
Universität Ulm

Fakultät für Mathematik und
Wirtschaftswissenschaften

Characteristics of Poisson Cylinder Processes
and their Estimation

Dissertation

zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für
Mathematik und Wirtschaftswissenschaften der Universität Ulm

vorgelegt von
Malte Spiess
aus Waiblingen

2012



Amtierender Dekan: Prof. Dr. Paul Wentges
1. Gutachter: Prof. Dr. Evgeny Spodarev
2. Gutachter: Prof. Dr. Ulrich Stadtmüller
3. Gutachter: Prof. Dr. Daniel Hug
Tag der Promotion: 20. Juni 2012



Contents

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Cylinder processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Poisson cylinder processes (PCPs) and related basic notions 7
2.1. Some basics in convex geometry . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Poisson cylinder processes . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1. Cylinder processes as particle processes . . . . . . . . . . . . . 10
2.2.2. Cylinder processes induced by marked processes on Rd−k . . . 12

2.3. Formulas for marked Poisson point processes . . . . . . . . . . . . . . 14
2.4. Some basic facts about cumulants . . . . . . . . . . . . . . . . . . . . . 15
2.5. The method of the approximate inverse (AI) . . . . . . . . . . . . . . 16

3. Characteristics of Poisson cylinder processes 19
3.1. Capacity functional and related characteristics . . . . . . . . . . . . . 19

3.1.1. Capacity functional . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2. Covariance function . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3. Contact distribution function . . . . . . . . . . . . . . . . . . . 24

3.2. Specific surface area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3. An optimization example for PCPs originating from fuel cell research . 31
3.4. Concluding remarks and open questions . . . . . . . . . . . . . . . . . 34

4. Asymptotic behavior of the empirical volume fraction of a PCP 35
4.1. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1. A CLT for V (d,k)
ρ with explicit asymptotic variance . . . . . . . 37

4.1.2. Berry-Esseen bounds and Cramér-type large deviations for V (d,k)
ρ 38

4.2. Order of the asymptotic variance . . . . . . . . . . . . . . . . . . . . . 40
4.3. A recursive estimation method for the cumulants of V (d,k)

ρ . . . . . . . 42
4.4. A truncation technique for V (d,k)

ρ ; proof of Theorem 4.1 . . . . . . . . 53
4.5. The asymptotic variance of V (d,k)

ρ ; proof of Theorem 4.2 . . . . . . . . 56
4.5.1. Diffuse directional distributions . . . . . . . . . . . . . . . . . . 56
4.5.2. Discrete directional distributions . . . . . . . . . . . . . . . . . 58

iii



Contents

4.5.3. Mixed directional distributions . . . . . . . . . . . . . . . . . . 60
4.5.4. Some special cases . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6. Concluding remarks and open questions . . . . . . . . . . . . . . . . . 62

5. The approximate inverse (AI) estimator for directional distributions 65
5.1. Reconstruction kernels for the cosine transform . . . . . . . . . . . . . 67

5.1.1. Two-dimensional case . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.2. Higher-dimensional case . . . . . . . . . . . . . . . . . . . . . . 68

5.2. Definition of the AI estimator for directional distributions . . . . . . . 71
5.3. Asymptotic properties of the AI estimator . . . . . . . . . . . . . . . . 72

5.3.1. Almost sure convergence . . . . . . . . . . . . . . . . . . . . . . 73
5.3.2. Berry-Esseen bounds . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.3. Large deviations . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4. Numerical experiments with simulated data . . . . . . . . . . . . . . . 87
5.4.1. Two-dimensional case . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.2. Three-dimensional case . . . . . . . . . . . . . . . . . . . . . . 89
5.4.3. Asymptotic behavior for growing observation window radius . . 93

5.5. Application to real data . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5.1. Two-dimensional microscopic images . . . . . . . . . . . . . . . 94
5.5.2. Three-dimensional synchrotron images . . . . . . . . . . . . . . 94

5.6. Concluding remarks and open questions . . . . . . . . . . . . . . . . . 95

A. Appendix 97
A.1. The relatedness of the two definitions of a PCP in Section 2.2 . . . . . 97
A.2. Rubin’s inversion formula for the spherical Radon transform . . . . . . 98
A.3. Intersection area of two ellipses . . . . . . . . . . . . . . . . . . . . . . 101

Bibliography 105

List of Figures 111

Indexes 112
Index of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Index of subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

iv



1. Introduction

1.1. Motivation

Many porous materials can be modeled with random dilated fiber processes, where a
fiber is the image of a (piecewise) C1-smooth curve.1 For this, various examples can
be found in literature, see e.g., the recent books [OS09] or [Tor02], which discuss the
modeling and analysis of such media.
Consider for example polymer electrolyte membrane (PEM) fuel cells, which are

widely used in stationary as well as portable devices for power generation. One
structural part of a PEM fuel cell which has a high influence on the performance
is the so-called gas diffusion layer (GDL). Its main purpose is to assist the gas and
water transport. In Figure 1.1 microscopic images of the fiber systems of two GDLs
are shown.

(a) Microscopic image of a GDL, top view
300 µm

(b) Microscopic image of a GDL, side view

Figure 1.1.: Images of gas diffusion layers used in PEM fuel cells (courtesy of the
Centre for Solar Energy and Hydrogen Research, Ulm)

The GDL in the example consists of very long fibers with almost no curvature.
Hence, it can be modeled by so-called cylinder processes, where a cylinder is defined

1In literature, dilated curves are sometimes also called fibers. Here, (for mathematical objects) we
always distinguish between fibers and dilated fibers for clarity.
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1. Introduction

as an infinitely long line dilated with a polyconvex set from the orthogonal space, see
Figure 1.2a for a sketch.
An example of a similarly structured material can be found in [SPRB+06], where

the influence of the properties of fibrous media used to control the acoustics in cars
is analyzed.
These and other interesting applications were our motivation to consider as a basic

model throughout this thesis so-called stationary cylinder processes, i.e., a random
collection of cylinders. In this context “stationarity” means that the distribution of
the process is invariant with respect to translations. A pictorial description could be
that the process looks the same no matter at which point you view it.

origin

ξ

K ⊂ ξ⊥

Z = ξ ⊕ K

(a) Example of a cylinder as the sum of
a line ξ and a set K ⊂ ξ⊥

(b) Realization of a cylinder process

Figure 1.2.: Construction of a 2D cylinder process

We shall restrict to Poisson cylinder processes (abbreviated by PCP), i.e., Pois-
son point processes of cylinders. Poisson point processes are a common model in
stochastic geometry, see, e.g., [DVJ08] or [SKM95] and seem to be a natural choice
for material modeling. The property of being Poisson has the effect (among others)
that there is no interaction between the cylinders. A rigorous definition of a PCP is
given in Section 2.2.
The morphology of a material has a crucial influence on its performance, e.g., on the

stability or on the gas transport capabilities. Since the production of new materials
is often expensive and time-consuming, it is desirable to find suitable stochastic
geometric models which can be optimized on the computer. Thus, for fitting such
models to real data, formulas and estimators for the morphological properties of the
theoretical models are needed.
One important property of general stationary fiber processes is the intensity, i.e.,

2



1.2. Cylinder processes

the expected total length of the fibers in the unit cube. For this, there already exist
suitable estimators in literature, see, e.g., [SKM95] or [Sch00].
Further fundamental functionals of stationary PCPs are the specific intrinsic vol-

umes, which include the specific surface area. Among these, the most important is
the volume fraction, which can easily be accessed for many materials. For the use in
asymptotic statistical tests (for growing observation windows), explicit formulas for
the asymptotic variance and Berry-Esseen bounds are needed.
Another often crucial characteristic, which has a big influence on the stability and

the mechanical properties of the material, is the directional distribution of the fibers
or cylinders. This is the distribution of the direction of the tangent at a typical point
of the fiber process. In material science, sometimes the only information available
about a material is pictures from confocal microscopy or polished planar cuts (see
[KP05]), i.e., one can observe merely a finite number of thin sections of the material.
Yet, even with this two-dimensional information, the directional distribution can be
reconstructed with a stereological approach, based on the numbers of intersections
of the fibers with the observed planes. For the statistical evaluation of the resulting
estimator, consistency and convergence rate are of interest.

In summary, for the model of a stationary PCP the main aims of this thesis are to

• calculate formulas for basic characteristics, namely the Choquet functional, the
covariance function, and the specific surface area,

• derive a central limit theorem for the volume fraction, including explicit for-
mulae for the asymptotic variance and Berry-Esseen bounds,

• find a suitable estimator for the directional distribution and analyze its asymp-
totic statistical properties, where we assume that only the intersection counts
of the process with a finite number of test hyperplanes can be observed,

• illustrate the efficiency of the estimator for the directional distribution with
simulation studies.

1.2. Cylinder processes
Before we give an outline of this thesis, we want to be a little more precise about the
notion of a cylinder process. For this, we need to define first what we call a cylinder.
Here, a cylinder is the Minkowski sum of a k-flat ξ in the d-dimensional Euclidean
space and a polyconvex set K in the orthogonal space ξ⊥, see Figure 1.2a. ξ is called
the direction space, whereas K denotes the base of the cylinder. This generalizes
the common notion of a cylinder which has a compact and convex base. A cylinder
process is – loosely speaking – a measurable random collection of cylinders.

3



1. Introduction

Here, different values of k lead to very different processes. In the three-dimensional
case, besides k = 0, which yields a usual germ-grain model, there are two possibilities,
k = 1 and k = 2. In Figure 1.3, examples of the resulting processes are shown.

x y

z

Figure 1.3.: 3D cylinder processes with 1- and 2-dimensional direction space,
respectively

Processes of convex cylinders have been considered frequently in literature, for an
overview see e.g., [Sch87, Section 3]. They were first mentioned in [Mat75], where
they appear as a side product and are used to characterize a certain class of random
closed sets. Further formulas for this model have been derived in [Dav78] and [Ser84].
The first rigorous definition of the more general model with a polyconvex base has
been given in [Wei87], where the case of cylinder processes has been analyzed without
the restriction of being Poisson. Recently, Hoffmann calculated the mixed volumes for
not necessarily stationary Poisson cylinder processes with convex bases, see [Hof09b].

1.3. Outline

Chapter 2 starts with the introduction of some basics from integral geometry and
stochastic processes, which are needed for the treatment of PCPs. First, in Sec-
tion 2.1, we introduce some basic sets and notions from convex geometry which form
the basis for the rigorous definition of cylinders and also cylinder processes. In Sec-
tion 2.2, we define Poisson processes on a rather general space. Since it is convenient,
we give two definitions of Poisson cylinder processes, which are equivalent up to a
set of probability zero as shown in Appendix A.1. After presenting some basic for-
mulas for marked Poisson processes, we briefly turn to the notion of cumulants in
Sections 2.3 and 2.4, respectively. We conclude by a short introduction to a principle
for solving an inverse linear problem called the method of the approximate inverse

4



1.3. Outline

(short: AI) in Section 2.5. In addition, we define the spherical Radon transform and
the cosine transform.
In Chapter 3, we consider some of the most important basic characteristics of

stationary Poisson cylinder processes. In Section 3.1, we begin with the so-called
capacity functional (also known as the Choquet functional), which is the probabil-
ity that the union set of the process hits a compact test set. The functional is of
great importance in the theory of random closed sets since it characterizes their dis-
tribution. From this basic characteristic, formulas for the covariance function and
the contact distribution function of the union set follow easily. Another interesting
property of the process is the specific surface area, i.e., the expected surface area per
unit volume, which is the topic of Section 3.2. To conclude this chapter, we give an
example of how the formulas from this chapter can be used in practice. Section 3.3
deals with a question from fuel cell technology which can be solved using the newly
derived formulas.
In Chapter 4, we prove a central limit theorem (CLT) for the volume fraction (de-

noted by V (d,k)
ρ ) of a stationary PCP within an observation window ρW for ρ→∞,

whereW is a compact set which is star-shaped with respect to the origin. At first the
preliminaries are discussed. Then, in Section 4.1, the main theorems are presented
including the CLT, Berry-Esseen bounds, and large deviation results. We also state
formulae for the asymptotic variance for discrete and continuous directional distri-
butions. In Section 4.2 we calculate the order of the variance of V (d,k)

ρ which will
be important in the following sections. Sections 4.3 and 4.4 contain rather technical
proofs, which are based on a recursive estimation method for the cumulants of V (d,k)

ρ

developed by Heinrich in [Hei05]. The application of this rather complex technique
becomes necessary because of the long-range dependences caused by the infinitely
long cylinders. We conclude by deriving formulae for the asymptotic variance in
Section 4.5.
Chapter 5 addresses a problem which originates from stereology: We consider

(non-dilated) fiber processes (e.g., line processes) and assume that we can observe
the numbers of intersections of the process with some test hyperplanes in a bounded
observation window. Our aim is to estimate the directional distribution. Under
certain conditions, the resulting point processes (of intersection points) on the test
hyperplanes are stationary Poisson processes. In this case the intensity of the latter
processes is called the rose of intersections and is the cosine transform of the direc-
tional distribution of the fiber process. Thus, for the estimation of the directional
distribution density from this data, the crucial part is to invert the cosine transform
in a numerically stable way. We use the AI method for this purpose, which is shortly
described in Section 2.5. The most important part for the use of this method is to
derive a reconstruction kernel for a suitable mollifier, which is done for dimension
d = 2 in Section 5.1.1 and for d ≥ 3 in Section 5.1.2. This enables us to define the

5



1. Introduction

AI estimator for directional distributions in Section 5.2. We analyze the stochas-
tic properties of this estimator in Section 5.3, including almost sure convergence in
the supremum norm (Section 5.3.1), Berry-Esseen bounds (Section 5.3.2), and large
deviation properties (Section 5.3.3). Then, in Section 5.4, we demonstrate the perfor-
mance of our estimator with some numerical experiments, and finally, in Section 5.5,
we apply our method to real microscopic image data from GDLs.
In each of the Chapters 3 to 5 we begin with a short introduction to the treated

problem and end with a section containing some remarks and commenting on open
questions and possible further research topics.

In the Appendix A.1, we show how the two models of the PCP introduced in Sec-
tion 2.2 are related. Then, in Section A.2, we present the inversion formula for the
spherical Radon transform proposed by Rubin in [Rub02], which is related to our
approach. We conclude the appendix by the calculation of the intersection area of
two specific ellipses, which is needed in Section 5.3.2 for the determination of the
variance of the estimator in the 3D case.

All software for the simulation and analysis of the cylinder processes (with exception
of Martin Riplinger’s work, which is indicated accordingly when applied) used in this
thesis is based on and has been integrated into the GeoStoch Java library of the
Institute of Stochastics at Ulm University. See www.geostoch.de for further details.

6
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2. Poisson cylinder processes and related
basic notions

In this chapter, we introduce the basic notation and conventions required for the
definition of Poisson line and cylinder processes and present some related basic con-
cepts. It is loosely based on the introductions in [HS09], [HS12], [LRSS11], [RS11],
and [SS11].
We begin with some elementary sets and measures from convex geometry in the

next Section 2.1. Then we recall the definition of Poisson point processes in a rather
general setting, which is used to introduce stationary Poisson cylinder processes in
Section 2.2. We give two definitions of PCPs, which are equivalent up to a set of
probability zero, see Appendix A.1. We continue by defining the probability gen-
erating functional and the n-th order Campbell formula in Section 2.3. We briefly
introduce the concept of cumulants in Section 2.4. Finally, a short overview of the
basics of the method of the approximate inverse and the functions to which we want
to apply it is given in Section 2.5.

2.1. Some basics in convex geometry

We introduce some basic geometric sets, where we mostly follow [SW08]. Throughout
this thesis our basic space is the d-dimensional Euclidean space Rd. In this space we
denote the set of all compact sets (including the empty set ∅) by C and the subset of
C containing all convex sets by K. The set of all polyconvex sets, i.e., all sets which
are a finite union of sets from K, is denoted by R. Finally, we write S for the set of
all locally polyconvex sets, i.e., all sets S with S ∩K ∈ R for all K ∈ K.
Furthermore, we denote by C′ the set of all non-empty compact sets (compact

bodies) and by Co the set of all non-empty compact sets with circumcenter in the
origin. For the other sets (K,R, and S) we use the analogous notation. We sometimes
add an index to emphasize the dimension, e.g., Cs for C in Rs.
We equip the sets C, K, and R with the topology induced by the (extended)

Hausdorff metric, which is defined for sets A,B ∈ C′ as

δ(A,B) = max
{

max
x∈A

min
y∈B
‖x− y‖,max

x∈B
min
y∈A
‖x− y‖

}
,

7



2. Poisson cylinder processes (PCPs) and related basic notions

where ‖ · ‖ denotes the usual Euclidean norm. Further, we let δ(∅, ∅) = 0, and for
A ∈ C′ we define δ(∅, A) = δ(A, ∅) =∞.
We denote the set of all closed sets by F, and equip it with the so called Fell

topology, see [SW08, p. 563]. By B(F) we denote its Borel sigma-algebra.
By G(d, k), k ∈ {0, . . . , d} we denote the Grassmannian manifold, i.e., the space of

all (non-oriented) k-dimensional subspaces of Rd, and by A(d, k) the set of all affine
k-dimensional subspaces. For B ⊂ Rd and a linear subspace η ⊂ Rd we denote by
πη(B) the orthogonal projection of a B onto η. Often we shall use a projection onto
a space B⊥ which contains the vectors which are orthogonal to all vectors of the set
B ⊂ Rd. For the d-dimensional Lebesgue measure of a Borel set B ⊂ Rd we write
|B|d. Given B ⊂ ξ for some ξ ∈ G(d, k), we shall write |B|ξk for its k-dimensional
volume in the subspace ξ.
For the closed ball with radius r centered in a point x ∈ Rd we write Bd

r (x), where
the dimension is mostly omitted when it equals d. For the volume and surface area of
the d-dimensional unit ball B1(o) we write κd and ωd, respectively, where o denotes
the origin.
For a convex set K ∈ K′ and x ∈ Rd, let p(K,x) be the unique point in K which is

the closest to x. Then there exist measures Φk(K, ·) on B(Rd), for k = 0, . . . , d, with

∣∣∣{x ∈ K ⊕Br(o) : p(K,x) ∈ B
}∣∣∣
d

=
d∑

k=0
rd−k κd−k Φk(K,B),

where K1 ⊕ K2 = {k1 + k2 : k1 ∈ K1, k2 ∈ K2} is the Minkowski sum of K1 and
K2. One should remark that this formula is an extension of the so-called Steiner
formula, see [SW08, Section 14.2]. Furthermore, we define Φk(∅, B) = 0 for all
B ∈ B(Rd). These measures are called curvature measures. Since they are locally
determined (cf. [SW08, Th. 14.2.3]), they can be extended to functionals with locally
polyconvex sets as first argument in such a way that they remain additive. Note
that these generalized curvature measures are not necessarily positive, but signed
measures. For a detailed introduction, see [SW08]. The intrinsic volumes of K can
be defined as total curvature measures V d

k (K) = Φk(K,Rd) for k = 0, . . . , d. By
S(K) = 2V d

d−1(K) we denote the surface area of a set K.

2.2. Poisson cylinder processes
In this section, we introduce the most important model used in this thesis, the Poisson
cylinder process (abbreviation: PCP). First, we define Poisson point processes on
locally compact Hausdorff spaces. Then we introduce the notion of a cylinder and
some associated notations. Finally, we turn to the very definition of a PCP. Since we
introduce some random elements, we want to point out that throughout this thesis
we assume that all random elements are defined on the common probability space

8



2.2. Poisson cylinder processes

(Ω,A,P). Further, we use the symbol E (Var) for the expectation value (variance)
with respect to P.

Poisson processes For defining a Poisson process on a locally compact Hausdorff
space E with countable base, we closely follow [SW08, Section 3.2]. Poisson processes
can also be defined on more general spaces, however, the notion presented here is
sufficient for our purposes.

Definition 2.1 (point processes). Let E be a locally compact Hausdorff space with
countable base and N(E) be the set of all counting measures on E. Then we denote
by N (E) the smallest σ-algebra which satisfies that for all B ∈ B(E) the mapping
N(E)→ N0 ∪ {∞}, ϕ 7→ ϕ(B) is (N (E),B(R))-measurable.
A point process X is a measurable mapping from (Ω,A,P) into the measurable

space (N(E),N (E)).
The measure Λ defined by Λ(B) = EX(B) is called the intensity measure of a

point process X.

A point process is called locally finite if the intensity measure Λ is locally finite,
i.e., Λ(C) <∞ for all compact sets C ⊂ E.

Definition 2.2 (Poisson processes). Let X be a point process on E with intensity
measure Λ. Then X is called Poisson, if it satisfies the following two properties:

(a) for any B ∈ B(E) with Λ(B) <∞ we have X(B) ∼ Poi(Λ(B)),

(b) for any pairwise disjoint B1, . . . , Bn ∈ B(E) the induced random variables
X(B1), . . . , X(Bn) are independent.

A point process is called simple, if it has no multiple points. For Poisson processes
this is the case if and only if Λ is diffuse, i.e., Λ({e}) = 0 for all e ∈ E, see [SW08,
Lemma 3.2.1].

Cylinders Following the approach introduced in [Wei87], we define a cylinder as the
Minkowski sum of a flat ξ ∈ G(d, k) and a set K ⊂ ξ⊥ with K ∈ R′. Note that K
is not limited to sets with an associated point in the origin. The flat ξ is also called
the direction space of ξ⊕K, and K is called the cross section or base. For a cylinder
Z = K⊕ ξ we define the functions L(Z) = ξ and K(Z) = K. Furthermore, define Zk
as the set of all cylinders which have a k-dimensional direction space and base in R′.
Let Zok be the set of all cylinders Z ∈ Zk for which the midpoint of the circumsphere
of K(Z) lies in the origin. For the volume of the cross section of the cylinder we
introduce the notation A(Z) = |K(Z)|L(Z)

d−k . With a slight abuse of notation, we shall
denote by S(K) the surface area of K = K(Z) in the space L(Z)⊥ for Z ∈ Zk.

9



2. Poisson cylinder processes (PCPs) and related basic notions

We consider the space E = Zk as a subspace of F and equip it with the resulting
trace topology. Thus, a measure ϕ on Zk is locally finite if and only if for all C ∈ C
we have ϕ({Z ∈ Zk : Z ∩ C 6= ∅}) <∞, cf. [SW08, Lemma 2.3.1].

2.2.1. Cylinder processes as particle processes
Let N(F) be the set of all locally finite counting measures on F endowed with the
σ-algebra N (F) (cf. Definition 2.1). A point process Ξ on F which is a measurable
mapping from the probability space (Ω,A,P) into (N(F),N (F)) with Ξ ∈ N(Zk)
almost surely is called a cylinder process (in the sense of particle processes). Its
distribution is given by the probability measure PΞ : N (F)→ [0, 1], PΞ(·) = P(Ξ ∈ ·).
In case of Ξ being a locally finite Poisson process, the union UΞ = ∪Z∈ΞZ is a

random closed set, see [SW08, p. 96], where we denote by Z ∈ Ξ the cylinders Z in
the support set of Ξ. The cylinder process Ξ is called stationary if its distribution
is invariant with respect to translations in Rd and isotropic if it is invariant with
respect to rotations about the origin.
Following [Wei87], we consider the following decomposition of Λ for locally finite

stationary PCPs Ξ.

Proposition 2.1. If Ξ is a locally finite stationary PCP, then there exist a number
λ <∞ and a probability measure θ on Zok , such that

Λ(A) = λ

∫
Zo
k

∫
L(Z)⊥

1A(Z + x) dx θ(dZ) (2.1)

for all Borel sets A ⊂ Zk. λ is uniquely determined, and θ is unique for λ > 0.

Proof. The claim can be shown by generalizing the proof of [SW08, Theorem 4.4.1].
For a fixed linear subspace U ∈ G(d, d− k) we define

GU :=
{
ξ ∈ G(d, k) : dim(ξ ∩ U) = 0

}
,

ZU :=
{
Z ∈ Zok : L(Z) ∈ GU

}
, and

AU :=
{
Z + x : Z ∈ ZU , x ∈ U

}
.

Furthermore, we consider the mapping i : (x, Z) 7→ x + Z for x ∈ U and Z ∈ ZU ,
which is a homeomorphism. For Borel sets A ⊂ ZU , we introduce the measure

ηA(B) := Λ(i(B ×A)), B ∈ B(U).

Since Ξ is locally finite and stationary, ηA is a locally finite translation invariant
measure, i.e., a multiple of the Lebesgue measure in U . We denote the factor by
ρ(A), which leads to Λ(i(B ×A)) = |B|Ud−k ρ(A). As ρ is a finite measure on ZU , we
get

i−1(Λ)(B ×A) =
(
| · |Ud−k ⊗ ρ

)
(B ×A).

10



2.2. Poisson cylinder processes

Thus, for every non-negative measurable function f on Zk, we have∫
Zk
f(Z) Λ(dZ) =

∫
ZU

∫
U
f(Z + x) dx ρ(dZ).

For Z ∈ ZU , one can easily see that the projection πL(Z)⊥ : U → L(Z)⊥ is a
bijection. Thus, | · |Ud−k = a(L(Z)) |πL(Z)⊥(·)|L(Z)⊥

d−k for some a(L(Z)) > 0 depending
only on L(Z). Since f(Z + x) = f(Z + πL(Z)⊥(x)), we have

∫
U
f(Z + x) dx = a(L(Z))

∫
L(Z)⊥

f(Z + y) dy.

We define a measure ΛU on ZU by ΛU (dZ) = a(L(Z)) ρ(dZ), which leads to∫
AU

f(Z) Λ(dZ) =
∫
ZU

∫
L(Z)⊥

f(Z + x) dxΛU (dZ).

We can interpret ΛU as a measure on all Zok , with ΛU (Zok \ ZU ) = 0, which leads to∫
AU

f(Z) Λ(dZ) =
∫
Zo
k

∫
L(Z)⊥

f(Z + x) dxΛU (dZ).

Since each set GU , U ∈ G(d, d − k), is open in G(d, k), there are finitely many sub-
spaces U1, . . . , Um ∈ G(d, d− k) with G(d, k) = ∪mi=1GUi , resulting in Zok = ∪mi=1ZUi .
Hence, the sets AUi , i = 1, . . . ,m, cover Zk and are invariant under translation. The
translation invariant Borel sets Aj := AUj \ (A1 ∪ · · · ∪ Aj−1), j = 1, . . . ,m, form a
disjoint covering of Zk. Introducing the symbol x for the restriction of a measure,
the measure Λ xAi is translation invariant, and the measure Λi := (Λ xAi)Ui , defined
as above, satisfies∫

Ai

f(Z) Λ(dZ) =
∫
Zo
k

∫
L(Z)⊥

f(Z + x) dxΛi(dZ).

If we write the measure Λ0 := Λ1 + · · ·+Λm as Λ0 = λ θ for some probability measure
θ and λ ≥ 0, (2.1) is satisfied.
From (2.1) we obtain that, for A ∈ B(Zok),

λ θ(A) = 1
κd−k

Λ
({
Z = Z ′ + x : Z ′ ∈ A, x ∈ B1(o)

})
.

This makes it obvious that λ is finite and uniquely determined, and θ is unique if
λ > 0.

11



2. Poisson cylinder processes (PCPs) and related basic notions

λ is called the intensity and θ the shape distribution of Ξ. We sometimes also write
Ξλ,θ for Ξ to emphasize this connection. We shall often use the notation Z0 for a
cylinder with distribution θ. This can be regarded as a typical cylinder of Ξ with
circumcenter of the base K(Z0) in the origin.
By a theorem on disintegration, see e.g. [LB95, Th. A2.2], θ can be decomposed

further in the following way. There exist a probability measure α on B(G(d, k))
(directional distribution of Ξ) and a probability kernel β : B(Ro) × G(d, k) → [0, 1]
for which β(·, ξ) is concentrated on subsets of ξ⊥ such that for Borel sets A ⊂ Zok the
equation

θ(A) =
∫
G(d,k)

∫
Ro∩ξ⊥

1{K ⊕ ξ ∈ A}β(dK, ξ)α(dξ) (2.2)

holds.

Figure 2.1.: Planar anisotropic and spatial isotropic PCP

Remark 2.1. In the degenerate case k = 0 the union set UΞ coincides with the
well-studied Boolean (or Poisson grain, Poisson blob, Swiss cheese) model in Rd with
typical grain Z0, see [Hal88], [Mat75], or [SKM95].

Remark 2.2. Another important special case is that of K being almost surely a point.
Then the model coincides with a k-flat process.

2.2.2. Cylinder processes induced by marked processes on Rd−k

We present an alternative definition of a cylinder process. In Appendix A.1 we show
that the definition from Section 2.2.1 and the one given here are equivalent up to a
set of probability zero.
We begin with some notation. Let {e1, . . . , ed} be the canonical unit vector base of

Rd. Furthermore, denote by Ek = span{ed−k+1, . . . , ed} the subspace of Rd spanned

12



2.2. Poisson cylinder processes

by the last k base vectors. For each ξ ∈ G(d, k) there exists an equivalence class of
orthogonal matrices defined as Oξ = {O ∈ SOd : OEk = ξ}. We choose from each
class the unique representative Oξ ∈ Oξ which is the lexicographically smallest. For
the set of all such matrices we use the symbol SOd

k = {Oξ : ξ ∈ G(d, k)} and equip
it with the usual topology in the set of matrices. This is obviously a measurable set
because of the continuity of the mapping onto the lexicographically smallest matrix.
Further, let (Θ0,Ξ0) be a measurable mapping from (Ω,A,P) into the product space
Γd,k = SOd

k×Rod−k, where Rod−k is the subset of R′d−k of all sets with circumcenter o.
The image measure Q := P ◦ (Θ0,Ξ0)−1 acting on the corresponding Borel product
σ-field B(Γd,k) determines the joint distribution of the (not necessarily independent)
random elements Θ0 and Ξ0.

