
Decoding Hermitian Codes -
An Engineering Approach

DISSERTATION

zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS
(DR.-ING.)

der Fakultät für Ingenieurwissenschaften
und Informatik der Universität Ulm

von

Sabine Kampf
geboren in Mainz

Gutachter: Prof. Dr.-Ing. Martin Bossert

Prof. Peter Beelen

Amtierender Dekan: Prof. Dr.-Ing. Klaus Dietmayer

Ulm, 5.3.2012

Contents

1 Introduction 1

2 The Basic Idea of Channel Coding 7
2.1 Block Codes and Their Parameters 8
2.2 Decoding Methods for Block Codes 12
2.3 Decoding Reed-Solomon Codes with the Euclidean Algorithm . . 17

3 Basics of Algebraic Geometry 23
3.1 Affine and Projective Spaces . 23
3.2 Algebraic Plane Curves . 25
3.3 Divisors, Valuations and Rational Functions 29
3.4 Riemann-Roch Spaces and the Riemann-Roch Theorem 35

4 Algebraic-Geometric Codes 39
4.1 Algebraic-Geometric Codes and Their Parameters 40
4.2 Special Case: Reed-Solomon Codes 41
4.3 Special Case: Hermitian Codes 42
4.4 Defining Hermitian Codes without Algebraic Geometry 44

5 A Division Decoding Algorithm for Hermitian Codes 47
5.1 Syndromes and the Key Equation 48
5.2 Division of Bivariate Polynomials 56
5.3 Solving the Key Equation with a Division Algorithm 58
5.4 Correctness of the Algorithm . 61
5.5 Handling of Decoding Failures . 62
5.6 Complexity of the Algorithm . 65

6 Extending Decoding Beyond Half the Minimum Distance 67
6.1 A Basis for all Solutions . 68
6.2 Interleaved Hermitian Codes . 70
6.3 Virtual Extension to an Interleaved Code 76

7 Conclusions 79

A Further Valuations on Hermitian Curves 83

B Degrees of the Remainder Polynomials 87

iii

iv CONTENTS

List of Figures

2.1 Basic decoding principles . 13
2.2 Illustration of an error locator in the time domain 19

3.1 Hermitian curve over GF (22) . 28
3.2 Hermitian curve over GF (24) . 29

5.1 Illustration of (5.5) - without and with inferred syndromes 55

6.1 Interleaved Hermitian code and burst errors 71

A.1 Hermitian curve x5 − y4 − y = 0 over R 84

List of Tables

5.1 Polynomials calculated by Algorithm 1 64
5.2 Simulation Results for Several Codes H(m) 65

6.1 Comparison of Theoretical and Actual Error Probability 75
6.2 Upper Bound on the Design Parameter for Virtual Extension . . 77

v

vi LIST OF FIGURES/LIST OF TABLES

Abstract

This thesis introduces and discusses a new algorithm for solving the key equa-
tion for Hermitian codes, that belong to the class of algebraic-geometric (AG)
codes. First, the most important concepts of channel coding are recalled and the
popular Reed-Solomon (RS) codes are used to illustrate them. The decoding of
RS codes with the extended Euclidean algorithm is used to illustrate the basic
idea of algebraic decoding and also to motivate the new decoding algorithm. Af-
ter that, some elementary results from algebraic geometry are given: only those
basics that are (directly or indirectly) used in the definition of AG codes are
introduced. From the definition of general AG codes, RS codes and Hermitian
codes are derived as special cases. An alternative definition of Hermitian codes
that uses almost no algebraic geometry is also given.

After the introduction of the codes, the key equation for Hermitian codes
is presented. For a limited error weight, there is a unique solution of minimal
degree to the key equation, and the error pattern can be reconstructed from
this solution. An algorithm that finds this solution of minimal degree is given.
Unfortunately, this algorithm is not capable of decoding all error patterns with
weight up to half the minimum distance - a bound up to which unique decoding
is guaranteed by the properties of general linear codes that include Hermitian
codes. An extension that achieves this decoding radius is discussed afterwards,
and the complexity of both the algorithm and its extension are estimated.

A modification of the algorithm that allows to find a basis for decoding be-
yond half the minimum distance is given in the last chapter. However, decoding
up to this increased radius without (significantly) increasing the complexity is
not always possible. A bound on the error weight that allows such decoding
for interleaved Hermitian codes with high probability is derived, as well as the
probability that decoding fails. Finally, the idea of virtual extension to an in-
terleaved code is described. This principle works only for codes with low rates,
and therefore the rate bound is given.

vii

viii ABSTRACT

Chapter 1
Introduction

The main purpose of channel coding is to allow the correction (or at least
detection) of errors that occurred during the transmission of data. This can be
both the transmission over a spacial distance - this case corresponds to what
is commonly referred to as transmission - or transmission over time, e.g. by
storing data on a disk and reading it later. However, there is one problem: if
all possible symbol patterns are allowed, there is no way to find out if an error
occurred or even correct that error. Hence it is necessary to limit the allowed
patterns, or - in other words - transmit redundant data.

As an example, consider the English language and the transmission of single
words: not every sequence of letters is an allowed word, but the set of allowed
sequences is given by a dictionary, the code. Sometimes, it is possible to detect
or even correct errors: if the word “redundunt” is received, one can tell that
an error must have occurred during transmission because it is not a word in
a dictionary, and that “redundant” is the word that had most probably been
sent. But not all errors can be corrected: the word “house” can be transformed
into the word “mouse” or “horse” by changing only a single letter and these are
words in the dictionary, too. In this case, not even the detection of the error is
possible.

One of the main tasks of channel coding is to find good codes, i.e., sets
of patterns that allow the correction of many errors while at the same time
requiring only few additional symbols to be transmitted. More specifically, one
is usually not interested in the maximum number of errors that can be corrected,
but in the number of errors for which correction is guaranteed or can at least be
performed with high probability. Clearly, language is a bad code because it is
not hard to find more pairs of words like “house–mouse” that differ in only one
letter, so some errors that change only a single letter cannot be corrected. The
other main task is to find algorithms that perform the correction in an efficient
way. These two tasks are often contradicting. As an example consider a simple
repetition code, where each data bit is transmitted n times. The decision at the
receiver is to simply choose the bit (0 or 1) which constitutes the majority of
the received bits. To be able to correct 5 errors it is hence necessary to transmit
11 bits for one data bit. Such a redundancy is not acceptable in practical
applications.

1

2 CHAPTER 1. INTRODUCTION

A theoretical solution to the first problem had been derived by Claude E.
Shannon in his famous work “A Mathematical Theory of Communication”1 in
1948 [Sha48]: given the channel conditions, Shannon derived the exact amount
of additional information that needs to be transmitted so that all errors can be
corrected. But his proof is nonconstructive, so a lot of engineers and mathe-
maticians have been trying to develop codes that come as close as possible to
this bound. So far, it has not been reached and the search continues. One
reason is that Shannons proof assumes an infinite number of transmitted sym-
bols: naturally, no practical application will ever transmit that many symbols,
and the restrictions of practical channels often limit this number even further.
Nevertheless Shannons result implies that it is better to transmit the data in
one big block than to split it into a lot of small blocks.

The codes we consider in this thesis belong to the large group of block codes,
where blocks of information symbols, the information words, are mapped to
longer blocks of code symbols, the codewords. The information and code sym-
bols are not necessarily from the same set, but both the information words and
codewords have a fixed length. There exist a lot of different classes of block
codes that differ in various aspects such as the set from which the information
and code symbols are chosen and the decoding methods that can be applied
(more details on possible classifications can be found in the next section). For
a fair comparison, the complexity of a decoding algorithm for block codes is
usually measured relative to the code length, i.e., the number of symbols in one
codeword. So far, no algorithms with linear (or even lower) complexity exist for
any nontrivial code. The transmission in large blocks hence comes at the cost
of increased decoding complexity, and a tradeoff between decoding performance
and complexity has to be found.

In this thesis, we use only block codes that can be decoded with algebraic
methods. Probably the most widely employed representative of this kind of code
are the Reed-Solomon (RS) codes named after their inventors [RS60]: since their
first description in 1960, they have been used in a wide variety of applications
including CDs, DVDs and deep-space data transmission. Their description is
very simple but powerful, and efficient decoding algorithms for these codes were
soon found, e.g. the still famous algorithm based on shift-register synthesis
found by Berlekamp [Ber68] and Massey [Mas69]. Alternative code descriptions
led to other decoding algorithms, e.g. the Sugiyama algorithm [SKHN75] that
deploys the extended Euclidean algorithm or the Welch-Berlekamp algorithm
[WB86] that uses polynomial interpolation. Despite the differences between
these algorithms, the error correction capability is the same for them all.

During the last twenty years, research on RS codes had the main goal to
improve these capabilities. Some of the proposed methods use side informa-
tion about the error (e.g. [Sor93], [Köt96], [KB10], [SSBZ10]), and while these
algorithms have the same complexity as the original algorithms they require
different receiver structures due to the necessity of side information. Other de-
coders work without such side information, but they often suffer from severe rate
restrictions (e.g. [Sud97], [SSB06]) or no rate restrictions that can be achieved
at the cost of increased complexity (e.g. [GS99]).

One big disadvantage of RS codes is that their code length is limited to

1Because of the huge impact of this work, it was later republished under the title “THE
Mathematical Theory of Communication”.

3

the size of the underlying alphabet, i.e., increasing the code length requires
a larger field that complicates the basic operations. Soon, efforts were made
to find longer codes over the same base field. One such class of codes are the
Hermitian codes for which the main results of this thesis are derived. While it is
possible to describe these codes as a generalization of RS codes, they were first
found as a special case of the so-called algebraic-geometric (AG) codes. These
codes had first been described by Goppa at the beginning of the 1980s (the
main paper is [Gop83], but several preliminary papers on the same topics had
been published before), and in the following years some more comprehensible
introductory works (e.g. [LG88], [Lin90], [HLP98]) were published. In the late
1980s and throughout the 1990s, a lot of decoding algorithms for either specific
or general AG codes were introduced - a survey paper by Høholdt and Pellikaan
published in 1995 [HP95] lists 112 references - not all of them actually present
decoding algorithms, but one should get an idea of how “hot” the topic was.

But even today, more than 15 years later, these codes are not yet used in
any practical applications. One reason seems to be that understanding most of
the algorithms requires a well-developed background in algebraic geometry that
most engineers do not have. Probably in an attempt to change this, Høholdt
et al. introduced an alternative description of Hermitian codes in [HLP98]
and [JH04] that uses not more algebra than is necessary to understand RS
codes. However, the description in [HLP98] is rather unhandy as it includes a
general introduction to so-called order functions and the simplified definition of
Hermitian codes is left as an example. On the other hand, the chapter in [JH04]
is very short, and the connection of their description to the usual notation in
other works is not given, making it almost impossible to understand other works
about Hermitian codes by only reading the latter book. One of the aims of this
thesis is to help bridging this gap by showing how the alternative definition
relates to the definition of general AG codes, but without further justifying or
generalizing this alternative definition.

About This Thesis

In this thesis, we present all results as simple and comprehensible as possible,
but in a way that still allows to see the bigger framework. For this purpose, we
give two definitions of Hermitian codes: the first is just a special case of general
AG codes, whereas the second is the specific definition adopted from [JH04].
The relation between those two definitions is also given. The description of
the algorithm and its extensions in Chapters 5 and 6 is done in a way that it
can be understood and implemented using the specific definition, but sometimes
algebraic geometry is necessary to understand the proofs. Yet also the definition
of general AG codes we give here is not the most general definition that is
possible: two types of AG codes are distinguished, but we only present the
conceptually simpler type. This is no large drawback because all AG codes can
be represented as either type of code (cf. [LG88]).

The thesis is organized as follows: in the next chapter, we shortly recall the
basic concepts of channel coding and decoding. In the first section, block codes
and their properties and parameters are defined. Few explanations are given
because the main purpose of this section is to fix the notations used throughout
the thesis. In Section 2.2 general concepts of decoding are introduced, and a
specific decoding algorithm for Reed-Solomon codes is given in Section 2.3. We

4 CHAPTER 1. INTRODUCTION

chose to present decoding with the extended Euclidean algorithm because it is
computationally similar to the decoding algorithm presented in Chapter 5.

In Chapter 3 we give a short introduction to the basics of algebraic geometry,
where the topics are reduced to those absolutely necessary for the definition of
AG codes. Further, many of the definitions are not given in their most general
form, but are restricted to the special case needed in the definition of AG codes.
Proofs are given only if they are short and illustrative, otherwise the statement
of the theorem is illustrated with an example. The design of the examples was
always done with the decoding algorithm in mind, e.g. the underlying curve
is usually a Hermitian curve because (with a single exception) only codes on
Hermitian curves are investigated. Specifically, we introduce the affine and
projective line and plane in Section 3.1, and plane algebraic curves in Section
3.2. Both affine and projective spaces and curves also exist in higher dimensions,
this is one example where the given definition is restricted to a special case. In
Section 3.3, rational functions and divisors are defined, and the calculation of the
divisor of a function is illustrated. These divisors are essential for the definition
of Riemann-Roch spaces in Section 3.4.

All the basics introduced are then used in Chapter 4 to define algebraic-
geometric codes and calculate or estimate their parameters. To justify the use
of Reed-Solomon codes in the examples in Chapter 2 it is shown how these codes
can be obtained as a subclass of AG codes. Because the decoding algorithm is
described for Hermitian codes, another subclass of AG codes, they are given
in Section 4.3, along with several specific properties. A separate section is
dedicated to the simpler description introduced by Justesen and Høholdt, but
in addition to the definitions we also give the relations to the results from the
previous sections to illustrate that the definitions do make sense.

We state the decoding problem for Hermitian codes as a key equation in
Chapter 5. Several forms of the key equation exist, but we give one that comes
close to the key equation for RS codes introduced in Section 2.3 by stating it in
terms of polynomials. The core of the decoding algorithm - a division procedure
for bivariate polynomials - and the basic decoding algorithm are given next. A
proof of correctness of this algorithm follows in Section 5.4. The basic algorithm
does not achieve the full correction capabilities of a linear code, therefore Section
5.5 introduces a first extension closing this gap. The chapter concludes with an
estimation of the complexity of this algorithm.

Finally, Chapter 6 extends the algorithm even further: if one is willing to
give up the certainty of having a unique solution to the decoding problem the
decoding capabilities can be further increased and the basic algorithm can be
used to obtain a basis for all solutions. The size of this basis is given, and we
shortly discuss why this basis should not be used without further information
about the error. In Section 6.2 we derive an upper bound on the number of
correctable errors if several error words with errors in the same positions are
available. This result yields an upper bound on the code rate of a non-interleaved
Hermitian code for which an increase in the decoding radius is achieved by
virtually extending the received word into an interleaved code at the receiver.
This upper bound is given in Section 6.3. The conclusions and a short outlook
on possible further problems are given in Chapter 7.

New contributions of the author are found in Chapters 5 and 6. Namely,
they are the division decoding algorithm and its extension for decoding up to
half the minimum distance in Sections 5.3 and 5.5, which provide an alternative

5

to existing algorithms. Another new result is the simple method for the decod-
ing of interleaved Hermitian codes presented in Section 6.2, and the derivation
of the decoding radius that can be achieved with this simple algorithm. This
radius is larger than the radius of previously published algorithms. Section 6.3
shows how this method can be exploited for the decoding of non-interleaved Her-
mitian codes beyond half the minimum distance. This last algorithm provides
an entirely new approach to the problem of decoding beyond half the minimum
distance.

6 CHAPTER 1. INTRODUCTION

Chapter 2
The Basic Idea of Channel Coding

As mentioned in the introduction, the two main tasks of channel coding are
finding good codes and efficient decoding algorithms for those codes. A lot of
code classes - each with its own advantages and disadvantages - are already
known, and so are decoding algorithms for these codes. There exist a lot of
textbooks introducing the basics of channel coding, common classes of codes and
decoding algorithms for these codes e.g. [MS88], [Bos99], [Bla03] or [JH04], so
this chapter covers the basic concepts only to the extent necessary to introduce
the notations used throughout the rest of the thesis. Also, only few explicit
references are given as the facts can be viewed as common knowledge (and most
of the given references are used to demonstrate this).

In this thesis, we cover block codes only. As the name indicates, these
codes work by mapping blocks of a fixed number of arbitrary symbols k, the
information words i, to blocks with n > k symbols, the codewords c. It is known
that for a fixed ratio k

n , which is called code rate, codes that have a larger block
length n usually exhibit a better performance. Most practically used block codes
are defined over finite fields GF (q) = GF (pm) with p prime. In this thesis, we
concentrate on Reed-Solomon and Hermitian codes, and for these classes the
code length is related to the number of elements in the finite field: for Reed-
Solomon codes the code length is usually n = q− 1, with special extensions the
code length can be increased by at most 2. An RS code of longer length can
only be obtained by using a larger field, but at the cost of more complex field
operations. Another option is the use of codes that have a larger code length
over the same finite field like the Hermitian codes introduced later: they have
n = q3/2. Though the length can be increased even further with other kinds of
AG codes, Hermitian codes are expected to be the first kind of AG codes used
in applications due to their structural properties.

In the first part of this chapter we discuss the basic parameters of block
codes and their encoding. The example of Reed-Solomon (RS) codes is used
to illustrate these notions. The second part introduces some basic decoding
concepts that mainly differ in the number of correctable error patterns and in
the uniqueness of the decoding result. Independently of the concept used, many
decoding algorithms rely on syndromes that are introduced afterwards. The
calculation of the syndromes is again illustrated with the help of RS codes.

7

8 CHAPTER 2. THE BASIC IDEA OF CHANNEL CODING

In the last section, a specific decoding algorithm for RS codes is given: the
extended Euclidean algorithm is chosen because it motivates the main work of
this thesis: the decoding algorithm presented in Chapter 5.

2.1 Block Codes and Their Parameters

Block Codes

Definition 1 (Block Code). A block code C over a finite field GF (q) is a set
of qk vectors c = (c0, . . . , cn−1) ∈ GF (q)n, the codewords, and the length n of
these vectors is also called the length of the code.

The definition of a code should not be confused with the encoding that
describes the mapping from the information words to the codewords. Both codes
and different encoding rules have their own properties, and we first concentrate
on the properties of codes. A code is called linear if the linear combination of
any two codewords c, c′ is again a codeword, i.e., if

c + c′ = (c0 + c′0, . . . , cn−1 + c′n−1) ∈ C ∀ c, c′ ∈ C,
α · c ∈ C ∀ c ∈ C, α ∈ GF (q).

In the linear case, the code forms a k-dimensional subspace of GF (q)n, therefore
k is called the dimension of the code. Another useful property of linear codes
is that the all-zero word (0, . . . , 0) is always in C. The third characterizing
parameter of a code is its minimum distance. Theoretically, any metric can be
used to measure this distance, but the most common choice in coding theory is
the Hamming metric:

Definition 2 (Hamming weight and Hamming distance). The Hamming weight
of a vector c ∈ GF (q)n is the number of its nonzero elements:

wH(c) = |{ci ̸= 0|i = 0, . . . , n− 1}|.

The Hamming distance between two vectors c, c′ ∈ GF (q)n is the number of
unequal elements. It is equal to the weight of the difference vector c − c′:

dH(c, c′) = |{ci ̸= c′i|i = 0, . . . , n− 1}| = wH(c − c′).

The minimum distance d of a code is the minimum distance between any
two different codewords of this code:

d = min{dH(c, c′)|c, c′ ∈ C, c ̸= c′}.

For a linear code, this number is equal to the minimum weight of any nonzero
codeword:

d = min{wH(c)|c ∈ C, c ̸= (0, . . . , 0)}.
Because these parameters characterize a code and its decoding capabilities,

there exists a standard notation that gives all parameters in a compact form:

C(q;n, k, d)

is a q-ary code with length n, dimension k and minimum distance d. When the
field GF (q) is clear from the context the code is often just denoted as C(n, k, d).

2.1. BLOCK CODES AND THEIR PARAMETERS 9

Sometimes, for example in the case of Reed-Solomon (RS) codes, there is an
exact relation between the code parameters and then it is even possible to drop
d from the standard notation, e.g. RS codes are often denoted as RS(n, k)
codes. For RS codes, this relation of n, k and d is given towards the end of this
section.

As mentioned in Chapter 1 we search for codes that have a large dimension k
but can correct many errors. It is not surprising that the correction capabilities
are related to the minimum distance d of a code (more details on correction
capabilities of a code can be found in Section 2.2), and so we search for codes
that have a large minimum distance d given n and k. But d can not be made
arbitrarily large, an upper bound is given by the following lemma:

Lemma 1 (Singleton Bound). For a block code C(n, k, d), the minimum distance
is upper bounded by

d ≤ n− k + 1.

Proving this lemma for linear codes is straightforward once the encoding of
codes has been treated, so it is deferred to the end of the next part.

Encoding of Block Codes

The encoding is a mapping from the information words i = (i0, . . . , ik−1) to the
codewords c. Theoretically any bijective mapping ψ : GF (q)k → C is allowed
because the error correction capabilities depend on the code only, but not on
the encoding. However, at the receiver side it is often necessary to perform the
inverse mapping2, so one usually chooses a mapping that has a some inherent
structure and hence allows efficient decoding. For linear codes, one often chooses
a linear mapping, i.e.

i 7→ c, i′ 7→ c′ ⇒ αi + βi′ 7→ αc + βc′ ∀ i, i′ ∈ GF (q)k, α, β ∈ GF (q).

Such a linear mapping can be performed by the multiplication of the information
word i with a generator matrix G, i.e.

c = i · G,

where i is a row vector of length k and the matrix G a k×n matrix of full rank,
each row of G being a codeword of C. Any elementary row operations do not
decrease the rank of G, so they do not alter the code but only the encoding.
This fact gives rise to a special form of G that provides the so-called systematic
encoding. Systematic encoding means that each information symbol ii appears
as a certain code symbol cj . It is not necessary that the symbols appear in one
block or in the same order as in the information word, but a common choice is
that the information symbols appear in the same order as the first k symbols of
the codeword. For this choice, the generator matrix takes the form

G =
(
I |G′) (2.1)

2Often those decoding algorithms that immediately return an information word and hence
do not require the inverse mapping only work if an encoding with a special inherent structure
was used.

10 CHAPTER 2. THE BASIC IDEA OF CHANNEL CODING

where I is a k × k identity matrix and G′ can be any k × (n− k) matrix. This
splitting of the codeword into an information and a redundancy part makes de-
coding even simpler because the information word can immediately be extracted
from the reconstructed codeword ĉ. Because G has to be a matrix of full rank,
any matrix can be transformed to the form (2.1). This means that any code
can be encoded in a systematic way3.

Now we give the proof of Lemma 1 for linear codes: Consider an information
word that has only one nonzero symbol. With a systematic encoding, there is
only one nonzero symbol among the first k symbols of the codeword. All other
n− k symbols may be nonzero, so the total number of nonzero symbols of such
a codeword is upper bounded by n− k + 1, and Lemma 1 follows immediately.

An Example: Reed-Solomon Codes

Reed-Solomon codes can be defined over any finite field. There exist several
definitions for RS codes, and we give the one that comes closest to the definition
for AG codes given later.

Definition 3 (Reed-Solomon Codes). Consider the finite field

GF (q) = {0, α0 = 1, α, . . . , αq−2}.

A (primitive) Reed-Solomon code RS(n, k, d), or RS(n, k), over GF (q) of length
n = q − 1 and dimension k consists of all codewords

c =
(
f(1), f(α), . . . , f(αq−2)

)
,

where f(x) is a polynomial with coefficients from GF (q) and deg (f) ≤ k − 1.

It is also possible to construct RS codes with n < q − 1, the non-primitive
RS codes, but later on Hermitian codes are introduced as a possibility to obtain
codes with greater length over the same field, so it appears futile to further
discuss shorter codes. Extended RS codes can achieve code lengths n = q and
n = q+1, but this is significantly smaller than the gain in code lengths achieved
by using a different code class.

The given definition already suggests to use the following encoding: the
elements of an information word i = (i0, . . . , ik−1) are mapped to the coefficients
of the polynomial

f(x) =
k−1∑
j=0

ijx
j .

The codeword is then obtained by evaluating f(x) at all nonzero elements of
GF (q). Note that with the implicitly given indexing the code symbols are
ci = f(αi). Because of the linearity of polynomial evaluation, the definition

3In addition to row operations, obtaining this form might require to swap some columns
of G. But (as mentioned) this does not change the fact that the encoding is still systematic.

2.1. BLOCK CODES AND THEIR PARAMETERS 11

directly yields the generator matrix of the code:

G =



1 1 1 . . . 1
1 α α2 . . . αq−2

1 α2 α4 . . . α2(q−2)

1 α3 α6 . . . α3(q−2)

...
...

...
1 αk−1 α(k−1)·2 . . . α(k−1)(q−2)


. (2.2)

This matrix is a Vandermonde matrix, and this kind of matrices is known to
have full rank [LN96]. As mentioned, the length and dimension of an RS code
are directly related to the minimum distance of this code. To find this relation,
take a closer look at the polynomial evaluation in the definition. Over any field,
a univariate polynomial of degree k−1 has at most k−1 zeros in that field: the
univariate polynomials over a field form a euclidean ring. Therefore, if f(α) = 0,
then it is possible to write

f(x) = (x− α) · f̄(x),

and deg (f) = deg (f̄) + 1. The statement follows by induction and the fact
that a (nonzero) constant function cannot be zero for any x. Consequently,
each codeword has at least n− (k − 1) nonzero elements, so d ≥ n− k + 1. On
the other hand, the Singleton bound gives d ≤ n− k + 1, so it follows that for
Reed-Solomon codes d = n− k + 1 must hold. A code whose parameters fulfill
the Singleton bound with equality is called maximum distance separable (MDS),
because each codeword can be uniquely reconstructed if any set of k positions
is known.

The definition for RS codes given here is one that already includes the encod-
ing rule. By a more general definition, an RS code is obtained if the polynomials
f(x) used in the evaluation have nonzero coefficients in at most k consecutive
positions, i.e., they are of the form

f(x) =
k0+k−1∑

j=k0

fjx
j , 0 ≤ k0 ≤ n− k.

Further, in a finite field of order n+1 the evaluation of a polynomial f(x) is the
same as the evaluation of the polynomial f(x) mod xn−1, so it is also possible
to have k cyclically consecutive nonzero positions. This result is summarized in
the next definition.

