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Chapter 1

Introduction

1.1 The Liberalized Energy Market

The liberalization of energy markets has induced generators, suppliers and large-scale

end users to trade actively on the market. Actors like energy utilities have a variety of

trading relations for the purchase and sale of electricity that are about to abandon the

(still) wide-spread long-term full supply and purchase contracts. An energy utility

has (or is modeled by) a portfolio of purchase and supply contracts for electricity.

Any market movement leads to a change of purchase and sales possibilities and thus

to a change of the portfolio value. In that sense portfolio analysis is understood as

the process of measuring and controlling the ratio of risk and return of the portfolio.

An energy utility having different fuel supply sources in contrast to a long-term

full supply contract faces different types of risks in the liberalized energy market.

The sources of risk are wide-ranging, just to name the market price risk, fuel price

risk, risk of investing in production capacities or the volume risk. Thus portfolio

management is closely related to risk management and the plant managers need a tool

to quantify these risks. Therefore it is necessary to employ techniques that accurately

incorporate the uncertain environment in the portfolio and risk management

process. Uncertainty in the electricity market is additionally evoked by a number

of factors such as political changes, weather changes or plant outages. Looking

at historical electricity spot price series clearly reflects that uncertain environment

and sets them apart from stock prices or equity index values. The series show

sudden increases in value (known as the electricity spikes) and high levels of volatility.

Besides that, they show a tendence to revert to a long term mean level. Such a

behavior is often referred to as the mean reverting property of electricity prices.

Moreover, one detects a seasonal pattern. The spot market is a market, where

1



CHAPTER 1. INTRODUCTION 2

goods are traded for “immediate” delivery (at the next day), also called the day-

ahead market. The units of production are sold into cash markets and are not only

traded on a forward basis. Consequently, spot bidding happens before all relevant

quantities are known. Thus the realized cash-flows can be negative.

Another crucial factor of electricity markets is the fact that financial derivatives

written on the underlying spot prices cannot be traded and valued in the conven-

tional way. This is due to the (general) non-storability and non-existence of liquid

markets for these financial products. However, with regard to risk management pur-

poses these financial products written on the spot price of electricity play a crucial

role. Forward contracts for example are used to hedge against spot price risks. A

complication in the electricity market is the fact that forward contracts that deliver

the underlying electricity at a fixed maturity time are not traded but so-called swap

contracts delivering a continuous flow of electricity over a pre-specified future period

of time (e.g. a month or a quarter).

After these introductionary remarks to quote Carmona & Durleman [CD03]: “The

diversity of the statistical characteristics of the underlying indexes on which financial

products are written together with the extreme complexity of the derivatives traded,

makes the analysis of these markets an exciting challenge to mathematically inclined

observers.”

1.2 Objective of Chapter 2

Within such a challenging environment we take the view of an electricity utility such

as a gas-fired power plant. Immediately a number of questions arise: How to reflect

the specific properties of electricity prices? Is it possible for such a complex mar-

ket to make reliable predictions of future price developments in order to assess the

environmentally-induced risks? Based on such a possible price forecasting model, can

we deduce a plants’ value and an optimal operating schedule? These questions moti-

vate the considerations elaborated throughout Chapter 2 of this thesis. It focuses on

the presentation and discussion of an adequate model for the comovement of elec-

tricty and gas prices. Such a model is then used for the purpose of risk management

and to calculate a gas fired stations’ plant value by a series of spark spread options.

Power Plants and Spark Spread Options A power plant provides the owner

the right but not the obligation to transform fuel into power. In that sense the main
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driver in the valuation of a gas-fired power plant is the difference between power

output prices and gas input costs, the spark spread. The spark spread is known

as the theoretical gross margin of a gas-fired power plant from selling one unit of

electricity, having bought the fuel required to produce this unit of electricity. Apply-

ing pricing theory of derivatives to the option opportunities in “real-life” decisions is

often termed real option valuation. Here we apply the real options approach in the

sense that we model the instantaneous plant pay-off per unit of production as the

pay-off of a spark spread option. Valuing a power plant using real options theory

has two main purposes in competitive markets: “First, an investor who contemplates

the purchase or sale of a power plant must accurately determine its value. Second,

the real options theory facilitates the use of risk managememt tools developed for

financial markets in order to hedge both asset value and earnings” (Gardner and

Zhuang [GZ00]). Many authors (such as De Jong [DJW07]) argue, that for opti-

mal management and realistic valuation the spark spread optionality needs to be

modelled explicitly. Hence an adequate model for the comovement of electricity and

gas prices must be found, since it builds the essential tool to address the involved

price risk. The price of a spread option is given by an expectation over the sample

paths of the solution of a system of stochastic differential equations describing the

model dynamics. Thus our main objective within this chapter is the development

of a bivariate spot price model that reflects the peculiar characteristics of electricty

and gas prices at the same time.

From the beginning of this century regime-switching models have shown great

potential in capturing the spot price dynamics of electricity. Within such a model

the dynamics are modulated by a Markov chain representing different regime states.

Typically the regime separation (that basically goes back to Hamilton [Ham90] in

1990) is used to reflect the systematic alternations between stable and unstable states

of prices, referred to as the normal and the spike states. As many authors argued

such alternations are based on imbalances between supply and demand. Especially

the spikes can be initiated by extreme weather changes or generation outages. Hence,

the subsequent sections provide a detailed description of the regime-switching model

that forms the basis for managing and valuing a real asset - the gas-fired power plant.

Usually in financial markets liquidly traded options are used to calibrate the pricing

models. Often it is not necessary to analyse historical data extensively. However,

in electricity markets prices of options are often not directly observable or those

products are not standardized. So the need for a simulation model used to generate

sample paths reflecting the time evolution of prices in a realistic way is much greater.

The model we propose is thus fitted to historical market prices.
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Outline of Chapter 2. We begin in Section 2.1 with introducing the two-factor

regime-switching model goverened by a Markov chain having finite state space. Dif-

ferent model approaches are presented and a discrete version along with the proba-

bilistic features of the underlying observation processes is derived. The complex cali-

bration routine and the optimal parameter values are presented in detail throughout

Section 2.2 up to Section 2.5. Particular care is taken on the implications provoked

by the unobservability of the modulating Markov chain. Finally, in Section 2.6 the

generated sample paths are used to calculate the plant value of a gas-fired power

station by a series of spark spread options.

1.3 Objective of Chapter 3

The spark spread valuation does not account for certain operational constraints such

as start-up costs, ramp-up constraints or capacity constraints among others. As

argued by several authors (such as Gardner & Zhuang [GZ00] or Deng & Oren

[DO03]) these constraints may have a significant impact on the plant value and an

operating strategy. Again a number of questions arise: How to determine the optimal

operating schedule and plant value, when considering (at least a few) operational

constraints? To what extend should forward contracts be used to hedge against spot

price risks? That leads to the central question addressed within Chapter 3: How

much of its generation capacity should a power plant devote to forward contracts and

how much should it keep for bidding on the spot market?

The path dependence of the involved sequential decision-making process immediately

suggests to use a stochastic dynamic programming (SDP) representation of the

problem. Hence, the focus of the third chapter is to set up and solve an SDP

representation of the problem of optimally scheduling and valuing a power plant,

when spot price risks are hedged by selling generation capacity through forward

contracts.

We contribute by stating existence and uniqueness of an optimal solution to the

optimal allocation problem introduced in terms of SDP. In contrast to Chapter

2 spot bidding is made under uncertainty. Thus the bidding on the spot market

happens before the “day-ahead” spot price is known. With the added complexity

of operational constraints, forward hedging and uncertain spot bidding the use of a

univariate price model (in contrast to the complex two-factor modelling presented in

Chapter 2) is reasonable. However, we provide the theoretical SDP model framework

in such a general form, that the use of a model for the spread, i.e. the difference

between the price of electricity and the price of the fuel required to produce that
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electricity, is straightforward. Due to the path dependence of the problem a one

factor model is yet preferable especially with regard to a numerical analysis. Within

such a dynamic programming ansatz usually a utility function representing the

risk preferences of the individual decision maker(s) is incorporated. Since it is not

clear which utility to choose, it is desirable to keep it in a general form. We solve the

problem by backward induction techniques for a general class of utility functions,

namely the class of concave, continuously differentiable utility functions. For that

class we state uniqueness and existence of an optimal policy and the applicability of

the iterative dynamic programming technique. Furthermore, a specific structure of

the value function is derived.

To understand the impact of the market movements and the operational constraints

and to understand the interaction of forward selling and spot bidding the path de-

pendent problem is numerically analyzed by approximating the underlying price pro-

cesses by lattice structures. The implications of different such market structures

are discussed and compared by calculating the corresponding optimal policies and

value functions solving the SDP problem. Finally, the so derived optimal company

specific (sales) portfolio based on the underlying market, the imposed operational

characteristics and the hedging strategy is used for plant valuation. Moreover, the

classical tools to quantify and assess risks of the plants sales portfolio are applied.

Outline of Chapter 3. Chapter 3 is presented in three main parts: After moti-

vating the economic side of the problem in Section 3.1 the allocation and valuation

problem is set up and analyzed in mathematical terms in detail in Sections 3.2 up

to 3.4. Existence and uniqueness of the solution along with the specific structure of

the value function are stated in Section 3.5. Last but not least, Section 3.6 applies

the model framework to the Cox Ross Rubinstein market. The derived values then

form the benchmark for judging the values calculated based on a one factor model

representation (consistent with market data and approximated by a trinomial tree

structure). The one factor model is presented in Section 3.7 and its implications are

discussed with regard to the benchmark in Section 3.8.

Conclusion of the Thesis. A summary of results and ideas gained on the one

hand by fitting a two-factor regime-switching model for the comovement of electricity

and gas prices to market data and by adopting these price forecasts for plant valua-

tion and risk management purposes and on the other hand by setting up and solving

a path-dependent SDP representation of the optimal plant operation and valuation

problem, focused on hedging spot price risks through forward selling of generation

capacity, is presented in the concluding Chapter 4.



Chapter 2

Regime Switching Model for the

Comovement of Electricity and

Gas Prices

2.1 Regime-Switching Two-Factor Model

For the pricing of physical and financial contracts and for the valuation of real as-

sets related to power markets the peculiar characteristics of prices have induced the

development of special electricity price models.

In mathematical finance the classical models belong to the class of semi-martingale

processes. These processes imply the existence of an equivalent martingale measure,

such that the discounted price series are martingales. If there exists a unique such

measure one speaks of a complete market with no arbitrage possibilities. In electricity

markets however the underlying spot contracts are not liquid in the sense, that they

can be bought and sold at any time or held in a portfolio over time. Thus the

electricity market is considered to be incomplete, where there does not exist a unique

such measure but any probability measure P∗ being equivalent to the real world

measure P is an equivalent martingale measure. Most spot price models are defined

to follow continuous time stochastic processes generating discrete observations, due

to spot prices only being quoted on an hourly basis (compare [eex]).

(One of) the model(s) forming the basis for many subsequent approaches to model

the spot electricity evolution is the famous Schwartz’ model [Sch97]. At the heart

of that classical commodity price model is the mean-reverting feature reflected by

dynamics stemming from the exponential of an Ornstein Uhlenbeck (OU) process.

6
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The Schwartz’ model belongs to the class of geometric models. Arithmetic models

in contrast represent price dynamics by a series of OU processes. An elaborate

treatment of these models with applications can be found in [BŠBK08]. Turning

back to the geometric model class it is worth mentioning the two-factor model of

Lucia & Schwartz [LS00]. It extends the Schwartz’ model in the sense that it has

one non-stationary process for the long-term equilibrium price level and another

possibly correlated mean-reverting process for the short-term fluctuations.

The inclusion of jumps in the stochastic differential equation (SDE) governing the

dynamics of underlying asset prices was first proposed by Merton [Mer76] and Cox

& Ross [CR76] in 1979. After several market crashes and in the scope of the extreme

volatile behavior of electricity prices these models have gained new interest. In

that sense Villaplana [Vil03] extended the Lucia-Schwartz model in 2004 to include

jumps in the short-term level, where the long-term process is now mean reverting.

The idea of including jumps to the process dynamics is that they account for the

spikes occuring after imbalances in supply and demand, the Brownian motion then

models the small variations in electricity prices when normal trading takes place.

Differentiating between spikes and small variations directly leads to regime-switching

models as natural candidates. With the application of regime-switching models to

power markets a promising way arised to include the spikes in the dynamics of

electricity prices.

One of the first papers dealing with Markov switching regressions in econometrics

is the one of Goldfeld & Quandt from 1973 [GQ73]. Motivated by the dramatic

breaks in economic time series that are associated with financial crisis or abrupt

changes in government policy the regime change reflects fundamental changes usually

between a normal and an abnormal state. The likelihood function for such Markov

switching regressions was first calculated by Cosslett & Lee [CL85] in 1985. In 1990

and 1994 Hamilton [Ham90] then formulated the problem in a way that all objects

of interest are calculable as a by-product of an iterative algorithm similar to the

Kalman filter (compare Section 2.2). Hamilton helped in a great way to popularize

regime-switching models, since he was one of the first to adopt them to the financial

and econometric world.

Allowing the incorporation of the most prominent features of electricity spot prices,

such as mean reversion and spikes, but still treating the spikes as an integral part of

the whole process, regime-switching models have become succesful in power markets.

Deng [Den00], Huisman & Mahieu [HM03], Bierbrauer et al. [BTW05], De Jong &

Huisman [DJH02], Weron [Wer06] or Geman & Roncoroni [GR06] have proposed

such models. The popular model of Geman & Roncoroni is again a combination of



CHAPTER 2. REGIME-SWITCHING MODEL 8

a mean-reverting process and a jump process, where the jump component is state-

dependent. The model defines a fixed threshold to separate different states without

introducing more factors. Although it is not a regime-switching model in the usual

sense, the threshold separation closely relates it. A thorough study of these different

regime-switching models (especially the ones of Huisman, De Jong, Geman et al.)

with applications to power markets can be found in the paper of De Jong [Jon06].

He tests “the nature of power spikes in a number of different markets” and finds

that regime-switching models are better able to capture the market dynamics than

a Garch(1,1) or Poisson jump model. The main drawback, according to the author,

of e.g. the Poisson model combined with a mean reversion component is the need to

set the mean reversion speed unrealistic high in order to pull prices back to a stable

level. He further argues that for a proper valuation of e.g. real assets (like the spark

spread options we want to consider) one needs to know to what extend spikes can

be treated as independent events. The requirement of stochastic jump arrival prob-

abilities according to De Jong directly leads to regime-switching models as natural

candidate: “They allow for distinct time-series behavior in different periods of time.

The primary change is that the probability of a jump is no longer fixed but dependent

on the current regime that the process is in.” (De Jong [Jon06])

Inter alia in the spirit of his work we have chosen to model the spark spread or more

precisely the comovement of electricity and gas prices by a regime-switching model.

We investigate different two-factor extensions and describe the challenging problem

of estimating such models on data. Last but not least we apply the model to the

valuation and risk managemet of a gas-fired power plant.

We begin with introducing the Markov chain modulating the two-factor regime-

switching model in Section 2.1.1. Different model approaches are presented and a

discrete version along with the probabilistic features of the underlying observation

processes is derived in Sections 2.1.2 up to 2.1.4. The complex calibration routine

and the optimal parameter values are presented in detail throughout Section 2.2

up to Section 2.5. Particular care is taken on the implications provoked by the

unobservability of the modulating Markov chain. Finally, in Section 2.6 the generated

sample paths are used to calculate the plant value by a series of spark spread options.

2.1.1 Introduction of the Markov Chain

To begin with, we introduce the hidden Markov chain representing regimes with

higher and lower demand and hence governing the parameters of the underlying spot
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price processes.

For that, we first introduce the underlying probability space equipped with a filtra-

tion, which will be specified throughout the next sections.

Definition 2.1. Let (Ω,F ,P) be a probability space endowed with a filtration F =

(Ft)t∈T , where T := {0, 1, . . . , T} are the so-called trading dates. Let K ∈ N such

that 0 < K < T <∞ and u ∈ [0, T ] denotes the continuous time index.

Let sxt and syt be two random variables, which can assume only the values {1, 2} . A

value of one then indicates that the market is quiet, i.e. the price process follows the

dynamics of the “normal” regime state. A value of two indicates that the market is in

an abnormal state. The indices x and y indicate to the electricity and gas market,

respectively. Now, for t ∈ T let the adapted sequence of random variables st be a

homogeneous Markov chain in discrete time having a finite state space {1, . . . , J} .

Then e.g. the realization st = 1 represents the normal regime state, when both the

electricity (sxt = 1) and the gas (syt = 1) prices show the “normal” mean reverting

character. Later on, having introduced the model framework we will deal with the

finite state space As = {1, 2, 3, 4} corresponding to the Markov chain s := (st)t∈T .

The different possible regime states are specified as follows

st =


1 if sxt = 1 and syt = 1

2 if sxt = 2 and syt = 1

3 if sxt = 1 and syt = 2

4 if sxt = 2 and syt = 2

. (2.1)

In order to be able to extend the state space, which becomes necessary during the

calibration procedure introduced in Section 2.2, additionally we want to state the gen-

eral case. That is, the Markov chain s can assume values in the finite set {1, . . . , J} .

Then the probability that st equals some particular value j ∈ {1, 2, . . . , J} depends

on the past only through the most recent value st−1 , i.e. P(st = j|st−1 = i, st−2 =

k, . . . ) = P(st = j|st−1 = i) = pij . The (J×J) matrix P := (pi,j)i,j=1,...,J containing

the transition probabilities is then known as the transition matrix. For more details

on Markov chains we refer the interested reader to the work of Hamilton [Ham94] or

Bremaud [Bre01].

2.1.2 The Underlying Observation Process

Before introducing the specific form of the stochastic observation process underly-

ing our different model approaches, we want to refer to the general class of (non-

Gaussian) Ornstein Uhlenbeck (OU) processes and their probabilistic features. A
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profound study of OU processes related to the spot price modelling in electricity and

related markets can be found in Benth, Benth & Koekebakker [BŠBK08]. They pro-

vide the necessary background in stochastic analysis for independent increment (II)

processes. These semimartingale processes are then used to introduce and discuss

the spot price modelling with OU processes and more specifically geometric mod-

els characterized by the exponential of a OU process. In the scope of our work we

highly recommend their book for a collection of results about II processes, stochastic

integration with respect to martingales, the Itô formula for semimartingales leading

thereafter to a nice general representation of the geometric spot price model covering

many other approaches. Moreover, they provide integrability conditions on the spot

process to ensure well-defined moments for the class of exponential models.

Two-Factor Regime-Switching Model for the Spark Spread. For the pur-

pose of managing and valuing a gas-fired power plant the introduction of a two-factor

extension of a regime-switching model with applications to power markets is at the

heart of our work. From an economic point of view the model should reflect the

specific situation of energy markets, where one observes imbalances of supply and

demand leading to sudden and extreme price changes. Such a behavior will be incor-

porated through the model parameters and their ability to switch between different

regimes representing various levels of supply and demand. Consider a specific point

of time and assume the state of the Markov chain is given. Then the explicit form

of the price dynamics is fixed by the process parameter combination associated with

that state. Loosely speaking, such a parameter combination determines whether e.g.

the electricity price is modeled close to or far away from a long-term level, possibly

interpreted as the cost of production. Hence, the specific parameters implied by the

state of the Markov chain determine to which state of the market the actual price

belongs.

The stochastic processes (representing the comovement of logarithmic electricity and

gas spot prices in such a specific regime state) are then basically given by mean

reverting OU processes where the stochastic driver may allow for jumps. (When

including seasonality the traditional notion of stationary properties of OU processes

breaks down. However, analogue to [BŠBK08] we will keep the terminology in order

to refer to a dynamic model with certain mean reversion properties.) Hence, the

model incorporates the most prominent features of power markets in allowing for

mean reversion and possible jumps.
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Stochastic Fluctuation. We begin by introducing the stochastic driver of the

model dynamics.

The Brownian motions model the small variations in prices. We will use two inde-

pendent two dimensional Brownian motions WM := (W 1
u ,W

2
u )u∈[0,T ] and W S :=

(W 3
u ,W

4
u )u∈[0,T ] , where especially for all k, j = 1, 2, 3, 4 the Brownian motions W k

u

and W j
u are independent for all u ∈ [0, T ] . Moreover, W = {WM ,W S} is adapted

to the standard Brownian filtration FW . Then WM is accounting for the fluctua-

tion in the “normal” states and W S is accounting for the (small) fluctuation in the

“abnormal” state. The state-dependent (two-dimensional) Brownian motion for all

t ∈ T
B(s) = ((Bx

u(st), B
y
u(st))

ᵀ)u∈[0,T ] (2.2)

is given by

Bx
u(st) =

{
Mx

u := W 1
u if st ∈ {1, 2}

Sxu := W 3
u if st ∈ {3, 4}

,

By
u(st) =


My

u := ρW 1
u +

√
1− ρ2W 2

u if st = 1

My
u := W 2

u if st = 3

Syu := W 4
u if st ∈ {2, 4}

,

for all u ∈ [0, T ] with ρ ∈ [0, 1] . We expect a non-negative correlation, hence we

assume ρ ∈ [0, 1] . From now on, the index i is introduced. It is either replaced by

x (referring to the electricity price process) or it is replaced by y (referring to the

gas price process).

Jump Part. A popular way to introduce the spikes in the price dynamics is by

so-called compound Poisson processes. Additionally, we allow for a constant mean

level of jumps, such that the jump processes Zi = (Zi
u)u∈[0,T ] satisfy

dZi
u := f iJ(st)du+ J idqiu(st), (2.3)

where the constant level f iJ and the Poisson process qi = (qiu)u∈[0,T ] with intensity

λi are dependent on the regime state st at time t ∈ T . For all u ∈ [0, T ] we define

qiu(st) ≡ 0 for all such st implying λi(st) = 0 . The absolute size of the m -th jump

in the log-scenario is given by

J im := Zτ im − Zτ im− ,

where τ im− denotes the left limit and the variables τ im model the random times

of occurence of the m -th jump corresponding to the Poisson process qi , i.e qiu =
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∑
m≥1 1{τ im≤u} for all u ∈ [0, T ] . The jump times for m = 1, 2, . . . are

τ im =
m∑
n=1

T in,

where the so-called interarrival times T in are independent, identically exponential

distributed with parameter λi . As in Merton’s jump-diffusion model we assume the

m -th jump size J im to be a normally distributed random variable with mean µiJ
and standard deviation σiJ , i.e. J im ∼ N (µiJ , σ

i
J) , such that the jump sizes J i1, J

i
2, . . .

are independent, identically normal distributed random variables.

Bivariate Geometric Spot Price Model. After specifying the three indepen-

dent stochastic driving processes, namely, Bi , qi and J i , it is left to account for

the spoken to mean reverting and seasonality property of energy prices.

The deterministic seasonal price level is modelled by the function Λ = (Λx,Λy)ᵀ :

[0, T ]× [0, T ]→ (0,∞)× (0,∞) , which is assumed to be continuously differentiable.

It captures the seasonality in mean electricity and gas log-prices and is referred to

as the seasonal function. The vector of model parameters is θ(s) , an unknown

parameter in a bounded set Θ ⊂ Rd , modulated by the hidden Markov chain s .

Bringing together the mean reversion component and the stochastic drivers the two

factor spot price model (representing the comovement of logarithmic electricity and

gas spot prices) is given by the next definition.

Definition 2.2 (Spot Price Model). For any t ∈ T let r = 1, 2, . . . , K with r < t

be fixed. The stochastic bivariate spot price process S(u) for all t− r ≤ u ≤ t is

defined as

lnS(u) = ln Λ(u) + z(u),

where given zt−r = (x′t−r, y
′
t−r)

ᵀ the right continuous process with left limits z =

(zu)u∈[t−r,t] = ((xu, yu)
ᵀ)u∈[t−r,t] is given by the unique strong solution to the system

of SDE’s
dxu = [−αx(st) (xu − fx(st)) + fxJ (st)] du+ σx(st)dB

x
u(st) + Jx dqxu(st)

dyu = [−αy(st) (yu − f y(st)) + f yJ (st)] du+ σy(st)dB
y
u(st) + Jy dqyu(st)

, (2.4)

where the level f i , speed of mean reversion αi , jump level f iJ , the volatility σi ,

the Poisson process qi = (qiu)u∈[t−r,t] with intensity λi and the Brownian motion

Bi = (Bi
u)u∈[t−r,t] , given according to (2.2), are dependent on the regime state st at

time t . The jump components J i and qi are given according to the jump process

Z defined in (2.3).
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In order for this definition to be well-posed we need to know whether there exists

such a unique strong solution. This is indeed the case as will be shown by Theorem

2.1 (on page 18).

The mean reverting coefficients αi(s) , σi(s) and f i(s) in the price dynamics are as-

sumed to be constant for all different states of the Markov chain. The constant mean

reversion levels f i can assume negative values. Whereas the speeds of mean rever-

sion αi(s) are non-negative for all possible states of the Markov chain s . The same

is true for the volatility parameter σi(s) scaling the fluctuations of the Brownian

motion B = ((Bx
u, B

y
u)ᵀ)u∈[0,T ] .

Remark 2.1. (i) Let today’s state of the Markov chain be st = j . Then today’s

observed prices z′t = (x′t, y
′
t)

ᵀ are assumed to be generated by the process

dynamics that are modulated by the associated parameters θ(j) .

(ii) Let st = 1 , i.e. today’s prices are assumed to stem from the mean reverting

regime. Then we might face the issue of latent prices: “If prices were in a spike

yesterday, we do not know from what level they have to revert today” (De Jong

[Jon06]). We will deal with latent prices and the associated transition densities

in more detail in Section 2.3.

(iii) We pose the following assumptions:

Assumption 2.1. If at time t ∈ T st = j for any j ∈ As , then the cor-

responding process dynamics prevailed (at least) over the period [t − r, t] for

given r = 1, 2, . . . , K with r < t .

Assumption 2.2. With probability one the (bivariate) spot price process starts

in the “normal” regime at date 0 , i.e. P(s0 = 1) = 1 , and there exists at least

one j ∈ S with j 6= 1 and p1,j > 0 .

The preceeding assumptions will be of particular use in the calculation of those

likelihood functions involving latent prices. These likelihoods will include the

( r -stage) transition densities f(z′t |Ωt−1, st = `; θ) , where ` refers to a regime

state inferring latent prices.

2.1.3 Different Model Approaches

After introducing the Markov chain s modulating the bivariate observation process

z , the different approaches we want to dicuss can be identified by imposing certain

assumptions on the model parameters, when observed in a certain regime state.

Thus, the size d of the (1× d) parameter vector θ(s) in the bounded set Θ ⊂ Rd

needs to be adapted for every approach.
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The first approach is the most simple case we want to study. It excludes the jump

term of the price processes. Hence, the price processes are assumed to follow the

dynamics of a mean reverting process not accounting for spikes. We are aware of

assuming an obvious restriction of generality. However, this basic first approach is a

good tool to introduce the model framework. In this case the Markov chain s can

only assume the integer value {1} . The second approach then is the necessary

extension including the possibility of jumps in the dynamics of the price processes.

Hence, the Markov chain underlying this approach can assume four different states

as defined in (2.1). Finally, the third approach is also based on the four state

Markov chain s . It is identified by the distinct assumptions imposed (with regard

to Markov model I ) on the jump term.

Why are we dealing with all these different approaches? Firstly, the differ-

ent approaches reflect the progress made in the development of electricity spot price

models (here extended to the multivariate case): Starting with the very simple first

approach, which is well suited to serve as a benchmark, several extensions have been

derived. Secondly, the results of the calibration and simulation studies should not

contradict each other and we can test whether the different model assumptions lead

to the results expected in the specific case. Last but not least, we show the flexi-

bility of the general model framework presented in this chapter. Due to the specific

features of electricity (and also gas) prices it is not a trivial task to find a model

reflecting those features adequately. Hence, working with several variants seems to

be the right ansatz.

Now, all assumptions on the model parameters identifying our different approaches

are listed. The reader, who wishes a quick start can immediately go to the summa-

rizing part 2.1.3.2, where Table 2.1 provides an overview concerning all parameter

specifications.

2.1.3.1 Specifying the Model Parameters

Recall, for any t ∈ T and r = 1, 2, . . . , K with r < t the dynamics of the ob-

servation process z = ((zu)
ᵀ)u∈[t−r,t] (as introduced in Definition 2.2) for given

zt−r = (x′t−r, y
′
t−r)

ᵀ are given by
dxu = [−αx(st) (xu − fx(st)) + fxJ (st)] du+ σx(st)dB

x
u(st) + Jx dqxu(st),

dyu = [−αy(st) (yu − f y(st)) + f yJ (st)] du+ σy(st)dB
y
u(st) + Jy dqyu(st),
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where all previously made specifications are supposed to be valid. Then the param-

eters specifying the different model approaches will be introduced throughout the

following paragraphs.

Parameter according to the Benchmark and Markov Model I. The state

dependent parameters according to the first and second approach for all t ∈ T are

given by

αi(st) :=

{
αi if sit = 1

0 if sit = 2
, σi(st) :=

{
σi if sit = 1

0 if sit = 2
, f i(st) :=

{
f i if sit = 1

0 if sit = 2
,

where for i = x and i = y the parameters αi and σi are constant and non-negative,

whereas the constant parameters f i and f iJ can assume negative values. Given st

at date t ∈ T the Poisson process qi(s) for all u ∈ [t−r, t] has the intensity λi(st) .

Then the state dependent spike regime parameters are given by

λi(st) :=

{
0 if sit = 1

λi if sit = 2
, f iJ(st) :=

{
0 if sit = 1

f iJ if sit = 2
,

where for i = x and i = y the parameter λi is constant and non-negative. Further,

the Poisson process qi for all u ∈ [t − r, t] satisfies qiu(st) ≡ 0 for all such st

implying λi(st) = 0 . The Brownian motion B(st) for all u ∈ [t − r, t] is given

according to (2.2).

Remark 2.2. The difference between the so-called Benchmark model and Markov

model I is determined by restricting the state space of the Markov chain. Within

the Benchmark model the state space of the random variable sit is reduced to the

value {1} for all t ∈ T . That means, at any date u ∈ [0, T ] the prices are simply

fluctuating around the mean level. Whereas, Markov model I includes the possibility

of jumps to the price dynamics, i.e. sit ∈ {1, 2} for all t ∈ T .

Parameter according to Markov Model II. The state dependent parameters

according to the third approach for all t ∈ T are given by

αi(st) :=

{
αi if sit = 1

αi if sit = 2
, σi(st) :=

{
σi if sit = 1

σi if sit = 2
, f i(st) :=

{
f i if sit = 1

f i if sit = 2
,

where for i = x and i = y the parameters αi and σi are constant and non-negative

and f i ∈ R . Given st at date t ∈ T the Poisson process qi(s) for all u ∈ [t− r, t]
has the intensity λi(st) . Then the state dependent spike regime parameters are

given by

λi(st) :=

{
0 if sit = 1

λi if sit = 2
, f iJ(st) :=

{
0 if sit = 1

0 if sit = 2
,
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where for i = x and i = y the parameter λi is constant and non-negative. Further,

the Poisson process qi for all u ∈ [t − r, t] satisfies qiu(st) ≡ 0 for all such st

implying λi(st) = 0 . The Brownian motion B(st) for all u ∈ [t − r, t] is given

according to (2.2).

Remark 2.3. Last but not least, Markov model II explicitly includes a jump spec-

ification to the dynamics of both the electricity and gas spot prices. The diffusive

part is modelled by mean reverting processes. Whereas the jump part is modelled

by mean reverting dynamics plus a normal compound poisson process. When the

process follows the dynamics of the “normal” regime we assume to have a jump in-

tensity of zero (i.e. we fix λi(st) = 0 for sit = 1 ). According to our assumptions

then no explicit jump term is included to the model being in such a regime state (i.e.

qi ≡ 0 ).

2.1.3.2 Summary

At the end of this section we summarize all different model approaches by listing the

specific state dependent parameter assumptions determining the explicit form of the

underlying stochastic observation process in Table 2.1.

Deterministic Part αi(st) f i(st) f iJ(st)

sit 1 2 1 2 1 2

Benchmark Model αi – f i – – –

Markov Model I αi 0 f i 0 0 f iJ
Markov Model II αi αi f i f i 0 0

Stochastic Part σi(st) Bi(st) qi(st) λi(st)

sit 1 2 1 2 1 2 1 2

Benchmark Model σi – M i – – – – –

Markov Model I σi 0 M i Si 0 qi 0 λi

Markov Model II σi σi M i Si 0 qi 0 λi

Table 2.1: Model parameters governed by the hidden Markov chain s fixing the

process dynamics corresponding to the different model approaches. All requirements

posed in the according definitions are supposed to be valid.

Besides the parameter combinations discussed above, we recall the definition of the

logarithmic spot price process S(u) , which is according to Definition 2.2 for any

t ∈ T and r = 1, 2, . . . , K with r < t for all u ∈ [t− r, t] given by

lnS(u) = ln Λ(u) + z(u),
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where z = ((zu)
ᵀ)u∈[t−r,t] is given through zt−r = (x′t−r, y

′
t−r)

ᵀ and the SDE’s
dxu = [−αx(st) (xu − fx(st)) + fxJ (st)] du+ σx(st)dB

x
u(st) + Jx dqxu(st),

dyu = [−αy(st) (yu − f y(st)) + f yJ (st)] du+ σy(st)dB
y
u(st) + Jy dqyu(st),

modulated by the state of the Markov chain st at date t . The Markov chain

s = (st)t∈T is equipped with the finite state space As specified by

st =


1 if sxt = 1 and syt = 1

2 if sxt = 2 and syt = 1

3 if sxt = 1 and syt = 2

4 if sxt = 2 and syt = 2

.