Remark 2.3. Since dimG(d, k) = k(d−k), the set SOd
k can also be parametrized with

a subset of Rk(d−k). In the special cases d = 2, k = 1 and d = 3, k = 1, alternative
parameterizations are of the space SOd

k are

O(θ) =
(

cos θ − sin θ
sin θ cos θ

)
, O(θ1, θ2) =

 sin θ1 cos θ1 cos θ2 cos θ1 sin θ2
− cos θ1 sin θ1 cos θ2 sin θ1 sin θ2

0 − sin θ2 cos θ2

 ,
for θ ∈ [0, π) resp. (θ1, θ2) ∈ [0, 2π)× [0, π/2]. In the dual case d = 3, k = 2, the first
and the third column of O(θ1, θ2) must be interchanged and the last column multiplied
by −1.

Now, we are in a position to introduce a stationary independently marked Pois-
son process Πλ′,Q =

∑
i≥1 δ[Pi,(Θi,Ξi)] with intensity λ′ and mark distribution Q(·).

Πλ′,Q(·) is a random locally finite counting measure (shift-invariant in the first com-
ponent) on the Borel subsets of Rd−k × Γd,k such that the numbers Πλ′,Q(B × L)
are Poisson distributed with mean λ′ |B|d−kQ(L) for any bounded B ∈ B(Rd−k) and
L ∈ B(Γd,k). This definition implies that the numbers of atoms of the unmarked Pois-
son process Πλ′ =

∑
i≥1 δPi located in disjoint subsets of Rd−k are independent and

the marks (Θi,Ξi) associated with the atoms Pi are i.i.d. (independent and identically
distributed) copies of (Θ0,Ξ0) ∼ Q and independent of Πλ′ .

Definition 2.3. Given the Poisson point process Πλ′,Q =
∑
i≥1 δ[Pi,(Θi,Ξi)] with in-

dependent marks, satisfying the above assumptions, we introduce the notation

Π(d,k)
cyl (λ′, Q) =

{
Θi((Ξi + Pi)× Rk), i ≥ 1

}
=
{
Zi, i ≥ 1

}
(2.3)

with Zi = Θi((Ξi + Pi)× Rk) ∈ Zk for i ≥ 1.

It is shown in Appendix A.1, that Π(d,k)
cyl (λ′, Q) is a (measurable) simple stationary

Poisson cylinder process as introduced in Section 2.2.1 if E |Ξ0 ⊕ Bd−k
ε (o)|d−k < ∞

13



2. Poisson cylinder processes (PCPs) and related basic notions

for some ε > 0. In particular, it has a locally finite intensity measure. In this case,
we can write Ξλ,θ

d= Π(d,k)
cyl (λ′, Q) in the notation of the previous section.

It remains to show how λ and θ can be expressed by λ′ and Q. Let B ∈ B(Rod−k)
and S ∈ B(SOd

k). Then the Theorems 12.3.5, 13.1.1, 13.2.1, and 13.2.2 in [SW08]
yield that M = {θ (R × Rk) : θ ∈ S,R ∈ B} ∈ B(Zok) and also the related set
M ′ = {Z + x : Z ∈ M,x ∈ Bd

1(o)} ∈ B(Zk) are Borel sets of cylinders with k-
dimensional direction space in Rd. With the notation from this section, we calculate

Λ(M ′) = E#{i ≥ 1 : Θi((Ξi + Pi)× Rk) ∈M ′}
= E#{i ≥ 1 : Θi (Ξi × Rk) ∈M,Pi ∈ Bd−k

1 (o)}
= λ′ |Bd−k

1 (o)|d−k P(Θ0 ∈ S,Ξ0 ∈ B)
= λ′ κd−kQ(S ×B),

and on the other hand with the notation from the previous Section 2.2.1, Proposi-
tion 2.1 yields

Λ(M ′) = λ

∫
Zo
k

∫
L(Z)⊥

1M ′(Z + x) dx θ(dZ) = λκd−k θ(M).

For B = Rod−k and S = SOd
k this gives us λ = λ′ (we write λ from now on). For arbi-

trary B ∈ B(Rod−k) and S ∈ B(SOd
k) we have θ({OR : O ∈ S,R ∈ B}) = Q(S ×B).

For the typical cylinder, this means that Z0
d= Θ0(Ξ0 × Rk). Further, with this

notation we can write the random union set as

UΞ =
⋃
i≥1

Θi
(
(Ξi + Pi)× Rk

)
. (2.4)

2.3. Formulas for marked Poisson point processes

We need two important formulae for marked Poisson processes. We state them here
in a form suitable for the process Πλ,Q introduced in the previous section. Each of
them characterizes the distribution of Πλ,Q uniquely.
The probability generating functional Gλ,Q(v) = E

∏
i≥1 v(Pi,Θi,Ξi) of Πλ,Q takes

the form

Gλ,Q(v) = exp
{
− λ

∫
Rd−k

∫
Γd,k

(
1− v(x,O,K)

)
Q(d(O,K)) dx

}
(2.5)

for any measurable function v : Rd−k × Γd,k 7→ [0, 1] such that 1 − v(·, O,K) has
bounded support for (O,K) ∈ Γd,k.
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2.4. Some basic facts about cumulants

The following formula is sometimes called the n-th order Campbell formula for
marked Poisson processes. It is an immediate consequence of the Slivnyak-Mecke
formula ([SW08, Cor. 3.2.3]). For any n ∈ N it reads

E
∑∗

i1,...,in≥1

n∏
j=1

fj(Pij ,Θij ,Ξij ) = λn
n∏
j=1

∫
Rd−k

∫
Γd,k

fj(x,O,K)Q(d(O,K)) dx (2.6)

for non-negative measurable functions f1, . . . , fn : Rd−k × Γd,k 7→ R1, where the sum∑∗ on the left-hand side of (2.6) runs over all n-tuples of pairwise distinct indices
i1, . . . , in ≥ 1, see also [DVJ08] or [SKM95].

2.4. Some basic facts about cumulants
Let us begin with the definition of the mixed cumulant Cum(X1, . . . , Xn) (also called
semi-invariant) of n random variables X1, . . . , Xn (all having a finite n-th moment).
Following [LS59], we define

Cum(X1, . . . , Xn) = i−n ∂n

∂s1 . . . ∂sn
logE exp

{
i
n∑
j=1

sjXj

}∣∣∣∣∣
s1=···=sn=0

, (2.7)

and Cumn(X) = Cum(X, . . . ,X) (by setting X = X1 = · · · = Xn in (2.7)) denotes
the usual n-th cumulant of X.
A direct calculation of the derivatives leads to the formula

Cum(X1, . . . , Xn) =
n∑
j=1

(−1)j−1 (j − 1)!
∑

N1∪···∪Nj=N

j∏
i=1

E
∏

ni∈Ni
Xni , (2.8)

where the sum reaches over all disjoint subsets N1, . . . , Nj of N = {1, . . . , n}, see,
e.g., [LS59], [SS91, p. 13], or [Hei07]. From this formula, it can easily be seen that
Cum(X1, . . . , Xn) is invariant under permutation of the indices {1, . . . , n} and

Cum(. . . , aX + b Y + c, . . . ) = aCum(. . . , X, . . . ) + bCum(. . . , Y, . . . ) (2.9)

in each component for any a, b, c ∈ R, n ≥ 2.
A random variable whose cumulants of order 3 and higher are 0 is necessarily nor-

mally distributed. Additionally, any sequence of random variables whose cumulants
of order 3 and higher tend to 0 converges in distribution to a Gaussian random vari-
able. Thus, in statistics and probability theory, cumulant estimates are mainly used
to prove asymptotic Gaussianity of functionals of random processes (or fields) over
expanding domains. For obtaining even rates of convergence for these limit theorems
and exact large deviations probabilities based on cumulant estimates the reader is
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2. Poisson cylinder processes (PCPs) and related basic notions

referred to the monograph [SS91]. Note that in finding optimal rates the correspond-
ing estimation procedures are partly rather lengthy and sophisticated, see [Hei07] for
an example.
In this thesis, we are mostly interested in the cumulants of the volume of UΞ,

i.e., we consider the measurable {0, 1}-valued random field, {1UΞ(x), x ∈ Rd}. For
n ≥ 2, using (2.9) in each component of the cumulants, the mixed cumulant function
cUΞ(x1, . . . , xn) = Cum(1UΞ(x1), . . . ,1UΞ(xn)) can be written as

cUΞ(x1, . . . , xn) = (−1) Cum
(
1− 1UΞ(x1),1UΞ(x2), . . . ,1UΞ(xn)

)
= . . .

= (−1)n Cum
(
1− 1UΞ(x1), . . . , 1− 1UΞ(xn)

)
= (−1)nCum(1UΞ

c(x1), . . . ,1UΞ
c(xn)).

By combining the identities |UΞ ∩ Bi|d =
∫
Bi
1UΞ(xi) dxi for i = 1, . . . , n with the

linearity of (2.7) in each component, we get

Cum
(
|UΞ ∩B1|d, . . . , |UΞ ∩Bn|d

)
= (−1)n

∫
B1
· · ·
∫
Bn

cUΞ
c(x1, . . . , xn) dx1 · · · dxn

(2.10)

for any bounded B1, . . . , Bn ∈ B(Rd).

2.5. The method of the approximate inverse (AI)
The method of the approximate inverse is an approach to derive solutions for inverse
(or ill-posed) linear problems. It was first mentioned in [LM90], see also [Sch07] for
an introduction. We present some basics notions.
While the method is quite general, we only introduce it for two special operators.

The first one is the cosine transform which can be defined as

(C f)(η) =
∫
Sd−1
|〈η, ξ〉| f(ξ) dξ, η ∈ Sd−1, (2.11)

where f denotes an even measurable function on the unit sphere Sd−1, and 〈·, ·〉 is
the usual scalar product in Rd.
The second is the so-called spherical Radon transform. For even measurable func-

tions f on the unit sphere the latter is defined as

(Rf)(η) = 1
ωd−1

∫
Sd−1∩η⊥

f(ξ) dξ, η ∈ Sd−1,

where dξ is the spherical surface area measure. The spherical Radon transform is
frequently considered in tomography, for instance for the reconstruction of convex
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2.5. The method of the approximate inverse (AI)

bodies from the area of their projections onto 2-dimensional subspaces, or in connec-
tion with intersection bodies, see also [Gar06].
An overview of the properties of R and C can be found in [Gar06, Appendix C]

and [Gro96, Chapter 3].
Both transforms are closely related by �C = R (see [GW92]). Here, � is the

so-called block operator, defined as

� = ∆d−1 + d− 1
2ωd

, (2.12)

where ∆d−1 denotes the Beltrami-Laplace operator on the sphere.
Both transforms are self-adjoint. For the cosine transform, this follows directly

from Fubini’s theorem, for the Radon transform see [Gro96, p. 12].
Now, consider the following inverse problem: Given T f for some even measurable

function f on the unit sphere, where T is either R or C, we want to approximate f
in a numerically stable way. The idea of the method of the approximate inverse is to
calculate a “smoothed version” of f , denoted by fγ for some γ > 0, which is defined
as

fγ(η) =
∫
Sd−1

f(ξ) eγ(η, ξ) dξ, η ∈ Sd−1,

where we assume that

fγ → f as γ → 0 (cf. Remark 2.5). (2.13)

For the so-called mollifier eγ ∈ L2
e(Sd−1 × Sd−1) it is demanded that∫

Sd−1
eγ(η, ξ) dξ = 1, η ∈ Sd−1.

Here and in the following, even functions are denoted by the index “e”, in this case
L2

e(Sd−1×Sd−1) is the space of all square integrable functions which are even in both
components.
For a given mollifier, we define the reconstruction kernel ψγ as the solution of

eγ = T ψγ . Since both transforms C and R are self-adjoint, this allows us to write
the smoothed density for η ∈ Sd−1 as

fγ(η) = 〈f, eγ(η, ·)〉L2(Sd−1) = 〈f, T ψγ(η, ·)〉L2(Sd−1) = 〈T f, ψγ(η, ·)〉L2(Sd−1), (2.14)

where 〈·, ·〉L2(Sd−1) denotes the scalar product in L2(Sd−1). The last term is the inner
product of two known functions, namely the given data T f and the reconstruction
kernel.
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2. Poisson cylinder processes (PCPs) and related basic notions

Remark 2.4. We want to point out that this method also has computational advan-
tages. The reconstruction kernel can be calculated in advance (independent of the
given data T f), and thus the approximate inversion for a function only requires the
calculation of an inner product.

Remark 2.5. One can easily see that convergence in (2.13) holds pointwise and in
the L2-sense if f is continuous, and the support of the mollifier is contained in a ball
whose radius tends to zero as γ tends to zero. For a more precise characterization of
the convergence see [Rub02].
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3. Characteristics of Poisson cylinder
processes

This chapter is based on the results in [SS11]. Here, we assume that we have a simple
stationary Poisson cylinder process Ξ with locally finite intensity measure Λ and the
measure θ as introduced in Section 2.2. The local finiteness of Λ guarantees that the
union set UΞ is closed, see [SW08, Theorem 3.6.2]. Furthermore, we use the notation
Z0 : Ω→ Zok for the typical cylinder with distribution θ.
This chapter is organized as follows. In the next section, we derive the capacity

functional of UΞ and some consequential formulae, namely the covariance function
and the contact distribution function. In Section 3.2 we find an expression for the
specific surface area, and in the final Section 3.2, we introduce and solve a practical
optimization problem for cylinder processes.

3.1. Capacity functional and related characteristics

In this section, we calculate the capacity functional (cf. [SKM95, p. 195]) for the
union set UΞ of the stationary Poisson process Ξ of cylinders with k-dimensional
direction space. As a corollary, explicit formulae for the volume fraction, the covari-
ance function, and the contact distribution function of UΞ follow easily. It is worth
mentioning that the resulting formula (3.1) for the capacity functional generalizes
the formula in [Ser84, pp. 572–573], given for Poisson slices in R3, and a model with
this capacity functional has already been proposed in [Mat75, p. 148] for a process
with convex cylinder bases.

3.1.1. Capacity functional

For any random closed set X, the capacity functional TX(B) = P(X∩B 6= ∅), B ∈ C,
determines uniquely the distribution of X, see [Mol05] for a proof.

Lemma 3.1. The capacity functional of the union set UΞ of the cylinder process Ξ
is given by

TUΞ(B) = 1− exp
{
− λ E

∣∣−K(Z0)⊕ πL(Z0)⊥(B)
∣∣L(Z0)⊥
d−k

}
. (3.1)
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3. Characteristics of Poisson cylinder processes

Proof. Let B be a compact set in Rd. Then by Fubini’s theorem and [SW08, p. 96]
we get

1− TUΞ(B) = exp
{
− Λ

(
{Z ∈ Zk : Z ∩B 6= ∅}

)}
= exp

{
−
∫
Zk
1
{
Z̃ ∩B 6= ∅

}
Λ(dZ̃)

}
= exp

{
− λ

∫
Zo
k

∫
L(Z)⊥

1
{

(Z + x) ∩B 6= ∅
}
dx θ(dZ)

}
= exp

{
− λ E

∫
L(Z0)⊥

1
{

(K(Z0) + x) ∩ πL(Z0)⊥(B) 6= ∅
}
dx
}
.

One can easily see that K(Z0) + x hits πL(Z0)⊥(B) if and only if x belongs to the
Minkowski sum of −K(Z0) and πL(Z0)⊥(B).
Thus, we have

1− TUΞ(B) = exp
{
− λ E

∫
L(Z0)⊥

1
{

(K(Z0) + x) ∩ πL(Z0)⊥(B) 6= ∅
}
dx
}

= exp
{
− λ E

∫
L(Z0)⊥

1
{
x ∈ −K(Z0)⊕ πL(Z0)⊥(B)

}
dx
}

= exp
{
− λ E

∣∣−K(Z0)⊕ πL(Z0)⊥(B)
∣∣L(Z0)⊥
d−k

}
.

Remark 3.1. A few remarks are in order.

(a) Another interesting consequence of the proof of Lemma 3.1 is that

E
∣∣−K(Z0)⊕ πL(Z0)⊥(B)

∣∣L(Z0)⊥
d−k = Λ({Z ∈ Zk : Z ∩B 6= ∅}) <∞, (3.2)

where the last inequality follows from the local finiteness of Λ.

(b) As mentioned in Remark 2.1, the choice of k = 0 leads to the stationary Boolean
Model Ξ′ with the primary grain K and intensity λ. Here, our formula coincides
with the well-known formula for the capacity functional, cf. [Mat75, p. 62]:

TΞ′(B) = 1− exp
{
− λ E | −K ⊕B|d

}
.

(c) In case of K being almost surely a point, we have a k-flat process Ξ′′ (cf.
Remark 2.2). Here, again our formula for the capacity functional coincides
with the well-known formula, cf. [Mat75, p. 67], namely

TΞ′′(B) = 1− exp
{
− λ E

∣∣πL(Z0)⊥(B)
∣∣L(Z0)⊥
d−k

}
.
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(d) For d = 3, k = 1 we get

E
∣∣−K(Z0)⊕ πL(Z0)⊥(B)

∣∣L(Z0)⊥
2

= EA(Z0) + 1
2π E

[
S(K(Z0))S(πL(Z0)⊥(B)) + |πL(Z0)⊥(B)|L(Z0)⊥

2

]
,

where A(Z) = |K(Z)|L(Z)⊥
2 , and S(K) denotes the boundary length (or the

surface area) of K.

(e) For all d ≥ 2 and k = d− 1 we have

E
∣∣−K(Z0)⊕ πL(Z0)⊥(B)

∣∣L(Z0)⊥
1 = E

[
A(Z0) + |πL(Z0)⊥(B)|L(Z0)⊥

1

]
.

(f) The case of B = {o} yields the volume fraction p = P(o ∈ UΞ) = E |UΞ∩[0, 1]d|d
of UΞ:

p = TUΞ({o}) = 1− exp {−λ EA(Z0)} . (3.3)

A variant of this formula can also be found in [Hof09b] in the non-stationary
setting.
In this chapter, we assume that p > 0, i.e., EA(Z0) > 0. Thus, we have
p ∈ (0, 1), cf. inequality (3.2).

3.1.2. Covariance function
In the following we investigate the covariance function of UΞ. It is defined as
CUΞ(h) = P(o, h ∈ UΞ), h ∈ Rd, cf. [SKM95, p. 68].
Because of the relation CUΞ(h) = P(o, h ∈ UΞ) = 2p − TUΞ({o, h}) it is closely

connected with the capacity functional of the set B = {o, h}, which is

TUΞ({o, h}) = 1− exp
{
− λ E

∣∣{o, πL(Z0)⊥(h)} ⊕ −K(Z0)
∣∣L(Z0)⊥
d−k

}
. (3.4)

Let γA denote the covariogram of a measurable set A ⊂ L(Z)⊥, Z ∈ Zk, defined
by

γA(x) =
∣∣A ∩ (A− x)

∣∣L(Z)⊥
d−k

for x ∈ L(Z)⊥.

Lemma 3.2. For h ∈ Rd we have

CUΞ(h) = 1− 2e−λ EA(Z0) + exp
{
−2λ EA(Z0) + λ E γK(Z0)

(
πL(Z0)⊥(h)

)}
. (3.5)
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Proof. Consider the term {o, πL(Z)⊥(h)} ⊕ −K(Z) = −K(Z) ∪
[
πL(Z)⊥(h) −K(Z)

]
for some Z ∈ Zk. Its volume is equal to

∣∣−K(Z)⊕ {o, πL(Z)⊥(h)}
∣∣L(Z)⊥
d−k

= A(Z) +
∣∣− πL(Z)⊥(h)⊕K(Z)

∣∣L(Z)⊥
d−k −

∣∣∣K(Z) ∩
[
− πL(Z)⊥(h)⊕K(Z)

]∣∣∣L(Z)⊥

d−k

= 2A(Z)−
∣∣∣K(Z) ∩

[
K(Z)− πL(Z)⊥(h)

]∣∣∣L(Z)⊥

d−k

= 2A(Z)− γK(Z)(πL(Z)⊥(h)).

Using equations (3.3) and (3.4), the covariance CUΞ(h) rewrites

CUΞ(h) = 2p− TUΞ({o, h})

= 1− 2e−λ EA(Z0) + exp
{
− λ E | −K(Z0)⊕ {o, πL(Z0)⊥(h)}|L(Z0)⊥

d−k

}
= 1− 2e−λ EA(Z0) + exp

{
− 2λ EA(Z0) + λ E γK(Z0)(πL(Z0)⊥(h))

}
.

Example. In the following, we give an example of a cylinder process in two dimen-
sions with cylinders of constant thickness 2a where the expectations in (3.5) can be
calculated explicitly.

ψ

l

l⊥

a

ϕ
h

+

Figure 3.1.: Calculation of the covariance in 2D - sketch of the points and lines

Let l ∈ G(2, 1) be an arbitrary line through the origin, ϕ the angle between the
x-axis and l⊥, and h = (r, ψ) a vector in polar coordinates (see Figure 3.1). We use
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3.1. Capacity functional and related characteristics

the notation B1
a(o) × ϕ with ϕ ∈ [0, π) for a cylinder with radius a and direction

space l. Since |πl⊥(h)| = r| cos(ϕ− ψ)|, formula (3.5) rewrites

CUΞ(h) = 1− 2e−2λa + e−4λa+λI ,

where

I =
∫ π

0
(2a− |πl⊥(h)|)1{|πl⊥(h)| ≤ 2a} θ(B1

a(o)× dϕ)

=
∫
ϕ∈[0,π]:| cos(ϕ−ψ)|≤ 2a

r

(2a− r| cos(ϕ− ψ)|) θ(B1
a(o)× dϕ).

In the isotropic case (θ(B1
a(o)×dϕ) = dϕ/π) we can choose ψ arbitrarily, for example

ψ = π/2. This yields

I =
∫
ϕ∈[0,π]:sinϕ≤ 2a

r

(2a− r sinϕ)dϕ
π
.

In case r ≤ 2a this simplifies to I = 2a− r
∫ π
0 sinϕdϕ

π = 2a− r 2
π . For r > 2a we get

I = 2a
π

(∫ arcsin 2a
r

0
dϕ+

∫ π

π−arcsin 2a
r

dϕ
)

+

+ r

π

(∫ arcsin 2a
r

0
(− sinϕ) dϕ+

∫ π

π−arcsin 2a
r

(− sinϕ) dϕ
)

= 4a
π

arcsin
(2a
r

)
+ 2r
π

(
cos

(
arcsin 2a

r

)
− 1

)
= 2a− 4a

π
arccos

(2a
r

)
− 2r
π

(
1−

√
1−

(
2a
r

)2
)
,

where we have applied that cos (arcsin x) =
√

1− sin2 arcsin x =
√

1− x and
arcsin x = π

2 − arccosx. This gives us the final formula

CUΞ(h) =



1− 2e−2λa + e−2λa− 2λr
π , if r ≤ 2a,

1− 2e−2λa + exp
{
− 2λa− λ

π

(
4a arccos

(
2a
r

)
+

+2r
(

1−
√

1− 4a2

r2

))}
, if r > 2a.

The first derivative of CUΞ(h) will be needed later for the calculation of the in-
tensity SΞ of the surface area measure of UΞ. For linear subspaces ξ and η, which
span a subspace of dimension m, we use the notation [ξ, η] for the m-volume of the
parallelepiped spanned over the orthonormal bases of ξ and η. [ξ, η] is called the
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3. Characteristics of Poisson cylinder processes

subspace determinant of ξ and η, see [SW08, Ch. 14.1]. We shall also write [x, η] for
[ξ, η] if ξ is the line spanned by x.
We need some further notation. Denote by ∂eA the essential boundary of a mea-

surable set A ⊂ Rd, i.e., the set of all points which are neither Lebesgue density
points of A nor of Ac. With the projection measure, which is defined for ξ ∈ Rd \ {o}
and measurable A ⊂ Rd as

µξ(A) =
∫
ξ⊥
H0(A ∩ (x+ R ξ)

)
dx,

we can introduce the function Vξ(A) = µξ(∂eA). For the special case of A ∈ K, we
have Vξ(A) = 2πξ⊥(A).

Proposition 3.1. Suppose that Ξ is a simple stationary Poisson cylinder process.
Then the derivative of the covariance function in direction h at the origin is given by

C ′UΞ(o, h) = λ
2 e−λ EA(Z0) EVπ

L(Z0)⊥ (h)(K(Z0)) [h, L(Z0)],

where γ′A(o, η) denotes the derivative of γA at the origin in direction η.

Proof. For x ∈ R we calculate

∂

∂x
CUΞ(xh)

∣∣∣
x=0

= ∂

∂x

(
1− 2e−λ EA(Z0) + exp

{
−2λ EA(Z0) + λ E γK(Z0)

(
πL(Z0)⊥(xh)

)} )∣∣∣
x=0

= e−2λ EA(Z0) ∂

∂x
exp

{
λ E γK(Z0)

(
xπL(Z0)⊥(h)

)} ∣∣∣
x=0

= e−2λ EA(Z0) exp
{
λ E γK(Z0)

(
0πL(Z0)⊥(h)

)} ∂

∂x
λ E γK(Z0)

(
xπL(Z0)⊥(h)

)∣∣∣
x=0

= e−λ EA(Z0) ∂

∂
(
x/‖πL(Z0)⊥(h)‖

)λ E γK(Z0)

(
xπL(Z0)⊥(h)
‖πL(Z0)⊥(h)‖

)∣∣∣∣
x=0

= λ e−λ EA(Z0) ‖πL(Z0)⊥(h)‖ E γ′K(Z0)
(
o, πL(Z0)⊥(h)

)
,

where ‖πL(Z0)⊥(h)‖ = [h, L(Z0)]. The claim follows from [Gal11, Th. 13], where it is
shown that γ′A

(
o, x

)
= 1

2Vx(A) for any measurable A ⊂ Rd, x ∈ Rd.

3.1.3. Contact distribution function

Let B be an arbitrary compact set with o ∈ B (called the structuring element),
and let r > 0. Then the contact distribution function with structuring element B
of the union set of the stationary Poisson cylinder process Ξ with volume fraction
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3.1. Capacity functional and related characteristics

p ∈ (0, 1) is defined as HB(r) = P(UΞ ∩ r B 6= ∅ | o /∈ UΞ), cf. [SKM95, p. 71]. It can
be calculated as follows:

HB(r) = 1− P(UΞ ∩ r B = ∅)
1− p = 1− 1− TUΞ(rB)

1− p

= 1−
exp

{
− λ E

∣∣−K(Z0)⊕ πL(Z0)⊥(r B)
∣∣L(Z0)⊥
d−k

}
exp {−λ EA(Z0)}

= 1− exp
{
− λ E

[∣∣−K(Z0)⊕ πL(Z0)⊥(r B)
∣∣L(Z0)⊥
d−k −A(Z0)

]}
.

(3.6)

Further simplification of this formula is possible in some special cases.
Consider the contact distribution functionHB with B being a line segment between

the origin and a unit vector η. In this special case the contact distribution function
is called linear. With a slight abuse of notation we shall use a vector to represent the
line segment between the origin and the endpoint of the vector. It will be clear from
the context whether the vector or the line segment is meant.

Lemma 3.3. If the probability kernel β(·, ξ) (cf. (2.2)) is concentrated on convex
bodies and isotropic in the first argument for all ξ ∈ G(d, k), then for a unit vector η
the linear contact distribution function of UΞ is given by

Hη(r) = 1− e−λ r Co(η) (3.7)

with

Co(η) = cd,k

∫
G(d,k)

∫
Ko∩ξ⊥

S(K)β(dK, ξ) [ξ, η]α(dξ),

cd,k = ωd−k+1
2π ωd−k , and K

o ∩ ξ⊥ denotes the family of all convex bodies in ξ⊥ with cir-
cumcenter in the origin.

Proof. 1 It follows from (3.6) that (3.7) holds if and only if

r Co(η) = E
[
| −K(Z)⊕ πL(Z)⊥(r η)|L(Z)⊥

d−k −A(Z)
]
.

Using the notation introduced in [Sch93, p. 275–279] for mixed volumes (here all
mixed volumes and surface measures are with respect to L(Z)⊥) we calculate with
[Sch93, Theorem 5.1.6] and [Sch93, Theorem 5.1.7]∣∣−K(Z)⊕ πL(Z)⊥(r η)

∣∣L(Z)⊥
d−k −A(Z)

= (d− k)V (πL(Z)⊥(r η),K(Z), . . . ,K(Z))

= r

2

∫
Sd−1∩L(Z)⊥

∣∣〈u, πL(Z)⊥(η)〉
∣∣Sd−k−1(K(Z),du),

1The idea of this proof goes back to an anonymous referee.
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3. Characteristics of Poisson cylinder processes

where 〈·, ·〉 denotes the scalar product, and Sd−k−1(K(Z), ·) is the surface area mea-
sure of K(Z) in L(Z)⊥.
Thus,

Co(η) = 1
2

∫
Zo
k

∫
Sd−1∩L(Z)⊥

∣∣〈u, πL(Z)⊥(η)〉
∣∣Sd−k−1(K(Z),du) θ(dZ)

= 1
2

∫
G(d,k)

∫
Ko∩ξ⊥

∫
Sd−1∩ξ⊥

∣∣〈u, πξ(η)〉
∣∣Sd−k−1(K,du)β(dK, ξ)α(dξ).

Because of the rotation invariance of β(·, ξ), the value of the integral does not
change if we replace K with ϑK for an arbitrary rotation ϑ in ξ⊥. Furthermore, we
get the following equation since the surface area measure is invariant with respect to
rotations when they are applied to both arguments.∫

Sd−1∩ξ⊥

∣∣〈u, πξ(η)〉
∣∣Sd−k−1(ϑK, du) =

∫
Sd−1∩ξ⊥

∣∣〈ϑu, πξ(η)〉
∣∣Sd−k−1(K,du).

Thus, integration over the group SO(ξ⊥) of rotations in ξ⊥ equipped with the Haar
probability measure leads to∫

Sd−1∩ξ⊥
|〈u, πξ(η)〉|Sd−k−1(K,du)

=
∫
SO(ξ⊥)

∫
Sd−1∩ξ⊥

|〈u, πξ(η)〉|Sd−k−1(K,du) dϑ

=
∫
Sd−1∩ξ⊥

∫
SO(ξ⊥)

|〈ϑu, πξ(η)〉|dϑSd−k−1(K,du)

= 2cd,k S(K) [ξ, η],

where cd,k is the constant from the claim, and we used [Spo02, Corollary 5.2] for the
last equality.
This leads to

Co(η) = cd,k

∫
G(d,k)

∫
K∩ξ⊥

S(K)β(dK, ξ) [ξ, η]α(dξ).