Definition 4 (Reed-Solomon Codes - Part 2). The codewords of a (primitive)
RS code RS(n, k, d) over the finite field GF (q) are obtained by evaluating at
positions 1, α, . . . , αq−2 all polynomials of the form

f(x) = f ′(x)xk0 mod xn − 1, 0 ≤ k0 ≤ n− 1,deg (f ′) < k,

where n = q − 1.

The generator matrix can be obtained in the same way as before. Compared
to (2.2), each element in column i is multiplied by α(i−1)k0 . Because xk0 is
nonzero for all 0 ̸= x ∈ GF (q), it follows that the code symbols which are equal
to zero depend on f ′(x) only, hence the results on the minimum distance given
before still hold.

12 CHAPTER 2. THE BASIC IDEA OF CHANNEL CODING

2.2 Decoding Methods for Block Codes

One thing has been neglected so far: even if a good code (i.e., a code with a
large minimum distance d given n and k) is found, it is also necessary to be able
to efficiently reconstruct the sent codeword if an error occurs. This process is
called decoding : given an arbitrary vector r = (r0, . . . , rn−1) ∈ GF (q)n, called
the received word, that is not necessarily a codeword, the goal is to find the
codeword or information sequence that was most probably sent. In practical
channels, the probability of a symbol error in transmission is much smaller than
the probability that a symbol was received correctly. In terms of Hamming
weight, this means that an error of small weight is more probable than one of
larger weight, and consequently the most probable sent codeword is the one that
is closest to the received word in the Hamming metric. A conceptually simple
but very inefficient way to achieve this is to create a table that gives a mapping
from all possible received sequences to the closest codeword/ information word,
so usually one uses more efficient algorithms.

These decoding algorithms can be characterized in several different ways.
The algorithms we present here are all algorithms that use the algebraic struc-
ture of the codes, i.e., the fact that the codewords were obtained from polynomial
evaluations. They use the syndromes of an error (which are defined later) to
first reconstruct the closest codeword ĉ and then find the corresponding infor-
mation word. If a good encoding was chosen, the latter is a trivial task so it is
never explicitly given. In contrast to this, there also exist algorithms that do
not use the algebraic structure but some more general properties of the code e.g.
permutation decoding (see [MS88, Sec. 16.9], [Bos99, Sec. 7.3.1], [Bla03, Sec.
8.5]). A very popular decoding algorithm for RS codes is the Welch-Berlekamp
algorithm that (in contrast to the algorithms in this thesis) does not require the
calculation of syndromes and directly yields the most probable information word
sent without first reconstructing the codeword. The only characterization we
treat in more detail is based on the correction capabilities of a decoder, because
decoders of different types are presented in this thesis.

Characterization by Correction Capabilities

Most algebraic decoding algorithms can decode a subset of all possible received
words efficiently, but are not able to give the closest codeword to each received
word. Other decoders (especially for non-algebraic codes) are able to efficiently
complete the latter task. Depending on which errors can be corrected, a decoder
belongs to one of the following groups.

1. Maximum-Likelihood (ML) decoders: a ML decoder always returns the
codeword c which is closest to the received word r, or, if several code-
words are located at the same distance, randomly pick one of these closest
codewords. Such a decoder clearly has the best performance in terms of
the number of correctable errors. But for most algebraic codes its re-
alization is be very complex due to the shape of the decoding regions,
the so-called Voronoi cells. This is the reason why no ML decoders are
presented in this thesis.

2. Bounded Minimum Distance (BMD) decoders: such decoders only correct
those errors whose distance to a codeword is not larger than t =

⌊
d−1
2

⌋
,

2.2. DECODING METHODS FOR BLOCK CODES 13

because for these words there is always a unique closest codeword. If the
received word lies outside these correction spheres the decoder declares a
decoding failure. The advantage of these decoders is that their algorithmic
realization is often very simple and if a result exists it is always unique,
but for many codes a lot of possible received words do not belong to a
correction sphere.

3. Bounded Distance (BD) decoders: these decoders correct those errors
whose distance to a codeword is not larger than some t < d− 1. Clearly,
a larger value of t does not make sense, as then an error might also turn a
codeword c into another codeword c′, hence it might not be detectable. In
many situations, the decoding result is still unique, while the complexity
is only slightly increased compared to BMD decoders or even the same.
However, the situation when the decoding result is not unique needs to
be treated separately. Additionally, there is still a chance that an error
cannot be corrected.

For BMD and BD decoders the received words that are decoded into a
specific codeword lie in an n-dimensional sphere around the codeword. Therefore
the number of correctable errors is often called the correcting radius of a decoder.
For a BD decoder, one usually assumes that some decoding radius t >

⌊
d−1
2

⌋
shall be achieved because all errors with weight t ≤

⌊
d−1
2

⌋
can be corrected

by BMD decoders and a decoder with t <
⌊

d−1
2

⌋
can be obtained by simply

rejecting solutions returned by a BMD decoder that correspond to errors of
larger weight. In contrast, decoding beyond half the minimum distance usually
requires more sophisticated methods.

(a) ML decoding (b) BMD decoding (c) BD decoding

Figure 2.1: Basic decoding principles

Figure 2.1 illustrates the given decoding principles. To make things easier,
the sketch is reduced to two dimensions. The codewords are drawn as points
and all other possible received words are marked by an “x”. In two dimensions,
the decoding regions for ML decoding are defined by the perpendicular bisectors
of the lines connecting two codewords, for BMD and BD decoding they become
circular. One can see that the BMD decoder can correct only a minority of all
possible words: only 39 of 100 possible received words lie inside a correction
circle. In contrast the BD decoder can correct the majority of all words - only
22 possible received words lie outside a correction circle, and of the other words
only 4 lie in more than one correction circle, so 74 of 100 words can be uniquely

14 CHAPTER 2. THE BASIC IDEA OF CHANNEL CODING

mapped to a closest codeword. To see that for practical codes a similar effect
arises, consider the following example:

Example 1. Take the RS(16, 6) code over GF (17). This code has 176 code-
words, and with decoding radius t =

⌊
d−1
2

⌋
= 5 the BMD correction sphere

around one codeword contains

1 + 16
(

16
1

)
+ 162

(
16
2

)
+ · · · + 165

(
16
5

)
≈ 4.7 · 109

possible received words. The total number of vectors r in the correction spheres
is hence 1.1 · 1017. However, theoretically each vector in GF (17)16 can be re-
ceived. There are 4.8 · 1019 such vectors, so less than every hundredth possible
received word can be corrected.

Opposed to this, a BD decoder with t = 6 has approximately 1.4 · 1011

codewords in each correction sphere, but for the total number of received words
in all correction spheres one has to take into account that some received words
may lie in more than one correction sphere. Due to linearity it is sufficient
to consider the all-zero codeword. All error patterns of weight up to 4 lie in
only one sphere. An error of weight 5 lies in several correction spheres if it has
distance 6 to a codeword of weight 11. The error patterns of weight 6 lying in
more than one correction sphere are those having distance 5 or 6 to a codeword
of weight 11, or distance 6 to a codeword of weight 12. All error patterns of
larger weight are not considered, as they do not lie in the correction sphere of
the all-zero word.

First consider the case that 5 errors occurred. For each codeword of weight
11 there are exactly

(
11
5

)
= 462 error patterns that have distance 6 to this

codeword: the nonzero elements of the codeword must be distributed among
the two error words, there may not be overlapping. Because there are 69 888
codewords of this weight, the total number of error patterns of weight 5 lying
in two correction spheres is 3.2 · 107 (which is a small fraction of the 4.6 · 109

possible error patterns of weight 5).
The same number is found for errors of weight 6 that have distance 5 to a

codeword of weight 11. For error patterns of weight 6 that have distance 6 to a
codeword of weight 12, this number is 8 · 107 because the number of codewords
of weight 12 is larger. For errors of weight 6 that have distance 6 to a codeword
of weight 11, the situation is a little more complicated, but using Formula (29)
from [SSB09], one finds that this number is 7.3 · 109, so the number of error
patterns lying in more than one decoding sphere is dominated by this term.

But compared with the number of error patterns in one decoding sphere,
the uniquely decodable error patterns still constitute the vast majority of cases.
Taking all possible codewords into account, their number is approximately
3.4 · 1018 - this means that now about ten percent of all possible received words
can be uniquely decoded, more than ten times as much as a BMD decoder can
achieve. •

It can be verified for any code that the fraction of error patterns that are
correctable with a BMD decoder gets smaller as the code length increases. In
practical scenarios however, a larger fraction of received words can be corrected
because errors with small weights occur more often.

2.2. DECODING METHODS FOR BLOCK CODES 15

Syndrome Decoding

The decoding algorithms presented in this thesis use the syndromes of an error
as one of the main inputs: these are values that can be calculated from the
received word, but depend on the error only. Therefore, the syndromes can
be interpreted as a kind of fingerprint of the error. Generally, the vector s of
syndromes can be calculated with the help of a check matrix H

s = H · rT .

The properties of a check matrix are given in the following definition.

Definition 5. A matrix H is a check matrix for a linear code C if the following
conditions hold:

• H is a (n− k) × n matrix of rank n− k.

• The syndromes of a codeword are all zero, i.e., H · cT = 0∀ c ∈ C.

• For a word r ∈ GF (q)n that is not a codeword, the product H ·rT contains
at least one nonzero element.

• d is the minimum distance of C if and only if any d − 1 columns of H
are linearly independent, and at least one set of d columns is linearly
dependent.

Due to r = c + e and the linearity of matrix multiplications, the syndromes
hence depend on the error only. Under certain circumstances, it is then possible
to reconstruct the error e from the syndrome s, and consequently obtain the
originally sent codeword.

Because of the full rank, the parity check matrix also suffices to define the
code C. Further, if the code was encoded systematically, it is possible to give a
direct relation between generator and check matrix of the code:

G =
(
I |G′) ⇔ H =

(
−G′T |I′

)
,

I′ is an identity matrix of size (n−k)× (n−k). With the help of the systematic
form, it is always possible to find H if G is given. However, the existence of the
parity check matrix is also closely related to the concept of dual codes, and this
relation sometimes allows to find H more easily.

Definition 6 (Dual Code). Let C be a linear code over GF (q). The dual code
C⊥ is a code over GF (q) that consists of all words c⊥ that are orthogonal to all
codewords c of the code C, i.e.

c ∈ C, c⊥ ∈ C⊥ ⇒
n−1∑
i=0

cic
⊥
i = 0.

From the definition of the syndromes it is clear that each row of H is a
codeword of the dual code. Closer investigation shows that actually H = G⊥

and H⊥ = G. This leads to the relation

C(n, k, d) ↔ C⊥(n, n− k, d⊥),

16 CHAPTER 2. THE BASIC IDEA OF CHANNEL CODING

i.e., the length of a code and its dual code are the same and the dimensions
add up to n, but in general there is no direct relation between the minimum
distance d of a code and the minimum distance d⊥ of the corresponding dual
code. For some classes of codes it is known that the dual of a code belongs to a
certain class of code, e.g. the dual code of an RS code is again an RS code. If
the generator matrix of this other class of code is known, then H can be easily
constructed as the generator matrix of the dual code.

Check Matrix and Syndromes of RS Codes

To find the check matrix of an RS code consider the following theorem:

Theorem 2. Consider RS codes according to Definition 4. The dual of the code
C = RS(n, k) with k0 = 0 is C⊥ = RS(n, n− k) with k0 = 1.

Proof. The generator matrix of C was already given in (2.2). To verify the claim,
construct the check matrix of an RS code with k0 = 1:

G⊥ =


1 α α2 . . . αq−2

1 α2 α4 . . . α2(q−2)

1 α3 α6 . . . α3(q−2)

...
...

...
1 αn−k α(n−k)·2 . . . α(n−k)(q−2)

 .

This matrix is a valid check matrix of C if the syndrome vector of a codeword
is the all-zero vector, i.e., if

s = G⊥ cT = G⊥ GT iT = 0.

Evaluating the matrix product G⊥ GT results in a matrix of the form
∑
αi

∑
α2i

∑
α3i . . .

∑
αki∑

α2i
∑
α3i

∑
α4i . . .

∑
α(k+1)i

...
...∑

α(n−k)i
∑
α(n−k+1)i

∑
α(n−k+2)i . . .

∑
α(n−1)i

 ,

and i = 0, . . . , n − 1 in each sum. It is a known fact from algebra that over
a finite field all these sums evaluate to zero, consequently all syndromes of a
codeword are zero independently of i. It follows that G⊥ = H for the RS code
with k0 = 0.

As a counterproof, and because this fact clarifies some results in the next
section, consider what would happen if H had more than n− k rows: the next
two rows in the matrix H would be(

1 αn−k+1 α(n−k+1)·2 . . . α(n−k+1)(q−2)

1 αn−k+2 α(n−k+2)·2 . . . α(n−k+2)(q−2)

)
,

causing the matrix product HGT to have two additional rows:(∑
α(n−k+1)i

∑
α(n−k+2)i . . .

∑
α(n−1)i

∑
αni∑

α(n−k+2)i
∑
α(n−k+3)i . . .

∑
αni

∑
α(n+1)i =

∑
αi

)
.

2.3. DECODING RS CODES WITH THE EEA 17

These two rows now contain nonzero terms: because n = q − 1,
n−1∑
i=0

αni =
n−1∑
i=0

1 = n = −1 in GF (q),

so the negative of one coordinate of i appears in s. Because this value −1 is
moving one position “forward” with each additional row, each of the information
coefficients appears in s step by step. Consequently, while the actual check
matrix only shows if a received word is a codeword or not, an “extended check
matrix”

Ĥ =


1 α α2 . . . αq−2

1 α2 α4 . . . α2(q−2)

1 α3 α6 . . . α3(q−2)

...
...

...
1 αn α2n . . . αn·(q−2)

 .

having n rows also allows to reconstruct the information word from a given
codeword.

2.3 Decoding Reed-Solomon Codes with the Ex-
tended Euclidean Algorithm

As mentioned, for many algebraic codes there exist efficient BMD (or BD) de-
coders, whereas the complexity of ML decoding would be exponential. To give
an example of such an efficient BMD decoder and to motivate the work of Chap-
ter 5, we present a method to decode RS codes with the help of the extended
Euclidean algorithm (EEA) for polynomials. This decoding method was first
introduced in 1975 by Sugiyama et al. [SKHN75], and is presented as a standard
decoding algorithm in most textbooks on coding theory nowadays (e.g. [MS88,
Sec. 12.9], [Bos99, Sec. 3.2.3], [Bla03, Sec. 7.10]). In all these books, the
authors write about “decoding with the EEA”, but sometimes the algorithm is
also referred to as Sugiyama algorithm to emphasize the necessary modifications
introduced in [SKHN75] that make decoding possible.

First, we shortly recall the extended Euclidean algorithm for polynomials.
In the next part of this section, we derive the syndrome polynomial of an RS
code which is an essential input to the decoding algorithm. After that we give
a short motivation for the key equation whose solution is the key to decoding
RS codes. From the form of the key equation it should become clear why the
EEA can be used to decode RS codes. The section is concluded with a small
example.

The Extended Euclidean Algorithm

The original version of the Euclidean algorithm is more than 2000 years old
and calculates the greatest common divisor of two integers, and the EEA also
shows how the greatest common divisor can be obtained as a linear combination
of the inputs. Much later, but still long ago, mathematicians found that both
algorithms also work for univariate polynomials4. The input to the EEA then

4More generally, using the mathematical terminology, a Euclidean type algorithm can be
performed with two elements from any Euclidean domain.

18 CHAPTER 2. THE BASIC IDEA OF CHANNEL CODING

are two polynomials r−1(x) and r0(x), not both zero, where w.l.o.g. deg (r0) ≤
deg (r−1), and the EEA recursively calculates the series of polynomials ri(x)
and qi(x), where

ri(x) = ri−2(x) − qi(x)ri−1(x), deg (ri) < deg (ri−1). (2.3)

If ri(x) = 0, the algorithm stops and ri−1(x) is the greatest common divisor
of the two input polynomials. If all coefficients of ri(x), qi(x) are from a (not
necessarily finite) field this representation is unique, so ri and qi can be deter-
mined as the remainder and quotient of a polynomial division. Further, the
EEA calculates two series of polynomials

ui(x) = ui−2(x) − qi(x)ui−1(x),
vi(x) = vi−2(x) − qi(x)vi−1(x),

with the initializations u−1(x) = v0(x) = 0, u0(x) = v−1(x) = 1, and the poly-
nomials qi(x) obtained from (2.3). These polynomials then fulfill the relation

ui(x) · r0(x) + vi(x) · r−1(x) = ri(x)
⇔ ui(x) · r0(x) = ri(x) mod r−1(x) (2.4)

Once the key equation has been introduced it should become clear that the EEA
can be used for decoding RS codes, because it has the same form as (2.4). This
equality also shows that the vi(x) are not needed for decoding, so they need not
be computed, and the degree condition that is part of the key equation reveals
that it is not actually the greatest common divisor that needs to be computed
but the execution of the extended Euclidean algorithm can be stopped after
some iterations.

The Syndrome Polynomial

As seen before, the extended check matrix allows to reconstruct i if a received
word is a codeword. To find the syndrome polynomial, use this extended matrix
Ĥ with n rows: take an error word e, calculate the product

E = Ĥ eT ,

and map the elements of E = (E1, . . . , En) to the coefficients of the polynomial
E(x) =

∑
−Eix

n−i. It can be verified that under this mapping E(αi) = ei. In
the same way, define the polynomial R(x) for the received word r. Because of
the linearity of these operations

R(x) = E(x) + f(x),

where f(x) is the original information polynomial. Because deg (f) < k, it is
possible to write

R(x) = R′(x) + xk · S(x),

where the polynomial S(x) of degree deg (S) ≤ n− k − 1 depends on the error
only, but not on the sent codeword. This polynomial is the syndrome polynomial
that is needed as the input to the decoding algorithm described in the next
section.

2.3. DECODING RS CODES WITH THE EEA 19

The Key Equation for RS Codes

Most decoding algorithms for RS codes - among them the Sugiyama algorithm
- are so-called locator decoding methods. The main idea is to split the decoding
into two parts: first, the determination of the error positions and then the
determination of the error values. It is this splitting that allows decoding with
polynomial complexity, whereas finding the entire error in one step requires
solving a nonlinear system of equations, cf. e.g. [Bos99], which is a NP-hard
problem.

Finding the error positions is done with the help of a so-called error locator.
The definition of the error locator is according to Figure 2.2: the vector λ
is zero in every position where e is nonzero, and it is nonzero otherwise, i.e.
λi = 0 ⇔ ei ̸= 0. Further, it is possible to find a polynomial Λ(x) that is zero

x xx

0 0 0

e

λ

Figure 2.2: Illustration of an error locator in the time domain

at αi if i is an error position, but at no other positions, i.e.,

Λ(αi) = 0 ⇔ ei ̸= 0. (2.5)

Clearly, the polynomial of smallest degree that achieves this has the form

Λ(x) = c
∏
i∈I

(x− αi), c ∈ GF (q) \ {0},

and where I = {i|ei ̸= 0} denotes the set of error positions and t = |I| is
the weight of the error word e. A polynomial Λ(x) that fulfills (2.5) is called
an error locator polynomial. An error locator is called proper if the number of
distinct zeros from GF (q) is equal to its degree.

Example 2. The polynomial Λ(x) = x2−3x+2 = (x−1)(x−2) is a proper error
locator of degree two. The polynomial Λ1(x) = x3−4x2+5x−2 = (x−1)2(x−2)
is also an error locator for the same error, but not proper because its degree is
larger than its number of zeros (x = 1 is counted only once here).

The polynomial x6 + x + 1 has 6 different roots over GF (26) but no zeros
over GF (2), so it is a proper error locator over GF (26), but not over GF (2). •

Of course, Λ(x) and the (only partly known) polynomial E(x) fulfill the
relation

eiλi = E(αi) · Λ(αi) = 0 ∀ i = 0, . . . , n− 1.

This is equivalent to the polynomial relation

E(x) · Λ(x) = Ω′(x)
n−1∏
i=0

(x− αi) = Ω′(x) · (xn − 1).

20 CHAPTER 2. THE BASIC IDEA OF CHANNEL CODING

The last relation holds in any finite field GF (q) if α is a generator of GF (q)
and n = q − 1, and these two conditions are fulfilled by the definition of an RS
code. Further deg (E) ≤ n−1 and deg (Λ) = t by definition, so deg (Ω′) < t. By
taking only the known part S(x) of E(x) and limiting the polynomial product
to those powers for which the coefficient of S(x) is known, the key equation is
found:

S(x) · Λ(x) = Ω(x) mod xd−1, (2.6)
deg (Ω) < deg (Λ). (2.7)

To make the solution unique, one usually searches for the solution for which
deg (Λ) is minimal among all solutions to the key equation. Comparing (2.6)
to (2.4), one sees that by choosing the input polynomials r−1(x) = xd−1 and
r0(x) = S(x) for the EEA, the pairs (ui(x), ri(x)) calculated by the EEA fulfill
(2.6) for all i. The first pair that further fulfills deg (ri) < deg (ui), hence (2.7),
is the wanted solution of minimal degree, i.e.

Λ(x) = ui(x),Ω(x) = ri(x) if deg (ri) < deg (ui),deg (ri−1) ≥ deg (ui−1).

Once the error positions have been determined, the remaining task is to
find the error values. This can either be done by solving a small linear system
of equations with t unknowns (this is demonstrated in upcoming example), or
by using the Forney formula that is also found in most textbooks on coding
theory (e.g. [Bos99, Sec. 3.2.4], [Bla03, Sec. 7.4], [JH04, Sec. 11.2]). However,
the hard part in decoding is the determination of the error positions, whereas
the determination of the error values is rather simple once the positions are
known. Therefore, in this thesis we often use decoding as a synonym to the
determination of the error positions.

Decoding with the EEA - an Example

Consider an RS(16, 6) code. The code is defined over GF (17), and comparison
to Definition 3 shows that α = 3 is a possible choice for the primitive element
of this field. With this choice the parity check matrix of the RS code is

H =



1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6
1 9 13 15 16 8 4 2 1 9 13 15 16 8 4 2
1 10 15 14 4 6 9 5 16 7 2 3 13 11 8 12
1 13 16 4 1 13 16 4 1 13 16 4 1 13 16 4
1 5 8 6 13 14 2 10 16 12 9 11 4 3 15 7
1 15 4 9 16 2 13 8 1 15 4 9 16 2 13 8
1 11 2 5 4 10 8 3 16 6 15 12 13 7 9 14
1 16 1 16 1 16 1 16 1 16 1 16 1 16 1 16
1 14 9 7 13 12 15 6 16 3 8 10 4 5 2 11
1 8 13 2 16 9 4 15 1 8 13 2 16 9 4 15


.

Assume that the error e = (0, 1, 0, 0, . . . , 0, 1, 0, 0) occurred during transmission,
i.e., e1 = e13 = 1 and I = {1, 13}. The syndrome vector s belonging to this error
is

sT = (s0, . . . , sd−2) = He = (15, 0, 4, 9, 8, 0, 1, 15, 2, 0),

2.3. DECODING RS CODES WITH THE EEA 21

and the corresponding syndrome polynomial is

S(x) =
∑

−six
d−2−i = 2x9 + 13x7 + 8x6 + 9x5 + 16x3 + 2x2 + 15x = r0(x).

The second input to the EEA is the polynomial r−1(x) = xd−1 = x10. In the
first iteration, the EEA calculates

r1(x) = 2x8 + 13x7 + 4x6 + 9x4 + 16x3 + x2,

q1(x) = 9x = −u1(x).

Clearly, deg (r1) > deg (u1) so the decoding is not yet finished. In the second
iteration,

r2(x) = 15x, q2(x) = x+ 2, u2(x) = 9x2 + x+ 1.

Now deg (r2) < deg (u2) so one obtains Λ(x) = 9x2 + x + 1 and the decoding
algorithm stops. To verify that the result is correct, note that this polynomial
can be factorized as

Λ(x) = 9(x2 + 2x+ 2) = 9(x− 3)(x− 12) = 9(x− α)(x− α13).

From the latter representation, the error positions 1 and 13 can be read.
To set up the small system of equations that is used to find the error values,

any two rows of H can be used. From the first two rows, the resulting linear
system is

3e1 + 12e13 = 15,
9e1 + 8e13 = 0.

Solving this system of equations for e1 and e13 yields the error values e1 = 1,
e13 = 1, which is the error that was chosen in the example. Because the com-
plexity for solving an arbitrary system of equations is cubic, it is advisable to
use the Forney formula that achieves the same result in quadratic complexity -
especially for larger numbers of errors the gain gets significant.

22 CHAPTER 2. THE BASIC IDEA OF CHANNEL CODING

Chapter 3
Basics of Algebraic Geometry

In this chapter, we introduce the basics of algebraic geometry that are necessary
to understand the definition of algebraic-geometric codes in the next chapter.
Throughout the chapter we give the definitions and theorems for general plane
curves, but at the same time we simplify matters by restricting definitions to
only those cases that we actually use. For example, only lines and planes are
defined but no higher-dimensional spaces as we do not consider curves or codes
in higher-dimensional spaces. In the examples, we almost always use Hermitian
curves because codes on Hermitian curves are the only codes for which the
decoding algorithm is given later on.

To understand the concepts presented in this chapter, knowledge about ele-
mentary algebra such as finite fields is necessary. Most of the concepts pre-
sented here can also be found in other introductory work about AG codes, such
as [Lin90] and [HLP98], or more general books such as [CLO92], which is an
introduction to computational algebraic geometry. Because almost all concepts
presented in this section can be found in any of these sources, we give only few
explicit references. To keep this chapter as short as possible we skip some topics
presented in most introductory work about AG codes that are not absolutely
necessary to describe Hermitian codes and their decoding algorithm. Also, we
do not give a proof to all theorems, but rather illustrate them with an example
where the proof would be too complex.

This chapter is organized as follows: first, the affine and projective line
and plane are introduced. Then both affine and projective plane curves and
some of their properties are given. In Section 3.3 valuations and divisors of
rational functions are defined. Divisors are a prerequisite for the definition of
the Riemann-Roch spaces in Section 3.4.

