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1. Introduction

1.1. Motivation

In classical portfolio allocation problems an investor may invest his wealth in a financial
market, which usually consists of a finite number of risky assets and a riskless asset.
Thereby he wants to find the “best“ investment policy. In order to determine such a policy,
he first of all needs to choose a performance criteria. A very popular one is, for example,
the maximization of the expected utility of terminal wealth.
Originally, this problem was studied by Robert C. Merton in Merton (1969). In the
framework of a Black-Scholes market and a CRRA utility function, he found out that the
optimal investment policy can be described by a fixed proportion of wealth, which should
be put in the risky asset. Furthermore, he showed that this proportion admits an explicit
expression. However, while applying this policy the investor has to adjust his portfolio
continuously, since his wealth is changing at all times.
Moreover, in Merton (1969) it is assumed that the market is perfectly liquid, i.e. the
investor’s transactions do not influence the asset price and they are executed immediately.
Obviously, most markets are not perfectly liquid, since at least one of these assumptions
fails. Hence, it is more realistic to take the liquidity risk into account.
In the literature there are many ways to model liquidity risk. An overview of the most
common approaches is given in the following:

• Transaction costs: In Davis & Norman (1990) the liquidity risk is measured by means
of transaction costs. In principal, the investor can trade whenever he wants, but high
frequency trading is impossible due to large transaction costs.

• Price impacts due to transactions: Subramamian & Jarrow (2001) and Cetin et al.
(2004) use an approach to model liquidity risk by price impacts due to transactions.
Such a kind of liquidity risk can for for example be observed when considering large
traders.

• Restriction of trading times: In Rogers (2001), Rogers & Zane (2002), Matsumoto
(2003, 2006, 2007, 2009), Pham & Tankov (2008, 2009) and Gassiat et al. (2011)
the liquidity risk is modeled by assuming that trading is only possible at some
exogenous random times, which are given by the jump times of a Poisson process.
Such a situation occurs for example in over-the-counter markets. In those markets
transactions may not be executed immediately, due to the lack of a counter party.
Thus the investor has to wait until his transaction takes place.

1



2 1. Introduction

In the current work, we will use the last approach to take the liquidity risk into account.
During the last years, one could observe a rather volatile behavior in the financial markets.
When the housing bubble busted, stock exchanges rode roller coasters and investors had
big problems to control their risks. In such uncertain times, it is reasonable to save parts of
made gains immediately, since otherwise they may be gone a moment later. Therefore, we
introduce in our model a drawdown constraint, which restricts the policies in such a way,
that the investor’s terminal wealth is always greater than or equal to a certain percentage
of his maximal observed wealth. Hence, if he makes money, the wealth process rises and
he saves parts thereof. Portfolio optimization problems with such a drawdown constraint
are, among others, discussed in Grossman & Zhou (1993), Cvitanic & Karatzas (1995),
Elie & Touzi (2008) and Elie (2008).

1.2. Overview and contributions of this thesis

In the sequel we present a short survey of literature concerned with portfolio optimization
problems in illiquid markets, where the liquidity risk is modeled by exogenous random
times, at which trading is possible:

• In the work of Rogers & Zane (2002), they consider a Black-Scholes market and an
investor, who can invest his money in a riskless bank account and a stock. Thereby he
can only transfer his money between the assets at the jump times of a homogeneous
Poisson process. The investor wants to maximize the expected utility of consumption
over an infinite horizon. Furthermore, it is assumed that the investor has a CRRA
utility function.

• Pham & Tankov (2008, 2009) extend the investment consumption problem of Rogers
& Zane (2002) to a more general market and a larger class of utility functions.

• Matsumoto (2003, 2006) considers terminal wealth problems with a finite horizon
and a CRRA utility function in a market, which coincides with the one in Rogers &
Zane (2002). This approach is extended to a more general market and a larger class
of utility functions in the present work.

Table 1.1 on the next page gives an overview over the above mentioned works and shows,
how this work contributes to that research area.

In the present work we consider terminal wealth problems in an illiquid jump market
with a general utility function. In contrast to the above mentioned works, we assume
that the random times, at which trading is possible, are given by the jump times of an
inhomogeneous Poisson process. This approach has the advantage that we are able to
model time periods with different levels of liquidity risk.
Moreover, we include in our model a drawdown constraint, which guarantees that the
wealth process does not fall under a fixed percentage of the investor’s maximal observed
wealth. This enables the investor to save parts of the gains, which have been made
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Investment / Consumption
problem

Terminal wealth problem

Black-Scholes market
and CRRA utility
function

Rogers & Zane (2002) Matsumoto (2003, 2006)

Jump markets and gen-
eral utility functions Pham & Tankov (2008, 2009)

solved in the present
work as a special case

Table 1.1.: Overview of existing research without a drawdown constraint

during the investment period. That additional feature makes the objective of our portfolio
optimization problem more interesting for risk sensitive investors. If we set the fixed
percentage equal to zero, then the drawdown constraint vanishes and we are dealing with
classical terminal wealth problems, which are mentioned as a special case in Table 1.1.

By following the ideas of Bäuerle & Rieder (2009), we show that the terminal wealth
problem with the mentioned drawdown constraint can be reduced to a contracting Markov
Decision Process. The benefit of that reduction is given in the opportunity to apply
the general results of MDP-Theory to that problem. Because of that consideration, we
are able to show that there exists an optimal portfolio and that the value function can
be characterized as the unique fixed point of the maximal reward operator. Moreover,
Howard’s policy improvement algorithm is valid and can be used to compute an optimal
policy.

The work of Gassiat et al. (2011) plays a special role, since they are considering a non-
standard objective. More precisely, they assume an inhomogeneous Poisson process with
an increasing intensity process such that the jump times (τn) of the process converge
increasingly to the finite horizon. Then they maximize the following objective

E

[
U
(

lim
n→∞

Xτn

)]
,

where U denotes the investor’s utility function and Xτn his wealth at time τn. We will
extend their model by introducing the same drawdown constraint as above and reduce
the problem to a limsup Markov Decision Process. Then, we will solve that limsup MDP
by applying a Structure Theorem, which we develop for those limsup MDPs. It turns
out that the solution of the limsup MDP is close to the solution of the contracting MDP
from above. Furthermore, under mild assumptions we can show, that one can approximate
the value function of the limsup MDP by the value function of a contracting MDP. Since
such an approximation can also be shown for the optimal policy, the limsup MDP can be
considered as a limit case of the contracting MDP.



4 1. Introduction

1.3. Outline of this thesis

The remaining parts of this work are organized as follows: In Chapter 2 we introduce
inhomogeneous Lévy processes, which will be used to model the returns of the assets prices.
We show, that they are additive processes and semimartingales. Further, we introduce
an assumption under which an inhomogeneous Lévy processes is a special semimartingale
and develop its canonical representation. This assumption also implies a finite exponential
moment, which will be used frequently in the subsequent chapters. Finally, we study
the stochastic exponential of an inhomogeneous Lévy processes and proof some auxiliary
results. At the end we have a closer look at a special case, the inhomogeneous Poisson
processes, and derive some of their properties.

Chapter 3 is concerned with the introduction of the terminal wealth problem. We setup an
illiquid financial market, in which we have a risky asset driven by an inhomogeneous Lévy
process, a riskless asset and exogenous random times, at which trading is possible. The
random times are given by the jump times of an inhomogeneous Poisson process. Then an
investor is introduced and we determine his wealth process and establish the drawdown
constraint as well as the class of admissible policies. At the end, we formulate the investor’s
terminal wealth problem and discuss two major cases of the underlying inhomogeneous
Poisson process.

In Chapter 4 we solve the investor’s terminal wealth problem under the assumption of a
bounded intensity process of the inhomogeneous Poisson process. Thereby we will show,
that the terminal wealth problem can be reduced to discrete-time optimization problem
- a contracting Markov Decision Process - by means of which we can compute the value
function and the optimal policy. In the main results (Theorem 4.10) we proof that the value
function can be characterized by the unique fixed point of the maximal reward operator
and that there exists an optimal stationary policy. Since the Markov Decision Process is
contracting Howard’s policy improvement algorithm (Theorem 4.11) is valid and can be
used to approximate an optimal policy. Last but not least, we derive a separation ansatz
for the value function under the assumption of a CRRA utility function.

In Chapter 5 we deal with a terminal wealth problem under the assumption of an unbounded
intensity process of the inhomogeneous Poisson process. Due to that assumption the
exogenous random times converge increasingly to the investor’s finite horizon and hence
the investor can not observe his wealth at the horizon. However, since the left sided limit
of the wealth process exists at the end of the investment period and is observable, we may
consider that limit as the investor’s terminal wealth. As in Chapter 4, the considered
optimization problem can be reduced to a discrete-time problem, a so called limsup Markov
Decision Process, by means of which we can compute the value function and the optimal
policy. The main results (Theorem 5.12) cover the following: The value function can be
characterized by the unique fixed point of the maximal reward operator, which satisfies
some additional conditions, and there exists an optimal stationary policy. Moreover, there
is also a separation ansatz for the value function under a CRRA utility function.

In Chapter 6 we show under a mild assumption that we may approximate a terminal
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wealth problem with an unbounded intensity process by a terminal wealth problem with a
bounded intensity process. This approximation includes convergence of the value function
as well as convergence of the optimal policy.

Finally, we illustrate the results of the previous chapters in Chapter 7. Therefore we
assume a classical Black-Scholes market and a Power Utility function. Then we make use
of the separation ansatz and solve the terminal wealth problem for different intensities
and different levels of the drawdown constraint. Moreover, these examples suggest to
use a generalized Merton policy, which simply neglects the intensity process. This policy
approximates the optimal policies very well, hence we are able to make a recommendation
for practitioners.





2. Inhomogeneous Lévy processes

In this chapter we introduce inhomogeneous Lévy processes by following (Kluge, 2005,
§1.3). For the sake of completeness, we will also give some of the short proofs. In the
following chapters these inhomogeneous Lévy processes will be used to model the returns
of the assets prices.

Inhomogeneous Lévy processes are a subclass of additive processes, which include all
Lévy processes. This subclass enlarges the class of Lévy processes in such a way that
the condition of stationary increments is no longer required. This enlargement has the
advantage that the deterministic characteristics of such processes, which describe the local
behavior, may now depend on time. Among others, this enables us to model a seasonal
asset price dynamic. Such a seasonal dynamic can for example be observed in energy
markets. For more details on energy markets and an extensive treatment of price dynamics
in those markets we refer to (Benth et al., 2008, Section 1.5).
Further, inhomogeneous Lévy processes have a absolutely continuous characteristics, which
implies that they are semimartingales and hence the powerful tool of stochastic integration
can be used. Finally, the generalization of Lévy processes does not come at a high price,
since inhomogeneous Lévy processes are still good to handle.
We also introduce inhomogeneous Poisson processes. These processes arise as special cases
of the inhomogeneous Lévy processes, if the corresponding intensity process is bounded.

This chapter is organized as follows: In the first section we introduce inhomogeneous
Lévy processes and derive some of their properties. In Section 2.2 we formulate an
assumption, under which an inhomogeneous Lévy process has a finite exponential moment
and is a special semimartingale. Moreover, we derive the canonical representation of an
inhomogeneous Lévy process under that assumption. That the stochastic exponential of an
inhomogeneous Lévy process is a Markov process is proven in Section 2.3. The next section
presents some auxiliary results, which are needed in the following chapters. In the last
section we introduce inhomogeneous Poisson processes and derive some of their properties.

2.1. Definition and properties

Let us fix a probability space (Ω,F ,P) equipped with a filtration F = (Ft)t≥0. It is
assumed that the filtered probability space (Ω,F ,F,P) satisfies the usual conditions. In
the following, all stochastic processes are defined on that complete stochastic basis and
they are assumed to be R-valued.

7



8 2. Inhomogeneous Lévy processes

Definition 2.1

An F-adapted càdlàg process (Lt) is an inhomogeneous Lévy process, if the following holds:

1. (Lt) has independent increments, i.e. Lt − Ls is independent of Fs for
0 ≤ s ≤ t <∞.

2. For every t ∈ [0,∞), the law of Lt is characterized by the characteristic function

E
[
eiuLt

]
= exp

∫ t

0

[
iubs −

1

2
u2cs +

∫
R

(eiux − 1− iux1{|x|≤1})Fs(dx)

]
ds , (2.1)

where b : [0,∞)→ R and c : [0,∞)→ [0,∞) are measurable functions and (Fs)s≥0

is a kernel, such that Fs is a Lévy measure for each s. It is further assumed that

|bs|+ |cs|+
∣∣∣∣ ∫
R

(x2 ∧ 1)Fs(dx)

∣∣∣∣ ≤ C1
L , ∀s ≥ 0 ,

for some positive constant C1
L.

Furthermore, we call (b, c, F ) := (bs, cs, Fs)s≥0 the characteristics of the inhomogeneous
Lévy process (Lt).

Since Lévy processes are infinitely divisible, we can fall back to them to show that
inhomogeneous Lévy processes are also infinitely divisible. Later, this property of the
inhomogeneous Lévy processes enables us to use the well-known results of infinitely divisible
distributions when handling such processes.

Proposition 2.2

Let (Lt) be an inhomogeneous Lévy process. Then the distribution of Lt is infinitely
divisible with Lévy-Khintchine triplet (b, c, F ), where

b :=

∫ t

0
bsds , c :=

∫ t

0
csds , F (dx) :=

∫ t

0
Fs(dx)ds .

Proof:

Fix t ∈ [0,∞). By applying monotone convergence, we can show the σ-additivity of

F (dx) :=

∫ t

0
Fs(dx)ds

and conclude that F is a positive Borel measure on R. Moreover, we have

F (A) =

∫ t

0

∫
R

1AFs(dx)ds , ∀A ∈ B(R) ,
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and so ∫
R

(x2 ∧ 1)F (dx) =

∫ t

0

∫
R

(x2 ∧ 1)Fs(dx)ds ≤ C1
L · t <∞ ,

as well as F ({0}) = 0. Then the claim follows by (2.1) and (Applebaum, 2009, Theorem
1.2.14). �

Theorem 2.3

An inhomogeneous Lévy process (Lt) is an additive process.

Proof:

First, we check the properties of Definition B.9 to show that we have an additive process
in law:

Property 1: (Lt) has independent increments by definition.

Property 2: This property follows with the characteristic function of L0.

Property 3: Let 0 ≤ s ≤ t <∞. Using the independent increment property of (Lt) yields

E
[
eiuLt

]
= E

[
eiu(Lt−Ls+Ls)]

= E
[

cos(u(Lt − Ls + Ls))
]

+ iE
[

sin(u(Lt − Ls + Ls))
]

= E
[
eiu(Lt−Ls)]E[eiuLs] .

Therefore, we get

E
[
eiu(Lt−Ls)] =

E
[
eiuLt

]
E
[
eiuLs

]
= exp

∫ t

s

(
iubv −

1

2
cvu

2 +

∫
R

(
eiux − 1− iux1{|x|≤1}

)
Fv(dx)

)
dv .

By (Elstrodt, 1999, Folgerung VII.4.12 a) & Satz VII.4.14) the exponent in the last line

is continuous, thus Lt − Ls
s→t−−→ 0 in distribution. This implies that Lt − Ls

s→t−−→ 0 in
probability. Hence (Lt) is stochastically continuous.

Now the claim follows using the fact that every inhomogeneous Lévy process is càdlàg by
definition. �

Now we are able to derive some properties of inhomogeneous Lévy processes from additive
processes. However, since there are processes with independent increments which are not
semimartingales (see (Jacod & Shiryaev, 2003, Chapter II, §4c))), we do not know if the
framework for stochastic integration and stochastic differential equations remains valid for
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the introduced inhomogeneous Lévy processes. This issue will be answered in the following
theorem by means of Theorem B.4.

Theorem 2.4

An inhomogeneous Lévy process (Lt) is a semimartingale.

Proof:

Consider the function

t→
∫ t

0

[
iubs −

1

2
u2cs +

∫
R

(eiux − 1− iux1{|x|≤1})Fs(dx)

]
ds .

By (Elstrodt, 1999, Folgerung VII.4.12b), Satz VII.4.14) this is a function of finite variation
and so is

t→ exp

∫ t

0

[
iubs −

1

2
u2cs +

∫
R

(eiux − 1− iux1{|x|≤1})Fs(dx)

]
ds .

Then the claim follows by Theorem B.4. �

Remark 2.5

Note that a complex valued process is of finite variation, if its real and purely imaginary
parts are of finite variation, see (Jacod & Shiryaev, 2003, page 86).

A semimartingale can be described by its characteristics. Therefore we derive here the
characteristics of an inhomogeneous Lévy process.

Proposition 2.6

The semimartingale characteristics of an inhomogeneous Lévy process (Lt) associated with
the truncation function 1{|x|≤1}, are given by

Bt =

∫ t

0
bsds , Ct =

∫ t

0
csds , ν([0, t]×A) =

∫ t

0

∫
A
Fs(dx)ds (A ∈ B(R)) .

Proof:

Consider

A(u)t := iuBt −
1

2
Ctu

2 +

∫ t

0

∫
R

(eiux − 1− iux1{|x|≤1})ν(ds, dx)

=

∫ t

0
iubsds−

1

2

∫ t

0
csu

2ds+

∫ t

0

∫
R

(eiux − 1− iux1{|x|≤1})Fs(dx)ds .

As before this is a continuous function in t, which has finite variation. Thus

E [A(u)]t = expA(u)t = E
[
eiuLt

]
.
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The independent increment property yields

E[eiuLt |Fs]
E[eiuLt ]

=
E[eiu(Lt−Ls+Ls)|Fs]

E[eiuLt ]
=
E[eiu(Lt−Ls)|Fs]eiuLs

E[eiuLt ]
=

eiuLs

E[eiuLs ]
.

Hence
eiuLt

E[eiuLt ]

is a martingale and with (Jacod & Shiryaev, 2003, Corollary II.2.48) the claim follows. �

2.2. Exponential moment and canonical representation

In this work we assume that every arising inhomogeneous Lévy process has a finite
exponential moment. For that purpose we require the following assumption, which stands
in force for the rest of this chapter.

Assumption 2.7

There is a positive constant C2
L such that∫
|x|≥1

exFs(dx) ≤ C2
L , s ≥ 0 .

Under this assumption, we are now able to proof that the exponential moment of an
inhomogeneous Lévy process is finite.

Theorem 2.8

Fix t ∈ [0,∞). For an inhomogeneous Lévy process (Lt), we have

E
[
eLt
]
<∞ .

More precisely, E
[
eLt
]

= eψ(−i), where

ψ(u) = iu

∫ t

0
bsds−

1

2
u2

∫ t

0
csds+

∫ t

0

∫
R

(eiux − 1− iux1{|x|≤1})Fs(dx)ds .

Proof:

Fix t ∈ [0,∞). Let (L̃t) be a Lévy process, such that Lt ∼ L̃1. Then its generating triple
is given by (b, c, F ) as introduced in Proposition 2.2. Moreover,∫

{|x|≥1}
exF (dx) =

∫ t

0

∫
{|x|≥1}

exFs(dx)ds ≤ C2
L · t <∞ , ∀t ∈ [0,∞) ,
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which yields with (Sato, 2005, Theorem 25.17)

E
[
eL̃1
]
<∞ .

Further, we conclude that

E
[
eL̃1
]

= eψ(−i) ,

where ψ is the characteristic exponent of the Lévy process (L̃t). Now the claim follows
since L̃1 ∼ Lt. �

Corollary 2.9

Fix 0 ≤ s ≤ t <∞. Then it holds for an homogeneous Lévy process (Lt)

E
[
eLt−Ls

]
= exp

∫ t

s

(
bu +

1

2
cu +

∫
R

(
ex − 1− x1{|x|≤1}

)
Fu(dx)

)
du .

Proof:

Using the independent increment property of (Lt) yields

E
[
eLt
]

= E
[
eLt−Ls+Ls

]
= E

[
eLt−Ls

]
E
[
eLs
]
.

