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Chapter 1

Introduction

1.1 Motivation

To build a visual perception system equivalent to the human one can be
considered as the primary goal of computer vision. It is assumed there are
two pathways of visual information processing in human cortex: the dorsal
stream responsible for flow estimation and the ventral stream responsible for
object recognition. If so, cortex solves every vision task through combination
of object recognition and flow estimation. The approach to be introduced in
this thesis also allows to build an object recognition system capable of flow
estimation.

Here are some significant properties of the human visual perception sys-
tem:

• robustness to affine transformations, partial occlusion and deformation

• capability to stable separation of a single object from its background
or of several objects partially occluding each other

• capability to learn a new object in a time apparently independent of
the number of objects already learned

• color information can be ignored or combined with form representation

The new method also has this characteristics. Nevertheless it still does
not have some properties the cortex obviously has e.g. usage of texture for
object recognition.
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6 CHAPTER 1. INTRODUCTION

1.2 Digital Image Preprocessing

The very first step in image processing is normally noise reduction with some
kind of filter described in [Jae05], [Dav05]. Practice shows that edge detection
is far more stable afterwards. The most widespread edge detection algorithm
for grayscale images was introduced by Canny [Can86] whose research was
at least partially inspired by [Mar76], [MH80], [WG77]. After application
of differential operator [Har80], [Pre70]the Canny algorithm thins out the
resulting edge hills by using hysteresis thresholding. The Canny algorithm is
a very powerful tool but the research on this area is still ongoing [SHS03] .

The system to be introduced in the thesis needs color on both sides of an
edge to be extracted. Since Canny works with grayscale images some new
technique of edge detection was necessary. The second reason to develop a
new edge detector is general disability of differential operators to handle line
lying near each other or sharp angles.

Usage of Hough transformation [Hou62], [Ros69], [DH72], [OC06] is a
normal way of ellipse detection. However, as a global algorithm, the Hough
transformation shares the issues of its class, namely detection of ellipses not
visible for a human eye and therefore irrelevant for image understanding and
poor detection of endpoints. These disadvantages inspired a new local half
ellipse detection algorithm.
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1.3 Architecture of an Object Recognition Sys-

tem

1.3.1 Machine Learning Algorithms

There are typically two kinds of object recognition systems: with or without
a machine learning algorithm. A matching system e.g. SIFT [Low04], SURF
[BETG08], general Hough transform [Bal81] uses no machine learning algo-
rithm. Instead for example RANSAC [FB81] is used to find out the affine
transformation. A matching algorithm compares an image to analyze with
a single object at a time. For that reason it is not suitable for autonomic
robotics.

Far more object recognition systems use some kind of machine learning
algorithm. Such systems need feature vectors to represent an object. Boost-
ing [FS97] is a simple and broadly used representative of machine learning
algorithms. It is a binary classifier consisting of several ”bad” binary clas-
sifiers. Nevertheless after being combined in a proper way these classifiers
constitute a reliable and fast algorithm.

A support vector machine or SVM described in [Vap98], [CJT00], [SA02]
is a widely used type of a machine learning algorithm. A single SVM is a
binary classifier. Nevertheless several SVM’s can be combined to build a
classifier for more than just one class. The problem is that time demand to
learn a new object depends e.g. linearly on the number of objects already
learned. This makes the concept unsuitable for autonomic robotics.

A regression estimator [GKKW02] is a generalization of an SVM. A single
regression estimator can be used to learn more than one class. The disad-
vantage of a regression estimator making it unsuitable for robotics is time
demand to learn a new object. An estimator must be completely recon-
structed with each new object to be learned.

The machine learning algorithm to be introduced in this thesis is an r-near
neighbor search. An r-near neighbor algorithm looks for all feature vectors
in storage similar enough to the query vector. The greatest advantage of
such algorithms is its deterministic precision.
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1.3.2 Representation

As the system to be introduced in this thesis interprets a 3D object as a
set of 2D images, this section offers a short overview on the representation
tactics of planar objects.

Fourier descriptors were initially described in [Rut70], [BP71]. The aim
was to find rotation, translation, scaling invariant representation of a path-
connected object. Affine invariant Fourier descriptors were described in
[Arb90], [ASBH90]. Wavelets [TB97] are another way to represent a path-
connected boundary of an object. General problem of the both methods is
obviously the requirement of the path-connectedness of the boundary. There
are plenty real world objects which do not satisfy this condition. Any way,
it is still a challenge to extract the closed boundary loop of an object from a
photo [KAT88]. Additionally, the methods are not robust enough to partial
occlusion. A further problem is combination of color information with form
representation.

Moments are another widespread method to represent an object. This
technique was initially described in [Hu62]. In [Rei93] an attempt was made
to make the representation invariant to affine transformations. The general
problem of the method is its dependency on the gray scale values of the pixels
belonging to the object. On the one hand, it cannot separate the color from
the form, on the other hand, it does not really considers the color but the
gray scale values. The technique is also not stable enough in handling partial
occlusion.

Orientation histograms [DT05] are normally used to detect objects of one
single class.

Reduction of an object to its skeleton [ACS81, PR67] helps to simplify it
with its principal structure still being preserved.

Independent component analysis ICA [Com94],[HKO01] is used to nor-
malize an object transformed through an affine mapping [SU11], [MA08].
ICA is tightly related with Principle Component Analysis PCA [Pea01],
[Dun89], [FHT96] which is normally used to reduce the dimension of feature
vectors. Usage of ICA requires segmentation of an object as a preprocessing
step. Segmentation is a very complicated, ill-posed problem itself. The rep-
resentation to be introduced in this thesis does not need object segmentation
prior to its analysis.

Affine invariant point descriptors of planar objects [MZ92], [FMZ+91],
[RZFM11], [SMP98] have one problem common to many feature based object
descriptors: two objects having similar features do not have to appear similar
for a human observer. Another problem is the absence of characteristic point
e.g. in case of a circle. Nevertheless, the technique is still powerful enough
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to be used for face recognition [KSHC94].
Representation of an object as a tree of characteristic points [Sam89a],

[Sam89b] works stable enough if the 3D stance of an object and the distance
to it are known. So it can be used only for industrial robotics.
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1.4 Optical Flow Estimation

A typical flow estimator compares two frames and tries to allocate a trans-
lation vector to each pixel of the first frame showing its shift in the second
frame. Ground truth fields of the Middlebury benchmark [BSL+07] are 2D
arrays of the same size as the frames with 2D translation vectors as entries
Figure 1.1. Such methods as Lucas-Kanade [LT81], [Luc84] or Horn-Schunck

Figure 1.1: Ground truth of a flow estimation benchmark. The disk in the
right upper corner explains the origin of the colors. It is based on HSV color
space. Hue stands for the direction of the flow vector at a pixel. Saturation
stands for the length of the flow vector at a pixel with white meaning vector
length equal 0.

[HS81], [SRB10] work with gray scale images and and concentrate on the
term

Ix(q)Vx + Iy(q)Vy + It(q) (1.1)

with q pixel, Ix(q), Iy(q), It(q) corresponding derivatives if the gray scale im-
age I with respect to coordinates x, y and time t and flow vector V . V
describes pixel translation and it has to be determined.

The new method looks not for corresponding points, at least not at the
first step, but for corresponding half ellipses. The problem of flow propa-
gation from half ellipses to the entire plane can be solved in an intuitive
heuristic way. The method handles color images which is an advantage as
from experience color is a powerful auxiliary tool. Further advantage of the
new method is its capability to recognize rotation and scaling directly.
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1.5 Outline of Implementation

1.5.1 Basic Idea

As the Figure 1.2 shows, the central idea of the system is to compare two
combinations of half ellipses. It is to find out whether the combinations can
be at least partially transformed into each other through an affine mapping.
As the transformation can be partial, the system is robust to partial occlu-
sion. The transformation does not have to be exact. If two combinations
can be transformed into each other approximately with an error up to some
ε-bound, they are regarded as similar by the system. The ε-error tolerance
makes the system robust to deformation.

Figure 1.2: Two combinations, which can be exactly transformed into each
other through reflection.
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1.5.2 Sketch of the Object Recognition System

An object is represented as a set of half ellipse combinations A as shown in
Figure 1.3. Combinations do not need to be of equal length.

Figure 1.3: An object to learn and its representation.

For each a ∈ A the system looks for a corresponding combination b in the
image to analyze. b should be as long as possible.

Expressed more precisely: from the image to analyze the system ex-
tracts a set of half ellipses B as shown in Figure 1.4. For each combina-

Figure 1.4: An object to analyze with a set of extracted half ellipses.

tion (ai)i∈{0,...,n} ∈ A a maximal m ∈ {1, ..., n} has to be determined for
which a subsequence π ∈ {0, ..., n}{0,...,m} with π(0) = 0 and (bi)i∈{0,...,m} ∈
B{0,...,m} exists so that (aπ(i))i∈{0,...,m} can be approximately transformed into
(bi)i∈{0,...,m} through translation, rotation, scaling, reflection and perspective
change as shown in Figure 1.5. The overall number of combination pairs to
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Figure 1.5: A way to transform one combination into anther.

be compared is ∑
(a0,...,an)∈A

(
n∑

m=1

(
n
m

)
|B|m+1

)
. (1.2)

With A containing only one combination of length n = 10 and B consisting
of 50 half ellipses the number of pairs is at least 5010.

As the system makes the check for each subsequence (aπ(i))i∈{0,...,m} it is
robust to partial occlusion.

Without any further extension this representation is color invariant.
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1.5.3 Sketch of the Flow Estimator

The task of a dense flow estimator is to compare two frames and to allocate
a translation vector to each pixel of the first one. The new method covers all
edge points of the first frame with half ellipses Figures 1.6, 1.7. In the next
step a set of combinations of half ellipses has to be constructed. For each
combination the system looks for a corresponding combination in the second
frame. In the last step the system propagates the flow from half ellipses to
the entire plane.

Figure 1.6: First frame and its detected half ellipses.
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Figure 1.7: Half ellipses of the first frame.
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1.6 Structure of the Thesis

Chapter 2 describes the machine learning algorithm. The algorithm used for
object recognition is built in two steps. In the first step a kernel algorithm
is constructed. The final algorithm built in the second step is a trivial ap-
plication case of the kernel algorithm. The task it solves is to find all stored
vectors similar enough to the query vector with respect to maximum norm.
As already mentioned it can be denoted as near neighbor search.