Now let the structuring element B be the ball B1(o). In this case the contact
distribution function is called spherical. It is obvious that πL(Z)⊥(Br(o)) is a ball of
radius r in the (d−k)-dimensional subspace L(Z)⊥. If K(Z) is almost surely convex,
then the use of the classical Steiner formula leads to

E | −K(Z0)⊕ πL(Z0)⊥(Br(o))|L(Z0)⊥
d−k = EA(Z0) +

d−k∑
i=1

κi EV d−k
d−k−i(K(Z0)) ri,
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3.1. Capacity functional and related characteristics

which yields

HB1(o)(r) = 1− exp
{
− λ

d−k∑
i=1

κi r
i EV d−k

d−k−i(K(Z0))
}
.

Example. In what follows, the case of dimensions two and three is considered in
detail. It is assumed that the conditions of Lemma 3.3 hold.

(a) For d = 2, k = 1 Lemma 3.3 yields

Co(η) = c2,1

∫
G(2,1)

∫
Ko∩ξ⊥

S(K)β(dK, ξ) [ξ, η]α(dξ) =
∫
G(2,1)

2[ξ, η]α(dξ).

Hence, it holds Hη(r) = 1− exp
{
−2λ r

∫
G(2,1) [ξ, η]α(dξ)

}
, and so Hη(r) does

not depend on K(Z).
And for the structuring element being B = B2

1(o) one gets
HB2

1(o)(r) = 1− exp
{
− 2λ rEV 1

0 (K(Z0))
}

= 1− e−2λ r.

Interestingly the result does not depend on the distribution of the base.

(b) For d = 3, k = 1 we get

Co(η) = 2
π

∫
G(3,1)

∫
Ko∩ξ⊥

S(K)β(dK, ξ) [ξ, η]α(dξ)

which yields

Hη(r) = 1− exp
{
− 2λ r

π

∫
G(3,1)

∫
Ko∩ξ⊥

S(K)β(dK, ξ) [ξ, η]α(dξ)
}
.

For K(Z) = B2
a(o) we have

Co(η) = 2π a
π

∫
G(3,1)

[ξ, η]α(dξ).

Thus,

Hη(r) = 1− exp
{
− 2λ r a

∫
G(3,1)

[ξ, η]α(dξ)
}
.

And if the structuring element is the unit ball (B = B3
1(o)), then

HB3
1(o)(r) = 1− exp

{
− λ

(
2rEV 2

1 (K(Z0)) + r2
∫
Zo1
κ2 θ(dZ)

)}
= 1− exp

{
− λ

(
r ES(K(Z0)) + r2 π

)}
,

where S(K(Z)) is the perimeter of K(Z).
If additionally K(Z) is a ball of constant radius a, then

HB1(o)(r) = 1− exp
{
− 2π aλ r − π λ r2}.
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3. Characteristics of Poisson cylinder processes

3.2. Specific surface area
In the recent paper [Hof09b], the specific intrinsic volumes of a rather general non-
stationary cylinder process are given. In the stationary anisotropic case, some of
these formulae can be simplified. In this section, we give an alternative proof for the
specific surface area of the union set UΞ of a simple stationary anisotropic Poisson
cylinder process Ξ leading to a simpler formula than that of [Hof09b] which can be
immediately used in applications.
The specific surface area SΞ is defined as the mean surface area of UΞ per unit

volume. More formally, consider the measure SUΞ(B) = EHd−1(∂UΞ ∩ B) for all
Borel sets B ⊂ Rd, where Hj(·) denotes the j-dimensional Hausdorff measure. We
assume that this measure is locally finite, i.e., SUΞ(B) < ∞ for all compact B.
Sufficient conditions for this can be found in Lemma 3.4. Due to the stationarity of
Ξ, the measure SUΞ is translation invariant. By Haar’s lemma, there exists a constant
SΞ ≥ 0 such that SUΞ(B) = SΞ |B|d for all Borel sets B, cf. [Amb90]. The factor SΞ
is called the specific surface area of UΞ.

Lemma 3.4. The specific surface area SΞ of the union set UΞ of a stationary an-
isotropic cylinder process Ξ is finite if ES(K(Z0)) <∞.

Proof. Let B := B1(o) be the unit ball centered in the origin. Then we calculate
using the abbreviation L0 = L(Z0) and Campbell’s theorem

SUΞ(B) = EHd−1(∂UΞ ∩B) ≤ E
∑
Z∈Ξ
Hd−1(∂Z ∩B) =

∫
Zk
Hd−1(∂Z ∩B) Λ(dZ)

= λ E
∫
L⊥0

Hd−1((∂Z0 + x) ∩B) |dx|L
⊥
0

d−k

= λ E
∫
L⊥0

∫
∂Z0+x

1B(y)Hd−1(dy) |dx|L
⊥
0

d−k

= λ E
∫
L⊥0

∫
∂Z0

1B(y + x)Hd−1(dy) |dx|L
⊥
0

d−k

≤ λ E
∫
∂Z0

∫
L⊥0

1πL0 (B)(πL0(y))1π
L⊥0

(B)(πL⊥0 (y) + x) |dx|L
⊥
0

d−k H
d−1(dy)

= λE
∫
∂Z0

1πL0 (B)(πL0(y)) |πL⊥0 (B)|L
⊥
0

d−kH
d−1(dy)

= λ|πL⊥0 (B)|L
⊥
0

d−k EH
d−1(∂Z0 ∩ (πL0(B)× L⊥0 )

)
= λκd−k E |πL⊥0 (B)|L

⊥
0

d−kH
d−k−1(∂K(Z0)

)
= λκkκd−k ES(K(Z0)).

This yields SΞ = SUΞ(B)/|B|d <∞.
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3.2. Specific surface area

The following results hold for any random closed set X with realizations almost
surely from the extended convex ring S and regular. A closed set is called regular if
it coincides with the closure of its interior.

Lemma 3.5. Let X be an almost surely regular, stationary random closed set with
realizations in S, which has a finite specific surface area. Then the specific surface
area of X is given by

SX = ωd
κd−1

∫
G(d,1)

λ(ξ) dξ,

where dξ is the Haar probability measure on G(d, 1), λ(ξ) = 1
2 EΦ0(X ∩ ξ,B1(o)∩ ξ)

is the intensity of the number of connected components of X∩ξ on a line ξ ∈ G(d, 1).

Proof. By Crofton’s formula for polyconvex sets (cf. [SW08, Th. 6.4.3]) and Fubini’s
theorem, we have

SX = 1
κd

EHd−1(∂X ∩B1(o)) = 2
κd

EΦd−1(X,B1(o))

=
2Γ(d+1

2 )
√
π

κd Γ(d/2) E
∫
G(d,1)

∫
ξ⊥

Φ0(X ∩ (ξ + x), B1(o) ∩ (ξ + x)) dx dξ.

Since X is stationary, Φ0(X ∩ (ξ+x), B1(o)∩ (ξ+x)) = Φ0(X ∩ ξ,B1(−x)∩ ξ). The
expectation of this term depends only on the length of B1(x)∩ ξ and the orientation
of ξ. Thus, with

∫
ξ⊥
∣∣B1(x) ∩ ξ

∣∣ξ
1 dx = κd and |B1(o) ∩ ξ|ξ1 = 2, this leads to

SX =
Γ(d+1

2 )
√
π

Γ(d/2) E
∫
G(d,1)

Φ0(X ∩ ξ,B1(o) ∩ ξ) dξ

= ωd
κd−1

∫
G(d,1)

1
2 EΦ0(X ∩ ξ,B1(o) ∩ ξ) dξ.

The following theorem has already been stated in dimensions d = 2, 3 by Matheron
in [Mat67, Paragraph 5] without a rigorous proof. It is a generalization of the formula

SX = − ωd
κd−1

C ′X(0) (3.8)

(see, e.g., [SKM95, p. 204]) for stationary, isotropic, and almost surely regular random
closed sets X ∈ S to the anisotropic case. Note that, since in the isotropic case CX(h)
depends only on the length of h ∈ Rd and not on h itself, in this formula CX is a
function of a real variable, namely the length of h.
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3. Characteristics of Poisson cylinder processes

Theorem 3.1. Let X be an almost surely regular stationary random closed set with
realizations from S and finite specific surface area. If CX(h) is its covariance func-
tion, then the specific surface area of X is given by the formula

SX = − ωd
κd−1

∫
G(d,1)

C ′X(o, rξ) dξ, (3.9)

where C ′X(h, v) is the derivative of CX(h) at h in direction of unit vector v, and rξ
is a direction unit vector of a line ξ ∈ G(d, 1).

Proof. For a stationary random closed set U ⊂ R from the extended convex ring
denote by −U the set reflected at the origin. Define a random variable V which
is uniformly distributed on {−1, 1} and independent of U . The random closed set
UV is obviously isotropic, and thus formula (3.8) yields SUV = −2C ′UV (0). Since
SU = SUV and C ′U (0) = C ′UV (0) because P({o, h} ∈ U) = P({o,−h} ∈ U), we obtain
SU = −2C ′U (0).
For U = X ∩ ξ, ξ ∈ G(d, 1), we get λ(ξ) = 1

2SX∩ξ = −C ′X∩ξ(0) = −C ′X(o, rξ).
Lemma 3.5 completes the proof.

If X is an almost surely regular two-dimensional stationary random closed set with
realizations in S, formula (3.9) simplifies to

SX = −π
∫ π

0
C ′X(o, ϕ)dϕ

π
= −

∫ π

0
C ′X(o, ϕ) dϕ.

Remark 3.2. Matheron’s formula (3.9) was independently shown by Galerne for the
closely related specific variation, see [Gal11, Th. 17]. The different definition of the
specific variation (in comparison to the specific surface area) allows him to state the
formula for arbitrary random closed sets, without any restriction on the image space.
Under the preliminaries of Theorem 3.1, both formulas coincide.

The following result is a direct corollary of Proposition 3.1, Theorem 3.1, and
Fubini’s theorem.

Corollary 3.1. Let Ξ be a stationary Poisson cylinder process with intensity λ, cylin-
ders with regular cross-section K(Z0) ∈ R′ almost surely and finite specific surface
area. Then the specific surface area of UΞ is given by the formula

SΞ = − λωd
2κd−1

e−λ EA(Z0) E
∫
G(d,1)

Vπ
L(Z0)⊥ (rξ)(K(Z0)) [ξ, L(Z0)] dξ.
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3.3. An optimization example for PCPs originating from fuel cell research

Example. Assume that K(Z0) is convex and regular almost surely.

(a) For arbitrary d and k = d− 1, it holds for dξ-almost every line ξ ∈ G(d, 1) that

γ′K(Z)(o, πL(Z)⊥(rξ)) = −1

and ∫
G(d,1)

[ξ, L(Z)] dξ =
∫
G(d,d−1)

[ξ⊥, L(Z)] dξ = ωd+1 κ1
ωd 2κ2

= ωd+1
ωd π

,

see [Spo02, Corollary 5.2].
This yields

SΞ = λ
ωd+1
πκd−1

exp
{
− λ E |K(Z0)|L(Z0)⊥

1

}
= 2λ exp

{
− λ E |K(Z0)|L(Z0)⊥

1

}
.

(b) For d = 3, k = 1, K = B3
a(o) it can be derived that γ′K(Z)(o, πL(Z)⊥(ξ)) = −πa,∫

G(3,1)[ξ, L(Z)] dξ = 1/2 (see also [SKM95, p. 298], or [Spo02, Corollary 5.2]),
and thus we have

SΞ = 4λ1
2π a e

−λπ a2 = 2π aλ e−λπ a2
,

which coincides with the case of isotropic cylinders, compare [OM00, p. 64].

3.3. An optimization example for PCPs originating from fuel
cell research

In this section, we show how the formulae from Sections 3.1 and 3.2 can be applied
to solve an optimization problem for cylinder processes. Note that the fibers in this
section are not mathematical objects but consist of real polymer material.
The following problem originates from fuel cell research. The gas diffusion layer

of a polymer electrolyte membrane fuel cell is a porous material made of polymer
fibers (see Figure 1.1) which can be modeled well by an anisotropic Poisson process
of cylinders in R3. In a gas diffusion layer, the volume fraction of the polymer
material lies between 70 and 80 percent, and the directional distribution of fibers
is concentrated on a small neighborhood of a great circle of a unit sphere S2, i.e.,
all fibers are almost horizontal. In order to optimize the water and gas transport
properties, it is desirable to have a relatively small variation of the size of pores in
the medium, where we define a pore at a point x in the complement of UΞ as the
maximal ball with center in x which does not hit UΞ.
We investigate the following mathematical simplification of this problem, which

can be solved analytically in some particular cases.
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3. Characteristics of Poisson cylinder processes

For a fixed intensity λ of the Poisson cylinder process Ξ, find a shape distribution
of cylinders θ which maximizes the volume fraction p of UΞ provided that the variance
of the typical pore radius H is small. In other words, solve the optimization problem{

p→ maxθ,
VarH < ε,

(3.10)

where H is a random variable with distribution function HB1(o)(r).
As it will be clear later, the condition on the directional distribution α of fibers

that all fibers are almost horizontal can be neglected since the directional component
of the shape distribution θ has no influence on the solution.
To simplify the notation, let cs = ES(K(Z0)) and Φ(x) be the distribution function

of a standard normally distributed random variable.
First we take a look at the moments of the pore radius H (for r ≥ 0), remembering

that HB1(o)(r) = 1− exp{−λ(r cs + r2 π)} (as shown in an example in Section 3.1.3),
and thus the density of H equals d

drHB1(o)(r) = λ(cs + 2π r) exp{−λ(r cs + r2 π)}. It
holds

EH =
∫ ∞

0
r λ(cs + 2π r) exp

{
− π λ

(
r + cs

2π
)2}

exp
{
c2
s λ

4π

}
dr

= exp
{
c2
s λ

4π

}
λ

∫ ∞
cs
2π

(
r − cs

2π

)
2π r e−π λ r2 dr

= exp
{
c2
s λ

4π

} 1√
λ

(
1− Φ

(
cs

√
λ
2π

))
.

Furthermore, it can be calculated that

EH2 = exp
{
c2
s λ

4π

}
λ

∫ ∞
0

r2(cs + 2π r) exp
(
−π λ

(
r + cs

2π

)2
)

dr

= 1
π λ
− exp

{
c2
s λ

4π

}
cs

π
√
λ

(
1− Φ

(
cs

√
λ
2π

))
.

Defining ce = exp
{
c2s λ
4π

}
and cΦ = (1− Φ(cs

√
λ/2π)), this leads to

EH2 − (EH)2 = 1
π λ
− ce cΦ cs

π
√
λ
− c2

e c
2
Φ

λ
≤ ε,

multiplication with πλ yields the equivalent condition 1−
√
λ ce cΦ cs−π c2e c2

Φ ≤ ε π λ,
which holds if and only if(

ce cΦ +
√
λ cs
2π

)2
− λ c2

s

4π2 + (ε λ− 1/π) ≥ 0.
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3.3. An optimization example for PCPs originating from fuel cell research

This is always fulfilled if ε ≥ 1/π λ and λ c2s
4π2 − (ε λ − 1/π) ≤ 0 or, equivalently,

cs ≤ 2π
√
ε− 1/π λ.

In the following, we assume that ε ≥ 1/π λ and replace the condition VarH < ε by
a stronger sufficient condition

cs = ES(K(Z0)) ≤ 2π
√
ε− 1

π λ . (3.11)

Hence, (3.10) is reduced to the optimization problemEA(Z0)→ maxθ,
ES(K(Z0)) ≤ 2π

√
ε− 1

π λ .
(3.12)

The solution of the optimization problem (3.12) yields cylinders with θ-almost
surely circular base. Notice that this solution does not depend on the directional
distribution component α of θ. Indeed, cylinders Z0 can be replaced by cylinders Z ′
which have the same direction space and surface area (S(K(Z0)) = S(K(Z ′))) but
are circular. Then the isoperimetric inequality yields A(Z ′) ≥ A(Z0). Thus, it holds
that

ES(K(Z0)) = ES(K(Z ′))

and

EA(Z0) ≤ EA(Z ′),

which means that the circular version is at least not worse than the original version.
Thus, we assume that the cylinders are θ-almost surely circular and denote the

radius of a cylinder Z by R(Z). It follows from condition (3.11) that

ES(K(Z0)) = 2π ER(Z0) ≤ 2π
√
ε− 1

π λ ,

i.e., the new condition is that the expectation of the radius of a typical cylinder is
less or equal than

√
ε− 1

π λ .
Furthermore, it follows from (3.12) that maximizing p is equivalent to maximizing

ER(Z0)2.
The above calculation shows that the volume fraction of 70%−80% in the optimized

gas diffusion layer of a fuel cell can be achieved best by taking fibers with circular cross
sections, relatively small mean radius and high variance of this radius. Figure 1.1b
shows that cross sections of fibers of gas diffusion layers are almost circular. There
are also gas diffusion layers with a little variance in the fiber radii, although they are
mostly nearly constant. Anyhow the variance of the fiber radii is of course limited,
since it is impossible to produce fibers with an arbitrarily large radius.
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3. Characteristics of Poisson cylinder processes

We have to remark that from a practical point of view the optimization prob-
lem (3.10) is not well posed. For the construction of gas diffusion layers, mainly
the intensity of the fibers λ can be varied. Hence a practically relevant optimization
should involve maximizing the volume fraction p with respect to λ as well. Since
the latter problem is much more involved than the one discussed here, it would go
beyond the scope of this chapter.

3.4. Concluding remarks and open questions
• In this chapter, we have considered a model for stationary Poisson cylinder

processes which seems to be sufficiently general for many applications in the
modeling of homogeneous material. For this, we have derived formulae for
the most important characteristics, which are usable for practical problems, as
demonstrated in Section 3.3.

• Further work on this topic can be done by calculating formulae for other specific
intrinsic volumes, like the specific Euler number. Note that for the closely
related model of Poisson cylinder processes with convex base (as opposed to the
polyconvex base considered in this chapter), these characteristics are already
known, see, e.g., [Hof09b]. Furthermore, some special cases for the shape of the
cylinder base (e.g., lower-dimensional bodies) or the directional distribution
can be analyzed for the formulae derived in this chapter, when it is suitable for
a certain application.

• Another possible generalization is to consider further models, possibly non-
Poisson ones.
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4. Asymptotic behavior of the empirical
volume fraction of a PCP

This chapter is based on [HS09] and [HS12]. We analyze the asymptotic behavior of
the random d-volume V (d,k)

ρ = |UΞ∩ρW |d of the union set of Ξ within the observation
window ρW for ρ → ∞. Here, W ∈ K is chosen star-shaped (with respect to the
origin o)1 such that BδW (o) ⊂W ⊂ B1(o) for some δW > 0.
We use the notation introduced in Section 2.2.2, i.e., in particular we have

UΞ =
⋃
i≥1

Θi
(
(Ξi + Pi)× Rk

)
,

where (Θ1,Ξ1), (Θ2,Ξ2), . . . are i.i.d. copies of (Θ0,Ξ0) : Ω→ SOd
k ×Rod−k, and the

process Πλ,Q =
∑
i≥1 δ[Pi,(Θi,Ξi)] is a stationary independently marked Poisson process

in Rd−k. Further, we shall often make use of the abbreviation πd−k for the projection
onto the first d− k components of a vector. Note that in contrast to the very similar
projection πE⊥

k
with image space E⊥k ⊂ Rd, the function πd−k maps to Rd−k for

notational ease.
The first main result of this chapter is a central limit theorem for the estimator

V
(d,k)
ρ /|ρW |d for the volume fraction p in a growing observation window under the

condition that 0 < M2 <∞, whereMs = E |Ξ0|sd−k is the s-th moment of the volume
of the typical base. We also give explicit formulae for the variance of the estimator in
the case of discrete and continuous directional distribution. For distributions of mixed
type, we show how the formula can be obtained by combining the two calculations.
Under the additional assumption that

ma = E ea |Ξ0|d−k <∞ for some a > 0, (4.1)

we also give Berry-Esseen bounds and derive Cramér-type large deviation results as
our second main result.
Because of the long range dependence resulting from the infinitely long cylinders, it

is impossible to apply standard techniques to obtain a central limit theorem for V (d,k)
ρ

based on M-dependence or mixing conditions. Thus, we generalize the method for
the empirical volume fraction of the Boolean model in [Hei05] to cylinder processes.

1Note that in Chapter 5 we restrict to the special case W = B1(o).
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4. Asymptotic behavior of the empirical volume fraction of a PCP

This method is based on the analysis of the cumulants of V (d,k)
ρ , see Section 2.4. They

are closely related to the n-point probabilities, which can be introduced as follows.
We first recall the fact that the probability space (Ω,A,P) on which the marked
Poisson process Πλ,Q =

∑
i≥1 δ[Pi,(Θi,Ξi)] is defined can be chosen in such a way that

the mapping Rd ×Ω 3 (x, ω) 7→ 1UΞ(ω)(x) ∈ {0, 1} is measurable with respect to the
product-σ-field B(Rd)⊗A, see appendix in [Hei05]. This enables us to apply Fubini’s
theorem to the {0, 1}-valued random field {1UΞ(x), x ∈ Rd} and implies among others
that its n-th order mixed moments (also called n-point probabilities of UΞ)

pUΞ(x1, . . . , xn) := E
n∏
i=1

1UΞ(xi) = P(x1 ∈ UΞ, . . . , xn ∈ UΞ)

are B(Rdn)-measurable for any n ∈ N and the void probabilities pUΞ
c(x1, . . . , xn) take

on the following explicit form

pUΞ
c(x1, . . . , xn) := E

n∏
i=1

(1− 1UΞ(xi)) = P(x1 /∈ UΞ, . . . , xn /∈ UΞ)

= 1− TUΞ

(
{x1, . . . , xn}

)
= exp

{
− λ E

∣∣∣ n⋃
i=1

(
Ξ0 − πd−k(ΘT

0 xi)
)∣∣∣
d−k

}
,

(4.2)

see Lemma 3.1 in Chapter 3. Thus, the n-th order mixed cumulants cUΞ
c(x1, . . . , xn)

of {1 − 1UΞ(x), x ∈ Rd} are Borel measurable functions leading to the following
integral representation of the n-th order cumulant of V (d,k)

ρ , see (2.10),

Cumn(V (d,k)
ρ ) = (−1)n

∫
(ρW )n

cUΞ
c(x1, . . . , xn) d(x1, . . . , xn) for n ≥ 2. (4.3)

With (2.8), the cumulant function cUΞ
c(x1, . . . , xn) can be expressed by the l-point

probabilities pUΞ
c(xi1 , . . . , xil) for 1 ≤ i1 < · · · < il ≤ n and l = 1, . . . , n.

This chapter is organized as follows. Since here, we concentrate on a few main
results, we employ a slightly different format, namely in the next section, we state
the main results separately. Then in Section 4.2, we calculate the asymptotic order of
the variance with respect to ρ as ρ goes to infinity. Section 4.3 contains the recursive
estimation technique for the variance of V (d,k)

ρ adapted from [Hei05]. In Section 4.4,
we apply a truncation technique to prove a central limit theorem which only requires
that the second momentM2 of the base exists. In Section 4.5, the asymptotic variance
of V (d,k)

ρ is calculated by treating the diffuse and discrete directional distribution
separately. Alternative formulae for the asymptotic variance in some special cases
are also derived. We conclude the chapter with some remarks in the final section.
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4.1. Main results

4.1. Main results

In this section, we present the main theorems of this chapter.

4.1.1. A CLT for V (d,k)
ρ with explicit asymptotic variance

We begin with a central limit theorem (CLT) for V (d,k)
ρ under the prerequisite that

the second moment of |Ξ0|d−k exists.

Theorem 4.1. Let UΞ be the union set of the stationary PCP Π(d,k)
cyl (λ,Q) with

typical cylinder base Ξ0 ∈ Rod−k satisfying 0 < M2 < ∞. Further, let W ⊂ Rd be
compact and star-shaped with respect to o satisfying BδW (o) ⊂W ⊂ B1(o) for some
δW ∈ (0, 1]. Then

|UΞ ∩ ρW |d − p ρd |W |d√
Var

(
|UΞ ∩ ρW |d

) d−→
ρ→∞

N(0, 1). (4.4)

Note that p = P(o ∈ UΞ) = E |UΞ∩ [0, 1]d|d = 1−e−λM1 is just the volume fraction
of the stationary random set UΞ which coincides with intensity of the random volume
measure |UΞ ∩ (·)|, cf. (3.3).
As our second main result the following Theorem 4.2 provides exact asymptotic

growth rates of the variances of the d-volume |UΞ ∩ ρW |d, i.e., of

σ2
λ,Q(W ) = lim

ρ→∞

Var
(
|UΞ ∩ ρW |d

)
ρd+k (4.5)

in dependence of k, d and W in the cases of purely atomic and diffuse directional
distribution P0(·) = Q((·)×Rod−k).

Theorem 4.2. Let the assumptions of Theorem 4.1 be satisfied. If the marginal
distribution P0(·) is discrete, i.e., it is concentrated on {θi ∈ SOd

k, i ∈ I} for some at
most countable index set I, then

σ2
λ,Q(W ) = e−2λM1

∑
i∈I

∫
Rk

∣∣∣∣∣W ∩
(
W − θi

(
od−k
x

))∣∣∣∣∣
d

dx
∫

Rd−k

(
eλ f(y,θi) − 1

)
dy, (4.6)

where od−k denotes the origin in Rd−k and

f(y, θi) = E
[
|Ξ0 ∩ (Ξ0 + y)|d−k 1{Θ0 = θi}

]
= E

[
|Ξ0 ∩ (Ξ0 + y)|d−k

∣∣ Θ0 = θi
]
P0({θi}).

37



4. Asymptotic behavior of the empirical volume fraction of a PCP

On the other hand, if P0(·) is diffuse, i.e., P0({θ}) = 0 for any θ ∈ SOd
k, we have

σ2
λ,Q(W ) = λ e−2λM1

∫
SOdk

M2(θ)
∫
Rk

∣∣∣∣∣W ∩
(
W − θ

(
od−k
x

))∣∣∣∣∣
d

dxP0(dθ), (4.7)

where M2(θ) = E
[
|Ξ0|2d−k

∣∣ Θ0 = θ
]
.

The general case of arbitrary directional distribution is covered by the following
result.

Corollary 4.1. Let the conditions of Theorem 4.1 hold. Consider the unique decom-
position of P0(·), i.e., P0 = αPa

0 + (1− α)Pc
0, where we have an atomic distribution

Pa
0 and a diffuse distribution Pc

0 on SOd
k (implying a decomposition of the mark dis-

tribution Q = αQa + (1−α)Qc on Md,k). Then the limit (4.5) exists and admits the
decomposition

σ2
λ,Q(W ) = σ2

λ,Qa,α(W ) + (1− α)σ2
λ,Qc(W ), (4.8)

where σ2
λ,Qa,α(W ) resp. σ2

λ,Qc(W ) is defined as in (4.6) resp. (4.7) with P0 replaced
by αPa

0 (in f(y, θi)) resp. by Pc
0.

4.1.2. Berry-Esseen bounds and Cramér-type large deviations for V (d,k)
ρ

Now, we provide some results on the convergence speed in Theorem 4.1 above under
the preliminary that the exponential moments of |Ξ0|d−k exists. We begin with
estimates of the higher-order cumulants Cumn(V (d,k)

ρ ) of the d-volume V (d,k)
ρ .

Theorem 4.3. Let UΞ be the union set (2.4) of the stationary PCP Π(d,k)
cyl (λ,Q)

with typical cylinder base Ξ0 ∈ Rod−k satisfying (4.1) and M1 = E |Ξ0|d−k > 0.
Further, let W ⊂ Rd be compact and star-shaped with respect to the origin, satisfying
BδW (o) ⊂W ⊂ B1(o) for some δW ∈ (0, 1]. Then∣∣∣Cumn

(
V (d,k)
ρ

)∣∣∣ ≤ ρd+(n−1)k (n− 1)!Ha ∆n−2
a for n ≥ 2, ρ > 0, (4.9)

where Ha = 22k+1 |W |d λma (1 + eλM1)/a2 and ∆a = 22k+3 (a+λma)(1 + eλM1)/a2.

The next Theorem 4.4 states Cramér’s large deviations relations for V (d,k)
ρ and a

Berry-Esseen bound of the distance between the distribution function

Fρ(x) = P
(
V

(d,k)
ρ − ρd |W |d (1− e−λ E |Ξ0|d−k)

σρ ρ(d+k)/2 ≤ x
)

and the distribution function Φ of a standard normally distributed variable.
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4.1. Main results

As shown in (3.3), the volume fraction p of UΞ is p = P(o ∈ UΞ) = 1− e−λ E |Ξ0|d−k ,
and the normalized variance σ2

ρ of V (d,k)
ρ satisfies the estimate

0 < c1 ≤ σ2
ρ ≤ c2 <∞ for all ρ ≥ 1 with σ2

ρ = Var(V (d,k)
ρ )/ρd+k, (4.10)

and c1, c2 are constants not depending on ρ ≥ 1, see Lemma 4.1 below.

Theorem 4.4. Let the assumptions of Theorem 4.3 be satisfied. Then the following
asymptotic relations hold in the interval 0 ≤ x ≤ σρ ρ

(d−k)/2/2 ∆a (1 + 4Ha,ρ) with
Ha,ρ = Ha/2σ2

ρ:

1− Fρ(x)
1− Φ(x) = exp

{
x3

σρ ρ(d+k)/2

∞∑
s=0

µ(ρ)
s

(
x

σρ ρ(d+k)/2

)s}(
1 +O

( 1 + x

ρ(d−k)/2

))
(4.11)

and

Fρ(−x)
Φ(−x) = exp

{
−x3

σρ ρ(d+k)/2

∞∑
s=0

µ(ρ)
s

( −x
σρ ρ(d+k)/2

)s}(
1 +O

( 1 + x

ρ(d−k)/2

))
(4.12)

as ρ→∞, where the coefficients µ(ρ)
s are defined by

µ(ρ)
s = 1

(s+ 2)(s+ 3)

s+1∑
j=1

(−1)j−1
(
s+ j + 1

j

) ∑
s1+···+sj=s+1
s1,...,sj≥1

j∏
i=1

Cumsi+2(V (d,k)
ρ )

Var(V (d,k)
ρ ) (si + 1)!