Therefore

E
[
eLt−Ls

]
=
E
[
eLt
]

E
[
eLs
] = exp

∫ t

s

(
bu +

1

2
cu +

∫
R

(
ex − 1− x1{|x|≤1}

)
Fu(dx)

)
du .

�

We have already shown in Theorem 2.4 that each inhomogeneous Lévy process is a
semimartingale. Yet, under Assumption 2.7, the following stronger result can be shown.

Proposition 2.10

An inhomogeneous Lévy process (Lt) is a special semimartingale, if inf{∆Lt, t > 0} > −1.

Proof:

Since Fs(dx) is a positive measure,

t→
∫ t

0

∫
R

(x2 ∧ |x|)Fs(dx)ds
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is an increasing, continuous, deterministic process with finite variation. Furthermore∫ t

0

∫
R

(x2 ∧ |x|)Fs(dx)ds =

∫ t

0

∫
|x|≤1

x2Fs(dx)ds+

∫ t

0

∫
|x|>1

|x|Fs(dx)ds

≤
∫ t

0

∫
|x|≤1

x2Fs(dx)ds+

∫ t

0

∫
|x|>1

exFs(dx)ds

≤
∫ t

0
C1
Lds+

∫ t

0
C2
Lds = (C1

L + C2
L)t <∞ .

Hence, by (Jacod & Shiryaev, 2003, Prop. II.2.29 a)) we conclude that (Lt) is a special
semimartingale. �

The following canonical representation of an inhomogeneous Lévy process (Lt) simplifies
the handling of those processes considerably.

Theorem 2.11

Let (Lt) be an inhomogeneous Lévy process such that inf{∆Lt, t > 0} > −1. Then we
have the following canonical representation

Lt =

∫ t

0
b
′
sds+

∫ t

0

√
csdWs +

∫ t

0

∫
R

x(µL − ν)(ds, dx) ,

where b
′
s := bs +

∫
R

(x− x1{|x|≤1})Fs(dx). Moreover, we have

|b′s| ≤ C1
L + C2

L .

Proof:

Let (Lt) be an inhomogeneous Lévy process with semimartingale characteristic (B,C, ν).
Due to Proposition 2.6 and Theorem B.7 we get

Lt = L0 +At + Lct +

∫ t

0

∫
R

x(µL − ν)(ds, dx) ,

where

At =

∫ t

0
bsds+

∫ t

0

∫
R

(x− x1{|x|≤1})Fs(dx)ds .

Note that Lc is a continuous local martingale due to (Jacod & Shiryaev, 2003, Prop. I.4.27).
Because

〈Lc, Lc〉 =

∫ t

0
csds ,

we obtain with (Jacod & Shiryaev, 2003, Theorem II.4.4)

Lct =

∫ t

0

√
csdWs .
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Finally we have

Lt =

∫ t

0
b
′
sds+

∫ t

0

√
csdWs +

∫ t

0

∫
R

x(µL − ν)(ds, dx) ,

where b
′
s := bs +

∫
R

(x− x1{|x|≤1})Fs(dx).

Moreover,

|b′s| ≤ |bs|+
∫
R

(x− x1{|x|≤1})Fs(dx) ≤ C1
L +

∫
x≥1

xFs(dx)

≤ C1
L +

∫
x≥1

exFs(dx) ≤ C1
L + C2

L .

�

2.3. The Markov property of the stochastic exponential

With (Protter, 2005, Theorem V.32) it follows that the stochastic exponential of a Lévy
process is a Markov process. This remains true for an inhomogeneous Lévy process, if the
process has only jumps greater that minus one.

Theorem 2.12

Let (Lt) be an inhomogeneous Lévy process such that inf{∆Lt, t > 0} > −1. Then the
stochastic exponential E(L)t of (Lt) is a Markov process.

Proof:

Let St := E(L)t. We have to show that for s ≤ t

E
[
g(St)|Fs

]
= E

[
g(St)|σ(Ss)

]
,

for any bounded measurable function g. Therefore consider

E
[
g(St)|Fs

]
= E

[
g(StSs · Ss)|Fs

]
, E

[
g(St)|σ(Ss)

]
= E

[
g(StSs · Ss)|σ(Ss)

]
.

Since

St
Ss

=
eLt−

1
2

∫ t
0 cvdv

∏
0≤u≤t

[
(1 + ∆Lu)e−∆Lu

]
eLs−

1
2

∫ s
0 cvdv

∏
0≤u≤s

[
(1 + ∆Lu)e−∆Lu

]
= eLt−Ls−

1
2

∫ t
s cvdv

∏
s<u≤t

[
(1 + ∆Lu)e−∆Lu

]
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is independent of Fs, we obtain for a constant y > 0

E
[
g(
St
Ss
· y)|Fs

]
= E

[
g(
St
Ss
· y)
]

=: h(y) ,

for some measurable function h. Because of that and since Ss is Fs measurable we conclude

E
[
g(
St
Ss
· Ss)|Fs

]
= h(Ss) .

Analogously, it follows that

E
[
g(
St
Ss
· Ss)|σ(Ss)

]
= h(Ss)

and thus

E
[
g(St)|Fs

]
= h(Ss) = E

[
g(St)|σ(Ss)

]
.

�

For more details on Markov solutions of stochastic differential equations we refer to Protter
(1977).

2.4. Auxiliary results

Finally we show some auxiliary results, which will be frequently used in the following
chapters.

Proposition 2.13

Let (Lt) be an inhomogeneous Lévy process such that inf{∆Lt, t ≥ 0} > −1. Moreover,
let (St) := E(L)t. Then we have for 0 ≤ s ≤ t <∞

E

[∣∣∣∣St − SsSs

∣∣∣∣
]
≤ 1 + e(C1

L+C2
L)(t−s) .

Proof:

• (St) > 0 by Theorem B.2. Thus we may introduce

St − Ss
Ss

=
St
Ss
− 1

=
eLt−

1
2

∫ t
0 cvdv

∏
0≤u≤t

[
(1 + ∆Lu)e−∆Lu

]
eLs−

1
2

∫ s
0 cvdv

∏
0≤u≤s

[
(1 + ∆Lu)e−∆Lu

] − 1

= eLt−Ls−
1
2

∫ t
s cvdv

∏
s<u≤t

[
(1 + ∆Lu)e−∆Lu

]
− 1
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• The function h : (−1,∞)→ R+ with h(x) := (1 + x)e−x attains its maximum on the
domain (−1,∞) at x = 0 with value 1. Hence, we have

[
(1 + ∆Lu)e−∆Lu

]
∈ [0, 1] .

Since the number of jump times in the interval (s, t] is at most countable, see
(Applebaum, 2009, Theorem 2.9.2), we may write

∏
s<u≤t

[
(1 + ∆Lu)e−∆Lu

]
=

∞∏
n=1

[
(1 + ∆Lun)e−∆Lun

]
,

where (un, n ≥ 1) are the jump times in (s, t]. Further we obtain for the partial sum

k∏
n=1

[
(1 + ∆Lun)e−∆Lun

]
∈ [0, 1] , k ∈ N ,

and it follows that ∏
s<u≤t

[
(1 + ∆Lu)e−∆Lu

]
∈ [0, 1] .

This in turn yields ∣∣∣∣St − SsSs

∣∣∣∣ ≤ eLt−Ls− 1
2

∫ t
s cvdv + 1 .

• Applying Corollary 2.9 gives

E
[∣∣St−Ss

Ss

∣∣] ≤ 1 + exp

∫ t

s

(
bu +

1

2
cu +

∫
R

(
ex − 1− x1{|x|≤1}

)
Fu(dx)

)
du− 1

2

∫ t

s
cvdv

= 1 + exp

∫ t

s

(
bu +

∫
R

(
ex − 1− x1{|x|≤1}

)
Fu(dx)

)
du

≤ 1 + exp (C1
L + C2

L)(t− s) .

�
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Proposition 2.14

Let (Lt) be an inhomogeneous Lévy process such that

• inf{∆Lt , t > 0} > −1,

• For l ∈ R it holds∫
(−1,∞)

sup
π∈[0,1]

(
(1 + πy)l − 1− lπy

)
Fs(dy) ≤ C , ∀s ∈ [0, T ] ,

for some constants C > 0 and T > 0.

Moreover, let π : Ω×R+ → [0, 1] be an adapted càglàd process and let Y be the unique
semimartingale, which solves

Yt = x+

∫ t

0
πsYs−dLs ,

for some positive x ∈ R. Then

E
[
(Yt)

l
]
≤ xlCl , t ∈ [0, T ] ,

where Cl is a positive constant depending on l.

Proof:

Applying Itô’s formula with f(x) = xl yields

(Yt)
l = xl +

∫ t

0
l(Ys−)l−1dYs +

1

2

∫ t

0
l(l − 1)(Ys−)l−2d[Y c, Y c]s

+
∑

0<s≤t

{
(Ys)

l − (Ys−)l − l(Ys−)l−1∆Ys

}

= xl +

∫ t

0
l(Ys−)l−1dYs +

1

2

∫ t

0
l(l − 1)(Ys−)l−2Y 2

s−π
2
scsds

+
∑

0<s≤t

{
(Ys)

l − (Ys−)l − l(Ys−)l−1∆Ys

}

= xl +

∫ t

0
l(Ys−)lπsdLs +

1

2

∫ t

0
l(l − 1)(Ys−)lπ2

scsds

+

∫ t

0

∫ ∞
−1

(Ys−)l
[
(1 + πsy)l − 1

]
µL(ds, dy)

−
∫ t

0

∫ ∞
−1

l(Ys−)lπsyµ
L(ds, dy) .

Combining the local martingales yields
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(Yt)
l = xl +

∫ t

0
(Ys−)l

(
lπsb

′
s + l(l−1)

2 csπ
2
s

)
ds

+

∫ t

0

∫ ∞
−1

(Ys−)l
[
(1 + πsy)l − 1− lπsy

]
Fs(dy)ds

+ local martingale .

Now let T
′
n be a fundamental sequence of stopping times for the local martingale above

and define
Tn := T

′
n ∧ inf{s : (Ys)

l ≥ n} .
If (Ys)

l is bounded, then Tn = T
′
n for large n and so Tn ↗∞. If on the other hand (Ys)

l is
unbounded, then

inf{s : (Ys)
l ≥ n} ↗ ∞ , (n→∞) ,

since (Ys)
l is a càdlàg function which implies that it is bounded on each closed interval.

Therefore Tn ↗ ∞. Because of (Ys)
l < n on [0, Tn), we also have (Ys−)l ≤ n on [0, Tn].

Further for t ∈ [0, T ] we get

E[(Yt∧Tn)l] = xl + E

[ ∫ t∧Tn

0
(Ys−)l

{(
lπsb

′
s + l(l−1)

2 csπ
2
s

)
+

∫ ∞
−1

((
1 + πsy

)l − 1− lπsy
)
Fs(dy)

}
ds

]
≤ xl + E

[ ∫ t∧Tn

0
(Ys−)l

{(
|lπsb′s|+

|l(l−1)|
2 csπ

2
s

)
+

∫ ∞
−1

sup
π∈[0,1]

((
1 + πy

)l − 1− lπy
)
Fs(dy)

}
ds

]
≤ xl + E

[ ∫ t∧Tn

0
(Ys−)l

{(
|lb′s|+

|l(l−1)|
2 cs

)
+ C

}
ds

]
≤ xl + E

[ ∫ t∧Tn

0
n

{(
|lb′s|+

|l(l−1)|
2 cs

)
+ C

}
ds

]
≤ C̃l ,

where C̃l is a positive constant depending on l. Since we are dealing with a path-by-path
Lebesgue integral, we almost surely have∫ t∧Tn

0
(Ys−)l

{(
|lb′s|+

|l(l−1)|
2 cs

)
+ C

}
ds

=

∫ t∧Tn

0
(Ys)

l

{(
|lb′s|+

|l(l−1)|
2 cs

)
+ C

}
ds

≤
∫ t

0
(Ys∧Tn)l

{(
|lb′s|+

|l(l−1)|
2 cs

)
+ C

}
ds ,

and hence

E[(Yt∧Tn)l] ≤ xl + E

[ ∫ t

0
(Ys∧Tn)l

{(
|lb′s|+

|l(l−1)|
2 cs

)
+ C

}
ds

]
.
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Now we can apply Fubini’s Theorem and obtain

E[(Yt∧Tn)l] ≤ xl +

∫ t

0
E
[
(Ys∧Tn)l

]{(
|lb′s|+

|l(l−1)|
2 cs

)
+ C

}
ds .

Since E[(Yt∧Tn)l] ≤ C̃l for t ∈ [0, T ] we can further make use of Gronwall’s inequality to get

E[(Yt∧Tn)l] ≤ xlCl , t ∈ [0, T ] ,

where Cl is a positive constant depending on l. Using Fatou’s Lemma, we finally conclude

E[(Yt)
l] ≤ xlCl , t ∈ [0, T ] .

�

2.5. A special case: The inhomogeneous Poisson processes

In this section we introduce inhomogeneous Poisson processes. These processes generalize
the standard (homogeneous) Poisson process in such a way, that the intensity is not
necessarily constant. Hence, this leads to an intensity process (λt), which indicates the
time-varying intensity of the jumps.

Now let λ : R+ → R+ be a measurable function, satisfying∫ t

0
λsds <∞ , ∀t ≥ 0 and

∫ ∞
0

λsds =∞ .

Definition 2.15

An F-adapted counting process (Nt) with independent increments is called an inhomoge-
neous Poisson process with intensity process (λt), if for s < t it holds:

P(Nt −Ns = n) = e−Λ(s,t) (Λ(s, t))n

n!
,

where Λ(s, t) =
∫ t
s λudu.

In the following we will summarize some important properties of just introduced inhomo-
geneous Poisson processes, which we will use in the next chapters.

The characteristic function of an inhomogeneous Poisson process is given by

E(eiuNt) = e((eiu−1)Λ(0,t)) .

Hence, if the intensity process (λt) is bounded, the inhomogeneous Poisson process is an
inhomogeneous Lévy process in the sense of Definition 2.1.
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Let (τn)n∈N0 be the sequence of successive jump times of (Nt). Then it holds

P(τn ≤ t) =
1

(n− 1)!

∫ t

0
e−Λ(0,s)(Λ(0, s))n−1dΛ(0, s) .

To construct an inhomogeneous Poisson process we can use the following result:

Let (N̂t) be an homogeneous Poisson process with constant intensity equal to 1 and let
Λ(t) =

∫ t
0 λudu. Then

Nt = N̂Λ(t)

is an inhomogeneous Poisson process with intensity process (λt).

Since we are dealing with discrete-time models, we are interested in the conditional
distribution of successive jump times.

Proposition 2.16

Let (Nt) be an inhomogeneous Poisson process with positive intensity process
λ : R+ → (0,∞), then the conditional probability of successive jump times is given by

P(τn+1 ∈ [u, v] | τn = u) =

∫ v

u
λse
−

∫ s
u λydyds , 0 ≤ u ≤ v <∞ , n ∈ N0 .

Proof:

Let Λ : [0,∞)→ [0,∞) with

Λ(t) :=

∫ t

0
λsds .

First note that the function Λ is a bijection and both Λ and the inverse of Λ, denoted by
Λ−1, are continuous. Furthermore, we have

Nt = ÑΛ(t) ,

where (Ñt) is a homogeneous Poisson process with intensity equal to 1.

Now let (τ̃n) denote the jump times of (Ñt) and (τn) the jump times of (Nt). Then it holds

Λ−1(τ̃n) = τn

and

P(τ̃n+1 ∈ [u, v]|τ̃n = u) =

∫ v−u

0
e−sds =

∫ v

u
e−(s−u)ds , 0 ≤ u ≤ v <∞ .
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Using substitution finally yields

P(τn+1 ∈ [u, v]|τn = u) = P(τ̃n+1 ∈ [Λ(u),Λ(v)]|τ̃n = Λ(u))

=

∫ Λ(v)

Λ(u)
e−(s−Λ(u))ds

=

∫ v

u
λse
−

∫ s
u λududs ,

for 0 ≤ u ≤ v <∞. �





3. The portfolio optimization problem

In this chapter we build the foundation for the following chapters. We start by introducing
a financial market with liquidity risk in which we consider an investor. The market consists
of two assets, a risky asset (St), called stock, and a riskless asset (Bt), called bond. The
liquidity risk in this financial market is modeled by restricting the observation and trading
times. Hence the investor can only observe and trade the assets at exogenous random times
(τn)n∈N0 , which are given by the jump times of an inhomogeneous Poisson process (Nt).
The investor puts his initial wealth in this financial market and then aims to maximize the
expected utility of his terminal wealth at time 0 < T < ∞. Because of that we assume
that he may also observe the market and trade the assets at time T . On the other hand,
we assume that the investor is risk-averse in the sense that he wants to save a certain
percentage of his maximal observed wealth. Therefore, we require that the investor’s
observed wealth does not fall under a certain percentage of its running maximum.

This chapter is organized as follows: In Section 3.1 we introduce the financial market.
Then, in the following section, we consider an investor in this market and define his wealth
process as well as a class of admissible policies. In Section 3.3 we formulate the investor’s
portfolio optimization problem - a terminal wealth problem. In the last section we consider
two different intensity processes of the inhomogeneous Poisson process, for which we will
solve the terminal wealth problem in the subsequent chapters.

3.1. Financial Market

Let us fix a probability space (Ω,F ,P) equipped with a filtration F = (Ft)t≥0. It is
assumed that the filtered probability space (Ω,F ,F,P) satisfies the usual conditions and
that all stochastic processes are defined on that complete stochastic basis.

Now we consider a financial market, consisting of a stock, a bond and exogenous random
times. We assume that the stock price (St) is given by

St = E(L)t , t ≥ 0 ,

where E is the stochastic exponential operator. Furthermore (Lt) is an adapted, inhomoge-
neous Lévy process with characteristics (b, c, F ), which satisfy

inf {∆Lt, t > 0} > −1 , and

∫
|x|≥1

exFs(dx) ≤ C2
L , s ≥ 0 ,

23
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for some positive constant C2
L.

Moreover, we suppose that the price of the bond (Bt) is constant equal to 1, i.e.

Bt = 1 , ∀t ≥ 0 .

Finally we model the exogenous random times (τn)n∈N0 by the jump times of an adapted,
inhomogeneous Poisson process (Nt). This process is assumed to be independent of the
stock price (St) and to have a deterministic intensity process (λt).

Example 3.1

If we choose the characteristics of (Lt) to be (µ, σ2, 0) where µ and σ > 0 are constants,
then (Lt) is a Brownian motion with drift. Thus (St) is a geometric Brownian motion with
coefficients µ and σ, which coincides with the well-known Black-Scholes model.

Example 3.2

If we choose the characteristics of (Lt) to be (µ, σ2, ν), where µ and σ > 0 are constants and
ν is a Lévy measure, then (Lt) is an ordinary Lévy process. Since the ordinary exponential
of a Lévy process can be represented by the stochastic exponential of another Lévy process,
the exponential-Lévy model is included in the introduced financial market.

The inhomogeneous Poisson process (Nt) is suitable for modeling the exogenous random
times (τn), since this process has the following desirable properties:

• independent increments, i.e. the future liquidity risk of the stock does not depend on
the past,

• a non constant intensity process, i.e. it is possible to model time periods in which
the liquidity risk is low or high.

At this time we want to emphasize, that choosing the bond price (Bt) constant one does
not restrict the model, since the bond can always be chosen as a numéraire. However, the
given framework has the advantage that some computational issues become simpler. For a
detailed discussion of the change of numéraire technique we refer to Chesney et al. (2009)
and Delbaen & Schachermayer (2006).

Remark 3.3

The assumption inf {∆Lt, t > 0} > −1 guarantees that the stock price (St) is strictly
positive.
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3.2. Wealth process and admissible policies

In the following we consider an investor, who starts to invest his initial capital x > 0 at
time t = 0 in the introduced financial market. We assume that he observes and trades his
assets only at the exogenous random times (τn)n∈N0 with τ0 = 0.