Chapter 3 introduces the object representation of the new approach. At
first a representation of combinations of lines will be developed. It is rotation,
translation, scaling and reflection invariant. It is also robust to partial occlu-
sion and perspective change. Subsequently half ellipses and representation
of half ellipse combinations will be described. The motivation to introduce
the representation this way is to make it more comprehensible.

Chapters 3 and 2 are written in a more formal way as the other ones. On
the one hand, this manner of description appears to be the most appropriate
one for the issue of the chapter - on the other hand, the formal way of
development of the new representation allowed to reduce the number of freely
selectable system parameters.

Chapter 4 describes the way half ellipses can be extracted. It offers a new
way of detection of edge points and lines. The new edge detection algorithm
was designed to extract color on the both sides of a half ellipse. Striving to
optimize the running time of line detection inspired the new line detection
algorithm.

Chapter 5 contains a description of a rather trivial structure of the flow
estimator built by means of the new approach. It describes the simplified
representation of a combination of half ellipses and the trivial comparison
algorithm related to the algorithm used for the object recognition.

Experimental results are shown in chapter 6. It consists of two parts
dedicated to object recognition and flow estimation.

Chapter 7 basically discusses problems of the current implementation and
suggests possible solution strategies.

Nontrivial mathematical statements made in this thesis have a formal
proof. Trivial statements, which explicitly express an obvious mathematical
idea and are needed for a proof or an implementation of an algorithm, may
sometimes miss a formal justification. In general, absence of a proof of a
lemma or a theorem in this thesis does not mean, a proof was not found yet
- on the contrary, the corresponding proof is considered to be obvious.



Chapter 2

Machine Learning Algorithm

2.1 Introduction

The object representation to be introduced produces feature vectors which
consist of similar permutable components. So it requires a machine learn-
ing algorithm invariant to possible permutations of components in a request
feature vector. Unfortunately the standard machine learning algorithm as
artificial neural networks [Ros62, Bis07], support vector machines [Vap98],
regression estimators [GKKW02] or nearest neighborhood search algorithms
[FH51] do not offer this property. Additionally, a machine learning algorithm
feasible for robotics should be able to learn a new object in time as less de-
pendent on the number of objects as possible. These two properties were the
main motivation to develop the algorithm to be described in this chapter.

The new algorithm is a r-near neighbor search. For a given query it looks
for all stored vectors lying in a r-ball around the query. The metrics used
in this case is derived from supremum norm. A typical near neighbor search
is either based on space partition [BKKS00] using e.g. Voronoi diagram
or data partitioning [Gut00, CPZ97] using e.g. R-trees or M -trees. The
core algorithm of the new search is based on space partitioning. The vector
representation of the core algorithm is a spacial case of vector quantization
[Pra01]. Classic vector quantization algorithms map a vector to a single
subset of Rd, whereas the new one maps a single vector to a set of subsets.
Usually, a search space is partitioned in a finite number of subsets. The
new representation uses an infinite partitioning, which results in a better
performance and higher flexibility.

The description consists mainly of two parts. Part one introduces the
core algorithm f . Part two shows the implementation of the actual machine
learning algorithm F used for the object recognition.

17



18 CHAPTER 2. MACHINE LEARNING ALGORITHM

In this thesis it will be assumed that time complexity of saving and ac-
cessing of an element of hash map is independent of the number of elements
already saved. It simplifies running time calculation omitting unnecessary
details.

2.2 Core Algorithm

Figure 2.1: Point encoding in R2.

The basic idea is to represent a point in Rd as a set of cuboids. Figure
2.1 shows how two points get encoded in R2. Each of them is represented
by four cuboids. As they are similar enough to each other with respect to
supremum norm they share at least one cuboid.

For d,K ∈ N, ε > 0 and a sequence of vectors v ∈
∏

k∈{1,...,K}Rd the func-

tion f : Rd → P ({1, ..., K}) with

f(x) = {k ≤ K| ‖x− vk‖max ≤ ε} (2.1)

has to be implemented. The following interpretation of v makes the definition
of f comprehensible: vk ∈ Rd is an encoded description vector of the label
k ∈ {1, ..., K}. f(x) returns all labels whose code is similar to x. In this
section a fast implementation of f will be described.

At first several encoding functions Ei with i ∈ {1, ..., 6} are to be intro-
duced. The E1, ..., E5 are auxiliary functions used to define E6.
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Definition 2.1 For δ > 0 the encoder E1
δ : R→ Z is defined as

E1
δ (x) =

⌈x
δ

⌉
. (2.2)

with d·e standing for ceiling function.

For example E1
δ (0) = 0 for all δ > 0.

Definition 2.2 The encoder E2
δ : R→ Z is defined as

E2
δ (x) = E1

δ

(
x+

δ

2

)
. (2.3)

For example E2
δ (0) = 1 with δ > 0.

Definition 2.3 The encoder E3
δ : R→ Z2 is defined as

E3
δ (x) =

(
2E1

δ (x), 2E2
δ (x) + 1

)T
. (2.4)

Figure 2.2: Mapping behavior of 2E1
1/5(·) (above the axis) and 2E2

1/5(·) + 1

(under the axis)

Obviously E3
δ (0) = (0, 3)T .

Definition 2.4 The encoder E4
d,δ : Rd → Z2×d is defined as

E4
d,δ(x) =

((
E3
δ (xj)

)
i

)
(i,j)∈{1,2}×{1,...,d} . (2.5)

For d = 3 and x = (0, 0, 0)T E4
d,δ(x) =

(
0 0 0
3 3 3

)
.

Definition 2.5 The encoder E5
d,δ : Rd × {1, 2}d → Zd is defined as

E5
d,δ(x, y) =

((
E4
d,δ(x)

)
y(i),i

)
i∈{1,...,d}

. (2.6)

For example E5
d,δ(x, y) = (0, 3, 0)T with d = 3, x = (0, 0, 0)T and y =

(1, 2, 1)T . An outcome of E5
d,δ(x, y) will be typically referred as sample.
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Definition 2.6 The encoder E6
d,δ : Rd → P

(
Zd
)

is defined as

E6
d,δ(x) =

{
E5
d,δ(x, y)

∣∣ y ∈ {1, 2}d} . (2.7)

To implement f(x) = {k ≤ K| ‖x−vk‖max ≤ ε} the following type of storage
s : Zd → P ({1, ..., K}) has to be defined

s(x) =
{
k ∈ {1, ..., K}|x ∈ E6

d,δ(vk)
}

(2.8)

with δ = 2ε. In Java notation the storage can be implemented as follows:

Map<List<Integer>, Set<Integer>> s = new HashMap<List<Integer>, Set<Integer>>();

for (int k = 1; k <= K; k++)

for (List<Integer> y : E^6_(d, delta)(x))

if (s.containsKey(y))

s.get(y).add(k);

else {

s.put(y, new HashSet<Integer>());

s.get(y).add(k);

}

Finally f(x) can be implemented.

Task 2.1 Implement f(x) = {k ≤ K| ‖x − vk‖max ≤ ε}. The algorithm
should be denoted as A1

ε,d.

Implementation: The algorithm can be realized as

A1
ε,d(x) =

k ∈ ⋃
y∈E6

d,δ(x)

s(y)

∣∣∣∣∣∣ ‖x− vk‖max ≤ ε

 . (2.9)

This implementation can be encoded in the following way:

Set<Integer> f(x) = new HashSet<Integer>();

for (List<Integer> y : E^6_{d, delta}(x))

for (Integer k : s.get(y))

if (|| x - v_k ||_max <= epsilon)

f(x).add(k);

�
It remains to prove the ensuing theorem.

Theorem 2.1 For x ∈ Rd we have

f(x) = A1
ε,d(x).
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The theorem can be formulated as the following statement:

‖x− vk‖max ≤ ε⇒ k ∈
⋃

y∈E6
d,δ(x)

s(y) (2.10)

and
k ∈

⋃
y∈E6

d,δ(x)

s(y)⇒ ‖x− vk‖max ≤ 2ε. (2.11)

To prove the statement we need the following lemmas. Except for the first
lemma they are of trivial nature and do not need an explicit proof.

Lemma 2.1 For ε > 0 set δ = 2ε. Then we have:

∀x, y ∈ R : |x− y| ≤ ε⇒ E1
δ (x) = E1

δ (y) ∨ E2
δ (x) = E2

δ (y)

Proof : It’s enough to show that

E1
δ (x) 6= E1

δ (y) ∧ |x− y| ≤ ε⇒ E1
δ

(
x+

δ

2

)
= E1

δ

(
y +

δ

2

)
.

For nx = E1
δ (x) and ny = E1

δ (y) we will see at first

|nx − ny| ≤ 1.

Considering

nx − 1 < x
δ
≤ nx

∧
ny − 1 < y

δ
≤ ny ⇔ −ny ≤ −y

δ
< −ny + 1

we get

nx − ny − 1 ≤ x− y
δ
≤ nx − ny + 1

⇒ −1
1

2
≤ −1 +

x− y
δ
≤ nx − ny ≤

x− y
δ

+ 1 ≤ 1
1

2
.

Now it will be shown

E1
δ

(
x+

δ

2

)
= E1

δ

(
y +

δ

2

)
.

Without loss of generality assume x < y.

y

δ
− nx ≤

y

δ
− x

δ
≤ 1

2
⇒ y

δ
+

1

2
≤ nx + 1 = ny

nx −
x

δ
<
y

δ
− x

δ
≤ 1

2
⇒ nx <

x

δ
+

1

2
�
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Lemma 2.2 For δ > 0 we get

∀x, y ∈ R : E1
δ (x) = E1

δ (y) ∨ E2
δ (x) = E2

δ (y)⇒ |x− y| ≤ δ.

Lemma 2.3 For d ∈ N, ε > 0 set δ = 2ε. Then we have

∀x, y ∈ Rd : ‖x− y‖max ≤ ε⇒ E6
d,δ(x) ∩ E6

d,δ(y) 6= ∅.

Lemma 2.4 For d ∈ N, δ > 0 we have

∀x, y ∈ Rd : E6
d,δ(x) ∩ E6

d,δ(y) 6= ∅ ⇒ ‖x− y‖max ≤ δ.

All k ∈ {1, ..., K} with ‖x − vk‖max ≤ ε are definitely contained in the
preliminary response

⋃
y∈E6

d,δ(x)
s(y). But for some k ∈

⋃
y∈E6

d,δ(x)
s(y) one

still has ε < ‖x − vk‖max ≤ 2ε. Such k ∈ {1, ..., K} have to be sifted out
through explicit check ‖x − vk‖max ≤ ε. Though not similar enough wrong
vk are still pretty similar to x. For that reason the number of false positives
cannot be too large in an average case. It is important for the running time of
the algorithm. The trivial implementation of f : Rd → P ({1, ..., K}) makes
the explicit check ‖x − vk‖max ≤ ε for all k ∈ {1, ..., K}. The introduced
algorithm makes the explicit comparison only for such vk, which are pretty
similar to x in sense of ‖x− vk‖max ≤ 2ε. This aspect is responsible for the
acceleration of f(x) calculation.