.

In the formulae (4.11) and (4.12) above, the series converge absolutely due to the
estimate ∣∣µ(ρ)

s

∣∣ ≤ 4Ha,ρ ∆a ρ
k(s+1) (2∆a (1 + 4Ha,ρ)

)s
/(s+ 2)(s+ 3) (4.13)

for all s ≥ 0.
Further, there exists some constant c3 > 0 (depending on a, λ, ma, and c1, c2)

such that

sup
x∈R

∣∣Fρ(x)− Φ(x)
∣∣ ≤ c3 ρ

−(d−k)/2 for all ρ ≥ 1. (4.14)

Theorem 4.4 is derived from (4.9) combined with a general lemma on large de-
viations for a single random variable with mean 0 and variance 1, see [Sta66] or
Lemma 2.3 in the monograph [SS91]. The relations (4.11) and (4.12) are of particu-
lar interest at x = ε |W |d ρ(d−k)/2/σρ for small ε > 0.
An immediate consequence of Theorem 4.4 is the following result.
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4. Asymptotic behavior of the empirical volume fraction of a PCP

Corollary 4.2. Let the assumptions of Theorem 4.4 hold. Then we have

1− Fρ(x)
1− Φ(x) ≤ exp

{
b1,ρ x

3

ρ(d−k)/2

∞∑
s=0

1
(s+ 2)(s+ 3)

(
b2,ρ x

ρ(d−k)/2

)s}(
1 +O

( 1 + x

ρ(d−k)/2

))
and

Fρ(−x)
Φ(−x) ≤ exp

{
−b1,ρ x3

ρ(d−k)/2

∞∑
s=0

1
(s+ 2)(s+ 3)

( −b2,ρ x
ρ(d−k)/2

)s}(
1 +O

( 1 + x

ρ(d−k)/2

))

as ρ→∞, where b1,ρ = 4Ha,ρ ∆a/σρ = 2Ha ∆a/σ
3
ρ and b2,ρ = 2∆a (1 + 4Ha,ρ)/σρ.

Further, the constant c3 in Theorem 4.4 is bounded by
√

2 ∆aHa/σ
3
ρ, which leads

to

sup
x∈R

∣∣Fρ(x)− Φ(x)
∣∣ ≤ √2 ∆aHa

σ3
ρ ρ

(d−k)/2 for all ρ ≥ 1.

Remark 4.1. The Cramér-type large deviations relations in Theorem 4.4 imply that
the large deviation principle, as introduced, e.g., in [DZ10], holds for the random
element V (d,k)

ρ . The rate function can be calculated by setting x = ε |W |d ρ(d−k)/2/σρ
and using bounds for Mill’s ratio, see [Gor41].

Conjecture 4.1. Because of the sharp inequalities used in Section 4.3 we suppose
that the order of ρ in (4.9), and thus also in (4.11), (4.12), and (4.14) is optimal.

4.2. Order of the asymptotic variance
In this section, we derive a lower and an upper bound for the variance of the random
d-volume V (d,k)

ρ = |UΞ ∩ ρW |d provided M2 < ∞. For this end, we first derive a
closed-term expression of the variance Var(|UΞ ∩ B|d) for any bounded Borel set
B ∈ B(Rd) using the formulae for pUΞ

c(o, x) and pUΞ
c(o) from (4.2).

By using the very definition of the one- and two-point probabilities pUΞ(·) and
pUΞ(·, ·) and the shift-invariance and additivity of the Lebesgue measure | · |d−k, we
deduce from (4.2) that for x1, x2 ∈ Rd we have

pUΞ(x1, x2)− pUΞ(x1) pUΞ(x2)
= P(x1, x2 ∈ UΞ)− P(x1 ∈ UΞ)P(x2 ∈ UΞ)
= pUΞ

c(o, x2 − x1)− pUΞ
c(o) pUΞ

c(o)

= exp
{
− λ E

∣∣Ξ0 ∪ (Ξ0 − πd−k(ΘT
0 (x2 − x1))

∣∣
d−k

}
− exp

{
− 2λ E

∣∣Ξ0
∣∣
d−k

}
= e−2λM1

(
exp

{
λ E

∣∣Ξ0 ∩ (Ξ0 − πd−k(ΘT
0 (x2 − x1)))

∣∣
d−k

}
− 1

)
.
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4.2. Order of the asymptotic variance

Hence, by multiple application of Fubini’s theorem we get for any bounded B ∈ B(Rd)
that

Var(|UΞ ∩B|d) = E
∫
B

∫
B
1UΞ(x1)1UΞ(x2) dx1 dx2 −

(
E
∫
B
1UΞ(x) dx

)2

=
∫
Rd

∫
Rd
1B(x1)1B(x2)

(
pUΞ(x1, x2)− pUΞ(x1) pUΞ(x2)

)
dx1 dx2

= e−2λM1

∫
Rd

∣∣B ∩ (B − x)
∣∣
d(

exp
{
λ E

∣∣Ξ0 ∩ (Ξ0 − πd−k(ΘT
0 x))

∣∣
d−k

}
− 1

)
dx.

(4.15)

Now we replace B by the star-shaped set ρW which increases when ρ does. In view
of the relation {x ∈ Rd : ρW ∩ (ρW − x) 6= ∅} = ρ (W ⊕ (−W )) ⊂ B2ρ(o) and the
inequality ey − 1 ≤ y ey for y ≥ 0, we may write

Var(V (d,k)
ρ ) ≤ λ e−λM1 |ρW |d

∫
ρ (W⊕(−W ))

E
∣∣Ξ0 ∩ (Ξ0 + πd−k(ΘT

0 x))
∣∣
d−k dx

≤ λ |W |d e−λM1 ρd E
∫
B2ρ(o)

∣∣Ξ0 ∩ (Ξ0 + πd−k(x))
∣∣
d−k dx

≤ λ |W |d e−λM1 ρd E
∫

[−2ρ,2ρ]k

∫
Rd−k

∣∣Ξ0 ∩ (Ξ0 + y1))
∣∣
d−k dy1 dy2

= λ |W |d e−λM1 4k E |Ξ0|2d−k ρd+k for any ρ > 0.

(4.16)

To find a positive lower bound of the ratio σ2
ρ we make use of BδW (o) ⊂ W which

implies ρW ∩ (ρW − x) ⊃ BδW ρ(o) ∩ BδW ρ(−x) and ρ (W ⊕ (−W )) ⊃ B2δW ρ(o).
This combined with ey − 1 ≥ y for y ≥ 0 implies

Var(V (d,k)
ρ )

≥ λ e−2λM1

∫
B2δW ρ

(o)
|BδW ρ(o) ∩BδW ρ(x)|d E

∣∣Ξ0 ∩ (Ξ0 + πd−k(ΘT
0 x))

∣∣
d−k dx

≥ λ e−2λM1

∫
B
δW ρ

(o)
|BδW ρ(o) ∩BδW ρ(x)|d E

∣∣Ξ0 ∩ (Ξ0 + πd−k(x))
∣∣
d−k dx

≥ λ e−2λM1 c(d) (ρ δW )d
∫
B
δW ρ

(o)
E
∣∣Ξ0 ∩ (Ξ0 + πd−k(x))

∣∣
d−k dx

≥ λ e−2λM1 c(d) (ρ δW )d
∫

[−ρ δW /
√
d,ρ δW /

√
d]d

E
∣∣Ξ0 ∩ (Ξ0 + πd−k(x))

∣∣
d−k dx

= λ 2k d−k/2 e−2λM1 (ρ δW )d+k c(d) Id,k(ρ)

with c(d) = |B1(o) ∩B1(e1)|d > 0 and

Id,k(ρ) =
∫

[−ρ δW /
√
d,ρ δW /

√
d]d−k

E
∣∣Ξ0 ∩ (Ξ0 + y)

∣∣
d−k dy.
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4. Asymptotic behavior of the empirical volume fraction of a PCP

Making use of P(|Ξ0|d−k > 0) > 0 and standard measure-theoretic arguments it
follows that Id,k(ρ) > 0 for any ρ > 0, and Id,k(ρ) increases with ρ→∞ to the limit
E |Ξ0|2d−k. In this way we confirm the estimate (4.10) with constants

c1 = λ 2k d−k/2 e−2λM1 δd+k
W c(d) Id,k(1) and c2 = λ |W |d 4k e−λM1 M2.

Another consequence of the above estimates is stated in

Lemma 4.1. Let UΞ be the union set (2.4) of the stationary PCP Π(d,k)
cyl (λ,Q) with

cylinder base Ξ0 ∈ Rod−k satisfying 0 < M2 = E |Ξ0|2d−k < ∞. Further, let W ⊂ Rd
be a compact set satisfying BδW (o) ⊂W ⊂ B1(o) for some δW > 0. Then we have

c1 ≤ lim inf
ρ→∞

Var(|UΞ ∩ ρW |d)
ρd+k ≤ lim sup

ρ→∞

Var(|UΞ ∩ ρW |d)
ρd+k ≤ c2. (4.17)

Proof. The above calculations confirm the estimates with constants

c1 = λ 2k d−k/2 e−2λM1 δd+k
W c(d)M2 and c2 = λ |W |d 4k e−λM1 M2.

Remark 4.2. (4.17) reveals that the variance of |UΞ ∩ ρW |d grows with the power
|ρW |1+k/d

d of the window volume which expresses long-range dependences within the
random set (2.4). A similar effect could be observed in studying the asymptotic be-
havior of the total (d − k)-volume of intersection (d − k)-flats generated by Poisson
hyperplane processes in Bρ(o) resp. ρW (for convex W ) as ρ→∞, see [HSS06] resp.
[Hei09].

4.3. A recursive estimation method for the cumulants of
V (d,k)
ρ ; proofs of Theorem 4.3 and 4.4

Here, we assume that the preliminaries of Theorem 4.3 hold. This means that UΞ
is the union set (2.4) of the stationary PCP Π(d,k)

cyl (λ,Q) with typical cylinder base
Ξ0 ∈ Rod−k satisfying (4.1) and M1 > 0. Further, let W ⊂ Rd be compact and
star-shaped with respect to o satisfying BδW (o) ⊂W ⊂ B1(o) for some δW ∈ (0, 1].
The main part of this section consists of a combination of recursive estimation

procedures carried out in several steps which finally result in the estimate (4.9).
This proving idea was developed in [Hei05] to obtain a similar estimate for Boolean
models. However, the techniques used there had to be extended to unbounded cylin-
ders which cause long-range dependences in contrast to the classical Boolean model.

42



4.3. A recursive estimation method for the cumulants of V (d,k)
ρ

To begin with, using the shift-invariance cUΞ
c(x1, . . . , xn) = cUΞ

c(o, y1, . . . , yn−1) for
yi = xi+1 − x1, i = 1, . . . , n− 1, we rewrite (4.3) as follows

Cumn(V (d,k)
ρ )

= (−1)n
∫

(ρ (W⊕(−W )))n−1

∣∣∣∣ ⋂
y∈Yn−1∪{o}

(ρW + y)
∣∣∣∣
d

cUΞ
c
(
Yn−1 ∪ {o}

)
dYn−1

(4.18)

for any integer n ≥ 2. Here and in what follows, we denote by Xm = {x1, . . . , xm}
and Yn = {y1, . . . , yn} (unordered) sets of distinct points x1, . . . , xm ∈ Rd and
y1, . . . , yn ∈ Rd, respectively. Here, we use the notation |Y | for the number of el-
ements of any finite set Y ⊂ Rd. For notational simplicity, put p(Y ) = pUΞ

c(Y ) and
c(Y ) = cUΞ

c(Y ) so that, in view of (4.2), we may write

p(Y ) = e−λ E |Ξ0(Y )|d−k with Ξ0(Y ) :=
⋃
y∈Y

(
Ξ0 − πd−k(ΘT

0 y)
)
. (4.19)

Further, write Ξc0(Y ) for the complement of Ξ0(Y ) in Rd−k and put Ξ0(∅) = ∅,
p(∅) = 1, and c(∅) = 0. Note that c({y}) = 1− cUΞ(y) = p({y}) = e−λM1 for any
y ∈ Rd. Since W ⊕ (−W ) ⊂ B2(o) as consequence of W ⊂ B1(o), it follows from
(4.18) that∣∣∣Cumn+1(|UΞ ∩ ρW |d)

∣∣∣ ≤ ρd |W |d ∫
(B2ρ(o))n

∣∣c({o} ∪ Yn)
∣∣ dYn. (4.20)

The (mixed) cumulant functions c(Y ) are connected with the (mixed) moment func-
tions p(U), ∅ 6= U ⊂ Y , of the random field {1UΞ

c(x), x ∈ Rd} by

c(Y ) =
|Y |∑
j=1

(−1)j−1 (j − 1)!
∑

U1∪···∪Uj=Y
p(U1) · · · p(Uj) for any finite Y ⊂ Rd,

where the inner sum runs over all decompositions of Y into pairwise disjoint, non-
empty subsets U1, . . . , Uj . Note the similarity of this formula to (2.8). The equivalent
relationships c(Y ) = p(Y )−

∑
∅(X(Y c(X) p(Y \X) or

c({x} ∪ Yn) = p({x} ∪ Yn)−
∑

∅⊂Y (Yn

c({x} ∪ Y ) p(Yn \ Y ) for x ∈ Rd \ Yn

do not really help to establish upper bounds of the integral on the right hand side of
(4.20). Rather than this, we introduce more general functions Xm × Yn 7→ c(Xm, Yn)
for arbitrary m ≥ 1 and n ≥ 1 (with Xm ∩ Yn = ∅) by using the recursive relation

p(Xm ∪ Yn) =
∑

∅⊂Y⊂Yn

c(Xm, Y ) p(Yn \ Y ) with c(Xm, ∅) = p(Xm). (4.21)
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4. Asymptotic behavior of the empirical volume fraction of a PCP

Obviously, c(Xm, Yn) is symmetric in x1, . . . , xm as well as in y1, . . . , yn, but the xi’s
and the yj ’s cannot be interchanged. Furthermore, we have c({x}, Yn) = c({x} ∪ Yn)
for x /∈ Yn and n ≥ 0.
As an immediate consequence of (4.21) the recursive relation

c(Xm, Yn) = p(Xm ∪ Yn)−
∑

∅⊂Y (Yn

c(Xm, Y ) p(Yn \ Y )

reveals that c(Xm, Yn) coincides with the (n+1)st order mixed cumulant of the {0, 1}-
valued random variables

∏m
i=1 1UΞ

c(xi) and 1UΞ
c(yj), j = 1, . . . , n, that means, for-

mally written, that c(Xm, Yn) = Cumn+1(1{UΞ ∩Xm = ∅},1UΞ
c(y1), . . . ,1UΞ

c(yn)).
The relation

c(Xm, Yn) =
∑

∅⊂Y⊂Yn

(−1)|Y |K(Xm, Y ) c(Xm−1 ∪ Y, Yn \ Y ) for m+ n ≥ 1, (4.22)

where K(∅, Y ) = 0 for Y 6= ∅, and

K(Xm, Y ) =
∑
∅⊂V⊂Y

(−1)|V | p(Xm ∪ V )
p(Xm−1 ∪ V ) for m,n ≥ 1, ∅ ⊂ Y ⊂ Yn

has been shown in [Hei05] by direct computation applying Möbius’ inversion formula.
Setting

p(V | U) := p(U ∪ V )
p(U) = P(UΞ ∩ V = ∅ | UΞ ∩ U = ∅),

we can rewrite (4.22) in following way:

c(Xm, Yn) = p(Xm)
p(Xm−1)

∑
∅⊂Y⊂Yn

(−1)|Y | S(Xm, Y ) c(Xm−1 ∪ Y, Yn \ Y ), (4.23)

where S(∅, Y ) = 0 for Y 6= ∅ and

S(Xm, Y ) :=
∑
∅⊂V⊂Y

(−1)|V | p(V | Xm)
p(V | Xm−1) for ∅ ⊂ Y ⊂ Yn and m, n ≥ 1.

For our random set model (2.4), we get with (4.19) that

p(Xm ∪ V )
p(Xm−1 ∪ V )

= exp
{
− λ E

∣∣Ξ0
∣∣
d−k + λ E

∣∣(Ξ0 − πd−k(ΘT
0 xm)

)
∩ Ξ0(V ∪Xm−1)

∣∣
d−k

}
= exp

{
− λ E

∣∣(Ξ0 − πd−k(ΘT
0 xm)) ∩ Ξc0(Xm−1)

∣∣
d−k

}
exp

{
E(Xm, V )

}
,
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ρ

where

E(Xm, V ) := λ E
∣∣∣(Ξ0 − πd−k

(
ΘT

0 xm)
)
∩ Ξc0(Xm−1) ∩ Ξ0(V )

∣∣∣
d−k

for ∅ ( V ⊂ Yn

and E(Xm, ∅) = 0.
This leads to p(V | Xm)/p(V | Xm−1) = exp

{
E(Xm, V )

}
, and thus

S(Xm, Y ) =
∑
∅⊂V⊂Y

(−1)|V | exp
{
E(Xm, V )

}
for Y ⊂ Yn

and S(Xm, ∅) = 1 since E(Xm, ∅) = 0.
As a simple consequence of (4.23) and c(Xm, ∅) = p(Xm) ≤ p(Xm−1) ≤ 1, we get

the inequality∫
(B2ρ(o))n

∣∣c(Xm, Yn)
∣∣ dYn

≤
∫

(B2ρ(o))n

∣∣c(Xm−1, Yn)
∣∣ dYn +

∫
(B2ρ(o))n

∣∣S(Xm, Yn)
∣∣ dYn

+
∑

∅(Y (Yn

∫
(B2ρ(o))|Y |

∣∣S(Xm, Y )
∣∣ dY

× sup
Y

∫
(B2ρ(o))n−|Y |

∣∣c(Xm−1 ∪ Y, Yn \ Y )
∣∣ d(Yn \ Y ).

(4.24)

For any m ≥ 1 we have c(Xm, {y}) = p(Xm ∪ {y}) − p(Xm) p({y}) (≥ 0), and thus,
by (4.19),

c(Xm, {y})
= exp

{
− λ E |Ξ0(Xm ∪ {y})|d−k

}
− exp

{
− λ E |Ξ0(Xm)|d−k − λ E |Ξ0|d−k

}
= exp

{
− λ E |Ξ0(Xm ∪ {y})|d−k

}
×
(
1− exp

{
− λ E |Ξ0(Xm) ∩ (Ξ0 − πd−k(ΘT

0 y))|d−k
})

≤ λ exp
{
− λ E |Ξ0(Xm)|d−k

} m∑
i=1

E
∣∣∣(Ξ0 − πd−k(ΘT

0 xi)
)
∩
(
Ξ0 − πd−k(ΘT

0 y)
)∣∣∣
d−k

.

Therefore, since M1 = E |Ξ0|d−k ≤ E |Ξ0(Xm)|d−k, we get∫
B2ρ(o)

c(Xm, {y}) dy ≤ λ e−λM1
m∑
i=1

∫
B2ρ(o)

E
∣∣∣Ξ0 ∩

(
Ξ0 − πd−k(ΘT

0 (y − xi))
)∣∣∣
d−k

dy.

The integrals on the right hand side can be bounded from above uniformly in the
xi’s. Multiple application of Fubini’s theorem combined with the shift-invariance of
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4. Asymptotic behavior of the empirical volume fraction of a PCP

the Lebesgue measure in Rd−k yields∫
B2ρ(o)

∣∣∣Ξ0 ∩
(
Ξ0 − πd−k(ΘT

0 (y − x))
)∣∣∣
d−k

dy

=
∫

B2ρ(o)

∣∣∣Ξ0 ∩
(
Ξ0 − πd−k(y) + πd−k(ΘT

0 x)
)∣∣∣
d−k

dy

≤
∫

[−2ρ,2ρ]k

∫
Rd−k

∣∣∣Ξ0 ∩
(
Ξ0 − z1 + πd−k(ΘT

0 x)
)∣∣∣
d−k

dz1 dz2 = (4ρ)k |Ξ0|2d−k.

Hence,

sup
x∈Rd

∫
B2ρ(o)

E
∣∣∣(Ξ0 − πd−k(ΘT

0 x)
)
∩
(
Ξ0 − πd−k(ΘT

0 y)
)∣∣∣
d−k

dy

≤ (4ρ)k E
∣∣Ξ0
∣∣2
d−k

(4.25)

so that we arrive at the uniform estimate

sup
Xm

∫
B2ρ(o)

c(Xm, {y}) dy ≤ Cm,1 ρk with Cm,1 = 4kmλ e−λM1 M2. (4.26)

Let us introduce a further non-negative function T (yn;Xm, Y ) by

T (yn;Xm, Y ) :=
∑
∅⊂V⊂Y

(−1)|V | exp
{
− E(yn;Xm, V )

}
for Y ⊂ Yn−1, n ≥ 2,

where, for ∅ ⊂ V ⊂ Yn−1,

E(yn;Xm, V )

:= λ E
∣∣∣(Ξ0 − πd−k(ΘT

0 xm)
)
∩ Ξc0(Xm−1) ∩

(
Ξ0 − πd−k(ΘT

0 yn)
)
∩ Ξ0(V )

∣∣∣
d−k

.

In the next step of our estimation procedure, we determine constants An and Bn,
only depending on n, λ, and the first n + 1 moments M1, . . . ,Mn+1 of |Ξ0|d−k, such
that the uniform estimates∫

(B2ρ(o))n

∣∣S(Xm, Yn)
∣∣ dYn ≤ An ρk n, ∫

(B2ρ(o))n
T (yn;Xm, Yn−1) dYn ≤ Bn ρk n (4.27)

hold. The following relations between S- and T -functions can be shown in quite
analogy to the proof of a corresponding [Hei05, Lemma 4]:
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Lemma 4.2. For any m, n ≥ 1, we have

S(Xm, Yn) = S(Xm, Yn−1)
(
1− exp

{
E(Xm, {yn})

})
− exp

{
E(Xm, {yn})

}
×

∑
∅(Y⊂Yn−1

T (yn;Xm, Y ) exp
{
E(Xm, Y )

}
S(Xm ∪ Y, Yn−1 \ Y ).

Combining E(Xm, Y ) ≤ λ E
∣∣(Ξ0 − πd−k(ΘT

0 xm)) ∩ Ξ0(Y )
∣∣
d−k ≤ λM1 and (4.25)

leads to ∫
B2ρ(o)

∣∣S(Xm, {y})
∣∣ dy

=
∫
B2ρ(o)

(
exp

{
E(Xm, {y})

}
− 1

)
dy ≤ 4k λ eλM1 M2 ρ

k.
(4.28)

Thus, from Lemma 4.2 and S(Xm, ∅) = 1, it follows after obvious arrangements that∫
(B2ρ(o))n

∣∣S(Xm, Yn)
∣∣ dYn

≤ 4k λ eλM1 M2 ρ
k
∫

(B2ρ(o))n−1

∣∣S(Xm, Yn−1)
∣∣ dYn−1

+ e2λM1
n−2∑
j=1

(
n− 1
j

) ∫
(B2ρ(o))j+1

T (yj+1;Xm, Yj) dYj+1

× sup
Yi

∫
(B2ρ(o))n−j−1

∣∣S(Xm ∪ Yj , Yn−1 \ Yj)
∣∣ d(Yn−1 \ Yj)

+ e2λM1

∫
(B2ρ(o))n

T (yn;Xm, Yn−1) dYn.

(4.29)

To make the previous estimate explicit, we need upper bounds for the integrals
over T (yn;Xm, Yn−1) with respect to the variables Yn = {y1, . . . , yn−1, yn} for each
n ≥ 2.

Lemma 4.3. For fixed n ≥ 2, assume that Mn+1 < ∞. Then, for any m ≥ 1, both
estimates in (4.27) hold with

Bn = 4k n (n− 1)!
n−1∑
j=1

λj

j!
∑

n1+···+nj=n−1
n1,...,nj≥1

Mn1+2
n1!

j∏
i=2

Mni+1
ni!

(4.30)

and

An = An−1A1 + e2λM1
n−2∑
j=0

(
n− 1
j

)
Aj Bn−j , A0 = 1, A1 = 4k λ eλM1 M2. (4.31)
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4. Asymptotic behavior of the empirical volume fraction of a PCP

Proof. Let the finite point sets Xm, Y ⊂ Yn−1 = {y1, . . . , yn−1} and yn ∈ Rd be
fixed. Using the independently marked Poisson process Πλ,Q with typical mark
(Θ0,Ξ0) ∼ Q, we introduce, in accordance with (2.3) and (2.4), a new stationary PCP
and the corresponding stationary random union set UΞ(yn;Xm, Y ) with typical cylin-
der base Ξ0(yn;Xm, Y ) = (Ξ0−πd−k(ΘT

0 xm))∩Ξc0(Xm−1)∩(Ξ0−πd−k(ΘT
0 yn))∩Ξ0(Y )

as follows:

UΞ(yn;Xm, Y ) =
⋃
i≥1

Θi

((
Ξi(yn;Xm, Y ) + Pi

)
× Rk

)
=
⋃
y∈Y

UΞ(yn;Xm, {y}), (4.32)

where

Ξi(yn;Xm, Y ) = (Ξi − πd−k(ΘT
i xm)) ∩ Ξci (Xm−1) ∩ (Ξi − πd−k(ΘT

i yn)) ∩ Ξi(Y ),

i ≥ 1, are i.i.d. random compact sets in Rd−k with Ξi(Y ) =
⋃
y∈Y (Ξi − πd−k(ΘT

i y)),
see also (4.19). Note that here we allow for the base of the PCP that Ξ0 = ∅ for
notational ease.
We first show that T (yn;Xm, Yn−1) gives just the probability that the origin o lies

in each of the union set UΞ(yn;Xm, {yj}), j = 1, . . . , n−1. With the above-introduced
notation it is rapidly seen that

P(o /∈ UΞ(yn;Xm, Y )) = exp
{
− λ E |Ξ0(yn;Xm, Y )|d−k

}
= exp

{
− E(yn;Xm, Y )

}
.

Taking into account the relations
∑
∅⊂Y⊂Yn−1 (−1)|Y | = 0 and UΞ(yn;Xm, ∅) = ∅

combined with the second part of (4.32), we find by applying the inclusion-exclusion
principle that

T (yn;Xm, Yn−1) =
∑

∅⊂Y⊂Yn−1

(−1)|Y | P(o /∈ UΞ(yn;Xm, Y ))

=
∑

∅(Y⊂Yn−1

(−1)|Y |−1 P
( ⋃
y∈Y

{
o ∈ UΞ(yn;Xm, {y})

})

= P
(
n−1⋂
j=1

{
o ∈ UΞ(yn;Xm, {yj})

})
= E

n−1∏
j=1

1UΞ(yn;Xm,{yj})(o),

whence, again by Fubini’s theorem, it follows that

∫
(B2ρ(o))n−1

T (yn;Xm, Yn−1) dYn−1 = E
( ∫
B2ρ(o)

1UΞ(yn;Xm,{y})(o) dy
)n−1

.

Furthermore, the subadditivity of the indicator function 1(·)(o) in combination with

Ξi(yn;Xm, {y}) ⊂ (Ξi − πd−k(ΘT
i xm)) ∩ (Ξi − πd−k(ΘT

i yn)) ∩ (Ξi − πd−k(ΘT
i y))
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leads to∫
B2ρ(o)

1UΞ(yn;Xm,{y})(o) dy ≤
∑
i≥1

∫
B2ρ(o)

1(Ξi(yn;Xm,{y})+Pi)×Rk(o) dy

≤ (4ρ)k
∑
i≥1

1(Ξi−πd−k(ΘTi xm))∩(Ξi−πd−k(ΘTi yn))(−Pi)
∣∣Ξi∣∣d−k.

In the last line, we have replaced the integral of 1Ξi+Pi(πd−k(ΘT
i y)) over the ball

B2ρ(o) by the larger term (4ρ)k
∣∣Ξi∣∣d−k. Some elementary algebraic rearrangements

and the application of the higher-order Campbell formula (2.6) together with the
reflection invariance of stationary Poisson processes enable us to rewrite the (n−1)st
moment of the random sum

Z(xm, yn) =
∑
i≥1

1(Ξi−πd−k(ΘTi xm))∩(Ξi−πd−k(ΘTi yn))(−Pi)
∣∣Ξi∣∣d−k

in the following way:
n−1∑
j=1

∑
n1+···+nj=n−1
n1,...,nj≥1

(n− 1)!
j!n1! · · ·nj !

E
∑∗

i1,...,ij≥1

j∏
q=1

(
1(Ξiq−πd−k(ΘTiq xm))∩(Ξiq−πd−k(ΘTiq yn))(Piq) |Ξiq |

nq
d−k

)

=
n−1∑
j=1

∑
n1+···+nj=n−1
n1,...,nj≥1

λj (n− 1)!
j!n1! · · ·nj !

j∏
q=1

E
[∣∣∣(Ξ0 − πd−k(ΘT

0 xm)
)
∩
(
Ξ0 − πd−k(ΘT

0 yn)
)∣∣∣
d−k
|Ξ0|

nq
d−k

]
,

where the sum
∑∗ runs over all n-tuples of pairwise distinct indices i1, . . . , in ≥ 1.

Together with∫
B2ρ(o)

E
[∣∣∣(Ξ0 − πd−k(ΘT

0 xm)) ∩ (Ξ0 − πd−k(ΘT
0 yn))

∣∣∣
d−k
|Ξ0|n1

d−k

]
dyn

≤ (4ρ)k E |Ξ0|n1+2
d−k

we arrive at∫
(B2ρ(o))n

T (yn;Xm, Yn−1) dYn ≤ (4ρ)k(n−1)
∫

(B2ρ(o))

E
(
Z(xm, yn)

)n−1 dyn ≤ Bn ρkn

49



4. Asymptotic behavior of the empirical volume fraction of a PCP

with Bn as given in (4.30). Hence, the second estimate in (4.27) is proved.
From (4.28) and (4.29) we obtain the first estimate of (4.27) with a recursive

relation for the constants An with A1 = 4k λ eλM1 M2 and A0 = 1. More precisely,∫
(B2ρ(o))n

|S(Xm, Yn)| dYn

≤ A1 ρ
kAn−1 ρ

k(n−1) + e2λM1 ρk n
n−1∑
j=1

(
n− 1
j

)
Bj+1An−j−1 = An ρ

kn,

which gives (4.31). Thus, the proof of Lemma 4.3 is completed.