Remark 3.4

In financial markets with liquidity risk it is not guaranteed that a continuous observation of
the stock price (St) is possible. Examples for situations in which continuous observation is
not possible are the OTC markets. However, if we would assume that the investor observes
the stock price (St) continuously but trades the assets only at the exogenous random times
(τn), then he would not improve his situation, since the stock price (St) is a Markov process
and so the additional information is useless.

Consider again our investor in the financial market. We assume that his information is
given by the filtration G, where G = (Gn)n∈N0 with

G0 = {∅,Ω} and Gn = σ{(τk, Sτk) : 0 ≤ k ≤ n}, n ≥ 1 .

Hence, Gn denotes the information, which the investor can access at time τn. By means of
the filtration G, we define an investment policy as a R-valued and G-adapted process

π = (an)n∈N0 ,

where an is the amount invested in the stock over the period (τn, τn+1] after observing the
stock price (St) at time τn.

Now let

π̃t :=

∞∑
n=0

an
Sτn
· 1{τn<t≤τn+1} , 0 ≤ t <∞ ,

be the number of stocks, which the investor owns at time t. Furthermore, we restrict the
class of policies to the self-financing ones. Hence the investor’s wealth process (Xπ

t ) with
respect to the policy π is given by

Xπ
t = x+

∫ t

0
π̃sdSs . (3.1)

A self-financing policy means, that the changes in the wealth process are exclusively due
to the price changes in the stock price (St). Hence, there is no removal or injection of cash
after the initial set-up.

Because of the liquidity risk, the number of stocks between two exogenous random times is
constant and so π̃ is a simple, predictable process. Therefore we can simplify the stochastic
integral in (3.1). To do so we first introduce the return of the stock:
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Definition 3.5 Let 0 ≤ t ≤ u <∞. Then the random variable Zt,u, which is given by

Zt,u :=
Su − St
St

,

is called the return of the stock. We denote the distribution of Zt,u by p(t, u, dz).

Proposition 3.6

The distribution p(t, u, dz) of Zt,u is a stochastic transition kernel.

Proof:

We have to show that the mapping

H : ([0,∞)× [0,∞),B([0,∞))⊗ B([0,∞))→ ([0, 1],B([0, 1]))

defined by
H(t, v) = P(Zt,t+v ∈ A) = p(t, t+ v,A)

is measurable for each A ∈ B((−1,∞)).

Since Zt,u is a combination of càdlàg functions, it is itself càdlàg, i.e.

Ztn,tn+vn → Zt0,t0+v0 ,

if (tn, tn + vn)↘ (t0, t0 + v0).

Then we can show analogously to the proof of (Karatzas & Shreve, 2005, Proposition 1.13)
that

Zt,t+v : ([0,∞)× [0,∞)× Ω,B([0,∞))⊗ B([0,∞))⊗F)→ (R,B(R))

is a measurable mapping.

Hence, by Fubini Theorem (Klenke, 2008, Theorem 14.16), it follows that H is a measurable
mapping. �

Now we are able to evaluate the wealth process (Xπ
t ) at an exogenous random time τn,

which yields

Xπ
τn = x+

∫ τn

0
π̃sdSs = x+

n−1∑
k=0

ak
Sτk

(Sτk+1
− Sτk) = x+

n−1∑
k=0

akZτk,τk+1

= x+

n−1∑
k=0

akZk+1 ,

where

Zk+1 :=
Sτk+1

− Sτk
Sτk

.
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Figure 3.1 below illustrates a possible evolution of the stock price (St) and possible
exogenous random times for observing and trading. For simplicity, the investor’s horizon
T equals 1. As we can easily see, on average the investor makes money by investing in

Figure 3.1.: Example of a stock price (St) and exogenous random times τn.

the stock until time t ≈ 0.46. After that time, if he continuous to invest in the stock, he
will lose money. Hence, on average the investor’s fortune is biggest at time t ≈ 0.46. We
introduce now a drawdown constraint to guarantee, that the investor’s wealth process does
not fall under a certain percentage of his maximal observed wealth.

Therefore let β ∈ [0, 1) be the fixed model parameter determining the percentage of wealth,
which will be guaranteed by the drawdown constraint. In order to put this constraint on a
formal basis, we first introduce the running maximum of the investor’s observed wealth
process.

Definition 3.7

We define the process (Mt) by

M0 = m0 , Mt = max{m0, X
π
τ1 , ..., X

π
τn} if τn ≤ t < τn+1 ,

where m0 ∈ (0, xβ ) is fixed. If β = 0, then we set x
β =∞. In the following the process (Mt)

is called the running maximum.

Observe that the running maximum (Mt) carries the information about the investor’s
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maximal observed wealth up to now. Note further that (Mt) is an increasing process, which
starts at a strictly positive level. With that information we are able to define admissible
policies, for which the associated wealth process satisfies the drawdown constraint.

Definition 3.8

A policy π = (a0, a1, a2, ...) is called admissible, if the following holds:

• The observed wealth process (Xπ
τn) satisfies the following constraint:

Xπ
τn ≥ βMτn ∀n ∈ N0 . (3.2)

• For each n ∈ N0, there exists a measurable function fn : (Ẽ)(n+1) → R, such that

an = fn((τ0, X
π
τ0 ,Mτ0), ..., (τn, X

π
τn ,Mτn)) ,

where Ẽ := {(t, x,m) : t ∈ [0,∞), x ∈ (0,∞),m ∈ (0, xβ )}.

Remark 3.9

Note that condition (3.2) is equivalent to: Xπ
τn ≥ βMτn−1 , ∀n ∈ N0.

The next proposition shows how the drawdown constraint restricts the amount of wealth,
which may be invested in the stock. On the one hand the stock price (St) is unbounded
above. Therefore, short sales of the stock are not allowed, since unbounded losses might
occur by selling the stock short and so the constraint (3.2) could not be guaranteed. On
the other hand, due to the dynamics of the stock, the investor may lose almost all his
money invested in the stock. Hence at time τn only the wealth Xπ

τn minus the guaranteed
wealth βMτn may be invested in the stock.

Proposition 3.10

An admissible policy π = (a0, a1, ...) satisfies the following condition:

0 ≤ an ≤ Xπ
τn − βMτn ∀n ∈ N0.

Proof:

Let π be an admissible policy. Then for n ∈ N0, it holds Xπ
τn+1

= Xπ
τn +anZn+1. Moreover,

it follows for n ∈ N0:

Xπ
τn+1

= Xπ
τn + anZn+1 ≥ βMτn ⇔


an arbitrary , if Zn+1 = 0,

an ≥
−(Xπ

τn
−βMτn )

Zn+1
, if Zn+1 > 0,

an ≤
(Xπ

τn
−βMτn )

|Zn+1| , if Zn+1 < 0 .
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Since Zn has support on (−1,∞), we get

Xπ
τn + anZn+1 ≥ βMτn ⇔ 0 ≤ an ≤ Xπ

τn − βMτn .

�

It is a straight forward consequence of Proposition 3.10 that the constraint (3.2) is fulfilled
at all times and not only at the exogenous random times. We summarize this observation
in the following corollary.

Corollary 3.11

Let π be an admissible policy. Then the wealth process (Xπ
t ) is always above the process

(βMt), i.e.

Xπ
t ≥ βMt , ∀t ≥ 0 .

In particular, Corollary 3.11 implies that

Xπ
T ≥ βmax{m,Xπ

τ1 , X
π
τ2 , ..., X

π
τn , X

π
T } , for some n ∈ N0 .

This means, that the terminal wealth Xπ
T is always greater than or equal to β times the

maximal observed wealth during the investment period [0, T ].

3.3. The terminal wealth problem

In the given financial market, we so far introduced the investor’s wealth process (Xπ
t ), which

can be influenced by the underlying admissible policy. Now we introduce a performance
criterion - the expected utility of the terminal wealth - which the investor is going to
maximize by choosing the best admissible policy.

More precisely, let T > 0 be a finite horizon and assume that the investor may observe and
trade in the financial market at time T . Then the investor aims to maximize his expected
utility over all admissible policies, i.e. he is interested in

V (y) := sup
π∈A(y)

Ey
[
U(Xπ

T )
]

(3.3)

for y ∈ E := {(t, x,m) : t ∈ [0, T ], x ∈ (0,∞),m ∈ (0, xβ )}, where

• Ey denotes the expectation of an investor, who observes the financial market at time
t and invests his wealth x at the same time.

• A(y) denotes the set of admissible policies of an investor, who invests his wealth x at
time t in the financial market and the start level of his running maximum equals m.
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Moreover U : (0,∞)→ R denotes the investor’s utility function, which is assumed to be
strictly increasing, strictly concave, in C1 and to satisfy the following growth conditions:

(i) There exist constants p ∈ (0, 1) and CU > 0 such that

U+(x) ≤ CU (1 + xp) , x > 0 ,

(ii) If U(0) := U(0+) = −∞, then there exist constants p′ < 0 and C ′U > 0 such that

U−(x) ≤ C ′U (1 + xp
′
) , x > 0 .

If U(0) > −∞, then we set p′ = 0.

In particular these assumptions for the utility function are satisfied in the following
examples:

• Power Utility: U(x) = xα

α with α < 1, α 6= 0. These utility functions are called

Constant Relative Risk Aversion (CRRA), since the relative risk aversion −xU
′′(x)
U ′(x)

equals (1− α).

• Logarithmic Utility: U(x) = log(x). This utility function is again CRRA and it can
be seen as the limit case of the Power Utility function, since xα−1

α → log(x) when
α→ 0.

• Exponential Utility: U(x) = − 1
αe
−αx with α > 0. In this case U has Constant

Absolute Risk Aversion (CARA), since the absolute risk aversion −U
′′(x)

U ′(x) equals α.

3.4. Intensity processes

At the end of this chapter, we have a closer look on the intensity process (λt) of the
inhomogeneous Poisson process (Nt). In particular, its specification plays a crucial role
in the terminal wealth problem (3.3). Because of that, we are going to differentiate two
major cases:

(i) The intensity process (λt) is bounded by some positive constant and
∫∞

0 λtdt =∞.

(ii) The intensity process (λt) is unbounded,
∫ u

0 λtdt <∞ for u ∈ [0, T ) and

∫ T

0
λtdt =∞ .
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Example 3.12

• The intensity process λ : [0,∞)→ [1, 2] with λt := 1 + e−
t
10 satisfies the conditions

of item (i).

• The intensity process λ : [0, T )→ (0,∞) with λt := 1
T−t satisfies the conditions of

item (ii).

In the following chapters we will solve the terminal wealth problem (3.3) under the
assumptions of the above considered intensity processes. Furthermore, we will show how
these terminal wealth problems are related and how one may be approximated by the
other.

Remark 3.13

If we assume an intensity process (λt) as in (i), then it is possible that the investor sets up
his initial portfolio at time t = 0 and that the first exogenous random time τ1 occurs after
the investor’s horizon T , i.e. τ1 > T . In this case the investor has no chance to adjust his
portfolio during the investment period [0, T ]. To avoid such a scenario, we want to consider
an intensity process, such that the investor may adjust his portfolio at least once during
his investment period. For that purpose, consider the probability that the first jump time
τ1 is in [0, T ], which is given by

P(τ1 ≤ T ) =

∫ T

0
e−

∫ s
0 λuduλsds = 1− e−

∫ T
0 λudu .

This yields that the investor adjusts his portfolio at least once if and only if∫ T

0
λudu =∞.

This is precisely the assumption required in item (ii).





4. A terminal wealth problem with a
bounded intensity process

In this chapter we will solve the investor’s terminal wealth problem under the assumption
of a bounded intensity process (λt). The considered portfolio optimization problem is
basically a problem in continuous-time. However, since the investor observes and trades
only at the exogenous random times (τn), he neglects all the information about what
happens in the market between those random times. Therefore he controls his wealth
process only on a discrete-time basis.
In what follows we will show that the terminal wealth problem can be reduced to a
discrete-time optimization problem - a contracting Markov Decision Process - by means of
which we can compute the value function and the optimal policy. The main results are the
following:

• The value function can be characterized by the unique fixed point of the maximal
reward operator.

• There is an optimal stationary policy.

Moreover, Howard’s policy improvement algorithm is valid and can be used to approximate
an optimal policy. If the algorithm yields no improvement, then we have found an optimal
policy. Last but not least, we derive a separation ansatz for the value function under a
CRRA utility function.

The outline of this chapter is the following: We start by formalizing our assumptions and
derive some characteristics of the considered terminal wealth problem. Then in Section
4.2, we will show that there exists a contracting Markov Decision Process by means of
which we can solve the terminal wealth problem. In Section 4.3 we state and proof the
solution of the MDP in Theorem 4.10. In the subsequent section, we present Howard’s
policy improvement algorithm. In the last section we derive a separation ansatz for the
value function under a CRRA utility function.

4.1. Assumptions and characteristics

As mentioned above, we assume a bounded intensity process in this chapter:

33
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Assumption 4.1

The intensity process (λt) of the inhomogeneous Poisson process (Nt) satisfies

• λ : [0,∞)→ (0, Cλ] , for some positive constant Cλ,

•
∫∞

0 λtdt =∞.

Due to that assumption the investor observes and adjusts his portfolio only finitely many
times during his investment period.

Proposition 4.2

The exogenous random times (τn) converge increasingly to ∞.

Proof:

The inhomogeneous Poisson process (Nt) may be written as

Nt = Ñ∫ t
0 λudu

,

where (Ñt) is a homogeneous Poisson process with constant intensity λ = 1. Then it follows
by (Cont & Tankov, 2004, Section 2.5.5) and the time change that the jump times of (Nt)
converge increasingly to infinity. �

The following proposition shows that the considered portfolio optimization problem is
well-defined, since all arising expectations are well-defined.

Proposition 4.3

sup
π∈A(y)

Ey
[
U+(Xπ

T )
]
<∞ , ∀y ∈ E . (4.1)

Proof:

Because of the growth condition on U+, we have for π ∈ A(y)

Ey
[
U+(Xπ

T )
]
≤ C̃U

(
1 + Ey

[
Xπ
T

])
,

for some constant C̃U > 0. Since

Xπ
t = x+

∫ t

0
π̃sdSs = x+

∫ t

0

π̃sSs−X
π
s−

Ss−Xπ
s−

dSs ,

we get by using the stochastic logarithm

Xπ
t = x+

∫ t

0
π̃′sX

π
s−dLs ,
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where π̃′ is some adapted càglàd process valued in [0, 1]. Using Proposition 2.14 with l = 1
yields E

[
Xπ
T

]
< xC1 for some positive constant C1. Hence Ey

[
Xπ
T

]
< xC1 and so the claim

follows. �

At the end we state a technical assumption on the inhomogeneous Lévy process (Lt),
which guarantees an integrability condition for U−. In the next section this assumption is
needed to show, that the Markov Decision Process is well-defined. Therefore the following
assumption stands in force for the rest of this chapter.

Assumption 4.4

If U(0) = −∞, then there exists a constant C3
L > 0 such that∫

(−1,∞)
sup
π∈[0,1]

((
1 + πy

)p′ − 1− p′πy
)
Fs(dy) ≤ C3

L , ∀s ∈ [0, T ] .

For convenience we state now a proposition, which provides a sufficient condition that
Assumption 4.4 is fulfilled.

Proposition 4.5

Assumption 4.4 is satisfied, if the following holds∫
(−1,∞)

((
1 + y

)p′ − 1− p′y
)
Fs(dy) ≤ C3

L , ∀s ∈ [0, T ] .

Proof:

Since f(π) := 1 + πy is a convex, monotone function and g(x) := xp
′

is a convex function,
it follows that the composition h := g ◦ f is a convex function. Because a convex function
attains its maximum at the boundary we get∫

(−1,∞)
sup
π∈[0,1]

((
1 + πy

)p′ − 1− p′πy
)
Fs(dy) ≤

∫
(−1,∞)

((
1 + y

)p′ − 1− p′y
)
Fs(dy) ,

using (1 + y)p
′ − 1− p′y ≥ 0 for all y > −1. Now the claim follows. �

4.2. Solution via Contracting Markov Decision Process

In what follows we apply the ideas of Bäuerle & Rieder (2009) to show that there exists a
contracting Markov Decision Process (short: MDP) by means of which we can compute the
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value function V and an optimal policy of the continuous-time terminal wealth problem
(3.3).

We start with considering the following contracting Markov Decision Process with infinite
horizon:

Contracting Markov Decision Process with infinite horizon

• State space E = {(t, x,m) : t ∈ [0, T ], x ∈ (0,∞),m ∈ (0, xβ )} endowed with the Borel
σ-algebra B(E), where t is the exogenous random time, x the current wealth and m
the current value of the running maximum. Moreover, the state process is denoted
by Yn = (Tn, XTn ,MTn) and there is a cemetery state ∆ /∈ E such that Yn equals ∆
if Tn > T .

• Action space A = [0,∞) endowed with the Borel σ-algebra B(A).

• The possible state-action combinations are given by

D = {(y, a) : y ∈ E , a ∈ [0, x− βm]} ∪ {(∆, 0)} ,

and the admissible actions are given by

D(y) = {a ∈ R | (y, a) ∈ D} = [0, x− βm] , ∀y ∈ E ,

D(∆) = 0 .

• For B ∈ B(E), y ∈ E and a ∈ D(y) the transition probability Q is given by

Q(B | (y, a)) =

∫ T

t

∫
(−1,∞)

1B(u, x+ az,max{m,x+ az})p(t, u, dz)λue−
∫ u
t λsdsdu .

Moreover for y ∈ E and a ∈ D(y) we have

Q(∆ | (y, a)) = 1−Q(E | (y, a)) , Q(∆ | (∆, 0)) = 1 .

• One-stage reward r : D → R given by

r(y, a) = e−
∫ T
t λudu

∫
(−1,∞)

U(x+ az)p(t, T, dz) , ∀y ∈ E ,

r(∆, 0) = 0 .

For more details on Markov Decision Processes we refer to Bäuerle & Rieder (2011),
Bertsekas & Shreve (1978) and Hinderer (1970).

Proposition 4.6

Q is a stochastic transition kernel from D to E.
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Proof:

First note that it is enough to show that Q is a substochastic transition kernel from
D \ (∆, 0) to E.

Since λue
−

∫ u
t λsds1{u≥t} is the density of a probability measure on the measure space[

[0,∞),B([0,∞))
]

with parameter t, it follows that

κ : (t, A)→
∫ ∞
t
1Aλue

−
∫ u
t λsdsdu , A ∈ B([0,∞)) ,

is a stochastic transition kernel from
[
[0,∞),B([0,∞))

]
to
[
[0,∞),B([0,∞))

]
. Because

p(t, u, ·) is also a stochastic transition kernel, we get by (Klenke, 2008, Theorem 14.22) that

Q̃ : (t, B)→
∫ ∞
t

∫
(−1,∞)

1B(u, z)p(t, u, dz)λue
−

∫ u
t λsdsdu ,

is a stochastic transition kernel for B ∈ B([0,∞))⊗ B((−1,∞)). By (Bertsekas & Shreve,
1978, Proposition 7.29) it follows that

(y, a)→
∫ T

t

∫
(−1,∞)

1B(u, x+ az,max{m,x+ az})p(t, u, dz)λue−
∫ u
t λsdsdu

is measurable and so a substochastic transition kernel from D \ (∆, 0) to E. �

Since the transition probability depends on the admissible action a, we are able to control
the Markov Decision Process. As usual in MDP theory, the admissible action will be
chosen by a decision rule, which is a measurable mapping f : E ∪ ∆ → A, such that
f(y) ∈ D(y) , ∀y ∈ E and f(∆) = 0. Moreover, we define a Markovian policy π as a
sequence of decision rules, i.e.

π := (f0, f1, f2, f3, ...) ,

where fk is a decision rule for each k.

By using such a Markovian policy π, we can now define the gain corresponding to π with
start y ∈ E by

V1,π(y) := Eπy

[ ∞∑
k=0

r(Yk, fk(Yk))

]
.

Thereby Eπy denotes the expectation under the Markovian policy π and initial value y ∈ E
of the MDP.

Furthermore, we define the value function of the MDP by

V1(y) := sup
π∈Π

V1,π(y) ∀y ∈ E , (4.2)
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where Π is the set of all Markovian policies.