The calculation of f(x) consists of two parts. Part one determines the set
of samples E6

d,δ(x). Part two checks for all elements of {k ∈ s(y)|y ∈ E6
d,δ(x)}

if ‖x − vk‖max ≤ ε and adds k if necessary to f(x). The time demand to
calculate E6

d,δ(x) is O(2d) and independent of K. The time demand of the
second part is obviously C|{k ∈ s(y)|y ∈ E6

d,δ(x)}|. But all learned labels
{1, ..., K} are evenly distributed among millions of possible samples. For that
reason |s(y)| of a single sample y ∈ E6

d,δ is small. Therefore {k ∈ s(y)|y ∈
E6
d,δ(x)} is small. Time demand for a single check ‖x − vk‖max ≤ ε and

addition to f(x) is also small. All in all the implementation of f(x) is fast.
Storage space demand estimation is trivial for this algorithm. In the

worst case to save a new vk ∈ Rd one needs 2d sample vectors y ∈ E6
d,δ(x) ⊆

Zd and 2d copies of the label k, one for each sample. Space complexity is
obviously linear to the number of saved vectors vk. In big O notation it is
O((2dd+ 2d)K) = O(2ddK). The time demand to store an additional vector
vk is independent of the number of the vector already saved K. In other
words it is O(1).

Running time of f(x)-calculation depends on maxx∈Zd |s(x)|. Assuming
vk evenly distributed over entire Rd we get a finite set of K labels distributed
over infinitely many samples from Zd. In this purely theoretical situation the
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running time does not change with growing K in an probabilistically average
case. Experiments show that for the new approach the running time depends
linearly on the number of learned feature vectors.

2.3 Near Neighbor Search

Let FS = {X ∈ P (Rd)||X| <∞} denote the set of finite subsets of Rd. The
function

F : FS → N× P (N) (2.12)

to be implemented in this section is closely related to the previous one. It an-
alyzes not just a single vector but a set of vectors. To construct f a sequence
of vectors (vk)k∈{1,...,K} ⊆ Rd is used - for F a sequence of combinations
(ck)k∈{1,...,K} of such vectors with

ck ∈ Rd × ...× Rd︸ ︷︷ ︸
lk

(2.13)

and lk ∈ N length of each combination. ck don’t have to be of equal length.
Now F (X) with X ∈ FS will be defined in several steps. For each k ∈
{1, ..., K} let mk ∈ N0 denote the maximal integer, for which a subsequence
π : {1, ...,mk} → {1, ..., lk} and a combination x ∈ Xmk exist with

max
i∈{1,...,mk}

‖cπ(i) − xi‖max ≤ ε. (2.14)

For M = maxk∈{1,...,K}mk the function F : FS → N× P (N) is defined as

F (X) = (M, {k ∈ {1, ..., K}|mk = M}) . (2.15)

The storage s needed to implement F is built in the following way:

Map<List<Integer>, Map<Integer, Set<Integer>>> s =

new HashMap<List<Integer>, Map<Integer, Set<Integer>>>();

for (int k = 1; k <= K; k++) \\ number of combination

for (int i = 1; i <= l_k; i++)\\ number of component

for (List<Integer> x : E^6_{d, delta}(c_k(i)))

if (s.containsKey(x))

if (s.get(x).containsKey(i))

s.get(x).get(i).add(k);

else {

s.get(x).put(i, new HashSet<Integer>());

s.get(x).get(i).add(k);
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}

else {

s.put(x, new HashMap<Integer, Set<Integer>>());

s.get(x).put(i, new HashSet<Integer>());

s.get(x).get(i).add(k);

}

Task 2.2 Implement F (X). The algorithm should be denoted as A2
ε,c.

Implementation: F (X) can be implemented in the following way:

Map<Integer, Set<Integer>> sub = new HashMap<Integer, Set<Integer>>();

\\ recognized subcombinations

\\ Integer k in sub.get(k) stands for the number of recognized combination

\\ Integer i element of Set<Integer> sub.get(k) stands for the number of

\\ recognized component

for (List<Double> x : X)

for (List<Integer> y : E^6_{d, delta}(x))

if (s.containsKey(y))

for (Integer i : s.get(x).keySet())

for (Integer k : s.get(i))

if (||x - c_k(i)||_max <= epsilon)

if (sub.containsKey(k))

sub.get(k).add(i);

else {

sub.put(k, new HashSet<Integer>());

sub.get(k).all(i);

}

Map<Integer, Integer> m = new HashMap<Integer, Integer>();

for (Integer k : sub.keySet())

m.put(k, sub.keySet.size());

After having gained mk the remaining part of implementation is trivial.
�

Replacing K through N =
∑K

k=1 lk in the estimation of space complex-
ity of the first implementation one gains corresponding estimations for the
second implementation: O(2ddN). Theoretical run time complexity is still
O(1), empirical - O(N).

2.4 Properties of the Search Algorithm.

This chapter presented a new near neighbor search algorithm. There are
some interesting properties of the algorithm resulting immediately from the
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definition, which are worth to be mentioned. Time demand to learn a new
vector is independent of the number of vectors already learned. It makes the
algorithm suitable for robotics. A query gets processed with 100% precision.
High dimensional vectors consisting of similar components can be handled.
Admittedly time complexity grows exponentially to the size of a single com-
ponent but at the same time just linearly to the number of components in
a single query vector. Another property of the algorithm is its robustness
to the partial occlusion. Components can be cut out - the algorithm still
recognizes the remaining part. Under artificial and purely theoretical condi-
tions time demand to process a single query vector does not change with the
number of stored vectors.
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Chapter 3

Form Description

3.1 Introduction

The purpose of this chapter is to introduce a new half ellipse based form
representation which is invariant to rotation, translation, scaling, reflection
and robust to perspective change as well as partial occlusion. The new form
representation will be introduced in two steps. In the first step - the repre-
sentation of a combination of edges in Section 3.3. In the second step - the
representation of a combination of half ellipses in Section 3.4. A line is a half
ellipse. So a half ellipse combination is a generalization of a line combination.
Its representation is enlarged with the bow of half ellipse. The introduction
is structured that way just to make the architecture of the feature vectors
more comprehensible.

As already mentioned, the representation should be rotation, translation,
scaling (Subsection 3.3.1 and 3.4.1) and reflection (Subsection 3.3.2) invari-
ant. Based on this representation there will be built a system robust to
perspective change in Subsection 3.3.3 and 3.4.5. Figure 3.1 shows how end-
points of a half ellipses are encoded invariantly to rotation, translation and
scaling. The representation code can directly read out from the right part of
the image. Points (a, b, c, d, e, f) are represented by (a′, b′, c′, d′, e′, f ′).

Reflection invariance means independence of the representation from the
axis of mirroring. There are infinitely many axes. Figure 3.2 shows two of
them: horizontal and vertical. The reflection invariant representation of a
single combination consists of two feature vectors: the old one Figure 3.1
and the new one visualized in Figure 3.3. Both combinations from Figure
3.2 produce the same representation vector shown in Figure 3.3.

Figure 3.4 visualizes the formulation and implementation of the perspec-
tive robustness. The task is to recognize an object (red rectangular) if the

27
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Figure 3.1: Representation of the endpoints of a combination.

camera is at some point above the black line with projection surface parallel
to the tangential plane of the hemisphere at the point. The basic idea of
the implementation is to find an in some sense minimal coverage of the area
above the black line, to transform the original translation, reflection, scaling
and reflection invariant representation for each quadrant and to learn it.
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Figure 3.2: Two reflection axes. The original image is in the right upper
corner; the image after the horizontal reflection - in the left upper corner;
the image after vertical reflection - in the right lower corner.
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Figure 3.3: Visualization of the second reflection invariant representation
vector. (a′, b′, c′, d′, e′, f ′) represents endpoints of the both reflected combi-
nations of the Figure 3.2.

Figure 3.4: Formulation and implementation of the perspective robustness.
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3.2 Camera Model

The system to be introduced should become robust to the perspective change
of a camera. The camera model used in the system consists of two parts. Part
one describes the transformation of a planar object in camera coordinates
when camera changes its point of view. Part two describes the projection of
a space point to the camera surface.

A new camera model was needed to handle positioning of the camera
at the perspective hemisphere Figure 3.4 in a way which would allow to
integrate it in further mathematical analysis. There are mainly two reasons
why the new model appears to be appropriate. It is linear and it reduces
the 3D process of camera positioning to a 2D mapping unlike e.g. pinhole
projection.

The model to be introduced lives within camera coordinates. The purpose
is to show that the linear mapping(

sinα 0
0 1

)(
cos β − sin β
sin β cos β

)
(3.1)

with α ∈ (0, π/2], β ∈ R is a proper tool to model the two transformations.

y

x

y - x

Figure 3.5: (y − x)-axis.

At first (y − x)-axis has to be introduced. As shown in Figure 3.5 y − x-
axis lies in (x, y)-plane. It emerges through subtracting the y-axis from the
x-axis.

Let the rectangle ABCD denote the projection surface of the camera.
The rectangle EFGH denotes the object to be mapped on the projection
surface of the camera. The Figure 3.6 shows the initial position of the cam-
era and the object in space coordinates. Both planes are parallel to each
other. The projection plane of the camera is at the summit of the perspec-
tive hemisphere.

To denote a point on a sphere the spherical coordinate system is used. A
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A B

CD

E F

GH

x

z

y

Figure 3.6: Initial position of the camera ABCD and the object EFGH in
space coordinates.

point (x, y, z)T ∈ R3 is described through (β, α, r)T ∈ R3 as β
α
r

 7→
 r cosα cos β

r cosα sin β
r sinα

 =

 x
y
z

 (3.2)

Figure 3.7 shows the position of a point on hemisphere with α, β = 45◦.
Figure 3.8 shows the positioning process of the camera at the point α, β =
45◦ viewed from above. Figure 3.9 shows the last step of positioning of
the camera at the point α, β = 45◦ viewed askance. Figure 3.10 shows an
obvious alternative positioning of the camera at the point α, β = 45◦ viewed
from above. Figure 3.11 shows the last step of the alternative positioning
of the camera at the point α, β = 45◦ viewed askance. In the last step
the alternative camera positioning will be described in camera coordinates.
Figure 3.12 shows the initial camera\object position in camera coordinates.