We will call the first approach Benchmark model since it constitutes the most

basic form not including a spike specification. Moreover, in [] we have conducted

a thorough statistical analysis of such a model. In contrast the second and third

approaches include Markov modulated dynamics. Hence we will call them Markov

model I and II from now on.

To make the summary complete, we point out the intuition behind our modelling

approach: This work is based on a two-factor regime-switching model for the comove-

ment of electricity and gas price processes. One can imagine the comovement to be

governed by two sets of processes over a certain period of time. One set depicting the

dynamics of the electricity price process and one set depicting the dynamics of the

gas price process. Each process is explicitly defined by the choice of its parameters.

Thus, at any point of time on basis of the hidden Markov chain a specific choice

of the process parameters is inferred. In other words the Markov chain forms the

instrument, which determines the process of switching between the different proposed

dynamics belonging on the one hand to the set of electricity and on the other hand

to the set of gas price processes.

2.1.4 Discrete Version of the Observation Process

As already stated, in this work we do not want to focus on finding a deterministic

function Λu , modeling the seasonal level of the electricity and gas prices. At this

point we refer to earlier studies done by Benth et al. [BŠBK08], Schindlmayr [Sch05],

or De Jong [Jon06]. During the implementation process later on, we use the sugges-

tion made by De Jong [Jon06] to extract seasonality from the daily spot prices. The

seasonal component Λu = (Λx
u,Λ

y
u) is for i = x or i = y given by

Λi
u = θi0 +

8∑
j=1

θij Dj,u + θi9 sin(θi5
2πu

365.25
) + θi10EWMA0.975

u−1 ,
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where (EWMA0.975) is an exponentially weighted moving average with decay factor

0.975 . Note, although we refer to Λu as being a deterministic function, it is in fact

not having a moving average component. For reasons of generality with respect

to other possible seasonal functions we remain with this notation. The seasonality

during a week, public holidays and so-called semi-holidays is incorporated by 8

different dummy variables (Dj,u) . The seasonality over the year is included by just

one sinusoidal term, characterized by a location and a size parameter. For further

specifications and details on this special seasonal function we refer the interested

reader to the corresponding paper of De Jong [Jon06].

2.1.4.1 The SDE driving the OU process

Having introduced the general model framework and the specific assumptions posed

on the bivariate dynamics reflecting the comovement of electricity and gas prices, the

next step before starting the calibration procedure is to derive an explicit analytical

solution to the system of SDE’s driving the mentioned dynamics for all u ∈ [t− r, t]

Theorem 2.1 (Unique Strong Solution). Given all properties of the jump processes

Zi (stated in (2.3)) along with all properties of the Brownian motions Bi (stated in

(2.2)), the logarithm of the deseasonalized spot prices, i.e. the unique strong solution

zt given zt−r = z′t−r to the system of SDEs (introduced in Definition 2.2), for all

t ∈ T with r < t and r = 1, 2, . . . , K is given by

zt = ln
S(t)

Λ(t)
=

(
xt

yt

)
=

(
xt−r e

−αx(st)r

yt−r e
−αy(st)r

)

+

(
fx(st) (1− e−αx(st)r)

f y(st) (1− e−αy(st)r)

)
+

(
fxJ (st) r

f yJ (st) r

)

+

(
σx(st) e

−αx(st)t
∫ t
t−r e

αx(st)u dBx
u(st)

σy(st) e
−αy(st)t

∫ t
t−r e

αy(st)u dBy
u(st)

)

+

∑qxt (st)

m=qxt−r(st)+1 e
−αx(st)(t−τxm) Jxm∑qyt (st)

m=qyt−r(st)+1
e−α

y(st)(t−τym) Jym

 ,

where the parameter αi(st) , f iJ(st) , σi(st) , the Brownian motions Bi(st) and the

intensity of the Poisson process qi(st) are determined by the state st of the Markov

chain at date t ∈ T .

Proof. Let i = x such that

dxu = [−αx(st) (xu − fx(st)) + fxJ (st)] du+ σx(st)dB
x
u(st) + Jx dqxu(st) (2.5)
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with xt−r = x′t−r . When i = y we can proceed analogously.

Uniqueness of the solution. Let x1 and x2 be two solutions to (2.5) and define

the process Z(t) := x1(t)− x2(t) . Then right continuity follows from the properties

of x1 and x2 . Appealing to their dynamics, we find

Z(t) = −αx(st)
∫ t

t−r
Z(u)du

with Z(t − r) = x′t−r − x′t−r = 0 . Then with Itô’s Formula follows Z(t) =

Z(t − r) e−α
x(st)r and hence Z(t) = 0 for all t ≥ t − r such that uniqueness of

the solution is established.

Existence of a strong solution. It is basically done working pathwise by applying

the Itô formula for jump processes (also called Itô-Doeblin formula given by Propo-

sition A.1 of the Appendix) to the right-continuous sample path xu of the stochastic

process x . The solution will then be called a strong solution on our given probability

space, where the SDE arises.

We distinguish two cases induced by the possible states of the Markov chain s at

date t . First we look at all those st ∈ As implying αx(st) 6= 0 . This immediately

implies fxJ (st) = 0 for all such st (compare Table 2.1). Hence, on an interval [t−r, t]
with r < t the Itô-Doeblin formula applied to the function h(t, xt) := eα

x(st)txt for

a fixed state st of the Markov chain s , yields

h(t, xt) = eα
x(st)txt = eα

x(st)(t−r)xt−r +

∫ t

t−r
eα

x(st)uαx(st)xudu+

∫ t

t−r
eα

x(st)udxcu

+
∑

t−r<u≤t

[eα
x(st)uxu − eα

x(st)u−xu−]

= xt−r e
αx(st)(t−r) + fx(st) (eα

x(st)t − eαx(st)(t−r))

+ σx(st)

∫ t

t−r
eα

x(st)u dBx
u(st) +

qxt∑
m=qxt−r+1

eα
x(st)τxm Jxm,

where xcu denotes the continuous part of the process x at time u . The absolute

size of the m -th jump in the log-scenario is given by Jxm := xτ im − xτ im− , where all

specifications are given according to (2.3). Finally, we obtain a solution for all such

st ∈ As on an interval [t− r, t]

xt = xt−r e
−αx(st)r + fx(st) (1− e−αx(st)r) (2.6)

+ σx(st) e
−αx(st)t

∫ t

t−r
eα

x(st)u dBx
u(st) +

qxt∑
m=qxt−r+1

e−α
x(st)(t−τxm) Jxm.
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Let us now consider the other case, i.e., st ∈ As implies αx(st) = 0 . We can further

specify this event to be equivalent with the situation when sxt = 2 according to

Markov model I. Hence, in such a model state x satisfies the differential equation

dxu = dZx
u = fxJ du+ Jx dqxu. (2.7)

Applying the Itô-Doeblin formula to the function g(xt) := xt , with xu being a

right-continuous sample path of the process x given in (2.7), yields

g(xt) = xt = xt−r +

∫ t

t−r
dxcu +

∑
t−r<u≤t

(xu − xu−)

= xt−r + fxJ r +

qxt∑
m=qxt−r+1

Jxm,

satisfying all assumptions made in the first case. Hence, for all such st ∈ As on an

interval [t− r, t] ⊆ [1, K] we obtain the solution

xt = xt−r + fxJ r +

qxt∑
m=qxt−r+1

Jxm. (2.8)

After all, we can write the strong solution in the form of Theorem 2.1 by combin-

ing (2.6) and (2.8). The compact form considers the different values of αx(st) for

different states of the Markov chain s at date t ∈ T as specified in the different

approaches explained in Section 2.1.3.

2.1.4.2 Discretizing the Analytical Solution

Throughout the calibration process, that will be outlined in the subsequent Section

2.2, we need a discrete version of the system dynamics introduced in Definition 2.2.

The first step to derive such a discrete version has been accomplished by calculating

for all t ∈ T an analytical expression for the unique strong solution (over an interval

[t − r, t] ) to the involved system of SDEs. The second step is then to provide an

approximation of the integral terms involved in the derived solution zt . For that,

we use the results of Benth, Erlwein & Mamon in [EBM10] or the more general

study of Benth as stated in [Ben11]. Thereafter, the diffusion term - being the

essential ingredient of the continuous part xct of zt - is reasonably approximated (in

distribution) over an interval [t− r, t] by

σi(st) e
−αi(st)t

∫ t

t−r
eα

i(st)u dBi
u(st) ≈ σi(st)

√
1− e−2αi(st)r

2αi(st)︸ ︷︷ ︸
:=σir(st)

Ri
r(st) ,
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where we assume Ri
r(st) := (Bi

t(st) − Bi
t−r(st)) ∼ N (0,

√
r) . The approximation

is reasonable in the sense that the left hand side is a normally distributed random

variable with mean 0 and standard deviation σir(st)
√
r . (For more details compare

Benth [Ben11].)

Further, we can approximate the jump term over [t− r, t] by

qit(st)∑
m=qit−r(st)+1

e−α
i(st)(t−τ im) J im =︸︷︷︸

in distr.

qir(st)∑
m=1

e−α
i(st)(r−τ im) J im := J ir(st) , (2.9)

where τ im are jump times in the interval (0, r] .

The last step is then to formulate a discrete version of (2.2) to establish the un-

derlying random system that evolves in discrete time. To account for the small

variations in prices evolving in discrete time we will use four independent identi-

cally distributed sequences of normal random variables NS := {N1
t , N

2
t }t∈T and

NM := {N3
t , N

4
t }t∈T having zero mean and variance equal to r for all t ∈ T with

r < t and r = 1, 2, . . . , K . Especially for k, j ∈ {1, 2, 3, 4} with k 6= j the random

variables N j
t and Nk

t are independent for all t ∈ T . Then NM account for the

small variations in the “normal” states and NS for those in the “abnormal” states.

The state-dependent random vector

R(st) = ((Rx
r (st), R

y
r(st))

ᵀ)t∈T (2.10)

for all r = 1, 2, . . . , K with r < t is given by

Rx
r (st) :=

{
N1
t if st ∈ {1, 2}

N3
t if st ∈ {3, 4}

,

Ry
r(st) :=


ρN1

t +
√

1− ρ2N2
t if st = 1

N2
t if st = 3

N4
t if st ∈ {2, 4}

,

for all t ∈ T with ρ ∈ [0, 1] .

With these approximations at hand we are in the position to formulate a discrete ver-

sion which is equal in distribution to the observation process zt , stated in Theorem

2.1.
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Corollary 2.1. Let t ∈ T and r = 1, 2, . . . , K such that r < t then the derived

discrete version of the observation process is given by

zt =

(
xt

yt

)
=

(
xt−r e

−αx(st)r

yt−r e
−αy(st)r

)

+

(
fx(st) (1− e−αx(st)r)

f y(st) (1− e−αy(st)r)

)
+

(
fxJ (st) r

f yJ (st) r

)

+

(
σxr (st)R

x
r (st)

σyr (st)R
y
r(st)

)

+

(
Jxr (st)

Jyr (st)

)
,

where the vector σr := (σxr , σ
y
r )

ᵀ is given by

σir(st) := σi(st)

√
1− e−2αi(st)r

2αi(st)

and the vector Jr := (Jxr , J
y
r )ᵀ is given by

J ir(st) :=

qir(st)∑
m=1

e−α
i(st)(r−τ im) J im.

The random jump times τ im assume values in the interval (0, r] according to the

jump intensity λi of the corresponding Poisson process qir and the state dependent

random variables Ri
r(st) satisfy all assumptions made in (2.10).

2.1.4.3 Probabilistic properties of the discretized Solution

At this point let us consider the Benchmark model, where st = 1 for all t ∈ T . Then

the bivariate model dynamics are governed by two OU processes fluctuating around

a long term level. In that case the comovement is primarily described by the correla-

tion parameter ρ (compare (2.2)). A profound study inter alia on the probabilistic

features can be found in Jensen [Jen09]. Here we restrict ourselves to comment, that

such a model evolves according to a joint bivariate normal distribution conditioned

on the previously observed prices. The corresponding parameter estimates consitute

the benchmark values for our empirical analysis (compare Section 2.5).

With regard to the Markov modulated models, i.e. Markov model I and Markov

model II, let us first consider the cases st 6= 1 all modulating independent stochas-

tic processes x and y . Note, the verification of independent jumps is postponed
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until Section 2.4 and supposed to be satisfied for now. Hence, we can restrict our

considerations to the one-dimensional case. Moreover, it is sufficient to consider the

dynamics of the (electricity price) process x . Then xt conditioned on xt−r is given

by

xt = xt−r e
−αx(st)r + fx(st)(1− e−α

x(st)r) + fxJ (st) + σxr (st)R
x
r (st) + Jxr (st)

for all t ∈ T . Thereafter, let us take a look at the probabilistic properties of the

distinct Markov modulated model approaches.

To begin with, we consider the model specifications posed within Markov model II.

More specifically, we consider the marginal mean reverting process dynamics being

present as soon as st = 3 . Then given xt−r the density of the continuous part

denoted by xct conditioned on the event {sxt−r = 1} at time t is given by

Φx
t (θ| sxt−r = 1) := φ

(
·; ext,r,

√
vxr
)
, (2.11)

where φ(·; mean, sd) denotes the marginal density of the normal distribution with

mean ext,r = fx(1 − e−αxr) + xt−r e
−αxr and standard deviation (sd)

√
vxr = σxr

√
r .

Moreover, let the conditional density be characterized by the parameter vector θ

(compare Section 2.2).

According to Erlwein et.al. [EBM10] we have seen in (2.9) that the jump part xJt
with regard to (2.3) can be approximated on an interval [t− r, t] by the term

qxr∑
m=1

e−α
x(r−τxm) Jxm = e−α

x(st)r(Zx
t − Zx

t−r)

for τxm ∈ (0, r] and qxr 6= 0 . By the stationarity of the compound poisson process it

holds (Zx
t − Zx

t−r) ∼ Zx
r := xJ . Thus, according to (2.3) the density of xJt is given

by
∞∑
k=0

e−λ
x r(λx r)k

k!
φ(·; µJx, σJx),

where µJx := µxJ e
−αx rk and σJx := σxJ e

−αx r
√
k . Thereafter, pursuant to the

results of Hanson and Westman [HW02] the density of xt can be deducted as the

convolution of the density of the continuous part xct and the density of the jump

part xJt . Altogether, if the process x is governed by regime st ∈ {2, 4} at date

t (and we are dealing with the specifications of Markov model II ), the transition

density of xt conditioned on xt−r is given by

Zxt (θ) :=
∞∑
k=0

e−λ
x r(λx r)k

k!
φ
(
·; ext,r + µJx ,

√
vxr + σJx

)
. (2.12)
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After that, we look at the dynamics suggested by Markov model I. The marginal mean

reverting process dynamics of x are equivalent to the dynamics of Markov model II.

Hence, again the density of the continuous part denoted by xct conditioned on the

event {sxt−r = 1} at time t is given by (2.11). Attention needs to be payed to the

derivation of the probabilistic features of the dynamics governed by the spike regime

state, i.e. sxt = 2 . According to Markov model I the price xt given xt−r being

observed in the spike regime state is given by

xt = xt−r + fxJ r +

qxr∑
m=1

Jxm.

Thus, if sxt = 2 the continuous part of x is given by xct = xt−r + fxJ r and the

remaining term xJt =
∑qxr

m=1 J
x
m constitutes the jump part. Clearly, the mean of

the continuous part is µcxt = xct and the standard deviation is σct = 0 .

Turning to the jump part according to (2.3) we have µJx = µxJk and σJx = σxJ
√
k ,

where k represents the number of jumps on an interval of length r . Analogously, we

obtain the transition density of xt conditioned on xt−r when the process is governed

by one of the spike regime states st ∈ {2, 4} at date t , i.e.

Zxt (θ) :=
∞∑
k=0

e−λ
x r(λx r)k

k!
φ(·; µcxt + µJx, σJx). (2.13)

For such an analysis let us stress the importance of considering specific process

dynamics, that have prevailed at least over the period [t− r, t] by Assumption 2.1.

As mentioned before (compare Remark 2.1) the Markov modulated models involve

the so-called issue of latent prices. The key to solving the issue of latent prices will

be in the choice of r , i.e. the number of past periods considered. It is reasonable

(compare Section 2.4) to assume the absence of latent prices in the spike regime

states. Thus the issue of latent prices solely arises within the calculation of transition

densities corresponding to regime states inferring mean reverting diffusion dynamics.

Nevertheless, the calculation of transition densities corresponding to regime states

inferring jump-diffusion dynamics involves the well-known pitfalls, when estimating

jump-diffusion models as encountered e.g. by Ait-Sahalia [AS04]. We will discuss and

provide ways to deal with these challenges in Section 2.3 (accounting for the issue of

latent prices) and Section 2.4 (accounting for the pitfalls in estimating jump-diffusion

models). First of all, we want to explain the general procedure of calibrating the

proposed model to data observed on the market.
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2.2 Calibration Procedure in the case of a Regime-

Switching Model

Which model should be chosen? Or to say it more accurately: Which particular

parameter specification most adequately captures the comovement of electricity and

gas prices? These fundamental questions involve two views. Firstly, this refers to

the qualitative structure, i.e. the particular form of the diffusion term or the jump

feature. In our case the particular form is determined by the different approaches

described in Section 2.1.2. Secondly, the quantitative aspect of the model consists

in the particular choice of numbers for the parameters.

In order to estimate values of the model parameters, we combine different methods.

On the one hand we use two types of algorithms developed by Hamilton and Kim

to obtain a Bayesian inference about the posterior probability distribution for

the state of the Markov chain at some fixed point of time. On the other hand, the

Expectation Maximization algorithm (EM) developed by Dempster, Laird and

Rubin is used for finding maximum likelihood estimates of the model parameters

taking into account that the model depends on unobserved latent variables.

As already mentioned, during the different steps of this calibration procedure one

faces some difficulties. Throughout the subsequent sections we want to explain the

procedure and address these issues. At first, Section 2.2.1 provides the general pro-

cedure along with an introduction to the used methods. The procedure mainly

describes how to deal with the fact, that the regime state variable is not observable.

Standard Maximum Likelihood (ML) is therefore not applicable. Thus, Hamilton

[Ham94] provided a method using Bayesian inference techniques to derive a proba-

bility distribution for the unobservable regime state variable st .

Secondly, the issue of latent prices will be covered by Section 2.3. We contribute by

presenting a method to derive analytical expressions for those likelihood functions

involving latent prices. The method uses the already derived probability distribution

for the unobservable regime state variable along with Bayes theory.

Last but not least, another well-known difficulty is the simultane calculation of pa-

rameter estimates for the jump and diffusion part of the underlying (bivariate) ob-

servation process. In the empirical jump-diffusion literature, such models (basically

going back to Merton’s (1976) option pricing model) are usually estimated with stan-

dard ML. However, the estimation is not as easy as it might appear. For example,

Kiefer (1978) [Kie78] shows, that the likelihood function for some parametric spec-

ifications is unbounded, which causes inconsistency of standard ML. Along with a
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more profound discussion of the jump part of the processes this topic will be covered

by Section 2.4.

2.2.1 The Iterative Calibration Procedure

This section provides the general procedure we have chosen to identify the quantita-

tive aspect of the proposed bivariate spot price model. Hence, we want to determine

a particular choice of parameter values for each model approach. Let

Ωt = {z′0, z′1, z′2, . . . , z′t}

be a set of observations obtained through date t . If the process is governed by

regime st = j for any j = 1, 2, . . . , J at date t , then the conditional density of

zt = z′t is assumed to be given by

f(z′t|Ωt−1, st = j; θ) = P(zt = z′t|Ωt−1, st = j; θ), (2.14)

where θ is the vector of parameters characterizing the conditional density. Note,

conditioning the density on Ωt−1 in abuse of notation is the same as condition-

ing on the event {z0 = z′0, z1 = z′1, . . . , zt−1 = z′t−1} . Generally, we deal with J

different regimes. Thus, there are J different densities represented by (2.14) for

j = 1, 2, . . . , J . These densities will be collected in the (J × 1) vector η such that

η
(j)
t (θ) := f(z′t|Ωt−1, st = j; θ) for all j and t . Introducing the general procedure of

identifying particular parameter values we leave the exact calculation for later and

assume for now (2.14) to be given for j = 1, 2, . . . , J .

The general calibration procedure is derived as an iterative process based on Bayesian

inference methods proposed by Hamilton and another algorithm proposed by Kim

(to be found in Chapter 22.4 of [Ham94]). We combine these methods with the

Expectation Maximization algorithm. The main issue we want to address within this

section is the unobservability of the regime state variable. The unobserved regime

st is presumed to have been generated by some probability distribution. A tool for

finding such a probability distribution has been introduced by Hamilton in [Ham94]

and from now on will be referred to as the Hamilton filter.

Before starting the particular steps of the calibration procedure, we introduce sepa-

rately the methodology of the used filter and algorithms. Being familiar with those

tools the reader can immediately go to Subsection 2.2.1.4 where Algorithm 2.4 sum-

marizes the steps of the calibration procedure proposed in this work.
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2.2.1.1 The Hamilton Filter

In his work Hamilton [Ham94] developed a recursive estimation method for the

probability that the market is in a certain regime state at time t or equivalently

that the Markov chain s assumes a specific value at time t . Recall, that method

will be referred to as the Hamilton filter.

It can be described the following way: Assuming the vector of population parameters

θ is known with certainty, it is possible to make an inference about the unobservable

variable st , where s := (st)t∈T is a homogeneous Markov chain in discrete time

(compare Section 2.1.1). Let P(st = j |Ωt; θ) denote the inference about the value

of st based on the observed data Ωt = {z0, z1, . . . , zt} through date t and based on

knowledge of θ . We will refer to this conditional probability as posterior prob-

ability. The prior probability is then denoted by P(st = j|Ωt−1; θ) , which can

be imagined as a forecast of how likely the process is in regime j in period t given

observations obtained through date t− 1 .

Optimal estimates for the inference and forecast (i.e. for the posterior and prior

probabilities) can now be found by the subsequent algorithm: To begin with collect

the posterior probabilities in a vector

ξt|t =

P(st = 1 |Ωt; θ)
...

P(st = J |Ωt; θ)


and the prior probabilities in a vector

ξt|t−1 =

P(st = 1 |Ωt−1; θ)
...

P(st = J |Ωt−1; θ)


for all t ∈ T .

Based on these introductionary assumptions the corresponding iterative Algorithm

2.1 includes three different steps.

Algorithm 2.1 (Hamilton Filter). Start the algorithm with t− 1 = k for some date

k < T such that the estimate ξ̂k|k is known, i.e.

1. Calculate the prior probability at time t according to the rule

ξ̂t|t−1 = P ξ̂t−1|t−1

where P is the (J × J) transition matrix.
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2. Update the posterior probability at time t according to the rule

ξ̂t|t =
(ξ̂t|t−1 � ηt)

1T (ξ̂t|t−1 � ηt)
,

where � denotes element-wise multiplication and 1 is a (J × 1) vector con-

taining only unity entries. Using componentwise notation, that is dividing the

total probability of observing zt in state j by the total probability of observing

zt , we have

P(st = j|Ωt; θ) =
P(st = j|Ωt−1; θ) f(z′t|Ωt−1, st = j; θ)∑J
`=1 P(st = `|Ωt−1; θ) f(z′t|Ωt−1, st = `; θ)

.

3. Go back to 1. with t→ t+ 1 as long as t ≤ T .

By iterating through the different steps one generates a probability distribution for

the unobserved regime st given a value for the population parameter vector θ .

As a byproduct one obtains the likelihood of observing the data over a time horizon

{k, k+1, . . . , T} . At each point of time the likelihood function is the weighted sum of

the likelihood conditioned on the different regimes, where the weights are the prior

probabilities for the corresponding regime states obtained through the algorithm.

Thus we have

L(θ) =
T∏
t=k

J∑
j=1

1{st=j}P(st = j|Ωt−1; θ) f(z′t|Ωt−1, st = j; θ)

or equivalently

L(θ) = exp

{
T∑
t=k

J∑
j=1

1{st=j} log [P(st = j|Ωt−1; θ) f(z′t|Ωt−1, st = j; θ)]

}
.

Finally, the log-Likelihood function can be obtained as

logL(θ) =
T∑
t=k

J∑
j=1

1{st=j} log [P(st = j|Ωt−1; θ) f(z′t|Ωt−1, st = j; θ)]. (2.15)

Having established a way to calculate a probability distribution for the unobserved

regime st and having an explicit form for the log-likelihood function logL(θ) , we

have produced the basic requirements to address the problem of finding optimal

parameter estimates.

In statistics an Expectation Maximization (EM) algorithm is used for finding max-

imum likelihood estimates of parameters in probabilistic models, where the model

depends on unobserved latent variables. Hence, it constitutes the right tool for our

application.
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2.2.1.2 The Expectation Maximization (EM) Algorithm

EM is an iterative method alternating between performing an expectation step, which

computes an expectation of the log likelihood with respect to the current estimate of

the distribution of the latent variables and a maximization step, which computes the

parameters maximizing the expected log likelihood found on the expectation step.

Applying EM to the log-likelihood function given in (2.15) yields the particular steps

of Algorithm 2.2.

Algorithm 2.2 (EM Algorithm).

1. E-Step: Given observations ΩT obtained through date T based on the cur-

rent estimate θ(m) of the population parameter vector the expectation of the

likelihood is

E[logL(θ) |ΩT ; θ(m)] =
T∑
t=k

J∑
j=1

P(st = j|ΩT ; θ(m))

· log
[
P(st = j|Ωt−1; θ(m)) f(z′t|Ωt−1, st = j; θ)

]
,

where P(st = j|ΩT ; θ(m)) is the current estimate of the probability of the

latent variable st , determined via the so-called Kim Algorithm explained in

Subsection 2.2.1.3.

2. M-Step: Choose θ to maximize the expectation obtained during the previous

step, i.e.

θ(m+1) = arg max
θ

E[logL(θ) |ΩT ; θ(m)]

The E-Step of the EM algorithm is based on the current estimate of the probability

distribution of the latent variables. In our setting, that means we need to find

estimates for ξt|T = P(st = j|ΩT ; θ) . These quantities represent so-called smoothed

inferences about the regime the process was in at date t based on data obtained

through some later date T . A tool for determining such smoothed inferences has

been developed by Kim in 1993.

2.2.1.3 The Kim Algorithm

Running through Algorithm 2.1 generates a vector of posterior probabilities ξ̂t|t and

a vector of prior probabilities ξ̂t|t−1 for all t ∈ T . These probabilities are then used

to calculate the smoothed inferences by an application of the Kim algorithm. In

vector form the algorithm can be described by the subsequent steps.
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Algorithm 2.3 (Kim Algorithm).

1. Start with ξ̂T |T , the vector of posterior probabilities at time T .

2. Then ξ̂t|T can be found by iterating backwards for t = T−1, T−2, . . . , k, . . . , 1

according to the rule

ξ̂t|T = ξ̂t|t � {P T [ξ̂t+1|T � ξ̂t+1|t]},

where � denotes element-wise division and recalling P to be the transition

matrix introduced in Section 2.1.1.

This algorithm is only valid if st follows a first-order Markov chain, which in our

setting (compare Section 2.1.1) is the case.

2.2.1.4 The Calibration Procedure

Up to now, we have arranged all tools required in the setting of the discussed model

to calculate estimates for the involved parameters. The estimation method then is

in fact a combination of Maximum Likelihood to derive optimal parameter estimates

(where we use a variant of the EM algorithm) and Bayesian inference to derive an

estimate for the distribution of the latent variables (where we use the Hamilton Filter

for optimal inferences and the Kim Algorithm for smoothed inferences).

Summarizing all particular steps necessary to calculate optimal parameter estimates

in the light of the considered regime-switching spot price model (introduced in Sec-

tion 2.1.2) finally yields Algorithm 2.4. Note that the involved modulating ( J -state)

Markov chain s satisfies all specifications as of Section 2.1.1.

Algorithm 2.4. Suppose the value of the parameter vector θ is known, i.e. make an

initial guess denoted by θ(0) .

1. Determine the vector of transition densities ηt for all t ∈ {k, k + 1, . . . , T} ,

where

η
(j)
t (θ) = f(z′t|Ωt−1, st = j; θ)

for j = 1, . . . , J .

2. Start the Hamilton Filter, where the initial probabilities π = ξ̂k|k can be found

according to

π = (ATA)−1AT b
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with π = (π1, π2, . . . , πJ)T , A =

(
I − P

1

)
, I the (J ×J) identity matrix, P

the (J × J) transition matrix, 1 a (1 × J) vector having only unity entries

and b a ((J + 1) × 1) vector taking on the value unity for the (J + 1) th

entry and the value zero otherwise. Thus one obtains a probability distribution

for the unobservable regime state st , i.e at each point of time within the time

horizon {k, k+ 1, . . . , T} we obtain for j = 1, . . . , J a prior probability of the

unobservable regime state

ξ̂
(j)
t|t−1 = P(st = j|Ωt−1; θ(m))

based on the knowledge of θ(m) . As a by-product one obtains a value of the

log-likelihood function for the observed data ΩT evaluated at the value of θ(m) ,

i.e. logL(θ(m)) , calculated according to (2.15).

3. Calculate the vector of smoothed inferences ξ̂t|T (and ξ̂t−r|t for all r ∈ {1, 2, . . . , K}
with r < t ) for all t ∈ {k, k + 1, . . . , T} using the Kim Algorithm, where e.g.

ξ̂
(j)
t|T = P(st = j|ΩT ; θ(m))

for j = 1, . . . , J .

4. During the E-Step calculate the expectation of the log-Likelihood function with

respect to the current estimate of the distribution for the latent variables, i.e.

E[logL(θ) |ΩT ; θ(m)] =
T∑
t=k

J∑
j=1

P(st = j|ΩT ; θ(m))

· log
[
P(st = j|Ωt−1; θ(m)) f(z′t|Ωt−1, st = j; θ)

]
.

5. During the M-Step determine the parameter values, that maximize the ex-

pected log likelihood found on the E-Step under some constraints. The esti-

mates can be found by forming the Lagrangian

G(θ) = E[logL(θ) |ΩT ; θ(m)] + g1(1−
J∑
j=1

πj) +
J∑
ν=1

gν+1(1−
J∑
µ=1

pν,µ),

where g1, . . . , gJ+1 are the Lagrangian multipliers. Calculating the derivative

with respect to θ , setting the gradient equal to zero and solving for θ leads to

a system of non-linear equations. That system cannot be solved analytically for

θ as a function of the observed data ΩT . The different functions corresponding

to each entry of θ depend further on the current value θ(m) .
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6. Then use these functions to obtain a new value for the parameter vector θ

denote it by θ(m+1) . Now let m→ m+ 1 .

7. Use θ(m) to repeat all steps until it holds

|θ(m+1) − θ(m)| < ε

for some small value ε > 0 .

Obviously, in order to perform the E-Step of the introduced calibration procedure

we need an explicit form of the involved transition densities f(z′t|Ωt−1, st = j; θ) . As

mentioned earlier, the derivation of these densities is not straightforward and will be

covered by the next section.

2.3 The Issue of Latent Prices

Having the intuitive picture of a bivariate regime-switching jump diffusion model in

mind, throughout the calibration procedure the next question arises: Switching be-

tween mean reverting dynamics represented by autoregressive time series and jump

diffusion dynamics represented by (autoregressive time series plus) compound pois-

son processes - how does that work?

Such an issue becomes obvious when performing the E-Step of the introduced calibra-

tion procedure. Here an explicit formula for the probability η
(j)
t (θ) := f(z′t|Ωt−1, st =

j; θ) is required. That is the probability of observing zt given Ωt−1 , if the process

z is governed by regime state st at date t based on knowledge of θ . To make the

point more precise, we look at a concrete example:

Example 2.1. According to Section 2.1.4.3 the probability density function (or tran-

sition density) inferred by regime state st = 1 is given by the bivariate normal

distribution. The transition density of zt at date t corresponding to those stable

dynamics is then of the form

f(z′t|Ωt−1, st = 1; θ) = (2.16)

1

2π
√

1− ρ2
√
vx1 v

y
1

exp

{
− 1

2(1− ρ2)
·

(
(xt − ext,1)2

vx1
+

(yt − eyt,1)2

vy1
− 2ρ

(xt − ext,1)(yt − eyt,1)√
vx1 v

y
1

)}
:= Φxy

t (θ),



CHAPTER 2. REGIME-SWITCHING MODEL 33

where e.g. ext,1 := fx(1− e−αx) + xt−1 e
−αx and vx1 := (σx1 )2 denote the conditional

moments on the given probability space. However, assume at date t − 1 the state

st−1 = 4 has been present such that according to the specifications made in Section

2.1.4.3 the transition density of zt−1 is assumed to be given by the product

f(z′t−1|Ωt−2, st−1 = 4; θ) := Zxt−1(θ) · Zyt−1(θ) (2.17)

and call the inferred process dynamics - jump dynamics. (The reasoning for the

assumption of independent jumps will be established in Section 2.4.) Now, the

conditional probability density function given in (2.16) does not apply. How to

choose the density after that?