In the following theorem we proof that the value function V of the terminal wealth problem
(3.3) coincides with the value function V1 of the MDP. Moreover, an optimal Markovian
policy of the MDP is an optimal policy for (3.3).

Theorem 4.7

a) For a Markovian policy π, it holds:

Ey
[
U(Xπ

T )
]

= V1,π(y) , ∀y ∈ E .

b) Moreover, we have: V (y) = V1(y) , ∀y ∈ E .

Proof:

a) To avoid heavy notation in this proof, we define Ỹk := (τk, X
π
τk
,Mτk). First note that

π ∈ A(y). By denoting the one point measure at time T by µ̃ and using (Hinderer, 1972,
Satz 19.8) as well as Proposition 4.3, we have

Ey
[
U(Xπ

T )
]

= Ey

[ ∫ ∞
t

U(Xπ
u )µ̃(du)

]
=
∞∑
k=0

Ey

[ ∫
[τk,τk+1)

U(Xπ
u ))µ̃(du)

]
,

where τ0 = t and τk is the k-th exogenous random time after time t. Moreover, we get

Ey
[
U(Xπ

T )
]

=

=
∞∑
k=0

Ey

[
Ey

[
Ey

[ ∫
[τk,τk+1)

U(Xπ
τk

+ fk(Ỹk)
Su−Sτk
Sτk

)µ̃(du)

∣∣∣∣Gk ∨ σ(τk+1)

]∣∣∣∣Gk]]

=
∞∑
k=0

Ey

[ ∫ ∞
τk

∫
(−1,∞)

1{τk≤T<u} · U(Xπ
τk

+ fk(Ỹk)z)p(τk, T, dz)λue
−

∫ u
τk
λsdsdu

]

=

∞∑
k=0

Ey

[
e
−

∫ T
τk
λudu

∫
(−1,∞)

1{τk≤T} · U(Xπ
τk

+ fk(Ỹk)z)p(τk, T, dz)

]

=

∞∑
k=0

Ey

[
r(Ỹk, fk(Ỹk))

]
.

Now fix some k ∈ N. Since the function r(Ỹk, fk(Ỹk)) may be written as some measurable
function g(Ỹk), it follows
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Ey

[
Ey

[
g(Ỹk)

∣∣∣∣Gk−1

]]
= Ey

[ ∫ T

τk−1

∫
(−1,∞)

g(u,Xπ
τk−1

+ fk−1(Ỹk−1)z,max{Mτk−1
,

Xπ
τk−1

+ fk−1(Ỹk−1)z})p(τk−1, s, dz)λue
−

∫ u
τk−1

λsds
du

]
= Ey

[ ∫
E
g(yk)Q(dyk|Ỹk−1, fk−1(Ỹk−1))

]
,

where we used the definition of Q for the last equality. Inductively we get

Ey

[
g(Ỹk)

]
=

∫
E
...

∫
E
g(yk)Q(dyk|yk−1, fk−1(yk−1))...Q(dy1|y, f0(y)) = Eπy

[
g(Yk)

]
,

where we used (Bertsekas & Shreve, 1978, Proposition 7.45) for the last equality. Hence

Ey
[
U(Xπ

T )
]

= Eπy

∞∑
k=0

r(Yk, fk(Yk)) ,

where again (Hinderer, 1972, Satz 19.8) was used.

b) Let π ∈ A(y). Then, there exists a measurable function fk : E(k+1) → R such that

ak = fk(Y0, ..., Yk) , ∀k : τk ≤ T .

Since the state process of the MDP is Markovian, by (Bäuerle & Rieder, 2011, Remark 7.1.3)
the maximal expected gain cannot be improved by history dependent policies. Therefore
we obtain

V (y) = sup
π∈Π

V1,π(y) = V1(y) .

�

From now on, we concentrate on the introduced MDP to solve the considered terminal
wealth problem. The following proposition shows that the MDP has a bounding function.

Proposition 4.8

Define the function b : E → R+ by

b(t, x) := eγ(T−t)(1 + x+ xp
′
)

with a fixed γ > 0. If γ is large enough, then b(t, x) is a bounding function, i.e. there are
constants Cr > 0 and 0 < Cγ < 1 such that

a) |r(y, a)| ≤ Crb(t, x) ,

b)
∫ T
t

∫
(−1,∞) b(u, x+ az)p(t, u, dz)λue

−
∫ u
t λsdsdu ≤ Cγb(t, x),

for all (y, a) ∈ D.
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Proof:

a) Consider∫
(−1,∞)

U+(x+ az)p(t, T, dz) ≤ C̃U
∫

(−1,∞)
(1 + x+ az)p(t, T, dz)

≤
[
C̃U (1 + x)

∫
(−1,∞)

(1 +
a

1 + x
|z|)p(t, T, dz)

]
≤
[
C̃U (1 + x)(2 + e(C1

L+C2
L)(T−t))

]
≤ C̃U (1 + x)3e(C1

L+C2
L)(T−t) ≤ 3C̃Ub(t, x) ,

for some constant C̃U > 0.

Then it follows

|r(y, a)| ≤
∫

(−1,∞)
U+(x+ az) + U−(x+ az)p(t, T, dz)

=

∫
(−1,∞)

U+(x+ az)p(t, T, dz) +

∫
(−1,∞)

U−(x+ az)p(t, T, dz)

≤ 3C̃Ub(t, x) +

∫
(−1,∞)

U−(x+ az)p(t, T, dz) .

Hence, if U(0) > −∞, then U−(x) is bounded above and the claim of part a) follows.

If U(0) = −∞, then∫
(−1,∞)

U−(x+ az)p(t, T, dz) ≤ C ′U
(

1 +

∫
(−1,∞)

(x+ az)p
′
p(t, T, dz)

)
= C ′U

(
1 + E

[
(x+ aZT,t)

p′
])

.

Now we introduce the càdlàg process (Yt) by

Yt := x+ a
St − Ss
Ss

, t ≥ 0 , for fixed s ∈ [0, T ] .

Note that

Yt− = x+ a
St− − Ss

Ss
= (x− a) + a

St−
Ss

> 0 ,

since St−
Ss

> 0. Because of that and the stochastic logarithm, we get

YT = x+ aZT,t = x+ a
ST − St
St

= x+
a

St

∫ T

t

Su−Yu−
Su−Yu−

dSu

= x+

∫ T

t
πuYu−

1

Su−
dSu = x+

∫ T

t
πuYu−dLu

= x+

∫ T

0
1{u>t}πuYu−dLu ,
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where πu := aSu−
StYu−

∈ [0, 1].

Applying Proposition 2.14 yields E
[
(YT )p

′] ≤ xp′Cp′ for some positive constant Cp′ .
This implies

E
[
(x+ aZT,t)

p′
]
≤ xp′Cp′ .

Hence there exists a constant Cr > 0 such that |r(y, a)| ≤ Crb(t, x).

b)

∫ T

t

∫
(−1,∞)

b(u, x+ az)p(t, u, dz)λue
−

∫ u
t λsdsdu

=

∫ T

t

∫
(−1,∞)

eγ(T−u)(1 + x+ az + (x+ az)p
′
)p(t, u, dz)λue

−
∫ u
t λsdsdu

≤
∫ T

t
eγ(T−u)(1 + x)

∫
(−1,∞)

[
1 +

a

1 + x
|z|
]
p(t, u, dz)λue

−
∫ u
t λsdsdu

+

∫ T

t
eγ(T−u)

∫
(−1,∞)

(x+ az)p
′
p(t, u, dz)λue

−
∫ u
t λsdsdu

≤
∫ T

t
eγ(T−u)(1 + x)(2 + e(C1

L+C2
L)(u−t))λue

−
∫ u
t λsdsdu

+

∫ T

t
eγ(T−u)

∫
(−1,∞)

(x+ az)p
′
p(t, u, dz)λue

−
∫ u
t λsdsdu

≤ 3Cλ(1 + x)

∫ T

t
eγ(T−u)e(C1

L+C2
L)(u−t)du+ xp

′
Cp′Cλ

∫ T

t
eγ(T−u)du

≤ 3Cλ(1 + x)
1

γ − C1
L − C2

L

eγ(T−t) + xp
′
Cp′Cλ

1

γ
eγ(T−t)

≤
[

3Cλ
γ − C1

L − C2
L

+
Cp′Cλ
γ︸ ︷︷ ︸

=:Cγ

]
b(t, x) .

Hence b is a bounding function and for large γ we have 0 < Cγ < 1.

�

By using the bounding function b with a large γ, such that 0 < Cγ < 1, it directly follows
that the MDP is well-defined, since both Integrability Assumption (A) and Convergence
Assumption (C) are satisfied. For more details on that topic see (Bäuerle & Rieder, 2011,
Remark 7.3.2 b)).
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4.3. Main Results

In this section, we present the main results of this chapter. To do so, we first have to
introduce some notations.

Let

Bb := {v : E → R | v is measurable, ∃C ∈ R+ : |v(t, x,m)| ≤ Cb(t, x)} ,

be the set of functions, consisting of all measurable functions, which are bounded by the
bounding function b. Further, we define a metric d on Bb by

d(v, w) := sup
y∈E

|v(y)− w(y)|
b(t, x)

.

By following the proof of (Werner, 2007, Beispiel (b) on page 3), it can be easily shown
that (Bb, d) is a complete metric space.

Moreover, we define for v ∈ Bb the operator (L1) by

(L1v)(y, a) := e−
∫ T
t λudu

∫
(−1,∞)

U(x+ az)p(t, T, dz)

+

∫ T

t

∫
(−1,∞)

v(u, x+ az,max{m,x+ az})p(t, u, dz)λue−
∫ u
t λsdsdu ,

for a decision rule f the operator (T1,f ) by

(T1,fv)(y) := (L1v)(y, f(y)) ,

and the operator (T1) by

(T1v)(y) := sup
a∈[0,x−βm]

(L1v)(y, a) .

T1 is called maximal reward operator. Now, we introduce the subset M ⊂ Bb:

Definition 4.9

Let M be the subset of Bb, such that for each v ∈M the following conditions hold:

(i) U(x) ≤ v(y) for y ∈ E.

(ii) v(t, ·, ·) is concave on D := {(x,m) : x ∈ (0,∞),m ∈ (0, xβ )}, for fixed t.

(iii) v(t, x, ·) is decreasing on (0, xβ ) for fixed t and fixed x.

(iv) v(t, ·,m) is increasing on (βm,∞) for fixed t and fixed m.

(v) The function
s→ v(t, x+ s,m+ s)

is increasing on [0,∞), for fixed y ∈ E.
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Finally, we are able to formulate the main results of this chapter.

Theorem 4.10

a) V = V1 ∈M and V1 is the unique fixed point of T1 in M.

b) Let g ∈M. Then the following error estimation holds

d(V, T n1 g) ≤
Cnγ

1− Cγ
d(T1g, g) .

c) There exists a maximizer f∗ of V1, i.e. there exists a decision rule f∗ such that

T1,f∗V1 = T1V1 ,

and each maximizer f∗ of V1 defines an optimal stationary policy
π := (f∗, f∗, f∗, ...).

Before we proof the main results, we first want to discuss them:

(i) Since V ∈ M, we know that the value function V is increasing in the wealth and
decreasing in the start level of the running maximum. This is exactly what we would
expect, since a large initial wealth yields a large expected terminal wealth and a
stronger restriction on the policies yields a smaller expected terminal wealth.

(ii) In general, the value function is not decreasing in time. To understand that, let us
consider the following example: Consider two investors with the same initial wealth.
One of them, called investor A, starts to invest his money in the market at time
t1 ∈ [0, T ) and the other investor, called investor B, starts to invest his money at
time t2 ∈ (t1, T ). Due to the illiquid market, investor A is not necessarily able to
trade at time t2 and so he might not be able to conserve his initial wealth in the bond
until time t2 and then duplicate the policy of investor B. Hence, it is not guaranteed
that investor A can do as well as investor B.

Proof of Theorem 4.10:

We are going to proof the statements by applying the Structure Theorem for contracting
MDPs, see (Bäuerle & Rieder, 2011, Theorem 7.3.5). Since it is not guaranteed that 0 ∈M,
we first have to consider a larger subset of functions M̃ with M ⊂ M̃ ⊂ Bb, for which we
can apply the theorem. M̃ is defined in the following way:

Let M̃ be the subset of Bb such that for each v ∈ M̃ the following conditions hold:

(i) v(t, ·, ·) is concave on D := {(x,m) : x ∈ (0,∞),m ∈ (0, xβ )}, for fixed t.
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(ii) v(t, x, ·) is decreasing on (0, xβ ) for fixed t and fixed x.

(iii) v(t, ·,m) is increasing on (βm,∞) for fixed t and fixed m.

(iv) The function
s→ v(t, x+ s,m+ s)

is increasing on [0,∞), for fixed y ∈ E.

Step 1:

Obviously 0 ∈ M̃.

Step 2:

We show: For v ∈ M̃, there exists a maximizer of v, i.e. there exists a decision rule f such
that

T1,fv = T1v .

Proof:

Let v ∈ M̃. Now we proof that (L1v) is an upper semicontinuous function on [0, x− βm]
for fixed (t, x,m). To do so, let (cn)n∈N0 be a convergent sequence in [0, x−βm] with limit
c0. Because of the assumptions on the utility function U , we have

U(x+ cnz) ≤ U+(x+ cnz) ≤ C̃U (1 + x+ cnz) ≤ C̃U (1 + x+ x|z|)

for some constant C̃U > 0. Moreover, for v ∈ M̃ it follows that

v(u, x+ cnz,max{m,x+ cnz}) ≤ Cb(u, x+ cnz) .

Hence, we can apply Fatou’s Lemma, which yields

lim sup
n→∞

[
e−

∫ T
t λudu

∫
(−1,∞)

U(x+ cnz)p(t, T, dz)

+

∫ T

t

∫
(−1,∞)

v(u, x+ cnz,max{m,x+ cnz})p(t, u, dz)λue−
∫ u
t λsdsdu

]
≤ e−

∫ T
t λudu

∫
(−1,∞)

lim sup
n→∞

U(x+ cnz)p(t, T, dz)

+

∫ T

t

∫
(−1,∞)

lim sup
n→∞

v(u, x+ cnz,max{m,x+ cnz})p(t, u, dz)λue−
∫ u
t λsdsdu .

Due to the concavity of v, it follows that v is continuous on D. Further

(x+ c0z,max{m,x+ c0z}) ∈ D .
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Therefore

e−
∫ T
t λudu

∫
(−1,∞)

lim sup
n→∞

U(x+ cnz)p(t, T, dz)

+

∫ T

t

∫
(−1,∞)

lim sup
n→∞

v(u, x+ cnz,max{m,x+ cnz})p(t, u, dz)λue−
∫ u
t λsdsdu

= e−
∫ T
t λudu

∫
(−1,∞)

U(x+ c0z)p(t, T, dz)

+

∫ T

t

∫
(−1,∞)

v(u, x+ c0z,max{m,x+ c0z})p(t, u, dz)λue−
∫ u
t λsdsdu .

It follows that (L1v) is upper semicontinuous on [0, x− βm] for fixed y ∈ E. Since

(L1v)(y, a) = e−
∫ T
t λudu

∫
(−1,∞)

U(x(1 +
a

x
z))p(t, T, dz)

+

∫ T

t

∫
(−1,∞)

v(u, x(1 +
a

x
z,max{m,x(1 +

a

x
z})p(t, u, dz)λue−

∫ u
t λsdsdu

and a
x ∈ [0, 1], we can find by (Bertsekas & Shreve, 1978, Proposition 7.33) a decision rule

f , which is a maximizer of v.

Step 3:

We show: If v ∈ M̃, then T1v is well-defined and T1v ∈ M̃.

Proof:

Let v ∈ M̃. Then

• (L1v) is a measurable function on D. Plugging in the maximizer f of v yields

T1v(t, x,m) = T1,fv(t, x,m) = L1(t, x,m, f(t, x,m)) ,

where the right hand side is a measurable function on E.

• By using Proposition 4.8, we get

|T1v(t, x,m)|

≤ sup
a∈[0,x−βm]

[∣∣∣∣e− ∫ T
t λudu

∫
(−1,∞)

U(x+ az)p(t, T, dz)

∣∣∣∣
+

∫ T

t

∫
(−1,∞)

|v(u, x+ az,max{m,x+ az})|p(t, u, dz)λue−
∫ u
t λsdsdu

]
≤ sup

a∈[0,x−βm]

[
Crb(t, x) + C

∫ T

t

∫
(−1,∞)

b(u, x+ az)p(t, u, dz)λue
−

∫ u
t λsdsdu

]
≤ sup

a∈[0,x−βm]

[
Crb(t, x) + CCγb(t, x)

]
≤ C ′b(t, x) ,

for some constant C ′ > 0.
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• We fix t ∈ [0, T ] and define the convex set

G := {(x,m, a) : x ∈ (0,∞),m ∈ (0, xβ ), a ∈ [0, x− βm]} .

By using the definition of concavity and the following inequality

max{γa+ (1− γ)b, γc+ (1− γ)d} ≤ γmax{a, c}+ (1− γ) max{b, d}

for some constants a, b, c, d ∈ R and γ ∈ [0, 1], it follows that

U(x+ az) and v(u, x+ az,max{m,x+ az})

are concave functions on G. Hence (L1v) is concave on G due to the linearity of
the integral. Then by (Rockafellar, 1972, Theorem 5.7) we get that T1v(t, ·, ·) is a
concave function on D for fixed t.

• Now we show that T1v(t, x+ s,m+ s) is increasing in s. Therefore consider

v(u, x+ s+ az,max{m+ s, x+ s+ az}) = v(u, x′ + s,max{m+ s, x′ + s})
= v(u, x′1 + s,m′ + s}) ,

where x′ := x+ az and m′ := max{x′,m}. Then it follows, that L1v(t, x+ s,m+ s)
is increasing in s for fixed a. Furthermore

[0, x+ s− β(m+ s)] = [0, x− βm+ (1− β)s] ,

expands when s rises and so

T1v(t, x+ s,m+ s)

is increasing in s.

• Obviously T1v is decreasing in m and increasing in x.

Step 4:

We show: M̃ is closed in (Bb, d).

Proof:

Let {vn ∈ M̃, n ≥ 0} be a convergent sequence in Bb. We have to show, that

lim
n→∞

vn ∈ M̃ .

Since uniform convergence imply pointwise convergence, we obtain by (Rockafellar, 1972,
Theorem 10.8) that

lim
n→∞

vn

is a concave function on D for fixed t. Since

vn(t, x,m) ≥ vn(t, x,m′) ,
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when m′ ≥ m, it follows that limn→∞ vn is decreasing in m. Repeating exactly the same
steps, the remaining properties of limn→∞ vn follow.

Hence M̃ is closed.

Step 5:

By (Bäuerle & Rieder, 2011, Theorem 7.3.5) we have

V1 = lim
n→∞

T n1 g g ∈ M̃ .

Since |U(x)| ≤ CU (1+xp)+C ′U (1+xp
′
) ≤ Cb(t, x) for some constant C > 0, we get U ∈ M̃

and hence
V1 = lim

n→∞
T n1 g g ∈M .

Moreover, T1g ≥ T1U ≥ U for g ∈M. This yields T n1 g ≥ U , which implies V1 ∈M.

�

4.4. Howard’s policy improvement algorithm

Due to Theorem 4.10 it is enough to maximize V1,π over all stationary policies. Therefore,
it satisfies to find the best decision rule. For that purpose we can make use of Howard’s
policy improvement algorithm. This algorithm improves in each run an arbitrary decision
rule. If there is no further improvement, then we have found a decision rule, such that the
corresponding stationary policy is an optimal one.

Now let f be a decision rule and π := (f, f, .....) be the corresponding stationary policy.
Then we have

V1,π(y) = lim
n→∞

(T n1,fU)(y) =: Jf (y) ∀y ∈ E .

Note that the function Jf is well-defined by (Bäuerle & Rieder, 2011, Lemma 7.3.3).