Figures 3.13 and 3.14 show the positioning of the camera at the point
α, β = 45◦ in 3D and viewed from above respectively.

The images show that the mapping 3.1 with α ∈ (0, π/2] and β ∈ R
describes the transformation of x, y coordinates of an object point in camera
coordinates when the camera changes its position at the hemisphere. The
transformation of z coordinate is described with

z 7→ z − cosα(cos βx− sin βy). (3.3)

The second part of the camera model describes the projection of a space
point on the camera surface. Intuitively pin hole projection seems to be
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β α
x

y

y - x

z

Figure 3.7: Illustration of the position of a point on hemisphere with α, β =
45◦.

a natural candidate to realize this part of the model. However pin hole
transformation is not linear and subsequently quite difficult to handle math-
ematically. For that reason it is a common approach in affine invariant object
recognition to approximate pin hole projection with parallel projection x

y
z

 7→ (
x
y

)
(3.4)

as the images are similar if the ratio of the distance of a camera to an object
to the smallest radius of a ball enclosing the object is big.

As the z coordinate plays no role in modeling the perspective change of a
camera it is possible to describe the 3D process of camera relocation through
2D mapping 3.1.
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z z

Figure 3.8: Positioning of the camera at the point α, β = 45◦ viewed from
above.

y - x

z

α
y - x

z

Figure 3.9: The last step of positioning of the camera at the point α, β = 45◦

viewed askance.
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Figure 3.10: Alternative positioning of the camera at the point α, β = 45◦

viewed from above.
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 x

z

α
x

z

Figure 3.11: Last step of the alternative positioning of the camera at the
point α, β = 45◦ viewed askance.
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Figure 3.12: Initial camera\object position in camera coordinates.
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Figure 3.13: Positioning of the camera at the point α, β = 45◦ in camera
coordinates.
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Figure 3.14: Positioning of the camera at the point α, β = 45◦ in camera
coordinates viewed from above.
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Figure 3.15: Visualization of F 2
x,y(z).

3.3 Combinations of Edges

3.3.1 Rotation, Scaling, Translation Invariant Repre-
sentation

This subsection describes a way to represent a combination of edges invari-
ant to rotation, scaling and shifting. The entire combination gets encoded
relatively to the first edge. The central tool of this representation is function
F 1, which encodes one edge relatively to another one. The representation
of a combination comes up through iterative application of the function on
the first edge of the combination and other edges of the combination. At the
end a simple object recognition system based on this representation will be
build.

In this thesis the set R2 and the complex plane C are considered as
identical.

Definition 3.1 For x ∈ R2\{0} the function F 1
x is defined as follows:

F 1
x :


R2 → R2

y 7→ F 1
x (y) = 1

x21+x
2
2

(
x1 x2

−x2 x1

)(
y1

y2

)

Figure 3.15 visualizes the mapping behavior of F 1.

Lemma 3.1 For (x, y) ∈ C\{0} × C we get

F 1
x (y) =

y

x
.
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Definition 3.2 For x, y ∈ R2, x 6= y the function F 2
x,y is defined as follows:

F 2
x,y :

{
R2 → R2

z 7→ F 1
y−x(z − x)

Definition 3.3 For a ∈ R2, β ∈ R, γ ∈ (0,∞) translation Ta, rotation Rβ

and scaling Sγ are defined as follows:

Ta :

{
R2 → R2

x 7→ x+ a

Rβ :


R2 → R2

x 7→

(
cos β − sin β

sin β cos β

)(
x1

x2

)

Sγ :

{
R2 → R2

x 7→ γx

Lemma 3.2 For x, y ∈ C with x 6= y and z ∈ C we get

∀a ∈ C : F 2
Ta(x),Ta(y)(Ta(z)) = F 2

x,y(z),

∀β ∈ R : F 2
Rβ(x),Rβ(y)

(Rβ(z)) = F 2
x,y(z),

∀γ ∈ (0,∞) : F 2
Sγ(x),Sγ(y)(Sγ(z)) = F 2

x,y(z).

Proof:

F 2
Ta(x),Ta(y)(Ta(z)) =

(z + a)− (x+ a)

(y + a)− (x+ a)
=
z − x
y − x

= F 2
x,y(z)

F 2
Rβ(x),Rβ(y)

(Rβ(z)) =
eiβz − eiβx
eiβy − eiβx

=
z − x
y − x

F 2
Sγ(x),Sγ(y)(Sγ(z)) =

γz − γx
γy − γx

=
z − x
y − x

�

Definition 3.4 The set of edges E is defined as follows:

E =

e ∈ ∏
i∈{1,2}

R2

∣∣∣∣∣∣ e1 6= e2
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Definition 3.5 For e1 ∈ E the function F 3
e1 is defined as follows:

F 3
e1 :



E → R4

e2 7→



(
F 2
e11,e

1
2
(e21)

)
1(

F 2
e11,e

1
2
(e21)

)
2(

F 2
e11,e

1
2
(e22)

)
1(

F 2
e11,e

1
2
(e22)

)
2


Definition 3.6 For a ∈ R2, β ∈ R, γ ∈ (0,∞) translation ETa, rotation ERβ,
scaling ESγ of an edge are defined as follows:

ETa :


E → E

e 7→

(
Ta(e1)

Ta(e2)

)

ERβ :


E → E

e 7→

(
Rβ(e1)

Rβ(e2)

)

ESγ :


E → E

e 7→

(
Sγ(e1)

Sγ(e2)

)
Definition 3.7 For the set of combinations C is defined as

C =
⋃
m∈N

E{0,...,m}.

Definition 3.8 For a ∈ R2, β ∈ R, γ ∈ (0,∞) and translation CTa, rotation
CRβ, scaling CSγ of a combination are defined as follows:

CTa :

{
C → C

c 7→ (ETa(ei))i∈{0,...,m}

CRβ :

{
C → C

c 7→ (ERβ(ei))i∈{0,...,m}

CSγ :

{
C → C

c 7→ (ESγ(ei))i∈{0,...,m}
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Definition 3.9

F 4 :

{
C →

⋃
m∈N R4m

c 7→
(
F 3
c0

(ci)
)
i∈{1,...,m}

Lemma 3.3 For a ∈ R2, β ∈ R, γ ∈ (0,∞) we get

c ∈ C =⇒


F 4(c) = F 4(CTa(c))

F 4(c) = F 4(CRβ(c))

F 4(c) = F 4(CSγ(c))

.

Definition 3.10 The half metric d is defined as follows:

d :

{⋃
m∈NE

{0,...,m} × E{0,...,m} → R
(c1, c2) 7→ ‖F 4(c1)− F 4(c2)‖max

Finally, a trivial object recognition system invariant to rotation, transla-
tion and scaling will be implemented now.

Task 3.1 Assume K ∈ N, ε > 0 and a sequence of combinations c ∈ CK.
Each combination (eki )i∈{0,...,lk} has lk+1 edges with lk ∈ N. Let X ∈ E denote
a finite set of edges extracted from an image to analyze. For each learned
combination (eki )i∈{0,...,lk} consider maximal mk ∈ N for which a subsequence
π : {0, ...,mk} → {0, ..., lk} with π(0) = 0 and a combination of extracted
edges c̃ = (ẽi∈{1,...,mk}) ⊆ X exist with

d
((
ekπ(i)

)
i∈{0,...,mk}

, c̃
)
≤ ε. (3.5)

For M = maxk∈{1,...,K}mk determine the set

I = {k ∈ {1, ..., K}|mk = M}. (3.6)

The algorithm should be denoted as A3
ε,c.

Implementation: To implement the task the algorithm A2 should be
used. At first a sequence of feature vectors (ck)k∈{1,...,K} with ck ∈

∏
i∈{1,...,lk}R

4

defined as ck = F 4(ek) should be produced. After having built the storage
for A2

ε,c from (ck)k∈{1,...,K} find A2
ε,c(Xe) = (Me, Ie) with Xe = {F 4

e (ẽ)|ẽ ∈ X}
for each e ∈ X. For M = maxe∈XMe the required set can be obtained as

I =
⋃

Me=M

Ie. (3.7)

�
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3.3.2 Reflection Invariance

This section introduces a way to represent an edge combination invariantly
to reflection in addition to rotation, scaling, translation. Different from the
previous subsection the representation consists of two feature vectors: the old
one for rotation, scaling, translation and the new one for reflection relative
to an arbitrary axis. Again a simple object recognition system based on this
representation will be introduced at the end of the subsection.

Definition 3.11 For β ∈ R mirror reflection Mβ is defined as follows:

Mβ :


R2 → R2

x 7→

(
cos β sin β

sin β − cos β

)(
x1

x2

)

Lemma 3.4 For x, y ∈ R2, x 6= 0 we have

∀β ∈ R : F 1
Mβ(x)

(Mβ(y)) =

(
1 0
0 −1

)
F 1
x (y).

Proof: As(
0 −1
1 0

)(
cos β sin β
sin β − cos β

)
= −

(
cos β sin β
sin β − cos β

)(
0 −1
1 0

)
and

MβMβ =

(
1 0
0 1

)
we get

F 1
Mβ(x)

(Mβ(y)) =
1

Mβ(x)21 +Mβ(x)22

(
Mβ(x)1 Mβ(x)2
−Mβ(x)2 Mβ(x)1

)(
Mβ(y)1
Mβ(y)2

)

=
1

< Mβ(x),Mβ(x) >

 < Mβ(x),Mβ(y) >〈(
0 −1
1 0

)
Mβ(x),Mβ(y)

〉 
=

1

< Mβ(x),Mβ(x) >

 < Mβ(x),Mβ(y) >

−
〈
Mβ

(
0 −1
1 0

)
x,Mβ(y)

〉 
=

1

< x, x >

 < x, y >

−
〈(

0 −1
1 0

)
x, y

〉  =

(
1 0
0 −1

)
F 1
x (y).
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Corollary 3.1 For x, y, z ∈ R2, x 6= y we have

∀β ∈ R : F 2
Mβ(x),Mβ(y)

(Mβ(z)) =

(
1 0
0 −1

)
F 2
x,y(z).

Definition 3.12 For β ∈ R edge mirroring EMβ is defined as follows:

EMβ :


E → E

e 7→

(
Mβ(e1)

Mβ(e2)

)

Definition 3.13 For β ∈ R combination mirroring CMm
β is defined as fol-

lows:

CMβ :

{
C → C

c 7→ (EMβ(ci))i∈{0,...,m}

Lemma 3.5 For c ∈ Cm we get

∀β ∈ R : F 4(CMβ(c)) = F 4(CM0(c)).