3.1 Affine and Projective Spaces

Affine and projective spaces of any dimension can be defined over any field.
However, since only one- and two-dimensional spaces are used in the work pre-
sented in this thesis, we only give (rather informal) definitions for lines and
planes over finite fields. It is straightforward to extend the given definitions to
higher dimensions and arbitrary fields. Such a general definition can be found

23

24 CHAPTER 3. BASICS OF ALGEBRAIC GEOMETRY

in any book on algebraic geometry, e.g. [CLO92].

Definition 7 (Affine Line and Plane). The affine line consists of all elements
xp ∈ GF (q). The affine plane consists of all points P that can be described as
pairs (xP , yP), where xP , yP ∈ GF (q). The affine plane is also referred to as
GF (q)2.

That is, the affine line or plane corresponds to what is usually known as a
line or plane over a finite field. If one is further interested in the behaviour
of polynomials or rational functions at infinity, it is advisable to consider a
projective space.

Definition 8 (Projective Line and Plane). The projective line consists of all
points P that can be described as pairs (xP : yP), xP , yP ∈ GF (q) not both zero,
and with the equivalence relation (xP : yP) = (axP : ayP) for a ∈ GF (q) \ {0}.
The projective plane consists of all points P that can be described as triples
(xP : yP : zP), xP , yP , zP ∈ GF (q), not all zero, and with the equivalence
(xP : yP : zP) = (axP : ayP : azP) for a ∈ GF (q) \ {0}.

Usually, the notation of the projective coordinates is fixed in such a way
that the rightmost nonzero coordinate of a point P is 1. This convention allows
a standard embedding of the affine plane into the projective plane, namely an
affine point (xP , yP) is represented as the point (xP : yP : 1) on the projective
plane. In contrast, those points where zP = 0 are the so-called points at infinity
that also form a projective line.

Example 3. Let q = 4 = 22 and GF (22) = {0, 1, α, α2 = α + 1}. The affine
plane GF (4)2 then consists of 16 points:

(0, 0), (0, 1), (0, α), (0, α2),
(1, 0), (1, 1), (1, α), (1, α2),
(α, 0), (α, 1), (α, α), (α, α2),
(α2, 0), (α2, 1), (α2, α), (α2, α2).

These 16 points can be embedded in the projective plane by the mapping
(xP , yP) 7→ (xP : yP : 1). Further the projective plane has some points at
infinity: for all those points, zP = 0, but because (0 : 0 : 0) is not a point on
the projective plane by definition, either yP ̸= 0 or xP ̸= 0. If yP = 0 then the
convention forces xP = 1. If yP ̸= 0 the convention gives yP = 1 and xP can
have any value from GF (q). Hence the points at infinity are

(1 : 0 : 0), (0 : 1 : 0), (1 : 1 : 0), (α : 1 : 0), (α2 : 1 : 0). •

The definition of projective coordinates also has an impact on the definition
of polynomials: on the affine plane, bivariate polynomials are used, and they
have the usual form

f(x, y) =
∑

fa,bx
ayb. (3.1)

On the projective plane trivariate polynomials have to be considered, but these
have a special form: only homogeneous trivariate polynomials are used. A
homogeneous polynomial f(x, y, z) with deg (f) = i ≥ max{a+ b|fa,b ̸= 0} has
the form

f(x, y, z) =
∑

fa,bx
aybzi−a−b. (3.2)

3.2. ALGEBRAIC PLANE CURVES 25

In order to restrict a function given on the projective plane to the affine plane,
it is enough to simply drop all occurrences of z - this is possible because all
points that are both on the affine and the projective plane have zP = 1 due to
the chosen normalization. In order to extend a function on the affine plane to
the projective plane, one uses i = max{a+ b|fa,b ̸= 0} and then multiplies each
summand fa,bx

ayb of f(x, y) by zi−a−b to form the homogeneous polynomial
f(x, y, z) of minimal degree.

To denote the evaluation of f(x, y, z) at a point P = (xP : yP : zP) one
can write f(xP , yP , zP). However it is much shorter to write f(P), which is
why we use that latter option from now on. Note that due to the equivalence
(xP : yP : zP) = (axP : ayP : azP) with a ∈ GF (q)\{0} the value is only defined
up to a nonzero scalar. In contrast to this, the value of a homogeneous rational
function is well defined also over the projective plane, so even if a polynomial
f(x, y, z) is given, it is usually interpreted as the rational function

f(x, y, z)
zi

, where i = deg (f).

Because the short notation f(P) can also be used for affine polynomials and
points, it is required to conclude from the context whether affine or projective
coordinates are used.

3.2 Algebraic Plane Curves

For the purposes considered in this thesis, an algebraic curve can be seen as a
set of points that fulfills a polynomial equation (with some restrictions on the
polynomial). More general definitions are possible, but require a more intensive
study of the concepts of algebraic geometry. Further, one may consider curves
embedded into a projective space of arbitrary dimension, but we restrict our-
selves to plane curves, i.e., curves embedded in a two-dimensional space, and do
not explicitly mention this fact any more. While all given results hold for plane
curves, they might not be true in higher dimensions. A plane curve is defined by
a bivariate or homogeneous trivariate polynomial, depending on whether affine
or projective coordinates are used.

Definition 9 (Algebraic Plane Curves). An affine curve X over GF (q) is the
set of affine points (xP , yP) ∈ GF (q)2 that fulfills the defining equation

h(x, y) = 0, h(x, y) ∈ GF (q)[x, y].

The polynomial h(x, y) is called the defining polynomial and needs to be abso-
lutely irreducible (i.e., irreducible not only over GF (q) but also over all extension
fields). Similarly, a projective curve X over GF (q) is the set of projective points
(xP : yP : zP) that fulfills the defining equation

h(x, y, z) = 0,

where the defining polynomial h(x, y, z) is a homogeneous absolutely irreducible
polynomial in GF (q)[x, y, z].

Note that the same notations are used for both affine and projective curves.
However, any affine curve gives rise to a unique projective curve that is obtained

26 CHAPTER 3. BASICS OF ALGEBRAIC GEOMETRY

by homogenizing the defining polynomial. For these two curves, the only dif-
ference is that the projective curve may have some additional points at infinity
which in fact are already determined by the affine curve. Whenever the be-
haviour at infinity is not important, it is sufficient to consider the affine curve,
otherwise the projective curve should be used. Codes are often defined with the
help of the points at infinity, but only affine points are used in the encoding and
decoding.

Example 4 (Hermitian Curves). The curves that we use most in this work
are the Hermitian curves in their so-called Stichtenoth version. The Hermitian
curve over GF (q2) has the defining polynomial

h(x, y) = xq+1 − yq − y or h(x, y, z) = xq+1 − yqz − yzq.

Note that it is not a restriction of the possible finite fields if one denotes the base
field by GF (q2): assume that the curve is defined over the finite field GF (Q),
then

h̃(x, y) = x
√

Q+1 − y
√

Q − y.

An expression of this form is a polynomial if and only if
√
Q is an integer, so

h̃(x, y) only defines an algebraic curve if Q is square, i.e., Q = q2.
Using the defining polynomial xq+1 − yq − y over another base field, e.g.

GF (q), also yields an algebraic curve, but one whose number of GF (q)-rational
points is significantly smaller than the maximal number of points a curve can
have for a given degree of the defining polynomial. •

A requirement in many of the following definitions and theorems is that a
certain point on the curve needs to be nonsingular.

Definition 10 (Singular Points and Regular Curves). A point P on a curve
X with defining polynomial h(x, y, z) is called singular if all partial derivatives
vanish at this point, i.e.,

hx(P) = hy(P) = hz(P) = 0.

If a curve has no singular points over the algebraic closure it is called nonsin-
gular, regular or smooth.

Over the field of real numbers, a regular plane curve is one which does not
intersect with itself and has no “corners”. Over a finite field, unfortunately no
descriptive explanation exists. Though it would be possible to exclude singular
points in all further considerations, this would make the notation very unhandy,
so we choose to treat regular curves only. One of the reasons why we concentrate
on Hermitian curves is that they are nonsingular independent of the field over
which they had been defined.

Lemma 3. All Hermitian curves are regular.

Proof. The defining polynomial of a projective Hermitian curve is given by
h(x, y, z) = xq+1 − yqz − yzq, so the partial derivatives and the conditions that
they are zero are

hx = (q + 1)xq = xq ⇒ x = 0,

hy = −qyq−1z − zq = −zq ⇒ z = 0,

hz = −yq − qyzq−1 = −yq ⇒ y = 0.

3.2. ALGEBRAIC PLANE CURVES 27

Under these conditions, the only singular point would be (0 : 0 : 0), but by
definition this is no point on the projective plane. Hence the curve is regular.

There are several standard parameters that can be used to describe algebraic
curves. The two most important for this thesis are the degree and genus of a
curve:

Definition 11 (Properties of Algebraic Curves). The degree d(X) of a curve is
the degree of its defining polynomial: for an affine curve with defining polynomial
h(x, y) =

∑
ha,bx

ayb the degree is

d(X) = deg (h(x, y)) = max{a+ b|ha,b ̸= 0},

for a projective curve it is the degree of the homogenized polynomial h(x, y, z).
The genus g(X) of a regular projective curve, i.e., a curve that is also regular
at the points at infinity, can be calculated from d(X) by the Plücker formula
[Lin90, Thm. 8.1]

g(X) =
1
2
(d(X) − 1)(d(X) − 2).

If the projective curve is regular the Plücker formula can be used for the
affine curve, too, whereas nonsingularity in the affine points is not sufficient.
Because it is usually clear from the context which curve X is referred to, we
denote the genus by g only. So far, the genus can be simply seen as a parameter
that can be calculated. In Section 3.4 it becomes clear why the genus is an
important parameter in the description of AG codes.

Example 5. A Hermitian curve X over GF (q2) has degree d(X) = q + 1 and
genus g = 1

2q(q − 1) = 1
2 (q2 − q). •

Though all results given so far hold for arbitrary plane curves, we only
describe the decoding algorithm for Hermitian codes. Therefore, it seems rea-
sonable to mention a result specific for those curves:

Lemma 4 ([Lin90, Thm. 11.2]). The Hermitian curve over GF (q2) has q3

affine points and a single point at infinity.

Proof. First we prove that there is a single point at infinity: all points at infinity
have z = 0. The defining equation hence becomes

xq+1 = 0 ⇔ x = 0.

Because at least one coordinate must be nonzero if follows that y ̸= 0, and with
the given convention the point at infinity is P = (0 : 1 : 0).

The derivation for the number of affine points is a little more involved. First
consider x = 0, then the defining equation becomes

yq + y = 0 ⇔ y = 0 or yq−1 = 1.

Because in GF (q2) the relation αq2−1 = 1 always holds, the last part has q − 1
solutions: 1, αq+1, α2(q+1), . . . , α(q−2)(q+1) with α a generator of GF (q2)∗, so
there are q solutions with x = 0. If x = αi ̸= 0, one has to solve

yq + y = αq+1
i . (3.3)

28 CHAPTER 3. BASICS OF ALGEBRAIC GEOMETRY

There are q solutions for each of the q2 − 1 possible αi, but it is also necessary
to show that all zeros are from GF (q2). To do so, first note that αq+1

i ∈ GF (q)
because (

αq+1
i

)q

= αq2+q
i = αq+1

i .

On the other hand, if y ∈ GF (q2) then yq + y ∈ GF (q) because

(yq + y)q = yq2
+ yq = y + yq. (3.4)

Considering the group homomorphism

P : GF (q2) → GF (q2), y 7→ yq + y,

(3.4) shows that Im(P) = GF (q), and elementary algebra yields |Ker(P)| = q,
so each of the q solutions to (3.3) must be from GF (q2). Consequently the
overall number of affine points is

q(q2 − 1) + q = q3.

More details on this derivation can be found in the standard literature. As
implicitly introduced in the proof, the point at infinity is often denoted by P .
We usually refer to the other points as P1, . . . , Pn.

Example 6. We conclude this section by giving the points on two concrete
Hermitian curves. First, let q = 2, i.e., h(x, y) = x3−y2−y. The corresponding
affine Hermitian curve then has 8 points:

(0, 0) (0, 1) (1, α) (1, α2)
(α, α) (α, α2) (α2, α) (α2, α2)

The points on a curve can also be visualized in an array [Bla08]. The visualiza-
tion for the projective curve over GF (22) is given in Figure 3.1. Each square
stands for a point on the projective plane, where the x-coordinate is given on
the horizontal axis and the y-coordinate on the vertical axis. The line at infinity
is drawn at the top and denoted by y = ∞, the point (1 : 0 : 0) by x = y = ∞.
Though the latter two notations are not consistent with the coordinates of the
points, the main motivation behind it is to make the points at infinity easily
identifiable. The points on the curve are marked with black circles.

0 1 α α
2

1

0

α

α
2

∞

∞

Figure 3.1: Hermitian curve over GF (22)

For q = 4, the curve has already 65 points, so listing them all is not very
practical any more. Therefore, we only visualize them in the same way as before.

3.3. DIVISORS, VALUATIONS AND RATIONAL FUNCTIONS 29

This is shown in Figure 3.2. This visualization shows that X has a very regular
structure that induces structural properties of the code. This is one of the main
reasons why Hermitian codes are expected to yield good performance. •

0 1

1

0

α

α
2

∞

α
3

α
4

α
5

α
6

α
7

α
8

α
9

α
10

α
11

α
12

α
13

α
2

α
14

α
4

α
6

α
8

α
2

α α
3

α
5

α
7

α
9

α
11

α
13

α
10

α
12

α
14

∞

Figure 3.2: Hermitian curve over GF (24)

3.3 Divisors, Valuations and Rational Functions

When working on algebraic curves, divisors are a useful tool to describe proper-
ties of polynomials and rational functions on the curve. However, divisors can
be formally defined independent of rational functions. Therefore, we first intro-
duce divisors and give their properties before defining valuations and showing
how these can be calculated. In the last part divisors of rational functions are
introduced, that keep track of the valuation of a function at all points on a
curve.

Divisors

Definition 12 (Divisor). A divisor D is a formal sum

D =
∑
P∈X

nP · P,

where X is an arbitrary curve, nP ∈ Z and only finitely many nP are unequal
to zero.

Formally, this definition also includes points over any extension field, and at
the end of this section Example 12 shows why these points usually cannot be
neglected. But when working with Hermitian codes it is usually safe to ignore
them because only points over the base field are used in the encoding, and
consequently also in the decoding. Because this number of points is finite, the

30 CHAPTER 3. BASICS OF ALGEBRAIC GEOMETRY

last constraint becomes insignificant. The information given by a divisor could
also be given by a list of pairs (nP , P), but the notation as a sum gives rise to
an intuitive addition of divisors

D1 +D2 =
∑
P∈X

nP,1 · P +
∑
P∈X

nP,2 · P =
∑
P∈X

(nP,1 + nP,2) · P.

This addition is often used, e.g. in Definition 16 in the next section.

Definition 13 (Properties of a Divisor). The support of a divisor is

supp(D) = {P |nP ̸= 0}.

The degree of a divisor is defined as

deg (D) =
∑
P∈X

nP .

If nP ≥ 0∀P , a divisor is called effective. This is denoted by D ≥ 0.

While this definition does not restrict the possible origins of the coefficients
nP , the main application is that divisors can be used as a means to keep track of
the zeros and poles of rational functions as well as their multiplicities or orders
respectively. However, the notion of multiplicities and orders is slightly different
for functions on curves, and to be able to calculate them it is first necessary to
introduce valuations.

Rational Functions on Curves

When working with rational functions on curves, one should keep in mind that
any function that is a multiple of the defining polynomial h(x, y) is equal to the
all-zero function on the curve. This yields a partitioning of all rational functions
into equivalence classes, and each rational function can be represented as

g(x, y) =
g1(x, y)
g2(x, y)

=
dh−1∑
i=0

gi(x)yi,

where dh = deg y(h), hence dh = q for Hermitian curves, and gi(x) = gi1(x)
gi2(x) is a

rational function in only one variable. Such a rational function induces a unique
mapping from the points on the curve to the projective line over the same base
field.

Example 7. To illustrate the mentioned mapping, consider the function
g(x, y) = y

x and denote the affine points on a Hermitian curve by Pi = (αi, βi).
If αi ̸= 0, the value is determined by simply evaluating g(x, y) in Pi:

Pi 7→ g(αi, βi) =
βi

αi
.

For αi = 0 and βi ̸= 0, the mapping is defined as Pi 7→ ∞. For the point (0, 0)
and the unique point at infinity a statement is also possible, but the valuations
have to be used as these give some information about the multiplicities of the
respective zeros of g1(x, y) and g2(x, y). •

3.3. DIVISORS, VALUATIONS AND RATIONAL FUNCTIONS 31

For rational functions in a projective space, it is not sufficient that the
numerator and denominator are homogeneous polynomials, but they also need
to have the same degree. Otherwise the rational function is not well-defined
[Lin90]. This also implies a unique embedding of polynomials into the rational
functions - a polynomial of degree i is simply divided by the monomial zi.

Valuation of Rational Functions

A valuation is a mapping from rational functions to integers with some addi-
tional properties. These properties are listed e.g. in [HLP98]. Here, we intro-
duce such a mapping without giving the proof that it actually has the required
properties.

Consider a rational function f and fix any point Q on the curve. In this
point Q the valuation takes the following values:

1. f(Q) ̸= 0 and f(Q) ̸= ∞. In this case, the valuation is vQ(f) = 0.

2. f(Q) = 0. Then vQ(f) > 0 and vQ(f) is the multiplicity of this zero.

3. f(Q) = ∞. In this case, vQ(f) < 0 and −vQ(f) is the pole order.

Clearly, this is not a formal definition of a valuations, instead we concentrate
on demonstrating how to calculate them.

Example 8. Consider the function x2 on the affine line over R. It is well
known that this function has a double zero in P0 = 0, so vP0(x

2) = 2. In
P1 = 1, x2 = 1 ̸= 0 so vP1(x

2) = 0. •

For the given example, one finds the multiplicities with the help of deriva-
tives. When working over finite fields, it is necessary to use formal derivatives to
avoid problems arising from the characteristic of the underlying field. Another
problem is that the valuation of a rational function on a curve is often not very
easy to determine because the notion of derivation is quite different compared
with univariate functions. Instead, valuations are usually calculated with the
help of so-called local parameters5. In most introductions to AG codes, more
formal definitions are given, but we prefer to give one that directly implies how
to find such a local parameter.

Definition 14 (Local Parameter [Giu]). A local parameter tP is a rational
function of the form

tP =
f1(x, y, z)
f2(x, y, z)

,

where f1, f2 are homogeneous polynomials with deg (f1) = deg (f2) = 1, f1(P) =
0, f2(P) ̸= 0 and f1 is not a constant multiple of

τP = hx(P)(x− xP) + hy(P)(y − yP) + hz(P)(z − zP).

As before, hx, hy and hz are the partial derivatives of the defining polynomial
h(x, y, z), so τP is the tangent to X in P . That is, a local parameter is a function
that intersects X in P but is not tangent to it or, in other words, a function
that has a simple zero in P . In singular points τP = 0 and no local parameter

5Other common terms in literature are uniformizing parameter or uniformizing element.

32 CHAPTER 3. BASICS OF ALGEBRAIC GEOMETRY

exists. Although the nonsingularity is never used explicitly, the existence of a
local parameter is crucial for the following definitions and theorems leading to
the definition of a code, which is why we work with regular curves only.

With the help of the local parameter, each function can be written as

f(x, y, z) = tvP

P · f̃(x, y, z) with f̃(P) /∈ {0,∞}, (3.5)

where vP is the valuation of f in P , so it can be read off directly from this
form. Note that this equation is written in projective coordinates. To find the
valuation of an affine function, it is always advisable to rewrite the function
as a homogeneous rational function and calculate the valuation in projective
coordinates. At the affine points, the valuation of a rational function and its
homogenized counterpart are always the same. Besides, there exist relations
between the valuations of functions that also can be helpful:

vP (fg) = vP (f) + vP (g), (3.6)
vP (f−1) = −vP (f), (3.7)

vP (f + g) ≥ min{vP (f), vP (g)}, (3.8)

and the last equation is fulfilled with equality if vP (f) ̸= vP (g).

Example 9. Take the Hermitian curve over GF (42) with defining polynomial
h(x, y, z) = x5+y4z+yz4. The field has characteristic two, so the formal partial
derivatives are hx = x4, hy = z4 and hz = y4. Let P = (0 : 1 : 0) be the point
at infinity. In this point τP = z, and a possible local parameter6 is tP = x

y .
To calculate the multiplicity of the function x

z , rewrite it with the help of
the defining polynomial:

x

z
=

x

x5/(y4 + yz3)
=
y4 + yz3

x4

=
y4

x4
·
(

1 +
z3

y3

)
=
y4

x4
· y

3 + z3

y3
= t−4

P · f̃(x, y, z).

Because f̃(P) = 1, the valuation vP

(
x
z

)
= −4 can be read off directly. With

this result, (3.6) and (3.7), it is now simple to find vP

(
y
z

)
:

vP

(y
z

)
= vP

(x
z

)
+ vP

(y
x

)
= −5.

This result can be extended to the general form

vP

(
xayb

za+b

)
= −4a− 5b. •

In a similar way, it is possible to calculate the valuations of functions in all
points. Two more examples are given in Appendix A. The reason to give the
valuation of the functions xayb

za+b here is that these functions (and their valuations)
play an important role in the definition of the Hermitian codes in Section 4.3.

6Note that the local parameter is not necessarily unique. In the given example, t̃P = x+z
x+y+z

is another possible local parameter, but this choice would make it much harder to represent
a function in the form (3.5).

3.3. DIVISORS, VALUATIONS AND RATIONAL FUNCTIONS 33

Finding a representation as in (3.5) can be very hard, especially if tP cannot
be expressed in an equally simple way as in the previous example. Another form
that allows to directly read off the valuation of a function is its representation
as a power series in a local parameter

f(x, y, z) =
∑
i≥vP

tiP ci, (3.9)

where the coefficients ci ∈ GF (q) are constants. To find the valuation, it is
not necessary to determine the entire power series but instead it suffices to
find the smallest power i for which the coefficient ci is nonzero. Because the
determination of the valuation is an essential part of the decoding algorithm (in
the determination of the error positions), we illustrate this second option in an
example. To obtain a shorter notation, we use the affine curve in the example,
but the calculation works in the same way as explained for projective curves
before.

Example 10 (Determination of the Valuation with a Power Series). Consider
again the affine Hermitian curve over GF (42), i.e., h(x, y) = x5 − y4 − y, and
the polynomial f(x, y) = α4y2 + α11xy + α8x2 + α11y + α4. This polynomial
has 6 affine zeros on the curve:

P1 = (1, α8), P2 = (α2, α3), P3 = (α2, α14),

P4 = (α3, α2), P5 = (α12, α8), P6 = (α13, α13).

There might also be further zeros over an extension field which we do not con-
sider in this example. We derive the valuations in the points P2 and P6. The
valuations in the other points can be determined analogously.

First, consider the point P2 = (α2, α3). Using Definition 14 it is easy to
verify that tP2 = x− α2 = x+ α2 is a local parameter. Using the relation

x5 − (α2)5 = y4 + y − ((α3)4 + α3),

one obtains

y − α3 = y + α3 = (x+ α2) · x
4 + α2x3 + α4x2 + α6x+ α8

y3 + α3y2 + α6y + α7
.

This relation allows the following manipulations on f(x, y):

f(x, y) = α4y2 + α11xy + α11y + α8x2 + α4

= α4y2 + α11y(x+ α2) + α4y + α8(x+ α2)2 + α6

= α4(y + α14)(y + α3) + α11y(x+ α2) + α8(x+ α2)2

= α4(y + α14)(x+ α2) · x
4 + α2x3 + α4x2 + α6x+ α8

y3 + α3y2 + α6y + α7

+ α11y(x+ α2) + α8(x+ α2)2.

Clearly, the term α8(x+ α2)2 has a double zero in P2, but

α4(y + α14) · x
4 + α2x3 + α4x2 + α6x+ α8

y3 + α3y2 + α6y + α7
+ α11y

∣∣∣∣
P2

= α5,

34 CHAPTER 3. BASICS OF ALGEBRAIC GEOMETRY

so f(x, y) has a zero of multiplicity 1 in P2.
Repeating the same steps for P6 = (α13, α13), one finds the local parameter

tP6 = x+ α13 and

f(x, y) = (x+α13)
[
α4y

x4 + α13x3 + α11x2 + α9x+ α7

y3 + α13y2 + α11y + α7
+ α11y

]
+α8(x+α13)2,

but the term in square brackets evaluates to zero in P6, so f(x, y) has a zero
of multiplicity at least two in P6. Therefore, we continue by next determining
the valuation of the term in square brackets. The denominator of the fraction
is unequal to zero, so we multiply with it and find

α4y(x4 + α13x3 + α11x2 + α9x+ α7) + α11y(y3 + α13y2 + α11y + α7)

=α4y(x4 + α7) + α2y(x3 + α13x2 + α11x) + α11y(y3 + α13y2 + α11y + α9 + 1)

=α4y(x+ α13)4 + α2y(x+ α13)3 + α11y(y + α13)3.

From the last equation, it can be seen that the term in brackets has a zero of
multiplicity at least three, so the valuation is now dominated by α8(x+ α13)2,
which means that f(x, y) actually has a zero of multiplicity two in P6. •

Divisors of Rational Functions

Based on valuations of rational functions, it is now possible to define the previ-
ously mentioned divisors of rational functions that keep track of the poles and
zeros of a function along with the respective orders or multiplicities.

Definition 15 (Divisor of a Rational Function). Consider a homogeneous ra-
tional function f(x, y, z) on a projective curve. Then the divisor of f is

div (f) =
∑
P∈X

vP (f)P.

Note that in this definition it is absolutely necessary to include the points
over the extension fields.

Example 11. We continue Example 10. Consider the homogeneous rational
function

fh(x, y, z) =
α4y2 + α11xy + α8x2 + α11yz + α4z2

z2
,

which is obtained by homogenizing the polynomial f(x, y). When counting the
multiplicities of the zero in P1, P3, P4 and P5, one finds that f(x, y, z) has a
single zero in all these points, and P1, . . . , P6 are all rational affine points of X .
For the single point P at infinity, it follows from (3.8) and Example 9 that

vP (fh) = min
{
vP

(
y2

z2

)
, vP

(xy
z2

)
, vP

(
x2

z2

)
, vP

(y
z

)
, vP (1)

}
= min{−10,−9,−8,−5, 0} = −10,

and the first equality holds because the valuations of all summands are distinct.
Summarizing,

div (fh) = P1 + P2 + P3 + P4 + P5 + 2P6 + D̂ − 10P,

3.4. RIEMANN-ROCH SPACES AND THE RIEMANN-ROCH THEOREM35

where D̂ is the divisor for all zeros (of any multiplicity) over all extension fields.
Note that f(x, y) is a polynomial, so the homogenized rational function f(x, y, z)
cannot have poles outside infinity. •

In projective coordinates only those rational functions are considered for
which numerator and denominator are a polynomial of the same degree. Due
to this, the following precise statement is possible [Lin90]:

Lemma 5. Let f(x, y, z) be a homogeneous rational function, then

deg (div (f)) = 0.