We state now the theorem, on which Howard’s policy improvement algorithm is based:

Theorem 4.11 Let f and g be two decision rules. For y ∈ E, we define

D(y, f) :=
{
a ∈ D(y)

∣∣ L1Jf (y, a) > Jf (y)
}
.

a) If it holds for some measurable subset E0 ⊂ E
– g(y) ∈ D(y, f) , for y ∈ E0,

– g(y) = f(y) , for y 6∈ E0,

then we have
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– Jg ≥ Jf , for y ∈ E,

– Jg(y) > Jf (y) , for y ∈ E0.

The decision rule g is then called an improvement of f .

b) If D(y, f) = ∅ for all y ∈ E, then Jf = V1 = V and π := (f, f, f, ...) is an optimal
stationary policy.

A proof of Theorem 4.11 can be found in Bäuerle & Rieder (2009) or Bäuerle & Rieder
(2011).

Howard’s policy improvement algorithm:

1. Choose an arbitrary decision rule f0 and set k = 0.

2. Compute Jfk and determine D(y, fk) for all y ∈ E.

3. – If D(y, fk) = ∅ for all y ∈ E ⇒ STOP: V = V1 = Jfk and the stationary policy
π := (fk, fk, ...) is optimal.

– If D(y, fk) 6= ∅ for some y ∈ E ⇒ Compute an improvement fk+1 of fk and set
k = k + 1 and go to step 2.

Furthermore, if Howard’s policy improvement algorithm does not terminate, then the
algorithm generates a sequence of decision rules fk, such that

lim
k→∞

Jfk = V1 = V .

For a proof see (Bäuerle & Rieder, 2011, Corollary 7.5.3).

4.5. Separation ansatz for CRRA utility functions

In this section we show, that we may separate the value function V1 in the case of CRRA
utility functions.

Proposition 4.12

In the case of a Power Utility function, there exists a function F : [0, T ]× (0, 1
β )→ R such

that V1(y) = U(x) · F (t, mx ) for y ∈ E.
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Proof:

First, we show inductively that (T n1 U)(y) = U(x) · Fn(t, mx ) for some function

Fn : [0, T ]× (0, 1
β )→ R .

Now let vn(y) := (T n1 U)(y) for y ∈ E. Then we get

v1 = (T1U)(y) = sup
a∈[0,x−βm]

e−
∫ T
t λudu

∫
(−1,∞)

U(x+ az)p(t, T, dz)

+

∫ T

t

∫
(−1,∞)

U(x+ az)p(t, u, dz)λue
−

∫ u
t λsdsdu

= U(x) sup

a∈[0,1−βmx ]

e−
∫ T
t λudu

∫
(−1,∞)

(1 + az)αp(t, T, dz)

+

∫ T

t

∫
(−1,∞)

(1 + az)αp(t, u, dz)λue
−

∫ u
t λsdsdu

=: U(x) · F1(t, mx ) .

The induction hypothesis yields

vn+1 = (T1vn)(y) = sup
a∈[0,x−βm]

e−
∫ T
t λudu

∫
(−1,∞)

U(x+ az)p(t, T, dz)

+

∫ T

t

∫
(−1,∞)

vn(u, x+ az,max{m,x+ az})p(t, u, dz)λue−
∫ u
t λsdsdu

= U(x) sup

a∈[0,1−βmx ]

e−
∫ T
t λudu

∫
(−1,∞)

(1 + az)αp(t, T, dz)

+

∫ T

t

∫
(−1,∞)

(1 + az)αFn(u, max{m/x,1+az}
1+az )p(t, u, dz)λue

−
∫ u
t λsdsdu

=: U(x) · Fn+1(t, mx ) .

Since vn converges to V1, it follows that Fn converges to a function F such that

V1(y) = U(x) · F (t, mx )

for y ∈ E. �

By following the proof of Proposition 4.12, we can also show the following corollary.

Corollary 4.13

In the case of a Logarithmic Utility function, there exists a function F : [0, T ]× (0, 1
β )→ R

such that V1(y) = U(x) + F (t, mx ) for y ∈ E.
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Remark 4.14 Note that in the case of a CRRA utility function, the maximizer of V1

depends only on the time t and the ratio m
x .



5. A terminal wealth problem with an
unbounded intensity process

In this chapter, we solve the terminal wealth problem (3.3) under the assumption of an
unbounded intensity process (λt). Under this assumption, it turns out that the terminal
wealth is not well-defined at time T . However, since the stock price (St) is stochastically
continuous, we can solve this issue by considering the left sided limit of the wealth process
at time T . As in the chapter above, the considered optimization problem can be reduced
to a discrete-time problem, a so called limsup Markov Decision Process, by means of which
we can compute the value function and the optimal policy. The main results of this chapter
are the following:

• The value function can be characterized by the unique fixed point of the maximal
reward operator, which satisfies some additional conditions.

• There is an optimal stationary policy.

Similar to the results of the previous chapter, there exists also a separation ansatz for the
value function under a CRRA utility function.

The outline of this chapter is the following: We start by formalizing our assumptions and
develop some properties of the considered terminal wealth problem. Then, in Section 5.2,
we describe the optimization problem with the aid of a limsup-MDP. In Section 5.3, we
state and proof the main results which show how to solve the original problem by means of
the limsup-MDP. In the last section, we derive a separation ansatz for the value function
under a CRRA utility function.

5.1. Assumptions and properties of the model

All assumptions stated in this section will stand in force for the rest of this chapter. We
start by assuming an unbounded intensity process (λt):

Assumption 5.1

The intensity process (λt) of the inhomogeneous Poisson process (Nt) satisfies

51
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• λ : [0, T )→ (0,∞),

•
∫ t

0 λudu <∞, ∀t < T ,
∫ T

0 λudu =∞.

Because of that, the investor observes and adjusts his portfolio always infinitely many
times during his investment period.

Proposition 5.2

The exogenous random times (τn) converge increasingly to T , i.e. τn ↗ T .

Proof:

Let Λ : [0, T )→ [0,∞) with

Λ(t) :=

∫ t

0
λudu .

Note that the function Λ is a bijection and both Λ and the inverse of Λ, denoted by Λ−1,
are continuous. According to Section 2.5, we have

Nt = Ñ∫ t
0 λudu

= ÑΛ(t) , 0 ≤ t < T ,

where (Ñt) is a homogeneous Poisson process with intensity equals to 1. Let τ̃n be the n-th
jump time of the homogeneous Poisson process (Ñt). Hence, the inhomogeneous Poisson
process (Nt) jumps at time Λ−1(τ̃n) = τn. Since the jump times of the homogeneous
Poisson process Ñ converge increasingly to infinity, it follows that τn is increasing and

lim
n→∞

τn = lim
n→∞

Λ−1(τ̃n) = Λ−1( lim
n→∞

τ̃n) = T .

�

Since the observation and trading times always lie in the interval [0, T ), we may restrict
the time parameters of the stochastic processes to [0, T ]. This is done in the following,
hence we always consider the restricted time parameter t ∈ [0, T ].

Now, let π be an admissible policy and

π̃t =
∞∑
n=0

an
Sτn
· 1{τn<t≤τn+1}

be the number of stocks, which the investor owns at time t. Since the exogenous random
times (τn) converge increasingly to T , the càglàd process (π̃t) has domain [0, T ) and so the
wealth process (Xπ

t ) is only determined for t ∈ [0, T ). Hence, it is not obvious whether the
terminal wealth Xπ

T is well-defined.
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The next step is concerned with a solution of that problem. Since the stock price (St) is
stochastically continuous, it follows that ST = ST−. On the other hand the stochastic
integral with respect to (St) jumps if and only if (St) jumps, thus we may write∫ T

0
π̃sdSs = lim

t→T

∫ t

0
π̃sdSs ,

whenever the right hand side exists. This justifies to define

Xπ
T := x+

∫ T

0
π̃sdSs = x+ lim

t→T

∫ t

0
π̃sdSs .

Because of that, we have to guarantee the existence of limt→T
∫ t

0 π̃sdSs. This can be done
by introducing an assumption. Yet, before we can state this assumption, we first have to
remember that one can represent the inhomogeneous Lévy process (Lt) in the following
way

Lt =

∫ t

0
b′sds+

∫ t

0

√
csdWs +

∫ t

0

∫
R

x(µL − ν)(ds, dx) .

Assumption 5.3

The characteristics of the inhomogeneous Lévy process (Lt) are determined in such a way
that cs > 0 ,∀s ≥ 0 and

(b′s)
2

cs
ds ≤ CNAL , ∀s ≥ 0 .

for some positive constant CNAL .

Theorem 5.4

Let (Xπ
t ) be the wealth process under the policy π ∈ A(y), which is given by

Xπ
t = x+

∫ t

0
π̃udSu , 0 ≤ t < T .

Then Xπ
T exists and we have

Xπ
T = lim

n→∞
Xπ
τn .

Proof:

We begin by considering the canonical representation of (Lt):

Lt = L0 +Bt + Lct +

∫ t

0

∫
R

x1{|x|≤1}(µ
L − ν)(ds, dx) +

∑
s≤t

∆Ls1{|∆Ls|>1} .
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By Theorem B.15

L0 +Bt + Lct and

∫ t

0

∫
R

x1{|x|≤1}(µ
L − ν)(ds, dx) +

∑
s≤t

∆Ls1{|∆Ls|>1}

are independent. Since
∫ t

0

∫
R

(x− x1{|x|≤1})Fs(dx)ds is deterministic, it follows that

L0 +

∫ t

0
b′sds+

∫ t

0

√
csdWs and

∫ t

0

∫
R

x(µL − ν)(ds, dx) ,

are independent. Furthermore, ∫ t

0

∫
R

x(µL − ν)(ds, dx)

is a local martingale.

Now we define an equivalent probability measure Q by

dQ

dP
= exp

(
−
∫ T

0

b′s√
cs
dWs −

1

2

∫ T

0

b′2s
cs
ds

)
.

Under the measure Q,

L0 +

∫ t

0
b′sds+

∫ t

0

√
csdWs

is a martingale and ∫ t

0

∫
R

x1{|x|≤1}(µ
L − ν)(ds, dx)

remains to be a local martingale, since it is independent of W . This shows, that (Lt) is a
local martingale under the equivalent measure Q.

Let π ∈ A(y). Then the associated wealth process (Xπ
t ) is given by

Xπ
t = x+

∫ t

0
π̃sdSs , t < T .

It follows that (Xπ
t ) is a local martingale under the equivalent probability measure Q, since

(Lt) being a local martingale implies that (St) is one, too. Because (Xπ
t ) is positive, we

have by (Pham, 2009, Proposition 1.1.7), that (Xπ
t ) is a supermartingale, which converges

to a finite limit Xπ
∞ by (Jacod & Shiryaev, 2003, Th. I.1.39). On the other hand τn ↗ T

when n goes to infinity, yields

Xπ
τn −→ Xπ

∞ , (n→∞) .

Due to P ∼ Q, we finally obtain under P

lim
n→∞

Xπ
τn = lim

t↗T
Xπ
t = Xπ

∞ .

�
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At the end of this section, we state the some technical assumptions on the utility function
U and the inhomogeneous Lévy process (Lt), which will be needed in the course of this
chapter. More precisely, they ensure that the value function is uniformly integrable.

Assumption 5.5

The Fenchel-Legendre transform Ũ of the utility function U has domain (0,∞), i.e.

dom(Ũ) = (0,∞) .

Note that Assumption 5.5 is satisfied, if U satisfies the Inada conditions, i.e.

U ′(0+) =∞ and U ′(∞) = 0 .

Assumption 5.6

(i) There exist some constants C3
L > 0 and q > 1 such that∫

(−1,∞)
sup
π∈[0,1]

[
(1 + πx)q − 1− qπx

]
Fs(dx) ≤ C3

L , ∀s ∈ [0, T ] .

(ii) If U(0) = −∞, then in addition to part (i), there exists a r < p′ such that∫
(−1,∞)

sup
π∈[0,1]

[
(1 + πx)r − 1− rπx

]
Fs(dx) ≤ C3

L , ∀s ∈ [0, T ] ,

Analogously to Proposition 4.5, we can derive sufficient conditions, under which Assump-
tions 5.6 (i) and (ii) are satisfied.

Proposition 5.7

a) Assumption 5.6 (i) is satisfied, if∫
(−1,∞)

((
1 + y

)q − 1− qy
)
Fs(dy) ≤ C3

L , ∀s ∈ [0, T ] .

b) Assumption 5.6 (ii) is satisfied, if∫
(−1,∞)

((
1 + y

)r − 1− ry
)
Fs(dy) ≤ C3

L , ∀s ∈ [0, T ] .
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5.2. Solution via limsup Markov Decision Process

As in the previous chapter, the terminal wealth problem (3.3) can be regarded as a
optimization problem in discrete-time. Since

Ey

[
U
(
Xπ
T

)]
= Ey

[
lim
n→∞

U
(
Xπ
τn

)]
(5.1)

we can reformulate the problem as a limsup Markov Decision Process (short: limsup-MDP).

In what follows, we formulate a limsup MDP by means of which we can compute the value
function V and the optimal policy of the continuous-time terminal wealth problem (3.3).
For more details on limsup models, we refer to (Schäl, 1990, §18).

Let us now consider the following limsup-MDP:

limsup Markov Decision Process

• State space E = {(t, x,m) : t ∈ [0, T ), x ∈ (0,∞),m ∈ (0, xβ )} endowed with the
Borel σ-algebra B(E), where t will be the exogenous random time, x the current
wealth and m the current value of the process M . Moreover, the state process is
denoted by Yn = (Tn, XTn ,MTn).

• Action space A = [0,∞) endowed with the Borel σ-algebra B(A).

• The possible state-action combinations are given by

D = {(y, a) : y ∈ E , a ∈ [0, x− βm]} ⊂ E ×A

and the admissible actions are given by

D(y) = {a ∈ A | (y, a) ∈ D} = [0, x− βm] , ∀y ∈ E .

• The stochastic transition kernel Q from D to E is given by

Q(B | (y, a)) =

∫ T

t

∫
(−1,∞)

1B(u, x+ az,max{m,x+ az})p(t, u, dz)λue−
∫ u
t λsdsdu ,

where y ∈ E, a ∈ D(y) and B ∈ B(E).

• Terminal reward g : E → R with g(y) = U(x).

Using a Markovian policy π as in Chapter 4, we can now define the gain corresponding to
π with start in the state y ∈ E by

V2,π(y) := Eπy

[
lim
n→∞

U
(
XTn

)]
.



5.3. Main Results 57

Furthermore, the value function of the limsup-MDP is given by

V2(y) = sup
π∈Π

V2,π(y) ∀y ∈ E , (5.2)

where Π is the set of all Markovian policies.

By the same arguments as in Chapter 4, we can show that V and V2 coincide and that the
optimal policy of the limsup-MDP is an optimal policy for (3.3).

Theorem 5.8

Let y ∈ E. Then we have

a) For a Markovian policy π = (f0, f1, f2, ..) ∈ A(y) it holds:

Ey
[
U(Xπ

T )
]

= V2,π(y) , y ∈ E .

b) Moreover, we have: V (y) = V2(y) , y ∈ E.

Due to that theorem, we can from now on concentrate on the limsup-MDP, which we are
going to solve by using the Structure Theorem (A.1) for limsup-MDP’s.

5.3. Main Results

In this section we present the solution of the terminal wealth problem, which we consider
in this chapter. To proof these results we will follow the ideas of Gassiat et al. (2011). Yet,
before we can state the main results, we have to introduce some notations. We begin with
the function h.

Definition 5.9

We define h : [0, T ]× (0,∞)→ R by

h(t, x) := inf
y>0

{
E
[
Ũ(yYt,T )

]
+ xy

}
,

where

Yt,T := e
−

∫ T
t

b′u√
cu
dWu− 1

2

∫ T
t

b′2u
cu
du
,

(Wt) is a standard Brownian Motion, Ũ is the Fenchel-Legendre transform of the utility func-
tion U and (b′s), cs are determined form the canonical representation of the inhomogeneous
Lévy process (Lt).
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Proposition 5.10

Let h be the function defined in Definition 5.9.

a) Let b(t, x) = eγ(T−t)(1 + x + xp
′
). Then there exists a positive constant C and a

γ > 0 such that

U(x) ≤ h(t, x) ≤ Cb(t, x) ∀(t, x) ∈ [0, T ]× (0,∞) .

b) h(t, ·) is concave on (0,∞) for fixed t.

c) For y ∈ E, it holds

sup
a∈[0,x−βm]

∫ T

t

∫
(−1,∞)

h(u, x+ az)p(t, u, dz)λue
−

∫ u
t λsdsdu ≤ h(t, x) .

d) limt↗T,x′→x h(t, x′) = U(x).

Proof:

a) We have∫ T

t

b′u√
cu
dWu =

∫ T−t

0

b′t+u√
cu+t

d(Wu+t −Wt +Wt) =

∫ T−t

0

b′t+u√
cu+t

dWu ,

since u→Wu+t −Wt is a Brownian Motion for fixed t ≥ 0. Hence,∫ T

t

b′u√
cu
dWu

is normal distributed with mean 0 and variance
∫ T
t

b′2u
cu
du. This yields E[Yt,T ] = 1.

Using Jensen’s inequality, we obtain

h(t, x) = inf
y>0

{
E
[
Ũ(yYt,T )

]
+ xy

}
≥ inf

y>0

{
Ũ(yE[Yt,T ]) + xy

}
= inf

y>0

{
Ũ(y) + xy

}
= U(x) .

For y > 0 consider now

Ũ(y) = sup
x>0

{
U(x)− xy

}
≤ sup

x>0

{
CU (1 + xp)− xy

}
.

Computing the right hand side yields

Ũ(y) ≤ C ′(1 + y
− p

1−p ) ,
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for some large constant C ′. Hence

E
[
Ũ(Yt,T )

]
≤ C ′(1 + E(Yt,T )

− p
1−p ) .

Using the moment generating function of a normal distribution, we get

E(Yt,T )
− p

1−p = E

[
e

p
1−p

∫ T
t

b′u√
cu
dWu+ p

2(1−p)
∫ T
0

b′2u
cu
du
]

= e
p

2(1−p)
∫ T
t

b′2u
cu
du
E

[
e

p
1−p

∫ T
t

b′u√
cu
dWu

]
= e

p
2(1−p)

∫ T
t

b′2u
cu
du
e

p2

2(1−p)2
∫ T
t

b′2u
cu
du

= e
p

2(1−p) (1+ p
1−p )CNAL (T−t)

.

It follows

h(t, x) = inf
y>0

{
E
[
Ũ(yYt,T )

]
+ xy

}
≤ E

[
Ũ(Yt,T )

]
+ x ≤ C ′(1 + E(Yt,T )

− p
1−p ) + x

≤ C ′(1 + e
p

2(1−p) (1+ p
1−p )CNAL (T−t)

) + x ≤ 2C ′eγ(T−t)(1 + x+ xp
′
) = 2C ′b(t, x) ,

for some large γ > 0.

b) Using (Rockafellar, 1972, Theorem 5.5), we easily see, that b(t, ·) is a concave function
for fixed t.

c) Now fix 0 ≤ t ≤ u ≤ T and x ∈ (0,∞). Furthermore, fix y > 0 and a ∈ [x− βm]. By
definition of h, we have

E
[
h(u, x+ aZt,u)

]
≤ E

[
Ũ(yYt,uYu,T ) + x(1 + a

xZt,u)yYt,u
]

= E
[
Ũ(yYt,T )

]
+ E

[
x(1 + a

xZt,u)yYt,u
]

= E
[
Ũ(yYt,T )

]
+ xyE

[
Yt,u + a

xZt,uYt,u
]

= E
[
Ũ(yYt,T )

]
+ xy

[
EYt,u︸ ︷︷ ︸

=1

+a
xE(Zt,uYt,u)

]
.

Since (St) is a Q supermatingale, we get by (Klebaner, 2005, Theorem 10.10)

E
[
Zt,uYt,u

]
= E

[
E
[
Zt,uYt,u|Ft

]]
= E

[
E
[
Zt,u

Y0,u
Y0,t
|Ft
]]

= E

[
EQ
[
Zt,u|Ft

]]
= E

[
EQ
[Su − St

St
|Ft
]]
≤ 0 .