Within that specific scenario we face the following situation: Although, today at

time t the price is the realization of a mean reverting process at the previous point

of time t − 1 the regime state variable st−1 indicates, that the price has been the

realization of a jump(-diffusion) process. Hence, the distribution of the observed

price at time t cannot as usually be conditioned on the previous observation zt−1 .

We want to propose a way to condition the distribution on the last price observed in

a regime state inferring again a mean reverting price process such that the parameter

modulating the stable dynamics are estimated exclusively based on those “normal”

prices. The first (to our knowledge) who addressed this issue were De Jong & Huis-

man in their work [DJH02]. Thereafter, also Kosater & Mosler [KM05] accounted

for latent prices in the specification of the transition density. However, in view of

the bivariate model structure we deal with a more complex problem that needs to

be addressed.

If we face a situation as generated by Example 2.1, the distribution of the price zt at

time t must be conditioned on the first price zt−r at time t−r ∈ T with r < t and

r = 1, 2, . . . , K , that is again a realization of the process driven by stable dynamics.

Now K denotes the maximum time span for which the transition density possibly

needs to be calculated. In fact, given one such point of time t − r the bivariate

transition density is of the form

f(z′t|Ωt−1, st = 1, st−r = 1; θ) (2.18)

=
1

2π
√

1− ρ2
√
vxr v

y
r

exp

{
− 1

2(1− ρ2)
·

(
(xt − ext,r)2

vxr
+

(yt − eyt,r)2

vyr
− 2ρ

(xt − ext,r)(yt − e
y
t,r)√

vxr v
y
r

)}
:= Φxy

t (θ|st−r = 1),
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where e.g. ext,r := E[xt|xt−r] and vxr := Var[xt|xt−r] denote the involved conditional

moments on the given probability space. The explicit form of these moments are

provided in (2.11).

After all, we notice the unobservability of the regime state. In order to calculate the

desired transition densities the introductionary question can now be specified: How

to determine that number of periods r one needs to consider, such that at date t−r
the process is again driven by mean reverting dynamics? In the course of tackling

that concern, we will distinguish the marginal from the bivariate scenario.

2.3.1 Extension of the Markov Chain State Space

The intuitive first step to address the issue of latent prices pictured with the above

scenario is then to look at the preceeding regime state. In order to do so, we extend

the Markov chain s such that one state of the extended Markov chain s̃ supplies

information about the actual regime state and about the most recent regime state

from the past.

Definition 2.3 (Extended State Space). Let B = {1, 2, . . . , 16} be a finite state

space in discrete time t ∈ T , where at time t the elements are specified by

s̃t =



1 if st = 1 and st−1 = 1

2 if st = 2 and st−1 = 1

3 if st = 1 and st−1 = 2

4 if st = 2 and st−1 = 2

5 if st = 1 and st−1 = 3

6 if st = 2 and st−1 = 3

7 if st = 1 and st−1 = 4

8 if st = 2 and st−1 = 4

9 if st = 3 and st−1 = 1

10 if st = 4 and st−1 = 1

11 if st = 3 and st−1 = 2

12 if st = 4 and st−1 = 2

13 if st = 3 and st−1 = 3

14 if st = 4 and st−1 = 3

15 if st = 3 and st−1 = 4

16 if st = 4 and st−1 = 4.

Then, s̃ is defined as a homogeneous Markov chain with state space B fulfilling

all requirements made on the Markov chain s introduced in Section 2.1.1. The
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corresponding (16× 16) transition matrix P̃ assembles to

P̃ =


P̃1 P̃1 0 0

0 0 P̃3 P̃3

P̃2 P̃2 0 0

0 0 P̃4 P̃4

 (2.19)

where

P̃1 =


p11 0 p11 0

p12 0 p12 0

0 p21 0 p21

0 p22 0 p22

 , P̃2 =


p13 0 p13 0

p14 0 p14 0

0 p23 0 p23

0 p24 0 p24

 ,

P̃3 =


p31 0 p31 0

p32 0 p32 0

0 p41 0 p41

0 p42 0 p42

 , P̃4 =


p33 0 p33 0

p34 0 p34 0

0 p43 0 p43

0 p44 0 p44


and p`j are the probabilities of transitioning from regime state ` to regime state j

for all `, j = 1, . . . , 4 .

Thus, the observation process z is now supposed to be modulated by the Markov

chain s̃ , which contains information about the regime state both from today and

from the previous point of time. To derive the vector of transition densities η , we

define different associated subsets of the state space B denoted by L := Lx∪Ly∪Lxy

and S := Sx ∪Sy ∪Sxy . For any state within one of these sets the derivation of the

desired transition densities then works analogously.

Regime State Sets. Let

Lx = {11, 15} and Ly = {6, 8}

be the set of all states s̃t ∈ B the Markov chain s̃ assumes at date t , such that

sit = 1 and sit−1 = 2 , called the marginal latent state sets. Let

Lxy = {3, 7, 5}

be the set of all states s̃t ∈ B the Markov chain s̃ assumes at date t, such that

st = 1 and st−1 6= 1 , called the bivariate latent state set. Let

Sx = {2, 4, 6, 8} and Sy = {9, 11, 13, 15}
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be the set of all states s̃t ∈ B the Markov chain s̃ assumes at date t, such that

sit = 2 , called the marginal spike state sets. Let

Sxy = {10, 12, 14, 16}

be the set of all states s̃t ∈ B the Markov chain s̃ assumes at date t, such that

st = 4 called the bivariate spike state set.

Regime State Parameters. Let θiMR be the set collecting all parameter entries

of θ , that correspond to the (marginal) mean reverting regime (i.e. “normal”) states.

Then

θiMR := {αi, f i, σi }.

Let θiJ be the set collecting all parameter entries of θ , that correspond exclusively

to the (marginal) spike regime (i.e. “abnormal”) states. Then

θiJ :=

{f iJ , µiJ , σiJ , λi} in case of Markov model I ,

{µiJ , σiJ , λi} in case of Markov model II .

Vector of Transition Densities. Now, all transition densities conditioned on the

current regime state are assembled in the (16 × 1) vector η , which for η
(`)
t (θ) =

f(z′t|Ωt−1, s̃t = `; θ) and ` ∈ B for all t ∈ T is componentwise given by

η
(1)
t (θ) = Φxy

t (θ)

η
(2)
t (θ) = Zxt (θ) Φy

t (θ)

η
(`)
t (θ) = Lxy`,t(θ) if ` ∈ Lxy

η
(4)
t (θ) = Zxt (θ) Φy

t (θ)

η
(`)
t (θ) = Zxt (θ)Ly`,t(θ) if ` ∈ Ly

η
(9)
t (θ) = Φx

t (θ)Z
y
t (θ)

η
(`)
t (θ) = Zxt (θ)Zyt (θ) if ` ∈ Sxy

η
(`)
t (θ) = Lx`,t(θ)Z

y
t (θ) if ` ∈ Lx

η
(13)
t (θ) = Φx

t (θ)Z
y
t (θ),

(2.20)

where Φi
t(θ) and Φxy

t (θ) respectively, represent the marginal and bivariate transition

densities belonging to the normal distribution each conditioned on the last price x′t−1 ,

y′t−1 or z′t−1 , respectively, observed at date t−1 . The explicit expressions are stated

in (2.11) and (2.16), respectively. Then, Z it(θ) represents the marginal transition

density corresponding to those spike regime states s̃t ∈ S i suggesting sit = 2 . The

corresponding transition density is introduced in (2.13) (or in (2.12) by means of

Markov model II ). Most importantly (with regard to the current section), for all
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` ∈ Li the terms Li`,t(θ) and for all ` ∈ Lxy the terms Lxy`,t(θ) respectively represent

the marginal and bivariate tansition densities involving latent prices.

The next section is then dedicated to provide the method we propose for deriving

those likelihood functions involving latent prices and thus to answer the preceeding

question. We will call them marginal and bivariate ( r -stage) transition densities.

2.3.2 Derivation of ( r -stage) Transition Densities

This work involves several different approaches to model the comovement of elec-

tricity and gas prices adequately as proposed throughout Section 2.1.3. In order to

make the subsequent exposition fully understandable it would be desirable to specify

the model framework chosen to work with: It is reasonable to restrict the issue of

latent prices to those regime states inferring mean reverting dynamics. Hence, the

actual form of the dynamics goverened by the spike regime states does not matter .

According to Section 2.1.3 these observation process dynamics for all u ∈ [t − r, t]
and t ∈ T are given by

dxu = −αx (xu − fx) du+ σx dMx
u , if sxt = 1

dyu = −αy (yu − f y) du+ σy dMy
u , if syt = 1

(2.21)

satisfying all assumptions posed before.

To begin with, we concentrate on the bivariate case dealing with latent prices. Ex-

emplarily, think of one specific scenario when s̃t = 7 or equivalently when st = 1

and st−1 = 4 . (That complies with Example 2.1 chosen in the introductionary part

of the present Section 2.3.) Then the task is to calculate the density Lxy7,t(θ) of

observing the data zt = z′t at time t given the process dynamics are modulated by

s̃t = 7 , given the observations obtained through date t− 1 , i.e. Ωt−1 , and based on

the knowledge of the parameter vector θ .

Now, we proceed in three different steps to derive explicit expressions for the ( r -

stage) transition densities for all ` ∈ L : First, to picture the explicit scenario and

more importantly to picture the possible past evolution of the Markov chain inferred

by regime states s̃t assuming values in the set L the corresponding scenarios are

illustrated. Second, we apply Bayes theory to derive an analytical expression for the

transition densities Lxy`,t(θ) = f(z′t |Ωt−1, s̃t = `) for all ` ∈ Lxy . Third, the analogue

result is stated for the marginal cases, i.e. for all ` ∈ Li the expressions Li`,t are

provided.
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Markov Chain Scenarios. Just like Example 2.1 suggests, the realization s̃t = 7

of the Markov chain yields the following scenario: Today’s observations x′t and y′t
are assumed to stem both from the stable dynamics, i.e. st = 1 (or equivalently

sxt = 1 and syt = 1 ). The previously observed prices at date t − 1 are assumed

to stem both from the spike regime, i.e. st−1 = 4 (or equivalently sxt−1 = 2 and

syt−1 = 2 ). As explained before we face a scenario involving latent prices. Figure 2.1

now illustrates the possible evolution of the Markov chain s̃ in the case, when at time

t the Markov chain s̃ assumes the regime state s̃t = 7 . Thereafter, the analogous

illustrations are provided for the remaining states inferring bivariate mean reverting

dynamics involving the issue of latent prices. In particular Figure 2.2 corresponds

to the state s̃t = 3 and Figure 2.3 corresponds to the state s̃t = 5 .

Key Idea. Having gained an understanding of how the Markov chain s̃ possibly

evolved in the past, when at time t one of the bivariate latent states s̃t = ` ∈
Lxy is predominant, we turn to the task of calculating an analytical expression for

the corresponding bivariate ( r -stage) transition densities Lxy`,t (θ) . The key idea to

address this issue is to find an integer r = 2, 3, . . . , K at time t with r < t , such that

the most recent observation z′t−r , again modulated by stable dynamics, has occured

at date t − r . Due to the unobservability of the regime states the exact point of

time cannot be fixed. Hence, the ( r -stage) transition density will be derived as the

sum of transition densities conditioned on the event, that at date t−r the dynamics

stem again from the stable regime (i.e. sit−r = 1 ) weighted by the corresponding

probabilities, where summation is taken over the dates r = 2, 3, . . . , K . To account

for the requirement of z′t−r (x′t−r or y′t−r respectively) being the most recent prices

observed again in the stable regime (such that e.g. all prices z′t−ν for 0 < ν < r

are assumed to stem from spike regime states) we need to derive the conditional

probability, that is e.g. for all ` ∈ Lxy given by

p`t−r,t := P(st−r = 1, st−ν 6= 1, 1 < ν < r | s̃t = `,Ωt; θ)

for all t ∈ T . In general each latent state ` ∈ L implies certain subsets J ∗` and J`
of the state space B . These sets are given by (compare Figures 2.1, 2.2 and 2.3)
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t t− 1oo t− 2oo t− r + 1 t− roo

ONMLHIJK1, 1

s̃t−1=10

}}{{{{{{{{{{

ONMLHIJK1, 1 ONMLHIJK2, 2
s̃t=7oo ONMLHIJK1, 2

s̃t−1=14
oo ONMLHIJK1, 2 ONMLHIJK1, 1

s̃t−r+1=9
oo

s̃t−r+1=2

}}{{{{{{{{{{

s̃t−r+1=10

��


















ONMLHIJK2, 1

s̃t−1=12CCCC

aaCCCC

ONMLHIJK2, 1

ONMLHIJK2, 2

s̃t−1=1611111111

XX11111111

ONMLHIJK2, 2

Figure 2.1: Possible state sequence inferred by regime state s̃t = 7 at time t . The

circle entries (i, j) for i, j ∈ {1, 2} refer to the regime state sxt−r = i and syt−r = j

at the specific date t − r with r = 1, 2, . . . , K and r < t . The rectangular boxes

depict the course of time.

t t− 1oo t− 2oo t− r + 1 t− roo

ONMLHIJK1, 1

s̃t−1=2

��


















ONMLHIJK1, 2

s̃t−1=6
{{{{

}}{{{{

ONMLHIJK1, 2

ONMLHIJK1, 1 ONMLHIJK2, 1
s̃t=3oo ONMLHIJK2, 1

s̃t−1=4
oo ONMLHIJK2, 1 ONMLHIJK1, 1oo

s̃t−r+1=10
{{{{

}}{{{{

aaCCCCCCCCCC

ONMLHIJK2, 2

s̃t−1=8

aaCCCCCCCCCC ONMLHIJK2, 2 ONMLHIJK1, 2
s̃t−r+1=14

oo

aaCCCCCCCCCC

Figure 2.2: Possible state sequence inferred by the regime state s̃t = 3 at time t .

The circle entries (i, j) for i, j ∈ {1, 2} refer to the regime state sxt−r = i and

syt−r = j at the specific date t− r with r = 1, 2, . . . , K and r < t . The rectangular

boxes depict the course of time.
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t t− 1oo t− 2oo t− r + 1 t− roo

ONMLHIJK1, 1

s̃t−1=9

��


















ONMLHIJK2, 1

s̃t−1=11
{{{{

}}{{{{

ONMLHIJK2, 1

ONMLHIJK1, 1 ONMLHIJK1, 2
s̃t=5oo ONMLHIJK1, 2

s̃t−1=13
oo ONMLHIJK1, 2 ONMLHIJK1, 1oo

aaCCCCCCCCCC

s̃t−r+1=10
{{{{

}}{{{{

ONMLHIJK2, 2

s̃t−1=15

aaCCCCCCCCCC ONMLHIJK2, 2 ONMLHIJK2, 1
s̃t−r+1=12

oo

aaCCCCCCCCCC

Figure 2.3: Possible state sequence inferred by the regime state s̃t = 5 at time t .

The circle entries (i, j) for i, j ∈ {1, 2} refer to the regime state sxt−r = i and

syt−r = j at the specific date t− r with r = 1, 2, . . . , K and r < t . The rectangular

boxes depict the course of time.

J` =


{2, 9, 10} if ` ∈ Lxy,

{2, 6, 10, 14} if ` ∈ Lx,

{9, 10, 11, 12} if ` ∈ Ly
and J ∗` =



{10} if ` = 7,

{2} if ` = 3,

{9} if ` = 5,

{2, 6} if ` = 11,

{10, 14} if ` = 15,

{9, 11} if ` = 6,

{10, 12} if ` = 8.

Then with the specific choice of these sets implied by regime state ` ∈ L at time t

the conditional probability p`t−r,t is given by the next lemma.

Lemma 2.1. For any t ∈ T and ` ∈ L the probability p`t−r,t is given by

p`t−r,t =


∑

j∗∈J ∗`
P(s̃t−1 = j∗ | s̃t = `,Ωt; θ) r = 2∑

j∈J` P(s̃t−r+1 = j | s̃t = `,Ωt; θ) · p̃(j, `) r ∈ {3, 4, . . . , t}
(2.22)

where

p̃(j, `) =
∑

kν∈B\J`
ν=1,...,r−2

p̃k1,k2 · p̃k2,k3 · · · · · p̃kr−2,j

with p̃kν ,kν+1 := P(s̃t−ν = kν |s̃t−(ν+1) = kν+1, s̃t = `,Ωt; θ) .

Proof. The proof is given in Appendix A.
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With P(s0 = 1) (compare Assumption 2.2) we immediately have

t∑
r=2

p`t−r,t = 1

for all t ∈ T and ` ∈ L .

Remark 2.4. With spikes occuring rather rarely in the historical time series of elec-

tricity and gas spot prices, it makes sense to restrict r by an integer K . Kosater &

Mosler [KM05] even suggested to fix K at the value of 5 . Throughout our numeri-

cal analysis the employed data supports the reasonability of such a choice. Hence we

use K = 5 . Moreover, we have seen that using time-dependent values of K = K(t)

or different values for the marginal and bivariate likelihoods does not significantly

improve the results.

Now an explicit expression for the bivariate ( r -stage) transition densities Lxy`,t(θ) =

f(z′t |Ωt−1, s̃t = ` ; θ) involving latent prices for all ` ∈ Lxy can be derived by

applying the subsequent Theorem 2.2 with the specific sets J` and J ∗` .

Theorem 2.2 (Bivariate ( r -stage) Transition Density). For all ` ∈ Lxy , t ∈ T the

transition density Lxy`,t(θ) of observing zt = z′t at date t inferred by regime state

s̃t = ` given Ωt−1 is given by

Lxy`,t(θ) =
∑
j∗∈J ∗`

P(s̃t−1 = j∗ | s̃t = `,Ωt−1; θ) · Φxy
t (θ|st−2 = 1)

+
t∑

r=3

∑
j∈J`

P(s̃t−r+1 = j | s̃t = `,Ωt−1; θ) · p̃(j, `) · Φxy
t (θ|st−r = 1),

where Φxy
t (θ|st−r = 1) is given by (2.18) for all r ∈ {2, 3, . . . , t} and p̃(j, `) is given

according to Lemma 2.1 for all j, ` .

Proof. Define the events Ajr := {s̃t−r+1 = j} , B := {zt = z′t} and C := {Ωt−1, s̃t =

`} for all j ∈ J` , t ∈ T and r ∈ {2, 3, . . . , t} . By a specific application of Bayes

Theorem, i.e.

P(A|B ∩ C; θ) =
P(A|C; θ) P(B|A ∩ C; θ)

P(B|C; θ)
,

for all j ∈ J` , t ∈ T and r ∈ {2, 3, . . . , t} we obtain

P(s̃t−r+1 = j|Ωt, s̃t = `; θ) =

P(s̃t−r+1 = j|Ωt−1, s̃t = `; θ) · P(zt = z′t|s̃t−r+1 = j,Ωt−1, s̃t = `; θ)

P(zt = z′t|Ωt−1, s̃t = `; θ)
,
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where the denominator is assumed to be positive. Otherwise, we have Lxy`,t(θ) = 0 .

Using the notation Ps̃t=`(A) := P(A|s̃t = `) together with Lemma 2.1 and

t∑
r=2

p`t−r,t = 1

for all ` ∈ Lxy we obtain

t∑
r=3

∑
j∈J`

Ps̃t=`(s̃t−r+1 = j|Ωt; θ) · p̃(j, `) +
∑
j∗∈J ∗`

Ps̃t=`(s̃t−1 = j∗|Ωt; θ) = 1.

This finally implies

Ps̃t=`(zt = z′t|Ωt−1; θ) =

t∑
r=3

∑
j∈J`

Ps̃t=`(s̃t−r+1 = j|Ωt−1; θ) · p̃(j, `) · Ps̃t=`(zt = z′t|s̃t−r+1 = j,Ωt−1; θ)

+
∑
j∗∈J ∗`

Ps̃t=`(s̃t−1 = j∗|Ωt−1; θ) · Ps̃t=`(zt = z′t|s̃t−1 = j,Ωt−1; θ).

Since Lxy`,t(θ) = Ps̃t=`(zt = z′t|Ωt−1; θ) and Φxy
t (θ|st−r = 1) = Ps̃t=`(zt = z′t|s̃t−r+1 =

j,Ωt−1, ; θ) for all j ∈ J` the statement is proved.

Analogously for all ` ∈ Li the marginal ( r -stage) transition densities Li`,t(θ) can

be derived in form of the subsequent Corollary 2.2.

Corollary 2.2 (Marginal ( r -stage) Transition Density). For all ` ∈ Li , t ∈ T
the transition density Li`,t(θ) of observing xt = x′t ( yt = y′t respectively) at date t

inferred by regime state s̃t = ` given Ωt−1 is given by

Li`,t(θ) =
∑
j∗∈J ∗`

P(s̃t−1 = j∗ | s̃t = `,Ωt−1; θ) · Φi
t(θ|sit−2 = 1)

+
t∑

r=3

∑
j∈J`

P(s̃t−r+1 = j | s̃t = `,Ωt−1; θ) · p̃(j, `) · Φi
t(θ|sit−r = 1),

where Φi
t(θ|sit−r = 1) is given by (2.11) for all r ∈ {2, 3, . . . , t} and p̃(j, `) is given

according to Lemma 2.1 for all j, ` .

Remark 2.5. The previously stated algorithms yield the posterior and prior proba-

bilities. Moreover, values for the smoothed inferences, i.e. P(s̃t−r = j |Ωt; θ) have

been calculated (compare Section 2.2.1). Similar to the techniques involved in the

derivation of the smoothed probabilities it is possible to calculate values for the prob-

abilities P(s̃t−r+1 = j | s̃t = `,Ωt−1; θ) . We omit the calculations at this point and

refer to Appendix A.
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Conclusion. To summarize, we note that we have found explicit expressions for

those transition density functions involving latent prices. Hence, we have answered

the preceeding question of how to determine that number of periods r one needs to

look back into the past, such that at date t− r the process is (most recently) again

driven by stable (mean reverting) dynamics. The key to solving the issue of latent

prices is to derive the specific ( r -stage) probabilities p`t−r,t provided in Lemma 2.1.

Thereafter, the ( r -stage) transition densities can be derived as the sum of densities

conditioned on the event, that at date t − r the dynamics stem again from regime

{1} , weighted by the corresponding probability, where summation is taken over the

dates r = 2, 3, . . . , t .

2.4 Spike Regime Transition Densities

After the derivation of the so called ( r -stage) transition densities, it is left to propose

a way to calculate transition densities corresponding to spike regime states. These

states suggest, that either the (electricity price) process x or the (gas price) process

y or both processes are modeled by jump(-diffusion) dynamics. We will call them

spike regime transition densities.

Now, the explicit form of the process dynamics governed by regime state variables

s̃t assuming values in the set S matters. Hence, we must distinguish between the

two possible models for the spike regime dynamics. On the one hand, the parameter

choice valid within the spike regime of Markov model II yields mean reverting jump

diffusion dynamics. On the other hand, the respective parameter choice valid within

Markov model I yields pure jump dynamics having a constant long term level but

no diffusive term.

Independence of Jumps. Based on economic considerations within the here pre-

sented bivariate regime-switching model, we assume the dependence relationship to

stem purely from the bivariate mean reverting regime states Lxy ∪ {1} . After that,

we do not expect to observe a direct link between electricity and gas prices when

observed in an “abnormal” state, i.e. a spike regime state. The comovement of elec-

tricity and gas prices is due to gas being a possible fuel for power stations. However,

shortage of gas supply must not necessarily lead to increasing electricity prices. The

electricity price is made during an auction balancing supply and demand including

all kinds of power stations, i.e. all kinds of fuels. On the other hand, a direct im-

pact of e.g. an electricity generation outage on the gas price is neither obvious nor

compulsory. Relying further on the study of historical data these considerations can
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also be transferred to other fuels. Hence, in terms of our regime-switching model it

is reasonable to pose the next assumption.

Assumption 2.3 (Independence of Jumps). The jump times τ im and the jump

sizes J im introduced in (2.3) corresponding to the observation processes x and y ,

respectively, are independent of each other.

Then immediately for all s̃t = j ∈ Sxy := {10, 12, 14, 16} ⊂ S (compare (2.20)) the

transition density of zt given Ωt−1 is given by

f(z′t|Ωt−1, s̃t = j; θ) = Zxt (θ) · Zyt (θ).

Thus, explicit expressions for the transition densities Z i(θ) belonging to the spike

regime states s̃t ∈ S must be proposed in such a way that they can be incorpo-

rated into the calibration routine suggested in Section 2.2. Due to the independence

assumption it is sufficient to deal with the marginal cases.

Absence of Latent Prices in the Spike Regime. With the discussion of latent

prices we have formed the basis for the study of the suggested different bivariate

regime-switching models. The intuition of switching between different dynamics

has been elaborated. At this point we want to make one true simplification: We

assume the absence of latent prices in the spike regime. The reasoning for such an

assumption is that spikes are modeled by processes where especially the jump size

is represented by a random variable. Hence although the Markov chain indicates

today’s price to stem from the price regime the jump size might be close to zero.

That possibility supports our idea to condition the spike transition densities always

on the last observed price no matter if it has been suggested to stem from the spike

regime or the normal mean reverting regime. If the latter is the case then we pretend

the last price to stem from the spike regime where the jump size has been close to

zero and the price has been somewhere around the long term level of the mean

reverting dynamics. The other way round such a reasoning would not work. If one

conditions the normal mean reverting price on a spike price the mean reversion speed

parameter might become arbitrarily large to pull prices back to the long term level.

The same is true for the volatility parameter. Our intention is to estimate the mean

reverting parameter exclusively from “normal” prices. To accomplish this task we

have provided the so-called ( r -stage) transition densitiess as introduced in Section

2.3.
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2.4.1 Estimating the Spike Parameters of Markov model II

As mentioned earlier, we must propose a way to include the spike regime transition

densities and the estimation of the corresponding parameters θJ ⊂ θ into the cali-

bration routine introduced in Section 2.2. For now, we deal with the marginal mean

reverting jump diffusion dynamics present within the spike regime of Markov model

II. More specifically, the underlying observation process dynamics inferred by the

spike regime states S are according to Section 2.1.3 given by
dxu = −αx (xu − fx) du+ σx dSxu + Jx dqxu, if sxt = 2

dyu = −αy (yu − f y) du+ σy dSyu + Jy dqyu, if syt = 2.

(2.23)

The results we have gained about the probabilistic features of the model in Section

2.1.4.3 yield the probability of observing xt inferred by any fixed regime state s̃t ∈ Sx

at date t given Ωt−1 , i.e.

Zxt (θ) =
∞∑
k=0

e−λ
x
(λx)k

k!
φ
(
·; ext,1 + µJx ,

√
vx1 + σJx

)
(2.24)

with ext,1 and vx1 given according to (2.11) and µJx := µxJ e
−αxk , σJx := σxJ e

−αx
√
k .

Clearly, the analogue form models the transition density Zyt (θ) corresponding to the

(gas price) process y .

2.4.1.1 Simulated Maximum Likelihood

Earlier studies on the estimation of such jump-diffusion models using maximum

likelihood techniques have been accomplished by Beckers [Bec81] and Ball & Torous

[BT99]. Obviously the density of a jump-diffusion model (as given in (2.24)) is a

discrete mixture of N normally distributed variables, where N tends to infinity.

As argued within the work of Kiefer [Kie78] and Honoré [Hon98] for such models

there exist parameter specifications such that the likelihood function is unbounded.

At this point care must be taken. In the literature several methods are provided

to deal with the spoken to pitfalls in the simultaneous estimation of jump-diffusion

models. For example Ait-Sahalia [AS04] suggests using analytical expansions to

approximate transition densities. Due to the limited transparency and applicability

of that approach, we choose to apply another tool applicable to virtually any jump-

diffusion model.

That tool is the so called simulated maximum likelihood (SML) method first

introduced independently by Pedersen [Ped95] and Santa Clara [BSC02]. Following
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the paper of Santa Clara & Brandt [BSC02] the method to estimate the parameters of

the jump-diffusion dynamics from discretly sampled data and further to approximate

the transition densities can be summarized in terms of the following list:

1. Approximating the transition densities. First construct consistent ap-

proximations to the transition densities of the diffusion and use these approx-

imations to evaluate the likelihood function: For that, one applies an Euler

discretization to the diffusion such that the time interval between any two con-

secutive observations is split into smaller intervals of length δ := 1
N

. Then a

high-frequency discrete time process with Gaussian transitions is constructed

that converges to the diffusion as the discretization becomes finer, i.e. as

N →∞ . However, the Gaussian transitions are still unknown in closed-form.

Therefore, an intuitive and computationally efficient simulation scheme is ap-

plied to numerically evaluate the transition densities of the Euler discretization.

Note, both the Euler discretization and the simulation scheme are consistent

such that the resulting approximations to the transition densities are consistent

as well.

2. Maximum likelihood estimation. Next, the approximated transition densi-

ties are maximized with respect to the unknown parameter vector θJ = θxJ∪θ
y
J .

With the transition densities being consistent, so is the approximated likeli-

hood function. Hence, asymptotically the SML estimator behaves just like the

exact maximum likelihood estimator. It is shown that as long as the maximum

likelihood estimator converges to the true paramater vector θ
(0)
J , so does the

simulated maximum likelihood estimator.

For clearness of exposition we want to omit stating all of the explicit formulas and

details. These can be found in the paper of Santa Clara and Brandt. From their

paper we have taken Figure 2.4 that illustrates the procedure. Moreover, a convenient

summary along with algorithms (we apply in Section 2.5.2) is provided by Fusai &

Roncoroni in their book [FR08].

The results of an empirical analysis implementing the estimation procedure for both

the mean reverting parameter θMR and the spike regime parameter θJ are then

provided by Section 2.5.2.

2.4.2 Estimating the Spike Parameters of Markov model I

Next, we deal with the other case, when the specifications of Markov model I are

valid. Then according to Section 2.1.3 we have the following observation process
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The innovation of the SML method is to interpret the integral in Eq. (7) as an
expectation of the function f of the random variable z: The distribution of this
variable z is f ðzÞ # qMðz; tn þ ðM % 1ÞhjYtn ; tnÞ: Although we cannot easily evaluate
the expectation, we can use the Euler discretization to generate a large number of
independent random draws zs; for s ¼ 1; 2;y;S; from the distribution f ðzÞ: Then, we
approximate the expectation, and ultimately the corresponding continuous-time
transition density p; with a sample average of the function f evaluated at these
random draws of z:

In more detail, the method works as follows. Starting at time tn with #Ytn ¼ Ytn ; we
iterate on the Euler recursion (4) exactly M % 1 times. This results in a single draw
zs ¼ #YtnþðM%1Þh of the discrete-time process at time tn þ ðM % 1Þh from the
distribution f ðzÞ: We repeat this procedure S times, which yields the random sample
fz1; z2;y; zSg: Finally, we average the function f over this random sample of z to
approximate the expectation in Eq. (7).

Fig. 1 further illustrates the mechanics of the approximation. The solid line that
connects the two adjacent discrete-time observations Y0 and Y1 represents the
unobserved continuous-time sample path of a univariate diffusion. The four dashed
lines represent incomplete ten-step discretizations of this diffusion. Each discretiza-
tion is generated by starting the Euler recursion at #Y0 ¼ Y0 ¼ 4:00 and iterating on it
nine times. The end points #Y9=10 of these discretizations represent the random sample
zs; for s ¼ f1; 2; 3; 4g: The approximation amounts to averaging the function f over
the random draws of zs from f ðzÞ: Graphically, we average the probabilities that the
final step of the Euler discretization connects the points zs and Y1 ¼ 4:03 along the
four dotted lines.
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Fig. 1. Approximating the transition densities. This figure illustrates the approximation of the transition
densities of a diffusion. The solid line represents the unobserved continuous-time sample path of a
univariate diffusion. The four dashed lines represent incomplete ten-step Euler discretizations.

M.W. Brandt, P. Santa-Clara / Journal of Financial Economics 63 (2002) 161–210 169

Figure 2.4: This figure is taken from the paper [BSC02] and illustrates the approxi-

mation of the transition densities of a diffusion via SML. The solid line represents the

unobserved continuous-time sample path of a univariate diffusion. The four dashed

lines represent incomplete ten-step Euler discretizations.

dynamics inferred by the spike regime states S in the framework of Markov model

I


dxu = fxJ du+ Jx dqxu, if sxt = 2

dyu = f yJ du+ Jy dqyu, if syt = 2

(2.25)

satisfying all assumptions posed before. Again referring to the already discussed

probabilistic features of these model dynamics, the jump transition density of xt

given Ωt−1 when the process is governed by one of the spike regime states st ∈ {2, 4}
at date t is given by

Zxt (θxJ) :=
∞∑
k=0

e−λ
x
(λx)k

k!
φ(·; µcxt + µJx, σJx), (2.26)

where µcxt = xt−1 + fxJ , µJx := µxJ k and σJx := σxJ
√
k . Moreover, the analogue

form models the transition density Zyt (θyJ) corresponding to the (gas price) process

y .
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2.4.2.1 Maximum Likelihood Estimates

For this approach lacking a diffusion term in the spike regime state, we want to use

another more simple tool than SML to estimate the spike regime parameter θJ .

For that we rely on another assumption supported by the subsequent considerations

made with respect to the marginal process x . Thereafter the analgoue tool can be

applied to the process y .