Now, a trivial object recognition system invariant to rotation, translation,
scaling and rotation will be implemented.

Task 3.2 Assume K ∈ N, ε > 0 and a sequence of combinations c ∈ CK.
Each combination (eki )i∈{0,...,lk} has lk+1 edges with lk ∈ N. Let X ∈ E denote
a finite set of edges extracted from an image to analyze. For each learned
combination (eki )i∈{0,...,lk} consider maximal mk ∈ N for which a subsequence
π : {0, ...,mk} → {0, ..., lk} with π(0) = 0 and a combination of extracted
edges c̃ = (ẽi∈{1,...,mk}) ⊆ X exist with

d

((
ekπ(i)

)
i∈{0,...,mk}

, c̃

)
≤ ε

∨

d

((
ekπ(i)

)
i∈{0,...,mk}

, CM0(c̃)

)
≤ ε

(3.8)

For M = maxk∈{1,...,K}mk determine the set

I = {k ∈ {1, ..., K}|mk = M}. (3.9)

The algorithm should be denoted as A4
ε,c.
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Implementation: For

c̃ ∈
∏

k∈{1,...,2K}

C

with
k ∈ {1, ..., K} ⇒ c̃2k−1 = ck, c̃2k = CM0(ck)

build A3
ε,c̃ as in Task 3.1. Finally build the algorithm as follows:

A4
ε,c(X) =

{⌈
k

2

⌉∣∣∣∣ k ∈ A3
ε,c̃(X)

}
�
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3.3.3 Projection Robustness

Basically this subsection shows how to build a net shown in the Figure 3.4
and denoted as NC

ε,γ later on. The object recognition system constructed
subsequently stores several variants of the object representation transformed
with respect to each cell. It makes the system robust to perspective change.

Definition 3.14 For (α, β) ∈ (0, π)× R inclination Iα and projection Pα,β
are defined as follows:

Iα :


R2 → R2

x 7→

(
sinα 0

0 1

)(
x1

x2

)

Pα,β :

{
R2 → R2

x 7→ Iα ◦Rβ(x)

Definition 3.15 For x, y ∈ R2, x 6= 0 the function F 5
x,y is defined as follows:

F 5
x,y :

{
(0, π)× R→ R2

(α, β) 7→ F 1
Pα,β(x)

(Pα,β(y))

Lemma 3.6 For x ∈ R2 and (α, β) ∈ (0, π)× R exists γx ∈ R with

Pα,β(x) = ‖x‖
(

sinα cos(γx + β)
sin(γx + β)

)
.

Proof : For γx ∈ R with

x = ‖x‖
(

cos γx
sin γx

)
we get

Pα,β(x) = Iα

(
‖x‖

(
cos β − sin β
sin β cos β

)(
cos γx
sin γx

))

= ‖x‖
(

sinα 0
0 1

)(
cos(γx + β)
sin(γx + β)

)
.

�
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Corollary 3.2 For x ∈ R2\{0}, y ∈ R2 exist γx, γy ∈ R with

∀(α, β) ∈ (0, π)× R :

F 5
x,y(α, β) =

‖y‖
‖x‖

(
sin2 α cos(γx+β) cos(γy+β)+sin(γx+β) sin(γy+β)

sin2 α cos2(γx+β)+sin2(γx+β)
sinα sin(γy−γx)

sin2 α cos2(γx+β)+sin2(γx+β)

)
.

Lemma 3.7 For x ∈ R2\{0}, y ∈ R2 we have

∀(α, β) ∈ (0, π)× R : ‖∂αF 5
x,y(α, β)‖max, ‖∂βF 5

x,y(α, β)‖max ≤
‖y‖
‖x‖
· 2

sin4 α
.

Proof : At first set

a =

(
cos(γx + β)
sin(γx + β)

)
, b =

(
cos(γy + β)
sin(γy + β)

)
.

Then we get

∂α

(
sin2 α cos(γx + β) cos(γy + β) + sin(γx + β) sin(γy + β)

sin2 α cos2(γx + β) + sin2(γx + β)

)
= ∂α

(
a1b1 sin2 α + a2b2
a21 sin2 α + a22

)

=
2a1b1 sinα cosα(a21 sin2 α + a22)− 2a21 sinα cosα(a1b1 sin2 α + a2b2)

(a21 sin2 α + a22)
2

=
a1a2 sin 2α(b1a2 − a1b2)

(a21 sin2 α + a22)
2

.

As

b1a2− a1b2 = cos(γy + β) sin(γx + β)− cos(γx + β) sin(γy + β) = sin(γx− γy)

we get

|(∂αF 5
x,y(α, β))1| =

∣∣∣∣‖y‖‖x‖ · cos(γx + β) sin(γx + β) sin 2α sin(γx − γy)
(sin2 α cos2(γx + β) + sin2(γx + β))2

∣∣∣∣ ≤ ‖y‖‖x‖· 1

sin4 α
.

As

∂α
sinα

sin2 α cos2(γx + β) + sin2(γx + β)
= ∂α

sinα

a21 sin2 α + a22

=
cosα(a21 sin2 α + a22)− 2a21 sinα cosα sinα

(a21 sin2 α + a22)
2

=
a22 cosα− a21 sin2 α cosα

(a21 sin2 α + a22)
2

we get

|(∂αF 5
x,y(α, β))2| =

∣∣∣∣∂α(‖y‖‖x‖ · sinα sin(γy − γx)
sin2 α cos2(γx + β) + sin2(γx + β)

)∣∣∣∣
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=

∣∣∣∣‖y‖‖x‖ · (a22 cosα− a21 sin2 α cosα) sin(γy − γx)
(a21 sin2 α + a22)

2

∣∣∣∣
≤ ‖y‖
‖x‖
· a22 + a21

(a21 sin2 α + a22 sin2 α)2
=
‖y‖
‖x‖
· 1

sin4 α

|(∂βF 5
x,y(α, β))1|

≤
∣∣∣∣‖y‖‖x‖ · cos2 α sin(γy + γx + 2β)(sin2 α cos2(γx + β) + sin2(γx + β))

(sin2 α cos2(γx + β) + sin2(γx + β))2

∣∣∣∣
+

∣∣∣∣‖y‖‖x‖ · cos2 α sin(2(γy + β))(sin2 α cos(γx + β) cos(γy + β) + sin(γx + β) sin(γy + β))

(sin2 α cos2(γx + β) + sin2(γx + β))2

∣∣∣∣
≤ ‖y‖
‖x‖
· 2

sin4 α
.

As

∂β

(
1

sin2 α cos2(γx + β) + sin2(γx + β)

)
=

− cos2 α sin(2(γx + β))

(sin2 α cos2(γx + β) + sin2(γx + β))2

we get

|(∂βF 5
x,y(α, β))2| =

∣∣∣∣∂β (‖y‖‖x‖ · sinα sin(γy − γx)
sin2 α cos2(γx + β) + sin2(γx + β)

)∣∣∣∣
≤ ‖y‖
‖x‖
· 1

sin4 α
.

�

Corollary 3.3 For x ∈ R2\{0}, y ∈ R2 we have

∀α, α′ ∈ (0, π)∀β, β′ ∈ R∀δ > 0, α + δ < π :

|α− α′|, |β − β′| ≤ δ ⇒ ‖F 5
x,y(α, β)− F 5

x,y(α
′, β′)‖max ≤

‖y‖
‖x‖
· 4δ

sin4(α + δ)
.

Proof : As for some α̃1/2 ∈ (α, α′), β̃1/2 ∈ (β, β′) we have

|(F 5
x,y(α, β))1/2−(F 5

x,y(α
′, β))1/2| = |∂αF 5

x,y(α̃1/2, β)(α−α′)| ≤ ‖y‖
‖x‖
· 2δ

sin4(α + δ)

and

|(F 5
x,y(α

′, β))1/2−(F 5
x,y(α

′, β′))1/2| = |∂βF 5
x,y(α

′, β̃1/2)(β−β′)| ≤
‖y‖
‖x‖
· 2δ

sin4(α + δ)
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we get

‖F 5
x,y(α, β)−F 5

x,y(α
′, β′)‖max ≤ ‖F 5

x,y(α, β)−F 5
x,y(α

′, β)‖max+‖F 5
x,y(α

′, β)−F 5
x,y(α

′, β′)‖max

≤ ‖y‖
‖x‖
· 4δ

sin4(α + δ)
.

�
The following definition of the net NC

ε,γ has plays a very important role
for the construction of an object recognition system robust to perspective
change. The net describes how to chose the red points from the Figure 3.4.

Definition 3.16 For ε, C > 0 observe the sequences (αn)n∈N0 and (δn)n∈N0

defined as follows:

n = 0 :

{
αn = π/2

δn = sup
{
δ > 0

∣∣∣C · 4δ
sin4(αn+δ)

≤ ε, αn + δ < π
}

n ∈ N :

{
δn = sup

{
δ > 0

∣∣∣C · 4δ
sin4(αn−1+δn−1+2δ)

≤ ε, αn−1 + δn−1 + 2δ < π
}

αn = αn−1 + δn−1 + δn

For

M =

(⌈
π

δn

⌉)
n∈N0

and n ∈ N0 observe the sequence βn ∈ R{1,...,Mn} defined as follows:

βn = (2(m− 1)δn + δn)m∈{1,...,Mn}

For

γ ∈ [0, π/2), N = inf{n ∈ N0|αn + δn ≥ π/2 + γ}

the net NC
ε,γ is defined as follows:

NC
ε,γ = (αn, (β

n
m)m∈{1,...,Mn})n∈{0,...,N}

Lemma 3.8 For ε, C > 0 set (αn)n∈N0 as above, then

∀γ ∈ [0, π/2) ∃n ∈ N0 : αn + δn ≥ π/2 + γ.

Proof by contradiction: Let us assume that

∃γ ∈ [0, π/2) ∀n ∈ N0 : αn + δn < π/2 + γ.
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Obviously we have

∀n ∈ N : C · 4δn
sin4(αn + δn)

= ε.

Set

δ̃ =
ε sin4(π/2 + γ)

4C
.

Direct consequence is

C · 4δ̃

sin4(π/2 + γ)
= ε.

As
∀n ∈ N : sin4(αn + δn) > sin4(π/2 + γ)

we immediately get
∀n ∈ N : δ̃ < δn.