We are now in a position to prove the estimate

sup
Xm

∫
(B2ρ(o))n

|c(Xm, Yn)|dYn ≤ Cm,n ρk n for any m,n ≥ 1, (4.33)

where Cm,n depends on m,n, λ, and M1, . . . ,Mn+1. From (4.26) we already know
that (4.33) is true for n = 1 and any m ≥ 1. Inserting the first estimate of (4.27)
with constants (4.31) on the right hand side of (4.24) we get∫

(B2ρ(o))n
|c(Xm, Yn)| dYn

≤ Cm−1,n ρ
k n +An ρ

k n +
n−1∑
j=1

(
n

j

)
Aj ρ

k j Cm−1+j,n−j ρ
k (n−j),

which immediately implies the estimate (4.33) and the double-index recursion formula

Cm,n = An +
n∑
j=1

(
n

j

)
An−j Cm−1+n−j,j with C0,n = 0 for m, n ≥ 1. (4.34)

This equation allows to determine successively all constants Cm,n starting with Cm,2
depending on A1, A2 for all m ≥ 1 and afterwards Cm,3 depending on A1, A2, A3
for all m ≥ 1 etc. For example, we have Cm,2 = A2 + 2A1Cm,1 + Cm−1,2, leading to
Cm,2 = mA2 +m (m+ 1)A1C1,1 for m ≥ 1.
Having in mind the identity c({o} ∪ Yn) = c({o}, Yn), we deduce from (4.20) and

(4.33) that ∣∣∣Cumn
(
|UΞ ∩ ρW |d

)∣∣∣ ≤ |W |dC1,n−1 ρ
d+k (n−1), (4.35)

where C1,n−1 depends on λ and M1, . . . ,Mn. In the final step, we determine the
growth of the constants C1,n−1 in dependence on n ≥ 2 under the assumption (4.1).
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ρ

In this case, we have Mn ≤ n! a−nma for n ∈ N, so that formula (4.30) yields

Bn ≤ 4k n (n− 1)!
n−1∑
j=1

λj

j!
mj
a

aj+1

∑
n1+···+nj=n−1
n1,...,nj≥1

(n1 + 2)
j∏
i=1

(ni + 1)
ani

.

Since n+ 1 ≤ 2n for n ∈ N, we have

∑
n1+···+nj=n−1
n1,...,nj≥1

(n1 + 2)
j∏
i=1

(ni + 1)
ani

≤ n

an−1

∑
n1+···+nj=n−1
n1,...,nj≥1

2n1+1
j∏
i=2

2ni

= n 2n

an−1

(
n− 2
j − 1

)
,

which in turn gives

Bn ≤
2n 4k n

an
n!

n−1∑
j=1

λjmj
a

aj

(
n− 2
j − 1

)
= λma

a

(2 · 4k

a

)n(
1 + λma

a

)n−2
n! for n ≥ 2.

In summary, using the abbreviations

A = 22k+1

a

(
1 + eλ E |Ξ0|d−k

)
and B = λ E ea |Ξ0|d−k

a
,

the positive constants An and Bn in (4.27) satisfy the estimates A1 ≤ AB and

An ≤ AnB (1 +B)n−1 n!, Bn ≤ B
(22k+1

a

)n
(1 +B)n−2 n! for n ≥ 2. (4.36)

The first relation follows from (4.31) by induction on n. In fact, by M2 ≤ 2ma/a
2,

we have

A1 = 4k λ eλM1 M2 ≤ 4k λ eλM1 2ma

a2 = 22k+1

a
eλM1 B ≤ AB,

and, for n ≥ 2, we combine the recursive relation (4.31) with A0 = 1 and the second
(already proved) estimate in (4.36):

An = A1An−1 + e2λM1
n−2∑
j=0

(
n− 1
j

)
Aj Bn−j

≤ A1An−1 + e2λM1 B
n−2∑
j=0

(
n− 1
j

)
Aj

(22k+1

a

)n−j
(1 +B)n−j−2 (n− j)!
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4. Asymptotic behavior of the empirical volume fraction of a PCP

Replacing Aj by B (1 + B)j−1 j! for j = 1, . . . , n− 1, we find after some elementary
calculations the asserted first estimate in (4.36).
In the same way, the recursive relation (4.34) suggests an inductive proof of the

estimate

Cm,n ≤ 2m−1 4n−1AnB (1 +B)n−1 n! for n, m ≥ 1,

whence with (4.35) it follows the desired estimate (4.9) completing the proof of The-
orem 4.3.
Now, we apply the general lemma on large deviations, including a Berry-Esseen

bound proved by V. Statulevičius in [Sta66], see also [SS91, Lemma 2.3]. This result
is formulated for a single random variable ξ satisfying E ξ = 0, Var(ξ) = 1, and
|Cumn(ξ)| ≤ n!H/∆n−2 for n ≥ 2 and some H ≥ 1/2 and ∆ > 0. In our specific
situation, ξ is chosen to be the standardized d-volume V (d,k)

ρ , i.e.,

ξ = V
(d,k)
ρ − EV (d,k)

ρ√
Var(V (d,k)

ρ )
=
V

(d,k)
ρ − ρd |W |d

(
1− e−λ E |Ξ0|d−k

)
σρ ρ(d+k)/2

with distribution function Fρ(x) = P(ξ ≤ x). Using (4.9) and the notation introduced
in Section 4.1.2, we obtain that

∣∣Cumn(ξ)
∣∣ ≤ (n− 1)! Ha ∆n−2

a ρd+k(n−1)(
Var(V (d,k)

ρ )
)n/2 ≤ n! Ha,ρ/∆n−2

a,ρ , (4.37)

where Ha,ρ = Ha/2σ2
ρ (≥ 1/2 by (4.9) for n = 2) and ∆a,ρ = ρ(d−k)/2 σρ/∆a.

These estimates and the lemma in [Sta66, p. 133] imply the asymptotic relations
(4.11) and (4.12) as well as the Berry-Esseen bound (4.14) stated in Theorem 4.4. It
should be noted that, according to the general result in [Sta66] or [SS91], the relations
(4.11) and (4.12) hold in a smaller interval 0 ≤ x ≤ δ∗∆a,ρ for δ∗ < δ(1 + δ)/2,
where δ ∈ (0, 1) is uniquely determined by the equation (1 − δ)3 = 6Ha,ρ δ giving
δ (1 + δ)/2 ≤ 1/2(1 + 4Ha,ρ). However, a careful check of the original proof reveals
that (4.11) and (4.12) remain valid in the desired interval 0 ≤ x ≤ ∆a,ρ/2(1+4Ha,ρ),
see [Hei05], which completes the proof of Theorem 4.4.

Proof of Corollary 4.2. The first two inequalities in Corollary 4.2 are an immediate
consequence of (4.11), (4.12), and (4.13).
The upper bound for c3 can be derived as follows. As shown in (4.37), for n ≥ 3

we have∣∣Cumn(ξ)
∣∣ ≤ n!Ha,ρ/∆n−2

a,ρ ≤
n!

(∆a,ρ/2Ha,ρ)n−2 = n!(
ρ(d−k)/2 σ3

ρ/(∆aHa)
)n−2

as Ha,ρ ≥ 1/2. The application of Corollary 2.1 in[SS91] yields the stated bound.
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4.4. A truncation technique for V (d,k)
ρ ; proof of Theorem 4.1

In this section, we assume that the preliminaries of Theorem 4.1 hold, i.e., we let
UΞ be the union set of the stationary PCP Π(d,k)

cyl (λ,Q) with typical cylinder base
Ξ0 ∈ Rod−k satisfying 0 < M2 < ∞ and drop the assumption on the exponential
moment of Ξ0. Further, we suppose that W ⊂ Rd is compact and star-shaped with
respect to o satisfying BδW (o) ⊂ W ⊂ B1(o) for some δW ∈ (0, 1]. Our aim is to
prove (4.4).
We begin by introducing a truncated version UΞ

(τ) of the union set of the PCP
(2.4)

UΞ
(τ) =

⋃
i≥1

Θi

((
Ξ(τ)
i + Pi

)
× Rk

)
, (4.38)

where the second component of the typical mark (Θ0,Ξ0) in (2.4) is replaced by the
truncated typical grain

Ξ(τ)
0 =

{
Ξ0, if |Ξ0|d−k ≤ τ,
∅, if |Ξ0|d−k > τ,

with τ = ε ρ(d−k)/2. (4.39)

for arbitrarily small ε > 0 and large enough ρ > 0 such that τ ≥ 1 just for convenience.
Note that for this cylinder process we allow the base to be empty for notational ease,
although in the definition in Section 2.2 this is excluded.
Obviously, by (2.3) and (2.4), we have UΞ

(τ) ⊂ UΞ as well as the inclusion

UΞ \ UΞ
(τ) ⊂

⋃
i≥1

Θi

((
Ξi \ Ξ(τ)

i + Pi
)
× Rk

)
=: ŨΞ

(τ)
,

where ŨΞ
(τ) can be regarded as a PCP with typical mark (Ξ0 \ Ξ(τ)

0 ,Θ0). The latter
relation yields

E
∣∣(UΞ \ UΞ

(τ)) ∩ ρW
∣∣2
d
≤ E

∣∣ŨΞ
(τ)
∩ ρW

∣∣2
d

= Var
(∣∣ŨΞ

(τ)
∩ ρW

∣∣
d

)
+
(
E
∣∣ŨΞ

(τ)
∩ ρW

∣∣
d

)2
.

Replacing Ξ0 in (4.16) by Ξ0 \ Ξ(τ)
0 we obtain that

Var
(∣∣ŨΞ

(τ)
∩ ρW

∣∣
d

)
≤ λ |W |d exp

{
− λ E |Ξ0 \ Ξ(τ)

0 |d−k
}

4k E
∣∣Ξ0 \ Ξ(τ)

0
∣∣2
d−k ρ

d+k

≤ λ |W |d 4k E
∣∣Ξ0
∣∣2
d−k 1

(
|Ξ0|d−k > τ

)
ρd+k,
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4. Asymptotic behavior of the empirical volume fraction of a PCP

and, by E |UΞ ∩B|d =
(
1− e−λM1

)
|B|d ≤ λM1 |B|d for any bounded B ∈ B(Rd), we

get the inequality
(
E |ŨΞ

(τ)
∩ ρW |d

)2 ≤ λ2 |W |2d ρ2d (E |Ξ0 \ Ξ(τ)
0 |d−k

)2
≤ λ2 |W |2d ρd+k ε−2

(
E |Ξ0|2d−k 1

(
|Ξ0|d−k > τ

))2
.

Setting

M2(ε, τ) = ε−2 E |Ξ0|2d−k 1(|Ξ0|d−k > τ)

we arrive together with Chebyshev’s inequality at

P
(
ρ−(d+k)/2 ∣∣(UΞ \ UΞ

(τ)) ∩ ρW )
∣∣
d
≥ ε

)
≤ ε−2 ρ−(d+k) E

∣∣(UΞ \ UΞ
(τ)) ∩ ρW

∣∣2
d

≤ λ |W |d
(
4k + λ |W |dM2(ε, τ)

)
M2(ε, τ) −→

ρ→∞
0

for any ε > 0. By the same arguments,

ρ−(d+k)/2 E |(UΞ \ UΞ
(τ)) ∩ ρW )|d ≤

(
ρ−(d+k) E |ŨΞ

(τ)
∩ ρW )|2d

)1/2
−→
ρ→∞

0,

and, together with UΞ
(τ) ⊂ UΞ and Minkowski’s inequality, we get that

ρ−(d+k) ∣∣Var(|UΞ ∩ ρW |d
)
−Var

(
|UΞ

(τ) ∩ ρW |d
)∣∣

≤ ρ−(d+k)
∣∣∣(Var(|UΞ ∩ ρW |d

))1/2 − (Var(|UΞ
(τ) ∩ ρW |d

))1/2∣∣∣
×
((

Var
(
|UΞ ∩ ρW |d

))1/2 +
(
Var

(
|UΞ

(τ) ∩ ρW |d
))1/2)

≤ ρ−(d+k) (E |ŨΞ
(τ)
∩ ρW |2d

)1/2((Var(|UΞ
(τ) ∩ ρW |d)

)1/2 +
(
Var(|UΞ ∩ ρW |d)

)1/2)
−→
ρ→∞

0.

In summary, by applying Slutzky’s theorem, to prove the limit (4.4) in Theorem 4.1
it suffices to verify the CLT

|UΞ
(τ) ∩ ρW |d − E |UΞ

(τ) ∩ ρW |d√
Var

(
|UΞ

(τ) ∩ ρW |d
) d−→

ρ→∞
N(0, 1) (4.40)

for the truncated model UΞ
(τ) instead of UΞ. Notice that, by standard arguments,

ε > 0 can be chosen as null sequence ε(ρ) −→
ρ→∞

0 such that τ(ρ) = ε(ρ) ρ(d−k)/2 −→
ρ→∞

∞
and M2(ε(ρ), τ(ρ)) −→

ρ→∞
0.

The following lemma yields the proof of (4.40).
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Lemma 4.4. Provided that M2 <∞, the truncated PCP (4.38) with τ = ε ρ(d−k)/2

allows the estimates

ρ−(d+k)n/2
∣∣∣Cumn

(
|UΞ

(τ) ∩ ρW |d
)∣∣∣ ≤ εn−2 cn(λ) |W |d for n ≥ 3,

where the constants cn(λ) depend only on λ, n, and on the moments M1 and M2.

Proof. We replace in the calculations in Section 4.3 the typical cylinder base Ξ0
by the truncated cylinder base (4.39) of the union set of the PCP, UΞ

(τ). Hence,
in Lemma 4.3 the moments Mj in (4.30) are replaced by the truncated moments
M

(τ)
j = E |Ξ(τ)

0 |
j
d−k for j = 2, . . . , n+ 1. The inequality M (τ)

j ≤ τ j−2M2 leads to

Bn ≤ 4k n
n−1∑
j=1

(λM2)j

j! τn−j
∑

n1+···+nj=n−1
n1,...,nj≥1

(n− 1)!
n1! · · ·nj !

≤ τn−1 bn(λ),

since τ ≥ 1, where

bn(λ) = 4k n
n−1∑
j=1

(λM2)j

j!
∑

n1+···+nj=n−1
n1,...,nj≥1

(n− 1)!
n1! · · ·nj !

.

A simple inductive argument shows that for An from Lemma 4.3

An ≤ τn−1 an(λ) for n ≥ 1,

for a0(λ) = 1, a1(λ) = A1 and an(λ) = an−1(λ) a1(λ) + e2λM1
n−2∑
j=0

(n−1
j

)
aj(λ) bn−j(λ)

for n ≥ 2. Finally, we put cm,1(λ) = Cm,1 for m ≥ 1, where Cm,n is defined as
in (4.34). In view of Cm,2 − Cm−1,2 = A2 + 2A1Cm,1 and C0,n = 0, it is easy
to see that Cm,2 = mA2 + 2A1

(
Cm,1 + · · · + C1,1

)
≤ cm,2 τ with the constants

cm,2 = ma2(λ) + 2a1(λ)
(
cm,1(λ) + · · · + c1,1(λ)

)
for any m ≥ 1. In this way we

may proceed for n = 3, 4, . . . and arrive at Cm,n ≤ cm,n(λ) τn−1 for all n ≥ 3
and m ≥ 1, where the numbers cm,n(λ) are defined recursively by the relation
cm,n(λ) = an(λ) +

∑n−1
j=0

(n
j

)
aj(λ) cm−1+j,n−j(λ). Thus, after inserting τ = ε ρ(d−k)/2,

we find that

C1,n ρ
k n ≤ εn−1 c1,n(λ) ρ−d+(d+k)(n+1)/2 for n ≥ 2.

This estimate combined with (4.35) and the choice of ε(ρ) −→
ρ→∞

0 completes the proof.
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4.5. The asymptotic variance of V (d,k)
ρ ; proof of Theorem 4.2

The aim of this section is to prove that both of the limits in (4.17) coincide. For this,
we consider the cases of atomic and diffuse (marginal) distribution of Θ0 separately.

4.5.1. Diffuse directional distributions
We first prove the second result of Theorem 4.2 with diffuse distribution P0 of Θ0,
i.e., P(Θ0 = θ) = 0 for all θ ∈ SOd

k. The inequality 0 ≤ ex− 1−x ≤ x2 ex/2 for x ≥ 0
leads to∣∣∣∣Var(|UΞ ∩ ρW |d

)
− λe−2λM1

∫
Rd

∣∣ρW ∩ (ρW − x)
∣∣
d
E
∣∣Ξ0 ∩ (Ξ0 − πd−k(ΘT

0 x))
∣∣
d−k dx

∣∣∣∣
≤ λ2

2 e−λM1 |ρW |d
∫
ρ (W⊕(−W ))

(
E
∣∣Ξ0 ∩

(
Ξ0 − πd−k(ΘT

0 x)
)∣∣
d−k

)2
dx

≤ λ2

2 e−λM1 ρd |W |d
∫
B2ρ(o)

(
E
∣∣Ξ0 ∩

(
Ξ0 − πd−k(ΘT

0 x)
)∣∣
d−k

)2
dx.

We divide both sides of the previous inequality by ρd+k and show in the next step
that

Jρ = ρ−k
∫
Bρ(o)

(
E
∣∣Ξ0 ∩

(
Ξ0 − πd−k(ΘT

0 x)
)∣∣
d−k

)2
dx −→

ρ→∞
0. (4.41)

Taking an independent copy (Θ̃0, Ξ̃0) of the mark (Θ0,Ξ0) ∼ Q, applying Fubini’s
theorem and substituting x = Θ0 y, we may rewrite Jρ with the total expectation
formula in the following way:

Jρ = ρ−k E
[ ∫

Bρ(o)

∣∣Ξ0 ∩
(
Ξ0 − πd−k(ΘT

0 x)
)∣∣
d−k

∣∣Ξ̃0 ∩
(
Ξ̃0 − πd−k(Θ̃T

0 x)
)∣∣
d−k dx

]
= ρ−k E

[ ∫
Bρ(o)

∣∣Ξ0 ∩
(
Ξ0 − πd−k(y)

)∣∣
d−k

∣∣Ξ̃0 ∩
(
Ξ̃0 − πd−k(Θ̃T

0 Θ0 y)
)∣∣
d−k dy

]
= ρ−k

∫
SOdk

∫
SOdk

E
[ ∫

Bρ(o)

∣∣Ξ0 ∩
(
Ξ0 − πd−k(y)

)∣∣
d−k

×
∣∣Ξ̃0 ∩

(
Ξ̃0 − πd−k(θ̃T θ y)

)∣∣
d−k dy

∣∣∣∣ Θ0 = θ, Θ̃0 = θ̃

]
P0(dθ̃)P0(dθ).

Since P0 is diffuse and Θ0 and Θ̃0 are stochastically independent, it follows that
P(Θ0 = Θ̃0) = 0. Thus, it suffices to show that the inner integral disappears as
ρ→∞ for any pair (θ, θ̃) ∈ SOd

k×SOd
k with θ 6= θ̃. For this purpose, we consider the

subspace E = (θT θ̃ Ek)∩Ek with dimension dimE =: l ∈ {0, . . . , k−1} depending on
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the choice of the distinct orthogonal matrices θ and θ̃. We note that dimE = k would
imply θT θ̃ Ek = Ek, and this gives θ = θ̃ by the very definition of SOd

k. Furthermore,
let ϑ ∈ SOd be chosen such that E = ϑEl and ϑEk = Ek (such ϑ always exists).
Now, setting y = (y1, y2)T with y1 ∈ Rd−l and y2 ∈ Rl, we can continue to estimate
the above inner integral over Bρ(o) as follows:

ρ−k
∫
Bdρ(o)

∣∣Ξ0 ∩
(
Ξ0 − πd−k(y)

)∣∣
d−k

∣∣Ξ̃0 ∩
(
Ξ̃0 − πd−k(θ̃T θ y)

)∣∣
d−k dy

≤ ρ−k
∫
Blρ(o)

∫
Bd−lρ (o)

∣∣Ξ0 ∩
(
Ξ0 − πd−k(ϑ (y1, y2)T )

)∣∣
d−k

×
∣∣Ξ̃0 ∩

(
Ξ̃0 − πd−k(θ̃T θ ϑ (y1, y2)T )

)∣∣
d−k dy1 dy2

≤ ρ−k
∫
Blρ(o)

∫
Bd−lρ (o)

∣∣Ξ0 ∩
(
Ξ0 − πd−k(ϑ (y1,ol)T )

)∣∣
d−k

×
∣∣Ξ̃0 ∩

(
Ξ̃0 − πd−k(θ̃T θ ϑ (y1,ol)T )

)∣∣
d−k dy1 dy2,

(4.42)

using that θ̃T θ ϑEl and ϑEl are subspaces of Ek with dimension less than k. It
follows that πd−k(θ̃T θ ϑ y) = πd−k(θ̃T θ ϑ (y1,ol)) and πd−k(ϑ y) = πd−k(ϑ (y1,ol)),
i.e., the integrand does not depend on y2, and we can take y2 = ol and evaluate the
integral over y2 ∈ Bl

ρ(o).

Further, by setting y1 = (z1, z2)T with z1 ∈ Rd−k and z2 ∈ Rk−l, we get the
following upper bound of term (4.42):

ρ−(k−l) κl

∫
Bk−lρ (o)

∫
Rd−k

∣∣Ξ0 ∩
(
Ξ0 − πd−k(ϑ (z1, z2,ol)T )

)∣∣
d−k

×
∣∣Ξ̃0 ∩

(
Ξ̃0 − πd−k(θ̃T θ ϑ (z1, z2,ol)T )

)∣∣
d−k dz1 dz2

= κl

∫
Bk−l1 (o)

∫
Rd−k

∣∣Ξ0 ∩
(
Ξ0 − πd−k(ϑ(z1,ok)T )

)∣∣
d−k

×
∣∣Ξ̃0 ∩

(
Ξ̃0 − πd−k(θ̃T θ ϑ(z1, ρ z2,ol)T )

)∣∣
d−k dz1 dz2 −→

ρ→∞
0,

where we have used the relations πd−k(ϑ (z1, z2,ol)T ) = πd−k(ϑ (z1,ok)T ) and∥∥πd−k(θ̃T θ ϑ(z1, ρ z2,ol)T )
∥∥ −→
ρ→∞

∞ for z2 6= ok−l and any z1 ∈ Rd−k. Finally, apply-
ing the dominated convergence theorem completes the proof of (4.41).

Turning back at the beginning of Subsection 4.5.1 we see that in case of diffuse P0
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the limit (4.5) is obtained in the following way
λ e−2λM1

ρd+k

∫
ρ(W⊕(−W ))

∣∣ρW ∩ (ρW − x)
∣∣
d
E
∣∣Ξ0 ∩ (Ξ0 − πd−k(ΘT

0 x)
∣∣
d−k dx

= λ e−2λM1

ρd+k E
[∫

Rd−k

∫
Rk

∣∣ρW ∩ (ρW −Θ0(x1, x2)T )
∣∣
d

∣∣Ξ0 ∩ (Ξ0 − x1)
∣∣
d−k dx2 dx1

]
= λ e−2λM1 E

[∫
Rd−k

∫
Rk

∣∣W ∩ (W −Θ0
(x1
ρ , x2

)T )∣∣
d

∣∣Ξ0 ∩ (Ξ0 − x1)
∣∣
d−k dx2 dx1

]
−→
ρ→∞

λ e−2λM1

∫
SOdk

E
[
|Ξ0|2d−k

∣∣∣ Θ0 = θ
] ∫

Rk

∣∣W ∩ (W − θ(od−k, x)T )
∣∣
d
dxP0(dθ).

This finishes the proof of (4.7).

4.5.2. Discrete directional distributions
Let P0 be an atomic distribution, i.e., its support is some finite or countably infinite
set {θi ∈ SOd

k, i ∈ I} of distinct matrices in SOd
k; for convenience let I = N. With the

notation of Theorem 4.2 we have f(y, θi) = E
[
|Ξ0 ∩ (Ξ0 − y)|d−k

∣∣ Θ0 = θi
]
P0({θi})

for i ∈ N and y ∈ Rd−k.
To begin with we state the elementary inequality

ex1+···+xn − 1−
n∑
i=1

(exi − 1) ≤
n−1∑
i=1

n∑
j=i+1

(exi − 1)(exj − 1)ex1+···+xn

for x1, . . . , xn ≥ 0, which can be verified by induction on n ∈ N and remains valid
also in the limit n→∞.
Applying the previous inequality to the points xi = λ f(πd−k(θTi x), θi) for i ∈ N

and x ∈ Rd, we are led to the estimate∣∣∣∣Var(|UΞ ∩ ρW |d)

− e−2λM1

∫
Rd

∣∣ρW ∩ (ρW − x)
∣∣
d

∞∑
i=1

(
exp

{
λ f(πd−k(θTi x), θi)

}
− 1

)
dx
∣∣∣∣

≤ λ2 |W |d ρd
∫
B2ρ(o)

∞∑
i=1

∞∑
j=i+1

f(πd−k(θTi x), θi) f(πd−k(θTj x), θj) dx,

where the simple relations xi+xj +
∑∞
k=1 xk ≤ 2λM1 for all i < j and exi−1 ≤ xi exi

have been used.
In analogy to (4.41) we divide both sides of the previous inequality by ρd+k and

prove that

Iρ = ρ−k
∫
Bρ(o)

∞∑
i=1

∞∑
j=i+1

f(πd−k(θTi x), θi) f(πd−k(θTj x), θj) dx −→
ρ→∞

0.
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For any ε > 0 there exists an integer n = n(ε) such that
∑∞
i=n+1 f(od−k, θi) ≤ ε,

and this yields the estimate

Iρ ≤ ε ρ−k
∞∑
i=1

∫
Bρ(o)

f(πd−k(θTi x), θi) dx

+ ρ−k
n−1∑
i=1

n∑
j=i+1

∫
Bρ(o)

f(πd−k(θTi x), θi) f(πd−k(θTj x), θj) dx.
(4.43)

By setting x = (x1, x2)T with x1 ∈ Rd−k and x2 ∈ Rk, it is easily seen that the
first summand in (4.43) is equal to

ε ρ−k
∞∑
i=1

∫
Bdρ(o)

E
[∣∣Ξ0 ∩ (Ξ0 − πd−k(θTi (x1, x2)T ))

∣∣
d−k 1{Θ0 = θi}

]
d(x1, x2)

= ε ρ−k
∫
Bdρ(o)

E
∣∣Ξ0 ∩

(
Ξ0 − πd−k((x1, x2)T )

)∣∣
d−k d(x1, x2)

≤ ε ρ−k
∫
Bkρ (o)

∫
Rd−k

E
∣∣Ξ0 ∩ (Ξ0 − x1)

∣∣
d−k dx1 dx2 = ε κkM2.

In order to treat the finite double sum in (4.43), it suffices to consider the integral

ρ−k
∫
Bρ(o)

f(πd−k(θTi x), θi) f(πd−k(θTj x), θj) dx

= ρ−k
∫
Bρ(o)

f(πd−k(θTi θjy), θi) f(πd−k(y), θj) dy

= ρ−k
∫
Bρ(o)

E
[
|Ξ0 ∩ (Ξ0 − πd−k(θTi θjy))|d−k

∣∣∣ Θ0 = θi
]
P0({θi})

× E
[
|Ξ0 ∩ (Ξ0 − πd−k(y))|d−k

∣∣∣ Θ0 = θj
]
P0({θj}) dy.

for a single pair i < j. This integral can be shown to converge to 0 as ρ → ∞ by
repeating quite the same steps carried out to show that the integral (4.42) disappears
as ρ→∞. Thus, the total sum in (4.43) can be made arbitrarily small. This means
that the existence and the explicit form of the limit (4.5) in case of atomic P0 is
proved by finding the limit (as ρ→∞) of

e−2λM1

ρd+k

∫
ρ (W⊕(−W ))

∣∣ρW ∩ (ρW − x)
∣∣
d

∞∑
i=1

(
exp

{
λ f(πd−k(θTi x), θi)

}
− 1

)
dx.

Making use of the monotone convergence theorem, we first interchange integration
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and summation, and then we pass to the limit for each term of the above sum:
1

ρd+k

∫
ρ (W⊕(−W ))

∣∣ρW ∩ (ρW − x)
∣∣
d

(
exp

{
λ f(πd−k(θTi x), θi)

}
− 1

)
dx

= 1
ρk

∫
Rd−k

∫
Rk

∣∣∣W ∩ (W − θi(x1
ρ
,
x2
ρ

)T)∣∣∣
d
dx2

(
eλ f(x1,θi) − 1

)
dx1

=
∫
Rd−k

∫
Rk

∣∣∣W ∩ (W − θi(x1
ρ
, x2

)T)∣∣∣
d
dx2

(
eλ f(x1,θi) − 1

)
dx1

−→
ρ→∞

∫
Rk

∣∣∣W ∩ (W − θi(od−k, x2)T
)∣∣∣
d
dx2

∫
Rd−k

(
eλ f(x1,θi) − 1

)
dx1.

The last step is justified by the dominated convergence theorem. Thus, the proof of
(4.6) is finished, and Theorem 4.2 is completely proved.

4.5.3. Mixed directional distributions
Here, we prove Corollary 4.1. Recall the formula (4.15) for the variance of V (d,k)

ρ ,
where B ⊂ Rd is a Borel set:

Var(|UΞ ∩B|d)

= e−2λM1

∫
Rd

∣∣B ∩ (B − x)
∣∣
d

(
exp

{
λ E

∣∣Ξ0 ∩ (Ξ0 − πd−k(ΘT
0 x))

∣∣
d−k

}
− 1

)
dx.

Splitting the exponential term gives

exp
{
λ E

∣∣Ξ0 ∩ (Ξ0 − πd−k(ΘT
0 x))

∣∣
d−k

}
− 1

= eλT a(x) − 1 + eλT c(x) − 1 +
(
eλT a(x) − 1

) (
eλT c(x) − 1

)
,

where T a(x) (resp. T c(x)) denotes the atomic (resp. diffuse) part of the expectation
term T (x) = E

∣∣Ξ0 ∩ (Ξ0 − πd−k(ΘT
0 x))

∣∣
d−k. For the variance of V (d,k)

ρ , this means
that

Var(|UΞ ∩B|d)

= e−2λM1

∫
Rd

∣∣B ∩ (B − x)
∣∣
d

(
eλT a(x) − 1

)
dx

+ e−2λM1

∫
Rd

∣∣B ∩ (B − x)
∣∣
d

(
eλT c(x) − 1

)
dx

+ e−2λM1

∫
Rd

∣∣B ∩ (B − x)
∣∣
d

(
eλT a(x) − 1

) (
eλT c(x) − 1

)
dx.

