on the resoprce
that has(:):; as upper ané)p as lower available capacity. Let each tas& I' be a task of
the task set with a deadling activated by an upper event spectr@h and a lower event
spectrum®y .

A system scheduled with EDF is feasible if for all intervaisthe demand bound
function does not exceed the service function:

5(At,T) < n(Aat,6,)

Both, the demand bound and the service function can be desdoy and calculated
out of hierarchical event spectra.

The overall demand bound function of the task set is the sutheoflemand bound
functions of the single tasks:

ST =5 8(at,ey)
vrel

The demand bound function of a single task can be derived fahiecevents bound
function of this task by shifting this function (or the untjémng event stream) by the value
of the tasks deadline and scaling it with the tasks exectitiog:

S(at,T) = Y n(At—dr,Or)c
vrel

. <m, S (67))

vrelr

O(At,I)

162 7. HIERARCHICAL EVENT SPECTRA

This leads to the test:
or

An upper bound foAt, a maximum test interval, is required to limit the run-tinfe o
the test. The concept of the maximum test interval was iniced in section 2.2.3. For the
spectrum model one maximum test interval available is they Iperiod. An upper bound
for it is given by:

A(T) = min(At|x (At) > n <At, > (6 —dy) cﬁ)

vrel

7.7.2. Response-time calculation for static priority schauling. In the following
we will show how a worst-case response time analysis fordidivgy with static priori-
ties can be performed with the new model. This shows the ditphof the spectrum
model and allows the integration of many previous concepte request bound function
calculates the amount of computation time of a higher pyidasks that can interfere and
therefore delays a lower-priority task within an inter4l It is closely related to, but a
bit different from the product of the spectrum bound funeimd the worst-case execution
time of the task. The difference is the exclusion of eventbatend point of the interval.
The event spectrum bound function contains all events géeetrvithinAt including the
events at the start and the end point of the interval. Theastduound function instead
only contains the events of the start, not the events of tdgeint of the interval. For the
request bound function the computation time of events besamlevant after the event has
occurred. The computation time of those events occurriagtikat the end of the interval
At and therefore the events themselves are not relevait fdme request bound function
can be calculated using the event bound function in theviatig way:

pat,n) = lim (n(A,00)c)
0<A<At
In the event stream model the difference between the caionlaf the event bound func-
tion and the request bound function is that for calculatimg ¢vent bound function the
lower ceiling function and for calculating the request badduanction the upper ceiling
function is used.
For the event spectrum model a similar approach can be usidonly necessary to
handle the casgt = 0 differently than in the calculation of the spectrum bouumddtion:
paLT) =Y cfp(at,6r)
vrel
with
p(AtO) = 5 p(At.f)

V0eO
At>aé

7.7. SCHEDULABILITY ANALYSIS 163

with
Ls Pg = o, fg =0
At—ap
[Pée—‘l‘é Py 7 0, fg =0
p(At,0) = min(Lg, f3(At —az) +p(Atfaé,(:)é) Py =0, fg # o0

At—aj;
L Py eJ Lo+ .
min(Lg, f3(At —ag) +p(modAt —ag,pg),0p)) Py # «, fg # o

With this function it is possible to calculate the worsteassponse times for the tasks:

THEOREM7.7.1. LetT be a task scheduling with fixed priority scheduling digr
be the task set containing all task with a higher prioritytha The response tim€T, 1)
of the first event of; is given by:

r(ti,1) = min(At[n(At,p) > ¢ + (AL, Thpr))

The value forAt can be calculated by a fix-point iteration starting with= ¢ and re-
inserting the calculated values fsrinto the equation above until the value does not change
any more. To calculate the maximum response time it is nacgs do the calculation for
all events within the busy period.

The busy period of a task set is the maximum interval in whighresource is com-
pletely busy, so in which there exists no idle time for theotese. It can be calculated
using the request bound function:

Z(I') = min(At|n (At,p) > p(At,T))

THEOREM 7.7.2. The worst-case response time of a taskan be found in the busy
period of any task set containingand all tasks with a higher priority tham. It is the
maximum response time of a(lJ; 7) where:

rJ,7) = (BN (I+4t,p) > (3, T)cf +p(I+ A, Thyr))

min
YO<At<co
r(T) = maXo<j<zr)(r(J, 1))
J is lower or equal to the busy period € #(I")). The only point remaining is to
check for every task if this minimum response time is lowamtlthe deadline of the task

(VT €T|dr > rq). If this is the case the task set activated by event spentiseheduling
with fixed priority scheduling is feasible.

7.7.3. End-to-End Response time analysiddaving a distributed system in which
tasks activate other tasks, the end-to-end worst-casenssgime for a whole task chain
is often required. This is the time an event requires at mmost bceurring in the activating
event stream until its result is available at the end of tlsk thain. One possibility is to
calculate the worst-case response-times for each taskatelyaand then add the resulting
response times. In situations, in which the response tina@ @vent is large due to delays
by previous events of the same event stream this calculeéiohead to pessimistic results.
The worst-case response times of the following task is tatied taking the upper outgoing
event spectrum of the previous task (with the highest dgnsito account whereas the

164 7. HIERARCHICAL EVENT SPECTRA

worst-case response time of this previous task would lead gvent spectrum with a lower
density. Or, in other words, the worst-case response-tirtteedollowing task allows such

a late arrival of its event (due to the delays by previous ®)d¢hat the worst-case response-
time of the previous task does not play a role. The task chain 1 given in figure 9.0.1

is an example for such an situation. It is discussed in motalde the case study section.

THEOREM 7.7.3. Let taskr; to 1, be a chain of consecutive tasks activated by the
event spectrurﬁ). Let 1 j denote the worst-case response-time of the j-th event én tas
x and let i j_x j denote the total response time of the j-th event frgrto 1. The total
worst-case response time of the i-th instance of an eventrsmé for a task chainr; to
Ty (N> 1) is given by the maximum of

F1oni= Max {(rni—Tni1+rn1i),(Mni-+rn1i_i
11-n; v1gjgi{(ni —Tnj—1+Tn-1j), (Fnj+rn-1i-j+1)}

PrROOF Each end-to-end response time of the task chain can bergplé response
time R, on 1, and a response timg;_.,_1 on the remaining task chain. In a first case
where the response tini&, < rp, the total response time is boundediay-ri_n—11. In
caseR, > r, a delay has to occur somewhere witRin The reason for this delay can only
be the late arrival of an event at tagkdue to the response-times on this task. O

7.7.4. Response time analysis for TDMA and RRIn the following we will show
the transfer of the calculation to further scheduling apphes. As examples we will con-
sider time division multiple access (TDMA) and the roundinotiRR) scheduling. TDMA
divides the available processing time into a fixed set oflsisipts repeated with a pe-
riod p. Each task has access to one or more of these slots. Derivngpiper and lower
service bound out of a TDMA schedule is easy. Having a perfod and a slot-length
s leads to an upper service bound@f = (p,0,5,1,0) and a lower service bound of
6 = (p,p—5,5,1,0). In the best case the event occurs just at the start of itsthlate-
fore having the processor for the next s time units and thpeatedly again aftep time
units. In the worst-case the event occurs exactly when ttésslinished and it processing
is therefore delayed by — stime units. The round-robin scheduling checks the tasks in a
fixed order whether they have available jobs for executinisuich a case these jobs are ex-
ecuted for at most the slot length for the task. Same as witkliAR job can be distributed
on several slots and several jobs can be executed withinlonéxdher than with TDMA,
having nothing to execute for a task does not lead to an idle for the processor but the
slots for the following tasks are brought forward. Thereftre available capacity for one
task depends on the incoming event spectra for the othes taske RR-cycle. Each time
unit not used by one of the tasks reduces all response timekiah the time unit occurs
of all other tasks by one time unit. The worst-case respdneefor RR is similar to the
worst-case response time analysis for static prioritiedy the calculation of the higher
priority processing time differs. This can be calculated$iynulating” the worst-case RR
approach on the interval-base event spectrum model.

7.7.5. Hierarchical Scheduling. Different scheduling approaches can be combined
to a hierarchical scheduling. The child scheduling appneacan be considered as tasks

7.8. LIMITATIONS OF THE HIERARCHICAL EVENT STREAM MODEL 165

of their parent scheduling approach. The top-most pardrgdiding gets the completely
available capacity of its resource and distribute this cepan its child scheduling ap-
proaches. The distribution follows the same schema asdétbkild scheduling approaches
where simple tasks. The child scheduling approaches gséshdistributed capacity as
their incoming service event spectrum and can then be cereichs being bounded on a
resource of its own with a bit more complicated capacity. yTt@n also have other em-
bedded child scheduling approaches and so on. In the exaniplk the fixed-priority
scheduling between the tasksand taskr, is embedded into a TDMA scheduling. Both
scheduling approaches can be handled separately. Thepii@ity scheduling gets the
outgoing capacity bound function for its TDMA cycle as indaghcapacity bound func-
tion.

7.8. Limitations of the hierarchical event stream model

The problem with the hierarchical event stream model defioefdr and also with the
previous concrete description for event spectra, espgeigh the exact description of the
real-time calculus, is that the resulting description sizeperations on them depends on
the concrete values of their parameters. Especially férdats with different periods for
the tasks, the resulting description can depend on the fpgréod of these periods. As the
run-time of the operations and the analysis depends direntthe size of the description
it can become quite large.

To solve this problem and to limit the number of elements efrésulting hierarchical
event streams the approximation introduced in the previbapters can be applied also
to the hierarchical event stream model. In chapter 8 we wékpnt an efficient way to
approximate the hierarchical event spectra which allowsfcient analysis.

CHAPTER 8

Approximation of hierarchical event spectra

The hierarchical event spectrum model allows to gener#tigeapproximation as in-
troduced in chapter 3 to 5. With this model it is possible tedgnate the approximation into
the curves themselves and therefore to transfer each guertrsm into an approximated
event spectrum without leaving the model. For the analysistion as the event spectrum
bound function the approximated curves expands only toigdthset of test intervals even
without considering upper bounds as, for example, the besip@. The approximated
curves are also represented by an event spectrum withdhefuknowledge of the ap-
proximation and the chosen degree of exactness. Therefierpossible to use the same
operations of the event spectral algebra (see section ar.@hé approximated curves as
for the non-approximated curves, propagate the approginairves without knowledge
of the approximation error and even combine approximatedesuwith different degrees
of exactness and with exact curves.

This approach is especially important for the modularizealygsis of distributed sys-
tems. It allows calculating the event spectra of a modulegusily the calculated event
spectra of the previous modules. This is an abstraction from these previous spectra
have been calculated and whether an approximation was used.o

In the following we will show a general way to transfer evepéetra into approxi-
mated event spectra bounded with a given degree of exactfiessnaximum approxima-
tion error for such spectra is guaranteed and for the arsabfjshese spectra only a strictly
limited number of values have to be considered. Like in thEegoosition approximation
for event streams the approximation is done for each evetspn element separately.

In the following we will introduce two attempts to integrdte approximation in the
event spectrum model. In the first one each element is appedgd independently of
its position in the hierarchy and especially independeritsoparent and child elements.
Therefore each period of the element leads to a restart afgheoximation for the child
elements and to a new set of test intervals. In case that timbeuof test intervals for
an element within one period of the parent element is smédber the number of exactly
considered test intervals by the approximation, only thgimal element without approx-
imation would be used. This is a straight forward way for goihe approximation, but
the number of exactly considered values required for sughoiimated curves depends
on the level of hierarchy. In the second attempt the numbtstfintervals is bounded for
each element globally. Therefore in one period of the pagkamhent the exact element of
the child is used, in another period of the parent elemenpanoximated version of the
child element is taken. With this approximation the numbietest intervals is bounded

167

168 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

globally depending only on the number of elements of theimaigevent spectrum and the
choosen degree of exactness.

8.1. First approach: Separate approximation for each elemst

First we will consider to approximate each event spectruemeht on each hierar-
chical level separately. The approximation of each elerieedbne independently of the
child and parent element. The general idea of the approiomé& to analyze for each
element the smallesttest intervals exactly and approximate the larger testvats using
the specific utilization of the hierarchical event spectelament.

8.1.1. Method. Let us first consider the approximation for a simple eventspen
element.

LEMMA 8.1.1. Let© be an event spectrum with = {8;,...,8,} and let k= 2[1].
Ok is an approximation o® with € = 1 andn (At,0) < n(At,6) < (1+¢&)n(At, ©) if for
each elemenf = {Pg-a5.Ls- fg ’éé.} of © a set of elementgéi‘fl, éi‘fz, éi'f3} exists inGk
with

Ak Ak
ei,l = (oo, 0, kLé, ,0, {(pévaéa Léa féveé)})
éilfz = (00, kpél + aél) Lé7°°a 0)
LA
A 6
9i|7(3 = (°°akpé| +aél,°°7_A70)
Pa

PrROOF For the proof we have to distinguish two cases. We have tindisish be-
tween intervald\t < kp@I +ay and between intervalst > kp@I +ay. For both cases we
have to prove that the event bound function of the approx@chatent spectrum is always
between the event bound function afid+ €)-times the event bound function of the exact
event spectrum.

Case 1: For the first case only the first of the three eventﬂpatﬂlements:)i‘fl, (:)}fz
,éi‘f3 is relevant as the offset of the other elements is larger fiiarThe offset of both
other elementkpéI +ay is larger than the considered intervals and therefore thdtieg
event bound function of these elements is always zero. Weog#ie approximated event

spectrum element for the first cagt < kp, +a;) the value:
n(at, 8 = n(at, éil,(l) +n(At, éil,(z) +n(At, éil,(S)
= mil’l(Léik17 féikl (At — aéikl) +n(at— Agk s ééikl)) +0+0
= min(kLg,0+ N (At,6))

As n (At é) is a monotonic non-decreasing function and

N P .
n(kpg +a5,6) = {p—g'J L +min(Lg, famodkpy, pg)+

n(modkp . pg), 6))
— kL +min(Lg,0-+0)
= kLé|

8.1. FIRST APPROACH: SEPARATE APPROXIMATION FOR EACH ELEMHE 169

the value of (At',) is for At < kpg + a3 always smaller thakL,, therefore
neL e = naté)

Of course this trivial result fulfills the approximation atition (n (At, 6) < n (A, éik) <
(1+£)n(at,8)

2. Case: fit > kp(;‘I +aé|)

The event spectrum functiam(At, 6¥) for the approximated event element includes
contributions of all three elements of the approximatedelet:

:min(kLél,n(At —kps —a5.6))+

LA
min(Lg , o) + min(eo, 4? (At —kps —ag))
b

Due to the monotonic non-decreasing behavionaind due to the separation condition
we haven (At, é.) > n(kpéI +ay, él) > kLél. Therefore we get:

. L;
n(at, 6 =kig +Lg + p—‘f(At —kpg —ag)
6

Lg Ls
:kLé +Lé+At—'kaéfaé !
((] pél ((pé

Lg
P,

It is now necessary to prove the approximation condition:
n(at,6) < n(at 8 < (1+e)n (At 8)

We have

A At —a, . A
n(at,6) = { > GJ Lg +min(Lg, famodAt —ag, ps) +n(MmodAt —ag.p;),O4)
]

Atfaé
< Lz +Lg
Pa '

At —a; o
< (pAa"> Lg +Lg = n(At, 69

6

The proof for unequatiofil + £)n (At, &) > n(At, 6%) of lemma 8.1.1 is similar:

2 | kpg
k pél

6

At—aé At—aé At—aé
> L +e L > L +
Pa, ' Pa, ' Pa, '

At —ay At —ay
> L Lé —|—2Lé > L Lé + Lé
pél 1 1 pél 1 1

sl (o RS
(1+&)n(At,8) =(1+¢) o - | Lg +min(...)