As

∀n ∈ N : αn + δn = π/2 + δ0 +
n∑
i=1

2δi ≥ π/2 + δ0 + 2nδ̃

we get a contradiction.
�

Lemma 3.9 For ε, C > 0, γ ∈ [0, π/2) build the net

NC
ε,γ = (αn, (β

n
m)m∈{1,...,Mn})n∈{0,...,N}.

Then for x ∈ R2\{0}, y ∈ R2 with ‖y‖
‖x‖ ≤ C we get

∀(α, β) ∈ [π/2, π/2 + γ]× R ∃(n,m) ∈ {0, ..., N} × {1, ...,Mn} :

‖F 5
x,y(α, β)− F 5

x,y(αn, β
n
m)‖max ≤ ε.

Proof: For β̃ ∈ [0, 2π] with

∃n ∈ Z : β̃ + 2nπ = β

we get by construction of NC
ε,γ that

∃(n,m) ∈ {0, ..., N} × {1, ...,Mn} : |α− αn|, |β̃ − βnm| ≤ δn.

Finally

‖F 5
x,y(α, β)− F 5

x,y(αn, β
n
m)‖max = ‖F 5

x,y(α, β̃)− F 5
x,y(αn, β

n
m)‖max

≤ ‖y‖
‖x‖
· 4δn

sin4(αn + δn)
≤ C · 4δn

sin4(αn + δn)
≤ ε.

�
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Lemma 3.10 For α ∈ (0, π), β ∈ R and x ∈ R2\{0}, y ∈ R2 we have

F 5
x,y(π − α, β + π) = F 5

x,y(α, π).

Proof : As

Pπ−α,β+π =

(
sin(π − α) 0

0 1

)(
cos(β + π) − sin(β + π)
sin(β + π) cos(β + π)

)
=

(
sinα 0

0 1

)(
− cos β sin β
− sin β − cos β

)
= −Pα,β

we get

F 1
Pπ−α,β+π(x)

(Pπ−α,β+π(y)) = F 1
−Pα,β(x)(−Pα,β(y)) = F 1

Pα,β(x)
(Pα,β(y)).

�

Corollary 3.4 For ε, C > 0, γ ∈ [0, π/2) build the net

NC
ε,γ = (αn, (β

n
m)m∈{1,...,Mn})n∈{0,...,N}.

Then for x ∈ R2\{0}, y ∈ R2 with ‖y‖
‖x‖ ≤ C we get

∀(α, β) ∈ [π/2− γ, π/2)× R ∃(n,m) ∈ {0, ..., N} × {1, ...,Mn} :

‖F 5
x,y(α, β)− F 5

x,y(αn, β
n
m)‖max ≤ ε.

Proof : As π − α ∈ [π/2, π/2 + γ]

∃(n,m) ∈ {0, ..., N} × {1, ...,Mn} :

ε ≥ ‖F 5
x,y(π − α, β + π)− F 5

x,y(αn, β
n
m)‖max = ‖F 5

x,y(α, β)− F 5
x,y(αn, β

n
m)‖max.

�

Lemma 3.11 For ε, C > 0, γ ∈ [0, π/2) build the net

NC
ε,γ = (αn, (β

n
m)m∈{1,...,Mn})n∈{0,...,N}.

Then for
(x, y), (u, v) ∈ R2\{0} × R2

with ‖y‖
‖x‖ ≤ C we have

∃(α, β) ∈ [π/2− γ, π/2 + γ]× R : ‖F 5
x,y(α, β)− F 1

u (v)‖max ≤ δ =⇒

∃(n,m) ∈ {0, ..., N} × {1, ...,Mn} : ‖F 5
x,y(αn, β

n
m)− F 1

u (v)‖max ≤ δ + ε

with δ > 0.
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Proof : For (n,m) ∈ {0, ..., N} × {1, ...,Mn} with

‖F 5
x,y(α, β)− F 5

x,y(αn, β
n
m)‖max ≤ ε.

we get

‖F 5
x,y(αn, β

n
m)− F 1

u (v)‖max ≤

‖F 5
x,y(αn, β

n
m)− F 5

x,y(α, β)‖max + ‖F 5
x,y(α, β)− F 1

u (v)‖max ≤ δ + ε

�

Definition 3.17 For L,min > 0 the set EL,min ⊆ E is defined in the follow-
ing way:

EL,min =

e ∈ ∏
i∈{1,2}

[0, L]2

∣∣∣∣∣∣ ‖e2 − e1‖ ≥ min


Lemma 3.12 For e ∈ EL,min and a ∈ [0, L]2 set

x = e2 − e1, y = a− e1.

Then we get

‖y‖
‖x‖
≤
√

2L

min
.

Definition 3.18 For (α, β) ∈ (0, π)× R edge projection EPα,β is defined as
follows:

EPα,β :


E → E

e 7→

(
Pα,β(e1)

Pα,β(e2)

)

Definition 3.19 For (α, β) ∈ (0, π)× R combination projection CPα,β is de-
fined as follows:

CPα,β :

{
C → C

c = (ei)i∈{0,...,m} 7→ (EPα,β(ei))i∈{0,...,m}

Lemma 3.13 For (α, β, γ) ∈ (0, π)× R× R and m ∈ N we have

c ∈ Cm ⇒ CPα,β ◦ CMγ(c) = CPα,β+γ ◦ CM0(c).
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Proof : As
Mγ = Rγ ◦M0

we get
Pα,β ◦Mγ = Iα ◦Rβ ◦Rγ ◦M0 = Pα,β+γ ◦M0.

�
At last, an object recognition system invariant to rotation, translation,

scaling, reflection and robust to perspective change will be implemented.

Task 3.3 Assume K ∈ N, ε > 0, γ ∈ [0, π/2) and a sequence of combinations
c ∈ CK. Each combination (eki )i∈{0,...,lk} has lk + 1 edges with lk ∈ N. Let
X ∈ E denote a finite set of edges extracted from an image to analyze. For
each learned combination (eki )i∈{0,...,lk} consider maximal mk ∈ N for which
a subsequence π : {0, ...,mk} → {0, ..., lk} with π(0) = 0, a combination of
extracted edges c̃ = (ẽi∈{1,...,mk}) ⊆ X and (α, β) ∈ [π/2 − γ, π/2 + γ] × R
exist with

d

(
CPα,β

(
ekπ(i)

)
i∈{0,...,mk}

, c̃

)
≤ ε

∨

d

(
CPα,β

(
CM0

(
ekπ(i)

)
i∈{0,...,mk}

)
, c̃

)
≤ ε

(3.10)

For M = maxk∈{1,...,K}mk determine the set

I = {k ∈ {1, ..., K}|mk = M}. (3.11)

The algorithm should be denoted as A5
ε,c,γ.

Implementation: For δ > 0 build the net

N

√
2L

min
δ,γ = (αn, (β

n
m)m∈{1,...,Mn})n∈{0,...,N}

For S =
∑N

n=0Mn build the bijective function

g :

{⋃
n∈{0,...,N}{n} × {1, ...,Mn} → {1, ..., S}

(n,m) 7→
∑n−1

i=0 Mn +m
.

For the sequence c̃ ∈ C{1,...,KS} defined as

c̃i = c⇔

{
∃k, s ∈ {0, ..., K − 1} × {1, ..., S} :

i = kS + s ∧ (n,m) = g−1(s)⇒ c = CPαn,βnm(ck+1)

build A4
ε+δ,c̃ as in Task 3.2. Finally build the approximation in the following

way

A5
ε,c,γ(X) =

{⌈
k

S

⌉ ∣∣∣∣ k ∈ A4
ε+δ,c̃(X)

}
. (3.12)

�
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Figure 3.16: Adaptability of half ellipses: clearly fewer half ellipses(left) than
lines(right) are needed to approximate a form.

3.4 Combinations of Half Ellipses

This section mainly introduces half ellipses in Subsection 3.4.1 and construc-
tion of a net NC

ε,γ due to make the half ellipse based representation robust to
perspective change in Subsection 3.4.5.

3.4.1 Definition and Parametrization of a Half Ellipse

Now the representation on the basis of straight lines will be generalized.
A line will be replaced by a half ellipse. At first a straight line is a half
ellipse itself. Additionally half ellipses can obviously approximate a circle
or an ellipse in a more robust way than a chain of lines. In other words
half ellipses show a clearly richer variety of forms Figure 3.17 and therefore
greater adaptability Figure 3.16 as simple lines. As a result fewer features are
needed to describe a form which allows to save storage and runtime. Other
than matching approach [Low04] or flow estimator [LT81] a half ellipse based
system does not need characteristic points where it can dock at. It is useful
as a circle for example has no characteristic points. The new approach uses
half ellipses instead of ellipses because the two end points are needed for
the invariant representation of a combination of half ellipses: the first point
of the half ellipse of a combination gets mapped on the point of origin, the
second - on (1, 0)T .

The purpose of this section is to introduce a half ellipse and to prove The-
orem 3.1. Figure 3.18 shows how the bow of a half ellipse can be represented
uniquely according to Theorem 3.1. The representation code emerges from
the point M in the right part of the image after minimal post processing.
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Figure 3.17: Variety of forms of half ellipses.

Figure 3.18: Representation of a half ellipse bow.

Definition 3.20 The set of half ellipses HE is defined as follows:

HE =


(e, B) ∈ E × P (R2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃(a, b, t0, δ) ∈ [0,∞)× [0,∞)× R× {−1, 1}
∃(c, β, γ) ∈ R2 × R× (0,∞) :

B =

Tc ◦ Sγ ◦Rβ

(
a cos t
b sin t

) ∣∣∣∣∣∣t ∈
[t0, t0 + δπ]

∪
[t0 + δπ, t0]

 ,

e1 = Tc ◦ Sγ ◦Rβ

(
a cos t0
b sin t0

)
,

e2 = Tc ◦ Sγ ◦Rβ

(
a cos(t0 + π)
b sin(t0 + π)

)


Definition 3.21 The half ellipse producer HEP is defined as follows:

HEP :



([0,∞)× (0,∞) ∪ (0,∞)× [0,∞))× R× {−1, 1} → HE

(a, b, t0, δ) 7→




(
a cos t0

b sin t0

)
(
a cos(t0 + π)

b sin(t0 + π)

)
 ,


(
a cos t

b sin t

)∣∣∣∣∣∣∣t ∈
[t0, t0 + δπ]

∪
[t0 + δπ, t0]
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Definition 3.22 The function G1 is defined as follows:

G1 :



HE → R2

(e, B) 7→


maxx∈B

∣∣∣∣(F 2
e1+e2

2
, e1

(x)
)
1

∣∣∣∣
maxx∈B

∣∣∣∣(F 2
e1+e2

2
, e1

(x)
)
2

∣∣∣∣


Definition 3.23 The function G2 is defined as follows:

G2 :



HE → R2

∣∣∣∣(F 2
e1+e2

2
, e1

(x)
)
1

∣∣∣∣ = G1
1(e, B)⇒

G2
1(e, B) =

(
F 2
e1+e2

2
, e1

(x)
)
1
− SIGNUM

((
F 2
e1+e2

2
, e1

(x)
)
1

)
∣∣∣∣(F 2

e1+e2
2

, e1
(x)
)
2

∣∣∣∣ = G1
2(e, B)⇒ G2

2(e, B) =
(
F 2
e1+e2

2
, e1

(x)
)
2

Lemma 3.14 For

(a, b, t0, δ) ∈ (0,∞)× (0,∞)× R× {−1, 1},

(e, B) = HEP (a, b, t0, δ)

and

x :


R→ C

t 7→

(
a cos t

b sin t

)
we have

G1
2(e, B) =

ab

‖x(t0)‖2
.