Therefore

E
[
h(u, x+ aZt,u))

]
≤ E

[
Ũ(yYt,T )

]
+ xy .

It follows that

E
[
h(u, x+ aZt,u)

]
=

∫
(−1,∞)

h(u, x+ az)p(t, u, dz) ≤ h(t, x)
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and so ∫ T

t

∫
(−1,∞)

h(u, x+ az)p(t, u, dz)λue
−

∫ u
t λsdsdu ≤ h(t, x) .

This yields

sup
a∈[0,x−βm]

∫ T

t

∫
(−1,∞)

h(u, x+ az)p(t, u, dz)λue
−

∫ u
t λsdsdu ≤ h(t, x) .

d) Fix a y > 0. Then we have for a large constant C ′

Ũ+(y) ≤ C ′(1 + y
− p

1−p ) .

Moreover,

Ũ(y) ≥ sup
x>0

{
− C ′U (1 + xp

′
)− xy

}
.

Computing the right hand side yields

Ũ(y) ≥ −C ′′(1 + y
p′
p′−1 )

for some large constant C ′′ and so

Ũ−(y) ≤ C ′′(1 + y
p′
p′−1 ) .

With

E(yYt,T )z = yze−
z
2

∫ T
t

b′2u
cu
due

z2

2

∫ T
t

b′2u
cu
du ≤ yze

|z|
2
CNAL T+ z2

2
CNAL T <∞ ,

for z ∈ R, we finally get

sup
0≤t<T

E
[
|Ũ(yYt,T )|2

]
<∞ .

By (Protter, 2005, Th. I.11)
(
Ũ(yYt,T )

)
t∈[0,T )

is uniformly integrable, which yields

lim
t↗T

E
[
Ũ(yYt,T )

]
= E

[
Ũ( lim

t↗T
yYt,T )

]
= Ũ(y) .

Using the definition of h, we get

U(x) ≤ lim inf
t↗T,x′→x

h(t, x′) ≤ lim sup
t↗T,x′→x

h(t, x′) ≤ Ũ(y) + xy , ∀y > 0 .

Hence

U(x) = lim
t↗T,x′→x

h(t, x′) .

�
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Now we introduce the set of functions

Bb := {v : E → R | v is measurable, ∃C ∈ R+ : |v(t, x,m)| ≤ Cb(t, x)} ,

consisting of all measurable functions, which are bounded by the bounding function b.

Moreover, we define for v ∈ Bb the operator (L2v) : D → R by

(L2v)(y, a) :=

∫ T

t

∫
(−1,∞)

v(u, x+ az,max{m,x+ az})p(t, u, dz)λue−
∫ u
t λsdsdu ,

for a decision rule f the operator T2,f : E → R by

(T2,fv)(y) := (L2v)(y, f(y)) ,

and the terminal reward operator T2 : E → R ∪ {∞} by

(T2v)(y) := sup
a∈[0,x−βm]

(L2v)(y, a) .

In the following theorem we will show, that the value function is included in the subsequent
set of of functions.

Definition 5.11

Let M′ be the subset of Bb, such that for each v ∈M′ the following conditions hold:

(i) U(x) ≤ v(y) ≤ h(t, x) , ∀y ∈ E.

(ii) v(t, ·, ·) is concave on D := {(x,m) : x ∈ (0,∞),m ∈ (0, xβ )}, for fixed t.

(iii) v(t, x, ·) is decreasing on (0, xβ ) for fixed t and fixed x.

(iv) v(t, ·,m) is increasing on (βm,∞) for fixed t and fixed m,

(v) The function
s→ v(t, x+ s,m+ s)

is increasing on [0,∞) for fixed y ∈ E.

Now we are able to present and proof the main results of this chapter.
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Theorem 5.12

a) V = V2 ∈M′ and V2 is the unique fixed point of T2 in M′, which satisfies

– limn→∞ V2(Yn) = lim supn→∞ g(Yn) Pπy − (a.s.) .

–
(
V2(Yn)

)
n≥0

is Pπy -uniformly integrable for all π ∈ Π and y ∈ E .

b) V2 = limn→∞ T n2 g for g ∈M′.

c) There exists a maximizer f∗ of V2 and each maximizer of V2 defines an optimal
stationary policy π := (f∗, f∗, f∗, ...).

Proof:

We will proof the theorem by using the Structure Theorem A.1. Therefore, the first part
consists of showing that the assumptions (i) to (v) of Theorem A.1 are fulfilled for M′ ⊂ B′b.

(i): U ∈M′ is obviously satisfied.

(iii): Let v ∈M′. We show that (L2v) is an upper semicontinuous function on [0, x− βm]
for fixed y. To do so, let (cn)n∈N be a convergent sequence in [0, x− βm] with limit
c0. Since v ≤ h ≤ b, we can apply Fatou’s Lemma and get, by using the continuity
of v on D,

lim sup
n→∞

∫ T

t

∫
(−1,∞)

v(u, x+ cnz,max{m,x+ cnz})p(t, u, dz)λue−
∫ u
t λsdsdu

≤
∫ T

t

∫
(−1,∞)

v(u, x+ c0z,max{m,x+ c0z})p(t, u, dz)λue−
∫ u
t λsdsdu .

It follows that (L2v) is an upper semicontinuous function on [0, x− βm] for fixed y.
Since

(L2v)(y, a)

=

∫ T

t

∫
(−1,∞)

v(u, x(1 +
a

x
z),max{m,x(1 +

a

x
z})p(t, u, dz)λue−

∫ u
t λsdsdu

and a
x ∈ [0, 1], we can find by (Bertsekas & Shreve, 1978, Proposition 7.33) a decision

rule f , which is a maximizer of v.

(ii): Let v ∈M′.

Step 1: For y ∈ E we have T2v(y) ≤ T2h(t, x) ≤ h(t, x).

Step 2: For y ∈ E we have

T2v(y) ≥
∫ T

t

∫
(−1,∞)

U(x)p(t, u, dz)λue
−

∫ u
t λsdsdu = U(x) .
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Step 3: The remaining properties of (T2v) follow analogously to Step 2 of the proof
of Theorem 4.10.

(iv): Step 1: Let (vm)m∈N0 be recursively defined by

v0 := U , vm+1 := T2vm ∀m ≥ 0 .

Now we show that
vm ≤ vm+1 ≤ h , m ≥ 0 .

Therefore we first proof by induction that vm ≥ vm−1. Let m = 1. Then

v1(y) = sup
a∈[0,x−βm]

∫ T

t

∫
(−1,∞)

U(x+ az)p(t, u, dz)λue
−

∫ u
t λsdsdu ≥ U(x) .

Now let m ≥ 1 be arbitrary. By the induction hypothesis we have vm ≥ vm−1 and
hence we get

vm+1 = T2vm ≥ T2vm−1 = vm .

Next we show by induction, that

vm ≤ h , ∀m ≥ 0 .

Therefore let m = 0. From Proposition 5.10 we know that U ≤ h. Next let m ≥ 1 be
arbitrary. Then we have, using the induction hypothesis,

vm+1 = T2vm ≤ T2h ≤ h .

Step 2: Let (ṽm)m∈N0 be recursively defined by

ṽ0 := h , ṽm+1 := T2ṽm ∀m ≥ 0 .

Now we show that
ṽm ≥ ṽm+1 ≥ U , m ≥ 0 .

Therefore we first proof that ṽm ≤ ṽm−1 by induction. Let m = 1, then

ṽ1(y) = sup
a∈[0,x−βm]

∫ T

t

∫
(−1,∞)

h(u, x+ az)p(t, u, dz)λue
−

∫ u
t λsdsdu

≤ h(t, x) .

Now let m ≥ 1 be arbitrary. By the induction hypothesis we have ṽm ≤ ṽm−1 and so
we get

ṽm+1 = T2ṽm ≤ T2ṽm−1 = ṽm .

Next we show by induction, that

ṽm ≥ U , ∀m ≥ 0 .
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Again choose first m = 0. From Proposition 5.10 we know that U ≤ h. Now let
m ≥ 1 be arbitrary. By the induction hypothesis we obtain

ṽm+1 = T2ṽm ≥ T2U ≥ U .

Step 3: Due to the monotonicity of vn, we know that vn(y) is an increasing sequence
for fixed y ∈ E. Since vn ≤ h, vn converges pointwise to a function v∞ : E → R.
Analogously ṽn converges pointwise to a function ṽ∞ : E → R.

Step 4: In this step we show that v∞, ṽ∞ ∈M′. Since

v∞ = lim
n→∞

vn ,

v∞ is measurable and U ≤ v∞ ≤ h. According to (Rockafellar, 1972, Th. 10.8) the
limit of finite concave functions is concave. Hence v∞(t, ·, ·) is concave on D. Now
consider

v∞(t, x,m) = lim
n→∞

vn(t, x,m) ≥ lim
n→∞

vn(t, x,m′) = v∞(t, x,m′) ,

i.e. v∞ is deceasing in m. Repeating exactly the same steps, the remaining properties
of v∞ follow. Thus v∞ ∈M′. The same arguments also show, that ṽ∞ ∈M′.

Step 5: We show that for fixed (y, a) ∈ D∫
(−1,∞)

U−(x+ az)p(t, u, dz) <∞ ,

for u ≥ t. Since U−(x+ az) ≤ C ′U (1 + (x+ az)p
′
), we get

E
[
U−(x+ az)

]
≤ C ′U (1 + E

[
(x+ az)p

′]
) .

Because we can show, similarly to the proof of Proposition 4.8, that

E(x+ az)r ≤ xr · Cr <∞ ,

it follows that E(x+ az)p
′
<∞. Then the claim follows.

Step 6: Now we show that v∞ is a fixed point of T2. Let (y, a) ∈ D. Then

vm+1(y) ≥
∫ T

t

∫
(−1,∞)

vm(u, x+ az,max{m,x+ az})p(t, u, dz)λue−
∫ u
t λsdsdu .

Due to vm ≥ −U− and Step 5 we can use monotone convergence and obtain

v∞(y) ≥
∫ T

t

∫
(−1,∞)

v∞(u, x+ az,max{m,x+ az})p(t, u, dz)λue−
∫ u
t λsdsdu

and so v∞(y) ≥ T2v∞(y). For the revised inequality choose ε > 0. Then

v∞(y)− ε ≤ vm+1(y)
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for some m large enough and we obtain

v∞(y)− ε ≤ T2vm(y) ≤ T2v∞(y) .

Hence

v∞(y) ≤ T2v∞(y) ,

which yields

v∞(y) = T2v∞(y) .

Step 7: ṽ∞ is also a fixed point of T2. To show that, let (y, a) ∈ D. Then

ṽm+1(y) ≤
∫ T

t

∫
(−1,∞)

ṽm(u, x+ az,max{m,x+ az})p(t, u, dz)λue−
∫ u
t λsdsdu .

Due to ṽm ≤ h, we can use monotone convergence and get

ṽ∞(y) ≤
∫ T

t

∫
(−1,∞)

ṽ∞(u, x+ az,max{m,x+ az})p(t, u, dz)λue−
∫ u
t λsdsdu

and hence ṽ∞(y) ≤ T2ṽ∞(y). For the revised inequality let ε > 0. Then

ṽ∞(y) + ε ≥ ṽm+1(y)

for some m large enough and we obtain

ṽ∞(y) + ε ≥ T2ṽm(y) ≥ T2ṽ∞(y) .

Hence

ṽ∞(y) ≥ T2ṽ∞(y) ,

which yields

ṽ∞(y) = T2ṽ∞(y) .

Step 8: Because of U(x) ≤ v∞(y) ≤ h(t, x), we obtain with Proposition 5.10, that

lim
t↗T,x→x0

v∞(t, x,m) = U(x0) ,

which implies that limn→∞ v∞(Yn) = limn→∞ U(Yn) Pπx − (a.s.). The same argu-
ments show that limn→∞ ṽ∞(Yn) = limn→∞ U(Yn) Pπx − (a.s.).

Step 9: Let y ∈ E and π be a Markovian policy. Because of the stochastic logarithm
we get

Xπ
u = x+

∫ u

0
π̃sdSs = x+

∫ u

0
π̃s
Ss−X

π
s−

Ss−Xπ
s−
dSs = x+

∫ u

0
πs
Xπ
s−

Ss−
dSs

= x+

∫ u

0
πsX

π
s−dLs ∀u ∈ [0, T ) ,
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where πs = π̃Ss−
Xs−

is an adapted càglàd process valued in [0, 1] and πs = 0 on [0, t].
Now we need to extend Proposition 2.14 to stopping times. Therefore we apply Itô’s
formula with f(x) = xl, where l ∈ {q, r} and q, r were given in Assumption 5.6. This
yields

(Xπ
u )l = xl +

∫ u

0
(Xπ

s−)l
(
lπsb

′
s + l(l−1)

2 csπ
2
s

)
ds

+

∫ u

0

∫ ∞
−1

(Xπ
s−)l

[
(1 + πsy)l − 1− lπsy

]
Fs(dy)ds

+ local martingale .

Now let T
′
n be a fundamental sequence of stopping times for the local martingale

above. Define
Tn := T

′
n ∧ {inf s : (Xπ

s )l ≥ n} .

Then we have Tn ↗ T . Fix a stopping time τ with value in [0, T ). By Assumption
5.6 we obtain for 0 ≤ t < T

E[(Xπ
u∧τ∧Tn)l] ≤ xl + E

[ ∫ u∧τ∧Tn

0
(Xπ

s−)l
{(
|lb′s|+

|l(l−1)|
2 cs

)
ds+ C3

Lds

}]
≤ xl + C · T ,

for some constant C > 0. Using Fubini’s Theorem, we obtain

E[(Xπ
u∧τ∧Tn)l] ≤ xl +

∫ u

0
E
[
(Xπ

s∧τ∧Tn)l
](
|lb′s|+

|l(l−1)|
2 cs + C3

L

)
ds .

Applying Gronwall’s inequality yields

E[(Xπ
u∧τ∧Tn)l] ≤ xl · Cl <∞ ∀u ∈ [0, T ) ,

where Cl is a constant depending on l. Now, using Fatou’s Lemma, we finally get

E[(Xπ
τ )l] ≤ xl · Cl <∞ ,

for each stopping time τ with value in [0, T ). Hence we have for n ≥ 0

Eπy [(Xn)l] = Ey[(X
π
τm)l] ≤ xl · Cl <∞ ,

for some m ∈ N0. Then by choosing l = q,
{

(Xn)n≥0

}
is Pπy -uniformly integrable by

(Rogers & Williams, 2003, Lemma 20.5). Moreover, it follows that h+(Tn, Xn) is also
uniformly integrable, since by (Gassiat et al., 2011, Lemma 3.3)

0 ≤ h+(Tn, Xn) ≤ C(1 +Xn) .

If U(0+) > −∞, then
{
U−(Xn)

}
is bounded and so uniformly integrable.

On the other hand, if U(0+) = −∞, then we set l = r and get
{

(Xp′
n )n≥0

}
is

Pπy -uniformly integrable. Since

0 ≤ U−(Xn) ≤ C ′U (1 +Xp′
n ) ,
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it follows that U−(Xn) is uniformly integrable. Due to

0 ≤ |v∞| ≤ v+
∞ + v−∞ ≤ h+ + U− and 0 ≤ |ṽ∞| ≤ ṽ+

∞ + ṽ−∞ ≤ h+ + U− ,

v∞ and ṽ∞ are Pπy -uniformly integrable.

Now it follows with Theorem A.1 that

• V2 ∈M′ and V2 is the unique fixed point of T2 in M′, which satisfies

(i) limn→∞ V2(Yn) = lim supn→∞ g(Yn) Pπy − (a.s.) .

(ii)
(
V2(Yn)

)
n≥0

is Pπy -uniformly integrable for all π ∈ Π and y ∈ E .

Moreover, V2 = limn→∞ T nU .

• There exists a maximizer f∗ of V2 and each maximizer of V2 defines an optimal
stationary policy π = (f∗, f∗, f∗, ...).

Since V2 is the unique fixed point of T2 satisfying (i) and (ii), it follows that

V2 = v∞ = ṽ∞ .

Moreover, for g ∈M′, we have

T n2 U ≤ T n2 g ≤ T n2 h ∀n ≥ 0 ,

which yields V2 = limn→∞ T n2 g. �

5.4. Separation ansatz for CRRA utility functions

As in the previous chapter, we may separate the value function V2 in the case of a CRRA
utility function. Since the proofs can be done analogously to Section 4.5, we omit them.

Corollary 5.13

In the case of a Power Utility function, there exists a function F : [0, T ]× (0, 1
β )→ R such

that V2(y) = U(x) · F (t, mx ) for y ∈ E.

Corollary 5.14

In the case of a Logarithmic Utility function, there exists a function F : [0, T ]× (0, 1
β )→ R

such that V2(y) = U(x) + F (t, mx ) for y ∈ E.
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Remark 5.15 Note that in the case of a CRRA utility function, the maximizer of V2

depends only on the time t and the ratio m
x .



6. Convergence Results

In this chapter we want to approximate the terminal wealth problem with an unbounded
intensity process by a terminal wealth problem with a bounded one. The crucial idea on
which this approximation is based, is the following: Consider a terminal wealth problem
with an unbounded intensity process (λt). In Chapter 4, we have shown that XT = XT−.
This means that the wealth process is almost surely continuous at time T . Therefore, if we
consider a shortened horizon T − ε for some small ε > 0, XT−ε is close to XT .
If the unbounded intensity process (λt) is bounded on [0, T − ε], then by considering the
shortened horizon T − ε, we are facing a terminal wealth problem in the framework of
Chapter 4, which we can solve. When ε tends to zero, the approximation of XT by XT−ε
becomes more precise and hence we can finally approximate the value function of the
terminal wealth problem with an unbounded intensity process (λt) by the value function of
a terminal wealth problem with a bounded intensity process. Additionally, this procedure
enables us to approximate an optimal policy of the terminal wealth problem with an
unbounded intensity process.

This chapter is organized as follows. We begin with some assumptions, under which we will
proof the convergence results. Then, in Section 6.2, we will show that the value function of
the terminal wealth problem with an unbounded intensity process can be approximated by
the value function of a terminal wealth problem with a bounded intensity process. In the
last section we will determine a sequence of policies, which converge to an optimal policy
of the terminal wealth problem with an unbounded intensity process.

6.1. Assumptions

We introduce now some additional assumptions, which will be needed to proof the conver-
gence results. Therefore, they will stand in force for the rest this chapter.

In addition to Chapter 5, we assume that the intensity process (λt) of the inhomogeneous
Poisson process (Nt) satisfies the following assumption:

Assumption 6.1

For each t ∈ [0, T ) there exists a constant Ct > 0 depending on t, such that the intensity
process (λt) satisfies λs ∈ (0, Ct] , ∀s ∈ [0, t].

Moreover, we require assumptions on the financial market and the utility function U .
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Assumption 6.2

The utility function U and the financial market are set up in such a way, that the function

u→
∫

(−1,∞)
U(x+ az)p(t, u, dz)

is non-decreasing on [t, T ] for fixed t ∈ [0, T ], x ∈ (0,∞) and a ∈ [0, x].

Remark 6.3 Assumption 6.2 ensures that the investor invests his money in a profitable
financial market, since his expected utility is non-decreasing in the time parameter.

By using Itô’s formula we may check Assumption 6.2. This is demonstrated this in the
next proposition.

Proposition 6.4

Let U(x) = xα

α for α ∈ (0, 1). Further, we assume that L has no jumps, i.e. that the
compensator ν of L is zero. Then Assumption 6.2 is fulfilled, if the following holds:

2bu ≥ (1− α)cu , ∀u ∈ [0, T ] ,

Proof:

As in the proof of Proposition 4.8, we have∫
(−1,∞)

U(x+ az)p(t, u, dz) = E

[
U

(
x+ a

Su − St
St

)]
= E

[
U(Yu)

]
,

where Yu := x+ aSu−StSt
. Similarly to Proposition 2.14 we can show that

(Yu)α

α
=
xα

α
+

∫ u

0
(Ys)

α1{s>t}πsdLs +
1

2

∫ u

0
(α− 1)(Ys)

α1{s>t}π
2
scsds

=
xα

α
+

∫ u

0
(Ys)

α1{s>t}πsbsds+

∫ u

0
(Ys)

α1{s>t}πs
√
csdWs︸ ︷︷ ︸

martingale

+
1

2

∫ u

0
(α− 1)(Ys)

α1{s>t}π
2
scsds .