La

170 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

c (ms)

— original demand bound function At (ms)
— approximated demand bound function

FIGURE8.1.1. Approximated hierarchical spectrum bound function

We have proven that the proposed approximation for one esgadtrum element is
sufficient. 0

ExamPLE 8.1.2. Consider for example fig. 8.1.1 that shows the spectvaund
function of the hierachical event spectrum

07 ={(20ms0ms 10msO§, (2ms0ms 2msooz,0))}

The hierarchical spectrum consists of bursts with five exxeBach event needs two
ms computation time and the distance between the eventslith bursts is also two ms.
The bursts occur periodically with a period of 20 ms. Theatise between the end of one
burst and the begin of the next following burst is 10 ms. Theregimated hierarchical
event spectrum with an approximation after three eventshiwafollowing description:

63 ={(0s,0ms 6m50§, (2msOms 2ms e 270)), (°°a4ms4mslz,0>}
63 ={(c0s,0ms 30ms,0§, (20ms0ms 10ms,0§,(:)§7b)),

(00s,48ms 10msoo§,®), (005,48msg s, ;—22’0)}

The original hierarchical spectrum element is split up ithicee separate parts. The
first elemen@%l = (c05,0ms30ms0 §, (20ms0ms 10ms C:)%b)) models the non- approx-
imated part of the original element. It is equal to the nop#apimated hierarchical spec-
trum element except that the approximation boakdegrlimits its length and that the ap-
proximative descriptio@%b of the child spectrum element is used. The second spectrum
elementé%2 = (c05,48ms iOmsoo g, 0) adds one time the Iimitatiohé7. The approxima-
tion can be done for each spectrum element of the hieralcdpestrum separately. The
exact distribution of the costs within the intervals depead the child spectra and/or the
slope and is therefore unknown when considering only theatdhical spectrum element
itself. We have to assume for the approximation as worst-siisation that the costs occur
completely at the start of the interval. To make sure thatgioximated spectrum bound

8.1. FIRST APPROACH: SEPARATE APPROXIMATION FOR EACH ELEMHE 171

function does always meet or exceed the original spectruamdbdunction the second
spectrum element is required.

The third spectrum elemerﬁ?%3 = (05,48ms s, %—mg, 0) models the approximated
part of the spectrum. Like in chapter 3 it is done by the speaiflization as slope.

The maximum amount of costs for which the approximated aerdotiiginal event
bound function for one event stream element of the everastr@odel can differ is one
event (see chapter 3). For the hierarchical event spectradehthe maximum difference
between the approximated and the original spectrum boumctitin for an hierarchical
spectrum elemenf with no child spectrum element is one time the limitation For
a hierarchical event spectrum element with a child specelement this amount can be
larger as the exact distribution of the limitation withirethhild spectrum element is un-
known. This missing knowledge of the exact distribution ésnpensated by the second
spectrum elemen‘i}"‘2 by adding one timé.5. So the difference can be bounded Hy;2
The relative error resulting of this difference is boundgdeb= % = % as fork test in-
tervals the spectrum bound function includes at léhgtevents. eThis error remains the
same for complete hierarchical event spectrum even witbraélevels of hierarchy. To
achieve the same relative error, as with the event streanehitasl required to considen?
test intervals exactly.

8.1.2. Complexity. Substituting each original spectrum element with its agipna-
tive counterpart consisting of the three approximatedtsperelements limits the required
number of test intervals. For hierarchical spectra this loemdepends not only on the
number of elements and the chosen approximation error,lboitosm the maximum level
of hierarchy. In the cases that the hierarchical spectrumrmehté has a recursively em-
bedded event spectruéé this spectrum element is evaluated for each test intervél of
from the beginning. Therefore for each test intervaBofhich is not approximated, the
child event spectruréé contributes a whole set of test intervals. For this appratiom
of 6 only the periodpg and the limitationL; is relevant, not the concrete shape of the
embedded sub event spectré]p.

As the child spectrum can again contain hierarchical spetlements with own
child spectra, the necessary number of test intervals aaneadse substantially. Having
a system with a sum afi spectrum elements and a maximum recursion leved,ahe
maximum number of test intervals in its approximated desicm with errore is bounded

by k= (n[2])e.

ExampLE 8.1.3. The problem is illustrated with the following exampl
6 — {1000ms Oms 150ms,0§,{é9}}

ég = {10msO0ms 5ms,oo§,(l)}

172 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

We have a child spectrum eleméhtwith 30 test intervals in each period of its parent
spectrum elemerfls. We allow the approximation after 100 test-intervals. Thpraxi-
mation 0f83% using lemma 8.1.1 reads as follows:

150ms
 Toooms 2

The total number of test-intervals needed for evaluatiensirectrum bound function

of this event spectrum is 160100- 30= 3100.

0% = {(0,0s,155,0, 65), (0,100, 150ms oo z 0), (e0s,100s

8.2. Second approach: Global approximation for each elemen

To limit the number of test intervals further we propose aeofapproach. The ap-
proximation of a spectrum element starts after the necgssanber of test intervals is
reached globally for this spectrum element. The start obfff@oximation is independent
of in which period of the parent spectrum element the necgssanber of test intervals
is reached. In this approach we generally split the paremttapm element into the part
in which the child spectrum is approximated and the part iictviit is modeled exactly.
So in case that the event eleméhis a child element of another (parent) event elentént
we have to distinguish fof’ between those periods in whichis evaluated exactly and
those in whichd is approximated. To do this it is necessary to sé1iat the last exactly
considered interval of.

8.2.1. Simple event spectrum element_et us consider first a simple hierarchical
event element:

6={(p,alL,f0))}

LEMMA 8.2.1. B¥ is the approximative counter-part fé = {(p,a,L, f,0)} starting
with the approximation after k exactly considered testriraés. 6k is modeled by:

6 ={(0,0,LA,0,8),

(oo,aA,L,f,m,(oo,aB,oo,%,@)}

with
La=KkL
an=a+kp
L
ag =aa+ -

f

For the special case with £ o we have a = ag.

PROOF We have to prove that(At, ©) < n(At,6) and that
A .))
N(ALO) —N(ALO) _ L ar &4y < X2 at,6)
n(4t,0) k k

Let us first consider the intervals up to the approximatio\ts< a+ kp

n(At,6%) = min(n(At, 8),kL) +0+0

8.2. SECOND APPROACH: GLOBAL APPROXIMATION FOR EACH ELEMEN 173

c (ms)

! I

‘ | —

a a+P a At (ms)
a

— original demand bound function A B

— approximated demand bound function

FIGURE 8.2.1. Case one simple event spectrum element

=n(At,6)

asn(a+kp, é) < kL as the function is monotonically rising.

Fora+kp<At <a+kp+ % the second element of the approximated event spectrum
becomes relevant. LAt’ = At — (a+kp). ThenAt’ < % and with the separation condition
A < p

/ J—
n(at, 8) = {(A”a—;kp)aJ L+ min(At'f,L)

li
= {A—;J L +kL+min(At' f,L)

=KL+ min((At —a—kp)f,L)+0
= n(At, 6%

ForAt < aa both functions are equal so both conditions are fulfilled. d,0< At < ag
we haven (At,®) = KL+ min(L, (At —kp) f) andn (At,6K) = La+ min(L, (At —aa) f) =
n(4t,).

The remaining proof is visualized in figure 8.2.1. Fdr> ag we haven (At,é) <
n(At,6%) andn (At,6%) — n(At,6) is bounded byL. As n(as,0) = (k+ 1)L we have

(6,64 -n(at,6) L 1
nao) | = (DL Sk D

ExamMPLE 8.2.2. Let us, for example consider the event spectrum

A 1ms
O ={(10ms0Oms3ms me 0)}

The approximatiomt)5 for © afterk =5 exactly considered test intervals is given by

85— s 1ms
©” ={(»s0ms15ms0_, {(10msOms3ms > . 0)}),
3ms

Ims
(005,50ms 3ms e 0), (c0s,56msg s, m,@)}

where

La=5-3ms=15ms

174 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA
ap = 0ms+5-10ms= 50ms

3ms
ag = 50ms+ 5 — =56ms
2ms

We can simplify to:

85 — S ims 3ms
©” = {(e05,0ms18ms 0, {(10msOms 3ms 5 —,0)}), (s, 56ms s, -, 0)}

ExAMPLE 8.2.3. Consider another example event spectrum
6 = {(10ms2ms3ms e 2,0)}
with f = 0. The approximatim@lO afterk = 10 exactly considered test intervals is given
by:
O —{(ws,0ms 30m50§, {(10ms 2ms 3ms e 2 0)},

[S 3ms
103ms 3 -0 103 — 0
(«0s5,103ms mse o,), (05,103ms o0, Tome)}
or shorter:
61~ {(=5 0ms33ms 0°, {(10ms 2ms3ms . 0)}, (<05 103mS 05 1 0)}

8.2.2. Approximation of one-level child element.Let us consider an event spectrum
with one child element:

=(paL,0,8)
é/ (p/,a/7|_/, f/7®)

LEMMA 8.2.4. 6% is the approximative counter-part fd# = {(p,a,L,0,6’)} with
0 = {(p,a,L, ',0)} starting with the approximation after k exactly considetest in-
tervals. 6% is modeled by:
O ={(,0,L,0,6°),
(00, aa, kL— LA; Oa {(pa al; Lla Oa {

/

! / L/ !/ L
(OO,O,L) f 70)7(p7F5L7 L) 550)})}5
L
(OO,aB,Ay,OO70),(°°,aB,OO7—p,@)}
or shorter by
O ={(=,0,La,0.6°),
(ooaaAakL_LAaOa{(paa/vL/a f/vo)v
I

L
(p,a +

LI
f/aLiL,aavm)})v

L
(OO,aB,Ay,OO,@), (oo,aB,oo7 _pao)}

8.2. SECOND APPROACH: GLOBAL APPROXIMATION FOR EACH ELEMEN 175

c (ms)
A
y\
) % At (ms)
FIGURE 8.2.2. One-level event spectrum element
with
. 6 L <kL
6° =

{(p,0,L,0,6™)} L>kU

/ /
elk = {(00707 kL’,O, 9), (Oo,kp(,L,, f,70)7 (ooakﬂ+ %’007 %70)}

ESE

La=
L L > kU
[p+a Lk
p+a L > kL
ag=kp+a+a
p/LZ p/L aL
Ay=1L— e
Y pL’ p p

PrROOF The proof for this lemma is visualized in figure 8.2/% is a cost-offset re-
quired to ensure that the spectrum bound function of thecqipiated spectrum is always
equal or greater than the spectrum bound function of thetesggctrum. The limitation
of the parent spectrum element can be reached by the chitdrgpeelement somewhere
within the period of the parent spectrum element. This cqpha early or late within the
period of the parent spectrum element.

The first spectrum element of the approximated specébmmodels the part in which
the child spectrum eleme#t of the exact spectrum is considered exactly. In case that the
first possible approximation interval fé occurs within the first period o, we have to
start the approximation within this first period 6f Otherwise it would not be possible to
find a reasonable bound for the number of considered tesvatsefor 8’. So6° depends
on whethet <kL' orL > kL.

The approximation 06’ can be done by an elemefit with a slopefy = &. This
element has a value close to the value of the original spadmund function o’ each
time when the limitation o8’ is reached. The element restarts for every perioé.df\/e
separate between the approximation of every first evefit ahd the remaining events of

176 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

6. The first events are approximated using the perioé,oa‘o only the element covering
the remaining events has to restart for every perioé.of

When starting finally the approximation éf a cost-offset\y is required to ensure
that the approximated functiop(At, é") is always equal or higher than the exact spectrum
bound functiom (At, é). This cost-offset is necessary as a new period of the papewt s
trum element splits the approximation of the child spectalement. The calculation of
Ay is visualized in figure 8.2.3 and can be done as follows:

L
L — Ay =Ax—
Y p
Ay:LpiAX
AX
Ay=L|1-——
- (1-5)

Ax gives the interval between the start of the child spectrLe’mehté’ and the point
of time in which the limitation 0B is reached. The reaching of the limitation is calculated
using the approximative description of the child elemeritd ovith the separate consid-
eration of every first event of. For a simple child elemer@ = {(p,a,L,0,8')} with
6 = {(p,a,L’,,0)} this valuey is given by

!

/.E 1 1
(Ax—a') (p’) L-L

AX = o +a/7p/L/ p/+a/
p/
Therefore we get foly:
p/LZ p/L a/L
Ay=1L— +———
Y pL’ p p

When we additionally approximate every first event of thédchpectrum we get the
following description:
Ok ={(,0,La,0,6°),
(00, an,KL—La,0,{(0,d, L, f,0),
(@20, 0, (P + 5L L' 0))),
(2,30, 0.,0), (.20, =.0)

ExampLE 8.2.5. Let us consider the example hierarchical spectrum:
~ S A
© = {(80ms2ms 16ms,0§,e’)}

© = {(10ms 2ms,3ms,oo§,(b)}

8.2. SECOND APPROACH: GLOBAL APPROXIMATION FOR EACH ELEMEN 177

For the approximatioélO with at leask = 10 test intervals considered exactly we get
the values:

kL' 10-3ms
La= [T] L= [16ms] 16ms=32ms

kL' 10-3ms
ap= {T-‘ p+a= { 16ms -‘ 80ms+ 2ms=162ms

ag = kp+a+a = 10-80ms+ 2ms+ 2ms= 804

L 16ms
Ax = p’U —p'+d =10ms 3ms

—10ms+ 2ms= 45.3333ms

py—=1(1-2%) Z16ms(1- 22333} _ 6 9333ms
p 80ms

The spectrum can be written as:

6% —={(ws,0ms 32m502, {(80ms2ms 16m50§, {(10ms2ms 3msooz,0)})}),

S S 3ms
162ms 128ms 0> 2ms3) 2 > >0
(005,162ms 128ms S,{(oos, ms3ms e,),{®S,2msg s, 80ms),
3ms
2ms 13ms ——
(80ms2ms 13ms 10ms’0)}’
s 16ms
804ms 6.9333ms 0 ~, 0 804 — 0
(005,804ms S0,), (05,804ms oo, 80ms)}

8.2.3. Approximation of two-level child element. Let us consider the following hi-
erarchical spectrum element with two levels of child spEatements:
6=1{(p,aL,0,6"}
o' ={(p.,a,L',0,6")}
é// _ {(p// all LII f” 0)}

We consider the approximati(ﬁ‘f.

LEMMA 8.2.6. 6K is given by

85 ={(c0,0,L,0,8°1), (0,84, L, 0,8°%),
L
(oo’aB’ LC’O’ {(p7a7 L707 {(ooaa/aAyvooaO)a (pa a/aoo’ H’O)})})a

L
(oovaC7Ay7°°aO)a (oo7ac7oo, 550)}
6°, depends on whethef K kL” or L’ > kL”. We have
. 6 L <kL”
0°1 = A
{(,0,L',0,6)} L' >kL"
with 67K as the stand-alone approximated event spectruif’ of

N N L/I LI/
eﬂk = {(O0,0, kL”707 9)) (007kd/, L”a f”ao)a (°o7kd/ + 77005 H,O)}

178 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

6°, depends on whether£ kL' or L > kL'. We have

0 nL<kL” <kl <(n+1)L
é° _ {(p/aoa L/,O, ég)} L S kL/

{(OO,O,kL/—LA,O,{(p/,O, L/707 é{g)})a

(co,kpf —an,L—KkL,0,8)} kL <L

where8” is the approximated part d”:

Y "oypnogn L” L”

0 = {(0,a",L",f",0), (c0,a” +W’ ,p”,(l))}
and @, is the approximated part d':

~ L’ L’

e/a: {(ooaa/vA)/aoovo)v(ooaa/+Fawvaao)}

The calculation of k, aa and Lg is easy and straight forward:

L kL < L

=<8 U vk <L
L/

SR

!

x
~

< /
L []L La L <KL
L—La L > kU

Lc =kL— (LA+ LB)

’VKL”—‘p+a,+a L<kL”
S

|

pP+a+a L>kU
[k—L] L <kl
C|P L=
aB:
{p L > kL
ac =kp+a

The calculation of\y is the same as the calculation fay in the previous section. We
have

AXI p L// p//+a//

w=v(":f“)

The calculation of\y andAx is similar but using the approximation 6f. We have

/

(Bx—a)- (5) =L -y

L—ay

)

Ax = +a

8.2. SECOND APPROACH: GLOBAL APPROXIMATION FOR EACH ELEMEN 179

-

¢ (ms)

At (ms)

limitation

FIGURE 8.2.3. Approximation for hierarchical event spectra

Lp Ayp
=S
p—Ax)

Ay=1L
Y (p

PROOF The first spectrum elemeiio,0, La,0, é°1) models the part of the result in
which the spectrum elemeft is completely not approximated (Calse< kL") or is ap-
proximated in away as if it exists alone. For the second speotlemen{o, aa,Lg, 0, é"z)
only the approximated part & is used. Herd' is either completely not approximated
or handled as if only’ and@” exists. The proofs for the first and second element are the
same as in the previous section.

The following elements are the same as in the one-level casspefor the calcula-
tion Ay andAy'. Therefore the proof for the one-level case can be used a&sn HThe
calculation ofAy is visualized in figure 8.2.3. When settiy’ = L” the calculation of
Ay andAx' on the one side antly andAx on the other side are the same. The proof for the
correctness of these values follows directly out of thelicwation. Therefore the proposed
description fol©k can be generalized to handle hierarchical event specthamivel child
event spectra.

O

In the following we will give a small example by extending #seample 8.2.5.