For t1 ∈ R with x(t1) = i · x(t0) · ‖x(t1)‖‖x(t0)‖ we additionally get

G1
1(e, B) =

ab

‖x(t0)‖‖x(t1)‖
.

Proof :

G1
2(e, B) = max

t∈R

ab| − sin t0 cos t+ cos t0 sin t|
a2 cos2 t0 + b2 sin2 t0
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=
ab| − sin t0 cos(t0 + π/2) + cos t0 sin(t0 + π/2)|

‖x(t0)‖2

=
ab(sin t0 sin t0 + cos t0 cos t0)

‖x(t0)‖2
=

ab

‖x(t0)‖2
.

For

y :

{
R→ C
t 7→ x(t)

x(t0)

and

z :

{
R→ C
t 7→ x(t)

x(t1)

we have

y(t) =
x(t)

x(t0)
=

x(t)

x(t1)
· x(t1)

x(t0)
= z(t) · ‖x(t1)‖

‖x(t0)‖
· i = (i<(z(t))−=(z(t)))

‖x(t1)‖
‖x(t0)‖

.

For that reason

G1
1(e, B) = max

t∈R
|<(y(t))| = max

t∈R

∣∣∣∣=(z(t))
‖x(t1)‖
‖x(t0)‖

∣∣∣∣
= max

t∈R

ab| − sin t1 cos t+ cos t1 sin t|
a2 cos2 t1 + b2 sin2 t1

· ‖x(t1)‖
‖x(t0)‖

=
ab

‖x(t0)‖‖x(t1)‖
.

�

Definition 3.24 For β ∈ R half ellipse rotation HERβ is defined as follows:

HERβ :


HE → HE

(e, B) 7→

((
Rβ(e1)

Rβ(e2)

)
, {Rβ(x)|x ∈ B}

)

Lemma 3.15 For ((
a1
a2

)
, s

)
∈ [0,∞)2 × R

with ∥∥∥∥( a1 cos s
a2 sin s

)∥∥∥∥ = 1

assume ((
a
b

)
, t0

)
,

((
ã

b̃

)
, t̃0

)
∈
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{(
a1

a2

)}
× {s+ 2kπ,−s+ 2kπ, s+ π + 2kπ,−s+ π + 2kπ|k ∈ Z}⋃{(

a2

a1

)}
×
{
s+ π

2
+ 2kπ,−s− π

2
+ 2kπ, s+ π

2
+ π + 2kπ,−s− π

2
+ π + 2kπ|k ∈ Z

}
and

δ, δ̃ ∈ {−1, 1}.

Then for

(e, B) = HEP (a, b, t0, δ), (ẽ, B̃) = HEP (ã, b̃, t̃0, δ̃)

we get

G2(e, B) = G2(ẽ, B̃)⇒ ∃β ∈ R : HERβ(e, B) = (ẽ, B̃).

Lemma 3.16 For

(a, b, t0, δ), (ã, b̃, t̃0, δ̃) ∈ [0,∞)× [0,∞)× R× {−1, 1}

with ∥∥∥∥( a cos t0
b sin t0

)∥∥∥∥ ,∥∥∥∥( ã cos t̃0
b̃ sin t̃0

)∥∥∥∥ = 1

assume
(e, B) = HEP (a, b, t0, δ), (ẽ, B̃) = HEP (ã, b̃, t̃0, δ̃).

Then we get

G2(e, B) = G2(ẽ, B̃)⇒ ∃β ∈ R : HERβ(e, B) = (ẽ, B̃).

Proof : At first set
m = G1(e, B).

As for a = b or ab = 0 the statement is obvious assume

a 6= b, ab 6= 0.

For

x :


R→ C

t 7→

(
a cos t

b sin t

)
choose t1 ∈ R with

x(t1) = i · x(t0) · ‖x(t1)‖.
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Considering

m1 =
ab

‖x(t1)‖
, m2 = ab

and

1 = ‖x(t0)‖2 = a2 cos2 t0+b
2 sin2 t0 ⇒ cos2 t0 =

1− b2

a2 − b2
⇒ cos2 t0 =

a2 −m2
2

a4 −m2
2

.

as well as

1 =
x21(t1)

a2
+
x22(t1)

b2
= ‖x(t1)‖2

(
b2 sin2 t0

a2
+
a2 cos2 t0

b2

)
we get

b4(1− cos2 t0) + a4 cos2 t0 =
a2b2

‖x(t1)‖2
⇒ b4 + (a4 − b4) cos2 t0 = m2

1

⇒ m4
2

a4
+

(
a4 − m4

2

a4

)(
a2 −m2

2

a4 −m2
2

)
= m2

1 ⇒ a2(a4 − (m2
1 +m2

2)a
2 +m2

2) = 0

⇒ a1/2 =

√
(m2

1 +m2
2)±

√
(m2

1 +m2
2)

2 − 4m2
2

2

⇒ b1/2 =
m2

a1/2
=

√
(m2

1 +m2
2)∓

√
(m2

1 +m2
2)

2 − 4m2
2

2
= a2/1.

For s ∈ R with

cos2 s =
1− a22
a21 − a22

we have

1− a21
a22 − a21

= 1− 1− a22
a21 − a22

= 1− cos2 s = sin2 s = cos2(s+ π/2).

For that reason ((
a
b

)
, t0

)
,

((
ã

b̃

)
, t̃0

)
∈

{(
a1

a2

)}
× {s+ 2kπ,−s+ 2kπ, s+ π + 2kπ,−s+ π + 2kπ|k ∈ Z}⋃{(

a2

a1

)}
×
{
s+ π

2
+ 2kπ,−s− π

2
+ 2kπ, s+ π

2
+ π + 2kπ,−s− π

2
+ π + 2kπ|k ∈ Z

}
.

�
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Lemma 3.17 For e ∈ E and

(e, B1), (e, B2) ∈ HE

we have
G2(e, B1) = G2(e, B2)⇒ B1 = B2.

Proof : It is known that

∃(a1/2, b1/2, t1/20 , δ1/2) ∈ [0,∞)× [0,∞)× R× {−1, 1}

∃(c1/2, α1/2, β1/2) ∈ R2 × (0,∞)× R :

B1/2 =

Tc1/2 ◦ Sα1/2
◦Rβ1/2

(
a1/2 cos t
b1/2 sin t

) ∣∣∣∣∣∣t ∈
[t
1/2
0 , t

1/2
0 + δ1/2π]
∪

[t
1/2
0 + δ1/2π, t

1/2
0 ]

 ,

e1 = Tc1/2 ◦ Sα1/2
◦Rβ1/2

(
a1/2 cos t

1/2
0

b1/2 sin t
1/2
0

)
,

e2 = Tc1/2 ◦ Sα1/2
◦Rβ1/2

(
a1/2 cos(t

1/2
0 + π)

b1/2 sin(t
1/2
0 + π)

)
,∥∥∥∥∥

(
a1/2 cos t

1/2
0

b1/2 sin t
1/2
0

)∥∥∥∥∥ = 1.

As Lemma 3.16 shows

∃γ ∈ R : HERγ(HEP (a1, b1, t
1
0, δ1)) = HEP (a2, b2, t

2
0, δ2).

For

x1/2 :


R→ R2

t 7→

(
a1/2 cos t

b1/2 sin t

)
we get {

Tc2 ◦ Sα2 ◦Rβ2(x2(t))| t ∈ [t20, t
2
0 + δ2π] ∪ [t20 + δ2π, t

2
0]
}

=
{
Tc2 ◦ Sα2 ◦Rβ2 ◦Rγ(x1(t))| t ∈ [t10, t

1
0 + δ1π] ∪ [t10 + δ1π, t

1
0]
}
.

It remains to show

Tc2 ◦ Sα2 ◦Rβ2 ◦Rγ = Tc1 ◦ Sα1 ◦Rβ1 .

At first it will be shown
c1 = c2.
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As for
x11 = x1(t

1
0), x

1
2 = x1(t

1
0 + δ1π)

it is known

Tc2 ◦ Sα2 ◦Rβ2 ◦Rγ(x
1
1) = e1 = Tc1 ◦ Sα1 ◦Rβ1(x

1
1),

Tc2 ◦ Sα2 ◦Rβ2 ◦Rγ(x
1
2) = e2 = Tc1 ◦ Sα1 ◦Rβ1(x

1
2)

we get
0 = Rβ1(0) = Rβ1(x

1
1 + x12) = Rβ1(x

1
1) +Rβ1(x

1
2)

= S 1
α1

◦ Tc2−c1 ◦ Sα2 ◦Rβ2 ◦Rγ(x
1
1) + S 1

α1

◦ Tc2−c1 ◦ Sα2 ◦Rβ2 ◦Rγ(x
1
2)

= S 1
α1

◦ T2(c2−c1) ◦ Sα2 ◦Rβ2 ◦Rγ(x
1
1 + x12) = S 1

α1

◦ T2(c2−c1)(0)

⇒ T2(c2−c1)(0) = 0⇒ c2 − c1 = 0.

As ‖x1/2(t1/20 )‖ = 1 we automatically get α1 = α2. As Rβ1(x
1
1) = Rβ2+γ(x

1
1)

we get Rβ1 = Rβ2+γ.
�

Lemma 3.18 For

(a, b, t0) ∈ [0,∞)× [0,∞)× R

with ∥∥∥∥( a cos t0
b sin t0

)∥∥∥∥ = 1

and
(e, B1) = HEP (a, b, t0, 1), (e, B2) = HEP (a, b, t0,−1)

we get

G2
2(e, B1) ≥ 0, G2

2(e, B2) ≤ 0 and G2
2(e, B1) = −G2

2(e, B2).