Example 12. To illustrate the lemma, we continue Example 11. There, we
found

div (fh) = P1 + P2 + P3 + P4 + P5 + 2P6 + D̂ − 10P,

and with deg (div (fh)) = 0 it follows that deg (D̂) = 3. This means that
f(x, y, z), and consequently also its affine counterpart, has three zeros (counted
with multiplicities) over some extension field. •

3.4 Riemann-Roch Spaces and the Riemann-
Roch Theorem

The last topic in this chapter is the introduction of Riemann-Roch spaces and
the Riemann-Roch theorem. The Riemann-Roch spaces are probably the main
ingredient in the definition of an AG code, and the Riemann-Roch theorem
allows to estimate the dimension of the code. While the actual Riemann-Roch
theorem requires a canonical divisor, which is often presented as a result of the
study of differential forms, there exists a corollary of the Riemann-Roch theorem
that is sufficient for the codes considered in this thesis.

Definition 16 (Riemann-Roch Space). Let G be a divisor on a curve X . A
Riemann-Roch space is the set L(G) of rational functions f(x, y, z)

L(G) := {f |div (f) +G ≥ 0} ∪ {0}.

L(G) has the structure of a vector space of dimension l(G).

Of course, the corresponding affine functions can be found by dehomogeniz-
ing all polynomials in L(G). Recall that div (f) =

∑
vPP with vP positive if f

has a zero at P and negative if f has a pole at P . Consequently, if G =
∑
gPP ,

then some coefficient gP > 0 allows f to have a pole of order not more than gP

in P , whereas gP < 0 requires f to have a zero of multiplicity at least gP in P .
If gP = 0, a function f ∈ L(G) may have a zero in P , but no pole.

Example 13. To illustrate the concept of Riemann-Roch spaces, consider again
the Hermitian curve over GF (42). As stated in Example 9

vP

(
xayb

za+b

)
= −4a− 5b, where a, b ≥ 0,

36 CHAPTER 3. BASICS OF ALGEBRAIC GEOMETRY

where P is the unique point at infinity. Because z = 1 for all affine points the
functions xayb

za+b have no poles outside P . This knowledge alone allows us to give
the monomial basis for the following (affine) spaces

L(3P) : {1},
L(4P) : {1, x},
L(5P) = L(6P) = L(7P) : {1, x, y},
L(8P) : {1, x, y, x2},

. . .

L(15P) : {1, x, y, x2, xy, y2, x3, x2y, xy2, y3}.

For larger spaces the monomial basis may no longer be unique: the space L(20P)
can be described both by the basis

{1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, x3y, x2y2, xy3, y4}

and by
{1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, x3y, x2y2, xy3, x5}.

This is due to the fact that on the Hermitian curve X the monomials {x5, y4, y}
form a linearly dependent set, the dependence is given by the defining equation.
Therefore, both bases generate the same set of polynomials and including either
x5 or y4 in the basis does not change the Riemann-Roch space.

As given in Appendix A, for the point P0 = (0 : 0 : 1) one has

vP0

(
xayb

za+b

)
= a+ 5b, where a, b ≥ 0.

So for example L(5P) has basis {1, x, y} but L(5P − P0) has a smaller basis
{x, y} because a constant function cannot be zero in P0. Further L(5P − 2P0)
has basis {y}, because x has a zero of multiplicity 1 in P0, but the functions in
L(5P − 2P0) need to have at least a double zero. •

To estimate the dimension of a Riemann-Roch space, the following relations
can be used:

Lemma 6. Let G be a divisor on a curve X . Then

l(G) = 0 ,L(G) = {0} if deg (G) < 0, (3.10)
l(G) ≤ 1 + deg (G) if deg (G) ≥ 0. (3.11)

The last relation is the corollary of the Riemann-Roch theorem that gives the
exact dimension under a stronger constraint on the degree of G:

l(G) = deg (G) − g + 1 if deg (G) ≥ 2g − 1. (3.12)

Example 14. We continue Example 13. Recall that for the given curve the
genus was g = 6. Counting shows that e.g.

l(3P) = 1 ≤ 1 + deg (3P) = 4 X
l(4P) = 2 ≤ 1 + deg (4P) = 5 X
l(8P) = 4 ≤ 1 + deg (8P) = 9 X
l(15P) = 10 = deg (15P) − g + 1 X.

3.4. THE RIEMANN-ROCH THEOREM 37

The last equation is due to (3.12), whereas the others are due to (3.11). In this
special case, where G = mP , the genus g has another meaning: there are exactly
g positive integers m for which l(mP) = l((m− 1)P). For the Hermitian curve
over GF (42), these are the integers

{1, 2, 3, 6, 7, 11}.

To illustrate the meaning of (3.10), consider the space L(5P − 7P0) = {0}. In
the same way as shown at the end of Example 13, one finds that vP0(φ) < 7
for all basis elements φ ∈ L(5P), so none of them lies in L(5P − 7P0) and the
statement follows. •

With the help of the Riemann-Roch spaces, it is now possible to define
the ring of polynomials on a Hermitian curve. Later, in the description of the
division algorithm, all polynomials that are used belong to this ring.

Definition 17. The ring R of polynomials on a Hermitian curve is

R =
∞∪

m=0

L(mP).

From now on, unless stated otherwise, all operations are performed in this
ring of polynomials. As mentioned before, the basis for L(mP) is not unique
for large m. Throughout the thesis, we use the set

Φ = {φa,b = xayb|0 ≤ a ≤ q, 0 ≤ b} (3.13)

as basis for R. This means that if the result of any calculation has deg x(f) > q,
then this degree needs to be reduced with the help of the defining equation of
the curve.

38 CHAPTER 3. BASICS OF ALGEBRAIC GEOMETRY

Chapter 4
Algebraic-Geometric Codes

With the algebraic basics introduced in the previous section, it is now possible
to define algebraic-geometric (AG) codes. While the term “AG code” refers to a
wide variety of codes, we use it throughout this thesis to refer to codes that can
be described as evaluation codes with the help of two divisors: one divisor fixes
the evaluation points of the code, the other defines a Riemann-Roch space, and
the code is constructed by evaluating functions from this Riemann-Roch space
at the points given by the first divisor. Although not necessary, we use only
codes where the evaluation points are (a subset of) the affine points of some
curve X because this choice induces nice structural properties to the code.

In this chapter, we first give a general definition of AG codes. Where possi-
ble, their basic parameters (i.e., the length, dimension and minimum distance)
or bounds on these parameters are given. Sometimes, the class of codes we
define here are referred to as geometric generalized RS codes as opposed to the
geometric Goppa codes (cf. [Lin90]). The definition of the latter is based on
differential forms (that have not been introduced), but it does not yield different
codes: a geometric generalized RS code can always be represented as a geomet-
ric Goppa code, and it is known how the respective design parameters have to
be chosen to obtain the same codes, cf. e.g. [HLP98, Thm. 2.72].

To illustrate the general definition, two special subclasses of AG codes are
described in more detail. The first class are the already known Reed-Solomon
codes, this time defined as AG codes to strengthen the motivation of generalizing
their decoding algorithms to AG codes. The second class of codes is the class
of Hermitian codes. As the name implies, these codes are defined with the help
of Hermitian curves. For these two classes of codes, an interesting property is
that the dual of a code belongs to the same class of codes. For RS codes this
fact had already been introduced in Section 2.2, and for Hermitian codes the
exact relation is given after their definition.

In the last section, we give an alternative definition for Hermitian codes
that uses only those algebraic basics that were already used in the definition of
RS codes. The purpose of this alternative definition is partly to introduce some
notations for Chapters 5 and 6, but mainly to demonstrate that by choosing any
special kind of AG code, it is possible to describe and use this very kind of code
without the need to study algebraic geometry beforehand. The description of

39

40 CHAPTER 4. ALGEBRAIC-GEOMETRIC CODES

the algorithms in the upcoming chapters is such that it can be understood from
the second definition alone, but some of the proofs rely on algebraic geometry.

4.1 Algebraic-Geometric Codes and Their Pa-
rameters

The following definition of AG codes is a generalization of Definition 3, as the
example of RS codes given in the next section illustrates.

Definition 18 (Algebraic-Geometric Code). An AG code AG(D,G) is de-
scribed by a divisor D = P1 + P2 + · · · + Pn and an arbitrary divisor G with
supp(D) ∩ supp(G) = ∅:

AG(D,G) = {(f(P1), f(P2), . . . , f(Pn)) |f ∈ L(G)},

i.e., the code is constructed by evaluating all functions f ∈ L(G) at the points
given in D.

Note that the divisor D does not give any information about zeros or poles
of any rational function actually occurring in the encoding process, instead of
this divisor a list of points could be given. The divisor G is an arbitrary divisor
on a given curve X , defining the Riemann-Roch space of functions that are to
be evaluated. An implicit restriction on the divisor G is deg (G) ≥ 0, otherwise
the resulting code becomes trivial. If G contains only one point, i.e.,

G = mP with m > 0,

then the code is called a one-point code. In this thesis, we treat only one-
point codes (with one exception) as these allow to construct the codes with
the maximum code length for a given curve. Further, as can be seen in the
last section of this chapter, such one-point codes usually exhibit a very nice
structure that allows a description of the specific code with only very few basic
algebraic objects and methods.

Though it is not necessary, two common restrictions on the divisor G are

2g − 2 < deg (G) < n = deg (D),

where g is the genus of the underlying curve. The second restriction is used to
obtain an injective mapping (without this restriction, no statement about the
dimension is possible), whereas the first restriction allows a proficient application
of (3.12):

Theorem 7. Let 2g−2 < deg (G) < n = deg (D). Then the AG code AG(D,G)
has dimension k = ℓ(G) = deg (G)−g+1, and its minimum distance is bounded
by d ≥ d∗ = n− deg (G), where d∗ is called the designed minimum distance.

The proofs of these properties are given in [Lin90]: the dimension k is a
straightforward consequence of the Riemann-Roch theorem under the condition
deg (G) < n, and the minimum distance of the code follows from the fact that
deg (G) is the maximum number of zeros that a polynomial in the Riemann-Roch
space L(G) can have outside supp(G). Unfortunately, it is usually the designed

4.2. SPECIAL CASE: REED-SOLOMON CODES 41

minimum distance that limits the decoding capabilities of algebraic decoders,
whereas a BMD decoder should be able to correct all errors up to half the actual
minimum distance. But this is not a big issue: for Hermitian codes, the exact
minimum distance is known and furthermore d = d∗ for typical code rates, i.e.,
for code rates that are neither very small nor very large. More details on the
latter part can be found in Lemma 10. For other kinds of AG codes the Singleton
bound states that the difference between the designed minimum distance and
the actual minimum distance is upper bounded by g if deg (G) > 2g−2: namely

d ≤ n− k + 1 = n− (deg (G) − g + 1) + 1 = n− deg (G) + g.

In the next two sections, we introduce RS codes and Hermitian codes as
special subclasses of AG codes. If these codes have some useful properties that
are specific to each subclass, those properties are given, too.

4.2 Special Case: Reed-Solomon Codes

The reason for choosing RS codes in all examples in Chapter 2 is that they can
be seen as a special subclass of AG codes:

Theorem 8. An RS(n, k) code can be described as an AG(D,G) code
over GF (q) on the curve with defining equation z = 0, with the divisors
G = (k − 1)P , P = (1 : 0 : 0) and D =

∑n−1
i=0 (αi : 1 : 0) with n = q − 1,

and α is a primitive element of GF (q).

Of course, the point P0 = (0 : 1 : 0) could also be included in the divisor D.
But the resulting code would then be one that is commonly called an extended
RS code, so to be consistent with Chapter 2 it is left out in the given definition.

Proof. With the defining polynomial h(x, y, z) = z the curve on which RS codes
are defined is the projective line that lies at in infinity on the projective plane
over GF (q). It consists of the “double-projective” point P = (1 : 0 : 0), the
point P0 = (0 : 1 : 0) and the points7 Pi = (αi : 1 : 0) with 0 ≤ i ≤ n − 1.
Implicitly, the lemma also states that RS codes are one-point codes based on
the Riemann-Roch spaces L((k − 1)P).

To find the necessary Riemann-Roch spaces, it is first necessary to find the
valuations of the basic monomials in P . The tangent to this point is τP = z, so
tP = y

x is a possible local parameter. A basis for L((k− 1)P) is hence given by
the set {

1,
x

y
,
x2

y2
, . . . ,

xk−1

yk−1

}
.

The functions in L((k − 1)P) shall be evaluated in all points Pi = (αi : 1 : 0),
i = 0, . . . , n− 1. In all these points y = 1, so it suffices to write the functions
in L((k − 1)P) as polynomials, and the basis of the space becomes

{1, x, x2, . . . , xk−1}.
7Note that while the points Pi are points at infinity when taking the projective plane into

account, they are affine points if one only considers the projective line obtained by dropping
the (zero-valued) z-coordinate from each point.

42 CHAPTER 4. ALGEBRAIC-GEOMETRIC CODES

The polynomials are then evaluated at all αi, i = 0, . . . , n− 1. Comparing this
result to Definition 3 it becomes clear that an RS(n, k) code has been con-
structed.

The dimension of the RS code can also be derived with the tools presented
in the previous section: the genus of the projective line is g = 0 according to
the Plücker formula, so the Riemann-Roch theorem allows to calculate the code
dimension if m = k − 1 > −2. As mentioned before, m ≥ 0 is necessary to
obtain a nontrivial code, so it is possible to derive the code dimension kc from
the definition m = k − 1 for all admissible m:

kc = m− 0 + 1 = k.

Note that the notation kc was chosen to allow a clear distinction between the
code dimension kc and the design parameter k (that happen to be the same in
this case).

It is also possible to obtain the more general form of RS codes introduced in
Definition 4: for k0 ̸= 0 choose the divisor G = (k − 1 + k0)P − k0P0. A basis
for L(G) then is {

xk0

yk0
,
xk0+1

yk0+1
, . . . ,

xk0+k−1

yk0+k−1

}
,

and the rest follows analogously. Note that for this new form the requirement
supp(D) ∩ supp(G) = ∅ now prohibits to use P0 as an evaluation point.

4.3 Special Case: Hermitian Codes

For Hermitian codes, the situation is slightly more complex than for RS codes.
It is not surprising that Hermitian codes are defined with the help of a Hermitian
curve X . Recall that for a Hermitian curve

h(x, y, z) = xq+1 − yqz − yzq

is the defining polynomial over the finite field GF (q2). For the points on X we
use the notation introduced in Section 3.2. As further derived there, this curve
has q3 affine points and a single point at infinity. Using the point at infinity
in the divisor G one obtains a one-point code that is evaluated in affine points
only. This choice allows to give a definition in the next section that does not
require the use of projective coordinates.

Definition 19 (Hermitian Codes - with Algebraic Geometry). Let X be a Her-
mitian curve over GF (q2) and set the divisor G = mP , with P = (0, 1, 0) the
unique point at infinity of X . Further, define the divisor D =

∑q3

i=1 Pi, i.e., the
formal sum of all affine points on X . Then the Hermitian code H(m) is given
as the AG code AG(D,mP).

Of course, the resulting code would still be a Hermitian code if one or more
points were left out in the definition of D. However, the reason for fixing the
length to n = q3 is not only to make the codelength as long as possible, but
some of the properties presented in this section only hold if the evaluation is
performed in all points.

4.3. SPECIAL CASE: HERMITIAN CODES 43

To find the generator matrix of a Hermitian code recall from Example 13
that a basis of the Riemann-Roch space L(mP) is given by

Φm = {xayb|0 ≤ a ≤ q, 0 ≤ b, qa+ (q + 1)b ≤ m},

so the code is constructed by evaluating bivariate polynomials of restricted de-
gree. This is the basis of the alternate description of the codes in the next
section. From the description as polynomial evaluation the generator matrix
follows in the same way as for RS codes:

G =



1 1 1 1 . . . 1
x1 x2 x3 x4 . . . xn

y1 y2 y3 y4 . . . yn

x2
1 x2

2 x2
3 x2

4 . . . x2
n

x1y1 x2y2 x3y3 x4y4 . . . xnyn

y2
1 y2

2 y2
3 y2

4 . . . y2
n

...
...

...
...

. . .
...


. (4.1)

Again, the results from Section 4.1 now allow to estimate the code parame-
ters: the Hermitian curve has genus g = 1

2 (q2 − q), so

k = m− g + 1 if m ≥ 2g − 2 = q2 − q − 2 and
d ≥ d∗ = n−m.

(4.2)

But beyond all these parameters, the most useful property in the decoding
process is the fact that the dual of the Hermitian codeH(m) is again a Hermitian
code.

Theorem 9 (Dual Hermitian Code [JH04]). Let H(m) be a Hermitian code
over GF (q2) with length n = q3 according to the above definition. Then the
dual to this code is the Hermitian code H(m⊥) where

m⊥ = n+ q2 − q − 2 −m. (4.3)

Proof. Because it is a simple task to find the generator matrix of a Hermitian
code, (4.3) makes is an equivalently simple task to find the parity check matrix
H of a Hermitian code H(m). The matrix product H ·GT can be used to prove
the duality in a similar way as for RS codes in Section 2.2, but the relations get
a little more involved due to the bivariate monomials that appear. More details
on this proof are found in [JH04].

Another equivalence to RS codes is that if the matrix were extended with
more monomials, these additional relations would allow to reconstruct the in-
formation word in the error-free case. Therefore, the syndrome values obtained
from the check matrix H are mapped to a syndrome polynomial S(x, y) in a
way similar to the mapping for RS codes. Details of this mapping are given in
Section 5.1.

Using the relation between m and m⊥ allows to improve the general estimate
for the minimum distance: a closed formula for the actual minimum distance
is given e.g. in [Duu08] and [HLP98]. Because no exact bounds on the allowed
values of m are given in [Duu08], we use the table from [HLP98, Section 5.3].

44 CHAPTER 4. ALGEBRAIC-GEOMETRIC CODES

Lemma 10. Consider a Hermitian code H(m) with design parameter 2g− 1 <
m < n− 2g + 1. Then d = d∗ = n−m.

Proof. The Hermitian code H(m) is denoted as El⊥ in [HLP98]. In the range
specified for the design parameter m the relation between the parameters is
l⊥ = m − g + 1. The code El⊥ is equivalent to some code Cl for which the
minimum distance is known: specifically the minimum distance of Cl is dC =
l + g − 1 if 3g − 2 < l < n− g. Since the codes are equivalent this means that

dE = l⊥ + g − 1 if 3g − 2 < l⊥ < n− g,

and substituting the relation between l⊥ and m yields

d = n−m

for the design parameter m used here and the bounds on l⊥ are equal to the
bounds given for m before.

The lemma shows that for codes with rates that are neither too large nor
too small, the bound on the minimum distance is fulfilled with equality. All
codes used in the examples and simulations in this thesis were in this range.
Further, we always assume that the minimum distance is d = n −m in proofs
and derivations, implicitly limiting the allowed design parameters to the range
given in Lemma 10.

4.4 Defining Hermitian Codes without Alge-
braic Geometry

Of course the heading of this section is slightly paradox: to define a code on
a curve it is always necessary to have a curve first and this is an algebraic-
geometric object. But apart from that, the knowledge necessary to understand
RS codes also suffices for Hermitian codes: there is no need to study the entire
basics of algebraic geometry if one wants to apply Hermitian codes (or any other
specific kind of AG code) only, but not general AG codes. In this section, based
on the results of the previous section, we give such a definition. This definition,
and many of the notations used, are adopted from [JH04]. However, just as for
RS codes, using the special definition might keep one from seeing the bigger
framework in which Hermitian codes are settled and from the possibility to
extend the found results to other codes. To make the connection to the results
obtained before with the help of algebraic geometry, we give the relations in
brackets.

To describe Hermitian codes in a way similar to RS codes, it is first necessary
to fix something like the degree of a bivariate polynomial on a curve. If the
underlying curve X is the Hermitian curve overGF (q2) with defining polynomial
h(x, y) = xq+1 − yq − y, the following definition is used:

Definition 20 (Degree of a Bivariate Polynomial). For a monomial xayb, the
bivariate degree is given by the function

ρ(xayb) = qa+ (q + 1)b.

4.4. HERMITIAN CODES WITHOUT ALGEBRAIC GEOMETRY 45

The degree of a polynomial of the form f(x, y) =
∑
fa,bx

ayb is given by

ρ(f) = max{ρ(xayb)|fa,b ̸= 0}.

(This definition of the bivariate degree is equal to the negative of the pole
order of f(x, y) at the point at infinity as found in Example 9.) Note that this
definition implies a difference between the degree of a polynomial on a curve
and the degree of a polynomial over the entire plane used in Chapter 3 (e.g. in
the Plücker formula). From now on, only polynomials on a Hermitian curve are
used.

As before, all polynomial calculations have to be performed modulo h(x, y).
Due to this, the set

Φ = {φa,b = xayb|0 ≤ a ≤ q, 0 ≤ b}

is a basis for all polynomials on the curve. For a shorter notation in the rest of
the thesis, also define the set

Φm = {φa,b ∈ Φ|ρ(φa,b) ≤ m}.

(Φm is the basis of the Riemann-Roch space L(mP), and Φ was already given
in (3.13) as the basis for the ring of polynomials on the Hermitian curve.) For
the polynomials in these sets, two indexing systems are used, each of them
having its advantage: the system with double indices, that was already used
in the definitions of Φ and Φm, allows to directly obtain the exponents of the
monomial. In the description of the algorithm, another indexing system with
single indices is used. This other system refers to the natural ordering of the
monomials implied by the degrees, i.e., φ0 = 1, φ1 = x, φ2 = y, φ3 = x2,
φ4 = xy and so on. Because the degrees of all monomials in Φ are unique, this
ordering is also unique.

With the help of these definitions, it is now possible to repeat Definition 19.

Definition 21 (Hermitian Codes - without Algebraic Geometry). The code-
words of a Hermitian code H(m) over GF (q2) with design parameter m are
obtained by evaluating polynomials over GF (q2) of degree ρ(f) ≤ m, i.e.,

f(x, y) =
∑

φi∈Φm

aiφi(x, y), (4.4)

with ai ∈ GF (q2), at all points on the affine Hermitian curve X over GF (q2).

Of course, the code parameters are still the same as in (4.2), and it is rel-
atively simple to verify these results with basic algebraic methods: the dimen-
sion of the code follows from counting |Φm| and is related to the Frobenius coin
problem8. The designed distance d∗ can be derived with the arguments on the
number of zeros of a polynomial given in Section 4.1: a polynomial f(x, y) with
ρ(f) = m has at most m zeroes. Unfortunately, a bivariate polynomial on a
curve cannot be factored in the same way as a univariate polynomial, where each
root is equivalent to one factor of the polynomial, so no descriptive derivation of
this fact exists. Nevertheless, the bound on the number of zeros of a polynomial

8This problem is also known as coin problem or, in German, Briefmarkenproblem (stamp
problem).

46 CHAPTER 4. ALGEBRAIC-GEOMETRIC CODES

shows that each codeword has weight wH(c) ≥ n −m, and the bound on the
minimal distance given in Theorem 7 follows.

Because the generator matrix obtained for codes defined in this section is
exactly the same as (4.1) in the previous section, it becomes clear why the proof
from [JH04] could be used to prove the duality

H(m)⊥ = H(m⊥)

already in the previous section. No second proof is given, because no other
methods than in the previous section would be used.

Chapter 5
A Division Decoding Algorithm
for Hermitian Codes

In this section, we describe a new decoding algorithm for Hermitian codes. The
main idea behind the design of this algorithm was to obtain an equivalent to the
extended Euclidean algorithm used for the decoding of RS codes (see Section
2.3). In 1988 and 1992, Porter [Por88] and Shen [She92] already published
algorithms that are usually cited as equivalent to the EEA. However, their
algorithms both rely on the construction of a so-called subresultant sequence
and the main operations in their algorithms are matrix manipulations. While a
subresultant sequence provenly yields the same results as the EEA for univariate
polynomials, its description is much different. In contrast to that, the algorithm
presented here uses repeated divisions of polynomials and hence its description
is much closer to the EEA.

Unfortunately, the use of bivariate polynomials and the division algorithm
for bivariate polynomials make the algorithm more complex than the decoding
algorithm for RS codes. Especially, it is no longer sufficient to store only two
previously determined remainder polynomials as was the case for the EEA. This
increased number of remainder polynomials is also the reason that decoding is
no longer possible with quadratic complexity.

This chapter is organized as follows: in the first section the key equation
for Hermitian codes is introduced, and its solution is characterized. We give
only a sketch of the proof for uniqueness of the solution, but details are given
in [BK] and alternative versions of both the key equation and the proof can
be found in many places in literature (e.g. [PSP92], [OBA08]). After that we
state the division problem for bivariate polynomials, because repeated divisions
are the core part in our decoding algorithm. In Section 5.3 we describe the
basic algorithm and illustrate its functionality with an example. Additionally,
a short proof of correctness of the algorithm is given. The basic algorithm is
only capable of locating all error patterns with weight is not larger than half
the minimum distance with an extension. This extension is given in Section
5.5 and also illustrated with an example. To conclude the section, we give the
complexity of the algorithm and its extension in Section 5.6.

Most of the results of this chapter, especially the key equation and its proof,

47

48 CHAPTER 5. DIVISION DECODING OF HERMITIAN CODES

had been found in joint work with Prof. Irene Bouw from the Institute of Pure
Mathematics at the University of Ulm.

5.1 Syndromes and the Key Equation

There are a lot of publications, each presenting the key equation for Hermitian
codes in a slightly different form, so it seems needless to present it again in
yet another form. But most of the other descriptions use a lot of algebraic
geometry, making the conditions hard to understand. In this thesis, we give the
key equation in a polynomial form, making its representation very similar to
the key equation for RS codes given in (2.6). Besides, the key equation is also
given in a matrix form that is very useful in several proofs.