The set Ωx
t = {x′0, x′1, . . . , x′t} is assumed to consist of observations obtained through

date t for all t ∈ T . Here the set is supposed to represent daily observed electricity

prices. As mentioned earlier, in the framework of the regime-switching model the

concrete parameter specification is determined through the value j ∈ B the Markov

chain s̃ assumes at date t . In turn the concrete parameter specification determines,

whether we follow the dynamics of a jump process or the dynamics of a mean re-

verting process, i.e. we say the Markov chain is supposed to determine whether the

price process has a jump at date t or not. Thus, in the light of Markov model I we

require the occurence of exactly one jump for every s̃t = s satisfying s ∈ Sx . Such

a requirement is summarized by the spoken to assumption.

Assumption 2.4. If the driving Markov chain s̃ assumes a value in the spike regime

set Sx , then with probability one we observe a jump at date t , i.e. if sxt = 2 the

corresponding process dynamics are given by

xt = xt−1 + fxJ + Jxt ,

where Jxt for all t ∈ T are independent identically normal distributed random vari-

ables with expected value µxJ and standard deviation σxJ .

Hence, for this approach we assume the process x to exhibit exactly one jump per

unit of time if the Markov chain s̃ indicates the (marginal) process dynamics to

stem from a spike regime state s ∈ Sx . The main advantage of such an assumption

is then the possibility to calculate explicit expressions for the maximum likelihood

estimates of the spike regime parameter θJ . These can be derived from the resulting

form of the spike regime transition density approximating Zxt (θxJ) stated within the

next corollary.

Corollary 2.3. Under Assumption 2.4 the spike regime transition density approxi-

mating Zxt (θxJ) on a time interval [t−1, t] for any s̃t = j ∈ Sx given Ωt−1 is given

by

f(x′t|Ωt−1, s̃t = j; θJ) = φ(·; µcxt + µxJ , σ
x
J).
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Clearly, analogue considerations hold for the approximation of Zyt (θJ) for all s̃t ∈
Sy .

The results of an empirical analysis implementing all these steps together with the

results of De Jong & Huisman [DJH02] indicate that it is even reasonable to model the

spike regime state as truly independent event. That is the spikes are independent

even of recent price levels. Such a behavior is reflected by the next even more

restrictive assumption based on the model suggested by De Jong & Huisman [DJH02].

Assumption 2.5. If sxt = 2 the corresponding process dynamics are given by

xt = fxJ + Jxt ,

where Jxt for all t ∈ T are independent identically normal distributed random vari-

ables with expected value µxJ and standard deviation σxJ .

Clearly, the transition densities need to be adopted as well. Throughout the empirical

study Markov model I based on the preceeding two assumptions performed best

(compare Section 2.5.1).

2.5 Empirical Results

The available data is edited to obtain two consecutive time series. The electricity

prices are auctioned at the EEX (European Energy Exchange [eex]) in Germany

relative to the hour 9:00-10:00 during the time period 01/01/2004 to 10/31/2008 .

The prices are day-ahead prices, i.e. they are auctioned the day before delivery.

The gas prices are traded at the virtual trading point TTF (Title Transfer Facility)

in the Netherlands during the time period 01/09/2004 to 10/31/2008 . Again we

have day-ahead prices. Here the prices are the arithmetic average of bid and offer

quotes of the different brokers Argus, Heren and Spectron 1. The gas prices are

only traded from Monday to Friday. For the weekend the prices are traded sepa-

rately through Monday to Friday. In order to get a complete time series, we used

the “weekend” price traded on Friday of the corresponding week as the price for

the weekend and for holidays during this week (starting at Friday). For example,

Wednesday, the 5th of March 2005, is a holiday in the Netherlands. On this day

no prices were traded. We take the last traded “weekend” price available. In this

1Argus and Heren Energy are two provider of price assessments, business intelligence and market
data on the global gas industries (amongst others). The Spectron platform is an electronic trading
system operated by Spectron, a broker in gas products (amongst others).
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case, it is the “weekend” price from Friday, 29th of April 2005. In case there is no

data available on a Friday, we take the “weekend” price from Thursday of this week

and so on. In total we replace 42 missing data values including holidays, exclud-

ing weekends. Thereafter, Figure 2.5 illustrates the complete consecutive time series.

The empirical study is executed on basis of deseasonalized historical electricity and

gas prices as being observed in the time period 09/01/2004 until 10/31/2008 at the

EEX in Leipzig and the TTF in Amsterdam. Both series consist of T = 1521 price

quotes. Using the seasonality function as of Section 2.1.4 the data is extracted from

seasonality. Moreover, extreme outliers (outside the three times standard deviation

range) have been cut off. The resulting time series are plotted in Figure 2.6.

2.5.1 Calibration Routine Markov model I

To generate the desired empirical results we must fix initial parameter values to start

the calibration routine. For this we rely on the results of [DJH02] and choose the

according values to constitute a reasonable starting point. The parameter estimates

calculated by running Algorithm 2.4 based on real world data are listed in Table 2.2.

sit = 1 αx αy fx f y σx σy

Real World 0.569 0.124 −0.011 0.0009 0.284 0.112

sit = 2 µxJ µyJ σxJ σyJ fxJ f yJ

Real World −0.071 −0.147 0.718 0.838 0.597 0.242

sit = 1 ρ

Real World 0.121

Table 2.2: Estimates θ̂MR and θ̂J modulating Markov model I.

On basis of the calculated parameter estimates it is possible to simulate paths rep-

resenting the specific bivariate model dynamics under consideration. We rely on

classical tools as e.g. summarized in Seydel [Sey06] to implement the discrete ver-

sion of the process dynamics as stated in (2.11). Additionally, we must generate a

Markov chain scenario for the hidden latent regime state variable s̃t . At any stage

within the simulation we proceed in two steps: First generate the (current) state of

the Markov chain s̃ (given the last state s̃t−1 = j ) by adopting multinomial random

variables distributed according to the transition probability parameter estimates p̂jk
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Figure 2.5: Top: Day-ahead power prices from the EEX Germany relatively to the

hour 9:00-10:00 in AC /MWh from 01/01/2004 to 10/31/2008 . Bottom: Completed

day-ahead gas prices from the TTF Netherlands in AC /MWh from 09/01/2004 to

10/31/2008 .



CHAPTER 2. REGIME-SWITCHING MODEL 52

for k = 1, . . . , 4 . If s̃t = l ∈ L suggests a latent state, then we determine the most

recent point of time t− r such that s̃t−r+1 ∈ J` . Next, based on the simulated

current regime state s̃t we use the corresponding respective choice of
xt = xt−re

−αx r + fx(1− e−αx r) + σxr R
x
r , if sxt = 1

yt = yt−re
−αy r + f y(1− e−αy r) + σyr R

y
r , if syt = 1

xt = fxJ + Jxt , if sxt = 2

yt = f yJ + Jyt , if syt = 2

to calculate the current price. All specifications hold as before. Note, special care

must be taken for the different choices of r according to the different regime states.

Further, the random variables Ri
r are given according to (2.10). Implementing

the simulation procedure along with the calculated parameter estimates yields the

exemplary graph pictured in Figure 2.7.

2.5.2 Calibration Routine Markov model II

What is left to point out is how the SML method can be incorporated into the

calibration routine provided in Section 2.2. More precisely, we need to answer the

following questions: How does the method work in our specific framework? What

do we gain from applying the method? How can we incorporate the gains into the

calibration routine, i.e. Algorithm 2.4? We omit the details at this point and refer

to Appendix A.

Then the procedure and the calibration routine are combined. For that it is naturally

to split the estimation procedure into two parts: One using the SML method to

estimate the spike regime parameter θJ and one to estimate the mean reversion

regime parameter θMR just following the outlined steps of Algorithm 2.4.

Algorithm 2.5 (Adapted Calibration Routine). 1. Fix initial values for the spike

regime parameter θJ and for the parameter ξt|T and P determining the dis-

tribution of the latent variables s̃t .

2. Iterate through the different steps of Algorithm 2.4 to obtain optimal estimates

θ̂MR for the mean reverting parameter θMR along with an estimate of the

distribution of the latent variables s̃t , i.e. ξ̂t|T and P̂ .

3. Apply the proposed simulated maximum likelihood technique to obtain optimal

parameter estimates θ̂J based on the input values θ̂MR , ξ̂t|T and P̂ .
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4. Rerun Algorithm 2.4 (as in Step 2) now using θ̂J , ξ̂t|T and P̂ as updated

input parameter values to obtain an updated estimate θ̂MR (which should be

close to the previous one).

To generate the desired empirical results we choose the according initial values as for

Markov model I to constitute a reasonable starting point and to keep things com-

parable. Running through all the steps of Algorithm 2.5 then yields the parameter

estimates based on real world data listed in Table 2.3. Analogously to the simulation

sit = 1 αx αy fx f y σx σy

Real World 0.611 0.156 −0.0004 0.0008 0.290 0.075

sit = 2 µxJ µyJ σxJ σyJ λx λy

Real World 0.171 0.038 0.927 0.482 0.980 0.998

sit = 1 ρ

Real World 0.049

Table 2.3: Estimates θ̂MR and θ̂J modulating Markov model II.

procedure explained within Markov model I we use the respective choice of
xt = xt−re

−αx r + fx(1− e−αx r) + σxr R
x
r , if sxt = 1

yt = yt−re
−αy r + f y(1− e−αy r) + σyr R

y
r , if syt = 1

xt = xt−1e
−αx + fx(1− e−αx) + σxεR

x
1 +

∑qx1
m=1 J

x
τm , if sxt = 2

yt = yt−1e
−αy + f y(1− e−αy) + σyεR

y
1 +

∑qy1
m=1 J

y
τm , if syt = 2

inferred by the simulated regime state s̃t to calculate the current prices based on the

obtained parameter estimates listed in Table 2.3. All specifications hold as before.

Implementing all stages of the simulation procedure then yields the for the fourth

approach exemplary graph pictured in Figure 2.8.

2.5.3 Goodness of Fit

The goodness of fit is tested by different measures and methods. First of all, we have

chosen as the Benchmark model the most simple case, when both price dynamics

follow mean reverting Ohrnstein Uhlenbeck processes not involving any jump term

or regime-switching behaviour. Such a model has been studied in detail in [Jen09] and

thus constitutes a profound tool to accurately assess and judge the parameter values.

All values are listed in Table 2.5.3. Next, we plot a path for each model to evaluate

the visual performance and to judge whether the typical properties of electricity
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Parameter Benchmark Markov model I Markov model II

αx 0.613 0.569 0.611

αy 0.192 0.124 0.156

fx 0.0001 −0.011 −0.0004

f y −0.001 0.0009 0.0008

σx 0.219 0.284 0.290

σy 0.079 0.112 0.075

ρ 0.024 0.121 0.049

µxJ – −0.071 0.171

µyJ – −0.147 0.038

σxJ – 0.718 0.927

σyJ – 0.838 0.482

fxJ (λx) – 0.597 0.980

f yJ (λy) – 0.242 0.998

log-Likelihood 1849.3 1911.2 2147.5

Table 2.4: Parameter estimates θ̂MR and θ̂J corresponding to different model ap-

proaches.

and gas prices are reflected appropriately (to be found in Figure 2.7 and Figure

2.8). Thereafter, lacking an overall theoretical distribution we apply bootstrapping

methods for assigning measures of accuracy to the gained sample estimates. For

that we proceed by simulating R = 10000 process paths (each containing T = 1521

observations) with the real world parameter estimates. Similar to Bierbrauer et

al. [BTW05] the performance of the models is then assessed by comparing the first

moments, the price distribution quantiles and the extreme events. The comparison is

carried out in between the respective values calculated on the one hand based on the

real world observations, on the other hand based on the bootstrap samples generated

by the Benchmark model, Markov model I and Markov model II, respectively. Table

2.5 lists the spoken to statistics of interest.

2.5.4 Implications, Comments

• To judge the overall magnitude of estimates it is worth looking at the empiric

mean reverting parameter estimates obtained by regressing the observations

x(t + 1) against x(t) . Following the outline of Blanco & Soronow [BS01] the

mean reversion speed is found at αx = 0.613 and αy = 0.188 respectively.

The values are significant at the 1 % level. The long run mean values f i
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Figure 2.6: Real World Data

0 500 1000 1500

-1
.0

0.
0

1.
0

2.
0

time

el
ec

tri
ci

ty
 p

ric
es

0 500 1000 1500

-1
.5

-0
.5

0.
5

1.
5

time

ga
s 

pr
ic

es

Figure 2.7: Simulated path corresponding to Markov model I.

0 500 1000 1500

-1
.0

0.
0

1.
0

2.
0

time

el
ec

tri
ci

ty
 p

ric
es

0 500 1000 1500

-1
.5

-0
.5

0.
5

1.
5

time

ga
s 

pr
ic

es

Figure 2.8: Simulated path corresponding to Markov model II.
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Electricity Moments Real World Benchmark MM I MM II

mean ≈ 0 −0.0006 (1%) −0.0007 (1%) 0.001 (1%)

standard deviation 0.261 0.197 (1%) 0.289 (1%) 0.272 (1%)

skewness 0.720 −0.003 (7%) 0.612 (34%) 0.210 (54%)

kurtosis 9.05 2.99 (13%) 6.349 (214%) 5.879 (549%)

first quartile −0.136 −0.13 (1%) −0.188 (1%) −0.177 (1%)

third quartile 0.132 0.13 (1%) 0.175 (1%) 0.177 (1%)

maximum 1.91 0.65 (7%) 1.91 (39%) 1.52 (74%)

minimum −1.25 −0.65 (7%) −1.03 (24%) −1.15 (47%)

Gas Moments Real World Benchmark MM I MM II

mean ≈ 0 −0.001 (1%) 0.001 (2%) 0.001 (1%)

standard deviation 0.140 0.127 (1%) 0.230 (1%) 0.136 (1%)

skewness 0.092 0.002 (12%) 0.077 (38%) 0.061 (52%)

kurtosis 21.19 2.98 (20%) 5.501 (330%) 5.179 (621%)

first quartile −0.062 −0.08 (1%) −0.149 (2%) −0.089 (1%)

third quartile 0.062 0.08 (1%) 0.151 (2%) 0.091 (1%)

maximum 1.31 0.41 (5%) 1.26 (49%) 0.631 (34%)

minimum −1.57 −0.41 (5%) −1.13 (45%) −0.57 (28%)

correlation 0.21 0.022 (4%) 0.082 (4%) 0.037 (4%)

Table 2.5: Summary statistics for real world data compared to the bootstrap repli-

cates (i.e. the mean value with corresponding standard deviation) calculated from

R = 10000 samples each of length T = 1521 .
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are almost zero. The volatility parameter then calculate to σx = 0.219 and

σy = 0.078 . The R2 value is at 68 %. The model used for regression is

simply the uncorrelated discrete version of the Benchmark model. As desired

the empiric estimates gained by regression are very close to the benchmark

estimates. Hence, the overall magnitude of the estimates is validated.

• We expect the mean reversion speed parameter αi to assume the largest values

in the benchmark model, that does not include a spike regime. In order to

pull prices back to the long term level these values should be relatively large.

Moreover, not respecting the spikes in the model the correlation parameter is

supposed to be quite low.

• The lowest values of αi and the largest value of ρ are found in Markov model

I. In that cases the parameter represent solely the mean reverting dynamics,

i.e. the parameter are not involved in the specifications of the spike regime

dynamics. The estimates are supposed to stem from the mean reverting regime

state data. Hence, a comparable low mean reversion speed and high correlation

is reasonable.

• Note, the mean reverting parameter θMR stemming from the model of Markov

model II are again estimated solely on basis of the data that is supposed to

stem from the mean reverting regime states according to the distribution of

the latent state variable. However, the parameter θMR are involved in both

the “normal” and spike regime state dynamics.

• Looking at the simulated paths of Figure 2.7 and Figure 2.8 generated on

basis of the different approaches indicates overestimated volatility parameter

σi belonging to the “normal” regime states. The values are close to the overall

standard deviation of the data series. Especially the gas price fluctuation

in Markov model I seems to be overestimated. However, that is a known

phenomenon in the literature of fitting electricity spot price model to market

data.

• Another known phenomenon is the difficulty to match the kurtosis of the real

world data with the bootstrap replicates. Across the Markov modulated model

approaches that moment could only be estimated with a huge standard devia-

tion. That is due to the low probability of spike states in the distribution of the

Markov chain, such that one simulated path might involve a certain number of

jumps, but another does not. Looking at different periods of time in historical

data, that seems to be reasonable.
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• The Benchmark model, Markov model I or Markov model II, which one should

be preferred? The testing results clearly point out that the Markov modulated

models outperform the Benchmark model. Markov model I is computationally

less expansive (with spikes modelled as truly independent events). However,

the log-likelihood values of Markov model I indicate that Markov model II in-

corporates the main features of electricity markets more accurately. Separating

the estimation of the jump parameter θJ and the mean reversion parameter

θMR (as in Markov model II ) might be more reliable since it reduces the num-

ber of parameters that have to be estimated simultaneously. Applying two

different methods to estimate the parameter separately on the one hand in-

creases the reliability. On the other hand it reduces the transparency of the

tool. After all, from a practical point of view we believe Markov model I is

preferable, since it is not only computationally less expansive but also generates

the best match of moments.

Conclusion. Our intention for the actual chapter has not been in the first place

to address the elusive task of finding the “perfect” model. We believe looking at

a regime-switching model is a huge step in the right direction of fitting a model

to electricity market data. However, the calibration procedure becomes quite com-

plex when it involves a latent state variable. In addition we have studied a bivariate

regime-switching model such that the calibration procedure becomes even more com-

plex. Thus, one of the main issues we wanted to address was to state all the details

of the proceeding and all tools we have applied in the course of fitting the model to

market data. Clearly, the specific procedure we have suggested has been chosen to

deal with the features of electricity markets in the first place. However, we believe

the primal proceeding can be carried over to any kind of bivariate regime-switching

model. By looking at the different approaches we have shown the flexibility of the

general model dynamics involving different states assigning different dynamics. Since

the perfect model to reflect the features of electricity and/or gas prices still does not

exist, looking at a flexible approach seems to be the right ansatz.

2.6 Managing and Valuing the Plant

The starting point of this chapter has been the question of how to manage the price

risk a power plant faces in the liberalized energy markets. For that, we have taken

the view of a power plant owner. In order to hedge against price risk, the real

options approach has been chosen to determine the value of the power plant. That
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is, we model the plant value by the pay-off of a series of spark spread options. Note,

for reasons of simplicity and to keep things comparable to the stochastic dynamic

programming approach of Chapter 3 we do not include any discounting terms. The

main objective is hence to answer the question of how likely the electricity price is

beyond the marginal costs of the plant at time of maturity. That is how likely the

owner exercises the right to transform fuel into power.

Supposing the plant manger intends to maximize the expected value generated from

that right, the valuation formula for that specific scenario is given by the difference

of the value of two call options on the spark spread. The expected plant pay-off per

hour at maturity day is given by

E∗
[(

(xT −HRyT − α)K
)+ |F0

]
− E∗

[
((xT −HRyT − α)K)− |F0

]
where K , K denote the maximum, minimum capacity of the plant, α are the

fixed (non-fuel) production costs and HR is the conversion efficiency of the plant,

denoted heat rate. The expectation is calculated with respect to the pricing measure

P∗ , assuming a zero market price of risk (similar e.g. to Burger et al. [BKMS04]).

If the risk manager wants to charge a risk premium then this can be included with

no further restrictions. Thus the expected value refers to the complete probability

distribution of cash-flows. The specific form of these cash-flows at time of maturity

naturally depends on the characteristics of the plant and the ideas of the plant

manager.

Virtual Power Plant. The gas-fired plant we want to consider in this scenario

has

• a netto maximum electric capacity of K := 250 MW,

• a netto minimum electric capacity of K := 10 MW,

• a netto conversion efficiency rate of HR := 50 %,

• generates fixed production costs of α := 20 euros per MWh,

• purchases gas and sells electricity solely on the spot market,

• has full flexibility in between the capacity boundaries,

• has a baseload generation character, i.e. is operated 24 h a day and

• covers all other costs (like stand-on costs, switching costs ect.) with the fixed

production costs.
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The plant is switched on before the four month time horizon, will not be turned

off and can either be operated at minimum capacity or up to full capacity. The

plant manager can decide on a day to day basis about the generation level under full

knowledge of the current spark spread.

The Valuation. The expected value is then calculated by applying the traditional

Monte Carlo method. Here the idea is to generate a large number of sample paths

of the process z = (zu)u∈[0,T ] = ((xu, yu)
ᵀ)u∈[0,T ] over the interval [0, T ] for each of

the sample paths to compute the spark spread function whose expectation the risk

manger wants to evaluate and then average those values over the sample paths. Since

the terminal distribution of zT is not known in closed-form, one has to generate

samples from the entire path zu for 0 ≤ u ≤ T . This requires the choice of a

discretization time step ∆u and the generation of discrete time samples z(0 + j∆u)

for j = 0, . . . , T
∆u

. As argued by Carmona & Durleman [CD03] these steps should

be taken with great care to make sure that the numerical scheme used to generate

these discrete samples produces reasonable approximations. In the course of Section

2.1.4 we have provided a discrete version for all t ∈ T of the process dynamics

corresponding to the different model approaches. Note, of course one deals with the

known difficulties in quantifying and controlling the embedded error connected to

the MC method. It is out of the scope of this work to study this in more detail. We

choose a large enough sample of N = 10000 to get a profound result. The plant

value can then be calculated according to

N∑
n=1

T∑
t=0

(
(xt(n, θ̂)−HRyt(n, θ̂)− α)K

)+

−
(

(xt(n, θ̂)−HRyt(n, θ̂)− α)K
)−

,

where T = 120 , ∆u = 1 , N = 10000 and θ̂ are the parameter estimates generated

based on the different model approaches.

Results of the Valuation. On basis of such an intuitive valuation the different

spot price models should then be tested with respect to their ability to reflect the

comovement of power and fuel prices. That is, applying Monte Carlo simulation

techniques allows us to arrive at the desired risk management tools. First of all

the plant value is found by the spoken to spark spread valuation, then the optimal

operation schedule (i.e. the decision whether to produce at minimum or maximum

capacity) depending on todays expectations about the future spark spread evolution

can be determined. Last but not least, having set up a portfolio of spark spread

options the corresponding performance and risk numbers can be calculated. That

is the return, volatility, profit at risk (here defined as the difference between the
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mean value of cash flows and the 5 % quantile of the cash flow distribution) and the

5 % Value of Risk. Plants differ significantly in their production flexibility. “Plants

with daily operating flexibility can potentially generate considerably more money by

treating every delivery period as a series of individual options to cash in on the spark

spread”, according to De Jong in [DJW07]. De Jong finds that such a calculation

easily overestimates the true value since on the one hand exercise decisions are being

made optimally (i.e. spot prices are known before decisions are being made). On

the other hand the plant is always in the right state to exploit the spark spread

even though this may be associated with high switching or stand-on costs. Thus by

looking at our results these findings should be kept in mind. Hence, for our study

the relative difference in value in between the different underlying spot price models

is of greater interest than the absolute value itself. The effect of the model on the

difference in plant value and risk numbers is what we want to point out.

Spot Model Benchmark Markov model II Markov model I

Plant Value 6.35 7.52 7.82

Max. Cap. Fraction 50.6% 49.2% 48.2%

5% VaR 5.77 6.62 6.71

Profit at Risk 0.58 0.89 1.09

Minimum 5.14 5.69 6.09

Maximum 7.49 12.05 10.41

Volatility 35% 63% 68%

Sample Correlation 2.1% 3.4% 8.2%

Table 2.6: Spark spread valuation risk analysis, where all numbers are given in

percentages or milion euros.

We find, that the plant value increases significantly about 18.4 % and 23.1 % when

transforming the spot price model from the Benchmark model to Markoc model II

and Markov model I respectively, i.e. by incorporating specific alternations between

stable and unstable regime states in the underlying price dynamics. As indicated by

Carmona et al. [CD03] the correlation of the underlying indexes is one of the most

influencing parameter on the value of the spark spread, since it has a main impact

on the bivariate probability distribution. Similarily, we find an obvious impact of

the correlation on the risk numbers. The more correlated the price series are, i.e

the more the electricity and gas prices move together, the more revenues can be

generated even in the worst price scenarios (here measured by the positive profit

at risk and value at risk numbers). That is exactly what a risk manager would

expect. Here the regime-switching models produce a revenues portfolio, that has
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a 5 % chance of making more than 6.62 milion euros ( 6.71 milion euros) over the

four month time horizon. Again the numbers are significantly improved with regard

to the Benchmark model VaR (that generates a 5 % chance of making 5.77 milion

euros over the four month).

A more profound idea of the impact of the different underlying price models on the

plant value yields a look at the complete probability distributions of the revenues

the plant generates over the four month time horizon with respect to the different

spot price dynamics. Markov model II yields a maximum plant value of 12 milion

euros, whereas Markov model I yields a maximum value of “only” 10 milion euros

and the Benchmark model just 7.49 milion euros that is not even the mean of

the regime-switching based approaches. The increase in value goes together with

a significant increase in volatility and less operation time at maximum capacity on

average. However, the probability distributions of cash flows are negatively skewed

with more probability mass on extreme high cash flows (in the Markov modulated

models).

With these numbers at hand the risk manager is in the position to limit the risk

influencing the operative strategy of the plant. Of course, a risk manager can further

determine a marginal spark spread value that makes production profitable or not

(under knowledge of all other costs). In our specific plant scenario the marginal

value is exactly given by the fixed production costs of 20 euros per MWh. Such

boundaries are useful for the plant management in the daily operational decisions.

Conclusion. After all an adequate price model allows risk mangers to better un-

derstand the impact of price behaviour and risks on values and hedges. Reducing the

valuation problem to spark spread options is hence a good way to start the risk man-

agement of the plant. However, as mentioned before such a simple valuation assumes

away certain operational constraints and management possibilities. To include such

constraints and the possibility to sell electricity also through forward contracts in

the valuation and operation problem we choose a stochastic dynamic programming

approach presented in the next chapter.



Chapter 3

A Stochastic Dynamic Model for

the Optimal Valuation and

Operation of a Power Plant

3.1 Economic Motivation

The real option based spark spread valuation discussed in the second chapter only

works under conditions that assume away several operational or market constraints.

These constraints however have a significant impact on the plant value and the

optimal operating strategy as e.g. argued by Gardner & Zhuang [GZ00] or Deng &

Oren [DO03]. For example Deng et al. state that “ignoring operating characteristics

in the valuation of a real asset would almost certainly lead to overvaluation”. A

way to introduce such constraints is to consider a stochastic dynamic programming

(SDP) representation of the problem. Bjorgan et al. [BSLD00] described SDP as

an optimal procedure characterized by the states, time stages and decision options

pertinent to the process. In terms of SDP the value of a unit’s generation capacity

over a future period of time is determined by summing up the expected revenues the

plant accumulates on every stage. Clearly, the scheduling of the plant, the uncertain

energy prices and the operating constraints affect significantly the reward the plant

manager can expect by selling electricity to the market. With respecting operating

constraints the problem of finding an optimal operating strategy maximizing the

plant value becomes path dependent.

Literature dealing with such models adapted to energy markets has been provided

e.g. by Tseng & Barz [TB02] who focused on the short-term generation asset valu-

ation problem. Deng & Oren [DO03] find a significant affect of physical operating

63
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constraints on the valuation of a power plant for different underlying price models.

The paper of Gardner & Zhuang [GZ00] describes how SDP can be used to calculate

plant values and optimal operating policies while considering plant operating con-

straints. Their numerical results imply that constraints such as minimum/maximum

up/down times, ramp rates or capacity constraints may have a significant influence

on the power plant’s value.

After the deregulation of energy markets actors can adopt a variety of trading rela-

tions for the purchase and sale of electricity. Full term supply contracts are about

to be abandoned. The peculiar feature of electricity spot prices of being highly

volatile induces power generators to sell electricity through forward contracts. By

selling forward it is possible for them to lock in a certain reward. On the other hand

the extreme price risk induces electricity retail companies and large-scale consumers

to purchase electricity through bilateral contracts to lock in a fixed purchase price.

Looking e.g. at the forward selling strategy of RWE Power AG in the german market

RWE AG | Q1-Q3 2010 Conference Call | November 11, 2010

Forward selling1 by RWE Power in the German market

6

(average realised price for 2008 forward: €58/MWh, for 2009 forward: €70/MWh)
1 Forward prices until November 8, 2010; hedge ratio as of Sept. 30, 2010.
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Figure 3.1: The graph is taken from RWE Power AG.

as indicated by Figure 3.1 supports this development. Approximately three years

before maturity they hedge against spot price risks by selling a certain percentage
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of a year’s available baseload capacity through forward contracts. The chart then

records semi-annually the capacity fraction already locked in through forwards ma-

turing e.g. in the year 2010 . By the end of 2009 more than 90 % of the capacity

has been sold through 2010 forward contracts. On such a basis the RWE mangers

can decide on a day-to-day basis whether they produce the contracted power at the

locked in price or buy the power in the market instead. In times of recession, i.e.

decreasing prices, that might lead to an additional margin.

With this in mind our intention is to focus on the problem of finding the optimal

hedging strategy between forward and spot markets. Moreover, we want to include

trading rules practiced at the energy exchanges (e.g. EEX in Leipzig) such that spot

bidding is done under uncertainty. Hence, the exposure of the plant to spot price

risks is even more pronounced. Before the spot price is set on the day before delivery

the plant intending to sell electricity on the spot must place their (volume) bids at

the market. The auction mechanism then determines the so-called market clearing

price. Thus the plant manager decides on a day-to-day basis how much capacity

to devote to the day-ahead spot market. If the risk managers (such as those from

RWE Power) already have signed forward contracts over a certain fraction of the

available capacity with delivery e.g. in the first quarter of the year 2010 , then only

the remaining production capacity can be bid on the spot in the respective quarter.

In such a way the risk manager face an allocation problem at the signment date of

the forward contracts: According to their future price expectations they must decide

how much capacity to devote to forward contracts and how much should be kept for

bidding on the spot market? The coordination of the bidding on the spot market,

the hedging through forward selling and the scheduling of the plant is at the heart of

our study. Naturally, to address the allocation problem the capacity constraints have

significant influence. Besides that we do not want to interfuse the impact of the spot

and capacity constraints by introducing a bulk of different operational constraints.

Hence we focus on the uncertain spot bidding procedure and the capacity constraints

of the plant. Thus the plant under consideration is characterized by the following

assumptions:

Assumption 3.1 (Plant Characteristics). (i) The facilities’ maintanence and

operation costs per unit of production are constant and denoted by α . (Ac-

cording to Deng [Den00] it is reasonable for a typical gas turbine combined

cycle cogeneration plant, that these costs are stable over time.)

(ii) Over the considered period of time the power station is not turned off and op-

erated in between the capacity boundaries, where K and K denote the mini-

mum and maximum capacity, respectively.
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(iii) To ensure a certain reward the plant locks in at least the minimum capacity

through forward selling for all maturities. The contracted units then must be

produced at maturity (such that the plant is not turned off). To keep the chance

of participating in a spot price rally the plant managers must keep a so-called

spot reserve (denoted by δ ) for bidding on the spot market. Hence, the

maximum possible capacity to be locked in through forwards is K − δ .

(iv) Ramp ups and downs in between the capacity constraints of the plant can be

done with day-ahead notice without generating any further costs.

(v) Thinking e.g. of pipeline gas or long-term purchase contracts we assume the

necessary fuel to produce the scheduled electricity to be constant over time. The

price is then incorporated in the fixed costs α per unit of production.

(vi) The contract lead time, i.e. the minimum time between the time of schedul-

ing the electricity and the time of the actual delivery, will be one day for spot

contracts and a quarter (e.g. one month or a quarter of a year) for forward

contracts.

The problem is formulated as a stochastic dynamic program based on the continuous-

time stochastic price process reflecting the uncertain electricity spot price. On the

day of decision the spot price of the contract being deliverd today along with the

price and units devoted to forward contracts with signment up to the current date

are known and part of the state vector of the dynamic system. Within such an

SDP approach it is straightforward to introduce a utility function representing the

company-specific risk preferences. These preferences then build the fundament for

selecting the optimal operation schedule and sales strategy. We start by choosing

the exponential utility and generalize it to the class of strictly concave, continuously

differentiable utility functions. Of course, it is not clear which utility function to

choose. However, being a well-studied tool and keeping it in a desirable general form

makes its application meaningful.

The solution of finding an optimal value function and associated operational strategy

to address the allocation problem is approached by posing the first order Bellman

equation for the value function. With regard to the path dependence evoked by the

capacity constraints the underlying price process is approximated by the discrete

time observations modelled by a familiy of random variables (St)t∈T . For a numer-

ical study we then approximate the price process by different recombining lattice

structures.

We state existence and uniqueness of a solution to the SDP representation of the

allocation problem. Solving a full-blown SDP problem and its approximation is
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helpful in identifying the interaction of the operational constraints. Hence, it provides

an insight into the structure of the problem. Solution techniques to achieve such an

insight might be splitted into three parts:

1. First backward induction techniques in binomial or trinomial lattice structures

are applied e.g. by Gardner & Zhuang [GZ00] or Guan et al. [GWGS08].

The paper of Wegner et al. [ER06] constructs optimal value functions by a

stability based scenario tree construction that rests upon pertubation theory

for multistage stochastic programs.