For the first two summands, we have to repeat the procedures of Subsections 4.5.1
and 4.5.2 with T (x) replaced by T a(x) and T c(x), respectively. The additional third
term can be shown to disappear as ρ→∞ using (4.42) and the inequality(

eλT a(x) − 1
) (

eλT c(x) − 1
)
≤ λ2 eλM1 T a(x)T c(x).
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4.5.4. Some special cases
Spherical sampling window

For W = B1(o) the formulae (4.6) and (4.7) can be substantially simplified. This
relies on the formula∫ 2

0

∣∣B1(o) ∩ (B1(o) + s e1)
∣∣
d
sk−1 ds = 2κd−1

∫ 2

0

∫ s/2

0

(√
1− y2

)d−1
dy sk−1 ds

= 2kκd−1
k

∫ 1

0
z
k+1

2 −1 (1− z)
d+1

2 −1 dz = 2k κd+k
π k κk−1

,

which, together with 2π κk−1 = (k + 1)κk+1 = ωk+1, yields∫
Rk

∣∣W ∩ (W − θi
(
od−k, x)T

)∣∣
d
dx =

∫
Rk

∣∣B1(o) ∩
(
B1(o)− (od−k, x)T

)∣∣
d
dx

= 2k+1 κk κd+k
ωk+1

.

Thus, we obtain in the discrete case

σ2
λ,Q(B1(o)) = e−2λM1 2k+1 κk κd+k

ωk+1

∑
i∈I

∫
Rd−k

(
eλ f(x,θi) − 1

)
dx,

and analogously in the diffuse case

σ2
λ,Q(B1(o)) = λ e−2λM1 2k+1 κk κd+k

ωk+1
M2.

The case of motion-invariant union sets UΞ

Another important special case arises when the stationary random set (2.4) is addi-
tionally isotropic, i.e., P0 is the uniform distribution on SOd

k induced by the normal-
ized Haar measure on the Grassmannian G(d, k). If the conditional second moment
M2(θ) does not depend on θ ∈ SOd

k (e.g., Θ0 and Ξ0 are independent), we obtain

∫
SOdk

M2(θ)
∫
Rk

∣∣W ∩ (W − θ (od−k, x)T
)∣∣
d
dxP0(dθ)

= M2

∫
∂Bk1 (o)

∫ ∞
0

∫
SOdk

∣∣W ∩ (W − r θ (od−k, u)T
)∣∣
d
P0(dθ) rk−1 drHk−1(du)

= ωk
ωd

M2

∫
∂Bd1 (o)

∫ ∞
0
|W ∩ (W − r v) |d r

k−1 drHd−1(dv)

= ωk
ωd

M2

∫
Rd

|W ∩ (W − x)|d
‖x‖d−k

dx = M2 Ik+1(W ),
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where Hk(·) denotes the k-dimensional Hausdorff measure in Rd and the functional

Ik+1(W ) = ωk
ωd

∫
W

∫
W

dy dx
‖y − x‖d−k

is known as (k + 1)st order chord power integral of W (up to occasionally other
multiplicative constants).

Other expressions for the asymptotic variance in case of isotropy

The application of Blaschke-Petkantschin-type formulae for convex bodies W in Rd
leads to the identities, see [SW08, pp. 362–364],

Ik+1(W ) = κk
k + 1

∫
A(d,1)

(
V1(W ∩ E)

)k+1
µ1(dE) =

∫
A(d,k)

(
Vk(W ∩ E)

)2
µk(dE),

where A(d, k) is the space of affine k-flats in Rd equipped with the motion-invariant
k-flat measure µk satisfying µk({E ∈ A(d, k) : E ∩Bd

1(o) 6= ∅}) = κd−k, see [SW08]
for precise definitions and more details. By virtue of Carleman’s inequality we get
the estimate

Ik+1(W ) ≤ 2k+1 κk κd+k
dωk+1

( |W |d
κd

)(d+k)/d
, k = 1, . . . , d− 1,

for convex W in Rd with “=” iff W = Bd
r (o). Hence, for given volume of W , the

variance of the volume of the motion-invariant set (2.4) is maximal in case of a
spherical window.

4.6. Concluding remarks and open questions
• One should remark that although throughout this chapter we demanded that

Ξ0 ∈ Ro for consistency with Chapter 3, it is not necessary in this context when
we are only interested in the volume fraction. Here, it suffices to assume that
Ξ0 ∈ C, see [HS09] and [HS12].
Under these conditions it is not guaranteed that the union set is closed with
probability 1. Indeed, there exist simple examples so that P(UΞ is closed) = 0.
E.g., if the typical cylinder base is defined by Ξ0 =

⋃
1≤i1,...,id−k≤N

d−k
×
j=1

[
ij , ij + 1

N

]
for some positive random integer N satisfying EN =∞, then the union set is
closed with probability zero, no matter which distribution Θ0 has.
One can even show that under the assumption E |Ξ0|d−k < ∞ the additional
condition E |Ξ0 ⊕ πd−k(Bε(o))|d−k < ∞ for some ε > 0 is not only sufficient,
but even necessary for the closedness of the stationary random union set (2.4):
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Lemma 4.5. Let Ξ0 be a compact typical cylinder base of the PCP (2.3) sat-
isfying E |Ξ0|d−k < ∞ and E |Ξ0 ⊕ πd−k(Bε(o))|d−k = ∞ for any ε > 0. Then
for the union set we have P(UΞ is closed in Rd) = 0.

The proof of Lemma 4.5 can be done quite similarly to that in [Hei05] for
Boolean models.

• We mention further that the above theorems can be extended to analogous
results for estimators of the covariance CUΞ

c(u) of the random set UΞ
c defined

by the two-point probability pUΞ
c(od, u) for any u ∈ Rd, see Section 3.1.2. This

is seen from the obvious relation CUΞ
c(u) = 1 − P(od ∈ UΞ ∪ (UΞ − u)) and

the fact that UΞ ∪ (UΞ − u) forms the union set of a PCP with typical base
Ξ0 ∪ (Ξ0 − πd−k(ΘT

0 u)).

• It is an open question whether the Berry-Esseen estimate (4.14) can be obtained
under weaker conditions on the cylinder base. Perhaps it suffices to require
E |Ξ0|3d−k < ∞ as one would expect from the CLT for independent random
variables.

• A rigorous proof of Conjecture 4.1 is still missing.

• Open problems in this context are to derive central limit theorems for the other
specific intrinsic volumes, including the specific surface area, see Section 3.2.
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5. The approximate inverse estimator for
directional distributions

This chapter is based on the articles [LRSS11] and [RS11]. The images in the figures
with the unit spheres have been generated by Martin Riplinger who gave us the kind
permission of reproduction. He has also implemented the AI inversion method for
the 3D cosine transform and the Kiderlen-Pfrang algorithm which is used for the
images.
In this chapter, we present and analyze a method for the estimation of the direc-

tional distribution (also called the rose of directions) of stationary fiber processes,
where a fiber is the image of a C1-smooth curve. This provides important information
about the structure of the fibers.
We assume that Ξ is a stationary random set of fibers with intensity λ (the expected

total length of fibers per unit volume) and directional distribution density ϕ (with
respect to the spherical Lebesgue measure), i.e., ϕ is a function on the unit sphere
Sd−1 which we define to be symmetric for notational ease. In case of Ξ being a
Poisson line process, ϕ can be introduced with the probability measure α from (2.2)
as a symmetric function for which

α(G) =
∫
Sd−1

1
{
x ∈

⋃
l∈G

l
}
ϕ(x) dx (5.1)

holds for any G ∈ B(G(d, 1)). In (5.1) the integration is over all points on the
unit sphere which lie on a line from G. For general fiber processes, the directional
distribution is the distribution of the tangent direction at a typical point of the fiber
process. See [SKM95, Section 9.3 and 9.4] for a rigorous definition of fiber processes
and their directional distribution.
For the estimation of ϕ, we take a stereological approach (cf. Remark 5.1). Since

Ξ is stationary, the intersection Ξ∩ξ⊥, ξ ∈ Sd−1, is a stationary point process on the
hyperplane ξ⊥. The function g which maps ξ onto the intensity (expected number
of points / intersections per unit area) of this process Ξ ∩ ξ⊥ is called the rose of
intersections. It is well-known that g is the cosine transform (see Section 2.5) of the
directional distribution of Ξ (up to a multiplicative constant), which can easily be
seen for discrete directional distributions (e.g., the Manhattan model), and then can
be generalized to arbitrary measures, see also [SW08, Theorem 4.4.6]. This can be
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5. The approximate inverse (AI) estimator for directional distributions

written as

g(ξ) = λ (C ϕ)(ξ), (5.2)

where C is the cosine transform (2.11). Thus, if we have an estimation of g at
some points ξ1, . . . , ξn, an even measure (directional distribution of Ξ) on the unit
sphere has to be reconstructed from finitely many (approximate) values of its cosine
transform. For this purpose, stable numerical inversion algorithms are needed.

Remark 5.1. Stereology aims to retrieve higher-dimensional information about geo-
metric objects from lower-dimensional samples. One important example is 3D porous
media that cannot be observed entirely, but only within sections with finitely many
flats, lines or points. This includes the estimation of the volume fraction by deter-
mining the ratio of grid points which hit the media and the estimation of the surface
area by counting how many times test lines intersect the surface of the media within
a bounded observation window. See [BJ05] for an introduction.

In 2005, Kiderlen and Pfrang ([KP05]) presented three non-parametric algorithms
to estimate the rose of directions of a spatial fiber system. They are based on least
square or other optimization problems. To be able to determine the rose of direc-
tions numerically, they restrict their considerations to atomic measures. Hoffmann
([Hof09a]) used in 2007 a least square estimator to invert the sine transform for a
similar estimation approach. There exist convergence results and a proof of consis-
tency ([GKM06]) for these algorithms. But all these algorithms only lead to discrete
reconstructions, which are concentrated only on a finite number of points and look
often artificial. Continuous reconstructions, which provide the chance of better model
fits, are missing so far in literature.
We use the method of the approximate inverse as introduced in Section 2.5 to invert

the cosine transform in a numerically stable way and get a continuous function as a
result.

Remark 5.2. For both the cosine and the spherical Radon transform, there exist an-
alytic inversion formulas even in more general settings. Helgason obtained in [Hel08]
an analytic inversion formula for the spherical Radon transform which was modified
in [Spo01, Lemma 5.1] to a more compact form:

For f ∈ Ce(Sd−1) and d ≥ 3 holds

f(ξ) = (−1)d−2 2d−3

(d− 3)!ωd−1

(
∂

∂(µ2)

)d−2
 ∫
〈ξ,η〉2>µ2

Rf(η) |〈ξ, η〉|
(〈ξ, η〉2 − µ2)

4−d
2

dη


µ=0

, ξ ∈ Sd−1.
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While this formula forms a proper basis for theoretical considerations, it cannot be
used for numerical calculations because of the numerical instability of some operations
such as the differentiation.

This chapter is organized as follows. In the next section, we derive reconstruction
kernels for the cosine transform for arbitrary dimensions d ≥ 2. For this, we make
use of the closely related spherical Radon transform for d ≥ 3, for which we also
derive a reconstruction kernel as a side product. In Section 5.2, we give a rigorous
definition of our estimator for directional distributions. Its asymptotical properties
are analyzed in the following Section 5.3. We begin with analyzing strong convergence
of the estimator ϕ̂γ to the mollified density ϕγ . We show that the supremum of the
difference between the two functions converges almost surely to zero under mild
assumptions on the directions of the test hyperplanes and the growth rate of the
observation window radius. In Section 5.3.2, we derive Berry-Esseen bounds for the
estimator and show how a central limit theorem can be used to construct asymptotic
tests on the directional distribution. Section 5.3.3 contains an analysis of the large
deviation behavior of the estimator. We conclude this chapter by presenting results of
simulation studies in Section 5.4 and examining examples of real data in Section 5.5.
Here, we apply our estimation method to microscopic images of gas diffusion layers
of fuel cells, see Figure 1.1.
Note that while the estimator presented in Section 5.2 can also be introduced for

general stationary fiber processes, we focus on Poisson line processes (PLPs).

5.1. Reconstruction kernels for the cosine transform
For the method of the approximate inverse, the crucial part is to derive a recon-
struction kernel for a suitable mollifier. Then (2.14) can be used to calculate the
smoothed reconstructed function or density. We derive reconstruction kernels for the
cosine transform in all dimensions d ≥ 2. Since the calculation techniques for the
reconstruction kernels differ in 2D, we consider the case d = 2 separately in the next
section. In Section 5.1.2, we derive a reconstruction kernel for all higher dimensions
for the cosine and – as a side product – the spherical Radon transform.

5.1.1. Two-dimensional case

The even functions on S1 correspond one-to-one to the π-periodic functions in R.
Thus, to simplify the notation, we consider densities with respect to the Lebesgue
measure on the interval [0, π] in this section. Here, a point x ∈ [0, π] corresponds to
the point (cosx, sin x)T on the unit sphere. Notice the difference from the higher-
dimensional case, where we consider densities on the unit sphere with respect to the
spherical surface area measure. In the two-dimensional case, the cosine transform

67



5. The approximate inverse (AI) estimator for directional distributions

can be written in the form

(C ϕ)(x) =
∫ π

0

∣∣ cos(x− t)
∣∣ϕ(t) dt.

Furthermore, in 2D it is closely related to the sine transform

(S ϕ)(x) =
∫ π

0

∣∣ sin(x− t)
∣∣ϕ(t) dt

by (C ϕ)(x) = (S ϕ)(x + π/2). Thus, it suffices to consider the sine transform in the
following, which seems to be more common in the 2D case. The following proposition
(see [Hil62, Mec81, SKM95]) enables us to calculate the reconstruction kernel.

Proposition 5.1. Let g ∈ C2(R) be an arbitrary π-periodic function. Then we have

Sf = g with f = 1
2
(
g + g′′

)
.

Example. Let us consider the mollifier

eγ(x, y) = γ−1cν

(
1− (x− y)2

γ2

)ν
1{|x− y| ≤ γ}

as a π-periodic function for ν ∈ N and γ ≤ π/2 (see for example [Sch07]), where

c−1
ν =

∫ 1

−1
(1− x2)ν dx = Γ(ν + 1)

√
π

Γ(ν + 3
2)

(c−1
3 = 32/35, c−1

4 = 256/315).

For t = |x − y| < γ and ν ≥ 3, the reconstruction kernel is then calculated using
Proposition 5.1:

ψγ(t) = cν
2γ

[(
1− t2

γ2

)ν
+ 4t2 ν (ν − 1)

γ4

(
1− t2

γ2

)ν−2
− 2ν
γ2

(
1− t2

γ2

)ν−1]
.

5.1.2. Higher-dimensional case
In this section, we derive reconstruction kernels for the cosine transform in arbitrary
dimensions d ≥ 3. For d = 3, a closed expression can also be found in [LRSS11], see
Remark 5.3 at the end of this section. We first calculate a reconstruction kernel for the
spherical Radon transform, which is of interest of its own. Then we use the relatedness
of the spherical Radon and the cosine transform to arrive at the desired reconstruction
kernel. Basically, we generalize the procedure by Martin Riplinger from [LRSS11]
for the three-dimensional case to arbitrary dimensions d ≥ 3. We concentrate on the
Gaussian mollifier. One should also mentioned that Rubin suggested a method for
the inversion of the spherical Radon transform which is related to ours, cf. [Rub02].
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An explicit calculation for one example of the functions he suggested can be found
in Appendix A.2.
We begin with some facts about the spherical Radon transform. It commutes with

rotations (see [Gar06, Lemma C.2.7]), i.e.,

R(TA f(η)) = TA (Rf)(η), A ∈ SOd, η ∈ Sd−1,

with TAf(ξ) := f(A−1ξ). Therefore, it is sufficient to construct a kernel for only
one fixed point ξ0 ∈ Sd−1. To simplify the notation, we choose ξ0 to be ed, the d-th
vector of the standard basis of Rd.
If the mollifier depends only on the geodesic distance dgeo(ξ, η) between ξ, η ∈ Sd−1

and not on ξ and η themselves, then for η ∈ Sd−1 the mollifier eγ depends only on
the polar angle of η, denoted by θ. We introduce the notation eγ(θ) := eγ(ξ0, η).
For the construction of the reconstruction kernel, we shall use the following result.

Theorem 5.1 ([Gar06], p. 432–434). Let f, g ∈ C1
e (Sd−1) be rotationally symmetric

functions with Rf = g. Then for 0 < t ≤ 1,

f(arccos t) = 1
(d− 3)! t

(1
t

d
dt

)d−2 ∫ t

0
g(arcsin x)xd−2 (t2 − x2)(d−4)/2 dx. (5.3)

To calculate the normalizing constant, we recall that we require
∫
Sd−1 eγ(ξ)dξ = 1

for all γ > 0, which can be rewritten for rotationally symmetric mollifiers eγ(θ) as

2ωd−1

∫ π/2

0
eγ(θ) (sin θ)d−2 dθ = 1.

For the Gaussian mollifier,

eγ(θ) = 1
c(γ) exp

{
− sin2 θ

γ2

}
, θ ∈ [0, π/2],

the substitution x = cos θ leads to

c(γ) = 2ωd−1

∫ π/2

0
exp

{
− sin2 θ

γ2

}
(sin θ)d−2 dθ

= 2ωd−1

∫ 1

0
exp

{
− 1− x2

γ2

}(
1− x2)(d−3)/2 dx.

(5.4)

We need the following lemma for our main result.

Lemma 5.1. For k ∈ Z, n ∈ N0, and t > 0, it holds that(1
t

d
dt

)n
tk = ck,n t

k−2n,

where ck,n =
∏n−1
j=0 (k − 2j).
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5. The approximate inverse (AI) estimator for directional distributions

Proof. n = 0 is obvious. For the (n+ 1)st derivative, we calculate(1
t

d
dt

)n+1
tk = 1

t

d
dtck,nt

k−2n = (k − 2n)ck,ntk−2n−2 = ck,n+1t
k−2(n+1).

Theorem 5.2. In dimensions d ≥ 3, for the Gaussian mollifier the reconstruction
kernel for the spherical Radon transform is given by

ψRγ (θ) =
B
(
d−1

2 , d−2
2

)
2(d− 3)! c(γ)

∞∑
k=0

(
k−1∏
r=0

(d− 1)/2 + r

d− 3/2 + r

)
(−1)k c2d+2k−5,d−2

k! γ2k (cos θ)2k,

for θ ∈ [0, π/2], where the ck,n are as in Lemma 5.1, c(γ) is as calculated in (5.4),
and B(·, ·) denotes the beta function.

Proof. According to (5.3), for t ∈ [0, 1], we have

ψRγ (arccos t) = 1
(d− 3)! c(γ) t

(1
t

d
dt

)d−2 ∫ t

0
e−x2/γ2

xd−2(t2 − x2)(d−4)/2 dx.

We begin with∫ t

0
e−x2/γ2

xd−2(t2 − x2)(d−4)/2 dx x=st= t

∫ 1

0
e−(st)2/γ2(st)d−2(t2 − (st)2)(d−4)/2 ds

u=s2= 1
2 t

2d−5
∫ 1

0
e−u t2/γ2

u(d−3)/2(1− u)(d−4)/2 du,

where the integral is B((d−1)/2, (d−2)/2) times the moment generating function of
a Beta((d− 1)/2, (d− 2)/2)-distributed random variable evaluated at −t2/2γ2, thus
we get (see [JKB95]) for X ∼ Beta((d− 1)/2, (d− 2)/2)

1
2 t

2d−5B

(
d− 1

2 ,
d− 2

2

)
mX(−t2/γ2)

= 1
2B

(
d− 1

2 ,
d− 2

2

) ∞∑
k=0

(
k−1∏
r=0

(d− 1)/2 + r

d− 3/2 + r

)
(−1)k t2d+2k−5

k! γ2k .

With Lemma 5.1 this leads to

ψRγ (arccos t) =
B
(
d−1

2 , d−2
2

)
2(d− 3)! c(γ) t

∞∑
k=0

(
k−1∏
r=0

(d− 1)/2 + r

d− 3/2 + r

) (−1)k
(

1
t

d
dt

)d−2
t2d+2k−5

k! γ2k

=
B
(
d−1

2 , d−2
2

)
2(d− 3)! c(γ)

∞∑
k=0

(
k−1∏
r=0

(d− 1)/2 + r

d− 3/2 + r

)
(−1)k c2d+2k−5,d−2 t

2k

k! γ2k .
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5.2. Definition of the AI estimator for directional distributions

Corollary 5.1. For the Gaussian mollifier, the reconstruction kernel for the cosine
transform is given by

ψγ(θ) = 1
2ωd−1

(
1

sind−2 θ

∂

∂ θ

(
sind−2 θ

∂ ψRγ (θ)
∂ θ

)
+ (d− 1)ψRγ (θ)

)
, θ ∈ [0, π/2],

where ψRγ (θ) is the reconstruction kernel for the Radon transform from Theorem 5.2.

Proof. For the block operator (see (2.12)), it holds that C−1 = �R−1 (see [Spo01]).
Since the Beltrami-Laplace operator on the sphere can be written using spheri-
cal coordinates ∆d−1 = 1

sind−2 θ
∂
∂ θ

(
sind−2 θ ∂

∂ θ

)
for rotationally symmetric functions

(cf. [EMOT81, p. 235]), this yields the result.

Remark 5.3. For d = 3 formula (5.3) can be highly simplified which leads to the
compact formula for the reconstruction kernel for the Gaussian mollifier derived by
Martin Riplinger in [LRSS11]. For the Radon transform this leads to

ψRγ (θ) = 1
c(γ)

[
1−
√
π cos θ
γ

exp
{
− cos2 θ

γ2

}
erfi

(cos θ
γ

)]
, θ ∈ [0, π/2],

where erfi is defined as erfi(x) := −i erf(ix), with the well known error function
erf(x) = 2/

√
π
∫ x

0 exp{−t2} dt. For the cosine transform we get

ψγ(θ) = 1
4π

(
cos θ
sin θ

∂

∂ θ
ψRγ (θ) + ∂2

∂ θ2ψ
R
γ (θ) + 2ψRγ (θ)

)
, θ ∈ [0, π/2].

5.2. Definition of the AI estimator for directional
distributions

We begin with some notation, where we concentrate on the case that Ξ is a sta-
tionary Poisson line process (PLP). We assume that the numbers of intersections of
Ξ with hyperplanes orthogonal to the unit vectors ξ1, . . . , ξn ∈ Sd−1 in a window
ρW = Bρ(o) can be observed. These intersection counts are denoted by Y1, . . . , Yn,
i.e., Yi = #{Ξ ∩ ξ⊥i ∩ ρW}.
Since Ξ is a stationary PLP, the process Ξ∩ξ⊥i is also stationary. It has the intensity

λ (C ϕ)(ξi) (see [SW08, Theorem 4.4.6]), and thus Yi ∼ Poi(κd−1 ρ
d−1 λ (C ϕ)(ξi)). It

is reasonable to introduce the notation Ỹi = Yi
κd−1ρd−1λ

, which leads to E Ỹi = (C ϕ)(ξi)

and Var Ỹi = (C ϕ)(ξi)
κd−1 ρd−1 λ

for all ρ, n, i.
Now we are in a position to introduce the estimator

ϕ̂γ(η) :=
n∑
i=1

Ỹi ψγ(η, ξi) ∆i (5.5)
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5. The approximate inverse (AI) estimator for directional distributions

for the density ϕ at the point η ∈ Sd−1, which can be seen as a discretized version
of formula (2.14). Here, the weight ∆i is defined as follows. Introduce the spherical
Voronoi cell of ξi as

Ωi =
{
ν ∈ Sd−1 : dgeo(ν, ξi) ≤ min{dgeo(ν, ξj), dgeo(ν,−ξj)} for all j 6= i

}
,

where dgeo(·, ·) denotes the geodesic distance, i.e., the length of the shortest path in
Sd−1 between two unit vectors. Then we set the weight ∆i of the estimator (5.5) to
be two times the area of the Voronoi cell Ωi of ξi which results in

∑n
i=1 ∆i = ωd.

Remark 5.4. Note that the non-negativity of the resulting estimated density is not
guaranteed, but in the experiments conducted in [LRSS11], the problem could be solved
by setting the negative values which appeared only in small regions to zero.

5.3. Asymptotic properties of the AI estimator
We analyze some of the most interesting stochastic properties of the estimator pre-
sented in Section 5.2, again making the assumption on the mollifier eγ(η, ξ) (and
thus also on the reconstruction kernel ψγ(η, ξ)) that it depends only on the geodesic
distance between ξ and η. Since we are interested in convergence and also consider
a growing number of measurement points, we need a slightly different notation, i.e.,
we introduce double indices for ξ and Y . This means that instead of ξ1, . . . , ξn we
assume that we can observe the number of intersections of Ξ with hyperplanes or-
thogonal to the unit vectors ξ1n, . . . , ξnn ∈ Sd−1 within ρW . Similarly, we denote the
intersections by Y1n, . . . , Ynn, i.e., Yin = #{Ξ ∩ ξ⊥in ∩ ρW}. To simplify the notation,
we shall write ξi instead of ξin when the value of n is clear, and analogously Yi for
Yin.
One should remark that the supremum of the absolute value of the reconstruction

kernel ψγ tends to infinity for γ → 0. Therefore, ϕ̂γ does not converge to ϕ pointwise
or in the L2(Sd−1)-sense. To overcome this, we fix γ > 0 and analyze the properties
of the estimator ϕ̂γ , especially convergence to the mollified density ϕγ as ρ, n→∞.
For suitable mollifiers, ϕγ approximates ϕ as γ → 0, cf. [LRSS11].

Remark 5.5. Throughout this chapter, we assume that λ is known. However, the
information given by Y1, . . . , Yn can also be used to estimate λ. More precisely, in
Proposition 5.2 below, we show that, under certain conditions on ρ and ξ1n, . . . , ξnn,
the random variable

λ̂ := 1
2κd−1

n∑
i=1

Yi
κd−1 ρd−1 ∆i. (5.6)

is a strongly consistent estimator for λ.
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5.3. Asymptotic properties of the AI estimator

5.3.1. Almost sure convergence

In this section, we derive sufficient conditions for almost sure convergence of the
estimator ϕ̂γ in the supremum norm, i.e., for some ρ = ρ(n)→∞ (n→∞) we get

sup
η∈Sd−1

∣∣ϕ̂γ(η)− ϕγ(η)
∣∣ −→
n→∞

0.

For this, we also derive some results on the convergence speed of the estimator
(in Lemma 5.4) which are of interest of their own. Yet, we focus on almost sure
convergence, so no attempt has been made to achieve optimality in the convergence
rates.
In this section, we often assume that the reconstruction kernel is Lipschitz contin-

uous. By this, we mean that it is Lipschitz continuous in both components, i.e., for
η, ξ1, ξ2 ∈ Sd−1 we have∣∣ψγ(η, ξ1)− ψγ(η, ξ2)

∣∣ ≤ Lψγ dgeo(ξ1, ξ2)

for some Lψγ <∞. Since Sd−1 is compact, this also means that ψγ is bounded.
We begin with some notation. Similarly to [GKM06], we define the symmetrized

mesh norm of a set of points {ξ1, . . . , ξn} as the mesh norm of the set including the
reflected vectors, {ξ1, . . . , ξn,−ξ1, . . . ,−ξn}, i.e.,

h∗(ξ1, . . . , ξn) = h(ξ1, . . . , ξn,−ξ1, . . . ,−ξn) = max
ν∈Sd−1

min
1≤i≤n

{
dgeo(ν, ξi), dgeo(ν,−ξi)

}
.

Note that the weights ∆i, i = 1, . . . , n of the estimator (5.5) are thus bounded by
2κd−1 h

∗(ξ1, . . . ξn)d−1, as the maximal geodesic radius of one cell is h∗(ξ1, . . . ξn).
Throughout this section, we use the following auxiliary result on the cosine trans-

form.

Lemma 5.2. For arbitrary densities ϕ on Sd−1 the cosine transform C ϕ is Lipschitz
continuous with respect to the geodesic distance. The Lipschitz constant is at most
1. Furthermore, C ϕ is bounded by 1.

Proof. For ζ, η ∈ Sd−1 we have

∣∣(C ϕ)(ζ)− (C ϕ)(η)
∣∣ =

∣∣∣∣∫
Sd−1

(
|〈ζ, ν〉| − |〈η, ν〉|

)
ϕ(ν) dν

∣∣∣∣
≤ sup

ν∈Sd−1

∣∣|〈ζ, ν〉| − |〈η, ν〉|∣∣ ≤ dgeo(ζ, η).

For the second claim, we calculate (C ϕ)(ζ) =
∫
Sd−1 |〈ζ, ν〉|ϕ(ν) dν ≤ 1.
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5. The approximate inverse (AI) estimator for directional distributions

Deterministic measurement directions

At first, we assume that the series of measurement directions is deterministic. See,
e.g., [HS96] or [SW04] for an approach to choose a suitable point configuration. In
the next section, we give one example of a class of random vectors which covers a
case which often appears in applications.
Let us begin with the analysis of the bias of the estimator (5.5). Note that

E Ỹin = (C ϕ)(ξin) does not depend on the observation window radius ρ.

Theorem 5.3. Assume that the reconstruction kernel ψγ is Lipschitz continuous.
Denote by LC ϕ and Lψγ the Lipschitz constants of C ϕ and ψγ respectively. Then

sup
η∈Sd−1

∣∣E ϕ̂γ(η)− ϕγ(η)
∣∣ ≤ ωd−1 (LC ϕ ψγ + Lψγ )h∗(ξ1, . . . , ξn)

uniformly for all ρ > 0, where ψγ denotes the supremum of |ψγ |.

