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Abstract 

Plasmonic titania photocatalysts were prepared by titania modification with gold by photodeposition. 
Photodeposition method was found to be profitable since during only 15 minutes of irradiation the 
complete gold precursor was deposited on titania support, regardless of used amount of gold, in the 
ranges 0.05-10 wt%.  It was found that for smaller amount of deposited gold (0.05 and 0.1 wt%), 
anatase presence and large surface area were beneficial for efficient hydrogen evolution during 
methanol dehydrogenation under UV irradiation.  The amount of deposited gold strongly influenced 
photoactivity of acetic acid degradation under UV irradiation.  The existence of three optima for 0.5, 2 
and >6 wt% of gold was found after testing twelve amounts of deposited gold on large rutile titania.  
It was shown that constant light intensity at whole irradiation range and sufficient UV separation were 
crucial for testing the activity under visible light irradiation.  The optimal amount of deposited gold on 
fine anatase and on large rutile titania photocatalysts under visible light irradiation were investigated.  
In the case of small gold NPs deposited on fine anatase titania, the dependence of photoactivity on 
gold amount was parabolic, and large gold amount (2 wt%), observable as an intensively coloured 
powder, caused photoactivity decrease, probably due to decrease in light penetration depth.  While for 
large gold NPs deposited on large rutile titania, the dependence represented cascade increase, due to 
change of size and shape of deposited gold with its amount increase.  It has been thought that 
spherical/hemispherical shape of gold NPs, in comparison with rod-like ones, is beneficial for higher 
level of photoactivity under visible light irradiation.  For all tested systems and regardless of 
deposited amount of gold, each rutile Au/TiO2 photocatalyst of large gold and titania NPs exhibited 
much higher photoactivity than anatase Au/TiO2 of small gold and titania NPs.  
 
1. Introduction 

Titanium(IV) oxide (titania) is one of the most commonly studied semiconductors due to its high 
photocatalytic activity, redox properties, thermal and chemical stability and non-toxicity [1-3].  The 
limitation in its application, resulting from low quantum yield (fast recombination of charge carriers: 
e-/h+) and necessity to use UV irradiation, may be overcome since modified titania powders often 
possess higher level of activity and ability of working under visible-light irradiation.  A huge variety 
of organic [4-7] and inorganic compounds [8-10] have been examined as dopants or surface modifiers.  
Among them, noble-metals particles have attracted attention, since they may enhance the transfer of 
photogenerated electrons prolonging charge carriers lifetime [11-16]. Some of them, exhibiting 
plasmonic properties, such as gold and silver, may also activate wide band gap semiconductors, titania 
or ceria, towards visible-light [17-20]. 
 Since Haruta’s pioneering studies on catalytic (dark) properties of gold nanoparticles (NPs), a 
lot of studies have been carried out to explain nature of catalytic reaction and to find optimal 
conditions for efficient oxidation of organics [21, 22].  Regarding catalytic and plasmonic properties 
of gold NPs the novel area of research on photocatalytic gold properties has been started [23-31].   
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 In contrast with catalytic active gold NPs, where gold NPs must be nano-sized [32, 33], larger 
gold NPs with high polydispersity in the size and shape are beneficial for photocatalytic activity under 
visible light irradiation [18, 25, 34].  It is thought that wide size/shape distribution of gold 
nanoparticles and thus ability of absorption of light in a broad wavelengths range is responsible for 
the high level of photoactivity.  The photocatalysts with the highest photoactivity were obtained by 
photodeposition of gold on titania with large primary particle sizes, i.e. predominantly rutile 
crystalline form of TiO2.  The mean size of generated gold NPs was directly proportional to the size of 
primary particle size of host titania.  As a result the most active photocatalysts are characterized by 
small surface area.  The activity loss have been also observed for these photocatalysts due to 
aggregation of large gold NPs [35].  In contradistinction with photocatalysts of lower level of 
photoactivity but high photostability, in which small gold NPs deposited on small titania NPs (anatase 
crystalline form of TiO2) were also partly covered by other titania NPs hindering gold aggregation. 
 In the present paper we will discuss the possibility of improvement of photoactivity of these 
photostable gold-modified anatase photocatalysts of small gold and titania NPs, influence of 
irradiation source on observable photoactivity, and optimal amount of deposited gold on photoactivity 
under UV and vis irradiation for anatase and rutile Au/TiO2. 
 