Hence

E

[
(Yu)α

α

]
=
xα

α
+

∫ u

t
(Ys)

απs

[
bs +

1

2
(α− 1)πscs

]
ds ,

and E
[ (Yu)α

α

]
is non-decreasing in u, if bs ≥ 1−α

2 cs ∀s ∈ [0, T ].
�
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6.2. Convergence of the value function

Let us now consider a terminal wealth problem with an unbounded intensity process. In
the following we will denote the value function of that portfolio problem by V2.

Furthermore, let {Tn ∈ (0, T ), n ≥ 0} be a sequence of horizons, which converge increasingly
to T . Then we consider a terminal wealth problem with fixed horizon Tn for some n.
Obviously this is a terminal wealth problem with a bounded intensity process, which we
can solve according to the results from Chapter 4. From now on we will denote the value
function of that portfolio problem by V1,Tn .

Next we state the main result of this section.

Theorem 6.5

It holds: limn→∞ V1,Tn(y) = V2(y) , y ∈ E.

Proof:

Let π = (a0, a1, a2, ...) ∈ A(y), such that ak = 0 if τk ≥ Tn.

By following the proof of Theorem 4.7, we can show that

Ey

[
U(Xπ

T )

]
= Ey

[ ∞∑
k=0

U(Xπ
τk+1

)1{τk≤Tn<τk+1}

]

=

∞∑
k=0

Ey

[ ∫ T

τk

∫
(−1,∞)

1{τk≤Tn<u}U(Xπ
τk

+ akz)p(τk, u, dz)λue
−

∫ u
τk
λsdsdu

]
,

where τ0 = t and τk is the k-th exogenous random time after time t. Moreover, we have

V2(y) ≥
∞∑
k=0

Ey

[ ∫ T

τk

∫
(−1,∞)

1{τk≤Tn<u}U(Xπ
τk

+ akz)p(τk, u, dz)λue
−

∫ u
τk
λsdsdu

]

≥
∞∑
k=0

Ey

[ ∫ T

Tn

∫
(−1,∞)

1{τk≤Tn}U(Xπ
τk

+ akz)p(τk, Tn, dz)λue
−

∫ u
τk
λsdsdu

]

=

∞∑
k=0

Ey

[
e
−

∫ Tn
τk

λsds ·
∫

(−1,∞)
1{τk≤Tn}U(Xπ

τk
+ akz)p(τk, Tn, dz)

]
.

As shown in the proof of Theorem 4.7, we have

V1,Tn(y) = sup
π∈A(y)

∞∑
k=0

Ey

[
e
−

∫ Tn
τk

λsds ·
∫

(−1,∞)
1{τk≤Tn}U(Xπ

τk
+ akz)p(τk, Tn, dz)

]
,
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hence V2(y) ≥ V1,Tn(y) and so lim supn→∞ V1,Tn ≤ V2.

One the other hand, let Tn converge increasingly to T . Then we have for an arbitrary
admissible policy π ∈ A(y)

Ey
[
U(Xπ

Tn)
]
≤ V1,Tn(y) .

Since U(Xπ
Tn

) is uniformly integrable under π, we get

Ey
[
U(Xπ

T )
]

= lim
n→∞

Ey
[
U(Xπ

Tn)
]
≤ lim inf

n→∞
V1,Tn(y) .

Hence V2(y) ≤ lim infn→∞ V1,Tn(y), which yields

V2 = lim
n→∞

V1,Tn .

�

6.3. Convergence of the optimal policy

Again, let {Tn ∈ (0, T ), n ≥ 0} be a sequence of horizons, which converge increasingly to
T . Then consider a sequence of maximizers fTn of V1,Tn for n ≥ 0. Since there exists a
convergent subsequence of {fTn(y), n ≥ 0} for each fixed y ∈ E, we may define

f∗1 (y) := lim sup
n→∞

fTn(y) and f∗2 (y) := lim inf
n→∞

fTn(y) , for y ∈ E .

Theorem 6.6

If V2 ≥ 0, then the stationary policies

π1 := (f∗1 , f
∗
1 , ...) and π2 := (f∗2 , f

∗
2 , ...)

are optimal stationary policies for the terminal wealth problem with an unbounded intensity
process.

Proof:

As already shown, it holds

V2 = lim
n→∞

V1,Tn and V1,Tn ≤ V2 .

Moreover, we have

V1,Tn = T1,nV1,Tn ,
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where the operator T1,n is defined by

(T1,nv)(y) := sup
a∈[0,x−βm]

(
e−

∫ Tn
t λudu

∫
(−1,∞)

U(x+ az)p(t, Tn, dz)

+

∫ Tn

t

∫
(−1,∞)

v(u, x+ az,max{m,x+ az})p(t, u, dz)λue−
∫ u
t λsdsdu

)
.

Now let fTn be a maximizer of V1,Tn . Then we get for y ∈ E

V2(y) = lim
n→∞

V1,Tn(y) = lim
n→∞

T1,nV1,Tn(y)

= lim
n→∞

(
e−

∫ Tn
t λudu

∫
(−1,∞)

U(x+ fTn(y)z)p(t, Tn, dz)︸ ︷︷ ︸
bounded

+

∫ Tn

t

∫
(−1,∞)

V1,Tn(u, x+ fTn(y)z,max{m,x+ fTn(y)z})p(t, u, dz)λue−
∫ u
t λsdsdu

)
= lim

n→∞

∫ Tn

t

∫
(−1,∞)

V1,Tn(u, x+ fTn(y)z,max{m,x+ fTn(y)z})λue−
∫ u
t λsdsp(t, u, dz)du .

Because fTn(y) is a sequence in [0, x − βm], there exists an accumulation point and a
subsequence fTnk (y), which converges to that accumulation point. Therefore, by using
Fatou’s Lemma, we get

V2(y)

= lim
k→∞

∫ Tnk

t

∫
(−1,∞)

V1,Tnk
(u, x+ fTnk (y)z,max{m,x+ fTnk (y)z})p(t, u, dz)λue−

∫ u
t λsdsdu

≤ lim
k→∞

∫ Tnk

t

∫
(−1,∞)

V2(u, x+ fTnk (y)z,max{m,x+ fTnk (y)z})p(t, u, dz)λue−
∫ u
t λsdsdu

≤ lim
k→∞

∫ T

t

∫
(−1,∞)

V2(u, x+ fTnk (y)z,max{m,x+ fTnk (y)z})p(t, u, dz)λue−
∫ u
t λsdsdu

≤
∫ T

t

∫
(−1,∞)

lim sup
k→∞

V2(u, x+ fTnk (y)z,max{m,x+ fTnk (y)z})p(t, u, dz)λue−
∫ u
t λsdsdu

=

∫ T

t

∫
(−1,∞)

V2(u, x+ lim
k→∞

fTnk (y)z,max{m,x+ lim
k→∞

fTnk (y)z})p(t, u, dz)λue−
∫ u
t λsdsdu

≤ V2(y) .

Hence the policy
f∗1 (y) := lim sup

n→∞
fTn(y)

is a maximizer of V2 and so the policy π1 := (f∗1 , f
∗
1 , f

∗
1 , ...) is an optimal policy for the

terminal wealth problem with an unbounded intensity process. The same holds for the
policy π2 := (f∗2 , f

∗
2 , f

∗
2 , ...). �





7. Numerical examples with a Power Utility
function

In this chapter we present numerical computations of optimal policies as well as value
functions of the terminal wealth problems considered in the previous chapters. Thereby we
assume different intensity processes (λt) and use Howard’s policy improvement algorithm,
which was introduced in Section 4.4. If facing an unbounded intensity process, the
convergence results of Chapter 6 are used to simplify the computations. As basis for the
numerical examples, we fix the following model:

• The finite horizon equals 1, i.e. T = 1,

• We are considering the popular Black-Scholes market with coefficients µ = 4% and
σ = 33%,

• We assume a Power Utility function U(x) = xα

α with parameter α = 1
3 .

Since we are assuming a Power Utility function, there exists, due to Proposition 4.12, a
separation ansatz for the value function, such that

V (y) = U(x) · F (t, mx ) , ∀y ∈ E ,

for some function F : [0, T ]× (0, 1
β )→ R. Therefore, to determine the value function, it is

enough to determine the function F . Moreover, this separation ansatz directly implies that

• an optimal policy depends only on the time t and the ratio v := m
x ,

• an optimal policy indicates the fraction of wealth, which should be invested in the
stock.

In the following the initial policy for Howard’s policy improvement algorithm is given by
the generalized Merton ratio f0, where

f0(t, v) = min{π∗, 1− βv} , (t, v) ∈ [0, T ]× (0, 1
β )

and π∗ = µ
(1−α)σ2 = 0.55096 denotes the classical Merton ratio.

Remark 7.1

Since we are always dealing with stationary policies, we will in the following denote a
stationary policy π = (f, f, f, ...) only by its decision rule f .
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7.1. Bounded intensity processes

In this section we are considering bounded intensity processes (λt). Hence we are dealing
with a terminal wealth problem, which was solved in Chapter 4.

7.1.1. Constant intensity process

First we choose the intensity process equal to 1, i.e.

λt := 1 , ∀t ∈ [0,∞) .

We approximate an optimal policy using Howard’s policy improvement algorithm. After
the first improvement of the initial policy f0 it turns out, that we already obtain a very
good approximation of the optimal policy. Figure 7.1 shows this computed approximation
f∗ for different β. Moreover, this policy only depends on the time t and the ratio v = m

x .
As we can see, if the ratio v is small, then we invest a large fraction of wealth in the stock,
and if the ratio v is large, then we invest less in the stock. This can be explained in the
following way: If the ratio v is small, then the wealth x is far away from the lower bound
βm. Hence we can invest a larger amount in the stock without risking to fall below the
lower bound. If the ratio v is large, then the wealth x is close to the lower bound βm. So
we may invest only a small amount in the stock, such that the wealth does not fall below
the lower bound.

Figure 7.1.: Policy f∗ - on the left hand side for β = 1
2 and on the right hand side for β = 1

3 .

To obtain more insight into the micro-structure of the policy f∗, the slice planes t →
f∗(t, 0.5) and v → f∗(0.5, v) are shown in Figure 7.2 and 7.3 below.

In Figure 7.2 and 7.3 we can see that the policy f∗ is not constant in time and very close
to the Merton ratio π∗ for small values of v. Furthermore, we see that the policy f∗ is
constant as a function of the ratio v for small values thereof and then decreases linear to
zero with slope (−β).
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Figure 7.2.: Slice planes for β = 1
2
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Figure 7.3.: Slice planes for β = 1
3

Figure 7.4.: Function F ∗ of the separation ansatz - on the left hand side for β = 1
2 and on the

right hand side for β = 1
3 .
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Finally, we can summarize the following micro-structure of the policy f∗:

• The policy f∗ is time dependent.

• The bend in Figure 7.1 runs in a line from

– (t, v) = (0, 0.8958) to (t, v) = (1, 0.8981), if β = 1
2 ,

– (t, v) = (0, 1.3437) to (t, v) = (1, 1.3471), if β = 1
3 .

• The policy is constant as a function of the ratio v to the left of the bend and then
decreases linearly to zero with slope (−β).

At the end we present the function F ∗ of the separation ansatz for different β. Thereby
Banach’s Fixed Point Theorem is used to compute them recursively.

As we can see, the function F ∗ decreases in v ∈ [0.89, 2] for β = 1
2 and in v ∈ [1.34, 3] for

β = 1
3 . This is exactly the region, in which the drawdown constraint effects the policy f∗

and therefore diminishes the value function. Furthermore,

• F ∗(0, 0) = 1.00364 , if β = 1
2 ,

• F ∗(0, 0) = 1.00366 , if β = 1
3 .

Finally, if we compute the expected reward Vf0 = U · F0 under the initial policy f0, we
obtain F0 = F ∗ for both values of β. The lack of a measurable difference arises from the
numerical computations. However, it shows that the policy f0 is a very good approximation
of an optimal policy for both values of β.

7.1.2. Time-varying intensity process

In this section, we assume a time-varying intensity process λt = 1 + 5(t − 1)2, which is
illustrated in Figure 7.5 below:

0.0 0.2 0.4 0.6 0.8 1.0
t

1

2

3

4

5

6
Λt

Figure 7.5.: Intensity process λt = 1 + 5(t− 1)2.
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Below, we proceed as in the previous example and compute an approximation f∗ of an
optimal policy by using Howard’s policy improvement algorithm and the function F ∗.
Figure 7.6 shows the computed approximation for different β. In this case it turned out,
that the second improvement of the initial policy f0 is a very good approximation. As one
can see, the structure of the policy f∗ is very close to the one in the example above. Hence,
the time-varying intensity process has only a small influence on the optimal policy.

Figure 7.6.: Policy f∗ - on the left hand side for β = 1
2 and on the right hand side for β = 1

3 .

In Figure 7.7 and 7.8 on the next page, we can see that the policy f∗ is again not constant
in time and very close to the Merton ratio π∗ for small values of v. Furthermore, we see
that the policy f∗ is constant as a function of the ratio v for small values thereof and then
decreases linear to zero with slope (−β).

Finally, we can summarize the micro-structure of the policy f∗ similar to the previous
example:

• The policy f∗ is time dependent.

• The bend in Figure 7.6 runs in a line from

– (t, v) = (0, 0.8965) to (t, v) = (1, 0.8981), if β = 1
2 ,

– (t, v) = (0, 1.3448) to (t, v) = (1, 1.3471), if β = 1
3 .

• The policy is constant as a function of the ratio v to the left of the bend and then
decreases linearly to zero with slope (−β).

In this example we observe, that the investor always invests less in the stock compared to
the optimal behaviour in the previous example. This is exactly what one would expect,
since, due to large values of the intensity process (λt), we have a lower liquidity risk.
Hence one invests closer a fraction of wealth to the Merton ratio π∗, which is the optimal
proportion in a completely liquid market.

For completeness we also illustrate the function F ∗ of the separation ansatz in Figure 7.9.



80 7. Numerical examples with a Power Utility function
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Figure 7.7.: Slice planes for β = 1
2
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Figure 7.8.: Slice planes for β = 1
3

Figure 7.9.: Function F ∗ of the separation ansatz - on the left hand side for β = 1
2 and on the

right hand side for β = 1
3 .
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As we can see, we obtain the same structure as in the previous example. Furthermore, we
have

• F ∗(0, 0) = 1.00369 , if β = 1
2 ,

• F ∗(0, 0) = 1.00371 , if β = 1
3 .

Again, the expected reward Vf0 = U ·F0 of the initial policy f0 equals the expected reward
of the policy f∗ due to numerical computations. Hence, a similar conclusion can be made
and we get that the policy f0 is a very good approximation of an optimal policy for both
values of β.

7.2. Unbounded intensity process

In this section we consider an unbounded intensity process (λt), which is given by

λt = 1
1−t , ∀t ∈ [0, 1) .

Now we are able to apply the convergence results from Chapter 6 to approximate the
solution of this terminal wealth problem with an unbounded intensity process. As in the
previous examples, we compute an approximation of an optimal policy using Howard’s
policy improvement algorithm with the initial policy f0. We start with plotting this
approximation, denoted by f∗, in Figure 7.10 for different β.

Figure 7.10.: Policy f∗ - on the left hand side for β = 1
2 and on the right hand side for β = 1

3 .

We observe a similar structure of the policy f∗ as above, where we assumed a bounded
intensity process:

• The policy f∗ is time dependent.

• The bend in Figure 7.10 runs in a line from
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Figure 7.11.: Slice planes for β = 1
2
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Figure 7.12.: Slice planes for β = 1
3

Figure 7.13.: Function F ∗ of the separation ansatz - on the left hand side for β = 1
2 and on the

right hand side for β = 1
3 .
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– (t, v) = (0, 0.8960) to (t, v) = (1, 0.8981), if β = 1
2 ,

– (t, v) = (0, 1.3440) to (t, v) = (1, 1.3471), if β = 1
3 .

• The policy is constant as a function of the ratio v to the left of the bend and then
decreases linearly to zero with slope (−β).

In this example the investor invests similarly to the one example with a constant intensity
process. This is due to the fact that the intensity process in this section starts at the level
1 and only rises significantly during the last third of the investment horizon. Hence the
influence of this unbounded intensity process is limited.

At the end, we depict the function F ∗ of the separation ansatz in Figure 7.13. Again, we
obtain the same structure as above and

• F ∗(0, 0) = 1.00365 , if β = 1
2 ,

• F ∗(0, 0) = 1.00367 , if β = 1
3 .

The expected reward Vf0 = U ·F0 of the initial policy f0 equals the expected reward of the
policy f∗ due to numerical computations. Hence, the policy f0 already constitutes a very
good approximation of an optimal policy for both values of β.

7.3. Conclusion for practitioners

In the examples above we have seen, that the intensity processes (λt) has only a small
influence on the optimal policies. Therefore, we recommend for practitioners to neglect the
intensity process and use the generalized Merton ratio f0, which was given by

f0(t, v) = min{π∗, 1− βv} , (t, v) ∈ [0, T ]× (0, 1
β ) ,

where π∗ = µ
(1−α)σ2 denotes the Merton ratio.

This policy can only be improved with great effort while being nevertheless easily computed
due to the explicit representation.





A. Structure Theorem for limsup Markov
Decision Processes

In this Appendix we investigate structure assumptions under which we can characterize
the solution of a limsup Markov Decision Process. For that, consider a Markov Decision
Process with tuple (E,A,D,Q, g). As usual,

• E is the state space, endowed with a σ-algebra E .

• A is the action space, endowed with a σ-algebra A .

• D ⊂ E ×A is a measurable subset of E ×A and denotes the admissible state-action
combinations. It is assumed that D contains the graph of a measurable mapping.
Moreover, the set D(x) = {a ∈ A|(x, a) ∈ D} is the set of admissible actions.

• Q is a stochastic transition kernel from D to E, called the transition law.

• g : E → R is a measurable function, called the terminal reward.

A Markovian policy π := (f0, f1, f2, ...) is a sequence of decision rules (fn), where fn : E → A
is a measurable mapping such that fn(x) ∈ D(x). The set of all Markovian policies is
denoted by Π.

For a Markovian policy π ∈ Π, we define the reward with respect to π by

Vπ(x) := Eπx
[

lim sup
n→∞

g(Xn)
]
, x ∈ E , π ∈ Π .

Here, Eπx is the expectation with respect to the conditional probability

Pπx(·) := Pπ( · | X0 = x) .

The aim is to maximize the reward over all Markovian policies, i.e.

V (x) := sup
π∈Π

Vπ(x) , x ∈ E . (A.1)

In the following, we will proof a structure theorem, which gives us conditions under which
optimization problem (A.1) has a solution and how this solution can be characterized. To
do so we introduce the following notations:
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Let M(E) := {v : E → R | v is measurable }. Then we define for v ∈M(E) the operators

(Lv)(x, a) :=

∫
E
v(x′)Q(x′|x, a) , ∀(x, a) ∈ D ,

whenever the integral exists, and

(T v)(x) := sup
a∈D(x)

(Lv)(x, a) , x ∈ E .

Theorem A.1 (Structure Theorem)

If there exists a subset M ⊂M(E) such that

(i) g ∈M.

(ii) If v ∈M, then T v is well-defined and T v ∈M.

(iii) If v ∈M, then there exists a maximizer of v, i.e. there exists a decision rule f∗ such
that

Tf∗v = T v .