2. Second an alternative approach to implement backward induction is the MC

simulation for Bermudan options, that has been applied to the valuation of

swing options by Ghuieva et al. [GLS01]. Applications to power generation

can be found in Tseng & Barz [TB02].

3. Third the Langrangian relaxation method is a basic technique in integer pro-

gramming. It consists in relaxing complicating constraints by adjusting the

objective function. Literature with application to power plant operation is

provided by Takriti, Spugati & Wu [TSW01], Takriti, Birge & Long [TBL96]

or Guan et al. [GWGS08].

We choose the backward dynamic programming technique and apply it to binomial

and trinomial market approximations.

The present chapter starts in Section 3.2 by introducing the necessary mathematical

notations and assumptions that lead to the introduction of the dynamic system

in Section 3.3 being the building block for the multistage problem representation.

Section 3.4 provides the structure of the optimal value function and the corresponding

operating strategy calculated in terms of the DP technique. Thereafter, Section 3.5

states existence and uniqueness of a solution. The remaining sections then outline

the numerical results gained by applying the theoretical model framework to different

underlying market structures. First, in Section 3.6 the Cox Ross Rubinstein market

is chosen. Then in Section 3.7 the optimal generation capacity allocation strategy is

determined based on a one factor model representation approximated by a trinomial

tree structure. We close in Section 3.8 with an economic interpretation and some

concluding remarks in Section 3.9.
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3.2 Conventions

The subsequent notations and assumptions are used throughout the theoretical rep-

resentation of the allocation problem.

Time Conventions. The problem is based on a finite four quarter time horizon

[0, T ] with T <∞ and T := 4n for any n ∈ N . At the discrete dates 0, 1, . . . , T−1

a decision is made by the decision maker. These dates will be referred to as the

trading dates and will be collected in the set T := {0, 1, . . . , T − 1} .

Process Conventions. Let P be a probability measure defined on the measurable

space (Ω,F) . Let S = (Su)u∈R+ be a Markov process that evolves continuously in

time and is observed at the discrete trading dates t ∈ T . At the discrete dates t

let the observations be given by the random variables St(ω) taking on the values st

such that st ∈ R for all t ∈ T . The process will be referred to as the spot price

process. Let s0 ∈ R be some given initial value. The units of capacity bid on the

spot market at date t are denoted by bt and referred to as spot control.

Let D := T + n and let F : T× {n, n+ 1, . . . , D} ×R→ R be a function mapping

the current value of the spot price process to a real number F t+n
t , i.e. F t+n

t =

F (t, t+n, st) . The value F t+n
t will be referred to as the forward price observed at

date t ∈ T for contracts maturing at some future date t+ n . The units of capacity

devoted to forward contracts at date t maturing at date t+ n are denoted by ft+n

and referred to as forward control.

State Variables. For all t ∈ T the triple Xt = (Ht,ht, st) ∈ X denotes the state

of the system at date t composed of the historic price vector Ht , the historic unit

vector ht and the currently observed spot price st . The initial (historic) forward

price and unit vector, H0 ∈ RD and h0 ∈ RD respectively, are given by

H0 = (H, . . . , H︸ ︷︷ ︸
n

, 0, . . . , 0) ∈ RD

and

h0 = (h, . . . , h︸ ︷︷ ︸
n

, 0, . . . , 0) ∈ RD,

where H ∈ R is some constant and h ∈ [K,K] is some constant real number

satisfying the capacity constraints, i.e. the minimum capacity K and the maximum

capacity K such that 0 < K < K <∞ .
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The historic forward price vector, Ht ∈ RD , collects all forward prices observed

until date t ∈ T such that

Ht = (H, . . . , H︸ ︷︷ ︸
n

, F n
0 , F

1+n
1 , . . . , F t+n

t︸ ︷︷ ︸
t+1

, 0, . . . , 0︸ ︷︷ ︸
T−(t+1)

) ∈ RD

and the historic forward unit vector, ht ∈ RD , collects the corresponding con-

tracted forward units until date t such that

ht = (h, . . . , h︸ ︷︷ ︸
n

, fn, f1+n, . . . , ft+n︸ ︷︷ ︸
t+1

, 0, . . . , 0︸ ︷︷ ︸
T−(t+1)

) ∈ RD,

where h ∈ [K,K] and H ∈ R are given by the initial vectors h0 and H0 .

Space Conventions. For all t ∈ T the state space X consists of all state values

Xt = (Ht,ht, st) the system can attain at time t . Here, we assume

X = RD × RD × R

for all t ∈ T . Suppose the set X is endowed with a σ -algebra Σ .

For all t ∈ T the control space C is a given set of all control variables ct =

(ft+n, bt) . We assume

C = R2

for all t ∈ T .

For all t ∈ T we denote by Ft the set of all extended real-valued functions JT,πt :

X → R with R = R ∪ {−∞,+∞} corresponding to some fixed (truncated) policy

πt = (µt, . . . , µT−1) .

For all t ∈ T the measurable space (Ω,F) is referred to as the disturbance space.

For each Xt = (Ht,ht, st) and each t ∈ T there exists a non-empty subset K(Xt)

of the control space C referred to as the control constraint set at Xt .

For all t ∈ T let the control constraint set at Xt be decomposable into the cross

product of two compact intervals I(j)(Xt) ⊂ R for j = 1, 2 , such that

K(Xt) := I(1)(Xt)× I(2)(Xt) ⊂ C.

For all t ∈ T we denote by Kt the set of all measurable control functions µt :

X → C , such that µt(Xt) ∈ K(Xt) for all Xt ∈ X . The set Kt is referred to

as the constrained control function set at time t . We denote by Π the set of

all sequences π = (µ0, . . . , µT−1) such that µt ∈ Kt for all t . Elements of Π are

referred to as policies.
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Decision Operator Conventions. The sequence π = (µ0, . . . , µT−1) ∈ Π is the

policy the decision maker applies during the trading period. The policy π specifies

via the measurable control function

µt : X −→ C

the control variable

ct = µt(Xt) = (ft+n, bt)

to be chosen at date t for every state Xt ∈ X . For all t ∈ T let the control function

µt be given by the tuple of functions µt = (µ
(1)
t , µ

(2)
t ) with µ

(1)
t : X → R and

µ
(2)
t : X→ R .

3.3 Dynamic System

This section provides all necessary conventions referred to the stochastic program. It

translates the assumptions characterizing the plant into the theoretical framework.

Additionally, a preliminary problem formulation is given.

System Equation. Given a policy π the system equationXt+1 = Γ(Xt, µt(Xt), ω)

X0 = x = (H0,h0, s0)

defines for all t ∈ T a controlled stochastic process in discrete time

(Xx,π(t))t∈{0,1,...,T}

where the system dynamics are given by the tuple of functions Γ(Xt, µt(Xt), ω) =

(η1(Xt), η2(Xt, µ
(1)
t (Xt)), St+1(ω)) with η1 : X → RD , η2 : X × R → RD and the

random variable St+1 : Ω→ R . Hence, the consecutive state is given by
Ht+1 = η1(Xt) := Ht + F (t, t+ n, st) · et+n+1

ht+1 = η2(Xt, µ
(1)
t (Xt)) := ht + ft+n · et+n+1

st+1 = St+1(ωt+1)

,

where et denotes the t -th unit vector.
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Stochastic Transition Kernel. For each A ∈ F and t ∈ T the disturbance

kernel is a stochastic transition kernel on (Ω,F) given st , denoted by

P (A| st).

The stochastic state transition kernel on (X,Σ) given Xt and ct is then denoted

by

T (B; Xt, ct)

for all B ∈ Σ and t ∈ T . Note, the disturbance kernel can be expressed in terms of

the state transition kernel and vice versa. For all B ∈ Σ we have,

T (B;Xt, ct) = P ({ω ∈ Ω |Γ(Xt, ct, ω) ∈ B}| st)
= P (Γ−1(B)(Xt,ct)| st).

Thus T (B; Xt, ct) is the probability that the (t+1) -th state is in B given that the

t -th state is Xt and the system is controlled by ct .

When the process dynamics are used successively to express the uncertain spot prices

St+1, St+2, . . . , ST exclusively in terms of ωt+1, . . . , ωT and st , one can see that for

each fixed st ∈ R the probability measures P (· | st) , P (· | st+1) , . . . , P (· | sT−1)

together with the system dynamics define a unique measure

P (d(ωt+1, ωt+2, . . . , ωT )| st)

on the cartesian product ΩT−t of T − t copies of Ω .

Well-Defined Expectation. Let G : X× Rd × Ω→ R be an integrable random

variable for every Xt ∈ X and y ∈ Rd . We say that the (conditional) expecta-

tion function g(Xt, y) := E[G(Xt, y, ω)|st] is well-defined, if it is measurable in

both arguments. We adopt the notation of Bertsekas & Shreve [BS80], such that

g(Xt, y) = E[G(Xt, y, ω)|st] = E[G(Xt, y, ω)|St = st] . The designation g(Xt, y) is

integrable means the random variable E[G(Xt, y, ω)|St] is integrable.

Costs and Revenues. For all t ∈ T the function

Rt(Xt, ct, ω) = (H(t+ 1)− α)h(t+ 1) + (St+1(ω)− α)bt

is the uncertain reward incurred at the (t + 1) -th stage, i.e. within [t + 1, t + 2) ,

where

• H(t+ 1) = Hᵀ
t · et+1 is the (t+ 1) -th entry of the vector Ht ,
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• h(t+ 1) = hᵀ
t · et+1 is the (t+ 1) -th entry of the vector ht ,

• St+1(ω) is the uncertain spot price at time t+ 1 and

• α is any positive real number representing the fixed costs per unit of produc-

tion.

Utility Function. For all t ∈ T the random variable Rt may assume negative

values. In that regard we assume the utility function U : R→ R to be a member of

the following class:

Assumption 3.2 (Utility Class). The utility function U : R→ R is increasing on

R , continuous, differentiable and strictly concave, and satisfies

U ′(−∞) = lim
x↓−∞

= +∞ and U ′(+∞) = lim
x→+∞

= 0.

Moreover, U must be chosen such that URt+1(Xt, ct) := E[U(Rt(Xt, ct, ω) |st] is

well-defined.

To start with we choose one specific member of that class, namely the exponential

utility function given by

U(Rt) = − exp{−γRt}, (3.1)

where γ is a positive constant that represents the degree of risk aversion.

Control Constraint Set. Let K , K and δ be some positive constants such that

K < K and δ < K −K . For all t ∈ {0, n, 2n, 3n} we have

K(Xt) := I(1)(Xt)× I(2)(Xt) = {ct = (ft+n, bt) ∈ C |
K ≤ ft+n ≤ K − δ for t 6= 3n, ft+n = 0 else,

0 ≤ bt ≤ K − h(t+ 1)
}
.

For all t ∈ T \ {0, n, 2n, 3n} we have

K(Xt) := I(1)(Xt)× I(2)(Xt) = {ct = (ft+n, bt) ∈ C |
ft+n = h((t+ n)− t (mod n) + 1),

0 ≤ bt ≤ K − h(t+ 1)
}
.
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Preliminary Problem Formulation. Choose an optimal policy π∗ ∈ Π such

that for all X0

JT,π∗(X0) := sup
π∈Π

JT,π = sup
π∈Π

E

[
T−1∑
t=0

U [Rt(Xt, µt(Xt), ω)]

]

where expectation is taken with respect to the measure P (d(ω1, ω2, . . . , ωT )| s0) sub-

ject to

• Xt+1 = (Ht+1,ht+1, st+1) is generated according to the system equation

Xt+1 = Γ(Xt, µt(Xt), ω)

for all t ∈ T and

• µt(Xt) ∈ K(Xt) for all t ∈ T , i.e. the control variable is admissible.

Remark 3.1. The plant manager intends to maximize the “reward-to-go” given by the

accumulated costs and revenues evaluated according to the risk preferences (the plant

managers have agreed on) by choosing an optimal operating schedule (i.e. policy

π∗ ). Applying the risk aversion on every stage is a more conservative strategy than

maximizing the total expected wealth. It will be shown, that it makes the operation

more flexible. Moreover, the whole problem can be split into several subproblems

each affecting a certain subperiod (e.g. a quarter) of the considered time horizon.

That is the value of the plant at initial time t = 0 can be decomposed mainly into

three parts.

• The reward generated within the “present to go quarter” based on the

initial forward units h , given through the inital state X0 , and the optimal

spot decision b0 to be chosen in the admissible set I(2)(X0) such that the

“day-ahead reward” is maximized.

• The reward generated within the “next to go quarter” based on the current

forward decision fn to be chosen in the admissible set I(1)(X0) such that the

“next to go quarter reward” is maximized. Moreover, it is based on the future

optimal spot decisions b∗n+k ∈ I(2)(Xn+k) for all k ∈ {0, 1, . . . , n − 1} . Here,

due to the specific form of the spot control constraint set (that is determined

by the optimal forward control f ∗n ), i.e. I(2)(Xn+k) = [0, K − f ∗n] , allocation

of the maximum capacity might be necessary.

• The reward generated within the “remaining to go quarters” based on

future optimal forward and spot decisions f ∗i and b∗i+k for all i ∈ {2n, 3n} .
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All steps of the dynamic programming technique applied to obtain that specific struc-

ture of the value function (in terms of well-defined expectations) are then provided

within Section 3.4.

3.4 Bellman Equation & Dynamic Programming

Due to the formulated assumptions and conventions, the sequence of system states

{X0, X1, . . . , XT} forms a finite Markov sequence, which is completely described by

the state transition kernel T (dXt+1; Xt, ct) and the initial state X0 . In order to

obtain a solution to the optimization problem the dynamic programming algorithm

will be applied and discussed. According to Bertsekas [Ber76], “the Markov prop-

erty is at the heart of the dynamic programming technique.” Such a technique

decomposes the problem into a sequence of simpler maximization problems, that are

carried out over the constrained control set at Xt , i.e. K(Xt) , rather than over the

constraint control function set Kt .

The DP algorithm is based on the so-called principle of optimality due to Bellman,

“who contributed a great deal to the popularization of DP and to its transformation

into a systematic tool” (Bertsekas [Ber76]). In our setting the principle can be stated

as follows:

• Suppose π∗ = (µ∗0, . . . , µ
∗
T−1) is an optimal policy for the T -stage optimization

problem.

• Considering the subproblem of starting at state Xt at time t > 0 and max-

imizing the reward-to-go from time t to time T , i.e. JT,πt(Xt) . Then the

(truncated) policy

π∗t = (µ∗t , µ
∗
t+1, . . . , µ

∗
T−1)

is also optimal for the subproblem.

3.4.1 Mappings Underlying the DP Model

Here Ω is not countable, thus matters are complicated since the function

g∗(Xt) := sup
y
g(Xt, y) = sup

y
E[G(Xt, y, ω)|st]

is not necessarily measurable, even if the (conditional) expectation function g(Xt, y)

is. For a thorough treatment of that problem we refer to the book of Bertsekas &
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Shreve [BS80]. They suggest two approaches to overcome this difficulty. The first

possibility is to define the expected value as an outer integral, as we do until stated

differently. (All details on the outer integral formulation are discussed in [BS80],

thus we only state the basic definition concerning our model framework in Appendix

B.1.) The other approach is to impose an appropriate measurable space structure

on X , C and Ω and require that the functions µt ∈ Kt are measurable as we do

with effect from Section 3.5.

Definition 3.1. Let a mapping Ht : X× C × Ft+1 → R be given by

Ht(Xt, ct, J) = E [U [Rt(Xt, ct, ω)] + J(Γ(Xt, ct, ω)) | st ]

for all t ∈ T , where the following are assumed:

(1) ω takes values in the measurable space (Ω,F) . For each fixed st ∈ R a

probability measure P (dω| st) on (Ω,F) is given and E[ . | st] denotes the

outer integral (compare Appendix B) with respect to that measure such that no

further measurability assumptions are needed.

(2) Rt and Γ map X× C × Ω into the domain of the utility function U and X
respectively.

(3) J ∈ Ft+1 maps X into R .

Hence, we are given the function Ht which maps the state Xt , control ct and the

function J into R . We then define the function J : X→ R .

Definition 3.2. (a) At date T we define

JT (XT ) ≡ 0

for all XT ∈ X .

(b) For each µt ∈ Kt the reward-to-go operator is defined as the mapping

Tµt : Ft+1 → Ft such that for every Xt ∈ X , J ∈ Ft+1 it holds

Tµt(J)(Xt) := Ht(Xt, µt(Xt), J)

for all t ∈ T .

(c) The optimal reward-to-go operator Tt : Ft+1 → Ft is then defined as

Tt(J)(Xt) := sup
µt∈Kt

Tµt(J)(Xt)

for all Xt ∈ X , J ∈ Ft+1 and all t ∈ T .
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(d) The optimal reward-to-go function Jt : X→ R is then defined as

Jt(Xt) := JT,π∗t (Xt) := sup
πt∈Πt

JT,πt(Xt)

for all Xt ∈ X and all t ∈ T .

Remark 3.2. The term “reward-to-go” involved e.g. in the denotation of Jt for

t ∈ T has been chosen to account for Jt(Xt) denoting the maximum reward the

plant accumulates from the current date t ∈ T until the end of the time horizon T .

3.4.2 Reward-to-Go Iteration

Now, the value of the reward-to-go function JT,πt at date t can be iteratively ex-

pressed in terms of the operator Tµt , Tµt+1 , . . . , TµT−1
. Hence, at any date t ∈ T

the operator can be iteratively applied to compute the reward-to-go for a given initial

state Xt and corresponding to a given policy πt .

Theorem 3.1 (Reward Iteration). Let πt = (µt, . . . , µT−1) be a truncated policy.

For all t ∈ T it holds

JT,πt(Xt) = (Tµt · Tµt+1 · · · · TµT−1
)(JT )(Xt) for all Xt ∈ X,

where (Tµt · Tµt+1 · · · · TµT−1
) denotes the composition of the mappings Tµt , Tµt+1 ,

. . . , TµT−1
and JT,πt denotes the “reward-to-go” function JT,πt : X → R corre-

sponding to πt .

Proof. 3.2(b) yields JT,πt(Xt) = Tµt(J)(Xt) for all Xt ∈ X , all J ∈ Ft+1 and all t ∈
T . Especially, for a fixed µT−1 ∈ KT−1 we have JT,πT−1

(XT−1) = TµT−1
(JT )(XT−1)

for all XT−1 ∈ X . For some fixed t and πt = (µt, . . . , µT−1) let the induction

hypothesis JT,πt(X) = (Tµt · Tµt+1 · · · · TµT−1
)(JT )(X) be satisfied for all Xt ∈ X .

Then, the desired result follows by backward induction.

3.4.3 Optimal Reward-to-Go Iteration

We have introduced an expression for the expected reward JT,πt generated over

the subsequent T − t stages. The value can be calculated iteratively by successive

application of the reward-to-go operator Tµk to the reward-to-go functions JT,πk
starting with k = T − 1 proceeeding backwards in time until k = t . The result is

stated in Theorem 3.1. In view of the formulated optimization problem the following

related questions arise:
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1. Does the relation J0 = JT,π∗ = (T0 · T1 · · · · TT−1)(JT ) hold, i.e. is it possible

to decompose the computation of the optimal expected reward into a sequence

of maximization problems in a similar way as for the expected reward? Or

equivalently is the dynamic programming technique applicable?

2. Does an optimal control function µt ∈ Kt for every t ∈ T exist, such that

a (uniformly) optimal policy π∗ = (µ∗0, µ
∗
1 . . . , µ

∗
T−1) ∈ Π exists? We call a

policy π∗ uniformly optimal, if for all t ∈ T the truncated policy π∗t is (T − t
stage) optimal.

Let us assume for now, that these questions are affirmative. For later reference we

summarize these assumptions on the optimization problem:

Assumption 3.3. Let T = 4n for some n ∈ N . Then the following statements

hold:

(I) For all Xt ∈ X , µt ∈ Kt and all J ∈ Ft+1 the optimal operator Tt satisfying

Tt(J)(Xt) = sup
µt

H(Xt, µt(Xt), J) can be iteratively applied such that

JT,π∗(X0) = sup
π∈Π

JT,π = (T0 · T1 · · ·TT−1)(JT )(X0)

is the optimal (T-stage) value function.

(E) A uniformly optimal policy π∗ = (µ∗0, . . . , µ
∗
T−1) exists with µ∗t = (µ

(1)∗
t , µ

(2)∗
t ) ∈

Kt for all t ∈ T .

Now, let (I) and (E) be valid such that the dynamic programming technique due

to Bellman can be applied. It decomposes the problem into a sequence of simpler

maximization problems, that are carried out over the constraint control set at Xt ,

i.e. K(Xt) , for all t ∈ T . The problem can then be re-formulated.

Problem Formulation. Find an optimal policy π∗ = (µ∗0, . . . , µ
∗
T−1) ∈ Π such

that for all X0 ∈ X the optimal value function is given by

J0(X0) = JT,π∗(X0)

= (T0 · T1 · · · · TT−1)(JT )(X0)

= sup
π∈Π

JT,π(X0)

= sup
π∈Π

E

[
T−1∑
t=0

U [Rt(Xt, µt(Xt), ω)]

]
for all t ∈ T subject to
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• Xt+1 = (Ht+1,ht+1, st+1) is generated according to Xt+1 = Γ(Xt, µt(Xt), ω) ,

• µt(Xt) ∈ K(Xt) ,

where K(Xt) is the non-empty control constraint set at Xt for all t ∈ T .

Remark 3.3. (i) Again expectation denotes the outer integral with respect to the

measure P (d(ω1, ω2, . . . , ωT )| s0) such that no further measurability assump-

tions are necessary (compare Definition 3.1). Note, when calling the problem

well-defined we refer to the problem rewritten in terms of ordinary integration

such that all necessary measurability assumptions are satisfied.

(i) It is not guaranteed a priori that a maximizing control policy exists. One must

in any case require, that

JT,π(X0) <∞.

for all X0 ∈ X .

(ii) We denote the smallest upper bound on the set of real numbers {JT,π(X0)|π ∈
Π} by

J0(X0) = sup
π∈Π

JT,π(X0).

(iii) The optimal value of the problem depends on the initial state X0 ∈ X . We

refer to the function J0 that assigns to each initial state X0 the corresponding

optimal value J0(X0) as the optimal value function.

3.4.4 Dynamic Programming

The following notations are introduced with regard to the specific choice of an ex-

ponential utility function U , i.e. U(R) = − exp{−γ R} for all R ∈ R with γ > 0 ,

being a member of the utility class specified by Assumption 3.2. From now on and

especially throughout the recursive DP equations, resulting in the structural result

stated in Theorem 3.2, we use that notation and the property of the exponential

utility that U(x+ y) = −U(x) ·U(y) for all x, y ∈ R . At the end of our theoretical

analysis, however, we argue that all results generalize to the class of utility functions

specified by Assumption 3.2.

Spot Reward. For all t ∈ T the mapping SRt+1 : I(2)(Xt) × Ω → R is a real

valued function given by

SRt+1(b, ω) := U((St+1(ω)− α) b)
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with α > 0 . The function value SRt+1 will be referred to as the (uncertain) spot

reward incurred at the next stage after choosing the spot control b , i.e. the second

entry of the control variable c , in the corresponding control constraint set at Xt ,

I(2)(Xt) . The optimal spot reward value function is then denoted by SR∗t+1 .

Particularly, for all t ∈ T and any Xt ∈ X we define

ESR(st, b) := E[SRt+1(b, ω) | st], (3.2)

SR∗t+1(Xt) := sup
b∈I(2)(Xt)

ESR(st, b), (3.3)

SR∗t+1(Xk) := E[ sup
b∈I(2)(Xt)

ESR(St, b) | sk] (3.4)

for all k ∈ {0, 1, . . . , t − 1} , Note, expectation in Definition 3.4 denotes the outer

integral with respect to the measure P t−k|sk := P (d(ωk+1, ωk+2, . . . , ωt)| sk) .

Forward Reward. For all t ∈ T the mapping FRt : I(1)(Xt) × R → R is a real

valued function given by

FRt(f
t+n
t , F t+n

t ) := U((F t+n
t − α) f t+nt )

with α > 0 . By convention F t+n
t is a deterministic real valued function of the

current spot price st , i.e. F t+n
t = F (t, t + n, st) . The function value FRt will be

referred to as the forward reward incurred at one stage within the next quarter

(per unit of production) after choosing the forward control f , i.e. the first entry

of the control variable c , in the corresponding control constraint set I(1)(Xt) . The

optimal quarter value function for all i ∈ {n, 2n, 3n} and any Xi−n+j ∈ X for

all j ∈ {0, 1, . . . , n− 1} is given by

Q∗i (Xi−n+j) := sup
f∈I(1)(Xi−n)

Qi(f,Xi−n+j), (3.5)

Qi(fi, Xi−n+j) := −FR(fi, F
i
i−n) · E

[
n∑
k=0

SR∗i+k+1(Xi+k)|si−n+j

]
, (3.6)

FR∗i := sup
f∈I(1)(Xi−n)

FR(fi, F
i
i−n) (3.7)

Note, expectation in Definition 3.6 denotes the outer integral with respect to the

measure P n−j|si−n+j
:= P (d(ωi−n+j+1, . . . , ωi)| si−n+j) .

Dynamic Programming. To derive a structural result about the optimal value

function J0 we use the DP technique. For now, let (I) and (E) given in Assumption



CHAPTER 3. SDP PROBLEM 80

3.3 hold true. Then for all Xt ∈ X the optimal reward-to-go function Jt is given

via the Bellman equation

Jt(Xt) := sup
µt∈Kt

E

U [Rt(Xt, µt(Xt), ω)] + Jt+1(Γ(Xt, µt(Xt), ω))︸ ︷︷ ︸
:=Gt(Jt+1,ω)

∣∣∣∣ st


µ∗t (Xt) := arg max
µt∈Kt

E [U [Rt(Xt, µt(Xt), ω)] + Jt+1(Γ(Xt, µt(Xt), ω)) | st]

for all t ∈ T .

Thereafter the structural result is stated in the next theorem.

Theorem 3.2. Let (I) and (E) given according to Assumption 3.3 hold true. For

any X0 ∈ X the optimal value function J0(X0) has the structure

J0(X0) = Q∗0(X0) +Q∗n(X0) + E[Q∗2n(Xn) | s0] + E[Q∗3n(X2n)|s0],

where for all i ∈ {n, 2n, 3n} the optimal quarter value function Q∗i (Xi−n) is given

by

Q∗i (Xi−n) = −FR∗i−n · E

[
i+n−1∑
j=i

SR∗j+1(Xi)|si−n

]
and expectation denotes the outer integral with respect to the measure P n|si−n . If

i = 0 the optimal quarter value function is given by

Q∗0(X0) = −FR(h,H) ·
n−1∑
j=0

SR∗j+1(X0)

with f ∗0 = h .

For all i ∈ {0, n, 2n, 3n} the optimal controls are given by

f ∗i := µ
(1)
i−n(Xi−n) = arg max

f∈I(1)(Xi−n)
Qi(f,Xi−n) if i 6= 0 and

b∗i+k := µ
(2)
i+k(Xi+k) = arg max

b∈I(2)(Xi+k)
ESR(si+k, b)

for all k ∈ {0, 1, . . . , n− 1} . For all t ∈ T and z := t− t (mod n) it holds

I(1)(Xt) =


{h(z + n+ 1)} for all t ∈ T \ {0, n, 2n, 3n},

[K,K − δ] for all t ∈ {0, n, 2n},

{0} for t = 3n and

I(2)(Xt) =[0, K − h(t)] = [0, K − f ∗z+n].
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Proof. The imposed conventions in the first part along with the definition of the

dynamic system in the second part and the introduced notation yield the specific form

of the dynamic programming equations. The structural result is determined on basis

of the outer integral formulation. We will frequently make use of the measurability

assumption that URt+1(Xt, ct) := E[U(Rt(Xt, ct, ω) |st] is well-defined. Then the

property of the outer integral, that
∫ ∗

(f + h) dP =
∫ ∗
f dP +

∫ ∗
h dP holds true

for all such f and h (compare Appendix B.1).

For all X3n+k ∈ X with k ∈ {0, 1, . . . , n} we have

JT (XT ) :=0

JT−1(XT−1) = sup
µT−1∈KT−1

E [U [(H(T )− α)h(T ) + (ST (ω)− α)bT−1] | sT−1]

=−U [(H(T )− α)h(T )]︸ ︷︷ ︸
=−FR(h(T ),H(T ))

· sup
µT−1∈KT−1

E [U [(ST (ω)− α)bT−1] | sT−1]

=− FR∗2n · SR∗T (XT−1)

c∗T−1 = µ∗T−1(XT−1) :=− FR∗2n · arg max
cT−1∈K(XT−1)

E [SRT (bT−1, ω) | sT−1]

where the optimal control c∗T−1 is to be found in K(XT−1) with I(1)(XT−1) =

{h(T + 1)} = {f ∗4n} and I(2)(XT−1) = [0, K − h(T − 1)] = [0, K − f ∗3n] , such that

fT−1+n∗
T−1 = f ∗4n and b∗T−1 = arg max

b∈I(2)(XT−1)
ESR(sT−1, b) .

Backward induction yields

JT−2(XT−2) = sup
µT−2∈KT−2

E [U [(H(T − 1)− α)h(T − 1) + (ST−1(ω)− α)bT−2]

−FR∗2n · SR∗T (XT−1) | sT−2]

=− FR∗2n · [SR∗T−1(XT−2) + SR∗T (XT−2)]

JT−3(XT−3)=− FR∗2n · [SR∗T−2(XT−3) + SR∗T−1(XT−3) + SR∗T (XT−3)]

...

J3n(X3n) =− FR∗2n ·
T−1∑
j=3n

SR∗j+1(X3n)

c∗3n = µ∗3n(X3n) :=− FR∗2n · arg max
c3n∈K(X3n)

[ESR(s3n, b3n) +
T−1∑

j=3n+1

SR∗j+1(X3n)]

where I(1)(X3n) = {0}

I(2)(X3n) = [0, K − h(3n)] = [0, K − f ∗3n].
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and f
∗
4n = 0

b∗3n = arg max
b∈I(2)(X3n)

ESR(s3n, b)

Note, e.g. expectation in SR∗T (XT−3) is the outer integral with respect to the

measure P 2|sT−3
(compare page 79). Turning to the third quarter for all X2n+k ∈ X

such that k ∈ {0, 1, . . . , n− 1} we obtain recursively

J3n−1(X3n−1) = sup
µ3n−1∈K3n−1

E [U [(H(3n)− α)h(3n) + (S3n(ω)− α)b3n−1]

− FR∗2n ·
T−1∑
j=3n

SR∗j+1(X3n) | s3n−1

]

=−FR(f ∗2n, F
2n
n )︸ ︷︷ ︸

=−FR∗n

·SR∗3n(X3n−1)−FR∗2n · E[
T−1∑
j=3n

SR∗j+1(X3n)|s3n−1]︸ ︷︷ ︸
=Q∗3n(X3n−1)

...

J2n(X2n) =−FR∗n ·
3n−1∑
j=2n

SR∗j+1(X2n)︸ ︷︷ ︸
=Q∗2n(X2n)

+Q∗3n(X2n)

c∗2n = µ∗2n(X2n) := arg max
c2n∈K(X2n)

{
−FR∗n ·

[
ESR(s2n, b2n) +

3n−1∑
j=2n+1

SR∗j+1(X2n)

]

−FR(f3n, F
3n
2n ) · E[

T−1∑
j=3n

SR∗j+1(X3n)|s2n]︸ ︷︷ ︸
=Q3n(f3n,X2n)


where I(1)(X2n) = [K,K − δ]

I(2)(X2n) = [0, K − h(2n)] = [0, K − f ∗2n]

and 
f ∗3n = arg max

f∈I(1)(X2n)
Q3n(f,X2n)

b∗2n = arg max
b∈I(2)(X2n)

ESR(s2n, b).

Proceeding analogously for the remaining two quarters by backward induction argu-

ments for any given initial state X0 ∈ X we obtain the specific structure of J0(X0)

along with the corresponding optimal operating policy.
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3.4.5 Structure of the Optimal Value Function

Supposing (I) and (E) given according to Assumption 3.3 hold true the DP technique

could be applied and we have derived a specific structure of the optimal value function

J0 of the SDP problem, that is given by

J0(X0) = Q∗0(X0) +Q∗n(X0) + E[Q∗2n(Xn) | s0] + E[Q∗3n(X2n)|s0]

= FR(h,H) · sup
b∈I(2)(X0)

[
ESR(s0, b) +

n−1∑
j=1

SR∗j+1(X0)

]
+ sup

f∈I(1)(X0)

Qn(f,X0)

+ E[Q∗2n(Xn) | s0] + E[Q∗3n(X2n)|s0],

where expectation denotes the outer integral and for all i ∈ {n, 2n, 3n} the quarter

value function is given by

Qi(fi, Xi−n) = −FR(fi, F
i
i−n) · E

[
n∑
k=0

SR∗i+k+1(Xi)|si−n

]
.

The current decisions to be optimized do only affect the current and the next quarter.

Due to the additive character of the “reward-to-go” function Jt for all t ∈ T the

optimization problem to be solved on every stage of the DP algorithm can be split

into two parts with respect to the current decision variables ft+n and bt . Hence,

throughout the trading period [0, T ] for all i ∈ {0, n, 2n, 3n} and k ∈ {0, 1, . . . , n−
1} the following subproblems need to be solved:

1. Optimal Spot Production: Find b∗i+k ∈ I(2)(Xi+k) such that the expected

“day-ahead” spot reward

ESR(si+k, bi+k)

is maximized.