2. Experimental 
 

2.1. Materials 
Six commercial titania photocatalysts: ST-01(Ishihara, Japan), TIO-10, TIO-5 (Catalysis Society of 
Japan, Japan), ST-G1 (Showa Titanium, Japan), Aldrich_R and Aldrich_A (Aldrich), described in 
Table 1, were used as titania source.  Hydrogen tertrachloroaurate(III) tetrahydrate (HAuCl4·4H2O) 
(Nacalai Tesque and Wako Pure Chemical Industry) was used as received for metal loadings.  
Methanol, acetic acid, 2-propanol, acetone, a gold standard solution, hydrochloric acid (HCl) and 
sodium hydroxide (NaOH) (Wako Pure Chemical Industry) were used without further purification. 
 Gold (2 wt%) was photodeposited on the surface of titania simultaneously in eight Pyrex 
tubes (58.6 mL/each).  In each tube, 572 mg of titania powder was suspended in 28.6 mL 50 vol% 
aqueous methanol with HAuCl4·4H2O solution.  The tube was purged of air with argon for at least 15 
min and then sealed with a rubber septum.  The absence of oxygen in the tubes was checked 
chromatographically before starting irradiation. The suspensions were simultaneously photoirradiated 
with a 400 W high pressure mercury lamp under magnetic stirring (500 rpm) in the irradiation system 
shown previously [36].  The temperature of the suspensions during photoirradiation was maintained at 
298 ± 5 K using a thermostatically controlled water bath.  During the irradiation, the amount of 
generated hydrogen was measured every 15 min by gas chromatography (Shimadzu GC8A-IT 
equipped with a thermal conductivity detector; TCD).  Thus-obtained Au/TiO2 photocatalyst was 
centrifuged, washed with methanol and at least three times with Mili-Q water, dried overnight at 393 
K, and ground in an agate mortar.  For determination of influence of gold amount on photoactivity, 
photodeposition experiments of 0.05, 0.1, 0.5, 0.75, 1, 1.5, 2, 2.25, 3, 4, 6 and 10 wt% of gold were 
also carried out. 
 

2.2. Characterization of photocatalysts 
 
The morphology of gold photodeposited onto titania was observed by scanning transmission 
electron microscopy (STEM, Hitachi HD2000 ultrathin film evaluation system).  Au/TiO2 

powders were dispersed in ethanol in an ultrasound bath for a few minutes and some drops of 
suspension were deposited on an amorphous carbon-covered reinforced copper grid (Ohken, types 
A and B).  The samples were dried under vacuum overnight.  The images were acquired at a wide 
range of magnification (70000-1800000) in normal, high resolution and ultra high resolution 
modes with 2- or 3-mm working distances, 200-kV accelerating voltage and 30-A emission 
current.  Secondary electron (SE), Z-contrast (ZC) and bright-field (BF) images were recorded. 
 To characterize the photoabsorption properties of modified photocatalysts, diffuse 
reflectance (DR) spectra were recorded and data were converted to obtain absorption spectra.  
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The measurements were carried out on a Hamamtsu Photonics C7473-6 photonic multichannel 
analyzer using barium sulfate and bare titania powders as references.  
 X-ray diffraction (XRD) patterns were recorded on a diffractometer (Rigaku, RINT 
Ultima+) equipped with a graphite monochromator using copper Kα radiation (40-kV tube voltage 
and 20-mA tube current). Measurements were carried out with two scan speeds (2 and 0.2 min-1) 
and three scan ranges (1090, 3540 and 4247), the slower one for narrower ranges being 
used for particle size determination.  To determine primary particle sizes of gold deposits, XRD 
data were calculated using Scherrer’s equation with appropriate corrections [37].   
 The amount of deposited gold was determined by flame atomic absorption spectroscopy 
(FAAS, Shimadzu AA-6200).  The deposited gold (25 mg as Au/TiO2) was dissolved by aqua regia (2 
mL) under magnetic stirring (250 rpm) for > 1 h, decanted after centrigugation, and poured into a 50-
mL volumetric flask.  The remaining white titania was rinsed twice with 1 mol L-1 HCl (5 mL) under 
magnetic stirring (10 min, 250 rpm) and centrifuged.  The resultant supernatant was added to the aqua 
regia solution of gold followed by the addition of 1-mol L-1 HCl.  Gold calibration solutions were 
prepared from a gold standard solution by dilluting with 1-mol L-1 HCl. 
 