Proof. Let η ∈ Sd−1 be an arbitrary unit vector. Then, for ν ∈ Ωi, i = 1, . . . , n,∣∣(C ϕ)(ξi)ψγ(η, ξi)− (C ϕ)(ν)ψγ(η, ν)
∣∣

≤
∣∣(C ϕ)(ξi)ψγ(η, ξi)− (C ϕ)(ξi)ψγ(η, ν)

∣∣+ ∣∣(C ϕ)(ξi)ψγ(η, ν)− (C ϕ)(ν)ψγ(η, ν)
∣∣

= |(C ϕ)(ξi)| ·
∣∣ψγ(η, ξi)− ψγ(η, ν)

∣∣+ |ψγ(η, ν)| ·
∣∣(C ϕ)(ξi)− (C ϕ)(ν)

∣∣
≤ Lψγh∗(ξ1, . . . , ξn) + ψγ LC ϕh

∗(ξ1, . . . , ξn),

since C ϕ is bounded by 1 (see Lemma 5.2). As C ϕ and ψ are symmetric functions,
finally we obtain

∣∣E ϕ̂γ(η)− ϕγ(η)
∣∣ =

∣∣∣∣∣
n∑
i=1

(C ϕ)(ξi)ψγ(η, ξi) ∆i −
∫
Sd−1

(C ϕ)(ν)ψγ(η, ν) dν
∣∣∣∣∣

≤ 2
n∑
i=1

∫
Ωi

∣∣(C ϕ)(ξi)ψγ(η, ξi)− (C ϕ)(ν)ψγ(η, ν)
∣∣ dν

≤ ωd−1 (LC ϕ ψγ + Lψγ )h∗(ξ1, . . . , ξn).

To analyze weak convergence of ϕ̂γ , we need the following lemma.

Lemma 5.3. If |ψγ | is bounded by ψγ <∞, then, for ε > 0,

P
(

sup
η∈Sd−1

n∑
i=1

∣∣∣(Ỹi − (C ϕ)(ξi)
)
ψγ(η, ξi)

∣∣∣∆i > ε

)
≤

ω2
d−1 ψ

2
γ

κd−1 ρd−1 λ ε2

uniformly for all n ∈ N.
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5.3. Asymptotic properties of the AI estimator

Proof. Using the notation Y (ξ) = #{Ξ ∩ ξ⊥ ∩ ρW} and Ỹ (ξ) = 1
κd−1 ρd−1 λ

Y (ξ), we

get Y (ξ) ∼ Poi
(
κd−1 ρ

d−1 λ (C ϕ)(ξ)
)
and Var Ỹ (ξ) = (C ϕ)(ξ)

κd−1 ρd−1 λ
. Thus, Lemma 5.2

and Chebyshev’s inequality yield

P
(

sup
η∈Sd−1

n∑
i=1

∣∣∣(Ỹi − (C ϕ)(ξi)
)
ψγ(η, ξi)

∣∣∣∆i > ε

)
≤ P

( n∑
i=1

∣∣∣Ỹi − (C ϕ)(ξi)
∣∣∣∆i > ε/ψγ

)

≤
ψ

2
γ

ε2 Var
( n∑
i=1

∣∣∣Ỹi − (C ϕ)(ξi)
∣∣∣∆i

)
≤
ω2
d−1 ψ

2
γ

ε2 sup
ν∈Sd−1

Var
(∣∣Ỹ (ν)− (C ϕ)(ν)

∣∣)

≤
ω2
d−1 ψ

2
γ

ε2 sup
ν∈Sd−1

(C ϕ)(ν)
κd−1 ρd−1 λ

≤
ω2
d−1 ψ

2
γ

κd−1 ρd−1 λ ε2 .

Lemma 5.4. Let ψγ be Lipschitz continuous. If h∗(ξ1, . . . , ξn) < c−1
h ε, we have

P
(

sup
η∈Sd−1

∣∣ϕ̂γ(η)− ϕγ(η)
∣∣ > ε

)
≤

ω2
d−1ψ

2
γ

κd−1 ρd−1 λ (ε− ωd−1 ch h∗(ξ1, . . . , ξn))2 ,

where the constant ch = ωd−1(LC ϕ ψγ + Lψγ ) does not depend on ξ1, . . . , ξn.

Proof. We consider the split

ϕ̂γ(η) =
n∑
i=1

(
Ỹi − (C ϕ)(ξi)

)
ψγ(η, ξi) ∆i +

n∑
i=1

(C ϕ)(ξi)ψγ(η, ξi) ∆i.

For the specified h∗, Lemma 5.3 and the proof of Theorem 5.3 lead to

P
(

sup
η∈Sd−1

∣∣ϕ̂γ(η)− ϕγ(η)
∣∣ > ε

)
≤ P

(
sup

η∈Sd−1

( n∑
i=1

∣∣∣(Ỹi − (C ϕ)(ξi)
)
ψγ(η, ξi)

∣∣∣∆i+

+
∣∣∣ n∑
i=1

(C ϕ)(ξi)ψγ(η, ξi) ∆i − ϕγ(η)
∣∣∣) > ε

)

≤ P
(

sup
η∈Sd−1

n∑
i=1

∣∣∣(Ỹi − (C ϕ)(ξi)
)
ψγ(η, ξi)

∣∣∣∆i

> ε− ωd−1(LC ϕ ψγ + Lψγ )h∗(ξ1, . . . , ξn)
)

≤
ω2
d−1ψ

2
γ

κd−1 ρd−1 λ (ε− ch h∗(ξ1, . . . , ξn))2 .
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5. The approximate inverse (AI) estimator for directional distributions

This immediately leads to the following result.

Theorem 5.4. Suppose that ψγ is Lipschitz continuous, the symmetrized mesh norm
h∗(ξ1n, . . . , ξnn) tends to zero and ρ = ρ(n) ≥ c1 · n(1+c2)/(d−1) for some constants
c1, c2 > 0. Then, almost surely,

sup
η∈Sd−1

∣∣ϕ̂γ(η)− ϕγ(η)
∣∣ −→
n→∞

0.

Proof. The result follows from the Borel-Cantelli lemma. Since h∗(ξ1n, . . . , ξnn) tends
to zero, there exists an integer N such that h∗(ξ1n, . . . , ξnn) ≤ 1

2 c
−1
h ε for n ≥ N .

Thus, with Lemma 5.4 we get for arbitrary ε > 0
∞∑
n=1

P
(

sup
η∈Sd−1

∣∣ϕ̂γ(η)− ϕγ(η)
∣∣ > ε

)
≤ N +

∞∑
n=N+1

4ω2
d−1ψ

2
γ

κd−1(c1 n(1+c2)/(d−1))d−1λ ε2 <∞.

Random measurement directions

In this section, instead of deterministic measurement directions, we consider the
following setting which should be a suitable model for applications in which the
measurement directions cannot be chosen but are given in a random way. We consider
as measurement directions the series of i.i.d. unit vectors ξ1, ξ2, . . . which are assumed
to be independent of Ξ. For the estimator (5.5) we use the same weights as in the
deterministic setting.

Lemma 5.5. Let ξ1, ξ2, . . . be a sequence of i.i.d. random unit vectors with positive
density with respect to the spherical Lebesgue measure. Then h∗(ξ1, . . . , ξn)) converges
to zero almost surely.

Proof. To simplify the notation, we show the stronger claim that the non-sym-
metrized mesh norm h(ξ1, . . . , ξn) tends to zero almost surely.
Let ε > 0. Obviously, there exists some integer m(ε) < ∞ and a sequence of

unit vectors ν1, . . . , νm ∈ Sd−1 with h(ν1, . . . , νm) < ε/2. As the density of ξ1 is
positive, it holds for every cell Ω(νi) of the tessellation induced by ν1, . . . , νm that
P(ξ1 ∈ Ω(νi)) > 0. Thus, there is a constant p with 0 < p ≤ P(ξ1 ∈ Ω(νi)),
i = 1, . . . ,m. With this, the probability that there is a cell which contains none of
the vectors ξ1, . . . , ξn can be estimated from above by

P
(
∃i : {ξ1, . . . , ξn} ∩ Ω(νi) = ∅

)
≤

m∑
i=1

P
(
{ξ1, . . . , ξn} ∩ Ω(νi) = ∅

)
≤ m(1− p)n.

Since
∑∞
n=1m(1− p)n <∞, it follows from the Borel-Cantelli lemma that every cell

contains at least one point almost surely as n tends to infinity. This means that the
mesh norm of the sequence ξ1, . . . , ξn can at most be ε.
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5.3. Asymptotic properties of the AI estimator

Theorem 5.5. Let ξ1, ξ2, . . . be a sequence of i.i.d. random unit vectors with non-
negative density with respect to the spherical surface measure. Then

sup
η∈Sd−1

∣∣E ϕ̂γ(η)− ϕγ(η)
∣∣ −→
n→∞

0.

If additionally ψγ is Lipschitz continuous, and the observation window radii fulfill
ρ(n) ≥ c1 · n(1+c2)/(d−1) for some c1, c2 > 0,

sup
η∈Sd−1

∣∣ϕ̂γ(η)− ϕγ(η)
∣∣ −→
n→∞

0

holds almost surely.

Proof. This is a direct consequence of Lemma 5.5 in combination with Theorem 5.3
and Theorem 5.4, respectively.

We conclude this section with a result on the estimator λ̂ introduced in (5.6).

Proposition 5.2. If the symmetrized mesh norm h∗(ξ1n, . . . , ξnn) of the measure-
ment directions tends to 0, and ρ(n) ≥ c1 n

(1+c2)/(d−1) for some constants c1, c2 > 0,
then the estimator λ̂ for the intensity of Ξ is strongly consistent for n→∞.

Proof. For ε > 0, we have

P(|λ̂− λ| > ε) = P
(∣∣∣∣ 1

2κd−1

n∑
i=1

Yi
κd−1 ρd−1 ∆i − λ

∣∣∣∣ > ε

)

≤ P
(∣∣∣∣ 1

2κd−1

n∑
i=1

Yi − EYi
κd−1 ρd−1 ∆i

∣∣∣∣ > ε

2

)
+ P

(∣∣∣∣ 1
2κd−1

n∑
i=1

EYi
κd−1 ρd−1 ∆i − λ

∣∣∣∣ > ε

2

)
. (5.7)

The first probability in (5.7) can be estimated from above by repeating the steps
in the proof of Lemma 5.3,

P
(∣∣∣∣ 1

2κd−1

n∑
i=1

Yi − EYi
κd−1 ρd−1 ∆i

∣∣∣∣ > ε/2
)
≤

ω2
d−1 λ

κ3
d−1 ρ

d−1 ε2 .

For the second summand in (5.7), it follows from [Gar06, p. 428] that∫
Sd−1

(C ϕ)(ξ) dξ =
∫
Sd−1

∫
Sd−1
|〈ξ, ν〉|ϕ(ν) dν dξ =

∫
Sd−1

∫
Sd−1
|〈ξ, ν〉|dξ ϕ(ν) dν

= 2κd−1.

Combined with the Lipschitz continuity of C ϕ, this leads to∣∣∣∣∣
n∑
i=1

(C ϕ)(ξi) ∆i − 2κd−1

∣∣∣∣∣ ≤ 2
n∑
i=1

∫
Ωi

∣∣∣(C ϕ)(ξi)− (C ϕ)(ξ)
∣∣∣ dξ ≤ ωd h∗(ξ1n, . . . , ξnn).
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5. The approximate inverse (AI) estimator for directional distributions

With EYi = λ (C ϕ)(ξi), this shows that the second term in (5.7) is 0 for n large
enough since h∗(ξ1n, . . . , ξnn) tends to 0.
In combination, this means that the sum

∑∞
n=1 P(|λ̂(n) − λ| > ε) is finite if∑∞

n=1 1/ρ(d−1) is. This is clearly the case under the condition on ρ(n) above. The
claim follows from the Borel-Cantelli lemma.

5.3.2. Berry-Esseen bounds

In this section, we show how for some fixed η ∈ Sd−1 the estimator ϕ̂γ(η) can be
written as a compound Poisson process and use some well-known results to derive
Berry-Esseen bounds, see [KS10]. Since we are interested in the distribution of ϕ̂γ ,
we can simplify the notation in the following way. The line process is stationary, so
instead of increasing the radius of the observation window, we can also increase the
intensity, which will have the same effect on the estimator. Thus, it suffices to let λ
tend to infinity and restrict to ρ = 1, i.e., ρW = W .
We begin with some notation. Denote by NW the number of the observed lines,

i.e., lines which hit W , thus NW ∼ Poi(κd−1λ). Introducing the symbol QW for the
distribution of a typical line of Ξ hitting W , we obtain that Ξ is distributed as the
set of the i.i.d. lines L1, . . . , LNW with distribution QW , which are independent of
NW .
The definition of the estimator

ϕ̂γ(η) =
n∑
i=1

Ỹi ψγ(η, ξi) ∆i.

can be rewritten as follows. For a line l, let ϕ̂γ(l, η) be the estimator for the process
when Ξ ∩W = {l} ∩W . Analogously, define Ỹi(l) = 1

κd−1 λ
1{l ∩ ξi ∩W 6= ∅}. This

leads to

ϕ̂γ(η) =
∑
l∈Ξ

ϕ̂γ(l, η) =
∑
l∈Ξ

n∑
i=1

Ỹi(l)ψγ(η, ξi) ∆i
d=
NW∑
j=1

n∑
i=1

Ỹi(Lj)ψγ(η, ξi) ∆i.

As the terms
∑n
i=1 Ỹi(Lj)ψγ(η, ξi) ∆i, j = 1, 2, . . . are i.i.d. random variables, this

means that ϕ̂γ(η) has a compound Poisson distribution with size NW and summands∑n
i=1 Ỹi(L0)ψγ(η, ξi) ∆i, where L0 ∼ QW is a typical line of Ξ hitting W . Thus, we

can apply the following well-known result, where we use the constant for the upper
bound from [KS10].

Lemma 5.6. Let SN = X1 + · · ·+XN be a compound Poisson process, the random
variables X1, X2, . . . being uniformly distributed with E |X1|3 <∞, N ∼ Poi(µ), and
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5.3. Asymptotic properties of the AI estimator

N,X1, X2, . . . are independent, then

sup
x

∣∣∣∣∣P
(
SN − µEX1√
µE |X1|2

≤ x
)
− Φ(x)

∣∣∣∣∣ ≤ 0.3041 E |X1|3(
E |X1|2

)3/2 √
µ
.

Together with the considerations above, this can be used to arrive at the main
result of this section.

Theorem 5.6. Let η ∈ Sd−1, L0 be a typical line of Ξ hitting W , and ϕ̂γ(L0, η) as
above. If |ψγ | is bounded,

sup
x
|Fλ(x)− Φ(x)| ≤ 0.3041 E (κd−1 λ |ϕ̂γ(L0, η)|)3(

E (κd−1 λ ϕ̂γ(L0, η))2
)3/2√

κd−1 λ
, (5.8)

where Fλ(x) = P
(
ϕ̂γ(η)−κd−1 λ E ϕ̂γ(L0,η)√

κd−1 λ E ϕ̂γ(L0,η)2 ≤ x
)
.

Proof. Since the reconstruction kernel ψγ is bounded, for the third moment we have
E(κd−1 λ |ϕ̂γ(L0, η)|)3 ≤ ω3

d−1 ψ
3
γ < ∞, see Theorem 5.7. Thus, Lemma 5.6 can be

applied with µ = λκd−1.

One should remark that on the right hand side of (5.8) we have expanded the
fraction by κ3

d−1 λ
3 because then the expectation values do not depend on λ (and

κd−1).
With Theorem 5.6, it remains to derive (bounds for) the second and third absolute

moment of
∑n
i=1 Ỹi(L0)ψγ(η, ξi) ∆i. This makes it in particular necessary to deter-

mine the mixed moments of Y1, . . . , Yn, i.e., the probability that the typical line hits
a set of test hyperplanes within the observation window. For notational ease we as-
sume that these are the first m of our test hyperplanes, i.e., ξ⊥1 , . . . , ξ⊥m for m = 1, 2.
To avoid longish formulas, we use an upper bound for the third moment. For this
calculation, we introduce the notation

H1,...,m = Hξ1,...,ξm =
{
l ∈ A(d, 1) : l ∩ ξ⊥1 ∩W 6= ∅, . . . , l ∩ ξ⊥m ∩W 6= ∅

}
,

where A(d, 1) is the set of all lines in Rd. H1,...,m is the set of all lines which hit the
hyperplanes ξ⊥1 , . . . , ξ⊥m within W , which means that

QW (H1,...,m) = P(L0 ∩ ξ⊥1 ∩W 6= ∅, . . . , L0 ∩ ξ⊥m ∩W 6= ∅) = EY1(L0) · · ·Ym(L0).
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5. The approximate inverse (AI) estimator for directional distributions

Theorem 5.7. Let the conditions of Theorem 5.6 hold.

1) If the measurement directions ξ1, . . . , ξn are deterministic,

E
[
κd−1 λ ϕ̂γ(L0, η)

]
=

n∑
i=1

(C ϕ)(ξi)ψγ(η, ξi) ∆i,

E (κd−1 λ ϕ̂γ(L0, η))2 =
n∑
i=1

n∑
j=1

ψγ(η, ξi)ψγ(η, ξj) ∆i ∆j QW (Hi,j)

do not depend on λ.

2) If the measurement directions ξ1, . . . , ξn are i.i.d. with common density ζ and
independent of Ξ, then

E
[
κd−1 λ ϕ̂γ(L0, η)

]
= 2n

∫
(Sd−1)n

ψγ(η, ν1)ωd
(
Ω1(ν1, . . . , νn)

)
QW (Hν1) ζ(ν1) · · · ζ(νn) d(ν1, . . . , νn),

E(κd−1 λ ϕ̂γ(L0, η))2

= nE
[
ψ2
γ(η, ξ1) ∆2

1 Y1(L0)
]

+ n(n− 1)E
[
ψγ(η, ξ1)ψγ(η, ξ2) ∆1 ∆2 Y1(L0)Y2(L0)

]
,

where ωd(·) denotes the spherical Lebesgue measure, Ω1(ν1, . . . , νn) is the Voronoi
cell at ν1 induced by the points ν1, . . . , νn,−ν1, . . . ,−νn, and

E
[
ψ2
γ(η, ξ1) ∆2

1 Y1(L0)
]

= 4
∫

(Sd−1)n
ψγ(η, ν1)2 ωd

(
Ω1(ν1, . . . , νn)

)2
QW (Hν1)ζ(ν1) · · · ζ(νn) d(ν1, . . . , νn),

E
[
ψγ(η, ξ1)ψγ(η, ξ2) ∆1 ∆2 Y1(L0)Y2(L0)

]
= 4

∫
(Sd−1)n

ψγ(η, ν1)ψγ(η, ν2)ωd
(
Ω1(ν1, . . . , νn)

)
ωd
(
Ω2(ν1, . . . , νn)

)
QW (Hν1,ν2)

ζ(ν1) · · · ζ(νn) d(ν1, . . . , νn).

3) For both the deterministic and the i.i.d. case,

E
(
κd−1 λ |ϕ̂γ(L0, η)|

)3 ≤ ω3
d−1 ψ

3
γ .

Proof. At first, let ξ1, . . . , ξn be deterministic. Since ENW = κd−1 λ we get with
Wald’s identity

E
[
κd−1 λ ϕ̂γ(L0, η)

]
= E

NW∑
j=1

ϕ̂γ(L0, η) = E ϕ̂γ(η) =
n∑
i=1

(C ϕ)(ξi)ψγ(η, ξi) ∆i,
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5.3. Asymptotic properties of the AI estimator

which yields the first claim. With

EYi(L0)Yj(L0) = P(L0 ∩ ξ⊥i ∩W 6= ∅ and L0 ∩ ξ⊥j ∩W 6= ∅) = QW (Hi,j),

we get

E(ϕ̂γ(L0, η))2 = E
( n∑
i=1

Ỹi(L0)ψγ(η, ξi) ∆i

)2

= 1
κ2
d−1 λ

2

n∑
i=1

n∑
j=1

ψγ(η, ξi)ψγ(η, ξj) ∆i ∆j QW (Hi,j).

To prove the second statement, we calculate

E
[
κd−1 λ ϕ̂γ(L0, η)

]
= κd−1 λ E

[ n∑
i=1

Ỹi(L0)ψγ(η, ξi) ∆i

]
= nE

[
Y1(L0)ψγ(η, ξ1) ∆1

]
= n

∫
(Sd−1)n

E
[
ψγ(η, ξ1) ∆1 Y1(L0)

∣∣ ξ1 = ν1, . . . , ξn = νn
]
ζ(ν1) · · · ζ(νn) d(ν1, . . . , νn)

= 2n
∫

(Sd−1)n
ψγ(η, ν1)ωd

(
Ω1(ν1, . . . , νn)

)
QW (Hν1) ζ(ν1) · · · ζ(νn) d(ν1, . . . , νn),

and for the second moment, we get

E(κd−1 λ ϕ̂γ(L0, η))2

= n
n∑
j=1

E
[
ψγ(η, ξ1)ψγ(η, ξj) ∆1 ∆j Y1(L0)Yj(L0)

]
= nE

[
ψ2
γ(η, ξ1) ∆2

1 Y1(L0)
]

+ n(n− 1)E
[
ψγ(η, ξ1)ψγ(η, ξ2) ∆1 ∆2 Y1(L0)Y2(L0)

]
,

where

E
[
ψγ(η, ξ1)ψγ(η, ξ2) ∆1 ∆2 Y1(L0)Y2(L0)

]
=
∫

(Sd−1)n
E
[
ψγ(η, ξ1)ψγ(η, ξ2) ∆1 ∆2 Y1(L0)Y2(L0)

∣∣∣ ξ1 = ν1, . . . , ξn = νn
]

ζ(ν1) · · · ζ(νn) d(ν1, . . . , νn)

= 4
∫

(Sd−1)n
ψγ(η, ν1)ψγ(η, ν2)ωd

(
Ω1(ν1, . . . , νn)

)
ωd
(
Ω2(ν1, . . . , νn)

)
QW (Hν1,ν2)

ζ(ν1) · · · ζ(νn) d(ν1, . . . , νn).

The calculation for E
[
ψ2
γ(η, ξ1) ∆2

1 Y1(L0)
]
can be done analogously.
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5. The approximate inverse (AI) estimator for directional distributions

For the third moment we get

E |κd−1 λ ϕ̂γ(L0, η)|3 = E
∣∣∣∣ n∑
i=1

Yi(L0)ψγ(η, ξi) ∆i

∣∣∣∣3

≤ ψ3
γ

n∑
i=1

n∑
j=1

n∑
k=1

∆i ∆j ∆k = ω3
d−1 ψ

3
γ .

Remark 5.6. Equation (5.2) is equivalent to QW (H1) = (C ϕ)(ξ1), so QW (H1) can
be replaced accordingly in the theorem above.

In the following, we derive specific formulas for the term QW (H1,2), which appears
in Theorem 5.7 for the most interesting dimensions d = 2, 3. It is convenient to define
the set H1,2(ν) = H1,2(−ν) as the subset of H1,2 containing the lines with direction
ν ∈ Sd−1. This can be regarded as a subset of ν⊥, and thus we get

QW (H1,2) =
∫

Sd−1

P
(
L0 ∩ ξ1 ∩W 6= ∅, L0 ∩ ξ2 ∩W 6= ∅

∣∣ L0 ∈ A(d, ν)
)
ϕ(ν) dν

=
∫
Sd−1

|H1,2(ν)|d−1
κd−1

ϕ(ν) dν,
(5.9)

where A(d, ν) is the set of all lines in Rd with direction ν.

Two-dimensional case

For the two-dimensional case, we introduce some special notation which seems to be
more common, see Section 5.1.1. Instead of even functions on the sphere, we consider
densities on the interval [0, π], where each value corresponds to an angle between a
vector and the x-axis. For simplicity, all functions, in particular the density ϕ, are
defined to be π-periodic. For unit vectors we use the notation ~ν := (cos ν, sin ν)T ,
where ν ∈ [0, 2π], and for the line through ~ν (and o) we write ν.
Furthermore, in this section ξij denotes the angle between the x-axis and the test

lines instead of the vectors orthogonal to the test hyperplanes, i.e., instead of counting
the intersections of Ξ and ~ν⊥, we define Yin := #(Ξ ∩ ξin ∩W ). Thus, the rose of
intersections is the sine transform of ϕ:

g(x) = λSϕ(x) = λ

∫ π

0
| sin(x− t)|ϕ(t) dt.

Because of (5.9), we need to calculate |H1,2(ν)|1. As it can be seen in Figure 5.1, for
one line, the measure of this set is |H1(ν)|1 = 2 sin |ν − ξ1|. Similarly, if we have two
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ξ1

~ν
2 sin |ν − ξ1|

Figure 5.1.: Example of lines with direction ~ν hitting one line ξ1

lines ξ1 and ξ2, we get |H1,2(ν)|1 = |H1(ν) ∩H2(ν)|1 = 2 sin(min{|ν − ξ1|, |ν − ξ2|}).
Assuming that ξ1 ≤ ξ2, this leads to the formula

QW (H1,2) = 1
2

∫ π

0

∣∣H1,2(ν)
∣∣
1 ϕ(ν) dν =

∫ π

0
sin
(

min{|ν − ξ1|, |ν − ξ2|}
)
ϕ(ν) dν

=

ξ2−ξ1
2∫

0

sin ν
(
ϕ(ξ1 + ν) + ϕ(ξ2 − ν)

)
dν +

π
2−

ξ2−ξ1
2∫

0

sin ν
(
ϕ(ξ2 + ν) + ϕ(ξ1 − ν)

)
dν.

Example. In the case of uniformly distributed directions (ϕ(x) = 1/π), the formulae
for QW (H1,...,m) can be simplified to

QW (H1) = Sϕ(ξ1) = 2
π

∫ π/2

0
sin ν dν = 2

π

and

QW (H1,2) = 2
π

( ξ2−ξ1
2∫

0

sin ν dν +

π
2−

ξ2−ξ1
2∫

0

sin ν dν
)

= 2
π

[
2−
√

2 cos
(
π

4 −
ξ2 − ξ1

2

)]
,

(5.10)

where we used an addition rule for the cosine.

Three-dimensional case

Here, H1,2(ν) is ξ⊥1 ∩B1(o) projected onto ν⊥ intersected with ξ⊥2 ∩B1(o) projected
onto ν⊥, i.e., H1,2(ν) = πν⊥(ξ⊥1 ∩ B1(o)) ∩ πν⊥(ξ⊥2 ∩ B1(o)), where πν⊥ denotes the
projection onto the plane ν⊥, see Figure 5.2.
This means that H1,2(ν) is the intersection of two ellipses with major axis length

1 and minor axis lengths |〈ν, ξ1〉| and |〈ν, ξ2〉|, respectively. The angle between the
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Figure 5.2.: Sketch of the projection of ξ⊥1 ∩ B3
1(o) onto ν⊥. Here, we have

ν = (0, 0, 1)T and ξ1 =
(
0, 1/

√
5, 2/

√
5
)T .

major axes is the same as the angle between πν⊥ξ1 and πν⊥ξ2 and can be determined
easily. For the calculation of the intersection area see Appendix A.3. Then

QW (H1,2) =
∫
S2

|H1,2(ν)|2
π

ϕ(ν) dν. (5.11)

Application: testing the directional distribution

In this section, we present some tests of the directional distribution of a stationary
PLP Ξ, i.e., we want to test the hypothesisH0 : ϕ = ϕ0 vs.H1 : ϕ 6= ϕ0 for some sym-
metric density ϕ0 on the unit sphere, where the uniform distribution (i.e., isotropy)
is of course the most interesting. We denote by P0 the probability measure under
the null hypothesis, and analogously we write E0, Cov0, and QW,0. For simplicity,
we restrict to the case when the measurement directions ξ1, . . . , ξn are deterministic.
As shown in Theorem 5.6, an asymptotic test on the density in one point η can be

constructed with the asymptotically standard Gaussian distributed random variable

ϕ̂γ(η)− κd−1 λ E0 ϕ̂γ(L0, η)√
κd−1 λ E0 ϕ̂γ(L0, η)2

d−→
ρ→∞

N(0, 1). (5.12)

This test is of course only applicable for large ρ. Note that alternative expressions
for the expectation values have been derived in Theorem 5.7.
One problem of this test is the choice of η. If several independent realizations of

the PLP are available, an asymptotic χ2-test can be constructed using (5.12) with a
different η for each realization. If only one realization can be observed, several direc-
tions (denoted by η1, . . . , ηm) can be taken into account with the following approach.
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5.3. Asymptotic properties of the AI estimator

The vector of the random variables

Xi := ϕ̂γ(ηi)− κd−1 λ E0 ϕ̂γ(L0, ηi)√
κd−1 λ E0 ϕ̂γ(L0, ηi)2

, i = 1, . . . ,m (5.13)

has an asymptotic multivariate normal distribution, which can easily be seen with
Lemma 5.6, since for any linear combination a central limit theorem holds. Further-
more, their expectation is zero, and the covariance is independent of λ, since

Cov0(Xi, Xj) = Cov0(ϕ̂γ(ηi), ϕ̂γ(ηj))

κd−1 λ
√
E0 ϕ̂γ(L0, ηi)2

√
E0 ϕ̂γ(L0, ηj)2

=
∑n
k=1

∑n
l=1 ψγ(ηi, ξk)ψγ(ηj , ξl) ∆k ∆lQW,0(Hk,l)√

E0(κd−1 λ ϕ̂γ(L0, ηi))2
√
E0(κd−1 λ ϕ̂γ(L0, ηj))2

,

where we used that

Cov(ϕ̂γ(ηi), ϕ̂γ(ηj)) = Cov
(

n∑
k=1

Yk
κd−1λ

ψγ(ηi, ξk) ∆k,
n∑
l=1

Yl
κd−1λ

ψγ(ηj , ξl) ∆l

)

= 1
κ2
d−1 λ

2

n∑
k=1

n∑
l=1

ψγ(ηi, ξk)ψγ(ηj , ξl) ∆k ∆l Cov(Yk, Yl)

= 1
κd−1 λ

n∑
k=1

n∑
l=1

ψγ(ηi, ξk)ψγ(ηj , ξl) ∆k ∆lQW (Hk,l).