Because the key equation for Hermitian codes requires a syndrome polyno-
mial, too, this is given first.

Syndrome Elements and Syndrome Polynomial

To define the syndrome polynomial, it is first necessary to define the syndrome
elements

sa,b =
n∑

j=1

ejφa,b(Pj) = si if φi = φa,b. (5.1)

While this definition is given for all φ ∈ Φ, it is not always possible to calculate
the syndromes from the received word r: if ρ(φi) ≤ m⊥ one has

n∑
j=1

cjφa,b(Pj) = 0

by the definition of the check matrix and the dual code, for larger ρ(φi) the
sum can have arbitrary values. Because an additive error was assumed and the
calculation of the syndromes is a linear operation, the respective syndromes can
be calculated from the received word:

sa,b =
n∑

j=1

rjφa,b(Pj) if ρ(φa,b) ≤ m⊥.

These syndromes are therefore called the known syndromes, whereas the syn-
dromes sa,b where ρ(φa,b) > m⊥ are referred to as unknown syndromes. Of
course, only the known syndromes can be used in the decoding process. Just as
for RS codes, these syndromes are next mapped to coefficients of a syndrome
polynomial.

Definition 22 (Syndrome Polynomial for Hermitian Codes). The syndrome
polynomial S(x, y) for Hermitian codes is defined as

S(x, y) =
∑

ρ(xayb)≤m⊥

sa,bx
am−aybm−b, (5.2)

where am = q and bm = max{b : ρ(xayb) ≤ m⊥}. Further, denote by

ρS = amq + bm(q + 1)

the maximum possible degree of S(x, y).

5.1. SYNDROMES AND THE KEY EQUATION 49

The choice am = q is necessary because all operations are performed modulo
the defining equation of the curve. Choosing a smaller am leads to wrong results
because the modulo operation will not work as intended, a larger am is not
allowed for polynomials on the curve. On the other hand, the choice of bm
creates a syndrome polynomial of minimal degree. It is also possible to choose
bm larger, but there is no gain in doing so at the cost of dealing with polynomials
of larger degree. Note that this definition mimics the definition of the syndrome
polynomial for RS codes very closely (see Section 2.2). The importance of the
value ρS becomes clear through all the occasions in which it is used later on.

In some situations, usually when looking at single coefficients of the poly-
nomial product Λ(x, y)S(x, y), it is helpful to define syndrome elements sa,b

with a > q to avoid the calculation modulo the defining equation of the curve.
These syndromes can be obtained from the same definition by simply using the
respective monomial (even though it is not allowed as a term in a function on
the curve) or by using the relation

sa,b = sa−q−1,b+1 + sa−q−1,b+q.

Such syndromes are usually called inferred syndromes; they are known if both
sa−q−1,b+1 and sa−q−1,b+q are known, otherwise they are unknown. Of course,
unknown inferred syndromes cannot be used in the decoding process either.

Error Locator Polynomials

Another important notion that we use is that of the error locator polynomial.
While trying to use a notion that is as close as possible to the respective notion
of Section 2.3, the use of bivariate polynomials requires some slightly alternative
definitions.

Definition 23 (Error Locator Polynomial). An error locator polynomial is a
polynomial Λ(x, y) =

∑i
j=0 λjφj, λi ̸= 0, that has at least i distinct affine zeros.

Given an error word e, a correct error locator is an error locator polynomial
Λ(x, y) that has the property Λ(Pi) = 0 if ei ̸= 0, and an error locator is minimal
if, for the same error positions, there is no error locator of smaller degree.

The reason for requiring a certain number of zeros is that any error of weight
i can be located with a polynomial having at most i+1 terms, so it is possible to
search an error locator only among the polynomials of restricted degree. Note
that this definition of an error locator implicitly requires the polynomials to be
considered on a curve that allows a single indexing of the basis monomials based
on their monomial orders. Such an ordering always exists for one-point codes
due to properties of the valuation. As shown in the previous chapter, such an
indexing exists for Hermitian curves. Consequently, the zeros are only counted
among the points on the curve.

Example 15. Consider the Hermitian curve X for q = 4 as the underlying
curve. Then the polynomial

f1(x, y) = xy + α5x2 + y + α13x+ α8

is not an error locator: its leading term is it φ4 = xy, so i = 4 and by definition
this would require f1(x, y) to have at least four zeros. But f1(x, y) has only

50 CHAPTER 5. DIVISION DECODING OF HERMITIAN CODES

three zeros on the curve, namely in the points (α, α6), (α2, α3) and (α5, α11),
so it is not a locator.

To illustrate the second part of the definition, assume that an error corrupted
positions (1, α) and (1, α2). Then both

f2(x, y) = x+ 1 and f3(x, y) = x2 + 1

are correct error locators. Clearly f3(x, y) cannot be a minimal error locator,
and to see that f2(x, y) actually is a minimal error locator note that a polynomial
can only have smaller degree if it is constant, but then it has no zeros. •

Compared to the error locators used for RS codes, the minimal error loca-
tor for Hermitian codes can have some additional zeros. It follows from basic
algebraic geometry that ρ(Λ) ≤ t+ g where t is the error weight: any pattern of
t points can be found among the zeros of a polynomial that has t (or less) free
coefficients, so ρ(Λ) ≤ ρ(φt) ≤ t+g. On the other hand, a polynomial of degree
t + g has at most t + g zeros9, and because t of these zeros must be the error
positions then at most g additional zeros can be present. This property also
implies that for a given error weight, the degree of the minimal error locator is
not fixed, but only an upper and lower bound can be given:

ρ(Λ) − g ≤ t ≤ ρ(Λ),

the lower bound follows from the definition of an error locator and the fact that
ρ(φt) ≤ t+ g and the upper bound is the fundamental theorem of algebra.

The Key Equation

The key equation for Hermitian codes can be stated only for an error weight
that is bounded by some value smaller than half the minimum distance. The
parameter s appearing in this bound is the Clifford defect of a curve that can
be calculated according to the following formula [BK], [PSP92]:

s =
{

(q − 1)2/8 + 1/2, if q ≡ 1(mod 2),
(q − 2)2/8 + 1/2, if q ≡ 0(mod 2). (5.3)

Note that the value s used without any index denotes the Clifford defect, whereas
a syndrome element always has a single or double index to relate it to the
respective monomial.

Theorem 11 (The Key Equation for Hermitian Codes). Let e be an error
of weight t ≤

⌊
d−1
2

⌋
− s, and S(x, y) the syndrome polynomial calculated by

(5.1) and (5.2). Then there exist a unique minimal error locator Λ(x, y) and a
corresponding error evaluator polynomial R(x, y) that fulfill

Λ(x, y) · S(x, y) = R(x, y) mod ybm+1, (5.4)

under the constraint

ρ(R) − ρ(Λ) ≤ qam + (q + 1)bm −m⊥ − 1 =: ℓ, (5.5)

and ρ(Λ) is minimal among all pairs (Λ, R) satisfying (5.4) and (5.5).
9The number of zeros counted with multiplicities equals t + g if the curve is defined over

an appropriate algebraic extension of the base field.

5.1. SYNDROMES AND THE KEY EQUATION 51

Note that the key equation actually consists of two equations: only if a pair
of polynomials fulfills both (5.4) and (5.5) this pair is called a solution of the
key equation. Further, the uniqueness of the solution is a direct consequence of
a corollary to the Riemann-Roch theorem.

The proof of this theorem can be split into two parts: first, we prove that
the correct error locator polynomial Λ(x, y), along with a properly chosen poly-
nomial R(x, y), always fulfills (5.4) and (5.5). Because this statement alone is
used again later, we state and prove it as a separate lemma afterwards (Lemma
12). The second part is the proof that, under the given constraint on the er-
ror weight, any solution must be a correct error locator. For the solution of
minimal degree (under the given bound on the error weight) uniqueness follows
from the fact that for the minimal µ where the space L(µP −Q) is not trivial
(i.e., it contains nonzero functions) it has dimension 1, so the solution is unique
up to multiplication by a constant. Alternative versions of both the key equa-
tion and the corresponding proof can be found in several papers, e.g. [Ehr91],
[PSP92], [OBA08]. A special treatment is required for the point (0 : 0 : 1), so
in the proof we use a slightly different notation than in the rest of the thesis
denoting P0 = (0 : 0 : 1) and the other affine points on the Hermitian curve by
P1, . . . , Pn−1.

Proof. For each point Pi = (αi, βi) on X define the function

ui(x, y) =
1 +

∑q−1
j=0(y

jβq−1−j
i)

x− αi
,

which are combined to

U(x, y) := −
∑
i∈I

eiβ
bm+1
i ui.

This rational function has single poles at the error positions but at no other
points except possibly the point at infinity. The extended syndrome polyno-
mial10

S̃(x, y) =
∑

a≤am,b≤bm

sa,bx
am−aybm−b

is an approximation to U(x, y), specifically [BK, Lemma 2.2] states that

S̃(x, y) =
∑
i∈I

ei(ybm+1 − βbm+1
i)ui, (5.6)

or in other words S̃(x, y) = U(x, y) mod ybm+1. Using these definitions, we
first show that for any pair (Λ, R) that is a solution to the key equation

R− ΛU ∈ L((µ+ ℓ)P +Q− (q + 1)(bm + 1)P0), (5.7)

where µ = ρ(Λ) and Q =
∑
Pei is the divisor containing all the error positions.

The meaning of this space is the following: the pole order at infinity (which
is equivalent to the degree of a bivariate polynomial) is limited to µ + ℓ. The
function U is defined appropriately such that this pole order is dominated by
the polynomial R and the limitation becomes equivalent to (5.5). The divisor Q

10Compared to [BK] the notations S(x, y) and S̃(x, y) are interchanged.

52 CHAPTER 5. DIVISION DECODING OF HERMITIAN CODES

allows the function R− ΛU to have poles in the error positions: both R and Λ
are polynomials (so they do not have poles outside infinity), but U has the error
positions at poles. Theoretically the minimal solution to the key equation might
not be an error locator, so the poles of U are not necessarily compensated by
zeros of Λ. Finally the term −(q+1)(bm +1)P0 represents the modulo operation
in the key equation, because S̃(x, y) was an approximation to U(x, y) up to ybm .

The definition of U implies that the poles ofR−ΛU are contained in {Pi}i∈I∪
{P}. Moreover, in Pi with i ∈ I \{0}, the rational function R−ΛU has at most
a simple pole. The order of the pole in P equals −ρ(R − ΛU). Since ρ(Λ) = µ
by definition, we conclude that

ρ(R− ΛU) ≤ ρ(Λ) + max
(
ρ

(
R

Λ

)
, ρ(U)

)
.

Since (Λ, R) is a solution to the key equation (5.4), it follows that ρ(R) −
ρ(Λ) ≤ ℓ. The definition of U implies that ρ(U) ≤ (q−1)(q+1)−q = q2−q−1 =
2g − 1, so we conclude that

ρ(R− ΛU) ≤ µ+ max(ℓ, 2g − 1).

The definition of bm implies that

(q + 1)bm ≤ m⊥ ≤ (q + 1)bm + q,

therefore 2g − 1 ≤ ℓ. We conclude that ρ(R− ΛU) ≤ µ+ ℓ.
It remains to estimate vP0(R− ΛU). (5.6) states that

S̃ − U = (
∑
i∈I

eiui)ybm+1.

We conclude that vP0(S̃ − U) ≥ vP0(y
bm+1) = (q + 1)(bm + 1) if 0 ̸∈ I. In the

case that 0 ∈ I, we have u0 = (yq−1 + 1)/x, and hence

S̃ − U = e0
ybm+1(yq−1 + 1)

x
+

∑
i∈I\{0}

eiuiy
bm+1.

We conclude that vP0(S̃ − U) = (bm + 1)(q + 1) − 1. This shows that (5.7) is
fulfilled for either case.

Since (Λ, R) is a solution to the key equation (5.4), it follows that T = S̃Λ−R
satisfies vP0(T) ≥ (q + 1)(bm + 1). We may write R − ΛU = Λ(S̃ − U) − T .
Therefore it follows that

vP0(R− ΛU) ≥ (q + 1)(bm + 1) − 1.

Now, the aim of the proof is to show that the space in which R−ΛU lies is
trivial, i.e., it contains only the all-zero polynomial. This implies that U = R/Λ
and, because R is a polynomial, that Λ must be zero in all error positions,
hence it is a correct error locator. It is relatively simple to show this for a
weaker bound than the one given in Theorem 11: if t+ ρ(Λ) < d∗, then

deg ((µ+ ℓ)P +Q− (q + 1)(bm + 1)P0) = µ+ ℓ+ t− (q + 1)(bm + 1)

< d∗ + q2 − q − 1 −m⊥ − 1 = 0.

5.1. SYNDROMES AND THE KEY EQUATION 53

According to (3.10), this means that the space is trivial. This does not yet cover
the entire range for which the theorem was stated because t+ ρ(Λ) < d∗ implies
t ≤

⌊
d∗−1−g

2

⌋
. However, the proof for the remaining cases is more involved, so

we refer to [BK] for that part.
For the syndrome polynomial S(x, y) the statement follows from the obser-

vation that S − S̃ only contains terms xayb with ρ(xayb) < ρS −m⊥, and the
fact that

R̃

Λ
=
R

Λ
+ S̃ − S,

and S̃ − S is a polynomial.

The second part of the proof was only given for the case that no error
occurred in the point P0 = (0, 0, 1). Similar to the first part, a special treatment
is necessary because except for φ0(x, y) = 1, all monomials in Φ are zero in P0.
However, the result is the same, and the details are also given in [BK]. Further,
the proof only shows that under the given circumstances a solution to the key
equation must be an error locator, so the following lemma - which was adapted
from [JLJH92] - is an essential part to the proof because it shows that at least
one solution actually does exist.

Lemma 12. Given an error word e and the corresponding syndrome polynomial
S(x, y), a correct error locator Λ(x, y) and a suitable polynomial R(x, y) always
solve the key equation.

Proof. Define µ = ρ(Λ) and write the error locator polynomial as

Λ(x, y) =
∑

ρ(φa,b)≤µ

λa,bφa,b.

Because no limitations were given for R(x, y), it is possible to define

R(x, y) = Λ(x, y) · S(x, y) mod ybm+1,

and R(x, y) contains only monomials φa,b with b ≤ bm. Clearly, the pair (Λ, R)
fulfills (5.4) so it remains to show that (5.5) is also fulfilled. To see this, write
each coefficient of R(x, y) as

rat,bt =
∑

aq+b(q+1)≤µ

λa,bsam−at+a,bm−bt+b.

Of course, the syndromes sam−at+a,bm−bt+b for bm − bt + b < 0 ⇔ bt − b > bm
do not exist, so in general no statement about the value of rat,bt is possible
if bt > bm, but this is just the part of the product that is eliminated by the
modulo operation. On the other hand, the syndromes sam−at+a,bm−bt+b for
(am − at + a)q + (bm − bt + b)(q + 1) > m⊥ cannot be calculated from the
received word, so for these values no statement about rat,bt is possible either.
However, by reformulating the condition, one finds that these are exactly those
values that may be nonzero according to (5.5). For the remaining values, it is
possible to calculate the syndromes from the received word and it is possible to

54 CHAPTER 5. DIVISION DECODING OF HERMITIAN CODES

rewrite the coefficients of R(x, y) to

rat,bt =
∑

aq+b(q+1)≤µ

λa,b

n∑
i=1

eiφam−at+a,bm−bt+b(Pi)

=
n∑

i=1

∑
aq+b(q+1)≤µ

λa,beiφam−at,bm−bt(Pi)φa,b(Pi)

=
n∑

i=1

eiφam−at,bm−bt(Pi)
∑

aq+b(q+1)≤µ

λa,bφa,b(Pi)

=
n∑

i=1

eiφam−at,bm−bt(Pi)Λ(Pi).

By definition, Λ(Pi) = 0 if ei ̸= 0, hence the latter sum is always zero. Com-
bining the results for all three ranges, it turns out that the pair (Λ, R) fulfills
(5.4) and (5.5).

The proof of this lemma also implies a descriptive interpretation of the value
ℓ: assume that all syndrome elements that can be calculated from the received
word are nonzero, then ℓ is the largest integer such that all terms in S(x, y)
have larger degree (it is not necessary that ℓ = ρ(φi) for some i). Conversely,
the stopping criterion means that all terms of the polynomial product where all
λa,b are multiplied to known syndromes have to be zero.

This latter interpretation is illustrated in Figure 5.1 for the arbitrarily chosen
values q = 4, m⊥ = 25 and t = 7. In the left part of the figure, the shaded region
indicates the monomials in S(x, y) to which syndrome elements are mapped.
With LM(Λ) = φ7 = x2y - this is the most common result for t = 7 - the
frames show which syndrome elements are involved in the calculation of the
element rat,bt if the upper right corner of a frame lies over the position xatybt .
For example, the calculation of r3,5 includes the syndrome elements

s3,5, s2,5, s3,4, s1,5, s2,4, s1,5, s0,5, s1,4,

and r3,5 = 0 if Λ(x, y) is an error locator. The other two elements r4,7 and r3,2

may be nonzero as their computation involves unknown syndromes. In the right
part, the illustration is extended to include coefficients like r1,5: this coefficient
also has to be zero, although the frame is not overlapping with the coefficients of
the syndrome polynomial. But another effect has to be taken into account here,
namely the calculation modulo the defining equation of the curve. This is best
illustrated by drawing the known inferred syndromes as “virtual” coefficients at
negative powers of x. In this case, the three inferred syndromes are known and
marked with asterisks. Now any frame overlapping the shaded area and fields
with asterisks has to yield a zero result.

The Matrix Form of the Key Equation

The key equation can be mapped to a number of linear equations in the coeffi-
cients of Λ(x, y), where the number of equations varies with ρ(Λ). Writing these
linear equations in matrix form results in a structured matrix S that is used in
several places later on.

5.1. SYNDROMES AND THE KEY EQUATION 55

x1 x
2

x
3

x
4

1

y
5

y
4

y
3

y
2

y

r4,7

r3,2

r3,5

* *

*

x1 x
2

x
3

x
4

1

y
3

y
2

y

r4,7

r3,2

r1,5

Figure 5.1: Illustration of (5.5) - without and with inferred syndromes

Consider the polynomial product Π(x, y) = S(x, y)·Λ(x, y) mod ybm+1. The
monomial with largest degree that is not discarded by the modulo operation is
xqybm . Write

Λ(x, y) =
∑

ρ(φa,b)≤µ

λa,bφa,b(x, y), LM(Λ) = φal,bl
,

then the coefficient πq,bm is given as

πq,bm = s0,0λ0,0 + s1,0λ1,0 + · · · + sal,bl
λal,bl

.

Equivalently

πq−1,bm = s1,0λ0,0 + s2,0λ1,0 + · · · + sal+1,bl
λal,bl

and so on. In these equations one may also need the inferred syndromes. (5.5)
now shows that if aq + b(q + 1) > ℓ + ρ(Λ) then πa,b must be zero, and so
solving the key equation is equivalent to solving the homogeneous linear system
of equations

S ·


λ0,0

λ1,0

λ0,1

...
λal,bl

 = 0

with

S =


s0,0 s1,0 s0,1 . . . sal,bl

s1,0 s2,0 s1,1 . . . sal+1,bl

s0,1 s1,1 s0,2 . . . sal,bl+1

...
...

...
. . .

...
sa∗,b∗ sa

m⊥ ,b
m⊥

 , (5.8)

56 CHAPTER 5. DIVISION DECODING OF HERMITIAN CODES

where am⊥q+bm⊥(q+1) = m⊥ and a∗ = am⊥ −al, b∗ = bm⊥ −bl. All syndrome
elements in this matrix are known, so the number of rows of S is reciprocal to
ρ(Λ) or the number of columns of S: more specifically, counting shows that the
number of rows equals

d− 1 − ρ(Λ) + g

if ρ(Λ) ≥ 2g− 1, or slightly larger below that bound. This means that for small
ρ(Λ) the system of equations is overdefined, so there may not exist a solution
and the error cannot be located with a polynomial of the given degree. But as
ρ(Λ) increases the system eventually becomes underdefined and the solution can
no longer be unique. The latter is always the case if t >

⌊
d−1
2

⌋
, and Chapter 6

shows under which circumstances an error of this weight can be corrected with a
high probability. But it may also happen if

⌊
d−1
2

⌋
− s < t ≤

⌊
d−1
2

⌋
, and Section

5.5 illustrates how to detect and handle the latter cases.

5.2 Division of Bivariate Polynomials

Divisions of univariate polynomials are the main computations when decoding
RS codes with the Euclidean algorithm (see Section 2.3), and so it is not sur-
prising that bivariate divisions are the core part of the new algorithm. Because
there are some essential differences to the univariate case we present the division
procedure separately before applying it in the decoding algorithm.

The division of bivariate polynomials can be performed in a way that is very
similar to the long division of univariate polynomials: the divisor is multiplied
with a properly chosen monomial and a constant such that its leading term
becomes the same as the leading term of the dividend, this part is often called
alignment. Then the aligned divisor is subtracted from the dividend and the
procedure is repeated with the difference, also referred to as intermediate divi-
dend. If there is no monomial such that the leading terms can be aligned, then
the leading term of the intermediate dividend is moved to the remainder ϵ(x, y).
These two operations are performed until the intermediate dividend becomes
zero. The two main differences of this bivariate division to the division of uni-
variate polynomials are that the division does not stop as soon as the leading
term of the dividend is not a multiple of the leading term of the divisor, and
that the remainder may have larger degree than the divisor. These two prop-
erties are due to the fact that not all bivariate monomials are multiples of each
other. To illustrate the bivariate division and the two mentioned characteristics
consider the following example.

Example 16. Let the dividend θ(x, y) = x2+y+1 and the divisor ξ(x, y) = x+1
be two bivariate polynomials over GF (2). Then the division works as follows:

1. Initialize the quotient γ(x, y) = 0 and remainder ϵ(x, y) = 0.

2. Align ξ and θ by multiplying ξ with x.

3. θ1(x, y) = θ(x, y) − xξ(x, y) = y + x+ 1 and γ(x, y) = x.

4. Because there is no monomial φi s.t. φi · x = y, move y to the remainder,
i.e., ϵ(x, y) = y, θ2(x, y) = x+ 1.

5.2. DIVISION OF BIVARIATE POLYNOMIALS 57

5. θ2 and ξ are already aligned, so γ(x, y) = x+ 1, θ3(x, y) = θ2 − ξ = 0, and
the algorithm ends.

With the determined quotient and remainder, it is now possible to write that

θ(x, y) = x2 + y + 1 = ξ(x, y) · γ(x, y) + ϵ(x, y) = (x+ 1)2 + y. •

In this example, the result of the division is independent of how the degree
of a bivariate polynomial is defined. For some degree definitions, e.g. the one
used for polynomials on Hermitian curves, one would actually find ρ(ϵ) > ρ(ξ),
for others the opposite relation might be true.

Later, in the actual decoding algorithm, a polynomial shall be divided by
several polynomials. In such a case, there are several quotients, but also just a
single remainder polynomial. Because this division by several polynomials is an
essential part, we state the division problem more formally.

Definition 24 (The Bivariate Division Problem [CLO92]). To divide a polyno-
mial θ(x, y) by several polynomials ξ1(x, y), . . . , ξn(x, y), we search n quotient
polynomials γ1(x, y), . . . , γn(x, y) and a remainder polynomial ϵ(x, y) such that

θ(x, y) =
n∑

j=1

γj(x, y) · ξj(x, y) + ϵ(x, y), (5.9)

and no monomial in ϵ(x, y) can be obtained by multiplying the leading monomial
of any ξj(x, y) with an element of Φ.

Of course, the division by one polynomial is just the special case n = 1. The
following algorithmic description is adapted from [CLO92], but such a descrip-
tion can be found in almost any book on the basics of computational algebra
because of the close relation to the calculation of Groebner bases. Note that
while the description of the division uses a degree function like the one given
in Definition 20, the existence of such a function is not a prerequisite for divi-
sion to be possible. The use of this function is only to give a short notation
for the condition that alignment has to be possible. Two important properties
of a polynomial f(x, y) =

∑i
j=0 fjφj with degree ρ(f) = ρ(φi) are its leading

monomial LM(f) = φi and the leading term LT (f) = fiφi. They are needed
to describe the division procedure and consequently for the decoding algorithm.

1. Set j = 1, γ1(x, y) = · · · = γn(x, y) = ϵ(x, y) = 0.

2. Determine i = ρ(θ) − ρ(ξj).

3a. If there exists a monomial φ(x, y) ∈ Φ with ρ(φ) = i, then set γj(x, y) =
γj(x, y) + cφ(x, y) and θ(x, y) = θ(x, y) − cφ(x, y)ξj(x, y), where the con-
stant c is chosen such that ρ(θ) decreases, go to 4).

3b. If no such monomial exists and j < n then set j = j + 1 and go to 2), if
j = n set ϵ(x, y) = ϵ(x, y) + LT (θ), θ(x, y) = θ(x, y) − LT (θ).

4. STOP if θ(x, y) = 0, otherwise set j = 1 and go to 2).

Note that the result of such a division generally depends on the ordering of the
divisors ξ1, . . . , ξn. While it is obvious for the quotients, e.g. if LT (θ) = xy,
LT (ξ1) = x and LT (ξ2) = y, this is not so clear for the remainder. But to see
that it can actually happen, consider the following example:

58 CHAPTER 5. DIVISION DECODING OF HERMITIAN CODES

Example 17. Let θ(x, y) = xy+y+1, ξ1 = xy+y and ξ2 = x. In this ordering,
the given procedure yields

γ1 = 1, γ2 = 0, ϵ(x, y) = 1.

Interchanging the two divisors, i.e., ξ̄1 = x, ξ̄2 = xy + y, leads to

γ̄1 = y, γ̄2 = 0, ϵ̄ = y + 1. •

Though this last example seems very fictitious, it should always be kept in
mind that interchanging the order of the divisors may yield an entirely different
result.