2.3. Photocatalytic activity tests 
 

Photoirradion under UV and/or vis with a mercury lamp 
A metal-loaded photocatalyst (50 mg) was suspended in an aqueous solution of acetic acid or 2-
propanol (5 vol%, 5 mL) and photoirradiated under magnetic stirring (1000 rpm) in the set-up  
used for gold photodeposition described above with the exception of the test-tube holder, which 
was changed to enable irradiation of 12 thinner tubes at the same time.  For the test of visible 
light-induced activity, the test-tube holder was changed to four test-tube holders (each holder 
containing two sample tubes) with one or two cut-off filters (L42, Y43, Y44 and Y48, Asahi 
Techno Glass) mounted in the irradiation window.  During the irradiation of acetic acid solutions, 
a portion (0.2 mL) of the gas phase of the reaction mixture was withdrawn with a syringe and 
subjected to gas chromatographic analysis of carbon dioxide (CO2) (Shimadzu GC-14B equipped 
with a flame ionization detector (FID) and a methanizer (Shimadzu MTN-1)).   
 
Photoirradion under vis with a xenon lamp 
The activity of samples under vis irradiation was also examined using a xenon lamp set-up.  A sample 
holder, the same as that used in a mercury lamp set-up, with two tubes was kept in a water bath 
thermostated at 298 ± 5 K.  The contents were magnetically stirred and irradiated by a xenon lamp 
installed outside the water bath.  During the irradiation of 2-propanol solutions, generated acetone was 
gas-chromatographically analyzed by Shimadzu GC-14B equipped with an FID.  Before injection of a 
portion of liquid phase to GC, the photocatalyst powder was separated from the suspension using a 
filter (Whatman Mini-UniPrep, PVDF). 
 The intensity of irradiation was measured by Ushio spectro-radiometer USR-30. 
 
3. Results and Discussion 

Recently, we have shown that after deposition of 2 wt% of gold on fifteen commercial titania 
samples the highest level of photoactivity under visible light irradiation exhibited samples with 
low BET surface area (i.e. 3-4 m2g-1) and bright grayish color (see Table 1).  Though the reason 
for their high photoactivity, i.e. broad localized surface plasmon resonance (LSPR), is obvious, 
the low level of photoactivity of intensively colored, violet photocatalyst with large surface area 
(BET> 200 m2g-1) is still questionable.  To check whether these photocatalysts are practically 
inactive under visible light irradiation or some experimental procedure/conditions were the cause 
of the unexpected findings, a few process modifications have been carried out and some of them 
had been already mentioned [25].  Presently we are discussing in details how the photoactivity of 
these photocatalyst can be demonstrated and improved. 
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 FIGURE 3: Light emission spectra of xenon lamp with one or two cut-off filters: Y43, Y44. 
 