(iv) For each fixed x ∈ E
∃ v∞(x) := lim

n→∞
(T ng)(x) ,

and v∞ ∈M. Further v∞ satisfies the following conditions:

(1) v∞ = T v∞,

(2) limn→∞ v∞(Xn) = lim supn→∞ g(Xn) Pπx − (a.s.) ,

(3)
(
v∞(Xn)

)
n≥0

is Pπx-uniformly integrable for all π ∈ Π and x ∈ E .

holds. Then we have

a) V ∈ M and V is the unique fixed point of T in M which satisfies (2) and (3).
Moreover,

V = lim
n→∞

T ng .

b) There exists a maximizer f∗ of V and each maximizer of V defines an optimal
stationary policy π = (f∗, f∗, f∗, ...).

Proof:

1. Let x ∈ E and π := (f0, f1, ...) be a Markovian policy. Consider now v∞ ∈ M. It
follows by the tower property of the conditional expectation that

Eπx
[
v∞(Xn+1) | σ(Xn)

]
= Lv∞(Xn, fn(Xn)) ≤ Tv∞(Xn) = v∞(Xn) .
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Hence v∞(Xn) is a supermartingale. Since v∞(Xn) is uniformly integrable, we get
by (Klenke, 2008, Theorem 6.25)

V (x) = sup
π
Eπx
[

lim sup
n→∞

g(Xn)
]

= sup
π
Eπx
[

lim
n→∞

v∞(Xn)
]

= sup
π

lim
n→∞

Eπx
[
v∞(Xn))

]
≤ v∞(x) .

2. Let x ∈ E and π̂ := (f∗, f∗, ...) be a stationary policy, where f∗ is a maximizer of
v∞. By the same arguments as before, we get

Eπ̂x
[
v∞(Xn+1) | σ(Xn)

]
= Lv∞(Xn, f

∗(Xn)) = T v∞(Xn) = v∞(Xn) .

Hence v∞(Xn) is a martingale and so

Vπ̂(x) = Eπ̂x
[

lim sup
n→∞

g(Xn)
]

= Eπ̂x
[

lim
n→∞

v∞(Xn)
]

= lim
n→∞

Eπ̂x
[
v∞(Xn)

]
= v∞(x) .

This and Step 1 yields V = v∞ and that the stationary policy π̂ is an optimal one.

3. Now, we assume that there are two functions v∞ ∈ M and ṽ∞ ∈ M satisfying (1),
(2) and (3). By Step 1 and Step 2, it follows that V = v∞ and V = ṽ∞. Because of
that v∞ is the unique function in M satisfying (1), (2) and (3).

�





B. Stochastic processes

In this Appendix we state definitions, properties and theorems of stochastic processes
which are used throughout this work. For a more detailed treatment and proofs see Jacod
& Shiryaev (2003), Revuz & Yor (1999) and Sato (2005). In what follows, all processes are
assumed to be R-valued.

B.1. Semimartingales and stochastic exponential

In this work the powerful tool of stochastic integration is needed. A large class of processes
for which stochastic integration for general predictable integrands works, is the class of
semimartingales.

Let us fix a probability space (Ω,F ,P) equipped with a filtration F = (Ft)t≥0. It is
assumed that the filtered probability space (Ω,F ,F,P) satisfies the usual conditions.

Definition B.1

(i) A semimartingale is a process (Xt) of the form Xt = X0 +Mt + At where X0 is a
finite-valued and F0-measurable, where (Mt) is a local martingale such that M0 = 0,
and where (At) is an adapted, càdlàg process with A0 = 0 and whose each path has
finite variation over each finite interval [0, t].

(ii) A special semimartingale is a process (Xt) which admits a decomposition Xt =
X0+Mt+At as in part (i), with a process (At) that is predictable. This decomposition
is unique and therefore called canonical decomposition of (Xt).

With such a semimartingale (Xt), we can construct a new process E(X)t, called the
stochastic exponential or Doléans-Dade exponential.

Theorem B.2

Let (Xt) be a semimartingale. Then the equation

Yt = 1 +

∫ t

0
Ys−dXs
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has one and only one (up to indistinguishability) càdlàg adapted solution. This solution is
a semimartingale, denoted by E(X)t, and is given by

E(X)t = eXt−X0− 1
2
〈Xc,Xc〉t ×

∏
s≤t

(1 + ∆Xs)e
−∆Xs ,

where the (possibly) infinite product is absolutely convergent. Furthermore

(i) If (Xt) has finite variation, then so has E(X)t.

(ii) If (X)t is a local martingale, then so is E(X)t.

(iii) Let ξ = inf{t : ∆Xt = −1}. Then E(X)t 6= 0 on [0, ξ), and E(X)t− 6= 0 on [0, ξ], and
E(X)t = 0 on [ξ,∞).

In financial applications, it is often assumed, that the price process of an asset is given by
the stochastic exponential of its return process. This has two advantages:

• If we restrict the jumps size of the returns to be strictly greater than minus 1, then
we get a strictly positive process. This is necessary for realistic asset prices.

• Usually, it is simpler to model the return process than the asset price.

Another desirable feature of asset returns is the independent increment property, i.e. the
returns on non overlapping time intervals are independent. This leads to processes with
independent increments.

Definition B.3

A process with independent increments (in short: PII), is a càdlàg adapted process (Xt)
such that X0 = 0 and that for all 0 ≤ s ≤ t the variable Xt −Xs is independent of the
σ-field Fs.

The following two theorems give a connection between semimartingales and PIIs. We
emphasize that this is not clear, since there are stochastic processes with independent
increments which are not semimartingales. For a example see (Jacod & Shiryaev, 2003, II,
§4c)).

Theorem B.4

Let (Xt) be a PII. Then (Xt) is also a semimartingale if and only if, for each u ∈ R, the
function

t→ E
[
eiuXt

]
, t ∈ [0,∞) ,

has finite variation over finite intervals.
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Theorem B.5

Let (Xt) be a semimartingale with X0 = 0. Then it is a PII if and only if there is a version
(B,C, ν) of its characteristics that is deterministic.

The canonical representation of semimartingales and special semimartingales is often helpful
handling such processes.

Theorem B.6

Let (Xt) be a semimartingale, with characteristics (B,C, ν) relative to the truncation
function 1{|x|≤1}, and with the measure µX associated to its jumps. Then the following
representation, called canonical representation, holds:

Xt = X0 +Bt +Xc
t +

∫ t

0

∫
R

x1{|x|≤1}(µ
X − ν)(ds, dx) +

∑
s≤t

∆Xs1{|∆Xs|>1} .

Theorem B.7

Let (Xt) be a special semimartingale, with characteristics (B,C, ν) and µX the measure
associated to its jumps. If Xt = X0 +Mt +At is its canonical decomposition, then

Xt = X0 +At +Xc
t +

∫ t

0

∫
R

x(µX − ν)(ds, dx) .

Theorem B.8

Let (Xt) be a special semimartingale, with deterministic characteristics (B,C, ν) relative
to the truncation function 1{|x|≤1}. Then the canonical decomposition Xt = X0 +Mt +At
satisfies

At = Bt +

∫ t

0

∫
R

(x− x1{|x|≤1})ν(ds, dx) .

B.2. Additive processes

In this section, we focus on additive processes. These processes are a generalization of the
well known Lévy processes, since the condition of stationary increments is not required.

In the following we assume a fixed probability space (Ω,F ,P).
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Definition B.9

A process (Xt) is an additive process in law, if

1. For any choice of n ≥ 1 and 0 ≤ t0 < t1 < ... < tn the random variables

Xt0 , Xt1 −Xt0 , ..., Xtn −Xtn−1

are independent (independent increment property).

2. X0 = 0.

3. (Xt) is stochastically continuous.

Such as Lévy processes, additive processes in law are Markov processes and they are
infinitely divisible.

Theorem B.10

Let (Xt) be an additive process in law. Then (Xt) is a Markov process with transition
function

Ps,t(x,B) = P[Xt −Xs ∈ B − x] for 0 ≤ s ≤ t ,

where B − x = {y − x : y ∈ B} and starting point 0.

Theorem B.11

If (Xt) is an additive process in law, then the distribution of Xt is infinitely divisible for
every t.

Because asset prices are usually càdlàg processes, additive processes will come to the fore.

Definition B.12

An additive process in law (Xt) is called an additive process, if there is a Ω0 ∈ F with
P(Ω0) = 1 such that, for every ω ∈ Ω0, Xt(ω) is right-continuous in t ≥ 0 and has left
limits in t > 0.

The following theorem shows, that we can get an additive process from an additive process
in law by choosing the appropriate modification.

Theorem B.13

Let (Xt) be an additive process in law. Then there exists a modification of (Xt) which is
an additive process.
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The following theorem is the main theorem in this section, since it shows, how to construct
additive processes in law.

Theorem B.14

(i) Suppose that (Xt) is an additive process in law. Let (µt, At, vt) be the generating
triplet of the infinitely divisible distribution PXt for t ≥ 0. Then the following
conditions are satisfied.

(1) A0 = 0, v0 = 0, µ0 = 0.

(2) If 0 ≤ s ≤ t <∞, then As ≤ At and vs(B) ≤ vt(B) for B ∈ B(R).

(3) As s → t in [0,∞), µs → µt, As → At and vs(B) → vt(B) for B ∈ B(R) with
B ⊂ {x : |x| > ε}, ε > 0.

(ii) Let (Γt)t≥0 be a system of infinitely divisible probability measures on R with generat-
ing triplet (µt, At, vt) satisfying the conditions (1) - (3). Then there exists, uniquely
up to identity in law, an additive process in law (Xt) such that PXt = Γt for t ≥ 0.

The last theorem in this section tells us, that an additive process (Xt) can be decomposed
in a continuous and a discontinuous part, where the parts are independent.

Theorem B.15

Let (Xt) be an additive process with generating triplet (µt, At, vt). Then

Xt = X1
t +X2

t ,

where (X1
t ) and (X2

t ) are independent, X1
t is a continuous additive process with generating

triplet (µt, At, 0) and X2
t is an additive process with generating triplet (0, 0, vt).





C. Fenchel-Legendre transform

In this Appendix we introduce the Fenchel-Legendre transform, which is used in Chapter 5.
Moreover, we present the Fenchel-Legendre transforms of popular utility functions which
are introduced in Section 3.3.

Definition C.1 (Fenchel-Legendre transform)

Let u : (0,∞) → R be an increasing and concave function. Then we define the Fenchel-
Legendre transform ũ : (0,∞)→ R ∪ {∞} of u by

ũ(y) = sup
x>0

[
u(x)− xy

]
, ∀y > 0 ,

and the domain of ũ by

dom(ũ) = {y > 0 : ũ(y) <∞} .

Example C.2

• The Fenchel-Legendre transform Ũ of the Power Utility function U(x) = xα

α with
α < 1, α 6= 0 is given by

Ũ(y) = 1−α
α y

α
α−1 .

• The Fenchel-Legendre transform Ũ of the Logarithmic Utility function U(x) = log(x)
is given by

Ũ(y) = − log(y)− 1 .

• The Fenchel-Legendre transform Ũ of the Exponential Utility function U(x) = − 1
αe
−αx

with α > 0 is given by

Ũ(y) =
y(ln(y)− 1)

α
.

Proposition C.3

Let u : (0,∞)→ R be an increasing and concave function and ũ its Fenchel-Legendre
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transform. Then we have

• ũ is a decreasing convex function on (0,∞).

• The following conjugate relation holds:

u(x) = inf
y>0

[
ũ(y) + xy

]
, x > 0.

• ũ(0) := limy↓0 ũ(y) = u(∞) := limx→∞ u(x).

Under the additional assumptions of

- u is strictly concave on (0,∞),

- u is differentiable on (0,∞),

- u′(0) =∞ and u′(∞) = 0,

we have dom(ũ) = (0,∞).

A proof can for example be found in (Pham, 2009, Section B.2).
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Kluge, W. (2005). Time-inhomogeneous Lévy processes in interest rate and credit risk
models. PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau.

Matsumoto, K. (2003). Optimal portfolio of low liquid assets with a power utility function.
Journal of Mathematical Sciences, The University of Tokyo, 10, 687–726.

Matsumoto, K. (2006). Optimal portfolio of low liquid assets with a log-utility function.
Finance and Stochastics, 10, 121–145.

Matsumoto, K. (2007). Portfolio insurance with liquidity risk. Asia-Pacific Financial
Markets, 14, 363–386.

Matsumoto, K. (2009). Optimal growth rate in random trade time. Advances in Mathe-
matical Economics, 12, 129–152.

Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous-time
case. The Review of Economics and Statistics, 51, 247–257.

Pham, H. (2009). Continuous-time Stochastic Control and Optimization with Financial
Applications. Springer-Verlag Berlin Heidelberg.

Pham, H. & Tankov, P. (2008). A model of optimal consumption under liquidity risk with
random trading times. Mathematical Finance, 18, 613–627.

Pham, H. & Tankov, P. (2009). A coupled system of integrodifferential equations arising
in liquidity risk model. Applied Mathematics & Optimization, 59, 147–173.



Bibliography 99

Protter, P. E. (1977). Markov solutions of stochastic differential equations. Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete, 41, 39–58.

Protter, P. E. (2005). Stochastic Integration and Differential Equations. Springer-Verlag
Berlin Heidelberg, 2nd edition.

Revuz, D. & Yor, M. (1999). Continuous Martingales and Brownian Motion. Springer-
Verlag Berlin Heidelberg, 3rd edition.

Rockafellar, R. T. (1972). Convex Analysis. Princeton University Press.

Rogers, L. (2001). The relaxed investor and parameter uncertainty. Finance and Stochastics,
5, 131–154.

Rogers, L. & Williams, D. (2003). Diffusions, Markov Processes and Martingales: Founda-
tions. Cambridge University Press, Cambridge, 2nd edition.

Rogers, L. & Zane, O. (2002). A simple model of liquidity effects. Advances in Finance
and Stochastics, (pp. 161–176).
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Zusammenfassung

In der klassischen Portfolio-Optimierung investiert ein Investor sein Vermögen in einen
Finanzmarkt, welcher aus endlich vielen risikobehafteten Anlagen und einer risikolosen
Anlage besteht. Dabei interessiert er sich für die beste Anlagestrategie. Um diese iden-
tifizieren zu können muss er jedoch zunächst ein Bewertungskriterium für die Strategien
festlegen. Ein solches Kriterium ist zum Beispiel die Maximierung des Endnutzens.
Das zugehörige Portfolio-Optimierungsproblem wurde erstmals im Jahre 1969 von Robert
C. Merton in Merton (1969) gelöst. Er betrachtete dabei einen klassischen Black-Scholes
Markt sowie eine CRRA Nutzenfunktion. Darüber hinaus wurde jedoch auch angenommen,
dass der Investor sein Portfolio jederzeit anpassen kann. Da diese Annahme von eher
theoretischer Natur ist, werden wir in dieser Arbeit einen illiquiden Markt zugrunde legen,
in welchem der Investor nur an zufälligen Zeitpunkten sein Portfolio anpassen kann.
Seit der Finanzkrise 2008 gehören starke Kursschwankungen zum Alltag an den Börsen
dieser Welt. Deshalb sind Investoren heutzutage mehr und mehr an risikobewussten
Anlagestrategien interessiert. Um dieses Verhalten in den Finanzmarkt integrieren zu
können, führen wir in dieser Arbeit eine Verlustschranke ein. Diese garantiert einerseits ein
Minimum an Vermögen und andererseits einen festgelegten Prozentsatz der erwirtschafteten
Gewinne.

Im 2. Kapitel dieser Arbeit führen wir zunächst inhomogene Lévy Prozesse ein, da diese bei
der Modellierung der Rendite der risikobehafteten Anlage eine zentrale Rolle spielen. Wir
zeigen dabei, dass inhomogene Lévy Prozesse sowohl zur Gruppe der additiven Prozesse
als auch zu den Semimartingalen zählen. Des Weiteren werden wir eine Einschränkung
vornehmen, so dass das exponentielle Moment dieser Prozesse existiert. Unter diesen
Voraussetzungen zeigen wir auch, dass die betrachteten inhomogenen Lévy Prozesse sogar
spezielle Semimartingale sind. Darüber hinaus studieren wir das stochastische Exponential
eines solchen Prozesses und beweisen weitere Hilfsresultate für die nachfolgenden Kapitel.
Zum Schluss betrachten wir inhomogene Poisson Prozesse, welche einen Spezialfall der
eingeführten Prozesse darstellen.

In Kapitel 3 führen wir das Endnutzenmaximierungsproblem ein. Dazu wird zunächst ein
illiquider Markt aufgestellt. Dieser besteht aus einer risikolosen Anlage, einer risikobe-
hafteten Anlage und zufälligen Zeitpunkten, an welchen das Handeln der Anlagen möglich
ist. Diese zufälligen Handelszeitpunkte sind durch die Sprungzeitpunkte eines inhomogenen
Poisson Prozesses gegeben. Dann betrachten wir einen Investor in diesem Markt und
führen seinen Vermögensprozess, die zugehörige Verlustschranke sowie die Menge der
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zulässigen Strategien ein. Am Ende des Kapitels formulieren wir noch das Endnutzenmax-
imierungsproblem und diskutieren zwei unterschiedliche Klassen des zugrundeliegenden
inhomogenen Poisson Prozesses.

Dieses Endnutzenmaximierungsproblem lösen wir unter der Annahme eines beschränkten
Intensitätsprozesses des inhomogenen Poisson Prozesses in Kapitel 4. Dabei reduzieren wir
zunächst das ursprünglich zeitstetige Optimierungsproblem auf ein zeitdiskretes Problem –
ein sogenanntes Markoffsches Entscheidungsmodell – und lösen dieses. In Theorem 4.10
beweisen wir, dass die Wertfunktion der eindeutige Fixpunkt des maximalen Gewinnopera-
tors ist und dass eine optimale stationäre Strategie existiert. Zum Schluss zeigen wir noch,
dass man unter der Annahme einer CRRA Nutzenfunktion die Wertfunktion separieren
kann.

In Kapitel 5 lösen wir dann das Endnutzenmaximierungsproblem unter der Annahme
eines unbeschränkten Intensitätsprozesses des inhomogenen Poisson Prozesses. Dabei
ist zu beachten, dass die zufälligen Handelszeitpunkte in diesem Fall monoton steigend
gegen den endlichen Horizont des Investors konvergieren. Deshalb kann der Investor
sein Endvermögen am Horizont nicht beobachten. Es existiert jedoch der linksseitige
Grenzwert des Vermögensprozesses in diesem Zeitpunkt und dieser kann vom Investor
beobachtet werden. Wie in Kapitel 4 können wir nun auch dieses ursprünglich zeitstetige
Optimierungsproblem auf ein zeitdiskretes Problem – ein sogenanntes limsup Markoffsches
Entscheidungsmodell – reduzieren und dieses lösen. In Theorem 5.12 beweisen wir, dass die
Wertfunktion der eindeutige Fixpunkt des maximalen Gewinnoperators ist und dass es eine
optimale stationäre Strategie gibt. Unter der Annahme einer CRRA Nutzenfunktion gibt
es, wie auch im vorhergehenden Kapitel, einen Separationsansatz für die Wertfunktion.

Schließlich zeigen wir, dass es unter einer kleinen Einschränkung möglich ist das End-
nutzenmaximierungsproblem mit unbeschränktem Intensitätsprozess mit Hilfe von End-
nutzenmaximierungsproblemen mit beschränkten Intensitätsprozessen zu approximieren.
Diese Approximation umfasst sowohl die Konvergenz der Wertfunktionen als auch die
Konvergenz der optimalen Strategien.

Im letzten Kapitel illustrieren wir die Ergebnisse der vorhergehenden Kapitel an Beispielen.
Dazu nehmen wir einen klassischen Black-Scholes Markt und eine Potenznutzenfunktion an.
Folglich können wir den Separationsansatz der Wertfunktion verwenden und anschließend
das Problem für verschiedene Intensitätsprozesse und Prozentsätze der Sicherung lösen.
Darüber hinaus ist zu erkennen, dass eine verallgemeinerte Merton Strategie, welche den
Intensitätsprozess vernachlässigt, eine sehr gute Approximation der optimalen Strategie
ergibt.
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