5.3 Solving the Key Equation with a Division
Algorithm

In this section, we describe the actual algorithm that calculates a minimal so-
lution to the key equation. It is similar in spirit to the decoding algorithm de-
scribed by Sugiyama et al. [SKHN75] that was based on the extended Euclidean
algorithm. As given by Theorem 11, for t ≤

⌊
d−1
2

⌋
− s, a minimal solution to

the key equation is guaranteed to be a correct error locator, therefore we prove
in the next section that the algorithm returns a minimal solution. Errors with
weight

⌊
d−1
2

⌋
− s < t ≤

⌊
d−1
2

⌋
can be decoded with a small extension of the

basic algorithm that is introduced in Section 5.5. For t >
⌊

d−1
2

⌋
, decoding is

possible under certain circumstances and with major modifications to the basic
algorithm, so this treatment is deferred to the next chapter.

Basic Idea of the Algorithm

To make sure that the algorithm always finds the solution with minimal ρ(Λ),
a series of trial polynomials ∆i(x, y) with LM(∆i) = φi is constructed. Along
with these polynomials, a second series of polynomials Ri(x, y) is calculated in
each iteration. Each pair of polynomials (∆i, Ri) is constructed in such a way
that it fulfills (5.4) and ρ(Ri) is minimal for a given ρ(∆i) (the latter statement
is proved in the next chapter). By selecting the pair with smallest index i that
also satisfies (5.5) as the final solution (Λ, R), the algorithm hence determines
the solution with minimal ρ(Λ). Because the algorithm stops as soon as (5.5) is
fulfilled, we refer to this equation as the stopping criterion.

Initialization

As inputs to the algorithm, it is necessary to determine the syndrome elements
and polynomial S(x, y) from (5.1) and (5.2), as well as the polynomial ybm+1 and
the value ℓ needed in (5.4) and (5.5) respectively. For a consistent description
set ∆0(x, y) = 1 and R0(x, y) = S(x, y) as the starting point. If the stopping
criterion were already fulfilled for ∆0(x, y) and R0(x, y), this would be equivalent
to S(x, y) = 0 or the received word being a codeword. In such a case no decoding
is necessary, so for the following steps one can assume that S(x, y) ̸= 0.

5.3. SOLVING THE KEY EQUATION WITH A DIVISION ALGORITHM59

Note that in the algorithm all operations are performed not only modulo
the defining polynomial to stay in the given ring of polynomials, but also mod-
ulo the polynomial ybm+1 even if the latter modulo operation is not explicitly
mentioned.

Starting the Iterations

Searching for something alike the Euclidean algorithm, we want the polynomials
to take the form

∆i(x, y) =
∑
j<i

γi,j(x, y) · ∆j(x, y),

Ri(x, y) =
∑
j<i

γi,j(x, y) ·Rj(x, y),
(5.10)

with the number of summands as small as possible and the polynomials γi,j

obtained as quotient polynomials, Ri as the remainder of a division. Recall
that the idea of the algorithm was to have LM(∆i) = φi. Of course, it is in
general not possible to have φi = φ · φi−1 where φ ∈ Φ, so it is necessary to
take some polynomials from earlier iterations into account, too.

A special setup is used to ensure that LT (∆i) = φi: choose ∆i1(x, y) so that
φi1 · y = φi. If this choice is not possible - this is the case whenever φi = xa -
we pick ∆i1 with φi1 · x = φi. This procedure already determines the first term
of γi,i1(x, y). The remaining terms as well as all other quotients γi,j for j < i
are determined in the next step as the quotients of θ(x, y) = y · Ri1(x, y) (or
θ(x, y) = x ·Ri1(x, y) if φi = xa) divided by all remainders Rj(x, y) with j < i.

Although this setup looks different from the Euclidean algorithm, it is ac-
tually not: instead of choosing θ(x, y) as the dividend, one might search for
a remainder Ri2 that has ρ(Ri2) = ρ(y) + ρ(Ri1), and divide this remainder
by all other remainders. However, the next step shows that is easy to fix the
leading monomial of ∆i(x, y) with the construction described before, whereas
this would be much harder to guarantee when choosing to divide Ri2 .

The Division Part of the Algorithm

As mentioned before, the result of a division depends on the ordering of the
polynomials Rj(x, y). We try those polynomials first where ρ(∆i) is largest,
i.e., using the notation of Definition 24 we have ξj = Ri−j for j = 1, . . . , i. With
this ordering we expect the number of polynomials involved in one division
to be smaller than when they are tried in the order of calculation, however a
specific ordering based on the degrees ρ(Rj) can still yield a better performance.
Further it is not necessary to always use all previous remainders in the division
- details on which remainders need to be stored are given later. Compared to
the division procedure given after Definition 24, an additional condition needs
to be fulfilled: since we fixed the leading term of ∆i(x, y) with the special setup
in the previous step, now it becomes necessary to make sure that no polynomial
γi,j(x, y) is obtained that alters this leading term, i.e., one has to verify that

ρ(∆j) + ρ(γi,j) < ρ(φi). (5.11)

Because the γi,j(x, y) are just the quotient polynomials obtained in the divi-
sion procedure, it suffices to choose the monomial φ in Step 3 of the division

60 CHAPTER 5. DIVISION DECODING OF HERMITIAN CODES

procedure from the set Φν where ν = ρ(φi) − ρ(∆j) − 1. Once all quotient
polynomials are determined, taking into account the leading term of γi,i1 ob-
tained in the previous step, one can calculate the polynomial ∆i(x, y) as given
in (5.10).

Another modification to the basic division of bivariate polynomials is that
we stop the division process as soon as one term in the intermediate dividend
could not be cancelled. This significantly lowers the complexity, but does not
change the result of the algorithm: the order of the remainder is the same in
both cases and hence the decoder stops in the same iteration, but it is proven
that any minimal solution to the key equation is unique given that the error
weight is not too large, so an correct result is obtained in both cases.

This modification also allows to save time in other cases. Specifically, if
there is no polynomial Rj with j < i and ρ(Rj) = ρ(θ), then θ(x, y) would be
the remainder polynomial of this iteration. But there is no difference in simply
using the polynomials y∆i1 and yRi1 (or x∆i1 and xRi1) respectively), so in
such a situation, there is no need to actually store the result of this iteration.
In Section 5.6, where the complexity of this algorithm is calculated, it is shown
that this reduced number of polynomials also reduces the worst-case complexity.

The End of the Algorithm

In each iteration, check if the pair ∆i(x, y), Ri(x, y) satisfies the stopping crite-
rion, i.e., if ρ(Ri) − ρ(∆i) ≤ ℓ. If it is fulfilled, set

Λ(x, y) = ∆i(x, y) and R(x, y) = Ri(x, y) (5.12)

and stop the algorithm. Otherwise, increase i by one and perform another
division. A summary of the algorithm for solving the key equation in pseudocode
is given by Algorithm 1.

Algorithm 1: Solving the Key Equation for Hermitian Codes
Input: Polynomials S ̸= 0, ybm+1; constant ℓ
Output: Locator polynomial Λ, evaluator polynomial R
Initialization: i = 0, ∆0 = 1, R0 = S
repeat

i = i+ 1
if φi = xa then φi1 = xa−1, else φi1 = φi/y
θ = φi/φi1 ·Ri1

Divide θ by subset of Ri−1, . . . , R0: θ =
∑

j γi,jRj +Ri

γi,i1 = γi,i1 − φi/φi1

∆i = −
∑

j γi,j∆j

until ρ(∆i) − ρ(Ri) ≤ ℓ
Λ = ∆i, R = Ri

We conclude this section with an example that illustrates the functionality
of the algorithm.

Example 18. Consider the Hermitian code H(51) over GF (42). This code has
minimum distance d = 13, so it can correct all error patterns up to weight 5.
Take the error word e = (1, 1, 1, 1, 1, 0, . . . , 0), i.e., the received word is in error

5.4. CORRECTNESS OF THE ALGORITHM 61

at the positions (1, α), (1, α2), (1, α4), (1, α8), (α, α6) and all error values are 1.
The dual code has m⊥ = 23, so the syndrome polynomial is

S(x, y) =x4y4 + αx3y4 + α6x4y3 + α2x2y4 + α7x3y3 + α12x4y2 + α3xy4+

+ α8x2y3 + α13x3y2 + α14x4y + α4y4 + α9xy3 + α14x2y2 + αx3y+

+ α9x4 + α10y3 + xy2 + α10x2y.

From this the values bm = 4 and ℓ = 12 can be read off. In the first iteration,
one finds i1 = 0, and from this θ(x, y) = x·S(x, y) mod ybm+1 (and also modulo
the defining equation of the curve). LT (θ) = αx4y4, so subtract α · S(x, y) to
obtain the remainder with

LM(R1) = α4x4y.

and ∆1 = x+ α. Because ρ(R1) − ρ(∆1) = 21 − 4 = 17 > 12, the algorithm is
not finished yet. In the second iteration, one obtains

∆2 = y + α2x+ α2 and LM(R2) = x4y2,

and again ρ(R2) − ρ(∆2) = 26 − 5 = 21 > 12. In the third iteration,

∆3 = x2 + α4x+ α and LM(R3) = α10y4.

Now ρ(R3)− ρ(∆3) = 20− 8 = 12, so the algorithm terminates. ∆3(x, y) has 8
affine zeros on the curve:

(1, α), (1, α2), (1, α4), (1, α8), (α, α6), (α, α7), (α, α9), (α, α13),

and this is a correct error locator because all error positions are contained in
the set of zeros of Λ(x, y) = ∆3(x, y). •

Note that in this case the correctness of the minimal solution was guaranteed.
The entire remainder polynomials were not given here as the only important
remainder in this example is R3(x, y) = R(x, y) if one wants to calculate the
error values. However, this task has been addressed in many works (cf. [Ehr91],
[PSP92], [OBA08] and others) so we do not further discuss it in this thesis.

5.4 Correctness of the Algorithm

Theorem 13. The algorithm presented in the previous section always computes
a minimal solution to the key equation.

Proof. For each i, the algorithm calculates a pair (∆i, Ri) with LM(∆i) =
φi(x, y) in increasing order. Each pair fulfills (5.4), and the pair with smallest
index i that also fulfills (5.5) is returned. To show that the minimal solution
is computed by the algorithm hence is equivalent to showing that ρ(Ri) is as
small as possible for any given ρ(φi).

For those who are familiar with the matter, this last part is trivial because
the steps of the algorithm are a Groebner-basis calculation (cf. [CLO92]). A
more extensive proof uses Lemma 18 from Appendix B: if ρ(Ri) = ρS − ρ(φı̄)
there can be no polynomial f(x, y), whether calculated in the algorithm or not,
such that ρ(f) < ρ(∆i) and ρ(f · S) = ρ(Ri), but such a polynomial would be
necessary to decrease ρ(Ri) without changing ρ(∆i). Consequently there cannot
be a pair (∆′

i, R
′
i) with ρ(∆′

i) = ρ(∆i) but ρ(R′
i) < ρ(Ri) and the statement

follows.

62 CHAPTER 5. DIVISION DECODING OF HERMITIAN CODES

Note that this theorem makes no statement about the correctness or unique-
ness of the solution. These follow only for error weights within the bound given
in Theorem 11 as the proof of the key equation shows. Therefore decoding
failures are treated in the next section. These can occur if there is no unique
minimal solution - then the algorithm returns any of the minimal solutions - or
if there is a unique minimal solution that is not an error locator.

5.5 Handling of Decoding Failures

As indicated by the proof to Theorem 11, a solution pair (Λ, R) to the key
equation is only guaranteed to be the correct error locator and evaluator poly-
nomial if the error weight is bounded by some value t <

⌊
d−1
2

⌋
. On the other

hand, it is a basic property of linear codes that every error with weight smaller
than half the minimum distance can be uniquely mapped to a closest codeword,
so it should be possible to find an extension to the algorithm that allows to
decode these errors as well. In simulations we found that actually most errors
with weight t =

⌊
d−1
2

⌋
could also be corrected with the algorithm given so far

without any modifications. Therefore, we want to have a criterion to identify
these situations, and an extension to allow decoding in the other cases, too.

In order to decide if the polynomial Λ(x, y) shall be accepted as the correct
solution, it is first necessary to determine whether Λ(x, y) actually is an error
locator polynomial. But this is very simple as it just involves counting the
number of zeros and comparing it with ρ(Λ) as explained in Definition 23. This
criterion sometimes also allows to identify errors with weight t >

⌊
d−1
2

⌋
: if

ρ(Λ) =
⌊

d−1
2

⌋
+ g, but the polynomial Λ(x, y) returned from the algorithm has

less than
⌊

d−1
2

⌋
zeros one can say for sure that t >

⌊
d−1
2

⌋
. In such a case an

extension like the one described in the following chapter is needed.
In case ρ(Λ) <

⌊
d−1
2

⌋
+ g but Λ(x, y) has not enough zeros, decoding is

possible with the following extension to the basic algorithm: first, a second pair
(∆i, Ri) calculated in the algorithm is chosen, and then all linear combinations
of those two polynomials are checked. Different criteria can be used to select one
of these linear combinations as the final solution, these criteria and estimations
of their performances are given later. The complexity of this extension is also
derived in the next section.

But first consider the question how to select the second basis polynomial.
Let the pair selected by Algorithm 1 be (∆i, Ri), then it is intuitive to just
perform some more iterations of the algorithm until another pair (∆i1 , Ri1)
fulfilling (5.5) is found. However, keeping in mind that the aim is to find an
error locator of minimal degree, it is possible to do better in some situations:
before calculating a second pair, it is advisable to try all previously calculated
pairs and check if ρ(Ri1)−ρ(∆i) ≤ ℓ for some i1 < i. If such a pair is found the
final solution has ρ(Λ) = ρ(∆i), whereas by calculating a second pair one gets
ρ(Λ) > ρ(∆i) and according to Theorem 11 the correct error locator shall have
minimal degree. Either way, we obtain a set of candidates

Λ̄(x, y) = ∆i(x, y) + αj∆i1(x, y).

Note that each time only one additional polynomial is selected, although there
might be more j ̸= {i, i1} with ρ(Rj) − ρ(Λ̄) ≤ ℓ. This restriction is made to

5.5. HANDLING OF DECODING FAILURES 63

keep the complexity of the algorithm small, but in simulations this was always
sufficient to obtain a correct error locator as one of the candidates.

Second, a criterion is needed to decide which of the candidates to select as
the final Λ(x, y). Of course, one only needs to consider those candidates that
actually are error locator polynomials, hence counting the number of zeros of
each of the candidates is the first step that should always be made. This number
of zeros also leads to the first criterion that was tested: among all candidates,
the one with the largest number of zeros is selected. Simulations showed that
this criterion already yields the correct solution in most cases (see the table at
the end of the section). But while this first criterion is very simple, it can be
improved if it is guaranteed that t ≤

⌊
d−1
2

⌋
errors occurred. A second criterion

that was tested also searches the zeros of the corresponding polynomial

R̄(x, y) = Ri(x, y) + αjRi1(x, y)

and discards all those solutions where the rational function R̄/Λ̄ has more than⌊
d−1
2

⌋
poles. This criterion yields a better result because any pole of R̄/Λ̄ leads

to a nonzero coefficient in the reconstructed error word, but it is more complex
because along with the zeros of two polynomials, their multiplicities have to be
determined, too. Unfortunately these two criteria are still not able to correctly
locate all error patterns of weight

⌊
d−1
2

⌋
− s < t ≤

⌊
d−1
2

⌋
for codes of any rate.

The third criterion that was investigated is to perform error evaluation for
all candidates. Again it is a prerequisite that the error weight actually is smaller
than half the minimum distance, then there can be only one solution for which
the difference of the received word and reconstructed error yields a codeword.
This follows immediately from the basic properties of linear codes, so this cri-
terion always yields correct decoding. Unfortunately, the complexity of error
evaluation is much larger than that of finding the zeros of a polynomial, so this
third criterion should always be used only in combination with one of the other
two criteria to limit the number of error evaluations performed.

To illustrate the extension, consider the following example that is slightly
modified compared to Example 18:

Example 19. Take the same code as in Example 18 and the same error e
extended by another nonzero element in (α2, α3) also with error value 1. With
this additional error t = 6 =

⌊
d−1
2

⌋
>

⌊
d−1
2

⌋
−s, so it is not guaranteed that the

first solution obtained from the algorithm is a correct error locator (in fact, the
error word for this example was specifically chosen to obtain such a situation).
The syndrome polynomial of the modified error is

S̃ = α5x3y4 + α2x4y3 + α10x2y4 + α13x3y3 + α4x4y2 + α2xy4

+ α11x2y3 + α4x4y + α5y4 + α11x2y2 + α6x3y + α8x4

+ α14y3 + α11xy2 + α9x2y.

The polynomials ∆i calculated in the first four iterations, as well as the degrees
ρ(∆i) and ρ(Ri) are given in Table 19. In the fourth iteration (5.5) is fulfilled
for the first time. However, ∆4(x, y) has only 3 affine zeros on the curve (see
Example 15), so it is no error locator polynomial. Because

ρ(∆4) = 9 <
⌊
d− 1

2

⌋
+ g = 12

64 CHAPTER 5. DIVISION DECODING OF HERMITIAN CODES

i ∆i ρ(∆i) ρ(Ri)

0 1 0 32
1 x+ α5 4 36
2 y + α12x+ 1 5 26
3 x2 + α5x+ α3 8 21
4 xy + α5x2 + y + α13x+ α8 9 20

Table 5.1: Polynomials calculated by Algorithm 1

the number of errors may be t ≤
⌊

d−1
2

⌋
and the extension to the algorithm is

used. Consequently, it becomes necessary to find a second basis polynomial.
In this case, ρ(R3) − ρ(∆4) = 21 − 9 = 12, so there is no need to perform
further iterations of the algorithm and (∆3, R3) is chosen as the second basis
pair. Forming all linear combinations of ∆4 and ∆3 and counting the number
of zero positions, one finds that the linear combinations

Λ̄1 = ∆4 + ∆3 and Λ̄2 = ∆4 + α14∆3

both have 9 rational zeros and all other candidates have a smaller number of
zeros (actually, there cannot be a polynomial Λ̄(x, y) with more zeros). The first
criterion that counts only the number of zeros hence does not yield a unique
result and a random decision has to be made. Since only the second option yields
a correct error locator polynomial this decision may cause a wrong decoding.
Using the extended criterion that counts the poles of R̄/Λ̄ shows that the first
option belongs to an error pattern of weight 9 >

⌊
d−1
2

⌋
, so this solution is

discarded. Comparing the zeros of Λ̄2 and R̄2 shows that R̄2/Λ̄2 has only
6 =

⌊
d−1
2

⌋
poles, so this solution - which indeed constitutes the correct error

locator - is chosen. •

Simulation Results

To demonstrate the functionality of the extension and the differences between
the three acceptance criteria, a series of simulations was performed Hermitian
codes with several design parameters m over GF (42). With q = 4, (5.3) yields
s = 1, so it is only necessary to simulate the decoding of errors with weight t =⌊

d−1
2

⌋
. The design parameters, the resulting code rates k

n and BMD decoding
radius are given in the first three columns of Table 5.2. For each code, 107

random error patterns were used to test the algorithm. Because doing evaluation
for all pairs identifies the correct solution for sure, only the other two criteria
were tested, i.e., counting the zeros of Λ only and counting the poles11 of R/Λ.
The number Ef1 in the fourth column gives the number of error patterns for
which the solution returned by the basic algorithm was erroneously accepted
due to the first criterion. The number Nb1 shows the number of error words for
which the extension was used, and the number Ne1 denotes the number of errors

11A simplified version of this criterion was used: the distinct zeros of both R and Λ were
counted and their number subtracted. This may lead to an estimated error weight that is too
small (e.g. if Pi is a double zero of Λ and a simple zero of R, then it is also an error position)
but because the criterion was used only to reject polynomials with too many poles a correct
solution is never rejected.

5.6. COMPLEXITY OF THE ALGORITHM 65

where the first criterion lead to a wrong decision among the candidates (note
that this number includes both random decisions and such where the correct
error locator did not have the largest number of zeros). The numbers Ef2, Nb2

and Ne2 denote the results if the second criterion was used.

m k
n

⌊
d−1
2

⌋
Ef1 Nb1 Ne1 Ef2 Nb2 Ne2

27 0.344 18 0 2034 0 0 2034 0
33 0.438 15 0 2050 0 0 2050 0
37 0.5 13 1 2170 1 1 2170 1
43 0.563 10 7 2018 3 7 2018 1
47 0.656 8 908 2814 383 572 3150 108

Table 5.2: Simulation Results for Several Codes H(m)

The table shows that the number of error patterns for which the extension
had to be used does not differ much between the codes of different rates and
is generally very low. In the last row, it can be seen that for the first criterion
the extension is used even less, but this is due to the fact that more wrong
solutions are erroneously accepted. The simulations show that even the simple
criteria are able to identify the correct solution in a majority of these cases and
for codes with low rates they, too, provide error-free correction.

5.6 Complexity of the Algorithm

In this section, we show that the asymptotic complexity of Algorithm 1 is
O(n7/3), which is the same as that of other common decoding algorithms for
AG codes. As the measure for complexity we count the average number of nec-
essary multiplications. In the second part, we give the average complexity of
the extension described in Section 5.5.

Complexity of the Basic Algorithm

Throughout this section, we use the notations introduced in Section 5.3, and
let τ be the maximum number of correctable errors. Because the check matrix
can be precalculated, the computation of the syndrome polynomial has com-
plexity O(nm⊥). The selection of i1 has linear complexity, and the calculation
of θ is the multiplication of a polynomial by a monomial, this operation has
complexity O(m⊥). Next, θ is divided by at most ρ(θ) other polynomials12.
This division requires up to ρ(θ)τ checks followed by O(ρ(θ)) subtractions of
another polynomial, where a single subtraction has complexity O(m⊥) due to
the multiplication of the divisor by a constant. Up to τ such divisions have to
be performed, hence the overall complexity of this step is O(ρ(θ)m⊥τ) = O(n3).

But closer investigation of the divisions shows that the overall complexity is
actually smaller than this: First consider the case that ρ(Ri) = ρS − ρ(φi) ∀ i.
In this case, at most 2(q + 1) subtractions are performed in any division, since

12Closer investigation of the divisions showed that 2(q + 1) divisor polynomials are always
sufficient. But since this part does not dominate the (asymptotic) complexity, we waive the
proof and use the simpler estimate.

66 CHAPTER 5. DIVISION DECODING OF HERMITIAN CODES

this number is equal to ρ(θ) − ρ(Ri−1) + 1. If ρ(Ri) < ρS − ρ(φi) for some i
this observation is no longer true (more subtractions might be possible), but
taking more than one iteration into account, this effect is reduced: as shown
in Appendix B, a remainder with larger order is obtained eventually, and its
calculation requires less subtractions. If ρ(Ri) ≪ ρS − ρ(φi) there may even
be some remainders which need not be calculated at all. Though we cannot
give a formal proof, simulations showed that the total number of subtractions
in all iterations was O(τq), and with q = n1/3 the overall average complexity
becomes O(n7/3). The calculation of the polynomials ∆i can be performed with
the same complexity if it is performed in line with the division.

As stated in [Ehr91], the complexity of the evaluation step is O(n2), hence
the overall complexity of decoding is dominated by the basic algorithm which
was O(n7/3). This complexity is smaller that of Shens subresultant algorithm
[She92] which was estimated to be O(n3).

Complexity of the Extension

Finally we want to compare the complexity of the presented algorithm with
the “fast” algorithms from [JLJH92] and [SJM+95] that both have asymptotic
complexity O(n7/3). But for a fair comparison, it is also necessary to estimate
the complexity of the extension as the other algorithms, too, decode up to half
the minimum distance, although in a different manner. Recall that in the ex-
tension two basis polynomials were selected so there exist q2 candidate pairs.
The two simple acceptance criteria that only count the number of zeros of these
candidates both have overall complexity q2O(n) = O(n5/3) if the basis polyno-
mials are evaluated at all points and the linear combinations are calculated in
the “evaluation domain”. From Table 5.2 it can be seen that this is sufficient
for low-rate codes. For high-rate codes error evaluation for each candidate is
necessary, and because the evaluation for a single pair (Λ, R) has complexity
O(n2) [Ehr91] the worst case complexity under this criterion is O(n8/3).

Though this worst case complexity is larger than that of the previous algo-
rithms, two thing should be kept in mind when considering the practical impact
of this result: first, this evaluation is only necessary for a small fraction of all
decoded error words (in the simulations presented in Table 5.2 it was at most
3 · 10−4), so one can expect a very small impact. Second, simulations showed
that the number of candidates with an appropriate number of zeros according
to one of the simple criteria is usually O(q) instead of O(q2), so the average
complexity of the extension using the evaluation criterion is O(n7/3).

Chapter 6
Extending Decoding Beyond Half
the Minimum Distance

The decoding algorithm presented in the previous section is a BMD decoder, i.e.,
it can correct errors of weight up to half the minimum distance. For RS codes,
there exist several BMD decoders and extensions for decoding beyond half the
minimum distance. Some of these algorithms are designed for interleaved codes,
where several codewords are transmitted in parallel and are corrupted by errors
in the same positions. Other algorithms work for single codewords.

Most of the papers published on collaborative decoding of interleaved Reed-
Solomon (IRS) codes, e.g. [BKY03], [KBB08], [SSB09], present extensions of
well-known decoding algorithms for RS codes. For the mentioned papers, these
are the Welch-Berlekamp, Sugiyama and Berlekamp-Massey algorithm respec-
tively. On the other hand, interleaved Hermitian codes have never been a topic of
interest to the community - the only work we are aware of that actually presents
a decoding method is [BMS05], in [Arm08] that algorithm is compared to the
decoding of IRS codes. However, that method extends the Welch-Berlekamp
algorithm which is an interpolation-based method and hence quite different
from Algorithm 1. In particular, no extension of an algorithm generalizing the
Sugiyama algorithm has ever been presented.

Besides the works for interleaved codes, two different principles exist for
the decoding of single RS codes beyond half the minimum distance. The first
method is mainly used in the algorithms due to Sudan [Sud97] and Guruswami
and Sudan [GS99], which are interpolation-based methods similar to the Welch-
Berlekamp algorithm that return a list of all codewords lying within a certain
distance from the received word. Another approach was described in [SSB06]
and further studied in subsequent papers [SSB07], [SSB10]. It works on virtually
extending the code into an interleaved RS code at the receiver side, this IRS
code can then be decoded like any other IRS code. This kind of decoder declares
a decoding failure if no unique solution does exist.