It follows from the Cramér-Wold theorem that the random variable XTK−1
X X is

asymptotically χ2
m-distributed, where X = (X1, . . . , Xm)T , and KX is the covariance

matrix of X for some λ > 0. The resulting rule for a level α test is to reject the null
hypothesis if XTK−1

X X > χ2
m,1−α.

This is most interesting when the null hypothesis is that the process is isotropic.
Then, for QW (Hk,l), one can use formula (5.10) in the two-dimensional case and
formula (5.11) in the three-dimensional case with ϕ ≡ 1/4π.

5.3.3. Large deviations

Another interesting asymptotic property of the estimator ϕ̂γ is the large deviation
behavior. The following result is based on Cramér’s theorem, see [dH00, Theorem I.4].

Theorem 5.8. Let ρ = 1. It holds that for a > E ϕ̂γ(η)

lim
λ→∞

1
λ

logP(ϕ̂γ(η) ≥ a) = −I(a),
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and similarly, for a < E ϕ̂γ(η), we have

lim
λ→∞

1
λ

logP(ϕ̂γ(η) ≤ a) = −I(a).

The rate function is given by

I(z) = sup
t∈R

[
zt− κd−1

(
mϕ̃γ(L0)(t)− 1

)]
for ϕ̃γ(L0) = 1

κd−1

∑n
k=1 Yk(L0)ψγ(η, ξk) ∆k, where L0 ∼ QW is a typical line and

mϕ̃γ(L0)(t)

=
n∑
j=1

∑
1≤i1<···<ij≤n

exp
{

t

κd−1

j∑
k=1

ψγ(η, ξik) ∆ik

}
P
(
Y ∗i1,...,ij (L0) = 1

)
.

(5.14)

Here, we use the notation mX(t) = E etX for the moment generating function of a
random variable X and introduce

Y ∗i1,...,ij ( · ) =
∏

k∈{i1,...,ij}
Yk( · )

∏
k∈{i1,...,ij}c

(1− Yk( · )),

i.e., for l ∈ A(d, 1) we have Y ∗i1,...,ij (l) = 1 if and only if l hits the test hyperplanes
ξi1 , . . . , ξij (and no others) within W .

Proof. We use the idea with the compound Poisson distribution from Section 5.3.2
and additionally note that for integer λ and i.i.d. random variables N1, . . . , Nλ with
N1 ∼ Poi(κd−1) we have

∑λ
i=1Ni

d= NW , as NW ∼ Poi(κd−1 λ). Assuming that
N1, . . . , Nλ are independent of the i.i.d. random lines Lij ∼ QW for i, j ≥ 1, we get

ϕ̂γ(η) d=
λ∑
i=1

Ni∑
j=1

ϕ̂γ(Lij , η) = 1
λ

λ∑
i=1

Ni∑
j=1

1
κd−1

n∑
k=1

Yk(Lij)ψγ(η, ξk) ∆k.

Thus, ϕ̂γ(η) can be written as the average of λ i.i.d. random variables.
To apply Cramér’s theorem, it remains to calculate the moment generating function

of
∑N1
j=1Xj , where Xj = 1

κd−1

∑n
k=1 Yk(L1j)ψγ(η, ξk) ∆k = ϕ̃γ(L1j) which can be

done with [Mit97, Lemma 3.1]:

m∑N1
j=1 Xj

(t) = mN1 [logmX1(t)] = exp
{
κd−1(exp [logmX1(t)]− 1)

}
= exp

{
κd−1 (mX1(t)− 1)

}
.
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Thus, we arrive at (5.14) by calculating

mX1(t) = E etX1 = E exp
{

t

κd−1

n∑
i=1

Yi(L0)ψγ(η, ξi) ∆i

}

= E
n∑
j=1

∑
1≤i1<···<ij≤n

exp
{

t

κd−1

j∑
k=1

ψγ(η, ξik) ∆ik

}
1
{
Y ∗i1,...,ij (L0) = 1

}

=
n∑
j=1

∑
1≤i1<···<ij≤n

exp
{

t

κd−1

j∑
k=1

ψγ(η, ξik) ∆ik

}
P
(
Y ∗i1,...,ij (L0) = 1

)
.

Note that some summands in (5.14) are zero because it is not possible that one
line hits an arbitrary set of test hyperplanes within the observation window, only
sequences of neighboring hyperplanes can be intersected.

5.4. Numerical experiments with simulated data
In this section, we present the results of some numerical experiments. As already
mentioned, it is a well-known approach to estimate the directional distribution of
fiber processes by counting intersections with test planes and applying an inversion
of the cosine transform to retrieve the directional distribution. In the following, we
perform numerical simulations and apply the method introduced in this chapter to
the data, i.e., we calculate the values of the estimator ϕ̂γ . We also apply other
approaches and compare the results.

5.4.1. Two-dimensional case

For the 2D case, we compare our approach to other methods for the estimation of
the directional distribution, namely a Fourier method as described in [MN80] and
a method suggested by Digabel (see [Dig75]). An overview of such estimators can
be found in [RS92]. For our tests we assume that we can access the data, i.e., the
estimation of the rose of intersections, at the angles ξi = (i−1)π

100 , i = 1, . . . , 100 and
use the same points to evaluate the results. For all reconstructions, we use the same
parameters. Depending on the degree of distortion resulting from the estimation of
the cosine transform of the density, the smoothing is sometimes a little too much or
too less. For our approach we use the polynomial kernel with parameters ν = 5 and
γ = 0.4. The parameter for Digabel’s method has been chosen such that the results
are similar to the ones of our approach.
A first analysis (see Figure 5.3) shows the results of the methods applied to a the-

oretical cosine transform of a density, in this case a mixture of a von Mises and
a beta distribution. The von Mises density on the interval [0, 2π) is defined as
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5. The approximate inverse (AI) estimator for directional distributions

fvM(x) = exp{κ cos(x−µ)}
2π I0(κ) , for µ ∈ [0, 2π), κ > 0, where I0 is the modified Bessel func-

tion of order zero. Thus, the function f̃vM(x) = fvM(x) + fvM(x+ π) is a probability
density on [0, π). The beta density on [0, 1] is defined as fβ(x) = 1

B(α,β)x
α−1(1−x)β−1,

where α, β > 0, and B(·, ·) is the beta function. To get a density function on [0, π)
we have simply rescaled it accordingly. For the density presented here, we chose the
parameters κ = 10, µ = 1 for the von Mises distribution and α = 2, β = 10 for the
beta distribution, respectively.
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Figure 5.3.: Comparison of the three reconstruction methods on theoretical data

In our first simulation study we simulate a PLP in the unit ball with intensity
10 000 and count the intersections with the set of test lines analytically. For each
direction we consider only one test line, namely the one through the origin, which
produces highly distorted data. The results can be found in Figure 5.4.
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Figure 5.4.: Comparison of the methods on simulated data in the unit ball,
intersections counted analytically

For our second simulation study we have considered PCPs with radius 3 and inten-
sity 25 in the unit square. These processes have been voxelized with a resolution of
1000 x 1000 pixels, i.e., a cylinder is 6 pixels thick. Then the images are skeletonized
with the software Avizo which produces a set of line segments as result. With this
set we have estimated the rose of intersections taking an average over 10 simulations.
Since the intensity is always underestimated considerably we renormalized the graphs
to get a valid density function. The results are depicted in Figure 5.5.
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Figure 5.5.: Comparison of the methods on simulated voxel data in the unit square,
intersections counting based on skeletonization

Remark 5.7. The apparent similarity of the curves resulting from the AI method
and Digabel’s approach is not surprising but to be expected, because both methods
base on the notion presented in Proposition 5.1. In other words, both are based on
the second derivative of the rose of intersections.

5.4.2. Three-dimensional case

We compare our results with a method introduced in [KP05] (called Kiderlen and
Pfrang’s method or “KP method” in the following for briefness). We use the least
square ansatz, which is given in their paper: Assuming that the value of the cosine
transform in n directions is available, the proposed loss-free discretization becomes
a least squares problem with n(n−1)

2 unknowns, so the number of unknown grows
quadratically in the number of measurement points. Here, we consider 900 directions
which leads to 404 550 unknowns. The solution is an even discrete measure on the
sphere which is concentrated on the directions which are orthogonal to two of the
directions ξ1, . . . , ξn. Of course the solution of this optimization problem is much more
expensive than the reconstruction with our method, and furthermore the calculating
time depends on the input.
To show the effectiveness of the estimator introduced in Section 5.2, we carry out

two simulation studies with stationary PLPs and PCPs, respectively, and compare it
to the KP method.
In the first experiment we simulate stationary PLPs in the observation window

B3
1(o). For each measuring direction ξi, i = 1, . . . , n, we intersect the process with the

orthogonal plane ξ⊥i and analytically determine the number of intersections. Finally,
we use the method described in Section 5.1.2 and (5.2) to estimate the directional
distribution of the PLP. For all reconstructions, we use the regularization parameter
γ = 0.22.
First, we consider PLPs with a mixed von Mises-Fisher directional distribution.

The density of a von Mises-Fisher distributed random vector can be written as
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5. The approximate inverse (AI) estimator for directional distributions

fµ,κ(x) = c(κ) exp{κ〈µ, x〉}, where c(κ) =
√
κ

(2π)3/2I1/2(κ) , and Ir denotes the modi-
fied Bessel function of first kind and order r. We consider the following symmetric
mixed distribution with three peaks: f(η) = 1

6
∑3
i=1(fµi,25(η) + f−µi,25(η)), where

µ1 = 1/
√

1.02(1, 0.1,−0.1)T , µ2 = (0, 1, 0)T , and µ3 =
√

4/17(−1,−1.5, 1)T .
Figure 5.6 shows the estimates. It should be mentioned that these data sets are

generated by only one simulation of the process, so they can be seen as strongly
perturbed data.

(a) Density function (b) AI method (c) KP method + smoothing

Figure 5.6.: Mixed von Mises-Fisher distribution (process intensity = 1000)

As a second example we consider the directional fiber distribution introduced in
[SPRB+06], which is used in modeling foams or granular porous media. The density
of the directional distribution, which is independent of the azimuth angle φ, is given
by

p(φ, θ) = β

4π [1 + (β2 − 1) cos2 θ]3/2
, θ ∈ [0, π]. (5.15)

The parameter β is called anisotropy parameter. In the case β = 1 this is the density
of the directional distribution of an isotropic fiber process. For increasing β, the fibers
tend to be more and more parallel to the xy-plane (the material plane). We choose
β = 3 in our experiment. Figure 5.7 shows the density function and its reconstruction
based on one or 5 realizations respectively of the corresponding PLPs.
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5.4. Numerical experiments with simulated data

(a) Density function (b) AI method (c) AI method

(d) KP method + smoothing (e) KP method + smoothing

Figure 5.7.: Reconstruction of the distribution defined in (5.15)
(reconstructions from one realization (middle), reconstructions from 5
realizations (right))

Again the KP method followed by additional kernel smoothing leads to similar
results, where a suitable choice of the smoothing parameter is crucial. For these two
distributions the L2-error of the smoothed KP method is only a little bit smaller
than the error of our method since in the large regions with zero density our method
shows some small values in contrast to the KP method (cf. Figure 5.7).
In a further experiment, we have simulated stationary PCPs with radius 0.005,

different directional distributions, and intensity 500 in the unit cube. The union sets
of these PCPs have been voxelized with a resolution of 500 voxels per unit length to
generate a setting similar to the analysis of microscopic images, see Figure 5.8.
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5. The approximate inverse (AI) estimator for directional distributions

Figure 5.8.: Cylinder process in the unit cube with directional distribution as defined
in (5.15) (β = 3), intensity 200, and cylinder radius 0.01

Counting the intersection points of a plane with the voxelized image is a rather
difficult task, since cylinders which are (almost) parallel to the plane may be counted
multiple times, while overlapping cylinders may be counted only once. Unfortunately,
this effect also depends on the direction of the plane, so with the approach to discretize
the plane and count the intersections in the resulting images, it seems impossible to
generate estimates without heavy systematical bias. To overcome this problem, we
have skeletonized the data with the 3D image analysis software Avizo and estimated
the intersection intensities with the resulting skeleton. Here we have also computed
the values for 900 directions. Figure 5.9 shows the reconstructions from voxelized
data.

(a) AI method (b) KP method
and smoothing

(c) AI method (d) KP method
and smoothing

Figure 5.9.: Reconstruction from voxelized data: mixed von Mises distribution (left),
distribution as defined in (5.15) (right)
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5.5. Application to real data

5.4.3. Asymptotic behavior for growing observation window radius

For applications, it is important to know how good the normal approximation of
the test statistics in Section 5.3.2 is at a certain radius and intensity. Thus, in a
further experiment we analyze simulation data with different observation window
radii for the most important case, the uniform distribution (i.e., isotropy). For this,
we have simulated 100 000 independent copies of a stationary isotropic PLP with
intensity 1 in balls with different radii. For different observation window radii, we
have analyzed the deviation of the distribution of the Xi as defined in (5.13) from the
standard Gaussian distribution, where the expectation values in the definition have
been computed numerically by Martin Riplinger with Theorem 5.7 and the results
from Section 5.3.2. To evaluate the results, we have split our simulation data into
100 groups of size 1000. For each group, we have conducted a level 0.05 Kolmogorov-
Smirnoff and Shapiro-Wilk test. In Table 5.1, the rejection rates are listed for different
radii at the exemplary point (−0.40382,−0.23972, 0.88287)T , which we have selected
from 20 random points because the values seem representative. We consider three of
the point sets in [SW04] as measurement points. At a radius between 15 and 20, the
approximation seems to be reasonably good with γ = 0.2. For differing values of γ,
convergence gets slower.

49 points 100 points 225 points
KS test SW test KS test SW test KS test SW test

radius 5 0.19 0.05 0.46 0.15 0.28 0.02
radius 10 0.13 0.1 0.13 0.07 0.11 0.08
radius 15 0.08 0.07 0.09 0.04 0.08 0.05
radius 20 0.07 0.07 0.06 0.08 0.08 0.06

Table 5.1.: Rejection rates for level 0.05 Kolmogorov-Smirnoff and Shapiro-Wilk tests
at different radii and measurement point sets. The hypothesis of isotropy
is being tested for an isotropic sample. γ = 0.2 for all reconstructions.

5.5. Application to real data

In the following, we present the results of our algorithm applied to real microscopic
data. For this purpose, we examine images of the gas diffusion layer of a polymer
electrolyte membrane fuel cell (with kind permission of the Centre for Solar Energy
and Hydrogen Research, Ulm).
For both the two- and the three-dimensional data we have first applied the skele-

tonization algorithm of Avizo, then estimated the rose of intersections analytically
with the resulting set of line segments, and finally applied our method to approxi-
mately invert the cosine transform.
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5. The approximate inverse (AI) estimator for directional distributions

5.5.1. Two-dimensional microscopic images

In this section, we analyze 10 electron microscopic images of 10 different gas diffusion
layers of the same kind. One of them can be seen in Figure 1.1a. Each has a resolution
of 1024 x 696 pixels and shows different layers of the fiber tissue. The fibers are
approximately 6 pixels thick.
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Figure 5.10.: Smoothed data from the line segments of the skeleton and the result of
our algorithm

In Figure 5.10 we present the result of our reconstruction compared to a kernel
density estimation based on the directions of the lines and weighted with the length
of the lines of the skeleton. This shows that our method works well to reconstruct
the directional distribution of two-dimensional real data, as the result of our method
is very close to the original data from the skeletonization.

5.5.2. Three-dimensional synchrotron images

Here, we reconstruct the directional distribution of one synchrotron image with a
resolution of approximately 1000 x 1000 x 200 voxels, see also Figure 5.11, where a
cut-out of the skeleton generated by Avizo can be seen.
Because of the production process the directional distribution of the fibers should

be approximately isotropic with respect to the x-y plane, which is also shown in
our reconstruction. As it can be seen in the smoothed raw data (i.e., the directions
and lengths of the segments) from the Avizo skeleton in Figure 5.12a, again there
is an artifact in the reconstruction from the skeletonization, the values at the axis
directions are too low, whereas at the bisector they are too high. Of course, this
can be seen in our reconstruction (cf. Figure 5.12b) as well, although this is not a
problem of our method but of the input data. Thus, this shows that our method
works well on real three-dimensional data.
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Figure 5.11.: Skeleton of a 3D image of a GDL, generated with Avizo

(a) Kernel density estimation,
based on the raw data

(b) Reconstruction with
AI method

(c) Reconstruction with the
KP method + smoothing

Figure 5.12.: Reconstruction from real data, both reconstructions are based on the
skeleton generated by Avizo

5.6. Concluding remarks and open questions

• In [LRSS11], a regularization method for the AI-estimator in the 2D and 3D case
can be found along with a more in-depth analysis of the numerical properties.
Furthermore, the numerical stability of the integration on the sphere S2 is
discussed.

• The skeleton generated by Avizo can also be used to directly estimate the
directional distribution of a fiber system, see Section 5.5. However, in our
setting, we assume that only the intersection counts of the process with some
test hyperplanes can be observed and not the full information about the process.
Hence, this estimator does not seem to be appropriate for comparison to the
AI estimator and has not been used in the simulation studies.
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5. The approximate inverse (AI) estimator for directional distributions

• For the analysis of PLPs in Rd, there are still some open problems, including
the regularization in arbitrary dimension. Functional limit theorems for the
supremum considered in Section 5.3.1 are missing as well. One could also
consider certain assumptions on the directional distribution, for example in
case d = 3 isotropy in the xy-plane, which is also interesting for applications.

• Further ideas for future work are extended simulation studies, most interesting
of course in the 3-dimensional case. These could involve the implementation of
other (dilated) fiber processes and also the comparison of different mollifiers.

• One should also mention the ongoing project in which different estimators for
the directional distribution in R3 are compared, see [ARR+11]. In this paper,
a detailed comparison of the best-known estimators is given, where various
simulated data with different process types and parameters and also some real
data is taken into account.
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A. Appendix

A.1. The relatedness of the two definitions of a PCP in
Section 2.2

In this section, we show that the process Π(d,k)
cyl (λ,Q) defined in Section 2.2.2 is a

PCP as introduced in Section 2.2.1 and give conditions under which the process is
stationary and has a locally finite intensity measure.

Proposition A.1. Let Πλ,Q be an independently marked Poisson process with in-
tensity λ and mark distribution Q acting on B(Γd,k), where Γd,k = SOd

k ×Rod−k (see
Section 2.2.2). Additionally, we demand that E |Ξ0 ⊕ Bd−k

ε (o)|d−k < ∞ for some
ε > 0. Then the following assertions hold:

(a) There is a version of Π(d,k)
cyl (λ,Q) which is a PCP in the sense of the particle

process in Section 2.2.1.

(b) Π(d,k)
cyl (λ,Q) is stationary.

(c) The process has a locally finite intensity measure.

Proof. (a) It follows from the Theorems 12.3.5, 13.1.1, 13.2.1, and 13.2.2 in [SW08]
that the mapping

Rd−k × SOd
k ×Rod−k → Zk, (p, θ, C) 7→ θ((C + p)× Rk)

is continuous. Thus, the process Π(d,k)
cyl (λ,Q) is a (measurable) Poisson process

in the space of cylinders. It remains to show the local finiteness, which can
only be achieved in an almost sure sense.
Let C ∈ C be an arbitrary compact set and r the radius of the smallest centered
ball containing C. Then

P
(
#{Θi((Ξi + Pi)× Rk) ∩ C 6= ∅, i ≥ 1} <∞

)
≥ P

(
#{Θi((Ξi + Pi)× Rk) ∩Bd

r (o) 6= ∅, i ≥ 1} <∞
)

= P
(
#{(Ξi + Pi) ∩Bd−k

r (o) 6= ∅, i ≥ 1} <∞
)

= 1,
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where in the last formula we have the usual Boolean model {(Pi + Ξi), i ≥ 1}
in Rd−k. For this, it is known that the process is almost surely locally finite if
E |Ξ0 ⊕Bε(o)|d−k <∞ for some ε > 0, see [Hei05].

(b) Let B ∈ B(Zk) and x ∈ Rd. Then the distribution of Ξ(B) does not change
under translation of B by x, which can be seen by calculating

#
{ ∞⋃
i=1

Θi
(
(Pi + Ξi)× Rk

)
∩ (B + x)

}

= #
{ ∞⋃
i=1

Θi
(
(Pi −ΘT

i x+ Ξi)× Rk
)
∩B

}
d= #

{ ∞⋃
i=1

Θi
(
(Pi + Ξi)× Rk

)
∩B

}
,

where we used that the process {Pi −ΘT
i x, i ≥ 1} is also a stationary Poisson

process with intensity λ and independent of {(Θi,Ξi), i ≥ 1}.

(c) As in (a), let C ∈ C be an arbitrary compact set and r the radius of the smallest
centered ball containing C. Then analogously to (a) we calculate

Λ({Z ∈ Zk : Z ∩ C 6= ∅}) ≤ Λ({Z ∈ Zk : Z ∩Bd
r (o) 6= ∅})

= E#{(Ξi + Pi) ∩Bd−k
r (o) 6= ∅, i ≥ 1}

= E#{Pi ∈ −Ξ0 ⊕Bd−k
r (o), i ≥ 1}

= λ E |Ξ0 ⊕Bd−k
r (o)|d <∞.

The last inequality holds as E |Ξ0 ⊕ Bd−k
ε (o)|d−k < ∞, see [SW08, Theo-

rem 4.1.2].

A.2. Rubin’s inversion formula for the spherical Radon
transform

We explicitly calculate a formula for the inversion of the spherical Radon transform
introduced by Rubin in [Rub02]. It is based on a convolution-backprojection method,
thus, it is related with the method from Section 5.1.2. The method can be applied
for d ≥ 3, but we restrict ourselves to the most interesting case d = 3. Formally, our
aim is to reconstruct f from its spherical Radon transform Rf , where f ∈ L1

e(S2).
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As described in [Rub02, Sect. 5], for this, we need to find a function a : (0,∞)→ C
which is locally integrable and for which

λ(x) :=
(
I

1/2
0+

[
a(
√
s)√
s

])
(x) = 1

Γ(1/2)

∫ x

0

a(
√
s)√

s (x− s)
ds ∈ L1(0,∞), (A.1)

i.e., ∫ ∞
0

∣∣∣∣ ∫ x

0

a(
√
s)√

s (x− s)
ds
∣∣∣∣ dx <∞

with the Riemann-Liouville fractional integral

(Iα0+f)(t) = 1
Γ(α)

∫ t

0
f(x)(t− x)α−1 dx, t ≥ 0.

To avoid trivial (and useless) cases we assume that

γ =
√
π

∫ ∞
0

λ(x) dx 6= 0. (A.2)

Then with [Rub02, Theorem 5.1] we get

lim
ε→0

1
ε2

∫
η⊥
a

(sin[dgeo(x, ξ)]
ε

)
(Rf)(ξ) dξ = γ f(η), η ∈ S2.

Thus, it remains to find a locally integrable solution to (A.1) and the γ in (A.2).
Rubin suggests the following in [Rub02, Example 5.2]. For x ≥ 0 let

χα,m(x) =
(
d

d x

)m xm

(x+ i)1+α , m ∈ N, α > 0,

and

λα,m(x) =
(
Iα0+χα,m

)
(x) = im−αm!

Γ(1 + α)
xa

(x+ i)m+1 .

Now he suggests to choose α = 1/2 and λ(x) = λ1/2,m(x) for any m > 1/2, e.g., m = 1.
Further, he sets a(x) = xχ1/2,1(x2).
We calculate

χ1/2,1(s) = d

d s

s

(s+ i)3/2 =
(s+ i)3/2 − 3

2s(s+ i)1/2

(s+ i)3 =
(s+ i)− 3

2s

(s+ i)5/2 = −s+ 2i
2(s+ i)5/2

which leads to

a(x) = −x3 + 2ix
2(x2 + i)5/2 and λ(x) =

√
ix

Γ(3/2) (x+ i)2 .
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For the constant γ we calculate γ = π with the formula given in [Rub02, Example 5.2].
Since the real (or imaginary) part of a(·) is also locally integrable and fulfills

equations (A.1) and (A.2), this may be considered as well:

a∗(x) := Re a(x) =
−x3 cos

(
5
2 arctan 1

x2

)
+ 2x sin

(
5
2 arctan 1

x2

)
2(x4 + 1)5/4 ,

where we used

(s+ i)−5/2 =
(√

s2 + 1
)−5/2

exp
{
− 5

2 i arctan 1
s

}
=

cos
(

5
2 arctan 1

s

)
− i sin

(
5
2 arctan 1

s

)
(s2 + 1)5/4 .

This leads to the following inversion formula for the complex case:

lim
ε→0

1
ε2

∫
η⊥
a

(sin[dgeo(x, ξ)]
ε

)
(Rf)(ξ) dξ

= lim
ε→0

1
ε2

∫
η⊥

−
(

sin[dgeo(x, ξ)]/ε
)3 + 2i

(
sin[dgeo(x, ξ)]/ε

)
2
[ (

sin[dgeo(x,ξ)]
ε

)2
+ i
]5/2 (Rf)(ξ) dξ

= γf(η) = πf(η).

And in the real-valued case we get

lim
ε→0

1
ε2

∫
η⊥
a

(sin[dgeo(x, ξ)]
ε

)
(Rf)(ξ) dξ

= lim
ε→0

1
ε2

∫
η⊥

[
−

(sin[dgeo(x, ξ)]/ε)3 cos
(

5
2 arctan

(
ε/ sin[dgeo(x, ξ)]

)2)
2
[(

sin[dgeo(x, ξ)]/ε
)4 + 1

]5/4
+

sin[dgeo(x, ξ)] sin
(

5
2 arctan

(
ε/ sin[dgeo(x, ξ)]

)2)
ε
[(

sin[dgeo(x, ξ)]/ε
)4 + 1

]5/4
]
(Rf)(ξ) dξ

= γ∗ f(η),

where

γ∗ =
√
π

∫ ∞
0

λ∗(x) dx with λ∗(x) = 1
Γ(1/2)

∫ x

0

a∗(
√
s)√

s (x− s)
ds.

One should remark that since no smoothing has been applied, this method leads
to numerically very unstable results, as analyzed by Martin Riplinger in [LRSS11].
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A.3. Intersection area of two ellipses

We calculate the area of the intersection of two ellipses within the unit disk in R2

needed in Section 5.3.2. Our results allow the numerical calculation of Q(H1,2). It
suffices to consider centered ellipses with length 1 and arbitrary widths not exceeding
1. We denote the angle between their major axes by θ.
For the first ellipse E1, we assume without loss of generality that its major axis is

the first coordinate axis, and it has a width a1 with 0 < a1 ≤ 1, i.e.,

E1 =
{
(x, y)T : x2 + y2/a2

1 ≤ 1
}
.

The other ellipse E2 also has length 1, and the width is denoted by a2, assuming
again that 0 < a2 ≤ 1. Its major axis has an angle θ with respect to the first
coordinate axis. Formally,

E2 =
{
(x, y)T : (x cos θ + y sin θ)2 + (x sin θ − y cos θ)2/a2

2 ≤ 1
}
, (A.3)

see also Figure A.1.

a2

a1

θ

Figure A.1.: Draft of the two ellipses under consideration (E1 in blue, E2 in red)

For the calculation of |E1 ∩ E2|2, we consider the ellipses stretched by the factor
1/a1 in the y-direction. We denote this linear map by Y1/a1 . This operation depicts
E1 onto the unit circle, and E2 onto the ellipse Ẽ2 = Y1/a1E2. Our calculation
consists of two parts, namely the determination of the axis lengths of Ẽ2 (Lemma A.1)
and the calculation of the intersection area of a centered ellipse and the unit disk
(Lemma A.2).
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Lemma A.1. The square lengths of the axes of the ellipse Ẽ2 = Y1/a1E2, where E2
is defined in (A.3), are

λ1,2 = 1
2

[(
1 + a2

2
a2

1

)
cos2 θ +

( 1
a2

1
+ a2

2

)
sin2 θ

]

±

√√√√√1
4

[(
1 + a2

2
a2

1

)
cos2 θ +

( 1
a2

1
+ a2

2

)
sin2 θ

]2

− a2
2
a2

1
.

Proof. The ellipse Ẽ2 can be written as the result of a linear map applied to the unit
disk:

Ẽ2 = Y1/a1 Rθ Ya2 B1(o) =
(

1 0
0 1/a1

)(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 a2

)
B1(o)

=
(

cos θ −a2 sin θ
1
a1

sin θ a2
a1

cos θ

)
B1(o),

where Rθ denotes the rotation about the angle θ.
With a singular value decomposition of the latter matrix one can find the desired

axis lengths.

A few remarks are in order.

• It can be shown that the constants λ1 and λ2 in Lemma A.1 are always positive.

• λ1 = λ2 holds if and only if a1 = a2 = 1 or we have θ = 0 and a1 = a2. In both
cases the ellipse Ẽ2 is a circle with radius one which leads to λ1 = λ2 = 1.

For the main result of this section, we need one more lemma.

Lemma A.2. For a centered ellipse E with axis lengths a and b, where 1 ≤ a and
0 < b ≤ 1, it holds that

|E ∩B1(o)|2 = 2 arccos

√
a2 (1− b2)
a2 − b2

+ 2a b arcsin

√
1− b2
a2 − b2

.

Proof. The claim follows by calculating the intersection points of the boundary of E
and the unit sphere and the respective areas.
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A.3. Intersection area of two ellipses

Combining these two lemmas, we get

Proposition A.2. Let E1 and E2 be two centered ellipses with major axis lengths
1 and minor axis lengths a1 and a2, respectively (0 < a1, a2 ≤ 1), where the angle
between the two major axes is denoted by θ (see Figure A.1). Then, for a1 = a2 = 1
and for a1 = a2, θ = 0 we have |E1 ∩ E2|2 = a1 π. Otherwise,

|E1 ∩ E2|2 = 2a1

arccos
√
λ1 (1− λ2)
λ1 − λ2

+
√
λ1λ2 arcsin

√
1− λ2
λ1 − λ2

 ,
where

λ1,2 = 1
2

[(
1 + a2

2
a2

1

)
cos2 θ +

( 1
a2

1
+ a2

2

)
sin2 θ

]

±

√√√√1
4

[(
1 + a2

2
a2

1

)
cos2 θ +

( 1
a2

1
+ a2

2

)
sin2 θ

]2

− a2
2
a2

1
.
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