ExamMPLE 8.2.7. Let us consider the example hierarchical event ﬂpm(é):

& = {(1000ms 10ms 100ms 02’ &)}

180 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA
~ S -
@' = {(80ms2ms 16ms Oé, ")}
0" = {(10ms2ms 3ms » z, 0)}

For an approximatio®'°in whichk = 10 test intervals are considered exactly we get
the values:

ax = TOMS_SMS 5 ns— 45.3333ms
(zoms)
Ay — 16ms 80ms— 45.3333ms _ 6.9333Ms
80ms
px = 2OMSDI3IMS 5 s 467.333ms
(Wms)
1000ms- 67.3335ms
Ay =100ms (1000ms) =53.2667ms

©10 can be written as:

6% —={(ws,0ms 32m50§,é), (c0s,162ms 168ms Oz, {(80ms 0ms 16ms Oz,
S 3ms
2ms3 -,0 2 — .0
{(0s,2ms3ms o ,0), (s, 2mseems oo, 0)})},
(c05,2010ms 800ms oz, {(c05,2ms 6.9333ms o z 0),
6.9333ms 16ms
~000ms’ 0),(10s,2,93.0667ms 30me 0)})
S 100ms
,(005,10010Mms 53.2667ms o 0), («0s5,10010ms oS, 1000ms 0)}
8.2.4. Approximation of n-level spectra.Let us now consider the approximation of
normalized event spectra with more than two levels of hamar

(005,2mMg o0,

DEFINITION 8.2.8. An elemen® is a subsequent child of an eIemémIif itis related
to 6, in such a way that a chain exists wih — ... — 6 where8; — ;1 denotes thaf),
is parent 0féj+]_.

For each level we have to distinguish between the non-ajgpesrd and the approx-
imated parts. An event spectrum element which covers forsabsequent child element
both, intervals for which this subsequent child elemenfigraximated and intervals for
which it is not approximated, has to be split into two everctpum elements, so that one
of these two covers all non-approximated and one of thesealwapproximated intervals
of the sub-sequence child element. Not only the elementkalout all of its parent ele-
ments may need to be split, too. So first it is necessary talzdécthese separation points,
which are the interval bounds at which the parent elemerglists distinguish between
the non-approximated and the approximated part of one chitd elements. In the fol-
lowing we give an approach leading to a limited number of nlmnents but still keeping
the approximation.

Let us consider a parent elemeéhwith a subsequent child elemeft. In general
in this approach@ is split to cover the approximation @& at the first of its completed
periods which is larger than the first possible approxinmeitiverval of 9.

8.2. SECOND APPROACH: GLOBAL APPROXIMATION FOR EACH ELEMEN 181

In those cases in which the approximation of the child eldratarts within the com-
pletion of the first period of the parent element we cannotgmoe it until the first period
of the parent. It would not be possible to limit the numberesittintervals for the child
hierarchical event element.

ExAMPLE 8.2.9. Consider the following example:
10— {105, 0ms 4000 02, {B1}}
611 = {10ms 0&5msw§,0}

Again the approximation may start after 100 test-intervdlse approximated event
element can be written as follows:

6190 —{ (c05,0ms 4000ms Oms { 6i2%)),
5ms

S
(005,105,3965,0, {(«05,0ms Sms e _, 0), (05,0ms 08, 7 =o0—,0),

5ms
1 -
(10s,0s,3995ms 10ms’®)})’

(c0, 10008, 804ms 0 2 0), (c0s, 10008, 05, f_oss 0}
A0 —{(c0s,0ms 500m50§, {(10ms0ms5ms o 2, 0)}), (e0s,1000ms 5ms oo 2,0),
5ms
1 -
(005,1000mMs 005, T0ms 0)}
Postponing the approximation of the child up to the end ofitseperiod of the parent
would cost 3000 additional test intervals.

Still we only need to split the parent element into two pavte for the first period and
one for all following periods. For the first period before gmitting point we use the child
in its original approximated description having an exact an approximated part. For the
following periods only the approximated part of the ckﬁﬁfo, where it is described by
the slope, is required.

In cases in which the parent element has again a parent dletherperiods of the
upper-most parent are determining the splitting pointsalbrof its descendants in our
approach, so for its child element, the child element oftiitdeelement and so on. Only in
those cases in which the first possible approximation pdiatraerarchical event element
6 falls within the first period of this top-level parent elemd{’ the splitting point is
determined by the upper-most parent elenthfor which the first approximation point
ty of the child elemen® falls within the second or later period of the parent elen@nt
If there isn’t any such parent element, the splitting pointhe first period of the direct
parent of the child element. The child element is substitigyg its combined exact and
approximative description. This propagation of the dSpliftpoint to the top-most parent
does not change the upper bound of the required maximum nmuhtest intervals.

8.2.5. Approximation of elements with several heterogenes child elements. To
handle the approximation of an element with several hetregus child elements we

182 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

can normalize these elements. The normalization is inttedun section 7.3. For the

normalization it is necessary to distribute the limitatafithe parent element. The result is
an event spectrum in which only the upper-most parent spreatan contain several event
elements. Every of these parent elements can than be apyai®d seperately using the
introduced methods.

8.2.6. Required number of test intervals. The purpose of the approximation is to
limit the number of test intervals resulting from a hieracahevent spectrum.

There exists a simple bound on the required number of testvials. For those cases
in which the approximation is postponed, so it does not stitin the first period, the
number of test intervals for one period of the parent evestheht has to be less than the
approximation boun#. Otherwise the approximation would be allowed somewhetigimi
the first period. Therefore the maximum number of test irgtlsrwe have to additionally
consider due to the postponing is bounded als&,bgading to a total bound of2

LEMMA 8.2.10. Delaying the start of the approximatiop for a hierarchical event
elementd up to the first period of the upper-most parehtof 6 for which bh>a;+pp
leads to a required number of test intervals fdwhich is bounded bk where k is the
chosen number of test intervals for the approximation.

PrROOF In all cases in which the top-most pareﬁ‘lkﬂetermines the splitting point for
a child éch"d less thark test intervals of the child occurs within one periodégpparem.
Otherwise the first possible approximation interval woutaithin the first period of
é[opparem. Therefore the delay of the approximation up to the nextqokoif the top-most
parent element requires at mdsadditional test intervals for the child. The valuk i
therefore the bound for the total number of test intervadsiired for the child. O

Each element can require as many splitting points as itb¢btlal-set has members.
The total child-set contains its children and its childsachildren.

For reason of simplification we consider only normalizediehical event spectra,
so spectra in which each hierarchical event element canh@vy one direct child element
at most.

8.2.7. Description model for the real-time calculus.For an exact description for
the real-time calculus as proposed in [131] the real-tinleutas curves are modeled by
an initial non-periodic and a periodic part. Each part is gled by a set of consecutive
piecewise linear curve segments. Each curve segmentjiven by the coordinatesy of
its start point and a slope Starting the slope at the starting point leads to the coatds
X,y of the next following segmemnt/. The periodic part is described by its starting coor-
dinatesxp, yp, again by a set of piecewise linear curve segments withivelabordinates
X,y to the starting point, and by an offs&x, Ay between two periods.

DEFINITION 8.2.11. (similar to [131]) A piecewise linear curve segment3x,y,s)
is given by the coordinatesof its start point and a slope s and specifies a straight line
starting from the coordinates x with a slope s.

8.3. SUMMARIZING EXAMPLES 183
Each curve of the real-time calculus can be described by seish

DEFINITION 8.2.12. (similar to [131]) An arrival or service curve of the realrtie
calculus can be described by=v{A, P, py, py,ax,ay} where A and P are two sets of piece-
wise linear curve segments, a periodic part=F{S} and an aperiodic part A= {S}. The
offset &,ay gives the start of the periodic part. Each segment of A hasaiesmaller
values than g ay. P gives a set of segments describing the periodic part oftinee. Its
coordinates are given relative to the offset, so the elemeaturs at &+ x,ay +Vi. The
periodic segment is repeated aftey, .

On the one side the curve can be transformed into a speciat spectrum. On the
other side adding y-values can complete the descriptiohe&vent spectrum. Then this
description is directly a special case of the event specttesaription.

The problem is that each operation on two or more incomingezirequires equal-
izing the periodic and aperiodic part of the curves first tal#e the calculation of the
outgoing curves. This equalization requires using the hpeeiod of the periods of the
incoming curves as the new period. This hyper-period canrneqjuite large and with it
the number of segments necessary to describe the curvesevi@npthis possible grow of
the number of segments it is necessary to bound this numtbepémdently of the concrete
parameter of the incoming event sequences.

8.2.8. Combined description for the curves.To overcome the problem of hyper-
periods we propose to combine the concrete description huddbe real-time calculus
with the concept of approximation proposed in this thesiser&fore we propose to use
again the idea of approximation and the event spectrum nasdketo generate a new flat
description out of approximated event spectra. The appratdd event stream and event
spectra lead to a finite set of segment elements with no ppedcecessary any more.

8.3. Summarizing Examples

ExampLE 8.3.1. Fig. 8.3.1 (example 8.1.2) shows the advanced appation for
the spectrum bound function of the event spectrum:

6;= {(20ms0Oms 10ms,0§, (2msOms 2ms,oo§,(l)))}

The event spectrum consists of bursts with five events. Tharamtd approximated
event spectrum with an approximation after three eventsthadollowing separation
points:

S10=0ms
S11=20ms
So=0ms
S1=4ms

S 2 =60ms

184 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

Costs

— original demand bound function A t
— approximated demand bound function

FIGURE 8.3.1. Example 8.1.2: Approximated hierarchical event
bound function

For Ax andAy we have the values:

L-L' 10ms—2ms
AX = T [= s +0ms=8ms
[2ms
A
Ay =L (1— —X) - 10ms(1— %) — 6ms
p 20ms

Therefore the approximated event spectrum has followirsgrigtion:
o3 ={(c0s,0ms 10ms,0§,{(20ms,0ms, 10ms,0§, (2ms0ms2ms 2,0)),
(05, 10ms4ms 12,0)}), (05, 20ms 12ms 0, {(<25,0ms 2ms o0, 0)

2ms S
,(0s,0ms 05, 20me 0),(20ms0ms 8mslg,0)}),

(c0s,60ms 6ms e 2,0), (005,60mSs w0, i—z,m}

The result is visualized in figure 8.3.1. The exact event tspatT element is re-
placed by an approximative event spectrﬁﬁ]consisting of five event spectrum elements
63,,83,,63,,63,. The first event spectrum element

é%l —(c0s,0ms 10msO§, {(20msOms 10m50§, (2ms0ms 2ms oo 2,0)),
(oos,10m54mslz,®)})

describes the non-approximated part. It ends somewheh@wtite first period 09?. The
second child spectrum elementéﬁl, the spectrum elemeéﬁl’2 = (0s5,10ms4ms1¢,0)
describes the start of the approximatioré@ifor the remaining events of the first period of

6;.

The second spectrum elemeé}%t2 describes the part in which the child spectrum el-
ement is approximated but the parent spectrum element isppobximated. It has three
child spectrum element8?, .62, , and 63, ; where the first child spectrum element

973‘2‘1 = (c05,0ms2ms o §,0) describes the initial event of the embedded event spectrum
element once to allow the approximation of this initial eMeythe second child spectrum

8.3. SUMMARIZING EXAMPLES 185

¢ (ms)

— original demand bound function At (ms)
— approximated demand bound function

FIGURE 8.3.2. Example 8.1.2: Periodic model with minimum sepa-
ration distance

elementé73‘2‘2 = (c05,0msg 00, ZZTSS,(Z)). These first events of the child spectrum element
are considered separately from the remaining events oftie spectrum element. They
are approximated using the period of the parent spectrumemtaéy. This separate ap-
proximation of the first child-events guarantees that trecspm bound function of the
approximated spectrum elemeﬁﬁ meets or exceeds the spectrum bound function of the
original elemen®; at every first event of the child element.

The remaining events of the child spectrum element can tleaapproximated by
a slope starting at these first even@tg’lzl2 is the approximation for every first event of
the child spectrum element. The elérhé%tz73 = (20msO0ms 8msl§,®)) models the
approximation of the rest of the child spectrum element.eNbat, as the approximation
of every first event is already done by the elemé}ﬁgl and 9%2.2, the approximation of
the child spectrum element has to include one event Iesstltfnaéoriginal child spectrum
element.

The third and the fourth element of the approximated pangettsum describe finally
the approximation of the parent spectrum element. The gpettrum elemerﬁ)%3 =
(0s,60ms6ms e £,0) gives the cost offset necessary to start the approximatidhea
right cost level. The fourth spectrum eleméﬁjt4 = (c05,60mscomsg %—2,0) models the
part in which also the parent spectrum element is approxichdthis spectrum element is
independent of the child spectrum element; only the pepi@chnd the Iimitatiori_é7 of
the parent spectrum eleme®tare required to calculate the approximating slope.

A characteristic of such a description is the separateaiioit of the maximum num-
ber of test intervals for each spectrum element. In the elafiye test intervals for the
child element and four test intervals for the parent eleraemtequired.

To demonstrate the advantages of the new model and the apation we give the
description 095 for the periodic model with minimum separation distanceu(fég8.3.2),
for the exact and for the approximative description of tra-tene calculus (figure 8.3.3).

The nearest description &f, with the periodic model with minimum separation dis-
tance is periodo = 4ms a minimum separation distanse= 2ms a worst-case execu-
tion time ofc™ = 2msand a jitterj = 8ms The first burst is modeled exactly by this

186 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

¢ (ms)

— original demand bound function At (ms)
— approximated demand bound function

FIGURE8.3.3. Example 8.1.2: Approximation of the real-time célsu

description. The remaining events are approximated by @dierfunction. The worst
absolute approximation error occurs for example at intekiva- 16msand has the value
c= (L%mgmst 1J 2ms) —10ms=4ms The worst relative approximation error occurs
for the same intervalt = 16msand is+0S — 40%.

10ms —

Despite that the overestimation of the periodic model isof% of the real demand,
the number of test intervals required in the worst case bpdhi@dic model is not bounded.
The model can produce an infinitely set of test intervals f@ahe analysis, other bounds
as a busy period or a good fixed-point iteration are required.

For the approximation of the real-time calculus [39] eactvels described by three
linear segmenta;, Wy, w3 with w = (X, Y, s) wherex, y are the coordinates of the start point
of the segment ansglis the slope of the segment. For the example the descriptahdiby
wy = (OmsOms o g), w, = (0ms2ms 1§) andws = (8ms 10ms %—g). So we only have
three test intervals for the analysis. The maximum abs@ppoximation error for this
model occurs directly before intervat = 20msso at the intervalit = 19,999999.. ms.
The size of the error is nearty= 10ms+ 131 _ 10ms= 6msleading to a relative error

S

Is
of fo—”r‘[fs = 60%. The worst case relative error occurs unfortunately eerly just before

interval At = 2mswith a relative error of%%g = 100%.

Due to this inexactness an exact description is used foetetime calculus [131]. It
was introduced in chapter 2.3.6. The curve is described fapariodic and a periodic part,
both containing a set of piecewise linear segments. Fontmple event spectru@®; only
the periodic part is required with the segments= (0ms2ms0¢2), wo = (2ms2ms03),
w3 = (4ms4ms0%), wy = (6ms6ms0%) andws = (8ms8ms0%). The segments are
repeated with an an offs&ix = 20msandAy = 10ms This description models the event
spectrurr(:)7 exactly. But the number of test intervals required for scitaility analysis

can become quite high and the description suffers from threegaroblems as the descrip-
tion of event streams (see 2.3.2). A burst with more eventddvequire one additional

segment for each additional event within the burst, so a lofitkd00 events would require
for example 1000 segments.

8.3. SUMMARIZING EXAMPLES 187

The error for the approximation of the hierarchical everictpum is bounded by the
chosen degree of exactness. In this example with an appatioimafter 3 events the error
is 33%, choosing an approximation after 10 test intervalsces the error to 10% and 1%
for an approximation after 100 events. The required numbégs intervals is bounded
and is 8 test intervals for the approximation after 3 eventsabout 30 test intervals in the
case of 10 events and not more than 3000 test intervals &ffeevients.

EXAMPLE 8.3.2. Let us reconsider example 8.1.3. We have an eventrspeele-
ment6@s = {1000ms O0ms 150ms 02, {é&b}} with a child event spectrum eleme@gb =
{10ms0Oms 5ms,oo§,(l)}. The apAproximation is set to 100 test intervals, that metins
starts within the 4-th period of th@y.