The original algorithm by Sudan [Sud97] has been extended to Hermitian
codes in [HRN99] and to general AG codes in [SW99], the Guruswami-Sudan
algorithm [GS99] on the other hand had been described for AG codes already
in the original version. Opposed to this, no virtual extension method for AG

67

68 CHAPTER 6. INCREASING THE DECODING RADIUS

codes has been described yet. Due to the lack of works on interleaved Hermitian
codes, this is not surprising. In this chapter, we give a decoding method based
on the results of the previous chapter. For this purpose, we describe how to
modify Algorithm 1 to obtain a basis for all solutions to the key equation and
give the size of the basis. In Section 6.2, we discuss interleaved Hermitian codes
and give an upper bound on the error weight such that an error can be uniquely
located given the parameters of the interleaved code. Yet even if the bound
is fulfilled, there is always a certain probability that unique decoding is not
possible and the probability for this case is also given. We introduce virtual
extension for Hermitian codes in Section 6.3 and give an upper bound on the
code rate beyond which the use of virtual extension is not able to improve the
maximum decoding radius.

6.1 A Basis for all Solutions

As mentioned, the algorithm can be used to correct beyond half the minimum
distance, but larger modifications are necessary because there is always more
than one solution for the key equation. The algorithm can be used to determine
a basis for all those solutions, but the selection of a single solution requires
more sophisticated methods. The reason is discussed at the end of this section.
But first we describe the necessary modifications to the algorithm under the
assumption that t =

⌊
d−1
2

⌋
+ t0 errors shall be corrected (with t0 > 0) and then

derive the number nb of basis elements that is obtained.
In the original description of the algorithm, a stopping criterion was used to

determine (along with the minimal error locator polynomial) an upper bound on
the error weight of the received word. Unfortunately, no such stopping criterion
exists if t >

⌊
d−1
2

⌋
. To be still able to correct, first fix a number t of errors

that shall be corrected. Then use Algorithm 1 to calculate all pairs (∆i, Ri)
with ρ(∆i) ≤ ρ(φt). To do this, it is only necessary to replace the original
stopping criterion (ρ(Ri) − ρ(∆i) ≤ ℓ) by ρ(∆i) ≤ ρ(φt). Lemma 12 also holds
for ρ(Λ) >

⌊
d−1
2

⌋
, so those pairs with ρ(Ri) > ρ(φt) + ℓ are discarded. Before

calculating the size of this basis, we give two important theorems.

Theorem 14. The pairs (∆i, Ri) calculated by Algorithm 1 (without the stop-
ping criterion) with ρ(∆i) ≤ ρ(φt) and ρ(Ri) ≤ ρ(φt) + ℓ form a basis for all
solutions (of limited degree) to the key equation.

Proof. The theorem is best proved by contradiction. Define the set

Φb = {LM(∆i)|ρ(Ri) ≤ ρ(φt) + ℓ},

and assume there is a solution (f, g) to the key equation with ρ(f) ≤ ρ(φt) that
can be written as

f(x, y) =
∑

i:φi∈Φb

fi∆i(x, y) + f ′(x, y)

with f ′(x, y) ̸= 0 and no monomial of f ′(x, y) is contained in Φb, in particular
LM(f ′) /∈ Φb. By the definition of Φb and according to Lemma 18 (in Appendix
B) there cannot be a polynomial with the given ρ(f ′) and ρ(f ′ · S) ≤ ρ(φt) + ℓ.
With the linearity of polynomial addition this is a contradiction to the assump-
tion that (f, g) is a solution to the key equation.

6.1. A BASIS FOR ALL SOLUTIONS 69

Lemma 15. Let the basis be selected as in Theorem 14. If t is large enough the
error locator Λ(x, y) can be expressed in terms of this basis as

Λ(x, y) =
∑

i:φi∈Φb

βi∆i(x, y), βi ∈ GF (q2). (6.1)

Proof. According to Lemma 12, a correct error locator is always a solution of
the key equation, independent of ρ(Λ). Because the selected basis generates
all solutions to the key equation, the minimal error locator must be producible
from the basis unless t was chosen too small: if the minimal error locator Λ(x, y)
has ρ(Λ) = µ but ρ(φt) < µ, clearly Λ(x, y) cannot be obtained from the given
basis.

Note that the coefficients βi are allowed to be zero, so ρ(Λ) < ρ(φt) is
possible and the minimal error locator can always be obtained from the basis.
On the other hand, any implementation of the algorithm requires some method
to determine a sufficiently large value t. One could always use t = d−1 to be on
the safe side but then the probability of obtaining many solutions (potentially
even many correct solutions) is very high and a selection step is necessary.

To simplify matters, from now on we assume that the error weight t is known.
To calculate the number of basis elements first assume that ρ(Ri) = ρS−ρ(φi)∀i.
Then the algorithm computes |Φρ(φt)| = t+1 pairs of polynomials, but some of
them are not chosen for the basis: specifically, these are the pairs where

ρ(Ri) = ρS − ρ(∆i) > ρ(φt) + ℓ

or ρ(∆i) < m⊥ + 1 − ρ(φt). The number of such pairs is obtained in the same
straightforward way, so the number of basis pairs is

nb = |Φρ(φt)| − |Φm⊥−ρ(φt)| = t+ 1 − |Φm⊥−ρ(φt)|. (6.2)

To generalize this result to arbitrary ρ(Ri), assume that there exists a pair (̄ı, i)
of indices where w.l.o.g. ı̄ < i and ρ(Rı̄) = ρs−ρ(φi). Close investigation of the
polynomials obtained during the algorithm shows that then ρ(Ri) = ρs − ρ(φı̄)
(this is proved in Appendix B). To estimate the number of basis pairs under
the changed circumstances consider the following three cases:

1. Both ρ(Ri) ≤ ρ(φt)+ℓ and ρ(Rı̄) ≤ ρ(φt)+ℓ, then both pairs are selected
for the basis and nb does not change. The situation is similar if both
ρ(Ri) > ρ(φt) + ℓ and ρ(Rı̄) > ρ(φt) + ℓ, as then neither of the pairs is
selected.

2. If i < t and ρ(Ri) > ρ(φt)+ℓ but ρ(Rı̄) ≤ ρ(φt)+ℓ one can again calculate
nb by (6.2), but now the pair (∆ı̄, Rı̄) is picked instead of (∆i, Ri).

3. If i > t then ρ(Rı̄) ≤ ρ(φt) + ℓ for sure, so the ı̄th pair is included in the
basis. However, the pair (∆i, Ri) is not even calculated because of ρ(∆i).
In this situation nb is larger than indicated by (6.2), which turns out to
be only a lower bound on the number of basis elements.

Although it might seem destructive that one can never be sure about the size
of the basis, this last case does never contradict the results presented in this
chapter. The reason is that beyond half the minimum distance unique decoding

70 CHAPTER 6. INCREASING THE DECODING RADIUS

can never be guaranteed, so this latter case only increases the probability that
no unique decoding result can be obtained and is one of the reasons why no
exact bounds on the failure probability can be given in the next section.

Unfortunately, the dependence of |Φm| on m is highly nonlinear for general
m, so (6.2) can only be simplified in some special cases. The one special case
we want to present here is m⊥ − ρ(φt) > 2g− 2 and t ≥ g - this means that the
error weight is neither too small nor too close to the minimum distance of the
code. Under these conditions, the last term of (6.2) can be rewritten to

|Φm⊥−ρ(φt)| = m⊥ − ρ(φt) − g + 1 = m⊥ − (t+ g) − g + 1,

and with this result

nb = t+ 1 − (m⊥ − t− 2g + 1) = 2t− (m⊥ − 2g + 2) + 2 = 2t− d+ 2

because m⊥ = d + 2g − 2 for the codes we used. Recall the notation
t =

⌊
d−1
2

⌋
+ t0 introduced at the beginning of the section, then

nb = 2t0 + 1. (6.3)

This result coincides with known results for RS codes, see e.g. [SSB09], [KBB08].
Though theoretically it would be possible to use the same criteria as in

Section 5.5 for all candidates obtained from the new basis, the complexity of
this selection rapidly increases with an increasing error weight: the complexity
increases by a factor of q2 = n2/3 for every additional basis element, so the
complexity of the selection step is O(n2+4t0/3) for t =

⌊
d−1
2

⌋
+ t0 and the specific

case used in the derivation of (6.3). It might increase slower for other cases, but
still the complexity is dominated by the selection. Therefore two approaches are
presented in the next two sections that allow to reduce the number of possible
solutions - if possible, a unique solution shall be obtained such that no selection
is necessary. An entirely different option is the use of reliability information,
but this idea is not considered in this thesis.

6.2 Interleaved Hermitian Codes

The use of interleaved codes increases the decoding radius compared to non-
interleaved codes with a certain probability. The main reason why this is possi-
ble can be best explained with the help of Figure 6.1 that depicts an interleaved
Hermitian (IH) code with η codewords of length n. It is possible to write a
received word for each of the interleaved words, i.e.,

r(i) = c(i) + e(i) i = 1, . . . , η,

and there is a separate key equation for each of the interleaved words so each
of them can be decoded individually and this is still the best option if the
errors occur randomly. But if the errors appear in a bursty pattern as depicted
in Figure 6.1, where a burst corrupts one column of the array, collaboratively
decoding the interleaved codewords reveals the strength of this construction:
each of the codewords is corrupted in the same error positions (or a subset of
all error positions). The error locator is the same under these circumstances
and if the errors e(i) are linearly independent this allows to reduce the number

6.2. INTERLEAVED HERMITIAN CODES 71

burst error

n

η

Figure 6.1: Interleaved Hermitian code and burst errors

of possible solutions. As long as the error weight is not too large, it is often
possible to find a unique solution to all η key equations with high probability.
The maximum decoding radius τ for which a unique solution can exist is derived
in this section.

Generally, two types of interleaved codes are distinguished: homogeneous
and heterogeneous IH codes. A code is called homogeneous if all η interleaved
codewords belong to the same code. Otherwise, a code is called heterogeneous.
Since homogeneous IH codes are a special case of heterogeneous codes, it suffices
to consider the latter ones.

Basic Idea of Collaborative Decoding

The decoding scheme described here is maybe not optimal in terms of complex-
ity, but it is simple to understand and allows a simple derivation of the desired
bounds. The syndrome S(1) of the first error word is used to calculate a basis
for all solutions of the key equation with the help of the algorithm from the
previous section. All other syndromes are then used to reduce the number of
possible solutions. The idea behind the reduction is that the same error loca-
tor Λ has to fulfill the key equation for all S(j), j = 2, . . . , η, with respective
polynomials R(j). As indicated by the index j, while Λ(x, y) is the same for all
errors, the remainders are (in general) different. If Λ(x, y) is expressed in term
of a basis with coefficients βi, then each polynomial R(j) can be expressed in
terms of the same coefficients βi, and the coefficients of the monomials that have
ρ(φi) > ρ(Λ) + ℓ(j) (clearly the value ℓ depends on the design parameter m of a
code, so it may be different for each codeword of an heterogeneous interleaved
code) have to be zero.

The Number of Equations

We can use the coefficients of those φa,b whose order is between ρ(Λ) + ℓ(j) + 1
and ρS and where a ≤ am and b ≤ bm. Counting shows that this number is

n(j)
c = |ΦρS−ρ(R(j))−1| = |Φm⊥(j)−ρ(φτ)|.

Here τ was used instead of t because the derivation is done for the maximum
decoding radius τ instead of the actual error weight t. We only consider the

72 CHAPTER 6. INCREASING THE DECODING RADIUS

case that the maximum decoding radius is τ ≥ g, then ρ(φτ) = τ + g. Using
the notation τ =

⌊
d(j)−1

2

⌋
+ τ

(j)
0 some manipulations lead to

m⊥(j) − ρ(φτ) = . . . =
d− 1

2
+ τ0 + g − 2τ0 − 1 = ρ(φτ) − 2τ (j)

0 − 1 = m̂(j).

If m̂(j) > 2g−2, one can use the known formula |Φm| = m−g+1. The number
of equations obtained from one of the interleaved words depends on the number
of errors and the designed minimum distance d∗(j):

n(j)
c = m⊥(j) − (τ + g) − g + 1 = d∗(j) − 1 − τ ∀ j = 2, . . . , η, (6.4)

and consequently the total number of equations is

nc =
η∑

j=2

n(j)
c . (6.5)

One coefficient βi can always be fixed by normalization (in compliance with the
basic algorithm, Λ(x, y) shall always be monic), so a unique solution can exist
if nc ≥ nb − 1. With the given formulas (6.5) and (6.2) for t = τ , the maximum
decoding radius is obtained:

τ ≤ η

η + 1

1
η

η∑
j=1

d∗(j) − 1

 . (6.6)

This formula shows that the number of correctable errors tends towards the
average minimum distance (minus one) as the number of interleaved codewords
increases. However, if τ . d∗(j), the assumption m̂(j) > 2g− 2 is no longer true
and the maximum decoding radius is larger than the one given by (6.6): for
m̂(j) ≤ 2g − 2 write

|Φm̂(j) | = m̂(j) − g + 1 + σ(j)

with σ(j) > 0. This leads to an increase in the maximum number of correctable
errors by σ(j)

η+1 . The increased decoding radius is

τ ≤ η

η + 1

1
η

η∑
j=1

d∗(j) − 1

 +
η∑

j=1

σ(j)(τ)
η + 1

. (6.7)

The notation σ(j)(τ) is used to emphasize the that σ(j) depends on τ . Yet it
does so in a highly nonlinear way that cannot be expressed in a closed formula,
so unfortunately it is not possible to solve (6.7) for τ . The best way to find
the actual decoding radius is to use (6.6) to obtain an estimate, then increase
τ step by step and always check if (6.7) is still fulfilled. Further, the result is
only true as long as τ < d∗(j) for all interleaved codewords, because otherwise
not all of the interleaved codewords can be reconstructed. Using this approach,
the bound has been verified with a series of simulations.

6.2. INTERLEAVED HERMITIAN CODES 73

Failure Probability

As mentioned before, even a sufficient number of equations does not guarantee
that a unique decoding result can be obtained. We still assume that the error
weight is known, so the correct error locator must be obtainable from the ba-
sis. Consequently the decoder will never return a wrong decoding result and
it suffices to give an estimate of the probability of decoding failure, i.e., the
probability that taking S(2), . . . , S(η) into account does not suffice to obtain a
unique result. The following statement holds for a channel model where each
column is corrupted by a burst error with equal probability, so all burst error
with a certain number t of corrupted positions are equally likely, but it is not
necessary that within one burst all symbols are received erroneously.

Theorem 16 (Failure Probability). Take an interleaved Hermitian code over
GF (q2) = GF (Q) consisting of η interleaved codes corrupted by errors in t ≥ g
positions. Further let the values nb and nc be calculated according to (6.2) and
(6.4), (6.5) respectively. Then the failure probability can be estimated by

Pf . Q−(nc−nb+1)

Q− 1
. (6.8)

Note that this bound is much stronger than the one given in [BMS05]: trans-
lating the maximum decoding radius τ in (6.7) to their notation, their bound
becomes Pf < c̄ with c̄ > 1, which is a trivial statement. Yet (6.8) is very
similar to the bound given in [SSB09, Theorem 7], so it is not surprising that
the proof uses similar arguments. Note that the decoding problem is described
a little differently for the proof: here, the special treatment of S(1) is no longer
present, instead a large system of equations is solved that includes the syn-
drome matrices of all interleaved words. However, the aim is the same: finding
a unique solution that solves all η key equations, and the question of uniqueness
is independent on the actual computation.

Proof. The proof of [SSB09] is based on the decomposition of syndrome matrices
S(j) (see Section 5.1) into matrix products

S(j) = H(j)F(j)DV,

where D is a diagonal matrix with the error positions, F(j) a diagonal matrix
with the error values and V a Vandermonde matrix. It is essential that these
three matrices are nonsingular.

For Hermitian codes, a similar decomposition is possible. The matrix F(j)

has the same form as for RS codes, but the matrices D and V are different.
While D becomes an identity matrix (hence it can be dropped from the decom-
position), V now has evaluations of the t+1 bivariate monomials φ0, . . . , φt,∈ Φ
as entries:

V =


1 x1 y1 x

2
1 x1y1 y

2
1 x

3
1 · · ·

1 x2 y2 x
2
2 x2y2 y

2
2 x

3
2 · · ·

...
...

...
...

1 xt yt x
2
t xtyt y

2
t x

3
t · · ·

 ,

for simplicity the t error positions have been given indices 1, . . . , t. This matrix
is not a Vandermonde matrix, and actually does not have full rank with a certain

74 CHAPTER 6. INCREASING THE DECODING RADIUS

probability pr. Checking all possible combinations of error positions for small t
and random combinations for larger t (q = 4 was fixed) showed that about 99.6%
of these matrices V have full rank, i.e., pr = 0.004, so for the vast majority of
cases the same arguments as in [SSB09] can be used. The discussion of the other
cases is done afterwards.

If V has full rank the proof works completely analogously to [SSB09, The-
orem 7], the only difference is that H(j) now is a check matrix of a shortened
Hermitian code of length t and dimension t − ζ(j) instead of an RS code with
the respective parameters, but this does not change the result of the proof as
their main arguments hold for any q-ary linear code. The last relation that is
independent of the kind of linear code is

Pf ≤
(
Qη+1−1

Qη − 1

)t

· Q
−

∑η

j=1
ζ(j)

Q− 1
.

For “sufficiently large” Q the first term can be approximated by
(

Qη+1−1

Qη−1

)t

≈
Qt. Note that this approximation already weakens the upper bound, but it is
not the only reason why the theorem only states an approximate upper bound.
For j = 2, . . . , η, the number of rows of H(j) is

n(j)
c = t− (t− ζ(j)) = ζ(j) = d(j) − 1 − t.

For j = 1, (6.2) can be simplified to nb − 1 = 2t+ 1 − d(1) = t− ζ(1) under the
given constraint. The statement follows by simple substitution.

Now turn to those cases where V did not have full rank. Of course an upper
bound on the failure probability is obtained if one assumes that decoding fails
in all of these cases, i.e.,

Pf . pr +
Q−(nc−nb+1)

Q− 1
.

This bound is true under the following setup: t is the weight of the error, and the
basis includes all pairs with ρ(∆i) ≤ φt and ρ(Ri) − ρ(φt) ≤ ℓ. But sometimes
there exist several solutions to the key equation with ρ(Λ) ≤ ρ(φt) (whether
they are (correct) error locators or not does not matter), but the minimal error
locator has ρ(Λ) < ρ(φt). Of course, one can insist on using the obtained basis,
and unter this setting the latter bound matched simulation results very well.
However it is often possible to do better if in such a case the estimated error
weight t is reduced and the failure probability is bounded again with the same
arguments for this reduced value t. If necessary this reduction is performed
several times and a failure is only declared if no nonzero solution was obtained
after a reduction. These cases are already rare and in general Pf (t) ≫ Pf (t−1),
because nb is proportional to t, whereas nc is reciprocal. This means that the
failure probability is still close to the one calculated for the original value of t
and the statement of the lemma follows.

As mentioned in the calculation of nb, the basis may be larger than the value
nb used here. On the other hand, simulations showed that this situation occurred
in a few single occasions among millions of trials, and even if an increased basis
was obtained this did not necessarily cause a decoding failure, so Pf was hardly
increased.

6.2. INTERLEAVED HERMITIAN CODES 75

k1 k2 k2 t Pf,b Pf,s t Pf,b Pf,s

22 28 32 23 4.1 · 10−3 3.9 · 10−3 22 6.3 · 10−8 10−7

28 32 38 19 2.6 · 10−4 2.4 · 10−4 18 6.3 · 10−8 5 · 10−7

32 38 42 16 2.6 · 10−4 2.4 · 10−4 15 6.3 · 10−8 1.9 · 10−5

Table 6.1: Comparison of Theoretical and Actual Error Probability

The bound and its tightness are illustrated by some examples in Table 6.1.
For the simulations, the correction of 107 error patterns was tried. For this
simulations, the value t0 was increased until a solution was found. Although
this setup theoretically allows a wrong solution to be found, this never happened
in any simulation so no error probabilities can be given. Pf,b is the estimation
for the failure probability given by (6.8), and Pf,s denotes the probability that
for the smallest t0, for which a solution existed, this solution was not unique in
the simulations. Note that the first two values in the last column correspond
to 1 and 5 uncorrectable error patterns, so these values are not reliable enough
to claim that the bound is wrong. The last value in the table is one where
the bound is definitely not satisfied. But close investigation of the failures
showed the same pattern in all 192 failure cases: though the decoding result
was not unique, all solutions that were obtained corresponded to correct error
locators. Clearly, selecting any of them would have led to a correct decoding
result. Further, for 178 patterns another effect was seen: as the number of errors
was quite close to the minimum distance of the first interleaved codeword, the
correct error locator was already obtained from decoding the first syndrome. By
including this check into the algorithm, i.e., to start the simulation with t0 = 0,
the failure rate could be immediately reduced to 1.4 · 10−6.

Complexity of This Approach

This conceptually simple approach has cubic asymptotic complexity. Under the
assumption that the number of errors is known, this is very simple to see: the
complexity of finding the basis for all solutions is O(n7/3), because it is equal to
the complexity of the basic algorithm. Setting up the linear system of equations
requires η−1 polynomial multiplications, each of these can be performed with at
most quadratic complexity. However, the resulting linear system of equations
has no specific structure, so finding the solution has (in general) complexity
O(n3).

The complexity does not increase even if the number of errors is unknown.
However, that second case requires the use of structured methods for the solu-
tion of the linear system of equations. One example of such a method is the
fundamental iterative algorithm (FIA) introduced in [FT91]: if two systems of
equations shall be solved, where the first is a subsystem of the second one, then
the solution of the first system can be reused to find the solution to the second
system. In this way, both systems of equations can be solved with the same
complexity as the larger system of equations.

In practice, the solution may be better if one wants to correct only a bit
beyond half the (largest) minimum distance: if τ0 ≪ d, this last step may easily
have smaller complexity than finding the basis. However, there exist algorithms

76 CHAPTER 6. INCREASING THE DECODING RADIUS

for decoding IRS codes beyond half the minimum distance that have the same
asymptotic complexity as those algorithms decoding regular codes up to half the
minimum distance, e.g. [FT89] and [SSB09]. Because of all the correspondences
between the decoding of Hermitian codes and RS codes, one may hope to find
algorithms with smaller asymptotic complexity.

6.3 Virtual Extension to an Interleaved Code

The principle of virtual extension was first described in [SSB06] for RS codes,
and the same principle can also be applied to Hermitian codes: at the receiver,
new “received” words are formed by elementwise squaring the received word or
raising it to higher powers, hence virtually extending the code into an interleaved
code. Unfortunately, this principle provides a benefit only for codes with low
rates, as is explained in the following paragraphs. The lower the code rate,
the higher the powers that can be used. Here we restrict ourselves to giving
the upper limit on the code rate for which virtual extension brings a benefit,
i.e., for codes with higher rates the decoding radius does not increase if virtual
extension is applied.

Recall that rj = cj + ej , j = 1, . . . , n, are the elements of the received word.
By elementwise squaring, the elements of the “virtual” received word become

r2j = (cj + ej)2 = c2j + 2cjej + e2j = f2(Pj) + 2cjej + e2j . (6.9)

Define r<2> = c<2> + e<2> with the new codeword c<2> and the new error
e<2> where

e<2>
j = 2cjej + e2j .

Because the elements of the new error word depend only on the error and code-
word at the same position, e and e<2> are located by the same error locator
polynomial. The elements of the new codeword are obtained by evaluating
f2(x, y) instead of f(x, y) and (in the same way as for univariate polynomials)
this means that the degree of the polynomial doubles. If the original codeword
belongs to the code H(m), then the new codeword c<2> belongs to the code
H(2m), so a heterogeneous IH code is generated. The maximum decoding ra-
dius for this kind of code was given in (6.6), with d(1) = n−m and d(2) = n−2m
the bound becomes

τ ≤ 2
3
(n− 1) −m.

Of course the effort of virtual extension is in vain if the decoding radius is not
increased, i.e., if τ ≤

⌊
d−1
2

⌋
. This yields the upper bound

m <
n− 1

3
,

so if m ≥ n−1
3 there is no improvement in the number of correctable errors.

While the bound on m looks familiar if one knows the corresponding results for
RS codes [SSB06], one should keep in mind that m is not the dimension of the
code. To derive an upper bound on the code rate k

n , it would be great if one
could use the fact k = m− g + 1 if m > 2g − 2. To see that it is allowed to use

6.3. VIRTUAL EXTENSION TO AN INTERLEAVED CODE 77

Number of “interleaved” words η 2 3 4 5 6
Bound on m n−1

3
n−1

6
n−1
10

n−1
15

n−1
21

Table 6.2: Upper Bound on the Design Parameter for Virtual Extension

that formula consider the upper bound m =
⌊

n−2
3

⌋
. Comparing this value to

the “critical value” 2g − 2 shows that

m =
⌊
n− 2

3

⌋
≈ q3 − 2

3
> 2g − 2 = q2 − q − 2 ⇔ q > 2,

so the formula may be used for all applicable values of q: for q = 2 one actually
finds that for both m = 1 and m = 2 (these are the only values of m which
are small enough) the maximum correction radius obtained by virtual extension
fulfills τ �

⌊
d−1
2

⌋
+ 1, that means that the decoding radius is theoretically

increased, but because the error weight is always an integer it is not possible to
correct more errors than before. For all other q, this leads to the rate bound

k

n
≤ 1

3
− 1

3n
(3g + 2). (6.10)

For q → ∞, this bound is R ≤ 1
3 and hence coincides with the rate restriction

for RS codes. For small q, however, the restriction is more severe.
At the beginning of the section, we stated that above this upper bound

virtual extension is useless. To show this, we repeat the previous steps, this
time comparing the virtual extension that uses a squared word only to one
where the elements of the received word are also raised to the third power, i.e.,

r<3> = c<3> + e<3> with r3j = r<3>
j = c3j + 3c2jej + 3cje2j + e3j

and c<3>
j = c3j , e

<3>
j = 3c2jej + 3cje2j + e3j

and so an interleaved code with η = 3 is obtained13. Again, the computation of
this additional “received” word is only useful if the decoding radius is increased,
i.e., if

3
4
(n− 1) − 3

2
m >

2
3
(n− 1) −m,

and this is fulfilled if
m <

1
6
(n− 1),

i.e., the restriction is even stronger. For the general case of η interleaved code-
words belonging to the codes H(m),H(2m), . . . , H(ηm), the upper bound on m
is

m <
2

η(η + 1)
(n− 1).