2. Optimal Future Production: Find f ∗i ∈ I(1)(Xi−n) such that the “next to

go quarter” reward

Qi(fi, Xi−n)

is maximized.
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Allocating Character. To what extend do we face an allocation problem? Look-

ing at the derived structure and the decomposition of the problem into a sequence

of subproblems, where does this structure contribute to answer the previously posed

main economic question of the problem: How much capacity should be contracted

in the forward market and how much capacity should be kept for bidding in the spot

market? The answer is then simple: The second subproblem exactly reflects the

allocating character that needs to be respected when evaluating future production.

In mathematical terms the allocating character can be expressed by reformulating

the “optimal future production” problem: Using for all i ∈ {0, n, 2n, 3n} the notation

J∗n(Xi) :=
i+n−1∑
j=i

SR∗j+1(Xi)

we have (for i ∈ {n, 2n, 3n} )

Qi(fi, Xi−n) = −FR(fi, F
i
i−n) · E[J∗n(Xi) | si−n],

where J∗n(Xi) depends indirectly on f ∗i in terms of the state vector Xi . The state

Xi contains f ∗i through the “historic unit vector” hi for all i . More specifically, the

recursive mapping J∗n(Xi) is the sum of the expected optimal spot reward functions

SR∗i+k(Xi) that are attained at b∗i+k = µ
(2)
i+k(Xi+k) ∈ I(2)(Xi+k) . Moreover, the spot

control set for all k ∈ {0, 1, . . . , n−1} is given by I(2)(Xi+k) = [0, K−f ∗i ] due to the

system dynamics and the definition of the forward control constraint set I(2)(Xi+k) .

Hence, when optimizing the forward control f ∗i the spot control sets I(2)(Xi+k) for

all k ∈ {0, 1, . . . , n− 1} are directly influenced by the value of f ∗i and we face the

allocation problem.

Let us rearrange the quarter value function Qi(fi, Xi−n) such that we obtain as a

corollary to Theorem 3.2 an explicit form of the “optimal future production” problem

reflecting the allocating character:

Corollary 3.1. Let J0(X0) be given according to Theorem 3.2 then for any i ∈
{n, 2n, 3n} and Xi−n ∈ X the quarter value function Qi(fi, Xi−n) is equivalent to

Qi(fi, Xi−n) = E

[
n−1∑
k=0

U
(
(F i

i−n − Si+k+1)fi + (Si+k+1 − α)K
)
1Ak(ω

n+k)

+U
(
(F i

i−n − α)fi + (Si+k+1 − α)b∗i+k
)
1Bk(ω

n+k) |si−n
]
,

where expectation denotes the outer integral with respect to the measure P 2n−1|si−n
and the spot control sets Ak and Bk , respectively, are given by

Ak =

{
ωn+k

∣∣∣∣ arg max
b∈[0,K−fi]

E[SR(b, ωi+k)|si−n] = K − fi
}
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Bk =

{
ωn+k

∣∣∣∣ arg max
b∈[0,K−fi]

E[SR(b, ωi+k)|si−n] < K − fi
}

with ωn+k := (ωi−n+1, . . . , ωi+k) for all k ∈ {0, 1, . . . , n− 1} .

Remark 3.4. (i) The spot price dynamics are used successively to express the spot

prices Si−n+1, Si−n+2, . . . Si+n exclusively in terms of ωi−n+1, ωi−n+2, . . . , ωi+n

and si−n .

(ii) From an economic point of view intuitively one would assume (denoting any

F i
i−n with F , b∗i+k with b∗ and f ∗i with f ∗ ):

– If F ≥ α then forward production is profitable. Not accounting for the

possibility of future spot bidding (above the spot reserve) the optimal

forward control is at the maximum level, i.e. K − δ . If any future

spot price scenario (within the delivery quarter) suggests an optimal spot

control b∗ above the spot reserve δ , spot price production is supposed to

be profitable as well. In that scenario production is profitable and hence

the plant is supposed to be operated at full capacity such that allocation

of total capacity is necessary (compare Assumption 3.4 in Section 3.5.2).

– If F < α then forward production is not profitable. Hence, the optimal

forward control is at the minimum level, i.e. f ∗ = K . Such a conclusion

will be verified in Section 3.5.2 within Lemma 3.3.

(iii) Let F i
i−n ≥ α and assume that an optimal solution exists. Then if for all future

scenarios the spot prices Si+k+1 exceed the forward price F i
i−n currently traded

at the market, i.e. for all k

P n+k+1(Si+k+1 > F i
i−n | si−n) = 1,

then b∗i+k = K − fi for all k and immediately Corollary 3.1 implies f ∗i = K .

Contrary, if for all k

P n+k+1(Si+k+1 < F i
i−n | si−n) = 1,

then f ∗i = K − δ .

Hence, the optimal forward control f ∗i ∈ I(1)(Xi−n) for all Xi−n ∈ X and i ∈
{n, 2n, 3n} must be determined such that it maximizes the expected quarter value

function given in Corollary 3.1 to reflect the allocating character of the problem.

Of course both subproblems can only be solved, if the maxima exist and the corre-

sponding optimal value functions are finite. We will deal with these questions in the

next section.



CHAPTER 3. SDP PROBLEM 86

3.5 Existence and Uniqueness of a Solution

In view of the formulated optimization problem we now want to answer the preceed-

ing questions:

1. Does the relation J0 = JT,π∗ = (T0 · T1 · · · · TT−1)(JT ) hold, i.e. is it possible

to decompose the computation of the optimal expected reward into a sequence

of maximization problems in a similar way as for the expected reward? Or

equivalently is the dynamic programming technique applicable?

2. Does an optimal control function µt ∈ Kt for every t ∈ T exist, such that

a (uniformly) optimal policy π∗ = (µ∗0, µ
∗
1 . . . , µ

∗
T−1) ∈ Π exists? We call a

policy π∗ uniformly optimal, if for all t ∈ T the truncated policy π∗t is (T − t
stage) optimal.

That is we want to show, that the statements (I) and (E) of Assumption 3.3 hold true

within the SDP problem formulation: By assuming (I) and (E) we have been able to

derive a specific structure of the optimal value function J0 and the operating policy

stated in Theorem 3.2. With this structure at hand the problem has been decom-

posed into two kinds of subproblems with respect to the different control variables

b and f . Proving existence and uniqueness for these subproblems (on every stage)

then proves the validity of Assumption 3.3. In addition we show, that by posing

appropriate measurability assumptions, i.e. URt+1(Xt, ct) := E[U(Rt(Xt, ct, ω)|st]
to be well-defined and µt to be measurable for every t ∈ T , the whole problem can

be understood and solved in terms of ordinary integration. Thereafter, the main

result of the SDP problem is stated in Section 3.5.3.

3.5.1 Optimal Control - First Subproblem

To begin with, we derive statements concerning existence and uniqueness of a solution

to the first subproblem, i.e. the problem of determining b∗ ∈ I(2)(Xt) for all t ∈ T
such that the expected “day-ahead” spot reward given according to (3.2)

ESR(st, b) = E[SRt+1(b, ω) | st]

is maximized, where by convention we have I(2)(Xt) = [0, at] with at := K − h(t+

1) > 0 with h(t) = fz+n for all t ∈ T and z = t− t (mod n) and µ
(2)
t : X→ C is

appropriately measurable.
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Due to the properties of the utility function U (summarized by Assumption 3.2)

for any t ∈ T the function SRt+1(·, ω) is continuous, concave, and differentiable

for P -almost every ω ∈ Ω and SRt+1(b, ·) is measurable and integrable for every

b ∈ I(2)(Xt) .

It is then our aim to prove that (given st ∈ R ) the expected value function ESR(st, b)

inherits certain properties of the integrand SRt+1(b, ω) . The next lemmata state

these properties following the results of Ruszczyński & Shapiro stated in Chapter 2

of [RS03].

Lemma 3.1. Given st ∈ R for any t ∈ T the expected value function ESR(st, b)

is continuous at b ∈ I(2)(Xt) and integrable.

Proof. For any t ∈ T the integrand function SRt+1(b, ·) is measurable for every b ∈
I(2)(Xt) and there exists a P -integrable function Z(ω) such that |SRt+1(b, ω)| ≤
Z(ω) for P -almost every ω ∈ Ω and all b ∈ I(2)(Xt) . Then also ESR(st, b) is

integrable. Moreover, by the Lebesgue Dominated Convergence Theorem we can

take the limit inside the integral. Together with the continuity of SRt+1(·, ω) for

P -almost every ω ∈ Ω that implies

lim
b→b∗

∫
Ω

SRt+1(b, ω)P (dω; st) =

∫
Ω

lim
b→b∗

SRt+1(b, ω)P (dω; st)

=

∫
Ω

SRt+1(b∗, ω)P (dω; st).

This shows continuity of ESR(st, b) at b∗ ∈ I(2)(Xt) for any t ∈ T and st ∈ R .

Lemma 3.2. Given st ∈ R for any t ∈ T the expected value function ESR(st, ·)
is concave and differentiable.

Proof. For any t ∈ T the concavity of ESR(st, b) for given st follows imme-

diately from the concavity of SRt+1(·, ω) for P -almost every ω ∈ Ω . For all

bt ∈ I(2)(Xt) and any given st the expected value function ESR(st, bt) is finite.

Hence, ESR(st, b
∗) and ESR(st, b

∗+h0) are finite for some h0 > 0 and b∗, b∗+h0 ∈
I(2)(Xt) . It follows from the concavity and differentiability of SRt+1(·, ω) that the

ratio

gh(ω) := h−1 [SRt+1(b∗ + h, ω)− SRt+1(b∗, ω)]

is monotonically increasing to SR
′
t+1(b∗, ω) as h ↓ 0 . Also we have that

E[|gh0(ω)|] ≤ h−1
0 (E[|SRt+1(b∗ + h0, ω)|] + E[|SRt+1(b∗, ω)|]) < +∞.

Then it follows by Lemma 3.1 and the Monotone Convergence Theorem that

lim
h↓0

E[gh(ω) | st] = E[lim
h↓0

gh(ω) | st] = E[SR
′

t+1(b∗, ω) | st].
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Thus ESR(st, ·) is differentiable at b∗ , i.e.

ESR′(st, b
∗) = E[SR′t+1(b∗, ω)|st].

Theorem 3.3. The set arg max
b∈I(2)(Xt)

ESR(st, b) is non-empty. If additionally b∗ exists

with ESR′(st, b
∗) = 0 , then b∗ is a global maximizer of ESR(st, ·) .

Proof. Due to Lemma 3.1 the expected value function ESR(st, ·) is continuous for

any given st ∈ R with bounded domain [0, at] . That implies the first statement

of the theorem, i.e. that the set arg max
b∈I(2)(Xt)

ESR(st, b) is non-empty. Due to Lemma

3.2 the derivative of the expected value function exists. If there exists a b∗ with

ESR′(st, b
∗) = 0 , then the concavity of ESR(st, ·) for any given st ∈ R immediately

implies that b∗ is a global maximum of ESR(st, ·) and b∗ ∈ [0, at] .

We have been able to show, that an optimal solution to the first subproblem exists

on every stage of the DP algorithm, i.e. for all t ∈ T the supremum in the relation

SR∗t+1(Xt) = sup
b∈I(2)(Xt)

ESR(st, b) is attained. We have shown, that ESR(st, b) is

continuous, concave and integrable. Moreover, the supremum is to be found in the

compact set I(2)(Xt) . Consequently, also SR∗t+1(Xt) is integrable for all t ∈ T .

After that, we can turn to the second subproblem. That is the task of finding an

optimal (forward) control variable f , such that the next to go quarter reward is

maximized. Due to the structure of the optimal value function V ∗T and the corre-

sponding optimal policy stated in Theorem 3.2, it is sufficient to derive the desired

properties of the optimal quarter value functions Q∗i (Xi−n) and the corresponding

optimal control variables f ∗i , to be found in the compact set I(1)(Xi−n) , for all

Xi−n ∈ X and i ∈ {n, 2n, 3n} . Moreover, f ∗i fixes the left end point of the interval

I(2)(Xi+k) = [0, ai+k] for all i ∈ {n, 2n, 3n} and k ∈ {0, 1, . . . , n − 1} . Thus, we

are presented with the allocation problem. Existence, uniqueness and well-posedness

of the so-called “optimal future production” problem will be stated within the next

section.

3.5.2 Optimal Control - Second Subproblem

The “optimal future production” problem has been specified by the task of finding

(at time i− n ) an optimal (forward) control f ∗i ∈ I(1)(Xi−n) for all i ∈ {n, 2n, 3n}
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such that the “next to go quarter reward” given according to (3.6)

Qi(fi, Xi−n) = −FR(fi, F
i
i−n) · E[

i+n−1∑
j=i

SR∗j+1(Xi)|si−n] (3.8)

is maximized.

Remark 3.5. For convenience let us summarize the conventions affecting the optimal

future production problem by the following list.

(i) The mapping J∗n : R→ R is given by

J∗n(Xi) :=
i+n−1∑
j=i

SR∗j+1(Xi)

for all i ∈ {0, n, 2n, 3n} .

(ii) For all i ∈ {n, 2n, 3n}

Q∗i (Xi−n) = sup
f∈I(1)(Xi−n)

Qi(f,Xi−n)

denotes the optimal quarter value function and

f ∗i = µ
(1)∗
i−n(Xi−n) := arg max

f∈I(1)(Xi−n)
Qi(f,Xi−n)

the corresponding optimal control variable with respect to the current state

Xi−n , where µ
(1)
t is appropriately measurable for all t ∈ T .

(iii) The (forward) control constraint set at Xt is given by

I(1)(Xt) =


{h(z + n+ 1)} for all z = t− t (mod n) and t ∈ T \ {0, n, 2n, 3n},

[K,K − δ] for all t ∈ {0, n, 2n},

{0} for t = 3n.

Obviously, for all i ∈ {n, 2n, 3n} the optimal quarter value function is con-

siderably influenced by the optimal spot reward accumulated at the future stages

{i+ 1, i+ 2, . . . , i+n} , given by J∗n(Xi) . The sum is affected by the optimal (spot)

control variables b∗i+k for all k ∈ {0, 1, . . . , n− 1} . Hence, the next theorem states

existence and uniqueness of SR∗j+1(Xi) for all j and any given si ∈ R . Moreover,

it states integrability of the optimal spot value function J∗n(Xi) .
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Theorem 3.4. For i ∈ {0, n, 2n, 3n} , k ∈ {0, 1, . . . , n− 1} and n ∈ N the optimal

spot value function has the specific form

J∗n−k(Xi+k) =
n−1∑
v=k

SR∗i+v+1(Xi+k)

and J∗n−k(Xi+k) is integrable. For all v ∈ {k, k + 1, . . . , n − 1} the suprema in the

relation

SR∗i+v+1(Xi+v) = sup
b∈I(2)(Xi+v)

ESR(si+v, bi+v)

are attained at b∗i+v = µ
(2)∗
i+v (Xi+v) = arg max

bi+v∈I(2)(Xi+v)
ESR(si+v, bi+v) .

Proof. Without loss of generality let i = 0 . The proof will be carried out by using

backward induction techniques.

• For t = n − 1 the above lemmata imply that for any given sn−1 ∈ R the

conditional expectation ESR(sn−1, bn−1) is continuous, concave and differ-

entiable with respect to bn−1 , where bn−1 ∈ I(2)(Xn−1) = [0, K − h(n)] .

Applying Theorem 3.3 yields the existence of J∗1 (Xn−1) = SR∗n(Xn−1) =

sup
bn−1∈I(2)(Xn−1)

ESR(sn−1, bn−1) . The optimal control variable b∗n−1 = µ
(2)∗
n−1(Xn−1) =

arg max
bn−1∈I(2)(Xn−1)

ESR(sn−1, bn−1) is uniquely found in the compact interval

[0, an−1] . With the properties of ESR(sn−1, bn−1) the integrability of J∗1 (Xn−1)

holds true.

(IH) For any fixed k ∈ {0, 1, . . . , n− 1} the value function is given by J∗n−k(Xk) =∑n−1
v=k SR

∗
v+1(Xk) and J∗n−k(Xk) is integrable. The suprema in the relation

SR∗v+1(Xv) = sup
b∈I(2)(Xv)

ESR(sv, b)

are attained at b∗v = µ
(2)∗
v (Xv) = arg max

b∈I(2)(Xv)
ESR(sv, b) for all v ∈ {k, k +

1, . . . , n− 1} .

• The induction step is carried out by going backwards from k to k − 1 . We

have

E[SRk(bk−1, ω) + J∗n−k(Xk)|sk−1]

(A)
= ESR(sk−1, bk−1) + E[J∗n−k(Xk)|sk−1]

(IH)
= ESR(sk−1, bk−1) + E[

n−1∑
j=k

SR∗j+1(Xk)|sk−1]

(B)
= ESR(sk−1, bk−1) +

n−1∑
j=k

SR∗j+1(Xk−1),
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where (A) is true since by induction hypothesis J∗n−k(Xk) is integrable. As-

sertion (B) uses the notation introduced in (3.4), that is applicable due to the

linearity of the expectation. Applying the line of arguments stated in the case

k = n− 1 we can conclude that the optimal value

SR∗k(Xk−1) = sup
bk−1∈I(2)(Xk−1)

ESR(sk−1, bk−1)

is attained at µ
(2)∗
k−1(Xk−1) = arg max

b∈I(2)(Xk−1)
ESR(sk−1, b) for all Xk−1 ∈ X and

SR∗k(Xk−1) is integrable. Using the induction hypothesis we conclude, that

the optimal value function is given by

J∗n−(k−1)(Xk−1) = sup
b∈I(2)(Xk−1)

{ESR(sk−1, b) +
n−1∑
j=k

SR∗j+1(Xk−1)}

=
n−1∑
j=k−1

SR∗j+1(Xk−1)

with b∗v = arg max
b∈I(2)(Xv)

ESR(sv, b) for all v ∈ {k − 1, k, . . . , n − 1} and is

integrable.

Thus, the statement holds for all k ∈ {0, 1, . . . , n− 1} ⊂ N .

Then immediately the next result about the first quarter value function follows.

Corollary 3.2. The first quarter value function is given by

Q0(h,X0) = −FR(h,H) · J∗n(X0)

with f ∗0 = h and Q0(h,X0) is optimal, well-defined and all involved suprema are

attained.

It is then left to state the corresponding result of existence and uniqueness with

respect to the (forward) control variable fi for all i ∈ {n, 2n, 3n} . First we consider

the case when F i
i−n < α . Our intuition, that the optimal (forward) control should

be attained at the minimum (forward) production level, i.e. f ∗i = K , can now be

verified.

Lemma 3.3. If F i
i−n < α then f ∗i = K for all i ∈ {n, 2n, 3n} .

Proof. Let i be fixed (we omit it in the notation as before) and assume F < α and

s ∈ R given. Then we need to find f ∗ ∈ [K,K − δ] such that

Q(f, F ) = −FR(f, F ) · E

[
n−1∑
k=0

sup
bk∈[0,K−f ]

ESR(sk, bk)| s

]
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is maximized with respect to f . Clearly, −FR(f, F ) is concave, continuous and

strictly increasing with respect to f (since F < α ). On the other hand ESR(sk, bk)

for all bk is negative and with Theorem 3.4 for all k the suprema b∗k are attained.

Hence, the unique solution exists and is attained at f ∗ = K .

Next, in the case F ≥ α the structure of the quarter value function Q(f, F ) as given

in Corollary 3.1 must be further specified by introducing the subsequent assumption.

Assumption 3.4. If F i
i−n ≥ α and b∗i+k = µ

(2)
i+k(Xi+k) > δ for any Xi+k ∈ X with

k ∈ {0, 1, . . . , n− 1} and i ∈ {n, 2n, 3n} then we suppose f ∗i + µ
(2)
i+k(Xi+k) = K .

The forward reward function FR(f, F ) is concave, continuous and strictly increasing

with respect to f (if F ≥ α ). In contrast, if f increases, then the supremum b∗

of the expected “day-ahead” spot reward ESR(s, b) is searched within an interval,

where the left endpoint of that interval decreases as soon as f increases. Once more,

this reflects the allocating character of the problem. To deal with that allocation

problem we need the preceeding assumption that b+f = K for all scenarios implying

b > δ in order to calculate an optimal solution. Such an assumption can also be

economically motivated.

Remark 3.6. Let the forward price observed by the plant manager be above the fixed

costs per unit of production. Not accounting for the possibility of spot bidding in the

delivery quarter, the plant manager would devote all available capacity to forward

contracts. In contrast, not accounting for bilateral agreements the plant manager

has the possibility to determine based on future price scenarios (generated according

to the underlying factor model) the optimal spot units to bid on the spot market on

a certain day within that delivery quarter. Altogether, he decides (by assumption)

to run the power plant at maximum capacity for all future scenarios that suggest

to bid more than the spot reserve at the spot market. Hence, in that situation the

spot reserve somehow depicts a boundary that suggests full capacity production to

be profitable. Next he transfers such a consideration to all future scenarios within

the delivery quarter. Finally, based on today’s forward price and expected future

spot price scenarios, he is in the position to calculate the optimal forward units he

agrees to deliver within the next quarter.

Back to the mathematical formulation, that is Corollary 3.1 can be applied with the

specific choice of

Ak :=

{
ωn+k

∣∣∣∣ arg max
b∈[0,K−fi]

E[SR(b, ωi+k)|si−n] > δ

}
(3.9)

Bk :=

{
ωn+k

∣∣∣∣ arg max
b∈[0,K−fi]

E[SR(b, ωi+k)|si−n] ≤ δ

}
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for all k ∈ {0, . . . , n− 1} , where ωn+k := (ωi−n+1, . . . , ωi+k) .

Thereafter, in the general case existence and uniqueness of an optimal solution is

stated by the next Theorem.

Theorem 3.5. For k ∈ {0, . . . , n − 1} , n ∈ N and i ∈ {n, 2n, 3n} the optimal

quarter value function Q∗i (Xi−n) is given by (3.8) and Q∗i (Xi−n) is integrable. The

suprema in the relations

Q∗i (Xi−n) = sup
f∈I(1)(Xi−n)

Qi(f,Xi−n)

and

SR∗i+k+1(Xi+k) = sup
b∈I(2)(Xi+k)

ESR(si+k, b)

are attained at

f ∗i = µ
(1)∗
i−n(Xi−n) = arg max

f∈I(1)(Xi−n)
Qi(f,Xi−n)

and

b∗i+k = µ
(2)∗
i+k (Xi+k) = arg max

b∈I(2)(Xi+k)
ESR(si+k, b),

respectively.

Proof. Due to Theorem 3.4 J∗n(Xi) is integrable and the optimal spot controls are

attained at b∗i+k for all k and all i ∈ {n, 2n, 3n} . From Theorem 3.2 we have

Qi(f,Xi−n) = −FR(f, F i
i−n) · E[J∗n(Xi)|si−n]

and thus Qi(f,Xi−n) is integrable. The involved expectation can now be understood

in terms of ordinary integration with respect to the measure P n|si−n , where the

integral has the following representation∫
Ω

∫
Ω

. . .

∫
Ω

J∗n(Xi)P (dωi|si−1) · · ·P (dωi−n+2|si−n+1)P (dωi−n+1|si−n)

Fubini
=

∫
Ωn
J∗n(Xi)P (d(ωi−n+1, . . . , ωi)|si−n).

It is then left to show existence and uniqueness of f ∗i .

In the case F i
i−n < α Lemma 3.3 states that Qi(f,Xi−n) attains its supremum at

f ∗i = K . If F i
i−n ≥ α the expectations involved in the quarter value function Qi ,

given according to Corollary 3.1 by

Qi(f,Xi−n) =
n−1∑
k=0

E

U ((F i
i−n − Si+k+1)f + (Si+k+1 − α)K

)
1Ak(ω

n+k)︸ ︷︷ ︸
integrand (1)

∣∣∣∣si−n


+
n−1∑
k=0

E

U ((F i
i−n − α)f + (Si+k+1 − α)b∗i+k

)
1Bk(ω

n+k)︸ ︷︷ ︸
integrand (2)

∣∣∣∣si−n
 ,
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can now be understood in terms of ordinary integration with respect to the respective

measure P n+k|si−n for all k . Together with Assumption 3.4 the optimal spot controls

b∗i+k for all k imply the sets Ak and Bk defined by (3.9). Due to the properties of U

(given according to Assumption 3.2) for almost every ωn+k = (ωi−n+1, . . . , ωi+k) ∈ Ak
integrand (1) and for almost every ωn+k ∈ Bk integrand (2) is concave, continu-

ous and differentiable with respect to f ∈ I(1)(Xi−n) . Hence, as a consequence of

Lemmata 3.1 and 3.2 (that apply analogously) the corresponding expected value

functions inherit these properties. Then again the sum of expected value functions

inherits these properties. Finally the compactness of I(1)(Xi−n) guarantees that

the unique maximum is attained at f ∗i = µ
(1)∗
i−n(Xi−n) = arg max

f∈I(1)(Xi−n)
Qi(f,Xi−n) .

Thus also Q∗i (Xi−n) is integrable.

3.5.3 Main Result of the SDP Problem

To summarize the above derived results, we state the main theorem, concerning the

stochastic dynamic programming problem, within the given model framework.

Theorem 3.6. Let T = 4n for some n ∈ N . Let Assumption 3.4 be satisfied and

let U : R → R denote the exponential utility function given by (3.1). Then the

following statements hold:

(E) A uniformly optimal policy π∗ = (µ∗0, . . . , µ
∗
T−1) exists with µ∗t = (µ

(1)∗
t , µ

(2)∗
t ) ∈

Kt for all t ∈ T .

(I) For all Xt ∈ X , µt ∈ Kt and all J ∈ Ft+1 the optimal operator Tt satisfying

Tt(J)(Xt) = sup
µt

H(Xt, µt(Xt), J) can be iteratively applied such that

JT,π∗(X0) = sup
π∈Π

JT,π = (T0 · T1 · · ·TT−1)(JT )(X0)

is the optimal (T-stage) value function.

(S) The optimal value function JT,π∗(X0) has the specific form

JT,π∗(X0) = Q∗0(X0) +Q∗n(X0) + E[Q∗2n(Xn) | s0] + E[Q∗3n(X2n)|s0]

and JT,π∗(X0) is well-defined.

Proof. Corollary 3.2 and Theorem 3.5 imply that Q∗0(X0) and Q∗i (Xi−n) for all

i ∈ {n, 2n, 3n} are integrable and that for all well-defined J ∈ Ft+1 the function

H(Xt, µt(Xt), J) = E [U [Rt(Xt, µt(Xt), ω)] + J(Γ(Xt, µt(Xt), ω)) | st ]
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is well-defined. Note, the proof is given within Theorem 3.4 and Theorem 3.5.

Additionally, Corollary 3.2 and Theorem 3.5 imply that all suprema in the relation

Tt(J)(Xt) = sup
µt

Tµt(J)(Xt) = sup
µt

H(Xt, µt(Xt), J)

are attained at c∗t = (f ∗t+n, b
∗
t ) = µ∗t (Xt) for all t ∈ T and all Xt ∈ X . This is

exactly equivalent to the existence of an uniformly optimal policy π∗ such that the

existence statement (E) is proved. Due to Bertsekas & Shreve [BS80] (compare also

Appendix B) the existence of an uniformly optimal policy π∗ immediately implies

statement (I), i.e. the problem can be decomposed and the DP technique applies.

Then Theorem 3.2 applies and yields the structure of the optimal value function

JT,π∗(X0) , that is also well-defined. Such that (S) holds true and the statement is

proved.

Obviously, Theorem 3.6 extends to a finite time horizon that is an arbitrary number

M of segments of length n .

Corollary 3.3. Let T = (M + 1) · n for some n,M ∈ N such that T <∞ . Then

the optimal value function is given by

JT,π∗(X0) = Q∗0(X0) +Q∗n(X0) +
M∑
m=2

E[Q∗m·n(X(m−1)n)|X0].

Extension to General Utility Class. Due to the structure of the problem all

main results are valid for any utility function U in the class of concave, continuously

differentiable utilities specified by Assumption 3.2. Factoring the negative of the

forward reward function −FRi−n(f, F i
i−n) back inside the spot reward functions

SRi+k+1(b, ω) for all k = 0, 1, . . . , n−1 and i ∈ {n, 2n, 3n} yields the general form.

To put it differently, rearranging the notation such that FR(fi, F
i
i−n) := −1 and

SRi+k+1(b, ω) is replaced by URi+k+1(c, ω) := U(Ri+k(Xi+k, c, ω)) for all i and k

all results apply analogously.
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3.6 Cox Ross Rubinstein Market

3.6.1 Motivation

To get an insight into the structure of the problem, to identify the interaction of

the operational constraints and the implications of different market evolutions on

an optimal policy, we choose a basic model for the underlying stochastic process S

observed at the discrete dates t ∈ T , i.e. (St)t∈T , to generate such specific market

situations. We study the well-known binomial model first proposed by Cox, Ross and

Rubinstein in 1979 [CRR79] with different choices of the involved market parameter

u and d . Of course, one could calibrate the CRR model to market data and use these

parameters to reflect the market through the model dynamics. However, we feel that

the CRR market is only in a narrower sense a possible candidate for reflecting the

special properties of the electricity spot market. Hence, we consider the underlying

market structure as a tool to understand the implications and interactions of the

SDP model. Thus, we examine the somehow extreme cases of such a simple market

structure and try to point out a relationship between a certain basic market evolution

and the basic structure of a corresponding optimal policy. These ideas should then

be tested and verified by using another, “more realistic” factor model. This task will

be accomplished in Section 3.7.

3.6.2 Spot Market

According to the plant characteristics posed in Assumption 3.1 the price of the cho-

sen input product per unit of production is assumed to be constant. One could

think of a long-term purchase contract e.g. with a gas importing company supplying

pipeline gas. The CRR model hence represents the electricity price dynamics. We

assume a quarterly time structure with n = 30 (i.e. a four month time horizon).

Then the electricity spot market is given as a T-period Cox Ross Rubinstein model

under no arbitrage assumptions with t ∈ T and T = 120 . Assuming a constant

risk-free interest rate of r = 0 it consists of

• one bond Bt+1 = 1 ·Bt with B0 = α (representing the fixed costs) and

• one risky asset St+1 = Rt+1 St with S0 = s0 (representing the uncertain

electricity spot price),
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that evolves according to the identically, independently distributed sequence of ran-

dom variables (Rt)t∈T in discrete time assuming the values

Rt+1 =

u with probability pu and

d with probability pd.

All random variables are defined on the probability space (Ω,F , P ) with filtration

(Ft) and F0 = {∅,Ω} . The random variables St are adapted to the filtration. The

so generated spot market is free of arbitrage if and only if d < 1 < u . Hence, we

now deal with a specific choice of the process conventions posed in general in Section

3.2.

3.6.3 Forward Market

The forward contracts are assumed to deliver at continuous flow at each day within

the next month (so called swap contracts). The settlement of the forward contracts

should be at the beginning of each day within the next quarter. Thus, the forward

price of a contract signed at date t written on electricity, delivering in [T S, T S + 1)

is given by

F TS

t = F (t, T S, st) = EQ[STS | Ft]

for T S = t + 30 . Here, the equivalent martingale measure Q represents the risk-

adjusted probability measure such that the scenario tree under Q matches the

volatility and term structure of forward and future prices observable at the mar-

ket. Thereafter, the forward price is explicitly given by

F TS

0 = F (0, T S, s0) =
TS∑
j=0

(
T S

j

)
qju q

TS−j
d (s0 u

j dT
S−j), (3.10)

where the martingale probabilities qu and qd are given by the risk-neutral proba-

bilities qu = 1−d
u−d

qd = u−1
u−d .

Note, such a choice can only be verified with regard to our motivation to look at the

most simple case in order to learn about the model and develop expectations on the

form of an optimal control.

3.6.4 First Subproblem

Let us once more point out, that througout the numerical analysis all results are

calculated for the exponential utility function introduced in (3.1). According to
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Section 3.4.5 the optimization problem can be splitted into two subproblems. Hence,

the first task is to find b∗i+k ∈ I(2)(Xi+k) such that the expected “day-ahead” spot

reward

ESR(si+k, bi+k) = E[SR(bi+k, ω) | si+k]

is maximized for all i ∈ {0, n, 2n, 3n} and k ∈ {0, 1, . . . , n−1} . Given the currently

observable spot price st ∈ R it is possible to calculate an explicit analytical solution

in case of the now underlying market structure.

Lemma 3.4 (Optimal Spot Control). Given st ∈ R for all t ∈ T it holds

b∗t =


at if std > α or b̃∗t > at

0 if stu ≤ α or b̃∗t ≤ 0.

b̃∗t else

(3.11)

with

b̃∗t =
ln(pu

pd
) + ln ( stu−α

α−std )

γ st(u− d)
= arg max

bt∈R
ESR(bt, st)

and at = K − fz+n such that z = t− t (mod n) .

Proof. Let s = st be given then

ESR(s, b) =E[− exp{−γ (St+1 − α) b} | s]
=pu (−e−γ (su−α) b) + pd (−e−γ (sd−α) b).