We have:
La —Lj 1 _
Ax= % o 8, = 150ms=5ms e 290ms
8 b 5ms
8,b 10ms
Pég
AX 290ms
Ay=L; [1- =] =150ms| 1— = 1065
y=Lg, < pé8> ms(1000ms) me

For the example the resulting approximated event spec@éﬂ%eads as follows:
8°°={ (05, 0ms 600ms 0=, &)

(c05,4000Ms 14400Ms oz ,{(005,4000ms 5ms o0 2 0),

5ms 5ms
1000ms 0),(1000ms0ms 145ms ——,0)}),

10ms’
s 150ms
(0,100s,1065ms oo o 0), (c0s,100s, o0, 1000ms)}

First the exact description is used for the first four perioﬁlég. Then the approx-
imation of the child spectrum eIemeéé,kJ starts. Each first event of the child spectrum
is approximated by334 = (o s,45,5ms 0 $,0) and 833 = (s 45,005, 50 0), the
remaining events are approximated separately for eaChq)efég with

6399 = (1s,0ms 145ms ™ 0)}). The next two spectrum elemer@3%° and 62%°
model the approximation of the parent spectrum elerfgnt

In the periodic model with minimum separation distance tkangple would be ap-
proximated by the periogh = %, the minimum separation distanse= 10ms a jitter
j = 1000ms— %8’“57 270msand the worst-case execution tirmeé = 5ms The maxi-
mum absolute error occurs just before interal= 1s and has a size of 120isresulting
in a maximum relative error 0%) = 80%.

The approximation of the real-time calculus has for thisneple the segments; =
(OmsOms o £), wo = (Oms5ms %) andws = (270ms 150ms %&“ﬁs) resulting in arel-
ative error of 12@nsand an absolute error of 73%.

The exact description of the real-time calculus has an efr@%. For this description

only the periodic part is required with the segments

(005,4000mMs o0,

wy = (0ms 5msO§),w2 = (10ms 1Omsoz),W3 = (20ms 15m50§)

188 8. APPROXIMATION OF HIERARCHICAL EVENT SPECTRA

W, — (30ms 20ms,0§), . Wap = (270ms 150ms,0§)

and the periodic offsetdx = 1000msandAy = 150ms Its is obvious how the description
size depends on the length of bursts.

The approximation of the hierarchical event spectra hasran ef 1% and a number
of considered test intervals of 36

CHAPTER 9

Cas

e-Study

In order to show the generality of the new event spectra medetill conduct a case
study. The system we explore has been published in [77] addgited in figure 9.0.1
(all times in ms). In the paper the system has been analyzeddyifferent compositional
analysis methods. The first one is the Modular Performanedyais (MPA) implementing
the real-time calculus [131] and the other one the exten@eidgic model [117]. The
two approaches had been combined in order to get tighterdsauarthe real-time analysis
[77]. We will show that we are able to conduct an analysis withmodel and get tighter
bounds as well. However, to show how tight the approach ieiregal we have simulated

the task set, too.

Hierarchical

TDMA
round = 10

slot =6
hight ilow

Z=10|s
=0

Round Robin EK
round = 10 ERCOS

oS5 o9
hardware
g : : priority = highest
: : ! ED = [5, 15]
: ‘ 86 10
< > o2 \Y\ : : 6 \ﬁ/\ 10 al4
S5)= { T2 Je= = { C2 = Té
ED = [20, 20]' slot = 3 preemptive
ED = [8, 16] priority = high
ED = [4, 4]
83 g7 11
o3 : o7 \‘,/\ oll
S3 > T3 > C3 }
P =250 ED = [15, 15]: slot'= 2 cooperative
J=125 ED = [10, 10] priority = low
D=0 i ED = [9, 12]
{f\ Q‘/\ 12
o4 o8 al2
(S6)= T4 | { C4)=
ED = 3] slot = 2 cooperative
ED = [5, 10] priority = lowest
EEIR— L6 s
- CPU1 ¥ = —Bus— = = —CPU2—

FIGURE 9.0.1. Example of a
lished in [77]

distributed hard-real time system pub-

189

190 9. CASE-STUDY

The system consists of two CPUs connected by a bus. CPU 1tesefowr tasks
scheduled by a hierarchical scheduler. At the top-level MADpolicy is implemented.
The tasksr; and 1, have got 60% of the TDMA cycle available. Within this slot aefil
priority scheduler schedules both tasks. The remainirgtasandt, have each 20% of
the TDMA cycle available. The bus uses a round robin schedoteéhe communication.
Four tasks with different time slots are provided. CPU 2 exes also four tasks. The
tasks are scheduled by the priority-based scheduler cEREOSK operating system.
The special point which has to be considered in this exansples cooperative behavior
of the tasks7 andtg. The taskr; has got a higher priority tharg but whenrtg is executed
the taskr; can only interrupt the task at specific points in time. These points are 2, 3, 4,
6 or1ll ms.

Three paths are given in this distributed systeh:— A, 2 — 5 andS3 — S6.
The first pathS1 — $4 consists of the tasks, ¢; and15. Task 11 activates over the
communication task; the taskrs. The second pati2 — S5 starts on CPU 2. The tagk
activates over the communication tagkthe taskr,. The last patl83 — S6 begins with
the taskrs activating the communication task that then activates the task The taskr;
activates the cooperative tagk Finally, the taskrg activates via the communication task
¢4 the taskr, on the CPU 1.

For all three paths hard real-time constraints are givere firbt pathSL — $4 must
not exceed 200 ms. The two other paths must not exceed 400hasih of the analysis
is to calculate for each path its latency as accurately asilples To solve the problem we
have to determine all the necessary event spectra and sepéctra in the system. We
will describe only those spectra of the system that are sacg$or the latency of the three
paths. Thereby we choose different domains for the illtistneof the event spectra and
service spectra. The event spectra describe for each ahtbernumber of events and the
service spectra describe for each interval the availaldewgion time. This illustration is
better to read, but for the calculation we have to transfér@descriptions into a common
domain. This means, for example, we scale the event speittrah& execution times.

We will explore the latency of the pa®l — A first. This is necessary, because the
results have a direct influence of the other paths. The sesfithe spectra of path one are
represented in Table 1.

1, || [ms]
ai | {(«,0,4,,0),(150150,1,,0)}
a; | {(1506001,«,0)}

0,0,340,0,{(10,0,6,1,0)}),(150,600,70,0,{10,0,6,1,0})}
(0,136,4,1,0),(,144,6,1,0),(150,186,4,1,0),
(150,194,66,0,{(10,0,6,1,0)})}

TaBLE 1. Results of the computed event spectra of the Bath A (1)

(
v | {(10,0,6,1,0)}
1| {(10,4,6,1,0)}
al | {(«0,0,3,0,{(32,0,1,0,0)}),(0,100,1,00,0), (150 150,1,0,0)}
al | {(150604,1,c,0)}
{(
{

9. CASE-STUDY 191

c || [ms]
ag | {(,0,3,0,{(32,0,1,00,0)}),(%,100,1,,0),(150,150,1,0,0)}
al | {(150604,1,c,0)}
g | {(,0,0,1,0)}
{(10,7, 3 1,0)}
ag | {(,0,1,00,0),(,182,0,{(32,0,1,0,0)}),
(0,86,1,%0,0), (150,136 1,%0,0)}
ay | {(150.6181,»,0)}
TABLE 2. Results of the computed event spectra of the Bath 4 (lI)

15 || [ms]
ag | {(,0,1,0,0),(,18,2,0,{(32,0,1,,0)}),
(0,86,1,00,0),(150,136,1,,0)}
ay | {(150.6181,»,0)}
g | {(0,0,0,1,0)}
{(0,0,0,1,0)}
{(0,15,3,1,0), (,33,17,1,0), (»,65,21,1,0),

(0,101, 35,1,0),(150,151,1351,0)}
TABLE 3. Results of the computed event spectra of the Bath» 4 (l11)

We start the calculation with the tagf on CPU 1. The task has got the highest
priority within its TDMA-slot. So the completely availablapacity of3; can be used.
According to chapter 7.6 we can determine the event speobfums. Additionally, we
have to determine the remaining capacity for tagkso that we can determine the latency
of the pathS2 — 5.

The next step is to determine the event spectruragf To do this we have to de-
termine the capacity ofs first. The upper bound for a round robin policy can be simply
approximated by the full processor capacity, because teedase occurs when all other
tasks €, c3,¢4) have no jobs to execute. The lower bound, in this case, meuapbrox-
imated by a TDMA policy. The worst case for a task in a roundnatzheduler occurs
when all other tasks use in every cycle their full slot timebvidusly, this is equal to a
TDMA policy. Since we do not know the arrival curves of theki®s,, ¢z andc,, we have
to assume that the bus is completely busy.

The last task in the chain 1. This task has the full processor capacity and is activated
by ag. The outgoing event spectrum s is not necessary for the path latency. So the only
spectrum we have to determine is the remaining capacithétaskrs, so that we are able
to calculate the other paths. Finally, we determine thetereihd deadline. According to
the theorem in chapter 7.7.3 about the end-to-end respgonss-the resulting latency of
the first path is 170 ms. The taskhas a worst case response time of 136ensf 19 ms
andts of 15 ms.

The second path we will explore is the p& — S5. The results of this path are
equally important for the analysis of the last path as thé fiassh. The results are repre-
sented in Table 4. Again we have only calculated the speettagsary for the path latency.

192 9. CASE-STUDY

s || [ms]

aiy | {(,0,3,0,0),(150,150,1,,0)}

al, | {(1504501,»,0)}

io {(,15,3,1,0),(c,33,17,1,0), (0,65,21,1,0), (0,101, 35,1, 0),

(150,151,1351,0)}
a:'i.JO {(0050535007{(4707 17°°a®>}5(1505 121;150070)}
{1 {(0,42,8,1,0),(0,65,21,1,0), (0,101, 35,1,0),(150,151,131 1, 0)}
TAaBLE 4. Event spectra of the paf2 — S5 taskrg
¢ [[[ms]

ajy | {(,0,3,0,{(4,0,1,00,0)},(150,1211,00,0)}
al, | {(150480,1,,0)}

g {(00,0,007170)}

L {(=,7,12,0,{(33,0,3,1,0),(339,3,1,0),(33,16,3,1,0),(33,23 3,1,0) }),
(0,106,3,1,0), (®,1153,1,0), (0,122 12,0,{(7,0,3,1,0)}), (150,153 3,1,0),
(150,162 3,1,0),(150,169,57,0,{(7,0,3,1,0)} }
ag | {(«,0,3,0,{(8,0,1,0,0)}),(150,70,1,0,0)}

a; | {(1505231,»,0)}
TABLE 5. Event spectra of the pa82 — Sb taskC,

7, || [ms]
ag | {(«,0,3,0,{(8,0,1,»,0)}),(150,70,1,0,0)}
ay | {(1505231,,0)}
%” {(«,0,340,0,{(10,0,6,1,0)}),(150,600,70,0,{10,0,6,1,0})}
) {(0,136,4,1,0), (0,144,6,1 0),(150186,4,1,0),
(150,194,66,0,{(10,0,6,1,0)})}
TABLE 6. Event spectra of the pa2 — S5 taskty

The incoming event spectrum 4 of 7 on CPU 2 is given and the remaining capacity
Bio has been calculated during the first path calculation. Soamestraightforward deter-
mine the event spectruomg. Furthermore, we have to determine the remaining capacity
B11 which will be used during the third path calculation.

To calculate the event spectrumg we have to determine the capacity spectrfgn
first. The upper bound @B is the full capacity of the processor likg. The lower bound
of Bs of the capacity can be approximated by a TDMA policy. Sinaealrival curveas
is known, we are able to include the real round robin policth&t point and not only the
TDMA-approximation. This leads to more capacity compamest because the task is
not busy in every cycle. Consequently, this leads to a mdazedas.

For the last task, we have all information in order to determine the maximuraray.
The remaining capacity has no influence of the last §8th- 6.

We are able to determine the end-to-end deadline of the $ath S2. According
to the theorem in chapter 7.7.3 about the end-to-end respanse the resulting latency

9. CASE-STUDY 193

of the second patBs — S2 is 366 ms. In the example it is the result of the worst-case
response time of the first job ag, the third job ofc, and again the first job of,. The
reason to take the third job @f is that response-times fap are much longer than for

176 and therefore the second and third jobrgfarrive before they are required loy. The
worst-case occurs whem experiences its worst-case delay exactly at the time vehen
finishes the execution of its third job. The calculation of thther end-to-end response
times follows a corresponding scheme. The taskas a worst-case response time of 34
ms, ¢, of 132 ms and, of 200 ms.

13 || [ms]
a3 | {(«,0,1,2,0),(2501251,»,0)}

al | {(2503751,»,0)}
Y [{(10,0,2,1,0)}
! {(10,8,2,1,0)}
a7 | {(=,0,1,»,0),(250117,1,,0)}
ab | {(2503831,,0)}

TABLE 7. Event spectra of the pa88 — S6 taskrs

The last path we have to exploreéd8 — S6. The event spectra are given in Table 7 and
Table 10. We start with the tagls. Here we have only to determine the outgoing spectrum

cs || [ms]
oy | {(e0,0,1,00,0),(250,117,1,0,0)}
ay | {(250.3831,»,0)}
7 | {(®,0,0,1,0)}
! {(=,8,12,0,{(33,0,2,1,0),(339,2,1,0),(33,16,2,1,0),(33,23 2,1,0) }),
(0,107,2,1,0),(0,116,2,1,0),(,1238,0,{(7,0,2,1,0)}),
(0,1542,1,0), (0,163 2,1,0),(0,170,2,1,0), (0,1752,1,0),
(,181,46,1,0,{(4,0,2,1,0)})(150, 274 10,0,{(7,0,2,1,0)}),
ag; | {(,0,1,0,0),(250,82,1,0,0)}
al, | {(2504181,,0)}

TABLE 8. Event spectra of the pa83 — S6 taskCs

17 || [ms]

ai’l {(0,0,1,00,0),(250,82,1,,0)}

al, | {(2504181,,0)}

(0,0,450,1,0), (150455 1450)}

(0,42,8,1,0), (»,65,21,1,0), (0, 101, 35, 1,0), (150,151, 131 1,0)}
(00,0,1,00,0),(250,22,1,00,0)}
(
(
7

250478 1,,0)}
0,0,418 1,0),{(,427,231,0), (750,455 1451,0),
50,605 63,1,0),(750,677,73,1,0), (750,755 145 1,0),
(0,69,13 1,0), (0,109 27,1,0), (750,151,131 1,0), (750,301, 31,1,0),
750 344,88,1,0),(75045131,1,0),(750,594,88 1,0), (750 601,131 1,0),
750601131 1,0),(75075131,1,0),(750,744,88 1,0)}
TABLE 9. Event spectra of the pa8 — 6 taskty

{
{
{
{
Pir |1
(
{
(
(

9. CASE-STUDY

[ms]

{(0,0,1,0,0),(250,22,1,0,0)}

{(250,4751,,0)}

{(,0,418 1,0), { (e, 427,23, 1,0), (750,455 145 1,0), (750,605 63, 1,0),
(750,677,73,1,0), (750,755,145, 1, 0), (750,905,13,1,0), (750,927,123 1,0),
(750,1055113 1,0), (750,1177,23,1,0)}

{(=,69,131,0), (,109,.27,1,0), (750,151,131, 1,0), (750,301 31, 1, 0),
(750,344,88,1,0), (750,451,31, 1,0), (750,594,88, 1, 0), (750,601, 131 1, 0),
(750,601,131 1,0), (750,751 31, 1,0), (750,744,88,1,0) }

{(0,0,1,0,0),(,11,1,»,0),(250216 1, »,0)}

{(=,0,531,1,0),(250.7811,0)]

TaBLE 10. Event spectra of the paf3 — S6 taskrg

[ms]

{(0,0,1,0,0),(0,11,1,»,0), (250216 1,,0)}

{(,0,531,1,0), (250,781, 1,0)}

{(0,0,00,1,0)}

{(,8,2,1,0),(,17,2,1,0), (»,24,2,1,0), (»,31,2,1,0), (0, 41,2, 1,0),
(0,48 2,1,0),(,532,1,0),(,582,1,0),(«,63,2,1,0),(«,81,2,1,0),
(0,88,2,1,0),(0,93,2,1,0),(0,982,1,0),(0,106,2,1,0),
(0,11314,0,{7,0,2,1,0}), (0, 159,2,1,0), (750,274 10,0,
{(5,0,2,1,0)}),(750,297,2,1,0), (750,299,.2,1,0), (750,304.2,1,0),
(750,308,59, 1,0), (750,424,10,0,{(5,0,2,1,0)}), (750,447,2,1,0),
(750,449,2,1,0), (750,454,2,1,0), (750,458 114, 1, 0), (750,574, 10,0,
{(5,0,2,1,0)}),(750,602 2,1,0), (750,604 2,1,0),(750,609,2,1,0),
(750,613 4,1,0),(750,369 10,0,{(4,0,2,1,0}),(750,387,34,1,0),
(750.619,10,0,{(4,0,2,1,0}), (750,637,84,1,0)}

{(00, Oa 1; 0070)7 (00, 5; 1; 0070)7 (2507 1767 17005 0)}

{(,0,571 1,0), (250,821, 1,0)}

TABLE 11. Event spectra of the pafi8 — 6 taskcy

[ms]

{(0,0,1,0,0),(,5,1,,0),(250,176,1,0,0)}

{(=,0,571,1,0),(250.821 1,0)]

(
{(0,0,0,1,0)}
{(0,8,0,1,0)}

TABLE 12. Event spectra of the pafl8 — 6 taskiy

ag. The same applies for the communication tegkHere we have only to determimg .
The capacity for the task can be determined like the scheeg:fosfBs. The upper bound
is the full processor capacity. For the lower bound we usedhad robin policy for tasks
having a calculated arrival curve and for the other one th&Apolicy.