Table 6.2 lists the bounds for some values η. Because Hermitian codes have
g > 0, the actual rate restriction is even more severe than the bound on m. Yet
the bound on m coincides with the results for RS codes obtained in [SSB06].
Further it is usually necessary to verify if the increase in the decoding radius
is large enough that the code can actually correct at least one error more (a
counterexample is the case q = 2 discussed before).

13Using only the original received word r and r<3> does not make sense as this IH code can
correct less errors than the one considered before because of the larger value m<3> = 3m.

78 CHAPTER 6. INCREASING THE DECODING RADIUS

Chapter 7
Conclusions

In this thesis, we presented a new decoding algorithm for Hermitian codes. It
uses repeated divisions of bivariate polynomials, similar to the extended Eu-
clidean algorithm used for the decoding of Reed-Solomon codes. In this descrip-
tion it is different to previously published decoding algorithms for Hermitian
codes, but achieves the same decoding radius with the same complexity as the
fastest known algorithms. Our algorithm calculates and returns only a single
error locator polynomial, whereas many other locator decoding algorithms cal-
culate a basis for the locator ideal. It hence presents an alternative to previously
published algorithms.

Another new development presented in this thesis is locator decoding be-
yond half the minimum distance. The conceptually simplest setting in which
decoding beyond half the minimum distance is possible uses interleaved codes.
These codes have been neglected by most of the community so far, though ex-
tending the existing decoding algorithms to this setting is rather simple as had
been shown in Sections 6.1 and 6.2. Compared to the only existing work on
interleaved codes [BMS05], the method presented here achieves a larger maxi-
mum decoding radius and for a certain error weight also a smaller probability
of decoding failure.

In contrast, several works present interpolation-based methods for decoding
non-interleaved Hermitian codes beyond half the minimum distance, e.g. [GS99],
[HRN99], [SW99]. All these algorithms are list decoders, i.e., they return a list
of all codewords lying within a certain distance from the received word, but
a syndrome-based method like the one from [SSB06], that finds the unique
closest codeword with high probability, had never been considered. For locator
decoding, the idea is to reduce the problem to one of decoding an interleaved
code by creating “virtual” interleaved words at the receiver. We show at the
end of the thesis that this extension is possible in the same way it was done for
RS codes and give the maximum code rate for which this decoding provides a
benefit.

Another main difference to other papers is that this thesis was written for
people with moderate previous knowledge about algebra or algebraic geometry:
an introduction to algebraic geometry is given, restricted to those topics that are
essential in the definition of an AG code. The topics are often not introduced

79

80 CHAPTER 7. CONCLUSIONS

in their most general form, but restricted to special cases (e.g. defining only the
affine and projective line and plane instead of general n-dimensional spaces),
or used constructive instead of formal definitions (e.g. in the definition of local
parameters). This also helps to keep things as simple as possible. Further,
almost all definitions and theorems are illustrated with examples. Although a
general definition of AG codes is given, the actual decoding algorithm is derived
only for the special subclass of Hermitian codes.

The entire algorithm is stated in terms of bivariate polynomials and therefore
avoids the necessity to study more advanced algebraic objects such as differential
forms. This description of the algorithm allows to understand it from a separate
definition of Hermitian codes that uses algebra only to the extent necessary
to describe RS codes, and to apply the algorithm and its extension without
extensive studies of algebraic geometry. In order to build a bridge to other
works on AG codes, we also give a short introduction to algebraic geometry and
define both RS and Hermitian codes as a special case of algebraic geometric
codes.

Hopefully, this approach (especially the alternative definition of Hermitian
codes, also used in the papers in which parts of this work had been presented
before) will help to bring the interest of the coding community (back) to AG
codes: although the codes and a lot of decoding algorithms had been presented
already fifteen to twenty or even more years ago, there are still no applications
that utilize these codes. One reason might be that most works on AG codes
had been written by mathematicians, and either they did not contain specific
decoding algorithms or the description used many results from algebraic geom-
etry making the result hard to understand for engineers. But as shown in this
thesis, these codes are not much more difficult to understand and to use than
Reed-Solomon codes. This small drawback is definitely compensated by the
fact that Hermitian codes do not suffer from the same severe length restriction
induced by the ground field: over the field GF (q2), the maximum length of an
RS code is q2 whereas it is q3 for a Hermitian code; a significant increase in
the code length that promises improved performance. We think that there is no
reason why Hermitian codes should not be applied and that the time has come
for engineers to consider Hermitian codes when designing new applications.

Outlook

However, this thesis is far from presenting the end to research on this topic -
and history shows that research on a certain code class was often rather pushed
than slowed down by emerging applications using those codes, even though the
focus might change. In the present case, several improvements to the algorithms
are still possible. For the basic algorithm, it seems probable that improvements
in the asymptotic complexity will come from more efficient methods for basic
operations like polynomial multiplications: many researchers have already tried
to find BMD decoders for Hermitian codes, but still a complexity of O(n7/3) is
the best ever found. Another possibility would be the use of an algorithm similar
to the so-called fast Euclidean algorithm, which can significantly improve the
decoding complexity for RS codes, but it is not yet known if such an algorithm
exists for Hermitian codes as well. Smaller improvements may arise from an
intensive study of the remainders used in each iteration, e.g. it may be possible
not to calculate certain remainders because they are not necessary. While it is

81

not sure if these reductions can decrease the asymptotic complexity, they should
not be neglected in applications.

In contrast, research has only begun on decoding algorithms for interleaved
Hermitian codes: the main purpose of Chapter 6 was to derive the maximum
decoding radius for interleaved codes and to show that an algorithm which is
capable of decoding up to this radius (with high probability) does exist. While
the complexity of this algorithm is polynomial in the code length, it is larger
than the complexity of the algorithm that achieves decoding up to half the
minimum distance. For RS codes, there exist algorithms that achieve the larger
decoding radius with the same complexity (e.g. [SSB09], [SSB10], or [FT89] for
the homogeneous case only) so one may hope to find a decoding algorithm for
interleaved codes that has the same complexity as the basic algorithm and still
achieves the same increased radius.

Beyond these improvements, a generalization of the decoding algorithm to
other kinds of AG codes would be interesting. Another approach which we did
not consider yet for Hermitian codes is to include reliability information about
the received word in the decoding process. An interpolation based method to
do so had been presented in [LO10], yet again the comparison to Reed-Solomon
codes stirs expectations that an efficient use of reliability information in a locator
decoding scheme should also be possible.

82 CHAPTER 7. CONCLUSIONS

Appendix A
Further Valuations on Hermitian
Curves

In this section, we first illustrate the meaning of tangent (unfortunately, this
cannot be done for finite fields) and then derive the valuation of a function

f(x, y, z) =
(x+ αiz)a(y + βiz)b

za+b

in the point (αi, βi, 1) on the Hermitian curve over GF (42).

The Tangent to a Curve

Although the meaning of tangent cannot be visualized over the finite field, for
two special points - namely (0, 0) and (0,−1) - it is possible to get a visualization
by plotting the defining polynomial on the affine plane over the real numbers,
as is done in Figure A.1.

One can see that the x-axis (given by y = 0) is tangent to the curve in (0, 0)
and a parallel line to it (y = −1) is tangent to the curve in (0,−1), whereas the
y-axis (x = 0) intersects the curve in both these points. This means that the
function x can be used as a local parameter in both points. Unfortunately, the
exact valuation (multiplicity) of y = 0 or y = −1 respectively cannot be derived
from the figure, even if only a smaller part of the curve were drawn. For this, a
formal calculation of the valuation is necessary.

More Valuations

As mentioned, we give the valuation of the function

f(x, y, z) =
(x+ αiz)a(y + βiz)b

za+b

in Q = (αi, βi, 1). First, take any point Q with αi ̸= 0, and consequently also
βi ̸= 0. In these points

τQ = α4
ix+ y + β4

i z.

83

84 APPENDIX A. FURTHER VALUATIONS ON HERMITIAN CURVES

Figure A.1: Hermitian curve x5 − y4 − y = 0 over R

Both the functions x+αiz
z and y+βiz

z are possible local parameters, because nei-
ther x+ αiz not y + βiz is a multiple of τQ so with (3.6)

vQ

(
(x+ αiz)a(y + βiz)b

za+b

)
= a+ b.

Next, consider the point Q = P0 = (0, 0, 1). In this point

f(x, y, z) =
xayb

za+b
,

and the tangent is τQ = y, so a possible local parameter is tQ = x
z (compare

this with the result over the real numbers given before). It hence remains to
determine the valuation of y

z . This function can be rewritten as follows:

y

z
=

x5

z(z4 + zy3)
=
x5

z5
· z3

z3 + y3
.

The evaluation
z3

z3 + y3

∣∣∣∣
P0

= 1

immediately gives the valuation vQ

(
y
z

)
= 5, and the wanted result is

vP0

(
xayb

za+b

)
= a+ 5b.

Finally, consider a point with αi = 0 but βi ̸= 0. The tangent in these points
is τQ = y + β4

i z = y + βiz (the latter equality is only valid in the points where
αi = 0), so again x

z is a possible local parameter. As an intermediate step, first
calculate the valuation of

f̃(x, y, z) =
y + βiz

z
=
y

z
+ βi.

85

This valuation is best calculated with the help of Lemma 5: f̃(x, y) can only
have a pole if z = 0. On a Hermitian curve the only such point is P = (0, 1, 0),
and the given function indeed does have a pole in P , so it is possible to use (3.8)
and the result of Example 9 to find

vP (f̃) = min{vP

(y
z

)
, vP (βi)} = min{−5, 0} = −5,

where the first equality holds because the valuations of y
z and βi are distinct.

Note that it was not possible to directly use (3.8) in Q = (0, βi, 1), because
both vQ

(
y
z

)
= 0 and vQ(βi) = 0, so (3.8) only gives vQ(f̃) ≥ 0. This is an even

weaker statement than vQ(f̃) > 0 which follows immediately from the fact that
f̃(Q) = 0.

In all other points, f̃(x, y) = 0 ⇔ y = βi. Taking a look at Figure 3.2 one
sees that Q is the only point on X at which f̃(x, y) can be zero. Now Lemma 5
implies that

vQ

(
y + βiz

z

)
= 5.

With this result, it follows that

vQ (f(x, y, z)) = vQ

(
xa(y + βiz)b

za+b

)
= a+ 5b,

so the valuation in a point depends only on the respective value αi but not on
βi.

86 APPENDIX A. FURTHER VALUATIONS ON HERMITIAN CURVES

Appendix B
Degrees of the Remainder
Polynomials

In this appendix, we give the proofs of two important lemmas that are used
in the proof of correctness of the basic algorithm and in the calculation of the
number of basis elements nb.

Lemma 17. Consider two iterations ı̄ ̸= i of the division decoding algorithm of
Chapter 5. If ρ(Rı̄) = ρS − ρ(φi), then the reverse relation

ρ(Ri) = ρS − ρ(φı̄),

always holds.

Proof. To derive the result, use the matrix form of the key equation. The upper
left corner of the syndrome matrix S is

S =



s0,0 s1,0 s0,1 s2,0 s1,1 s0,2 . . .
s1,0 s2,0 s1,1 s3,0 s2,1 s1,2 . . .
s0,1 s1,1 s0,2 s2,1 s1,2 s0,3 . . .
s2,0 s3,0 s2,1 s4,0 s3,1 s2,2 . . .
s1,1 s2,1 s1,2 s3,1 s2,2 s1,3 . . .
s0,2 s1,2 s0,3 s2,2 s1,3 s0,4 . . .
...

...
...

. . .


.

Denote by Sı̄,i the submatrix of S consisting of the first ı̄ + 1 rows and i + 1
columns of S. Recalling the relation to the polynomial key equation, the fact
that

ρ(Rı̄) = ρS − ρ(φi)

can be restated in terms of matrices: it is equivalent to the fact that Sı̄−1,i does
not have full rank (consequently, all matrices Sj,i with j < ı̄ do not have full
rank), but the matrix Sı̄,i does have full rank.

To show that ρ(Ri) = ρS − ρ(φı̄), first note that the matrices Si,j for j < ı̄
cannot have full rank because these are just the transpose of the matrices Sj,i

with j < ı̄. This means that for these j the degrees of the remainders must be

87

88 APPENDIX B. DEGREES OF THE REMAINDER POLYNOMIALS

ρ(Rj) ̸= ρS −ρ(φı̄) because one of the conditions for equivalence is not fulfilled.
On the other hand, Si,̄ı does have full rank, so it remains to show that Sj,̄ı for
0 ≤ j < i does not have full rank. For this purpose, define the value ȷ̄ to be
the smallest integer for which the matrix Sȷ̄,j has full rank. Then there are two
possibilities:

1. ȷ̄ > ı̄. Repeating the arguments of the last paragraph for ȷ̄ instead of ı̄
shows that Sj,̄ı cannot have full rank.

2. ȷ̄ < ı̄. This means that a remainder with ρ(Rȷ̄) = ρS − ρ(Rj) already
exists, but by construction two remainders cannot have the same degree.
This is equivalent to the fact that Sj,̄ı cannot have full rank.

Note that the case ȷ̄ = ı̄ needs not be considered because it would contradict
the definition of ı̄ in the statement of the Lemma.

Another implication of the equivalence between the rank of a submatrix of S
and the degree of a remainder is the following lemma which is not only concerned
with the polynomials obtained from the algorithm, but arbitrary polynomials
of restricted degree.

Lemma 18. Let (∆i, Ri) be a pair of polynomials calculated by Algorithm 1.
Then there does not exist a polynomial f(x, y) with ρ(f) < ρ(∆i) and ρ(fS) =
ρ(Ri).

Proof. The degree condition could only be fulfilled if Si,j would have full rank
for some j < ı̄, but this is not possible as the previous proof shows.

This latter lemma now implies that the degree of a remainder calculated by
Algorithm 1 is as small as possible.

Bibliography

[Arm08] Marc A. Armand. Interleaved Reed-Solomon Codes versus Inter-
leaved Hermitian Codes. IEEE Communications Letters, 12(10):779
–781, October 2008.

[Ber68] Elwyn R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, 1968.

[BK] Irene I. Bouw and Sabine Kampf. Decoding Hermitian Codes with
a Division Algorithm. Submitted to Advances in Mathematics of
Communications.

[BKY03] Daniel Bleichenbacher, Aggelos Kiayias, and Moti Yung. Decoding
of Interleaved Reed Solomon Codes over Noisy Data. In Jos C.M.
Baeten, Jan K. Lenstra, Joachim Parrow, and Gerhard J. Woegin-
ger, editors, Automata, Languages and Programming, volume 2719
of Lecture Notes in Computer Science, pages 97–108. Springer, 2003.

[Bla03] Richard E. Blahut. Algebraic Codes for Data Transmission. Cam-
bridge University Press, 2003.

[Bla08] Richard E. Blahut. Algebraic Codes on Lines, Planes and Curves.
Cambridge University Press, 2008.

[BMS05] Andrew Brown, Lorenz Minder, and M. Amin Shokrollahi. Improved
Decoding of Interleaved AG Codes. In Nigel Smart, editor, Cryp-
tography and Coding, volume 3796 of Lecture Notes in Computer
Science, pages 37–46. Springer, 2005.

[Bos99] Martin Bossert. Kanalcodierung. Teubner Verlag, 1999.

[CLO92] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties and
Algorithms: an Introduction to Computational Algebraic Geometry
and Commutative Algebra. Springer, 1992.

[Duu08] Iwan M. Duursma. Algebraic Geometry Codes: General Theory. In
Edgar Mart́ınez-Moro, Carlos Munuera, and Diego Ruano, editors,
Advances in Algebraic Geometry Codes. World Scientific Publishing
Co., 2008.

89

90 BIBLIOGRAPHY

[Ehr91] Dirk Ehrhard. Über das Dekodieren algebraisch-geometrischer Codes.
Heinrich-Heine-Universität Düsseldorf, 1991.

[FT89] Gui-Liang Feng and Kenneth K. Tzeng. A Generalized Euclidean
Algorithm for Multisequence Shift-Register Synthesis. IEEE Trans-
actions on Information Theory, 35(3):584 –594, May 1989.

[FT91] Gui-Liang Feng and Kenneth K. Tzeng. A Generalization of the
Berlekamp-Massey Algorithm for Multisequence Shift-Register Syn-
thesis with Applications to Decoding Cyclic Codes. IEEE Transac-
tions on Information Theory, 37:1274–1287, September 1991.

[Giu] Massimo Giulietti. Notes on Algebraic Geometric Codes. Online.
http://www.math.kth.se/math/forskningsrapporter/Giulietti.pdf.

[Gop83] Valerii D. Goppa. Algebraic-Geometric Codes. Mathematics of the
USSR-Izvestiya, 21(1):75, 1983.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved Decoding of
Reed-Solomon and Algebraic-Geometry Codes. IEEE Transactions
on Information Theory, 45(6):1757–1767, 1999.

[HLP98] Tom Høholdt, Jacobus H. van Lint, and Ruud Pellikaan. Algebraic
Geometry Codes. In Vera S. Pless, W. Cary Huffman, and Richard A.
Brualdi, editors, Handbook of Coding Theory, volume I, pages 871–
961. Elsevier, Amsterdam, 1998.

[HP95] Tom Høholdt and Ruud Pellikaan. On the Decoding of Algebraic-
Geometric Codes. IEEE Transactions on Information Theory,
41(6):1589 –1614, November 1995.

[HRN99] Tom Høholdt and Rasmus Refslund Nielsen. Decoding Hermitian
Codes with Sudan’s Algorithm. In Marc Fossorier, Hideki Imai,
Shu Lin, and Alain Poli, editors, Proceedings of AAECC-13, volume
1719 of Lecture Notes in Computer Science, pages 260–270. Springer,
1999.

[JH04] Jørn Justesen and Tom Høholdt. A Course in Error-Correcting
Codes (EMS Textbooks in Mathematics). European Mathematical
Society, February 2004.

[JLJH92] Jørn Justesen, Knud J. Larsen, Helge E. Jensen, and Tom Høholdt.
Fast Decoding of Codes from Algebraic Plane Curves. IEEE Trans-
actions on Information Theory, 38(1):111 –119, January 1992.

[KB10] Sabine Kampf and Martin Bossert. The Euclidean Algorithm for
Generalized Minimum Distance Decoding of Reed-Solomon Codes.
In IEEE Information Theory Workshop 2010, August 2010.

[KBB08] Sabine Kampf, Martin Bossert, and Sergey Bezzateev. Some Results
on List Decoding of Interleaved Reed-Solomon Codes with the Ex-
tended Euclidean Algorithm. In Proc. Coding Theory Days in St.
Petersburg, pages 31–36, St. Petersburg, Russia, October 2008.

BIBLIOGRAPHY 91

[Köt96] Ralf Kötter. Fast Generalized Minimum Distance Decoding of
Algebraic-Geometry and Reed-Solomon Codes. IEEE Transactions
on Information Theory, 42(3):721–737, May 1996.

[LG88] Jacobus H. van Lint and Gerard van der Geer. Introduction to Coding
Theory and Algebraic Geometry. Birkhäuser, 1988.

[Lin90] Jacobus H. van Lint. Algebraic Geometric Codes. In Dijen Ray-
Chaudhuri, editor, Coding Theory and Design Theory, Part I, pages
137–162. Springer, 1990. The IMA Volumes in Mathematics and its
Applications, Volume 20.

[LN96] Rudolf Lidl and Harald Niederreiter. Finite Fields (Encyclopedia
of Mathematics and its Applications). Cambridge University Press,
October 1996.

[LO10] Kwankyu Lee and Michael E. O’Sullivan. Algebraic Soft-Decision
Decoding of Hermitian Codes. IEEE Transactions on Information
Theory, 56(6):2587 –2600, June 2010.

[Mas69] James L. Massey. Shift-Register Synthesis and BCH Decoding. IEEE
Transactions on Information Theory, 15(1):122 – 127, January 1969.

[MS88] F. Jessie MacWilliams and Neil J. A. Sloane. The Theory of Error-
Correcting Codes (North-Holland Mathematical Library). North Hol-
land, June 1988.

[OBA08] Michael E. O’Sullivan and Maria Bras-Amorós. The Key Equation
for One-Point Codes. In Edgar Mart́ınez-Moro, Carlos Munuera,
and Diego Ruano, editors, Advances in Algebraic Geometry Codes.
World Scientific Publishing Co., 2008.

[Por88] Sidney C. Porter. Decoding Codes Arising from Goppa’s Construc-
tion on Algebraic Curves. Yale University, 1988.

[PSP92] Sidney C. Porter, Ba-Zhong Shen, and Ruud Pellikaan. Decoding
Geometric Goppa Codes Using an Extra Place. IEEE Transactions
on Information Theory, 38(6):1663–1676, November 1992.

[RS60] Irving S. Reed and Gustave Solomon. Polynomial Codes over Cer-
tain Finite Fields. Journal of the Society for Industrial and Applied
Mathematics, 8:300–304, 1960.

[Sha48] Claude E. Shannon. A Mathematical Theory of Communication.
Bell System Technical Journal, 27:379–423 and 623–656, July and
October 1948.

[She92] Ba-Zhong Shen. Solving a Congruence on a Graded Algebra by
a Subresultant Sequence and its Application. Journal of Symbolic
Computation, 14(5):505–522, 1992.

[SJM+95] Shajiro Sakata, Jørn Justesen, Y. Madelung, Helge E. Jensen, and
Tom Høholdt. Fast Decoding of Algebraic-Geometric Codes up to
the Designed Minimum Distance. IEEE Transactions on Information
Theory, 41(6):1672 –1677, November 1995.

92 BIBLIOGRAPHY

[SKHN75] Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, and Toshi-
hiko Namekawa. A Method for Solving Key Equation for Decoding
Goppa Codes. Information and Control, 27(1):87–99, 1975.

[Sor93] Ulrich K. Sorger. A new Reed-Solomon Code Decoding Algorithm
Based on Newton’s Interpolation. IEEE Transactions on Informa-
tion Theory, 39(2):358 –365, March 1993.

[SSB06] Georg Schmidt, Vladimir R. Sidorenko, and Martin Bossert. Decod-
ing Reed–Solomon Codes Beyond Half the Minimum Distance using
Shift-Register Synthesis. In IEEE International Symposium on In-
formation Theory, pages 459–463, Seattle, WA, USA, July 2006.

[SSB07] Georg Schmidt, Vladimir R. Sidorenko, and Martin Bossert. En-
hancing the Correcting Radius of Interleaved Reed-Solomon Decod-
ing using Syndrome Extension Techniques. In IEEE International
Symposium on Information Theory, pages 1341–1345, Nice, France,
June 2007.

[SSB09] Georg Schmidt, Vladimir R. Sidorenko, and Martin Bossert. Collab-
orative Decoding of Interleaved Reed-Solomon Codes and Concate-
nated Code Designs. IEEE Transactions on Information Theory,
55(7):2991 –3012, July 2009.

[SSB10] Georg Schmidt, Vladimir R. Sidorenko, and Martin Bossert. Syn-
drome Decoding of Reed–Solomon Codes Beyond Half the Minimum
Distance Based on Shift-Register Synthesis. IEEE Transactions on
Information Theory, 56(10):5245 – 5252, October 2010.

[SSBZ10] Christian Senger, Vladimir R. Sidorenko, Martin Bossert, and Vic-
tor V. Zyablov. Multitrial decoding of concatenated codes using
fixed thresholds. Problems of Information Transmission, 46(2):127–
141, June 2010.

[Sud97] Madhu Sudan. Decoding of Reed-Solomon Codes beyond the Error-
Correction Bound. Journal of Complexity, 13(1):180–193, March
1997.

[SW99] M. Amin Shokrollahi and Hal Wasserman. List Decoding of
Algebraic-Geometric Codes. IEEE Transactions on Information
Theory, 45(2):432–437, March 1999.

[WB86] Loyd R. Welch and Elwyn R. Berlekamp. Error Correction for Al-
gebraic Block Codes. US Patent 4 633 470, December 1986.

List of Publications

Publications containing parts of this thesis

• [BK] Irene I. Bouw, Sabine Kampf, “Syndrome decoding for Hermite codes
with a Groebner bases algorithm”, submitted to Advances in Mathematics
of Communications

• Sabine Kampf, “Bounds on Collaborative Decoding of Interleaved Hermi-
tian Codes and Virtual Extension”, submitted to 3ICMCTA special issue
of Designs, Codes and Cryptography

• Sabine Kampf, “Bounds on Collaborative Decoding of Interleaved Hermi-
tian Codes with a Division Algorithm and Virtual Extension”, 3rd Inter-
national Castle Meeting on Coding Theory and Applications 2011(3ICM-
CTA), Cardona, Spain

• Sabine Kampf, Martin Bossert and Irene I. Bouw, ”Solving the Key Equa-
tion for Hermitian Codes with a Division Algorithm”, IEEE International
Symposium on Information Theory 2011, St. Petersburg, Russia

Further publications

• [KB10] Sabine Kampf and Martin Bossert, “The Euclidean Algorithm for
Generalized Minimum Distance Decoding of Reed-Solomon Codes”, IEEE
Information Theory Workshop 2010, Dublin, Ireland

• Sabine Kampf and Martin Bossert, “A Fast Generalized Minimum Dis-
tance Decoder for Reed-Solomon Codes Based on the Extended Euclidean
Algorithm”, IEEE International Symposium on Information Theory 2010,
Austin, TX, USA

• Sabine Kampf, Antonia Wachter and Martin Bossert, “A Method for Soft-
Decision Decoding of Reed-Solomon Codes Based on the Extended Eu-
clidean Algorithm”, International ITG Conference on Source and Channel
Coding (SCC) 2010, Siegen, Germany

• Alexander Zeh, Sabine Kampf and Martin Bossert, “On the Equivalence
of Sudan-Decoding and Decoding via Virtual Extension to an Interleaved
Reed-Solomon Code”, International ITG Conference on Source and Chan-
nel Coding (SCC) 2010, Siegen, Germany

• [KBB08] Sabine Kampf, Martin Bossert and Sergey Bezzateev, “Some
Results on List Decoding of Interleaved Reed-Solomon Codes with the
Extended Euclidean Algorithm”, Workshop ”Coding Theory Days in St.
Petersburg” 2008, St. Petersburg, Russia

93

94

The CV is not included in the online version for rea-
sons of data protection.

Der Lebenslauf ist in der Online-Version aus Gründen
des Datenschutzes nicht enthalten.