Obviously, ESR(s, ·) is concave with respect to b for given s (compare Lemma

3.2). Hence, setting the first derivative with respect to b equal to zero yields

pu (su− α) · (e−γ (su−α) b) + pd (sd− α) · (e−γ (sd−α) b) = 0

pu (su− α) · (e−γ (su−α) b) = pd (α− sd) · (e−γ (sd−α) b)

log(pu) + log(su− α)− γ (su− α)b = log(pd) + log(α− sd)− γ (sd− α)b

b∗ =
log(pu

pd
) + log( su−α

α−sd )

γs(u− d)
.

Then the stationary point b∗ is a global maximum. With respect to the constraint

control set at Xt , i.e. I(2)(Xt) , this yields the stated result. Moreover, the optimal

value function SR∗t+1(Xt) is finite and integrable (compare Theorem 3.6).
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3.6.5 Second Subproblem

As explained in Section 3.4.5 the second subproblem exactly reflects the allocating

character of the optimization problem and thus tackles the question: How much

capacity should be devoted to the forward market and how much capacity should be

kept for bidding in the spot market? Here the task is to find f ∗i ∈ I(1)(Xi−n) such

that the “next to go quarter” reward

Qi(fi, Xi−n) = −FR(fi, F
i
i−n) · E[J∗n(Xi)|si−n]

is maximized for all i ∈ {n, 2n, 3n} . For the underlying market structure the op-

timal future production problem is equivalent to maximizing the weighted sum of

exponential functions with respect to the forward control variable f . Contrary to

the optimal spot production problem no obvious analytical solution exists. One could

approximate the sum by an appropriate function. However, it is not clear - or even

arguable - that such a complex task yields an explicit analytical expression. Thus,

we decide to study the optimization problem numerically.

Our proceeding is based on the following idea: “Walk on every price path from the

signment of the forward contract at date (i− n) up to date i , i.e. one stage before

the first delivery date. For every path consider the optimal spot decision b∗i based

on the corresponding spot price si . Walk one step ahead on every path and consider

the next optimal spot decision b∗i+1 based on the next corresponding spot price Si+1 .

Repeat that procedure until one step before the end of the delivery period (that is the

last spot decision date within that quarter, i.e. date i+n− 1 ). Thereafter, consider

all dates that imply a bid on the spot market b∗i+k , that infers a production exceeding

the spot reserve δ for delivery at the next date. Collect those price paths, that lead

to such a decision in a certain set Az , where z refers to the date of decision.”

For the present market structure the spot price dynamics and the preceeding idea

can be illustrated by means of a tree. Note, that the tree is recombining in the sense

that an “up”-move followed by a “down”-move gives the same result as a “down”-

move followed by an “up”-move. However, in terms of finding a control f ∗ that is

optimal for our second subproblem the specific path, i.e. the exact sequence of “up”

and “down”-moves must be taken into account.

Let a tree structure St,` be given such that t ∈ {0, . . . , 2n − 1} refers to the time

and ` ∈ {0, 1, . . . , t} refers to the level. Hence, for our specific model we consider a

tree representing the spot price scenarios within the two next quarters. That period

encloses one quarter until delivery starts and the corresponding delivery quarter.
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Keeping the preceeding idea in mind, we derive an algorithm tackling the allocation

problem. It collects for all z ∈ {n, 1, . . . , 2n−1} and ` ∈ {0, 1, . . . , z} specific future

spot price scenarios Sz,` in the set Az , that is generally defined by (3.9). Then,

according to Assumption 3.4 the set Az contains all (spot price) scenarios Sz,` that

imply an optimal spot control b∗z,` , which makes production at maximum capacity

K and its allocation to bilateral and spot contracts necessary. Additionally, the two

possible spot prices Sz+1,`,k (for k = 0, 1 ) are collected that can be realized after

applying the optimal spot control b∗z,` . For clearness of exposition we denote F i
i−n

with F , fi with f , Xi−n with X and si−n with s . Hence, the results below and

especially the following algorithm holds for all i ∈ {n, 2n, 3n} .

Algorithm 3.1. Let X imply F ≥ α . Let z = n , ` = 0 and proceed as follows:

1. Calculate the “spot level prices” Sz,` = s u` dz−` and the corresponding “spot

level controls” b∗z,` according to (3.11). Then setAz = Az ∪ {`} if b∗z,` > δ

Bz = Bz ∪ {`} if b∗z,` ≤ δ.

Set ` = `+ 1 and repeat step 1. until ` = z + 1 .

2. Set z = z + 1 and repeat step 1. until z = 2n .

3. For k = 0, 1 calculate the possible “realized spot level prices” Sz,`,k = Sz,` u
k d1−k

that occur with probability p`+ku p
(z+1)−(`+k)
d after control b∗z,` has been applied.

Thus, the above algorithm yields the necessary input to reformulate the second

optimization problem with regard to the underlying CRR market structure: The

optimal forward control f ∗ ∈ I(1)(Xi−n) for any given X ∈ X is the maximizer of

the expected quarter value function

Qi(f,X) =
1∑

k=0

2n−1∑
z=n

z∑
l=0

pr(l, z, k) U
[
(F − Sz+1,l,k)f + (Sz+1,l,k − α)K

]
1Az(l)

+pr(l, z, k) U
[
(F − α)f + (Sz+1,l,k − α) b∗z,l

]
1Bz(l).

At this, we deal with a specific form of Corollary 3.1. Here, for all z, l, k we have

(i) pr(l, z, k) :=
(
z+1
l+k

)
pl+ku p

(z+1)−(l+k)
d

(ii) the sets Az and Bz can be obtained via Algorithm 3.1,

(iii) the “realized spot level prices” Sz+1,l,k can be obtained via Algorithm 3.1,

(iv) the “spot level controls” b∗z,l can be obtained via Algorithm 3.1;
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3.6.6 Numerical Analysis - CRR Model

Now, the numerical analysis of the presented problem is based on three specific

market situations generated according to the Cox Ross Rubinstein model given

by

1. an upward moving market generated with u = 1.9 , d = 0.9 that imply a

negative risk premium of −0.8 ,

2. a downward moving market generated with u = 1.1 , d = 0.1 that imply

a positive risk premium of 0.8 and

3. a sideways moving market generated with u = 1.1 , d = 0.9 that imply a

risk premium of 0 .

In this setting the risk premium is simply the expected return per unit of risk, i.e.

RP = E[R]
σ

with E[R] = puu+ pdd− 1 , σ2 = pupd(u− d)2 and pu = pd = 0.5 .

In order to implement the desired market structures represented by the CRR model

without loss of generality all other initial parameter are fixed: They include the initial

spot price s0 , the initial forward price vector H0 , the initial forward unit vector h0

(both affecting the first quarter by convention (compare Section 3.2)), the capacity

constraints K , K and δ (such that I
(1)
i−n = [K,K − δ] and I

(2)
i+k = [0, K − f ] for

all k = 0, 1, . . . , n − 1 ), the utility function parameter γ and the time horizon T ,

comprised of the number of segments M and the length of one segment n (compare

Corollary 3.3). The parameter α modeling the fixed production costs is chosen as

the anchor of the binomial grid.

3.6.6.1 Upward Moving Market

Choosing the initial parameter values to represent an upward moving market as

listed in Table 3.1, the implemented binomial model yields a spot tree that exhibits

the following features: In the upper and mid sceanarios of the tree the spot prices

explode, whereas the prices stay close to zero in the lower scenarios. The price range

of historical prices can be rediscovered in the lower mid scenarios. A certain number

of spot price scenarios are illustrated in Figure 3.2.

Having generated an underlying tree structure we are able to determine the optimal

control. Looking at the derived values for the spot control indicated in the middle
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Parameter Value Parameter Value

s0(= H) 38.8 M 3

pu 0.5 n 30

pd 0.5 K 250

u 1.9 K(= h) 10

d 0.9 δ 24

α 121294.3 γ 1

Table 3.1: Initial parameter used to implement the CRR model to represent an

upward moving market. The parameter α is chosen such that the binomial grid is

anchored at it.

Figure 3.2: Spot price scenarios generated to reflect the underlying CRR upwards

moving market, where n = 5 has been used for illustration. The pink line represents

the upmost scenario path.
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frame of Figure 3.3 we observe the significant impact of the fixed production costs

α . Due to the choice of α at the beginning of the generated tree the optimal spot

control is at the lower boundary for all scenarios. Starting from day 13 on the

further in time in the tree the more “up scenarios” yield an optimal spot control

at the upper boundary and the less “low scenarios” an optimal control at the lower

boundary. In between the trivial up and down scenarios calculation according to

Lemma 3.4 yields b∗ . The resulting values are in case of an upward moving market

m 0 K −K [0, δ]

0 69.6% 28.2% 2.2%

1 37.5% 61.2% 1.3%

2 28.2% 70.9% 0.9%

3 24.2% 75.3% 0.5%

Table 3.2: Percentage of optimal spot control values splitted to different categories

within each quarter calculated on an upward moving market structure. At this point

not respecting the forward control affecting the same delivery period.

m K (K,K − δ) K − δ
1 100% 0% 0%

2 48.4% 3.2% 48.4%

3 32.8% 1.6% 65.6%

Table 3.3: Percentage of optimal forward control values splitted to different categories

within each quarter calculated on an upward moving market structure. For the

calculations 1365 spot price scenarios and 1 , 31 or 61 forward contracts with

delivery in quarter m = i
n

= 1, 2, 3 respectively have been used. Here, the optimal

controls taking on values in between the boundaries are f2n = 136.7 and f3n =

144.9 .

close to zero. Compare these findings also with the values listed in Table 3.2. The

effect of the upward moving market becomes obvious e.g. in the last quarter (i.e.

m = 3 ). Here 75.3 % of the scenarios suggest to bid all available capacity for the

next day on the spot market. (Note, due to the structure of the tree the calculations

corresponding to m = 3 are based on the largest number of spot price scenarios.)

Then Table 3.3 states the analogue percentages for the optimal forward control on an

upward moving market structure. Here the according characteristic is obvious. The

further in the tree the more scenarios imply a forward control at the upper boundary.

At this point we must remark, that the forward control affecting the first delivery
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quarter (m = 0 ) is given as initial parameter h0 and the one affecting the second

delivery quarter (m = 1 ), i.e. fn is calculated based on the initial node. Hence,

in that case one underlying scenario leads to only one optimal forward control value

f ∗n .

3.6.6.2 Downward and Sideways Moving Market

Parameter Value Parameter Value

s0(= H) 38.8 M 3

pu 0.5 n 30

pd 0.5 K 250

u 1.1 K(= h) 10

d 0.1 δ 24

α 1.62e−13 γ 1

Table 3.4: Initial parameter used to implement the CRR model to represent a down-

ward moving market. The parameter α is chosen such that the binomial grid is

anchored at it.
Parameter Value Parameter Value

s0(= H) 38.8 M 3

pu 0.5 n 30

pd 0.5 K 250

u 1.1 K(= h) 10

d 0.9 δ 24

α 33.37 γ 1

Table 3.5: Initial parameter used to implement the CRR model to represent a side-

ways moving market. The parameter α is chosen such that the binomial grid is

anchored at it.

The analogue proceeding for the downward and sideways moving market represen-

tations yields the associated optimal control values. Since the findings have the

according characteristics (that have been stated for the upward moving market) now

adapted to the respective market structures, we restrict ourselves to list the derived

percentages in Tables 3.6 and 3.7, present the illustrations in Figures 3.4 and 3.5 and

to compare the percentages for m = 3 with those of the upward moving market.

Obviously, the market structure has a huge imapct on these numbers. In case of a

downward moving market only 17.4 % of the spot price scenarios suggest to bid all

available capacity for the next day on the spot. The according number based on the
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Figure 3.3: Value of optimal spot controls corresponding to different spot price

scenarios within a sideways, upwards and downwards (from left to right) moving

CRR tree structure.The initial node is situated in the bottom left corner. The

vertical axis captures the level, the horizontal axis captures the time in the tree.

The lower part of the tree indicates to produce at the lower boundary s∗ = 0 , the

upper part to produce at the upper boundary s∗ = K −K = 240 . In between the

optimal value is calculated according to Lemma 3.4.
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m 0 K −K [0, δ]

0 25.8% 74.2% 0%

1 65.3% 34.7% 0%

2 77.3% 22.7% 0%

3 82.6% 17.4% 0%

m 0 K −K [0, δ]

0 44.3% 49.5% 6.2%

1 50.8% 48% 1.2%

2 51.4% 47.9% 0.7%

3 51.8% 47.7% 0.5%

Table 3.6: Percentage of optimal spot control values splitted to different categories

within each quarter calculated on a downward (left frame) or sideways (right frame)

moving market structure.

m K (K,K − δ) K − δ
1 0% 0% 100%

2 48.4% 3.2% 48.4%

3 72.1% 0% 27.9%

m K (K,K − δ) K − δ
1 0% 100% 0%

2 51.6% 0% 48.4%

3 50.8% 0% 49.2%

Table 3.7: Percentage of optimal forward control values splitted to different categories

within each quarter calculated on a downward (left frame) or sideways (right frame)

moving market structure. For the calculations 1365 spot price scenarios and 1 , 31

or 61 forward contracts with delivery in quarter m = 1, 2, 3 respectively have been

used. Here, the optimal controls taking on values in between the boundaries are

f2n = 158.3 on the downward market and fn = 141.2 on the sideways market.

sideways moving market structure calculates to 47.7 %. An economic interpretation

can then be found in Section 3.8.
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Figure 3.4: Spot price scenarios generated to reflect the underlying CRR downward

moving market, where n = 5 has been used for illustration.

Figure 3.5: Spot price scenarios generated to reflect the underlying CRR sideways

moving market, where n = 5 has been used for illustration.
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3.7 One Factor Model consistent with Market Data

As indicated within the motivation of the Cox Ross Rubinstein model as an under-

lying framework to solve the present optimization problem, we now want to test and

verify our findings by using another somehow “more realistic” factor model. Espe-

cially, we now want to fit the suggested model to market observable data. The overall

framework, however, is required to be consistent with Section 3.6 and naturally to

be consistent with the conventions posed throughout the theoretical part in Section

3.2.

For that once more we refer to the plant characteristics posed in Assumption 3.1 and

especially recall the fuel price to be constant. Thus, the now presented one factor

model represents the electricity price dynamics. Again the forward contracts are

assumed to deliver at continuous flow at each day within the next month (i.e. so

called swap contracts) and the settlement of the forward contracts should be at the

beginning of each day within the next quarter.

3.7.1 Fixed Delivery Dynamics

We basically follow the ansatz of Clewlow & Strickland as in [CS99], where they de-

velop a single-factor modeling framework which is consistent with market observable

forward prices and volatilities. It is based on the trinomial tree building procedure

developed by Hull & White in 1994 (compare [HW94a], [HW94b]). Moreover, the

model is an extension of the one factor model suggested by Schwartz in 1997 [Sch97].

The starting point is the stochastic evolution of the fixed delivery electricity forward

curve F (t, T, st) . To obtain a Markovian sequence of spot prices the volatility of

the forward prices must have a negative exponential form. As similarily argued by

Börger, Kiesel & Schindlmayr [KSB09] we remark, that the model of Clewlow &

Strickland tries to fit the term structure of volatility to market data, but does not

account for the absence of fixed delivery forward products in electricity markets.

Our ansatz to overcome this issue will be explained when outlining the steps to

fit the trinomial tree structure to market data. We consider the fixed delivery for-

ward dynamics as building block for modeling the market observable swap contracts.

Thus, the starting point for solving our optimization problem - based on a one factor

market structure calibrated to market data - is to define the fixed delivery forward

curve dynamics by
dF (t, T )

F (t, T )
= σe−κ(T−t) dWQ(t),
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where the volatility function is comprised of the constant level of spot and forward

price volatility σ and the constant rate at which the volatility of increasing maturity

forward prices declines (that is also the speed of mean reversion of the spot prices)

κ . These parameter will be fitted to historical volatilities of observable electricity

swap prices. The associated spot price dynamics are implicity given by

dS(t)

S(t)
= κ(µ(t)− lnS(t))dt+ σ dWQ(t),

where the long term risk adjusted drift is given by

µ(t) =
1

κ

∂ lnF (0, t)

∂t
+ lnF (0, t) +

σ2

4κ
(1− e−2κt).

Thus, after some calculations the explicit forward curve at date t

F (t, T, st) = F (0, T ) ·
(

st
F (0, T )

)exp{−κ(T−t)}

(3.12)

· exp{−σ
2

4κ
e−κT (e2κt − 1)(e−κT − e−κt)}

is obtained. That is the forward curve at date t is a function of the current spot

price st , the initial forward curve F (0, T ) and the volatility parameters σ and κ .

Having an explicit form for the forward price is not only computationally but also

with regard to our optimization problem extremly useful. For more details on the

derivation of the spot price process and the explicit form of the forward curve we

refer the interested reader again to Clewlow & Strickland [CS99].

3.7.2 Time and Space Discretization

We use the trinomial tree building procedure introduced 1994 by Hull and White

with an application to term structure models to build a tree stucture to approximate

logarithmic spot price dynamics that are consistent with the initial forward curve

observed on the market. Here we follow the approach of Clewlow and Strickland.

Let x(t) := lnS(t) and θ :≡ κ ·µ . Then the tree building procedure mainly consists

of three steps:

1. Calculation of the spot prices xij to approximate

dx(t) = −κx(t)dt+ σdWQ(t)

resulting in a preliminary tree structure for x assuming θ(t) = 0 for all t and

x(0) = 0 .
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2. Calculation of the level shift parameter ai such that xij = xij + ai approxi-

mates

dx(t) = (θ(t)− κx(t))dt+ σdWQ(t).

3. Add market price of risk λ(t, T ) to obtain also a tree structure under the real

world measure P .

For that of course the question is how to choose the involved parameter appropri-

ately?

3.7.3 Fitting Trinomial Tree to Market Data

To answer the above question one must take the already spoken to issue of missing

fixed delivery forward contracts into account. On the electricity market those con-

tracts are not traded. Hence, market data is only available for the so called swap

contracts having a delivery period. How can we use those contracts to fit the above

presented model framework to market data? With regard to the present setting the

idea is to decompose the fitting of the volatility parameter and the long term level

shift parameter into two separate steps. The approach will be outlined in the fol-

lowing and uses the ideas of Benth, Koekebakker & Ollmar [BKO07] as well as the

tree fitting procedure suggested by Clewlow & Strickland [CS99]. In order to build

a trinomial tree structure as outlined above and fitting the tree to available swap

contracts in our approach the following relations must be assumed:

• We model the atomic swap contracts by

dG(t, T Sm, T
E
m) = Σ(t, T Sm, T

E
m) dWQ(t)

with t < T Sm for all m = 0, . . . ,M (corresponding to the month of delivery),

where T S0 < TE0 < T S1 < TE1 < · · · < T SM < TEM is the ascending sequence

of start and end days of each month respectively. Then due to Benth et al.

[BKO07] for given t < T Sm it holds

Σ(t, T Sm, T
E
m) =

1

TEm − T Sm

∫ TEm

TSm

σe−κ(u−t)du.

• The (fixed delivery) forward prices settled at date i , i.e. F (t, i, St) , are

calculated based on

F (t, i, St) = G(t, T Sm, T
E
m)

for all t < T Sm and i such that i ∈ [T Sm, T
E
m ] . The market data used for

G(t, T Sm, T
E
m) is given by Phelix baseload month futures quoted at the EEX in

Leipzig.
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• The bond prices are calculated based on

L(t, i) = L(t, TEm)

for all i ∈ [T Sm, T
E
m ] . For the left hand side we use the market quoted LIBOR

rates maturing at the end of month m , i.e. at TEm .

Under these considerations we now have all ingredients available for proceeding in

three steps to build the spoken to trinomial tree structure that is consistent with the

initial forward curve. The steps are outlined below. (For more details compare with

Appendix B.)

1. Fitting the volatility of the swap contracts to quoted swap data and extracting

the implied fixed delivery volatility function in the least square sense yields

σ̂imp(t, T ) = σ̂e−κ̂(T−t),

where σ̂ and κ̂ are the resulting parameter estimators. Thereafter, the esti-

mates are used to calculate the values xij , puij , pmij and pdij to approximate

dx(t) = −κx(t)dt+ σdWQ(t) .

2. We choose the level shifts in a way to reflect the available swap market data

and the settlement structure of the SDP problem, i.e.

ai = ln

(
p(0, i)F (0, i, s0)∑

j Qijexij

)
,

where Qij are the so called state prices, that is the time zero price of a security

that pays one unit of cash if node (i, j) in the tree is reached and zero otherwise,

p(0, i) = p(0, TEm) and F (0, i, s0) = G(0, T Sm, T
E
m) for all T Sm ≤ i ≤ TEm . Thus,

xij = xij + ai approximates dx(t) = (θ(t)− κx(t))dt+ σdWQ(t).

3. Based on the Girsanov Theorem a spot tree under the real world measure P
is derived, i.e. we use Girsanov to a add market price of risk term λ(t) such

that

dX(t) = (θ(t) + κ(λ(t)−X(t))) dt+ σdW P(t)

is approximated by xP
ij = xij + ai + κλi where κ̂ , σ̂ are given through the

implied volatility function, ai are the calculated level shifts to add proper drift,

i.e. θ(t) , at the discrete dates i , and λ(t) is a (piecewise) constant function

sth.
∫ i+1

i
λ(t)dt = λi for all i referred to as the market price of risk.
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After all based on the trinomial spot tree under Q that is consistent with the initial

forward curve one can calculate electricity forward prices having an explicit for-

mula. Additionally, the spot tree under the real world measure P provides spot

price scenarios such that we have constructed the framework to solve the discussed

optimization problem based on the underlying one factor model.

3.7.4 Solution calculated on a Trinomial Tree Structure

Having generated the necessary framework for solving the optimization problem

where the underlying one factor model is approximated by a trinomial tree structure,

we can outline the different steps to find the optimal control values. For clearness

of exposition we focus on those nodes that are in the middle of the tree. (At the

boundaries of the tree the procedure can be formulated analogously with adequate

movements and their corresponding probabilities.) The proceeding derived with re-

gard to the two subproblems explained in detail in Sections 3.6.4 and 3.6.5 is again

valid at this point. However, we can not give an explicit solution for the optimal

spot control and therefore use numerical optimization techniques (as used before

throughout the calculation of the optimal forward control).

1. First Subproblem: The aim is to find b∗ such that

E[U(S(ω)− α)b|s]

is maximized with respect to b . That is, given xP
ij and puij , pmij , pdij for

all (i, j) solve

puij U((Si+1,j+1−α)bij)+pmij U((Si+1,j−α)bij)+pdij U((Si+1,j−1−α)bij)
bij−→ max,

where e.g. puij is the probability of moving upwards, i.e. starting from node

(i, j) moving to node (i+ 1, j + 1) .

2. Second Subproblem: Naturally, the proceeding is based on the results of

Section 3.4.5. Given the forward price F i
i−n = Fi−n,j (denoted by F ) valid

for contracts delivering within the quarter [i, i+n] and given the current spot

price si−n,j (denoted by s ) for some fixed node (i−n, j) we need to solve the

analogoue to the problem stated in Corollary 3.1: Find f ∗ such that

n−1∑
k=0

J∑
j=1

j+1∑
`=j−1

pi+k+1,` U((F − Si+k+1,`)f + (Si+k+1,` − α)K)1Ak(`)

+pi+k+1,` U((F − α)f + (Si+k+1,` − α)b∗i+k,j)1Bk(`)
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is maximized with respect to the forward control f . For that the following

steps must be carried out:

(a) Check whether one of the trivial cases implying the optimal control to be

attained at the boundaries is present (that is all scenarios within the de-

livery month indicate to produce at the upper respectively lower boundary

or we have F < α ).

(b) Calculate the probability tree starting from node (i−n, j) reaching until

the end of the delivery quarter, i.e. reaching two quarters into the future.

That is, calculate pi+k+1,`|s for all k = 0, . . . , n− 1 and ` = 1, . . . , J i.e.

the probability of moving to node (i+ k + 1, `) when starting from node

(i− n, j) .

(c) Collect all scenarios (or level ` in the tree at time i+k ) implying b∗i+k,` >

δ in the set Ak all other scenarios in the set Bk for all k = 0, . . . , n− 1

and all ` = 1, . . . , J (i.e. proceed similar to Algorithm 3.1).

Following the outlined steps to calculate an optimal control vector maximizing the

value function when the underlying system evolves according to the principles of the

specific one factor model yields the numerical results, that are presented within the

next section.
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3.7.5 Numerical Analysis - One Factor Model

Parameter Value Parameter Value

κ 0.001 M 3

σ 0.02 n 30

h0 K K 250

G(0, T S, TE) as of 01.03.2011 K 10

L(0, TE) as of 01.03.2011 δ 24

α 35 γ 1

Table 3.8: Initial Parameter used to calibrate the model to market data. The re-

sulting volatility estimators are used to implement the trinomial tree structure rep-

resenting the introduced one factor model.

Figure 3.6: Spot price scenarios generated to reflect the underlying one factor model.

After implementing the previously outlined steps, we have generated a trinomial

tree structure under the real world measure P representing the spot price sce-

narios underlying the considered optimization problem. Moreover, forward prices

have been calculated based on the according spot price tree under the risk neu-

tral measure Q (compare Section 3.7.1). For the scenario generation the in Ta-

ble 3.8 stated initial parameter have been used, where the vector G(0, T S, TE) =

(50.53, 49.3, 49.08, 47.26) is the initial swap curve as observed at 01.03.2011 at the

EEX for delivery in the next four months (i.e. in march, april, may and june) and

L(0, TE) = (0.58, 0.82, 0.91, 1.05, 1.13) are the according monthly LIBOR rates. All
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values are listed in euros. The fixed production cost parameter α is chosen close to

the mean of the spot price scenario tree in order to create a scenario tree comparable

with that created by the basic market structures. Moreover, we want options priced

based on that scenario tree to be in the money.

Next, the resulting spot price scenarios are illustrated in Figure 3.6. Their obvious

features are collected with the following list: In the middle of the tree the scenarios

stay around the initial price s0 . The price scenarios grow exponentially in the upper

scenarios and tend to zero smoothly in the lower scenarios. The level shifts in the

tree exactly reflect the shape of historical spot prices, that have been used through-

out the calibration procedure explained in Section 3.7.3.

m 0 K −K [0, δ]

0 46.3% 47.9% 5.8%

1 49.5% 48.3% 2.2%

2 50.9% 47.8% 1.4%

3 48.5% 50.5% 1%

Table 3.9: Percentage of optimal spot control values splitted to different categories

within each quarter. The optimal forward control affecting the according delivery

quarter have not been respected so far.

m K (K,K − δ) K − δ
1 0% 0% 100%

2 31.1% 4.9% 64%

3 40.5% 3.3% 56.2%

Table 3.10: Percentage of optimal forward control values splitted to different cate-

gories within each quarter. For the calculations 2640 spot price scenarios and 1 ,

61 or 121 forward contracts with delivery in quarter m = i
n

= 1, 2, 3 respectively

have been used.

Based on such a scenario tree the optimal control values are calculated according

to Section 3.7.4. Generally, Table 3.9 indicates that the percentages of scenarios

implying the optimal spot control to be at the lower or upper boundary, respectivly,

are nearly equalized. A more detailed view yields Figure 3.7, where in between the

trivial up and down scenarios numerical optimization yields values that are around

zero. (Note, those values are given without respecting the optimal constraint control
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Figure 3.7: Section of the optimal spot control corresponding to different spot price

scenarios within a trinominal tree structure approximating a one factor model. The

left part of the tree indicates to produce at the lower boundary b∗ = 0 , the right part

to produce at the upper boundary b∗ = K−K = 240 . In between the optimal value

is found by numerical optimization. The initial node of the tree is at the top of the

tree. The tree grows in time in the vertical direction and in level in the horizontal

direction.
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sets.) The overall position in the tree, where these values must be calculated is

significantly influenced by the choice of the value α .

Finally, Table 3.10 lists the percentages of scenarios leading to an optimal forward

control that is at the lower or upper boundary, respectively. As before the forward

control affecting the first delivery quarter (m = 0 ) is given as initial parameter h0

and the one affecting the second delivery quarter (m = 1 ), i.e. fn , is calculated

based on the initial node. Hence, clearly one underlying scenario leads to only one

optimal forward control value. Thereafter, the calculations concerning the third

(m = 2 ) and fourth (m = 3 ) quarter are based on 61 and 121 forward contracts

respectively. For each forward contract the allocation problem is based on 2640 spot

price scenarios within the corresponding delivery quarter.

3.8 Economic Interpretation and Analysis

How much capacity should be devoted to the forward market and how much capacity

should be kept for bidding in the spot market? To further address the originating

issue of our work, we have studied different model structures to generate a scenario

for the price evolution on the corresponding markets. We are now in the position to

state the insight we have gained.

CRR Basic Market Structures. We can identify an obvious interaction between

the specific market structure and the optimal control that has been calculated on

such a market. The impact of the basic market structure e.g. on the corresponding

optimal spot control values is obvious: Within a four month time horizon the optimal

spot control is attained at the upper boundary in approximately 48 %, 59 % or

37 % of the future price scenarios calculated on a sideways, upwards or downwards

moving market repectively. These values are then chosen as the benchmark to judge

the results calculated based on the one factor model.

Trend Cycles in the One Factor Model. Comparing the trend of historic elec-

tricity spot prices as illustrated in Figure 3.8 with the calculated optimal control

values identifies a true relationship. If there is a downward trend we can identify

the same behaviour in the optimal control as we have for the basic downward mov-

ing market structure. The same holds for an upward or sideways trend. The four

quarter time horizon could be interpreted as a sequence of four trend cycles: A

downward cycle is followed by two months of sideway cycles with a downward spike
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in between and finally followed by an upward cycle. Having learned from the basic

market structures, where we can identify an obvious interaction between the specific

market structure and the optimal control that has been calculated on such a market,

the associated behavior can be recovered in the present framework. We support this

hypothesis when comparing our ideas with Table 3.9 and Figure 3.7: Within the first

downward trend quarter it is optimal to bid only in 47.9 % of the future scenarios

all available capacity at the spot market. That number increases to 48.3 % within

the second quarter and is thus close to the benchmark value expected for a sideways

moving market (of 48 %). The percentage decreases again to 47.8 % when calcu-

lated based on third quarter scenarios, but is still close to the sideways benchmark.

Finally, the highest percentage of 50.5 % is calculated based on fourth quarter sce-

narios. Historic spot prices suggest an upward moving trend in june prices. Thus,

the increased percentage is what we expect based on the benchmark value of 59 %.

After all, within the one factor model the total magnitude of percentages indicating

full spot production is close to the benchmark value calculated on a sideways moving

market.

Figure 3.8: Average of historical daily base load electricity spot prices as observed

in the months march, april, may and june (throughout the years 2001 - 2010 ).

Fixed Production Costs. The value of the fixed production costs somehow marks

the boundary between full or no production. Within the benchmark models on the

boundary the probability of spot prices to move above the fixed costs is the same as

the probability of moving below the fixed costs. Such a boundary is situated in the

middle, lower or upper part of the tree depending whether a sideways, upwards or

downwards moving market structure is underlying (compare Figure 3.3).
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Then based on the one factor model the shape of that boundary apparent in Figure

3.7 exactly resembles the historic trend cycles.

After all, we identify the optimal spot control calculated based on the trinomial tree

structure fitted to historical prices to be a composition of the optimal control values

calculated for the specific market structures that reflect an upwards, sideways or

downwards moving market. Having learned from the basic market structures chosen

to depict the benchmark models, we find that the optimal control calculated within

a one factor model matches exactly the knowledge gained. Based on that we identify

the tree structure generated to reflect the one factor model to represent an overall

sideways moving market.

Realized Risk Premium & Optimal Forward Control. The structural result

stated in Corollary 3.1 suggests the “realized risk premium” (RRP ), i.e. the dif-

ference between the forward price F and the spot price at maturity “realized” in a

certain scenario S(ω) , to play a significant role in the solution to the allocation prob-

lem. Such a finding is now supported by the empirical results we have gained within

the one factor model. The positive RRP fraction (being the number of positive

RRP divided by the total number of scenarios within the delivery quarter) is almost

identical to the scenario fraction suggesting to sell all available capacity through

forward contracts. The according numbers are listed in Table 3.11. Naturally, there

m f ∗ = K − δ RRP > 0 ØRP ØRPSide ØRPDown ØRPUp

1 100% 61.4% −14.22 −1e−13 38.8 −1e+10

2 64% 64.1% −19.82 −4e−13 24.03 −2e+16

3 56.2% 58.5% −20.41 −4e−12 213.07 −3e+24

Table 3.11: The fraction of positive realized risk premium scenarios compared to

the fraction of full forward production scenarios and the risk premium. For the

calculations based on the one factor model (left part) 2640 spot price scenarios and

1 , 61 or 121 forward contracts with delivery in quarter m = 1, 2, 3 respectively

have been used. For the benchmark models (right part) 1365 spot price scenarios

and 1 , 31 or 61 forward contracts with delivery in quarter m = 1, 2, 3 respectively

have been used.

is a direct link of the RRP to the risk premium defined in the classical sense. With

respect to one specific forward contract (having price F i
i−n delivering in quarter
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m = i
n

) the relationship is given by

RP i
i−n := F i

i−n −
1

n

n−1∑
k=0

E[Si+k+1 | si−n] =
1

n

n−1∑
k=0

E[RRP i
i−n | si−n].