Now we have to consider the cooperative taskandtg. Since we have the capac-
ity 11 from the second path and the incoming event spectrum, wetcaigtgforwardly
determine the remaining capacity and the event spectrutas$émrg. But at this point we
have to consider a further fact. The tagkcan only be activated when the tagkhas been
executed. By means of this we are able to calculate the mggnient spectrury,. It

9. CASE-STUDY 195

can be seen that task cannot influence the taglg. So it is not necessary to consider the
cooperative behavior.

In order to calculate the results of the communication @ske can use the same
policy as for taskcs. When the event spectrumg is calculated, we have all necessary
spectra computed. The outputs from taglare not important for the path latency.

Now we are able to determine the end-to-end worst-casemsesgione. According to
the theorem 7.7.3 about the end-to-end response time inetiafg.3 the resulting latency
of the second patB3 — S6 is 321 ms. The tasks has a worst case response time of 71
ms, ¢z of 45 ms,17 of 69 ms,1g of 80 ms,c4 of 45 ms andry of 11 ms.

Finally, we compare our results versus the modular perfaocaanalysis (MPA) and
the extended periodic model and their combination. In otalguantify our exactness we
have simulated the example model, too. This simulation leas lblone with the real-time
simulator chronSim [123, 124] and gives a (tight) lower bdon the worst-case response-
times. The results of the different approaches are predémt€able 13. ESC means the
Event Spectra Calculus.

PATH MPA extended | MPA & ESC Constraint ChronSim
Periodic extended
Periodic
S1—-SA | 170ms| 170 ms 170 ms 170 ms | 200 ms 155 ms
-5 | 430ms| 376 ms 376 ms 366 ms | 400 ms 242 ms
3—-6 | 412ms| 422 ms 389 ms 321 ms | 400 ms 206 ms

TABLE 13. Results of the MPA, extended Periodic, the combination

MPA and extended Periodic, ESC and ChronSim

It can be seen that our approach delivers tighter bounds$topathss2 — S5 and
3 — 6. This is founded by the facts that we only use one model aatdrth are capable
to include dependencies into the analysis. The next talblsthe improvementin percent
versus extended periodic, MPA and the combination of both.

PATH MPA extended periodic | MPA& extended
Periodic
S1-S4 0% 0% 0%
[SENC S 17,4% 2,7% 2,7%
B-H 28% 31% 21%
TABLE 14. Improvement of the ESC approach in percent versus ext.

Periodic, MPA and the combination of both

CHAPTER 10

Summary and Outlook

In this thesis a new integrated and efficient schedulakdlitslysis methodology for
uni-processor systems with static and dynamic priorisgeoposed.

First some of the existing schedulability approaches wetreduced, as there are the
approach of Liu & Layland [88], the response time analysi3],[180] and the scheduling
point analysis [92] for static priority systems. For syssewith dynamic priorities we
have introduced an approach of Liu & Layland [88], the preoeslemand criterion [19]
and the test of Devi [46]. A disadvantage of most of these @gghes is the algorithm
complexity. The run-time of these algorithms does not omlgehd on the number of task
sets but also on the variables of the concrete task sets padially on the ration between
the smallest and largest tasks in the task sets. Only extepére the scheduling point
analysis (for non-arbitrary systems), which has an exptimlezomplexity instead and is
therefore not suitable for large task sets, and the appesashLiu & Layland [88] and
Devi [46], which are only sufficient or use a limited model.€Tfixed-priority analysis of
Liu & Layland and the EDF analysis of Devi are not usable fasteyns with utilization
larger than 69.3% and 80%, respectively. The EDF analysisw& Layland does only
support tasks with simple periodic stimuli and a deadlinedach task that is equal or
larger than the period of the task’s stimuli.

The reason to consider the problem of the run-time of thedidhbility analysis is,
that the analysis is needed as one step in the design flow leimeasystems. One chal-
lenge of the design-flow is to find a good hardware and softwasign to meet all re-
quirements for the system. For this challenge it is necgdsadecide on the hardware-/
software- distribution of the tasks of the system, the allmn of hardware components
and their connection network, the partitioning and the lnig@f the software on the hard-
ware components and the scheduling of the software taskdo Bdl these decisions it is
necessary to have an optimization-step within the desigw fldnis step considers a huge
number of different candidate systems to find a good one mgpétie requirements. A
real-time analysis for each of the candidate solutionsgsired. As the real-time analysis
will run quite often, a significant difference in the run-gnof the real-time analysis will
have a significant impact on the overall performance of trsggheflow respectively on the
number of candidate solutions which can be considered.

The processor demand criterion for the sufficient and nacgsmalysis of systems
with earliest deadline first scheduling has for example aigegolynomial complexity
when its utilization is bounded by an upper bound. Its coxiptelepends on the fraction

197

198 10. SUMMARY AND OUTLOOK

between the largest difference between period and deadfliope task in the task set on
the one side and the smallest period of a task in the task d6easther side.

To overcome the disadvantage of complexity we have intredirt chapter 3 the con-
cept of approximations and proposed the superpositioroappation. Itis a fast schedu-
lability analysis with a polynomial run-time being suffioieand nearly necessary. Each
system recognized as schedulable is guaranteed to be $zhleduSystems that are not
schedulable are therefore also recognized as not schégluldizre might be some systems
being schedulable but being not recognized as schedulgltfeeapproximative analysis.
The number of such not correctly classified systems depemdsselectable error. We can
guarantee that all these systems are quite near to be natuidabke in a sense that they
are not schedulable on a processing element with a sligimiller capacity. Being (At)
the capacity bound function of the original processor arm the chosen approximation
error we guarantee that these systems are not schedulalalg@@tessor with a capac-
ity of (1— €)x(At). The complexity and therefore the run-time of the algorithepends
polynomial on the number of tasks and polynomial on the seteerrore and on nothing
else.

Therefore the proposed superposition analysis is a fullyrmonial time approxima-
tion scheme for the schedulability problem of systems wjthainic priority scheduling.

Also an algorithm was proposed to calculate the minimum seamy capacity for a
system to be acceptable by the superposition approximatfiois algorithm is quite suit-
able for on-line analysis for the possibility of using dyriawoltage scaling (DVS).

The superposition algorithm was introduced first for the@inperiod (sporadic) task
model. Then the algorithm was extended to the more advanesd-stream model. This
model was introduced by Gresser in [60] and [61] and is quitiabkle for modeling gen-
eral event patterns. It was modified and extended in this weskexample, the concept of
periodic event sequences was introduced to give the moadiatiseoretical background.
A periodic event sequend®@ consists of a set of event elememteach described by a
periodp and an offsea. Each element models a set of periodical events havingialinit
distance ofa and each a distanqeto their neighboring elements of the same element. A
periodic event sequence consists of a set of such elemerntgl@acommon starting point.
We can also interpret the distance as an intekvdlaving the common starting point as its
start point and the occurrence of the event as the end paiheahterval. The event bound
functionn (At,®) calculates for each interval-lengtt the possible number of events for
the periodic event sequen@e An event stream is a specialized event sequence fulfilling
the condition of sub-additivity. That means the shortegrirals have the highest densities
of events. Formally, when an event bound function fulfills tondition of sub-additivity
for every set of intervaldta, Atg the condition (Ata, ©) + n (Atg, ©) > n(Ata+ Atg, ©)
holds.

In chapter 4 this approach was extended to develop new f#stisnt and neces-
sary schedulability analyses for systems with dynamicrjtyiecheduling. The extension
is based on the selectable approximation error. The appatiion uses a large approx-
imation error and achieves therefore a low run-time as langassible and reduces the

10. SUMMARY AND OUTLOOK 199

error only when necessary to distinguish between schelguéatdl non-schedulable sys-
tems. The results are two new schedulability approachesiythamic-error algorithm and
the all-approximation algorithm. The second one additignaturns to approximation
as soon as possible after it was necessary to analyze onexaatty. Experiments with
randomly generated task-sets show that these algoritremaach faster than the previous
approaches (for some task sets by the order of magnituddshanthe required run-time
seems to be independent of the concrete values of the taskeens only to depend on the
number of tasks and their utilization.

In chapter 5 an approach for approximative and dynamic aqmitive analysis for
systems with static priority scheduling were introducedcdntrary to previous solutions
it is solely based on functions and allows an adaptive sdaédity analysis. It required
a new function; the exceeding cost function. It gives forheterval At that part of the
requested costs withifit that cannot be processed withih due to the later arrival time
of its generating job. A job arriving two ms before the endtod tnterval and requiring
five ms execution time will contribute at least 3 ms of themhi® ¢€xceeding costs. Again
the dynamic approximation outperforms the previous woasie response time analysis
also the results of the worst-case response time analysilstrbé more valuable as the
new analysis achieves only a schedulable - non-schedwdablsion. The exceeding cost
function is a new idea that has shown to be also quite usefatén chapters.

In chapter 6 we have done experiments with randomly gergetask sets to inves-
tigate the performance and the acceptance rates of the gewithins and concepts. We
have compared them with the performance of other existipgagrhes. The experiments
give also some hints on the likely complexity of the algarith

In chapter 7 we have focused on the event model and to gereethk analysis ap-
proaches. The previous event stream model is quite powbdfult is not possible to
describe bursts efficiently with this model. The event streaodel requires a separate
event element for each event of a burst. To overcome thisldigsaage we have extended
the event stream model to a hierarchical event spectra model

We have introduced hierarchical event spectra consistfrigiesarchical event ele-
ments. A hierarchical event element generates completd pagterns. These event pat-
terns can be described either by an embedded (hierarckigat} spectrum or by a slope.
Additionally, the hierarchical event elements have a ktiin valuel limiting the number
of events that can be generated by the pattern within onegbefithe hierarchical event
spectrum element. Important for an efficient calculatiothefhierarchical event spectrum
bound function is the separation condition, which prevémsoverlapping of different pe-
riods of the same event element. We have provided the basitiéus for the hierarchical
event spectra. Note, that the previous event streams ayeacspecial case of the hier-
archical spectra. We have developed an approximation éoetient spectra. The special
characteristic of this approximation is that the numbeest intervals for each embedded
event spectra element is bounded globally. A hierarchitddedded event spectra element
starts the generation of events from the beginning for eadog of its parent spectra ele-
ment. Bounding the number of test intervals for each spet#lement separately would

200 10. SUMMARY AND OUTLOOK

result in starting the exact evaluation again for each pasfahe parent. This would result
in a global bound for maximum number of test intervals beixgomential in the number
of levels of the hierarchy.

We proposed a method that bounds the number of exactly e¢edltest intervals glob-
ally for each event element. To do this we may require spijtthe parent element near
the maximum exact test interval of the child element. We haesided the method and
the equations necessary to allow the global bound apprdixima

The hierarchical event spectrum allows integrating ther@amation in the spectra.
Operations on these approximated spectra do not have toic#reapproximation and the
chosen degree of exactness but nevertheless benefit frompineximation. Last but not
least the approximated hierarchical event spectra carahsformed into a curve consist-
ing of simple consecutive piecewise linear curve segmentghich the number of these
elements is strictly limited by the approximation.

Concluding we have developed efficient schedulability ysialmethods and an in-
tegrated schedulability analysis concept for uni-progesgstems for both static and dy-
namic priority scheduling.

This work gives several opportunities for further reseaFirst the integration of other
scheduling algorithms into the framework is possible. Tais be for example TDMA or
Round-Robin. It would be necessary to extract how theserigthgas modify the spectra.
This would allow the analyzing of every possible combinatid scheduling algorithms.

The event model and the algorithm can be used also for eneigysas [86] and
energy saving [87] in embedded systems.

Another opportunity is the schedulability analysis fortdimited systems. The differ-
ent processing elements of such a system can have a multitsdbeduling algorithm to
handle the tasks bound to them. They can be a mixture of sthgaduith dynamic and
static priorities. Task chains can be distributed on séweanents requiring communica-
tion between the tasks and therefore between the processimgnts.

The concept of event spectra can be extended to distribystdrss. It is necessary
to develop the transformation algorithm to extract outgaéwent spectra of tasks from
their incoming event spectra ([30]). Another interestisgect for such an analysis is the
dependencies between tasks on the same or different pimgetsments. Taking these
dependencies into account can relax the schedulabilityleno and allow scheduling the
tasks on less expensive processing elements.

In the real-time calculus it was proposed to model the flowveen the tasks with
arrival and service curves and equations were providedltulege the outgoing curves
of a task from the incoming ones. We used this concept in thikJwut we focus on the
concrete possibility for an efficient implementation ofstocbncept.

The proposed model and methodology offers many possdsilitr further research.
It may be interesting looking for them.

Zusammenfassung

Moderne Fahrzeuge haben oftmals mehr als 70 elektronisitheeigerate (ECUS)
welche miteinander kommunizieren missen und eine Vielzatdrschiedlicher Funktio-
nen erfullen. Diese Systeme missen dabei nicht nur kortetgebnisse liefern, son-
dern die Ermittlung der Ergebnisse muss meist innnerhaltefeZeitschranken erfolgen,
um rechtzeitige Reaktionen des Fahrzeuges auf eine siéndere Umwelt oder auf
Steuerungsanweisungen des Fahrers sicherzustellereéiahforderungen). Dabei sind
in einer Funktionalitat oftmals eine ganze Reihe von Sigergten involviert, welche tber
Busse miteinander kommunizieren. Aus Kostengriinden isbesendig die Menge der
Steuergerate und Busse zu begrenzen, was dazu fuhrt, dassete Funktionen Steuerg-
erate und Busse teilen missen und auf ihnen um die Rechengeitie Ubertragungska-
pazitat konkurrieren. Zur Steuerung dieser Konkurrenzieererschiedene Ablaufpla-
nungsverfahren (Schedulingstrategien) eingesetzt uneideelnen Funktionen und Teil-
funktionen (Tasks) teilweise unterschiedliche Priogtazugewiesen. Die sich daraus
ergebenden mdglichen zeitlichen Ablaufe, Verdrangungervdrschiedenen Funktionen
untereinander und letzlich der Antwortzeiten der einzelrenktionen und ihre Einhaltung
von Echtzeiteigenschaften sind nicht einfach zu tberblick

Verfahren der Echtzeitanalyse kénnen fir solche Systerheathematischen Metho-
den die Einhaltung von Echtzeiteigenschaften verifiziemahobere und untere Schranken
fur Antwortzeiten bestimmen. Diese Verfahren ermdglickemit fundierte Entscheidun-
gen zur Dimensionierung der Steuergerate, Verteilung dekfionalitat, Wahl der Ablauf-
planungsverfahren und Verteilung der Prioritaten.

Ausgehend von einer zentralen Arbeit von Liu und Layland] {88rden in den ver-
gangenen 30 Jahren eine Reihe von Echtzeitanalysevarfahde=chtzeitmodellen unter-
schiedlicher Qualitdt und Komplexitat fur verschiedendadifplanungsverfahren sowohl
fur Ein-Prozessor-Systeme als auch fur verteilte Systareiekelt.

Bei den Ablaufplanungsverfahrenwird zwischen statisétigaufplanung, bei welchen
die Tasks in einer vorab festgelegten Reihenfolge abg#etlveerden und dynamischer
Ablaufplanung, bei welcher die Anregungen der Tasks zusammit einer bestimmten
Strategie den Ablaufplan der Tasks zur Laufzeit dynamissiiimmt, unterschieden. Dy-
namische Ablaufplanungsverfahren kann man wiederum tilear in solche bei denen
die Tasks eine feste Prioritat bekommen und solche bei dgokmlie Prioritdt dynamisch
andern kann. Als letztes wird unterschieden ob die Abarhgieiner Task durch eine an-
dere mit einer héheren Prioritat unterbrochen werden kpree(nptives Scheduling) oder
nicht (non-preemptives Scheduling).