3.2. Change of irradiation source  
 
In the case of plasmonic photocatalysts the selection of irradiation wavelengths was crucial.  For 
testing visible activity, elimination of influence of NPs support (often active photocatalyst under UV 
irradiation, such as titania (shown above)) must be performed.  It can be achieved by use of [36]:  

i) UV/vis emitting lamps, e.g. mercury or xenon lamps, equipped with IR and UV cut-off 
filters, preferentially with transmission of only visible light (see 3.1.),  

ii) visible light emitting lamps, e.g. tungsten and halogen lamps, equipped with UV cut-off 
filters (since they may emit also small part of UV) 

iii) light emitting diodes (LEDs). 
The UV/vis or vis lamps (two former groups) are recommended for comparison of photoactivity of 
different plasmonic materials since the photoactivity level depends on wavelengths, i.e. NPs size and 
shape influence the position of LSPR. While application of LEDs seems more reasonable for action 
spectrum analysis. 
 In our experiments the same set-up as for gold photodeposition was preliminary used, i.e. 
mercury lamp, with a sample holder equipped with UV cut-off filter immersed in a water bath (an IR 
filter).  It is thought that unevenness of emission spectra of a mercury lamp, which emits four main 
intense lines in visible range at 405, 436, 547 and 579 nm, results in mismatch with gold absorption, 
and thus being the reason for the lower level of photoactivity of small anatase powders.  For example, 

18 times stronger irradiation intensity at 580 nm than at 558 nm (218 and 12 W cm2, respectively) 
could be a reason for 3.7 lower photoactivity of anatase Au/TiO2 (TIO-10) than rutile Au/TiO2 (ST-
G1) for which maximum LSPR are observed at 558 and 580 nm, respectively.      
 In this regard, experiments for five Au/TiO2 photocatalysts (ST-01, TIO-10, Aldrich_a, ST-
G1 and Aldrich_r) under visible light irradiation with a radiation source of more evener emission, i.e. 

a xenon lamp (e.g. 290 and 251 W cm2 at 580 and 558 nm, respectively, see Figure 3) were carried 
out.  Irradiation with more intense light of power led to a marked increase in the reaction rate for all 
tested powders, and the fastest 2-propanol oxidation was still obtained for large rutile powder, i.e. 
2.57 µmol h-1 by Au/ TiO2 (Aldrich_R), as shown in Fig. 4.  The activity levels of small anatase 
powders were still very low, i.e. 0.36 and 0.42 µmol h-1 for Au/TiO2 (ST-01) and Au/TiO2 (TIO-10), 
respectively.  The largest enhancement of activity by changing the light source from mercury to xenon 
lamp was observed for large rutile and small anatase powders, i.e. 6.4, 5.2 and 5.3 times  for 
Aldrich_R, ST-01 and TIO-10, respectively.  On the other hand, the enhancement ratio of ST-G1 and 
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addition, the process is very short, and 15 minutes is sufficient for deposition of whole gold precursor, 
independently on used amount over a wide concentration range (0.05-10 wt%). 
The fastest hydrogen evolution was observed on gold deposited on small anatase titania which is 
consistent with our previous studies indicating that anatase crystallite form and large surface area 
promote alcohol dehydrogenation [25, 37].  Previously we also found that increase of surface area 
accelerated hydrogen evolution only in the case of gold deposition on anatase. While in the case of 
rutile samples, the smaller the surface area, the better the photocatalytic activity. Thus, similar rates of 
hydrogen evolution on gold NPs deposited on small anatase and on large rutile titanias were observed 
in the case of 2 wt% of gold loading.  Figure 6 presents results of hydrogen evolution for wide range 
of gold amount, i.e. 0.05-10 wt%.  It is clearly observable that even very small amount of deposited 
gold (0.05 wt%) is efficient for high rate of hydrogen evolution on small anatase photocatalysts.  The 
dependence of reaction rate on BET surface area is shown in the inset of Figure 6.  It has been found 
that in the case of small amount of deposited gold, i.e. 0.05 and 0.1 wt%, the surface area is a key-
factor for efficient alcohol dehydrogenation, while in the case of larger amount of deposited gold, i.e. 
2 wt%, surface area does not influence the efficiency significantly, i.e. 50 times increase of BET 
causes only 1.12-fold increase of reaction rate.  
 

 
FIGURE 5: Correlation between gold amounts used for photodeposition and determined in Au/TiO2 
samples by FAAA. 
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