Thus, the answer to the preceeding question of how much capacity to devote to

forward contracts and how much to keep for spot bidding is closely related to the

risk premium, that “measures the difference between the risk-neutral and the market

predictions” (Benth et al. [BŠBK08]). Once more, we find the one factor model

risk premium values to be closest to the according sideways benchmark. Based on

the calculated numbers along with the theoretical findings we conclude, that the

(realized) risk premium has a significant influence on the optimal sales strategy and

thus the value of the considered power plant.

Total Revenues and Daily Return accumulated by the Plant. The evalua-

tion of the return distribution of the plant is closely related to the introductionary

question of determining the plant value along with an optimal operating strategy.

The calulations here are based on a representative choice of ( 243 ) scenario paths

in the tree. We have chosen the trivial paths along the tree such that the total

number (among all scenarios) of neutral steps equals the number of down steps as

well as the number of up steps. Then we observe, that the nature of the spot tree is

reflected by the revenue distribution: Even in the far down scenarios of the tree we

do not loose that much as we earn in the far up scenarios. However, we loose much

more frequently such that the mean value of the average return per day is −1.48 %.

Looking at the daily average returns we calculate a 5 % Value at Risk of −12.05 %.

That is with a probability of 5 % on average the plant value decreases by more than

12 % per day. Besides the daily average return, we calculate the total revenues of the

plant over the four month time horizon. On average the plant accumulates 2.181

million euros based on the different scenarios. The 5 % Value at Risk is determined

to be −0.009 million euros. That is, with a probability of 5 % the plant accumulates

in total a loss of 9000 euros or more within the four month time horizon. Note, the

VaR numbers have been calculated by ordering the simulated performance values

and determining the 5 % worst numbers. From that, we can easily calculate the

VaR applying interpolation techniques.

The obvious two humps in the return distribution (plotted in Figure 3.9) can be

explained with the capacity boundaries. In the far up scenarios it is optimal to pro-

duce at full capacity, whereas in the far down scenarios it is optimal to produce at
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Figure 3.9: Histogram and density plot of the total revenues and the daily return

generated by applying the optimal control strategy to a representative choice of

scenario paths in the trinomial tree.
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generation level based on a representative choice of scenarios in the trinomial tree.
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lower capacity. Thus, the daily return is either negative (due to minimum load re-

striction), around 4 % or for some scenarios even around 20 % (due to the maximum

capacity constraint and the exploding character of prices in only a certain number

of scenarios). Compare also with the summary statistics of the distribution given in

Table 3.12

One Factor Model Total Revenues Daily Return

plant value (or mean) 2.181 −1.48%

5% VaR −0.009 −12.05%

minimum −0.062 −12.78%

maximum 7.369 23.81%

1st quartile −0.009 −11.47%

3rd quartile 4.566 5.44%

Table 3.12: SDP valuation risk analysis, where all numbers are given in milion euros

or percentages.

3.9 Concluding Remarks

Maximizing the Revenues on each stage in contrast to Maximizing the

Terminal Wealth. The reader familiar with optimization theory might have no-

ticed, that in our work we have not maximized the utility of the total wealth accu-

mulated by the plant over the whole considered time horizon. For our application

we have evaluated the costs and revenues the plant accumulates optimally on every

stage. Hence, the plant manager is supposed to be more interested in evaluating the

reward he gathers on each stage with regard to his risk preferences in contrast to

applying his risk view over the entire time horizon. Such a short-term view is even

more conservative due to the concavity of the utility function. Moreover, such an

approach is very flexible in the sense that the planning is done with regard to each

stage separately. If an unexpected event as e.g. an generation outage occurs during

the period of consideration and if it is possible to sell the already signed forward con-

tracts the reward so far is not affected. Last but not least the flexibility also applies

to the technical side. Splitting the optimization problem with respect to the different

control variables is only possible if the decisions are made independently from each

other, i.e. the spot bidding of today does not affect the spot bidding of tomorrow.

In that sense we have been able to derive a structure of the optimal value function,

that is basically the sum of the reward gathered within each quarter. The reward
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gathered in each future quarterly period under consideration can then be maximized

separately by allocating the capacity optimally to the forward contract (delivering

within that quarter) and the spot market based on the information available at the

current stage.

In favor of maximizing the total wealth speaks that normally the risk manager is

interested in maximizing the generated wealth over a fixed time horizon and not

what happens in between. As he can choose the period of consideration arbitrary

short also the short term view is possible. However, in our problem we deal with

quarterly forward contracts such that a one quarter view is the minimum period

that is possible. Moreover, the problem can not be split with respect to the different

control variables. Now, each control generating wealth on a specific stage also affects

the total expected wealth from now until the end of the period. After all, the

formulation we have chosen can be applied for every strictly concave, continuously

differentiable utility function. Once more that makes the approach quite flexible.

But which utility to choose?

Does the Utility Function reflect the Risk Preferences of a Power Plant?

At the beginning of this chapter we have chosen the exponential utility function

within the class of strictly concave, continuously differentiable utility functions in

order to reflect the risk preferences of the power plant. Such a choice of constant

absolute risk aversion might be arguable as stated e.g. by Rabin [Rab01] from a be-

havioral economics point of view. However, the exponential utility is a popular choice

derived from its separability. The outlined procedure for calculating an optimal sales

strategy in view of a power plant can be carried over to any other utility function

of the class specified by Assumption 3.2 representing the desired risk preference. Of

course in practice it is not clear which utility function exactly reflects the risk prefer-

ences of the power plant. It is even not clear if only one utility is the right choice or

if several utility functions corresponding to several individuals representing the plant

must be applied. Another issue about the choice of one specific utility function is

the fact that a power plant can be owned (at least partially) by the government. In

such a case it is even arguable if the utility function can be applied solely to financial

input quantities. To find an answer to these questions is a delicate task and it shows

once more that bringing theory into harmony with practice has its limitations. Thus,

we are aware of the concerns about our theoretical work. However we believe, that

having set up and solved a problem that can be solved for a specific class of utility

functions and can be further adopted in many ways, depicts a conceivable tool in

the daily decisions of a power plant manager.



Chapter 4

Summary & Contribution

The present thesis is partitioned in two main chapters. Part I (i.e. the second

chapter) presents and discusses an adequate model for the comovement of electricity

and gas prices. The model is thereafter used to calculate a gas fired plant’s value

by a series of spark spread options and for risk management purposes. Considering

a complex two-factor regime-switching model generating reliable forecasts makes

it reasonable to apply a more simple valuation scheme such as the spark spread

valuation. In contrast Part II (i.e. the third chapter) is based on a more simple

factor model for representing the price evolution, however it accounts for a complex

valuation scheme. Part II focuses on setting up and solving a full blown stochastic

dynamic programming representation of the problem of optimally scheduling and

valuing a power plant when plant characteristics are respected and spot price risks

are hedged by selling generation capacity through forward contracts. The main steps

and findings of both chapters are now summarized.

Part I

In the presented model the peculiar characteristics of historical electricity spot price

series and most importantly the sudden increases in value (i.e. the electricity spikes)

are reflected by systematic alternations between stable and unstable states, referred

to as the normal and spike states. These states are generated by a first-order Markov

chain in discrete-time. It governs the model parameters of the stochastic processes

that are chosen to reflect the comovement of electricity and gas prices. Here we

contribute to the existing literature by considering a two-factor version of a regime-

switching model. In addition we present a flexible approach, such that numerous
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alternative process specifications can be introduced. All components of the regime-

switching model are presented separately: Firstly, the Markov chain underlying the

process dynamics and generating the alternations between different states is intro-

duced. Secondly, the system of stochastic drivers reflecting the small variations in

prices (when normal trading takes place) are suggested. Last but not least the jump

component reflecting the sudden and extreme price changes is specified. Accounting

additionally for the mean reverting property of prices we argue that these different

model components (when observed in different regime states) can be adjusted in

various ways e.g. with regard to the needs and expectations of a plant’s manager.

Model Proposals. We restrict our analysis to two different approaches. Both

models exhibit the same mean reverting dynamics when inferred by a normal regime

state. They differ in the jump specifications. One approach (referred to as Markov

model I ) reflects the spikes by a compound Poisson process. The other approach (re-

ferred to as Markov model II ) additionally accounts for the mean reverting property

when the dynamics are inferred by spike states. The dynamics are then given by a

mean reverting process plus a compound Poisson process. These Markov modulated

models are then further compared with regard to their ability to reflect the peculiar

characteristics of both electricity and gas spot prices to a Benchmark model, that is

given by correlated mean reverting stochastic processes not including a jump term.

A discrete version of the process dynamics is derived by stating the unique strong

solution to the system of SDEs. Thereafter the probabilistic features of the processes

are analyzed to form the basis for the subsequently proposed calibration routine. We

point out, that due to the mean reverting property of the model care has to be taken

in the derivation of transition densities needed to execute the calibration routine.

Here we are dealing with the issue of latent prices provoked by the unobservability

of the Markov chain.

Our main contribution is to provide analytic expressions for the multistage transition

densities that need to be used when latent prices are inferred by the Markov chain.

Our proceeding is outlined from illustrating the issue in terms of different Markov

chain scenarios, stating the key idea to overcome the problem, providing an explicit

expression for the conditional probability that the most recent price observation

stemming again from a stable regime has occured at a certain point of time in the past

until proposing such multistage transition densities for the bivariate and marginal

case. Thereafter we propose a way of how to deal with the pitfalls in estimating

jump diffusion models. All these results (especially the derived transition densities)

are then used to implement the suggested calibration routine for the different model

approaches.
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Empirical Results. The goodness of fit is tested by various measures and meth-

ods. The Benchmark model is found to constitute a profound tool to accurately as-

sess and judge the model parameter values. Thereafter the Markov modulated model

clearly outperform the benchmark: They not only provide increased log-likelihood

values, but also a better match of moments (based on 10000 sample paths each of

length 1521 ). Comparing the two regime-switching model proposals we find that

the model alternating between mean reverting dynamics and a pure jump component

simply modeled by a level parameter and a normally distributed random variable is

the preferable approach. When including also the mean reverting property to the

spike regime dynamic specifications the model provides the largest log-likelihood

value and a good match of moments. However, the other approach is computation-

ally less expansive and provides a similar or even better match of moments.

Plant Valuation & Management. Part I closes by accounting for the motivating

application of the complex two factor regime-switching model to calculate a power

plant’s value by a series of spark spread options, where decisions are being made

optimally. That is the price forecasts (generated by the different model approaches)

determine whether to produce at maximum or minimum capacity at a certain future

time (or day). In that sense they determine the plant’s operation schedule. We

calculate the plant value and quantify the risk and performance numbers for all pro-

posed forecasting models with regard to a specific gas fired power station. Once more

the Markov modulated models outperform the benchmark by generating increased

plant values, i.e. more profit on average. The risk numbers support that finding.

Moreover, a main impact of the correlation of the underlying indexes on the risk

numbers is found. That is exactly what a risk manager would expect.

After all an adequate price model allows risk managers to better understand the

impact of price behaviour and risks on values and hedges. Reducing the valuation

problem to spark spread options is hence a good way to start the risk management

of the plant. However, as mentioned before such a simple valuation assumes away

certain operational constraints and management possibilities. To include such con-

straints and the possibility to sell electricity also through forward contracts in the

valuation and operation problem we have chosen a stochastic dynamic programming

approach presented in Part II (i.e. the third chapter).
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Part II

The third chapter presents a path dependent sequential decision making process to

asses the plant value of a power generating unit by respecting certain plant charac-

teristics, operational constraints and management possibilities.

Theoretical Model Framework. After setting up the SDP representation of the

problem our main contribution is to state existence and uniqueness of a solution along

with a specific structure of the optimal value function. The SDP model is presented

in such a way that also the incorporation of a model for the spread between electricity

and any fuel required to produce that electricity is possible. However, our empirical

analysis is carried out and further suggests to use an one factor model due to the

path dependence of the problem.

Throughout the third chapter several challenges a power plant faces in the uncertain

energy market environment are addressed:

1. The uncertain spot bidding procedure at the energy exchanges is explicitly

incorporated in the model set up. Spot bids are optimized based on “day-

ahead” price expectations. This extremely adds up to the complexity of the

problem.

2. The risks caused by the extreme and sudden price changes in electricity spot

prices are addressed by incorporating forward contracts to the sales portfolio of

the power plant. The choice of forward contracts is supported by considering

e.g. the sales portfolio of RWE Power AG in the German market. Obviously,

the RWE managers sell a huge fraction of their capacity on a forward basis.

3. We include capacity constraints to the problem setting, since they have a sig-

nificant influence on the plant’s daily operation.

4. Last but not least the risk preferences of the plant are incorporated by the

choice of a specific utility function. We propose a general class of utility func-

tions. All results are then derived for a specific member of that class, namely

the expected utility function. Thereafter we argue, that all results extend to

the specified general class.

Focusing on these challenges the coordination of the bidding on the spot market, the

hedging through forward selling and the scheduling of the plant are at the heart of

the third chapter.
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Empirical Findings. After describing the theoretical model framework, stating

existence and uniqueness of a solution and presenting the structure of the optimal

value function the interaction of the optimal controls and the impact of the under-

lying price model is addressed by an empirical analysis based on different specific

factor models.

At first an optimal policy and value function is calculated based on the Cox Ross

Rubinstein market, where different market movements are analyzed, namely up-

wards, downwards and sideways movements are elaborated. The calculated values

then form the benchmark for judging the values calculated on basis of a specific

one factor model for the electricity price dynamics. That model is fitted to market

observable swap prices and LIBOR rates and is approximated by a trinomial tree

structure. We identify a true relationship between the market trend cycles and the

optimal operation schedule of the plant. The value of the fixed production costs can

be identified to depict some kind of boundary between full or no production. Again

a true relationship between the optimal operating schedule and the fixed costs is

obvious. The magnitude of optimal control values with regard to the benchmark

indicates an overall sideways moving market implied by the one factor model fitted

to historical swap prices.

Our theoretical results as well as the empirical study imply an interaction between the

(“realized”) risk premium and the fraction of capacity devoted to forward contracts.

This makes good sense. Hence, the risk premium depicts the decisive factor to

answer the central question of this chapter: How much capacity should be devoted

to the forward market and how much capacity should be kept for bidding in the spot

market?

Using the one factor model for calculating plant values on basis of the SDP approach

yields considerably low values in comparison to those calculated based on the spark

spread valuation executed in the second chapter. Such a result is reasonable, since

the spark spread valuation purely addresses the price risks induced by the spikes,

but assumes full production flexibility in between the capacity boundaries. That

is exercise decisions of the options are being made optimally. Such a valuation

easily overestimates the true value. Additionally incorporating hedging possibilities

through forward contracts, accounting for uncertain spot bidding and including the

risk preferences clearly has its price, but makes good sense with regard to the market

practice.
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Outlook. After all one could ask why not solving the presented optimal operation

and valuation problem including uncertain spot bids and hedging through forward

contracts based on a forecasting model such as the proposed regime-switching mod-

els. The main issue of connecting them is the path dependence of the sequential

decision making problem presented in the third chapter. Hence it requires a lat-

tice structure to calculate optimal solutions which easily blows up by using complex

model specifications. Additionally, it is necessary to have explicit formulas to cal-

culate forward prices. Since both problems and models on their own are rather

complex, we believe it is an extremely challenging task to connect the two. We leave

that exciting challenge for future research.



Zusammenfassung

Die vorliegende Arbeit gliedert sich in zwei Hauptteile. Der erste Teil (d.h. Kapi-

tel 2 ) beschreibt und analysiert ein Modell, welches das Ziel hat die gleichzeit-

ige Entwicklung von Elektrizitäts- und Gaspreisen möglichst adequat abzubilden.

Dieses Modell gehört zur Klasse der sogenannten Regime-Switching Modelle. Ver-

schiedene Arbeiten haben gezeigt, dass diese gut geeignet sind die Wechsel zwischen

stabilen Preiszuständen und den für Elektrizitätspreise charakteristischen extremen

Preisausschlägen zu modellieren.

Wir stellen ein solches flexibles, bivariates Modell dar und beschreiben den Prozess

wie die Modellparameter an historische Marktdaten angepasst werden können. Hi-

erbei gehen wir insbesondere auf die besonderen Herausforderungen ein, die von der

Markov-Kette ausgehen, welche die unbeobachtbaren Regimezustände abbildet.

Eine Routine zur Kalibrierung des Modells an Marktdaten wird dargestellt und

durchgeführt. Auf Basis der berechneten Modellparameter wird anschliessend der

Wert eines Gaskraftwerkes über sogenannte Spark Spread Optionen bestimmt. Das

vorgestellte Modell bildet somit die Grundlage für das Portfolio- und Risikomanage-

ment eines Gaskraftwerkes.

Das Hauptanliegen des zweiten Teils (d.h. des dritten Kapitels) besteht darin

das Problem der Bewertung und optimalen Auslastung eines Kraftwerkes durch ein

stochastisches dynamisches Programm abzubilden und dieses zu lösen.

Die für den Elektrizitätsmarkt spezifischen Spotpreisrisiken können hierbei durch das

Eingehen von Forwardkontrakten abgesichert werden. Desweiteren werden die Ka-

pazitätsgrenzen und die Risikoaversion des Kraftwerkes bzw. deren Manager explizit

berücksichtigt.

Wir zeigen Existenz und Eindeutigkeit einer Lösung und leiten eine spezielle Struk-

tur der optimalen Wertfunktion her. Für verschiedene Faktormodelle wird das Prob-

lem anschliessend numerisch betrachtet und die entsprechenden Risiko- und Perfor-

mancegrößen berechnet.
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Appendix A

Regime-Switching Model

Itô Calculus

The Itô formula for jump-diffusion processes, also called the Itô-Doeblin formula with

respect to our application is given by the next proposition. For more details we refer

the interested reader to Cont & Tankov [CT04] (in particular to Chapter 8 ).

Proposition A.1 (Itô formula for jump-diffusion processes). Let x be a diffusion

process with jumps, defined as the sum of a drift term, a Brownian stochastic integral

and a compound Poisson process:

xt = x0 +

∫ t

0

bsds+

∫ t

0

σdWs +

qt∑
m=1

Jm

where bs = −α(xs− f) and all specifications made in Definition 2.2 are valid. Then

for any twice continuously differentiable function h : [0, T ] × R → R , the process

Yt = h(t, xt) can be represented as:

h(t, xt) =h(0, x0) +

∫ t

0

[
∂h

∂s
(s, xs) +

∂h

∂x
(s, xs)bs

]
ds (A.1)

+
1

2

∫ t

0

σ2∂
2h

∂x2
(s, xs)ds+

∫ t

0

∂h

∂x
(s, xs)σdWs

+
∑

0<s≤t

[f(s, xs)− f(s−, xs−)].
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(r -stage) Transition Probabilities

Lemma A.2. For any t ∈ T and ` ∈ L the probability p`t−r,t is given by

p`t−r,t =


∑

j∗∈J ∗`
P(s̃t−1 = j∗ | s̃t = `,Ωt; θ) r = 2∑

j∈J` P(s̃t−r+1 = j | s̃t = `,Ωt; θ) · p̃(j, `) r ∈ {3, 4, . . . , t}
(A.2)

where

p̃(j, `) =
∑

kν∈B\J`
ν=1,...,r−2

p̃k1,k2 · p̃k2,k3 · · · · · p̃kr−2,j

with p̃kν ,kν+1 := P(s̃t−ν = kν |s̃t−(ν+1) = kν+1, s̃t = `,Ωt; θ) .

Proof. For A ∈ F we define the conditional probability measure Q such that Q :=

P(A|s̃t = `,Ωt; θ) for all ` ∈ L . Then for r = 2 we have

p`t−2,t = Q(st−2 = 1) =
∑
j∗∈J ∗`

Q(s̃t−1 = j∗).

For r ∈ {3, . . . , t} it holds

p`t−r,t =
∑
j∈J`

Q(s̃t−r+1 = j, s̃t−ν 6= j, 0 < ν < r).

Hence,

p`t−r,t =

=
∑
j∈J`

Q(s̃t−r+1 = j, s̃t−r+2 6= j, . . . , s̃t−1 6= j)

=
∑
j∈J`

∑
kν∈B\J`
ν=1,...,r−2

Q(s̃t−r+1 = j, s̃t−r+2 = kr−2, . . . , s̃t−1 = k1)

=
∑
j∈J`

∑
kν∈B\J`
ν=1,...,r−2

Q(s̃t−1 = k1|s̃t−2 = k2) · · ·Q(s̃t−r+1 = j|s̃t−r+2 = kr−2) ·Q(s̃t−r+1 = j)

=
∑
j∈J`

∑
kν∈B\J`
ν=1,...,r−2

p̃k1,k2 · p̃k2,k3 · · · · · p̃kr−2,j ·Q(s̃t−r+1 = j)

=
∑
j∈J`

Q(s̃t−r+1 = j) · p̃(j, `).

Hence, Lemma 2.1 is proven.
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By properties of the Markov chain the probabilities P(s̃t−r+1 = j|s̃t = `,Ωt−1) can

be transformed to

P(s̃t−r+1 = j|s̃t = `,Ωt−1) =
P(s̃t−r+1 = j, s̃t = `,Ωt−1)

P(s̃t = `|Ωt−1)

=
P(s̃t = `|s̃t−r+1 = j,Ωt−1) · P(s̃t−r+1 = j|Ωt−1)

P(s̃t = `|Ωt−1)

=
P(s̃t−r+1 = j|Ωt−1)

P(s̃t = `|,Ωt−1)
·
∑
kν∈B

ν=1,...,r−2

p̂`,k1 p̂k1,k2 · p̂k2,k3 · · · · · p̂kr−2,j,

where p̂kν ,kν+1 := P(s̃t−ν = kν |s̃t−(ν+1) = kν+1,Ωt−1) . Thereafter, all involved prob-

abilities are given by the smoothed inferences. These can be estimated by applying

Algorithm 2.3.

Analogously, the transition probabilities p̃kν ,kν+1 conditioned on the event {s̃t = `}
can be estimated.

Conditional Moments

The conditional moments involved in the conditional transition densities Φi
t(θ|sit−r =

1) for all ` ∈ Li and Φxy
t (θ|st−r = 1) for all ` ∈ Lxy can also be iteratively

derived, such that they are given for any r ∈ {1, 2, . . . , K} .The explicit forms of

these conditional transition densities can be found in (2.11) and (2.18), respectively.

Lemma A.3 (Conditional Moments). For all t ∈ T the expected value and variance

of xt conditioned on xt−r for any r ∈ {1, 2, . . . , K} are given by

ext,r := E[xt|xt−r] = xt−r e
−αx r + fx(1− e−αx)

r−1∑
ν=0

e−α
xν

= xt−r e
−αx r + fx(1− e−αx r),

vxr := V[xt|xt−r] =
r−1∑
ν=0

e−2αx((r−1)−ν)(σx1 )2 = (σxr )2 r.

The analogue specifications of eyt,r and vyr hold for the expected value and variance

of yt conditioned on yt−r .

Proof. Having the discrete version of the observation price process given in (2.11) the

proof of Lemma A.3 can be conducted using induction. Exemplarily, we look at the

electricity price dynamics. The values s̃t ∈ Lx imply sxt = 1 . Thus, all parameters
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modeling the jump part of the process are equal to zero and the discrete time series

becomes

xt = xt−1e
−αx + fx(1− e−αx) + σxεR

x
t ,

where Rx
1 ∼ N (0, 1) , σx1 := σx

√
1−e−2αx

2αx
and αx , fx , σx are constant for any

fixed t ∈ T . Now, for r = 1 we have

E[xt|xt−1] = xt−1 e
−αx + fx(1− e−αx).

Assume for some r ∈ {1, 2, . . . , K} it holds

E[xt|xt−r] = xt−r e
−rαx + fx(1− e−αx)

r−1∑
ν=0

e−να
x

. (A.3)

Then for r + 1 ∈ {2, . . . , K} we obtain

E[xt|xt−r−1] = E[xt−1|xt−r−1] e−α
x

+ fx(1− e−αx)

(A.3)
= {xt−r−1 e

−αx r + fx(1− e−αx)
r−1∑
ν=0

e−α
x

ν} e−αx + fx(1− e−αx)

= xt−r−1 e
−αx(r+1) + fx(1− e−αx)

r∑
ν=0

e−α
xν

telescoping
= xt−r−1 e

−αx(r+1) + fx(1− e−αx(r+1)).

Hence, by induction Hypothesis (A.3) is true for all r ∈ {1, 2, . . . , K} and ext,r has

the desired form.

Analogue for r = 1 it holds

V[xt|xt−1] = (σx1 )2.

Assume for some r ∈ {1, 2, . . . , K} it holds

V[xt|xt−r] =
r−1∑
ν=0

e−2αx((r−1)−ν)(σx1 )2. (A.4)

Then for r + 1 ∈ {2, . . . , K} we obtain

V[xt|xt−r−1] = V[xt−1|xt−r−1] e−2αx + (σxε )2

(A.4)
=

r−1∑
ν=0

e−2αx(r−ν)(σx1 )2 + (σx1 )2

=
r∑

ν=0

e−2αx(r−ν)(σx1 )2 telescoping
= (σxr )2 r.

Again, by induction Hypothesis (A.4) is true for all r ∈ {1, 2, . . . , K} and vxr has

the desired form. Analogue calculations lead to expressions eyt,r and vyr .
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SML Method

First of all, we remark that the SML method is based on one main assumption.

Assumption A.1. On each interval of length δ in the refinement of the axis (i.e.

between any two consecutive observations) no more than one jump can occur with

probability p1 := 1 − e−λxδ , where λx is the intensity parameter of the Poisson

process qx .

If one chooses any (discretized) sample path ω ∈ [1, K] and walks from date t − 1

along the refinement of the grid up to date t− δ , one can calculate the time t− δ
realization x̂t−δ(ω) (using the discretized version of the observation process dynamics

as in Corollary 2.1). Then, for all s̃t = j ∈ Sx the corresponding transition density

for that specific path is given by the weighted sum

f̂(x̂t|x̂t−δ(ω), s̃t = j, θ) = p0φ(x̂t; µ
c
δ, σ

c
δ) + p1φ(x̂t; µ

d
δ , σ

d
δ ),

where µcδ = fx(1 − e−α
xδ) + e−α

xδx̂t−δ(ω) , σcδ = σx
√

1−e−2αxδ

2αx
, µdδ = µcδ + µJ ,

σdδ =
√

(σcδ)
2 + σ2

J and p0 = 1− p1 .

Thereafter, the approximated spike regime transition density resulting from K sam-

ple paths is calculated by

f(x̂t|x̂t−δ, s̃t = j, θ) =
1

K

K∑
ω=1

f̂(x̂t|x̂t−δ(ω), s̃t = j, θ)

and further according to the EM algorithm, we obtain the approximated log-Likelihood

function

E[logL(θ) |ΩT ; θ] =
T∑
t=k

∑
j∈Sx

P(s̃t = j|ΩT ; θ)

· log [P(s̃t = j|Ωt−1; θ) f(x̂t|x̂t−δ, s̃t = j, θ)] .

where the transition density f(x̂t|x̂t−δ, s̃t = j, θ) approximates Zx(θ) . Analogue

considerations hold for the approximation of Zy(θ) . Thereafter, maximizing the

expected log-Likelihood function for both sets of spike regime states S i ⊂ S with

respect to the corresponding spike regime parameter θJ ⊂ θ then yields the desired

estimates.
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Stochastic Dynamic Programming

Theoretical Part

Outer Integral Let P be a probability measure on the measurable space (Ω,F) .

Let f, g and h be functions from Ω to [−∞,+∞] then in accordance with Bertsekas

& Shreve [BS80] we define:

Definition B.1. If f ≥ 0 the outer integral of f with respect to P is defined by∫ ∗
f dP = inf

{∫
g dP | f ≤ g, g is F-measurable

}
.

If f ≤ 0 define
∫ ∗
f dP := −

∫ ∗
(−f) dP to apply the outer integral formulation

analogously.

Lemma B.1. If f ≥ 0 and h ≥ 0 , then∫ ∗
(f + h) dP ≤

∫ ∗
f dP +

∫ ∗
h dP . (B.1)

If either f or h is F -measurable, then equality holds in (B.1).

Proof. Given in Appendix A of [BS80].

Again an analogue result holds, if f ≤ 0 and h ≤ 0 .

136
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Uniformly Optimal Policy As regards the completeness of exposition, we state

(without proof) the subsequent results of Bertsekas & Shreve (stated on page 44 f.

of their book [BS80]) applied in the proof of Theorem 3.6 in terms of our model

framework.

Proposition B.2. A policy π∗ = (µ∗0, µ
∗
1, . . . ) is uniformly T -stage optimal if and

only if

(Tµ∗T−k · T
k−1)(JT ) = T k(JT )

for all k = 0, 1, 2, . . . , T − 1 , where T k denotes the composition of T with itself k

times.

As a corollary of Proposition B.2 Bertsekas & Shreve obtain the following:

Corollary B.1. (a) There exists a uniformly T -stage optimal policy if and only

if the supremum in the relation

T k+1(JT )(XT−k−1) = sup
c∈K(XT−k−1)

H(XT−k−1, c, T
k(JT ))

is attained for all XT−k−1 ∈ X and all k ∈ {0, 1, . . . , T − 1} .

(b) If there exists a uniformly T -stage optimal policy, then

JT,π∗ = T T (JT )

is optimal.

Empirical Part

Fitting Procedure The stepwise procedure of fitting the exponential volatility

function determining the evolution of fixed delivery forward contracts to market

observable swap price data as stated in Section 3.7.3 is accomplished by using the

following ideas:

1. The first step of the approach is based on the work of Benth, Koekkebakker and

Ollmar [BKO07]. The task is to use sample deviations of historical daily swap

contract returns to estimate the exponential volatility parameter of fixed deliv-

ery forward price dynamics. At this point bear in mind the difference of fixed

delivery dynamics and market observable swap contracts having a monthly

delivery period. Futhermore, the stochastic evolution of forward prices is mod-

elled under an equivalent martingale measure Q whereas the atomic swap con-

tracts G(t, T Sm, T
E
m) are observed under the real world measure P . Although
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there might exist a risk premia that cause forward prices exhibit non-zero drift

terms, the diffusion terms under both measures are equal. Hence, Σ and σ can

be estimated from real world data. Note, according to Cortazar & Schwartz

[CS94] this is only correct if the observations are sampled continuously, i.e. in

our application daily samples are used. We have (according to Benth et al.

[BKO07] in Section 4.2.2.) for m = 0, . . . ,M

Σ(t, T Sm, T
E
m) =

1

TEm − T Sm

∫ TEm

TSm

σe−κ(u−t)du

= − 1

TEm − T Sm
σ

κ
(e−κ(TEm−t) − e−κ(TSm−t)).

Assuming settlement of the forward contracts at K points in a month m ∈
{0, . . . ,M} , i.e. T1m < T2m < · · · < TKm with T Sm = T1m and TEm = TKm , we

have

dG(t, T Sm, T
E
m) =

1

TEm − T Sm

K∑
k=1

σ(t, Tkm)dWt.

Let dG(tj, T
S
m, T

E
m) ≈ G(tj, T

S
m, T

E
m)−G(tj−1, T

S
m, T

E
m) = xGjm for j = 1, . . . , N

and m = 0, . . . ,M . With these approximations at hand we use the monthly

sets of observations under the real world measure collected in the matrix

XG
N×(M+1) =


xG10 xG11 . . . xG1M
xG20 . . . . . . xG2M
...

...
...

...

xGN0 . . . . . . xGNM


and obtain Σ̂m =

√
1

N−1

∑N
j=1(xGjm − xGjm)2 as proxy for the swap contract

volatility, where xGjm denotes the average daily price differences xGjm = 1
N

∑N
j=1 x

G
jm

corresponding to the m -th month of observation. Now, minimizing

M∑
m=1

N∑
j=1

(Σ̂m −
1

TEm − T Sm

K∑
k=1

σ eκ(Tkm−tj))2

=
M∑
m=1

N∑
j=1

(Σ̂m +
1

TEm − T Sm
σ

κ
(e−κ(TEm−tj) − e−κ(TSm−tj)))2

with respect to the volatility parameter σ and κ yields the implied volatility

function for the fixed delivery period

σ̂imp(t, Tkm) = σ̂imp e
−κ̂imp(Tkm−t)

for all k = 1, . . . , K such that Tkm satisfies T Sm ≤ Tkm ≤ TEm and all m =

0, . . . ,M .
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2. According to the approach of Clewlow and Strickland [CS99] in the second step

the state prices Qij for all i, j are obtained by forward induction using the

recursion

Qij =
∑
j′

Qij′pj′j p(i, i+ 1),

where Q00 = 1 , pj′j is the probability of moving from node (i, j′) to node

(i + 1, j) and p(i, i + 1) is the bond price at date i maturing at date i + 1 .

Note, in order to have daily quoted bond prices available, linear interpolation

techniques have been used.

3. Fitting the market price of risk to historic logarithmic spot price returns is

then accomplished by using the relation

Si = eXi+κλi

such that λi = 1
κ
(lnSi −X i) , where we use the average spot prices of the last

ten years as a proxy for Si , i.e. Si = 1
10

∑10
y=1 Si(y) with y = 1, . . . , 10 , and

X i = 1
J

∑J
j=1 xij where J is the number of scenarios in the tree.
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