In [88] wurde unter anderem gezeigt, dass das preemptiveufiilhnungsverfahren
Earliest-Deadline-First (EDF), ein Verfahren mit dynachiseranderlichen Prioritéaten, bei
dem immer diejenige Task die hdchste Prioritat erhalt, helder absoluten Zeitschranke
am néachsten liegt, ein optimales Ablaufplanungsverfabegstellt, zumindestens sofern
man den Aufwand fur die Ablaufplanung selbst unberiickgitiésst. Optimalitat be-
deutet dabei, dass wenn es Uberhaupt einen Ablaufplan fiSystem gibt der alle Zei-
tanforderungen einhélt, ein auf EDF basierender Ablauafplach alle Zeitanforderungen

203

einhalten wirde. In der Praxis wichtiger ist, wegen ihrafagheren Implementierbarkeit,
die Vergabe von festen Prioritaten als Ablaufplanung.

Bei den Echtzeitanalyseverfahren kann man zwischen exaladahren, welche im
Rahmen der Modellgenauigkeit exakt zwischen Systemerragiteiden kénnen, welche
alle Echtzeitkriterien einhalten oder nicht, und hinreictien Verfahren, welche nur die
nicht-echtzeitfahigen Systemen korrekt klassifizierenrign, unterscheiden. Vertreter fur
hinreichende Verfahren fir Ein-Prozessor Systeme sindlei#s von Liu und Layland
[88] fur EDF und statische Prioritaten, der Test von Devi] @6 EDF und von Bini et al.
[23] fur statische Prioritdten. Fir exakte Verfahren fun{Brozessor-Systeme seien die
Antwortzeitanalyse fir statische Prioritaten [73, 79] ulad Processor-Demand-Criterion
fur EDF [19] genannt.

Analysen verteilter Systeme kdnnen entweder aus den exatalysen fur Ein-
Prozessor-Systemen aufgebaut werden, wie dies bei destideficheduling Analyse und
den darauf aufbauenden Verfahren der Fall ist oder eineicingeschlossenen Ansatz
wie beim Real-Time-Calculus verfolgen. Vom Real-Time-l0ass gibt es wiederum eine
hinreichende und eine exakte Variante.

Die Analyseverfahren bendtigen jeweils Echtzeitmodekdchve eine Abstraktion der
realen Systeme darstellen. Ein mdégliches Modell ist diesigdiung des Systems lber
miteinander kommunizierende Tasks, wobei die Tasks durelyfisse angeregt werden.
Den Tasks wird jeweils eine maximale Ausflihrungszeit (W@rase execution Time")
und eine minimale Ausfiihrungszeit (Best-case Executiome;lc™) zugeordnet. Zuséat-
zlich kénnen Tasks einen lokale Zeitschranke (deadlneugeordnet werden. Die An-
regungen, welche von aufRen erfolgen kénnen oder sich zensthsks ergeben, kdnnen
dabei durch Ereignismodelle beschrieben werden. Beespiatl das Periodische Modell,
das Periodische Modell mit Mindestabstand, das Ereigoisshodell und die Real-Time
Calculus Curves.

Im fortgeschrittenen periodischen Modell kénnen die Anrggen durch eine Periode
p und einen Jitteff beschrieben werden. Fir jedes Ereignis gibt es ein Inletgal dnge
j innerhalb dessen das Ereignis an einer beliebigen Stdtletan kann. Die Mittelpunkte
der Intervalle folgen periodisch mit einem Abstand bzweeiPeriodg aufeinander. Vere-
infacht gesprochen kommen die Ereignisse eigentlich gdiexéh mit Periodel' kénnen
aber, im Rahmen ihres Jitterintervalls, etwas friher ogdétes kommen. Die Ereignisse
haben im fortgeschrittenen periodischen Modell einen malén Abstand vop+ j und
eine minimalen Abstand von mgx p— j). Fur ein Intervall der Langét ergeben sich
maximal Lm—;j + 1J und minimal ma><0, Lm—p*j + 1J) Ereignisse.

Im periodischen Modell mit Mindestabstand kann zusatziidch ein Mindestab-
stands zwischen zwei Ereignissen beschrieben werden. Dafir migsebigen Formeln
nur geringfiigig modifiziert werden. Unter der (sinnvoll@edingungs < p &ndern sich
lediglich der minimale Abstand zwischen Ereignissen auf(s)p— j) und die maximal
sich fur ein Intervall der Langat ergebende Anzahl von Ereignissen auf:

(2] 2511

204

Verwendet man nur das periodische Modell ohne Mindestatistageben sich bei den
Analysen keine falschen sondern nur zu konservative Eigebnd.h. es werden weniger
Systeme die alle Echtzeitbedingungen einhalten als seldtaant.

Das Ereignisstrommodel wurde in [60, 61] von Gresser eiitgef Es ermdglicht
die genaue Modellierung komplexer Anregungen. Ein ErsgfndmE besteht aus einer
Menge von TupeliE = {ES,ES,...,ES,} wobei jedes Tupel durch eine Periogeind
pi
g;
Periode kann auch unendli¢p; = «) sein (aperiodische Elemente). Ein Sonderfall sind
die homogenen Ereignisstrome bei denen alle Elemente atsleéentweder eine gemein-

einen Offseta zu einem gemeinsamen Nullpunkt beschrieben W& = . Die

same Periode des Ereignisstroms oder unendlich haben.i2ighAder Ereignisse fiir ein
Intervall der LangeAt wird Uber die EreignisstromfunktioB S/At,E) berechnet, wobei

ESALE) = Yesee ESALES) :

458 41) pito
ESAtLES)=11 pi = AL > g
0 pi =0 ANAt < &

Die maximale und die minimale Menge von Ereignissen kanrcldijgweils einen
maximalen und einen minimalen Ereignisstrom beschriebenden. Die Ereignisstrom-
funktion ermittelt fir jede moglich Intervalllange die Aaizl von Ereignissen. Die sich
dabei ergebende monoton steigende Funtion ist esseritietlafs Ereignisstrommodell
und fur die Echtzeitanalysetheorie. Die Modellerung degidirisstrome muss so erfol-
gen, dass ein maximaler Ereignisstrom die Sub-Additivétéllt, d.h. ESAt + At") <
ESAt) + ESA).

Im Real-Time Calculus werden die Ereignissmodelle durckimale und minimale
Arrival- und Service-Curves beschreiben. Diese Kurven $innktionen equivalent zur
Ereignisstromfunktion. In der Theorie kdnnen diese Kurjegtes beliebige Ereignismod-
ell exakt erfassen und beschreiben. Fur die Anwendbarlesitien konkrete Beschrei-
bungsmodelle fiir diese Kurven benétigt. Es stehen bisherkownkrete Beschreibungsmod-
elle zur Verfigung. Im ersten Modell werden die Kurven jdagiurch maximal drei
aufeinanderfolgende geradlinige Segmentelementen beleh. Dabei beschreibt das er-
ste Segment den Bereich bis zum ersten Ereignis, das zweitesht einen initialen Burst
und das dritte Element die langfristige Rate. Im zweitenkée@ Beschreibungsmod-
ell wird die Kurve in einen anfénglichen aperiodischen Teid einen sich daran an-
schliessenden und sich wiederholenden periodischen Gifgeteilt. Jedes dieser Teile
wird durch eine beliebig groRe Menge von aufeinanderfadgerSegmentelementen be-
schrieben.

Das Ereignisstrommodell hat eine gré3ere Modellierungsitigkeit und -genauig-
keit als das fortgeschrittene periodische Modell. Die Gigleeit einer Beschreibung
mit Periode und Jitter lasst sich im Ereignisstrommodell wairgleichbaren Aufwand
erreichen. Der Mindestabstand tUberfordert allerdingsMiiglellierungsfahigkeiten des
Ereignisstrommodells, wohingegen viele Anregungen nrit 8eeignisstrommodell genauer

205

erfasst werden kénnen als mit dem periodischen Modell mitddstabstand. Das erste
Beschreibungsmodell fir den Real-Time Calculus halt dieeBenungskomplexitat der
Analyse niedrig, stellt allerdings eine sehr konservatipproximation des realen Systems
dar. Das zweite Beschreibungsmodell kann beliebige reategungen exakt abbilden,
allerdings kann die Menge der zur Beschreibung benétigggm@nte schnell wachsen, so
dass sich ein Komplexitatsproblem fur die Echtzeitanagrggbt. Benotigt wird aber ein
Ereignismodell welches gleichzeitig beschreibungsm@etté auch effizient ist.

Die Echtzeitanalyseverfahren Antwortszeitanalyse urat&ssor Demand Criterion,
welche urspriinglich beide fur das fortgeschrittene péswte Modell entwickelt wurden,
lassen sich einfach auf das periodische Modell mit Mindesttand und das Ereignisstrom-
modell Ubertragen.

Das Processor Demand Criterion zur Analyse von Ein-Prozedgstemen mit EDF-
Scheduling funktioniert wie folgt. Es wird fur einen konkea Ablaufplan untersucht ob
alle Zeitschranken eingehalten werden. Start dieses Adimns ist eine synchrone Ak-
tivierung aller Tasks, d.h. alle Tasks werden unabhangigei@nder zeitgleich aktiviert.
Sind die Tasks unabhéangig, kann eine solche Situationctaltsk auftreten, ansonsten
stellt sie eine obere Schranke fur die dichtestmogliché#ddung dar. Dieser Ablaufplan
wird nun mathematisch simuliert und jede Zeitschranke aiu€l ihre Einhaltung Uber-
pruft. Diese Simulation und Uberprifungen geschehen iereimtervall, das von der
synchronen Aktivierung einerseits und einer Testgrendeanseits begrenzt wird. In der
Literatur wurden verschiedene Testgrenzen entwickeljewdils nachgewiesen, dass fur
nicht-echtzeitfahige Systeme Echtzeitverletzungenrimalb des durch die Testgrenze be-
grenzten Intervalls auftreten miissen. Beispiele sindndigl 7] vorgestellte Testgrenze

Ur
1-— Ur
mit Ur als Auslastung des Systems und die [119] in vorgestelltigiesze:

2vrer (1_ %) C?
1-Ur

Allen Testgrenzen gemeinsam ist die Abhangigkeit inreredlagn den konkreten Pa-
rametern der Ereignismodelle. So ist die erste Testgremmawaximalen Abstangd; — d;
abhéngig, die zweite vom maximalen Verhaltnis von der Zhitsnked; zur Periodep;
abhangig. Die Anzahl der in einem Intervall zu untersucleendeitschranken hangt far
jede Task vom Verhaltnis des durch die Testgrenze begmemztervalls zur Period;
der Task ab. Hat man in einem System Tasks mit sehr kurzen eimdlangen Peri-
oden oder Zeitschranken, so kann dies zu einer spaten &ezgrsomit einem langen
Testintervall mit gleichzeitig sehr vielen zu untersuatiem Zeitschranken fiihren. Daraus
ergibt sich ein hoher Rechenaufwand fur die Analyse. Diéseblem ergibt sich aber
fur alle drei Ereignismodelle gleichermaf3en. Dies fuhlbsefir Systeme mit einer be-
grenzten maximalen Auslastung zu einer pseudo-polynemiéhalysekomplexitat. Der
Analyseaufwand ist somit nicht nur von der Anzahl der TasksSystem und der Aus-
lastung sonder zusatzlich von den konkreten Parameterfiadérund dem zugehdérigen

Atmax= —d
max 922?(Pz r)

At max =—

206

Ereignismodell abhangig. Dies macht die Laufzeit fur athgén verwendbare Werkzeuge
zur Echtzeitanalyse nicht voraussehbar und kann zu hohemeRaufwand fuhren.

Ziel dieser Arbeit ist die beiden vorgenannten Problemadsétzlich zu l6sen.

In dieser Arbeit machen wir dafiir die folgenden Beitrage:

e Wir stellen das erste approximative Echtzeitanalyseteefa mit polynomialer
Komplexitat vor, dessen maximaler Analyseaufwand unaigdst von den Pa-
rametern des Echtzeit- und Ereignismodells, sondern nordes Anzahl der
Tasks und der gewéhlten Genauigkeit abhéngt und dessemi@keiasich nur
durch die Kapazitat der gewéahlten Prozessoren ausdriéken |

e Wir stellen ein neues Ereignismodell, die hierarchischezighisspektren vor,
welches die Modellierungsmaéchtigkeit der oben genannteiggismodelle vere-
inigt und denoch zu einer kompakten und effizienten Besbtngj fihrt.

o Wir wenden die Approximation auf das neue Ereignismodellvabei die Ap-
proximation in die Beschreibung des Ereignismodells w@ifidig integriert wird.
Das resultierende Modell kann zu einer einfachen aber, dankpproximation,
dennoch kompakten neuen Beschreibung fur die Kurven ddsiiaa Calculus
ausgerollt werden.

Daneben werden noch die folgenden Beitrdge gemacht:

o Ein effizientes approximatives Echtzeitanalyseverfafiie&DF.

e Ein auf die Dynamisierung der Approximation beruhendeslyseverfahren fur
EDF welches teils um GréRenordnungen schneller arbegtetial bisher bekan-
nten Analyseverfahren.

o Einneues effizientes Analyseverfahren fur Prioritéatsdahiag fir Ein-Prozessor-
Systeme.

e Mehr Verstandnis fir die Zusammenhange zwischen den eieaeVlodellen
und fuir die Theorie der Echtzeitanalyse.

Im folgenden stellen wir den ersten Beitrag, die approxivedtchtzeitanalyse am Beispiel
eines mit EDF geplanten Ein-Prozessor-Systems vor. In g@rdximation wird, durch

gezielte Einfiihrung von Ungenauigkeit in die Analyse, dafwand fur dieselbe reduziert.
In Abbildung 10.0.1 ist die Idee der Approximation darg#st&u sehen ist die Ereign-

isfunktion fur eine Task und die vorgeschlagene Approxiomaterselben. Ebenfalls
dargestellt ist die verfigbare Kapazitat in Form der Wihk#bierenden. Die Ereignis-
funktion ist fur das periodische Modell eine einfache Trepfoinktion wobei die Trep-

penbreite durch die Periode der Task und die Treppenhdhehdiie maximale Aus-

fuhrungszeit gegeben ist. Um die Echtzeiteigenschaftdremeisen wird die Rechenzei-
tanforderungsfunktion mit der verfiigbaren Kapazitat irehgn (vgl. Processor-Demand-
Criterion). Dazu muss die Rechenzeitanforderungsfunigioallen fir den Vergleich rel-
evanten Werten (Testpunkten) berechnet werden. Relewvahtlabei alle Treppenstufen.
Es missen alle Testpunkte bis zum maximalen Testinteriablzere Schranke berlick-
sichtigt werden. Der Aufwand der Analyse héngt von der Ahdah Testpunkte, also der

207

¢ (ms)

5(At,T)
}kc;f

At (ms)

FIGURE10.0.1. Approximation einer einfachen Task

Anzahl der Treppenstufen ab. Die approximierte Ereigmisfion ist fir die ersten k Trep-
penstufen identisch mit der exakten Ereignisfunktion. Déteren Treppenstufen werden
durch eine Gerade approximiert. Die Steigung der Gerad&prcht dabei der relativen
Auslastung der Resources durch diese 'I(z%l;.

Die Gerade beriihrt die exakte Ereignisfunktion bei jed@ppenstufe. Die daraus
resultierende maximale Abweichung der approximierterni@azeitanforderungsfunktion
von der exakten Rechenzeitanforderungsfunktion betriagta c™. An dem Punkt, an
dem die approximierte Funktion von der exakten Funktioninr@gabzuweichen, betragt
der Funktionswert mindestetg" da fur die ersten k Treppenstufen beide Funktionen
identisch sind. Daraus ergibt sich ein maximaler relativenler von:

e & _1
ket k

Der Fehler ist nur abhangig vom gewahlten Approximatioktsiak und nicht von
den Parametern der Task und p. Interessant wird die Approximation erst bei mehreren
Tasks. Dabei werden mathematisch die approximierten Reeftanforderungsfunktio-
nen der einzelnen Tasks addiert. Algorithmisch kann die&amung der addierten Funk-
tionen gemeinsam erfolgen. Entscheidend ist, dass sovi@rizahl der Testpunkte als
auch die Approximationsgenauigkeit bei der Addition dgoragimierten Funktionen der
einzelnen Tasks erhalten bleibt. Fir Tasks mit kleinerdelerilund daher meist kleiner
maximaler Ausfuihrungszeit) beginnt die Approximationhieti, fuhrt aber auch nur zu
einer kleinen absoluten Ungenauigkeit, bei Tasks mit gndBeriode (und dabei meist
langen maximalen Ausfiihrungszeiten) beginnt die Appratiom erst spater, wenn die
grofRere absolute Ungenauigkeit sich relativiert. Somitlwei einer gewéhlten Genauigkeit
vonk die Anzahl der maximal zu berechnenden Stitzpunkte dertlumaufnk begrenzt
wobein die Anzahl der Tasks ist. Die maximale Ungenauigkeit bIb'Eb't%.

Die neue Approximation fugt sich nahtlos in die existieremdEchtzeitanalysever-
fahren fiir EDF ein. Es kann bewiesen werden, dass das Verfabn Devi einen Spezial-
fall der Approximation mit einem Approximationsfaktor vke= 1 darstellt. Das Processor-
Demand-Criterion ist natirlich auch nur ein Spezialfall Approximation mitk = co.

208

ratio schedulable tasksets (%)

10 million tasksets with 100 tasks

maximum computation time (ms)

100 r T T
PDC, exact
Superposition (1)
Superposition (2) --------
Superposition (4) e
Superposition (10)
80 Superposition (100) L
Devi - - - -
V"’A.(:_’
60 | h, L
' ‘“‘f-a
40 F
20 Y
"
AR
0 L L L L L L L 3 ;
0 10 20 30 40 50 60 70 80 90 100
utilization (%)
FIGURE 10.0.2. Anteil der als planbar klassifizierten Tasksets
10 million tasksets with 100 tasks
10000 L] L] L] L] L] L] L] AL
Devi
Superposition (1)
Superposition (10) --
Superposition (100)
PDC, exact
1000 ¢
100 - E
10 E
1E H = »
H A ¥ gk o Y
hi iR A i TR
f»\mmw M Mt\»’w ’\W«m,‘!*MMMM W"“W'W*‘W"th M e AMM s
0.1 L L L L L
0 10 20 30 40 50 60 70 80 90 100
utilization (%)
FIGURE 10.0.3. Maximale Laufzeit der Echtzeitanalysen fur ver-

schieden Approximationstufen

In Abbildung 10.0.2 wird die Genauigkeit und in Abbildung.Q(die Laufzeit der

209

1 million task sets with 100 tasks and exp. distr. period
100000 L] L] L] L] L] L] L] L] L]

10000

1000 -

100 L

maximum computation time (ms)

utilization (%)

PDC, exact Superposition (100) -
DynamicError , exact Devi
All-Approximation , exact =-------

FIGURE 10.0.4. Rechenzeiten der dynamischen Approximation und
des Processor-Demand-Criterion

approximativen Analyse fir verschiedene Werte von k daegfesnd mit anderen Echtzei-
tanalyseverfahren verglichen. Fir die Genauigkeit wirbedder Anteil der von dem jew-
eiligem Verfahren als echtzeitfahig klassifizierten Sgeta im Verhéltnis zu den gesamten
untersuchten Systemen dargestellt. Das Processor-De@rétedon begrenzt dabei, als
exaktes Verfahren, den Raum der echtzeitfahigen Systernéallg ist, dass schon fir
relative kleine Werte voik nahezu alle echtzeitféahig Systeme auch als solche klassifiz
werden. Die Rechenzeit der Approximation ist hingegenmeni als die der exakten Anal-
yse.

Durch eine Dynamisierung der Approximation ergeben siclersehnelle exakte Echt-
zeitanalyseverfahren. Bei der Dynamic-Error Analyse wdiel Analyse zundchst mit rel-
ativ geringer Genauigkeik(= 1) gestartet und nur wenn notwendig wird die Genauigkeit
schrittweise gesteigert. Dadurch kdnnen Systeme mit hBbktzeitreserven schnell analy-
siert werden und nur fir Systeme im Grenzbereich zur Nittiredtfahigkeit werden lan-
gere Analysezeiten bendtigt. Die All-Approximation Ansdygeht noch einen Schritt
weiter und wendet die Approximation immer an soweit sie riobght.

In Abbildung 10.0.4 wird die Rechenzeit dieser neuen exeitealyse mit der Rechen-
zeit des Processor-Demand-Criterion verglichen. Es z&ft dass die Rechenzeiten ins-
besondere der All-Approximation Analyse die Rechenzaithigher besten Analyse teil-
weise um GréfRenordnungen unterschreitet.

Die Approximation dient ebenfalls als Grundlage fur neuatEeitanalyseverfahren
fur Ein-Prozessor-Systeme mit statischen Prioritaten.

210

Um die Probleme des Ereignisstrommodells zu Gberwindea &iim neues Ereignis-
modell, die hierarchischen Ereignisspektren, vorgeggmaEs ermdglicht eine effiziente
Modellierung von allen Arten von Ereignisschiiben (BursEh hierarchisches Ereignis-
spektrum® besteht aus einer Menge von hierarchischen Ereignisspe&tementer
mit = (p,a,L, f,é’) wobei p die Periodea den OffsetL die Begrenzung der in einer
Periode maximal von dem Ereignisspektrumelement erzeaghfosten,f eine Erzeu-
gungsrate von Kosten un@ ein Sub-Ereignisspektrum darstellt. begrenzt dabei die
entweder durch oder durch®’ in einer Periode erzeugbaren Kosten, wobei per Definition
in einem Element nur entweder die Erzeugungsrate oder dag®ment aktiv ist (also
entwederf = 0 oder® = 0). Ebenfalls per Definition wird die Seperationsbedingun
gefordert, welche einer Uberlappung verschiedener Pemni@ihes Ereignisspektrumele-
ments verhindert. Dabei wird die Modellierungsméchtigkier hierarchischen Ereignis-
spektren nicht eingeschrankt aber eine effiziente Bereahdar zugehoérigen Funktionen
ermdglicht.

Die hierarchischen Ereignisspektren ermdglichen auch kitegration der Approxi-
mation in das Echtzeitmodell. Damit kénnen bei der Propagig von Ereignisspektren
diese gezielt durch Approximation vereinfacht werden uod die vereinfachten Spek-
tren in der weiteren Analyse verarbeitet werden, ohne dasi weiteren Analyse die
verwendete Approximationgenauigkeit bekannt sein muss.

Bibliography

[1] K. Albers. Erweiterung eines multikriteriellen optierungsverfahrens fir einge-
bettete systeme um ein verfahren zur echtzeitanalyse. eNatesis, Friedrich-
Alexander-Universitat Erlangen, 2002.

[2] K. Albers, F. Bodmann, and F. Slomka. Hierachical evergams and event de-

pendency graphs. IRroceedings of the 18th Euromicro Conference on Real-Time

Systems (ECRTS'Qf)ages 97-106, 2006.

[3] K. Albers, F. Bodmann, and F. Slomka. Run-time efficiegadibility analysis of
uni-processor systems with static priorities.Foceedings of the International Em-
bedded Systems Symposium (IESS 200 .

[4] K. Albers, F. Bodmann, and F. Slomka. Advanced hierar@hievent-stream
model. InProceedings of the 20th Euromicro Conference on Real-Tipstefs
(ECRTS’'08)2008.

[5] K. Albers and F. Slomka. An event stream driven approXiorafor the analysis
of real-time systems. IfEEE Proceedings of the 16th Euromicro Conference on
Real-Time Systems (ECRTS’0Qdages 187-195, Catania, 2004.

[6] K. Albers and F. Slomka. Efficient feasibility analysisrfreal-time systems with

edf-scheduling. IrProceedings of the Design Automation and Test Conference in

Europa (DATE'05) pages 492-497, 2005.

[7] J. Anderson, P. Holmann, and A. Srinivas&tandbook of Schedulinghapter Fair
Scheduling of Real-Time Tasks on Multiprocessors. Chap&nbiall, 2004.

[8] N. Audsley, A. Burns, M. Richardson, K. Tindell, and AWellings. Applying new
scheduling theory to static priority pre-emptive schealylin Software Engineering
Journal 1993.

[9] N.C. Audsley, A.R. Burns, M.F. Richardson, and A.J. Wajk. Hard real-time
scheduling: The deadline monotonic approach.Ptoceedings of the 8th IEEE
Workshop on Real-Time Operating Systems and SoftgEE Computer Society
Press, 1991.

[10] J. Axelsson. Analysis and Synthesis of Heterogeneous Real-Time Systehts
thesis, Linkoping, 1997.

[11] S. Baruah and N. Fisher. The feasibility analysis of tippbcessor real-time sys-
tems. InProceedings of the 18th Euromicro Conference on Real-TigsteBis
(ECRTS’06)pages 85-94, 2006.

[12] S.K. Baruah. A general model for recurring real-timski® InProceedings of the
Real-Time Systems Symposipages 114-122, Madrid, 1998.

211

212 Bibliography

[13] S.K. Baruah. Dynamic- and static-priority schedulwfgecurring real-time tasks.
International Journal of Real-Time Systerid:98-128, 2003.

[14] S.K.Baruah, D. Chen, S. Gorinsky, and A. Mok. Genegrlimultiframe tasksThe
International Journal of Time-Critical Computing Systers:5—-22, 1999.

[15] S.K. Baruah and N. Fisher. The partitioned schedulihthe sporadic real-time
tasks on multiprocessor platforms. Pnoceedings of the International Conference
on Parallel Processing Workshop (ICPPW’'Q2D05.

[16] S.K. Baruah and J. Goossendandbook of Schedulinghapter Scheduling Real-
Time Tasks: Algorithm and Complexity. Chapman & Hall, 2004.

[17] S.K. Baruah, R.R. Howell, and L.E. Rosier. Algorithmmslacomplexity concerning
the preemptive scheduling of periodic, sporadic, reaktiasks on one processor.
International Journal of Real-Time Systeris301-324, 1990.

[18] S.K.Baruah, R.R. Howell, and L.E. Rosier. Feasibifitpblems for recurring tasks
on one processof.heoretical Computer Scienckl8:3-20, 1993.

[19] S.K. Baruah, A. Mok, and L.E. Rosier. Preemptive schi@duhard-real-time spo-
radic tasks on one processor.Rroceedings of the Real-Time Systems Symposium
pages 182-190, 1990.

[20] I. Bates and A. Burns. An integrated approach to schieguh safty-critical em-
bedded control systems. Real-Time Systemgolume 25, pages 5-37, 2003.

[21] G. Bernat. Response time analysis of asynchronougirealsystems. IiReal-Time
Systemsvolume 25, pages 131-156, 2003.

[22] E. Bini and S. Baruah. Efficient computation of respotises bounds under fixed-
priority scheduling. InProceedings of the 15th International Conference on Real-
Time and Network Systen#)07.

[23] E. Biniand G.C. Buttazzo. The space of rate monotortiedalability. InProceed-
ings of the 23th Real-Time Systems Sympqs2002.

[24] E. Bini and G.C. Buttazzo. Biasing effects in schedilisbmeasures. InPro-
ceedings of the 16th Euromicro Conference on Real-Time@gdEEE Computer
Society Press, 2004.

[25] E. Bini and G.C. Buttazzo. Scheduling analysis for péig fixed priority systems.
In IEEE Transactions on Computersumber 53(11), pages 1462-1473, 2004.

[26] E. Bini and G.C. Buttazzo. Measuring the performanceatfedulability tests. In
Real-Time System#lume 30 (1-2), pages 129-154. IEEE Computer SocietysPres
May 2005.

[27] E. Bini, G.C. Buttazzo, and G.M. Buttazzo. A hyperbdiimund for the rate mono-
tonic algorithm. InProceedings of the 13th Euromicro Conference on Real-Time
SystemslEEE Computer Society Press, 2001.

[28] E. Bini, Giorgio. C. Buttazzo, and Giuseppe ButtazzoatdRmonotonic analysis:
the hyperbolic bound. IhEEE Transactions on Computemumber 52(7), pages
933-942, 2003.

[29] T. Blickle, J. Teich, and L. Thiele. Systems-level dyexdis using evolutionary algo-
rithms. Design Automation For Embedded Syste®&{4):23-58, 1998.

Bibliography 213

[30] F. Bodmann, K. Albers, and F. Slomka. Analyzing the timmcharacteristic of task
activations. IrProceedings of the IEEE Symposium on Industrial Embedd&di@g
(IES’06), 2006.

[31] J-Y. Le Boudec and P. Thiran. Network calculus: A theofgleterminstic queuing
systems for the internet. Inecture Notes in Computer Scien&pringer, 2001.

[32] R. Bril, W. Verhaegh, and E. Pol. Initial values for dnd response time calculation.
In Proceedings of the 15th Euromicro Conference on Real-TysteSispages 13—
22, 2003.

[33] A.R. Burns and A.J. WellingsReal-Time Systems and Programming Languages
Addison Wesley, 2nd edition, 1996.

[34] G.C. ButtazzoHard Real-Time Computing Systenkuwer Academic, 1997.

[35] Giorgio C. Buttazzo. Rate monotonic vs. edf: judgmeat.dn Real-Time Systems
volume 29, pages 5-26, Norwell, MA, USA, 2005. Kluwer AcadePRublishers.

[36] J. Carpenter, S. Funk, P. Holmann, A. Srinivasan, J.eksoh, and S.K. Baruah.
Handbook of Schedulinghapter A Categorization of Real-Time Multiprocessor
Scheduling Problems and Algorithm. Chapman & Hall, 2004.

[37] S. Chakraborty, T. Erlebach, and L. Thiele. On the camy of scheduling condi-
tional real-time code. TIK Report 107, ETH Zrich, 2001.

[38] S. Chakraborty, S. Kiinzli, and L. Thiele. Approximathesdulability analysis. In
23rd IEEE Real-Time Systems Symposium (RTS$88¢s 159-168, 2002.

[39] S. Chakraborty, S. Kiinzli, and L. Thiele. Performanealeation of network pro-
cessor architectures: Combining simulation with anafitéstimations.Computer
Networks 41(5):641-665, 2003.

[40] S. Chakraborty and L. Thiele. A new task model for stregrapplications and its
schedulability analysis. IFEEE Proceedings of the Design Autionation and Test
Europe Conference (DATE'0)ages 486—491, 2005.

[41] D. Chen, A. K. Mok, and S. Baruah. On modeling real-tiragkt systems. lhec-
tures on Embedded Systems, European Educational ForurnpSah Embedded
Systemspages 153-169, 1996.

[42] D. Chen, A. K. Mok, and T.-W. Kuo. Utilization bound resifed. InProceedings of
the 6th Real-Time Computing Systems and Applicatigarges 295-302, 1999.

[43] R.L. Cruz. A calculus for network delay. IMEEE Transactions on Information
Theory volume 37, pages 114-141, 1991.

[44] B.P. Dave and N.K. Jha. COHRA: Hardware-software cotisgsis on hierarchical
heterogeneous distributed embedded systems: Hardwhveass cosynthesis on

n

hierarchical heterogeneous distributed embedded syst#ftsE Transactions on
Computer-Aided Design of Integrated Circuits and Systdmgl0):900-919, 1998.
[45] B.P. Dave, G. Lakshminarayana, and N.K. Jha. COSYNudiWare-software co-
synthesis of heterogeneous distributed embedded systi#fEE Transactions on
Very Large Scale Integration (VLSI§(1):92-104, 1999.
[46] U. Devi. An improved schedulability test for uniproses periodic task systems. In
IEEE Proceedings of the 15th Euromicro Conference on Remaé BystemdEEE

214

[47]

(48]

[49]

[50]

[51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

Bibliography

Computer Society Press, 2003.

R. Devillers and J. Goossens. General response tim@utation for the deadline
driven scheduling of periodic tasks. fundamenta Informatica&olume 40, pages
199-219, 1999.

R.P. Dick and N.K. Jha. MOGAC: A multiobjective genegigorithm for hardware-
software co-synthesis of distributed embedded systemiEE Transactions on
Computer-Aided Design of Integrated Circuits and Systdmgl0):920-935, 1998.
M. Dorfel, A. Mitschele-Thiel, and F. Slomka. CORSAIRW/SW-codesign von
kommunikationssystemen mit SDPraxis der Informationsverarbeitung und Kom-
munikation (PIK) 23(1):3-13, 2000.

R. Ernst, M. Jersak, K. Richter, and F. Slomka. Transfation of sdl specifi-
cations for systems-level timing analysis. limternational Symposium on Hard-
ware/Software Co-DesigfEstes Park, 2002.

N. Fisher and S. Baruah. A polynomial-time approxiraatscheme for feasilbility
analysis in static-priority systems. Mork-in-Progress Proceedings of the IEEE
International Real-Time Systems Symposiligssabon, December 2004.

N. Fisher and S. Baruah. A polynomial-time approxiraatscheme for feasibility
analysis in static-priority systems with arbitrary relatdeadlines. IfProceedings
of the 17th Euromicro Conference on Real-Time Syst&alsna de Mallorca, July
2005.

N. Fisher and S. Baruah. A polynomial-time approxiraatscheme for feasibility
analysis in static-priority systems with bounded relatteadlines. IrfProceedings
of the 13th International Conference on Real-Time Syst®auss, April 2005.

N. Fisher, S. Baruah, and T. P. Baker. The partitiondgkdaling of sporadic tasks
according to static-priorities. IRroceedings of the 18th Euromicro Conference on
Real-Time Systems (ECRTS’Q6ges 118-127, 2006.

L. George, N. Rivierre, and M. Spuri. Preemptive and-poeemptive real-time
uni-processor scheduling. Rapport de Recherche RR-28B68A], 1996.

S. GoddardOn the Management on Latency in the Synthesis of Real-Tiooe§3-
ing Systems from Process Graplih. d. dissertation, University of North Carolina
at Chapel Hill, Department of Computer Science, 1998.

S. Goddard and X. Liu. A variable rate execution modePtoceedings of the 16th
Euromicro Conference on Real-Time Systgpages 135-143, 2004.

J. Goossens. Worst case response time versus worsbifsseconfiguration using
the deadline driven scheduler. Rroceedings of the 9th International Conference
on Real-Time Systensages 123-132, 2001.

J. Goossens. Scheduling of offset-free systemd$kdal-Time Systemgolume 24,
pages 239-258, 2003.

K. Gresser. Echtzeitnachweis ereignisgesteuerter Realzeitsystdthd thesis (in
german), Disseldorf, 1993.

K. Gresser. An event model for deadline verification afdhreal-time systems. In
Proceedings of the 5th Euromicro Workshop on Real-TimeeBygs1993.

Bibliography 215

[62] A. Hamann, M. Jersak, K. Richter, and R. Ernst. Desigacspexploration and
system optimization with symta/s-symbolic timing anadyBir systems. IrPro-
ceedings of 25th International Real-Time Systems Sympd@8luiSS’'04)December
2004.

[63] C.-C.Han andH.-Y. Tyan. A better polynomial-time sdh&ability test for real-time
fixed priority scheduling algorithms. IRroceedings of the 18th IEEE Real-Time
Systems Symposium (RTSS, pages 36—45, 1997.

[64] W. Henderson, D. Kendell, and A. Robson. Improving tleeusacy of schedul-
ing analysis applied to distributed systenisternational Journal of Time-Critical
Computing Sysemt20:5-25, 2001.

[65] R. Henia and R. Ernst. Context-aware scheduling armabfsdistributed systems
with tree-shaped task-dependenciesPtaceedings of the Design Automation and
Test Conference in Europa (DATE'Q®ages 480-485, 2005.

[66] J. Hromkovic. Algorithmics for Hard Problems Texts in Theoretical Computer
Science. Springer, 2nd edition, 2003.

[67] K. Jeffay and S. Goddard. A theory of rate-based exeoutin Proceedings of the
20th IEEE Real-Time Systems Symposijpages 304-314, Phoenix, 1999.

[68] D. Jelkmann, K. Albers, and F. Slomka. Improved fedsjbiests for asynchronous
real-time periodic task sets. In Christian Haubelt and iifteich, editorsMetho-
den und Beschreibungssprachen zur Modellierung und Vatiifik von Schaltungen
und Systemer2007.

[69] M. Jersak.Compositional Performance Analysis for Complex Embeddsaiéa-
tions Phd thesis, TU Braunschweig, 2005.

[70] M. Jersak and R. Ernst. Enabling scheduling analysisetérogeneous systems
with multi-rate data dependencies and rate intervalsPrbteedings 40th Design
Automation Conference (DAC’'03)uny 2003.

[71] M. Jersak, R. Henia, and R. Ernst. Context-aware perémce analysis for efficient
embedded system design. Broceedings Design Automation and Test in Europe
(DATE’04). IEEE Computer Society Press, 2004.

[72] M. Jersak, K. Richter, and R. Ernst. Performance aigfgs complex embedded
applications.International Journal of Embedded Syster2804. Special Issue on
Codesign for SoC.

[73] M. Joseph and P. Pandya. Finding response times in dinealsystemBCS Com-
puter Journa) (29 (5)):390-395, 1986.

[74] S. Kollmann, K. Albers, F. Bodmann, and F. Slomka. Magdéifions of event streams
for the real-time analysis of distributed fixed-priorityssgms. In13th IEEE Inter-
national Conference and Workshop on the Engineering of @oenfBased Systems
(ECBS’06) Potsdam, 2006.

[75] S. Kollmann, K. Albers, and F. Slomka. Dependenciesravgaent-driven real-time
analysis for distributed fixed-priority systems. InterRalport 289-vts-60593, Ulm
University, 2007.

216 Bibliography

[76] S. Kunzli. Efficient Design Space Exploration for Embedded Systéthd thesis,
ETH Ziirich No. 16589, 2006.

[77] S.Kinzli, A. Hamann, R. Ernst, and L. Thiele. Combingg@ach to system level
performance analysis of embedded systemsPdeeedings of the 5th IEEE/ACM
International Confernence on Hardware/Software Codesigd System Synthesis
pages 63-68, 2007.

[78] T.-W. Kuo and A. K. Mok. Load adjustment in adaptive réiate systems. In
Proceedings of the IEEE Real-Time Systems Sympp$R6n.

[79] J. Lehoczky. Fixed priority scheduling of periodickasets with arbitary deadlines.
In Proceedings of the 11th IEEE Real-Time Systems Symposil&s(80) pages
201-209, 1990.

[80] J. Lehoczky, L. Sha, and Y. Ding. The rate-monotonicesithing algorithm: Ex-
act characterization and average case behaviouPrdoeedings of the Real-Time
Systems Symposiuir989.

[81] J. Lehoczky, L. Sha, J. Strosnider, and H. Tokuda. Fixgarity scheduling theory
for hard real-time systems. IFoundations of Real-Time Computing: Scheduling
and Resource Managemepages 1-30. Kluwer Academic Publishers, 1991.

[82] J. Leung, editor.Handbook of Scheduling: Algorithm, Models and Performance
Analysis Chapman & Hall, 2004.

[83] J. Leung and M.Merril. A note on preemptive schedulifiperiodic real-time tasks.
In Information Processing Lettevolume 11, pages 115-118, 1980.

[84] J. Leung and J. Whitehead. On the complexity of fixeanity scheduling of peri-
odic real-time tasksPerformance Evaluatigr2(4):237-250, 1982.

[85] G. Lipariand G.C. Buttazzo. Schedulability analydiperiodic and aperiodic tasks
with ressource constraintdournal of System Architectyrgl6):327-338, 2000.

[86] H. Lipskoch, K. Albers, and F. Slomka. Battery dischaeyvare energy feasibility
analysis. InProceedings of the 4th international conference on Hara#&oftware
Codesign and system synthepages 22—27, New York, NY, USA, November 2006.
ACM Press.

[87] H. Lipskoch, K. Albers, and F. Slomka. Fast calculatadrpermissable slowdown
factors for hard real-time systems. Broceedings of the 17th International Work-
shop on Power and Timing Modeling, Optimization and SinoatPATMOS’07)
number 4644 in Springer Lecture Notes in Computer Scienbkc@), 2007.

[88] C. Liu and J. Layland. Scheduling algorithms for muiigramming in hard real-
time enviromentsJournal of the ACM20(1):46-61, 1973.

[89] H. Liu and X. Hu. Efficient performance estimation forggeal real-time task sys-
tems. Ininternational Conference on Computer Aided Desigages 464—471,
2001.

[90] J.W.S. Liu.Real-Time SystemBrentice-Hall Inc., Upper Saddle River, New Jersey,
2000.

[91] J. Maki-Turja and M. Nolin. Efficient response-time &rsis for tasks with offsets.
In 10th IEEE Real-Time and Embedded Technology and Applitest&ymposium

Bibliography 217

(RTAS'04) pages 462—-471, 2004.

[92] Y. Manabe and S. Aoyagi. A feasibility decision algbrit for rate monotonic and
deadline monotonic schedulinBeal-Time Systemgl4):171-181, 1998.

[93] A. Masrur, S. Drossel, and G. Farber. Improvements igmamial-time feasibility
testing for edf. InProceedings of the Design Automation and Test Conference in
Europa (DATE'08) pages 1033-1038, 2008.

[94] A. Masrur and G. Farber. Ideas to improve the performancfeasibility testing
for edf. In Tei-Wei Kuo, editorProceedings Work-In-Progress Session of the 18th
Euromicro Conference on Real-Time Systgnages 17-20, 2006.

[95] A. Maxiaguine, S. Kinzli, and L. Thiele. Workload chatarization model for
tasks with variable execution demand. Rroceeding Design Automation and Test
in Europa (DATE’04) pages 1040-1045. IEEE Computer Society, 2004.

[96] A. Mok and D. Chen. A multiframe model for real-time taskEEE Transactions
on Software Engineerin@3(10), 1997.

[97] M. Di Natale and J. Stankovic. Dynamic end-to-end goggas in distributed real-
time systems. IrProceedings of the IEEE Real-Time Systems Symppgiages
216-227,1994.

[98] J. C. Palencia and M. Gonzalez Harbour. Offset-bassplarse time analysis of
distributed systems scheduled under edfHBE Proceedings of the 15th Euromicro
Conference on Real-Time Systems (ECRTSZIR)3.

[99] J. C. Palencia Gutiérrez, J. J. Gutiérrez Garcia, an®bhzalez Harbour. On the
schedulability analysis for distributed hard real-timsteyns. INEEE Proceedings
of the 9th Euromicro Workshop on Real-Time Systgrages 136-143, 1997.

[100] J. C. Palencia Gutiérrez, J. J. Gutiérrez Garcia, an@bhzalez Harbour. Best
case analysis for improving the worst-case schedulaliéy for distributed hard
real-time systems. IRroceedings of the 10th Euromicro Workshop on Real-Time
Systemgpages 35-44, Berlin, 1998.

[101] A.K. Parekh and R.G.Gallager. A generalized proceskaring approach to flow
control in integrated service networks. IBEE/ACM Transactions on Networking
volume 1, pages 344-357, 1993.

[102] D. Park, S. Natarajan, and M.J. Kim. A generalizedzdtion bound test for fixed-
priority real-time scheduling. IRroceedings of the 2nd International Workshop on
Real-time Systems and Applicatippages 73—76, 1995.

[103] M. Park and Y. Cho. An efficient feasibility test methfod hard real-time periodic
tasks. InThe 21th IEEE Real-Time Systems Symposidd0.

[104] R. Pellizzoni and G. Lipari. A new sufficient feasibjlitest for asynchronous pe-
riodic real-time task sets. IRroceedings of the 16th Euromicro Conference on
Real-Time Systempages 204-211, 2004.

[105] R. Pellizzoni and G. Lipari. Feasibility analysis afat-time periodic tasks with
offsets.Journal of Real-Time Systen80(1-2):105-108, 2005.

[106] R. Pellizzoni and G. Lipari. Improved schedulabilapalysis of real-time trans-
actions with earliest deadline scheduling. Iitth IEEE Real-Time and Embedded

218 Bibliography

Technology and Application Systerpages 65—75, 2005.

[107] P. Pop, P. Eles, and Z. Peng. Schedulability analysiiéterogenous time/event
triggered real-time systems. IBEE Proceedings of the 15th Euromicro Conference
on Real-Time Systems (ECRTS;@)03.

[108] P. Pop, P. Eles, Z. Peng, and V. Izosimov. Schedutgpitiriven partitioning and
mapping for multi-cluster real-time systems. IEEE Proceedings of the 16th Eu-
romicro Conference on Real-Time Systems (ECRTS2DOM4.

[109] P. Pop, P. Eles, Z. Peng, and T. Pop. Scheduling and imgappan incremental
design methodology for distributed real-time systems.|HEE Transactions on
Very Large Scale Integration (VLSKolume 12(8), pages 793-811, 2004.

[110] R. Racu, M. Jersak, and R. Ernst. Applying sensitigbalysis in real-time dis-
tributed systems. Ida1th IEEE Real-Time and Embedded Technology and Applica-
tion Symposiunpages 160-169, 2005.

[111] O. Redell. Accounting for precedence constrainth@analysis of tree-shaped tran-
scations in distributed real-time systems. trita-mmk 4y& énstitute of Technology
(KTH), Stockholm, 2003.

[112] O. Redell.Response Time Analysis for Implementation of Distributent@| Sys-
tems Phd thesis, trita-mmk 17, Royal Institute of Technology g, Stockholm,
2003.

[113] O. Redell. Analysis of tree-shaped transactions sirifiuted real time systems.
In IEEE Proceedings of the 16th Euromicro Conference on Remaé&TSystems
(ECRTS'04))pages 239-248, 2004.

[114] O. Redell and M. Sanfridson. Exact best-case respimseanalysis of fixed prority
scheduled tasks. IRroceedings of the 14th International Conerence on RealkeTi
Systems (ECRTS’'Q3)ages 165-172, Vienna, 2002.

[115] O. Redell and M. Térngren. Calculating exact worsteceesponse times for static
priority scheduled tasks with offsets and jitter. Rroceedings of the 8th Real-Time
and Embedded Technology and Application Symposium (RZABdpes 164-172,
San Jose, 2002.

[116] P. Richard. On the complexity of scheduling real-tiimsks with self-suspension on
one processor. IiEEE Proceedings of the 15th Euromicro Conference on Reaé T
Systems (ECRTS’03)003.

[117] K. Richter.Compositional Scheduling Analysis Using Standart Everdét Phd
thesis, TU Braunschweig, 2005.

[118] K. Richter and R. Ernst. Event model interfaces forenegjeneous system anal-
ysis. In Proceedings of the Design Automation and Test Conferend¢&uinpe
(DATE’02), 2002.

[119] I. Ripoll, A. Crespo, and A. Mok. Improvement in feaiditly testing for real-time
tasks.Real-Time System$1(1):19-39, 1996.

[120] M. Rudorfer, T. Ochs, M. Thiede, M. Missmer, O. Schéjiehnd H. Heinecke. Re-
altime system design using autosar methodologiléktronik automotive: Special
issue AUTOSAR007.

Bibliography 219

[121] P. ScholzSoftwareentwicklung eingebetteter Syste8m@ringer, 2005.

[122] M. Sjodin and H. Hansson. Improved response-timeyaigtalculations. IhEEE
Proceedings of the 19th Real-Time Systems Symposium @3),3998.

[123] F. Slomka. New techniques for the design of distridigenbedded real-time sys-
tems. InProceedings of the Embedded World Confere2665.

[124] F. Slomka. Simulation of distributed embedded r@aktsystems. 113th GI/ITG
Conference on Measurement, Modeling and Evaluation of @oenand Commu-
nication Systemgpages 449-452, 2006.

[125] M. Spuri. Analysis of deadline scheduled real-timsteyns. Interner Bericht 2772,
INRIA, 1996.

[126] J.A. Stankovic, M. Spuri, K. Ramamriham, and G.C. Batio.Deadline Scheduling
for Real-Time Systems: EDF and Related AlgorithKiswer Academic, 1998.

[127] L. Thiele, S. Chakraborty, M. Gries, and S. Kiinzli. @gsspace exploration for
the network processor architectures1B8t Workshop on Network Processors at the
8th International Symposium for High Performance Compirehitectures2002.

[128] L. Thiele, S. Chakraborty, and M. Naedele. Real-tirakealus for scheduling hard
real-time systems. IRroceedings of the IEEE Conference of Circiuts and Systems
2000.

[129] K. Tindell. Adding time-offsets to schedulability alysis. Technical Report YCS
221, University of York, Dep. of Computer Science, Englath@R4.

[130] K. Tindell and J. Clark. Holistic schedulability agals for distributed hard real-
time systemsMicroprocessing and Mircoprogramming0(23):117-134,1994.

[131] E. Wandler.Modular performance analysis and interface-based desigembed-
ded real-time system$&hd-thesis nr. 16819, ETH Zirich, 2006.

[132] E. Wandler, A. Maxiaguine, and L. Thiele. Quantitatieharacterization of event
steams in analysis of hard real-time applications. Phoceedings of the 10th
IEEE Real-Time and Embedded Technology and Applicatiop8sitmm (RTAS'04)
pages 450-459, Toronto, 2004.

[133] E. Wandler and L. Thiele. Characterizing workloadretations in multi processor
hard real-time systems. Proceedings of the 11th IEEE Real-Time and Embedded
Technology and Application Symposium (RTAS'@s)ges 46-55, San Francisco,
2005.