Proof :
G2

2(e, B1) = max
t∈[t0,t0+π]

ab(− sin t0 cos t+ cos t0 sin t)

= ab(− sin t0 cos(t0+π/2)+cos t0 sin(t0+π/2)) = ab(− sin(−π/2)) = ab sin(π/2) ≥ 0

G2
2(e, B2) = min

t∈[t0,t0−π]
ab(− sin t0 cos t+ cos t0 sin t)

= ab(− sin t0 cos(t0 − π/2) + cos t0 sin(t0 − π/2)) = ab(− sin(π/2)) ≤ 0

�



60 CHAPTER 3. FORM DESCRIPTION

Lemma 3.19 For

(a, b, t0, δ) ∈ [0,∞)× [0,∞)× R× {−1, 1}

with ∥∥∥∥( a cos t0
b sin t0

)∥∥∥∥ 6= 0

and
(e1, B1) = HEP (a, b, t0, δ), (e2, B2) = HEP (a, b,−t0, δ)

we get
G2

1(e1, B1) = −G2
1(e2, B2).

Proof : Clair as for s ∈ [0, π]

a2 cos−t0 cos(−t0 + δπ − δs) + b2 sin−t0 sin(−t0 + δπ − δs)

= −(a2 cos t0 cos(t0 + δs) + b2 sin t0 sin(t0 + δs)).

�

Lemma 3.20

∀x ∈ R2 ∃(e, B) ∈ HE : G2(e, B) = x

Proof : For

m =

(
|x1|+ 1
|x2|

)
set

a =

√
(m2

1 +m2
2) +

√
(m2

1 +m2
2)

2 − 4m2
2

2
, b =

√
(m2

1 +m2
2)−

√
(m2

1 +m2
2)

2 − 4m2
2

2
.

For m =

(
1
1

)
or m2 = 0 the statement is obvious. Consider now

m 6=
(

1
1

)
⇒ a 6= b,

m2 6= 0⇒ b 6= 0.

Choose t0 ∈ R with

cos2 t0 =
1− b2

a2 − b2
.
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Set
(e, B) = HEP (a, b, t0, 1).

For

x :


R→ R2

t 7→

(
a cos t

b sin t

)
choose t1 ∈ R in such a way that

x(t1) = i · x(t0) · ‖x(t1)‖.

As

G1(e, B) =

(
ab

‖x(t1)‖
ab

)
it must be shown now that

ab = m2, ‖x(t1)‖ =
m2

m1

.

ab =

√
(m2

1 +m2
2) +

√
(m2

1 +m2
2)

2 − 4m2
2

2

√
(m2

1 +m2
2)−

√
(m2

1 +m2
2)

2 − 4m2
2

2

=

√
(m2

1 +m2
2)

2 − (m2
1 +m2

2)
2 + 4m2

2

4
= m2

As

1 =
x21(t1)

a2
+
x22(t1)

b2
= ‖x(t1)‖2

(
b2 sin2 t0

a2
+
a2 cos2 t0

b2

)
it remains to show that

b2 sin2 t0
a2

+
a2 cos2 t0

b2
=
m2

1

m2
2

.

b2 sin2 t0
a2

+
a2 cos2 t0

b2
=

(a2 + b2)− a2b2

a2b2
=

(m2
1 +m2

2)−m2
2

m2
2

For

δ :

{
R→ {−1, 1}
x 7→ −1χ(−∞,0)(x) + χ[0,∞)(x)

Lemma 3.18 shows that

x2 = G2
2(HEP (a, b,±t0, δ(x2))).
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If
x1 = −G2

1(HEP (a, b, t0, δ(x2)))

Lemma 3.19 shows that

x1 = G2
1(HEP (a, b,−t0, δ(x2))).

�

Corollary 3.5

∀e ∈ E, x ∈ R2 ∃(e, B) ∈ HE : G2(e, B) = x

The following theorem is a typical existence and uniqueness statement. It
says, for an edge e ∈ E and a point x ∈ R2 there exists exactly one half ellipse
(e, B) with e as endpoints and x a point encoding the bow of (e, B). The
proof of the theorem results immediately from the previous considerations of
the subsection.

Theorem 3.1

∀e ∈ E, x ∈ R2 ∃1(e, B) ∈ HE : G2(e, B) = x

Proof : Corollary 3.5 is directly the existence statement. Lemma 3.17 sub-
stantiates the uniqueness assertion.

�



3.4. COMBINATIONS OF HALF ELLIPSES 63

3.4.2 Invariance

This section is due to make some trivial statements requiring no proof. In
a formal way it says, that the representation of a half ellipse bow showed
above is invariant to rotation, translation, scaling.

Definition 3.25 For a ∈ R2, β ∈ R, γ ∈ (0,∞) translation HETa, rotation
HERβ, scaling HESγ and mirroring HEMβ of a half ellipse are defined as
follows:

HETa :

{
HE → HE

(e, B) 7→ (ETa(e), {Ta(x)|x ∈ B})

HERβ :

{
HE → HE

(e, B) 7→ (ERβ(e), {Rβ(x)|x ∈ B})

HESγ :

{
HE → HE

(e, B) 7→ (ESγ(e), {Sγ(x)|x ∈ B})

HEMβ :

{
HE → HE

(e, B) 7→ (EMβ(e), {Mβ(x)|x ∈ B})

Lemma 3.21 For a ∈ R2, β ∈ R, γ ∈ (0,∞) we get

(e, B) ∈ HE =⇒


G2(HETa(e, B)) = G2(e, B)

G2(HERβ(e, B)) = G2(e, B)

G2(HESγ(e, B)) = G2(e, B)

G2(HEMβ(e, B)) = G2(HEM0(e, B))

.
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3.4.3 Code Point Determination

Now the representation of a single half ellipse is going to be made robust
to perspective change. At first the description of how the code point alters
with perspective change will be delivered. In the next step the velocity of
this modification will be investigated. At last the minimal coverage of the
perspective hemisphere for a half ellipse will be constructed.

This subsection describes, how perspective change alters bow point rep-
resentation. Unfortunately it is not enough just to map the bow point by
means of camera model matrix.

Definition 3.26 For (α, β) ∈ (0, π)× R the half ellipse projection HEPα,β
is defined as follows:

HEPα,β :


HE → E × P (R2)

(e, B) 7→

((
Pα,β(e1)

Pα,β(e2)

)
, {Pα,β(x)|x ∈ B}

)

Lemma 3.22

∀(α, β) ∈ (0, π)× R : HEPα,β : HE → HE

Lemma 3.23 For
(a, b) ∈ (0,∞)× (0,∞)

and β, t ∈ R with

cos∠

((
a cos t
b sin t

)
,

(
cos β
sin β

))
= 1

we get ∥∥∥∥( a cos t
b sin t

)∥∥∥∥ =

√
1

cos2 β
a2

+ sin2 β
b2

.

Proof : Obvious as(
a cos t
b sin t

)
=

∥∥∥∥( a cos t
b sin t

)∥∥∥∥( cos β
sin β

)
and

a2 cos2 t

a2
+
b2 sin2 t

b2
= 1.

�
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Lemma 3.24 For

(a, b, t0, δ) ∈ [0,∞)× [0,∞)× R× {−1, 1} with a+ b 6= 0

as well as

(e, B) = HEP (a, b, t0, δ)

and (α, β) ∈ (0, π)× R we have

cos∠

(
Rβ(e1),

(
1
0

))
= 1⇒ G2(HEPα,β(e, B)) =

(
1 0
0 sinα

)
G2(e, B).

Lemma 3.25 For

(a, b, t0, δ) ∈ [0,∞)× [0,∞)× R× {−1, 1} with a 6= b, a+ b 6= 0

and

x =

∥∥∥∥( a cos t0
b sin t0

)∥∥∥∥
we get

cos2 t0 =
x2 − b2

a2 − b2
.

Proof : Obvious as

a2 cos2 t0 + b2 sin2 = x2.

�

Lemma 3.26 For

(a, b, t0) ∈ (0,∞)× (0,∞)× R

as well as

x :


R→ R2

t 7→

(
a cos t

b sin t

)
and t1 ∈ R with 〈x(t0), x(t1)〉 = 0 we get

‖x(t1)‖ =
‖x(t0)‖√

b2 sin2 t0
a2

+ a2 cos2 t0
b2

.
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Lemma 3.27 For

(a, b, t0, δ) ∈ [0,∞)× [0,∞)× R× {−1, 1} with a+ b 6= 0

as well as

x :


[0, π]→ R2

t 7→

(
a cos(t0 + δt)

b sin(t0 + δt)

)
and (α, β) ∈ (0, π)× R set

y :

{
[0, π]→ R
t 7→ 〈Pα,β(x(0)), Pα,β(x(t))〉

and

u = G2(HEP (a, b, t0, δ)), v = G2(HEPα,β(HEP (a, b, t0, δ)))

then we get

SIGNUM(v1) = SIGNUM(y′(0)), SIGNUM(v2) = SIGNUM(u2).

Task 3.4 Knowing

(a, b) ∈ (0,∞)× (0,∞) with a 6= b

and

x0 ∈ R with ∃t0 ∈ R : x0 =

∥∥∥∥( a cos t0
b sin t0

)∥∥∥∥
determine G1(e, B) for (e, B) = HEP (a, b, t0, δ) with δ ∈ {−1, 1} arbitrary.

Implementation: Determine
cos2 t0

with Lemma 3.25. Using Lemma 3.26 determine x1 with

∃t1 ∈ R :

〈(
a cos t0
b sin t0

)
,

(
a cos t1
b sin t1

)〉
= 0 ∧ x1 =

∥∥∥∥( a cos t1
b sin t1

)∥∥∥∥ .
Then according to Lemma 3.14

G1(e, B) =

(
ab
x0x1
ab
x20

)
.

�
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Task 3.5 For

(a, b, t0, δ) ∈ [0,∞)× [0,∞)× R× {−1, 1}

with ∥∥∥∥( a cos t0
b sin t0

)∥∥∥∥ > 0

and (α, β) ∈ (0, π)× R determine

G2(HEPα,β(HEP (a, b, t0, δ))).

Implementation: Without loss of generality assume

ab 6= 0, a 6= b.

For

x :


R→ R2

t 7→

(
a cos t

b sin t

)
and with Lemma 3.23 we get x0 ∈ R with

∃s0 ∈ R : ‖x(s0)‖ = x0 ∧ cos

(
x(s0),

(
cos−β
sin−β

))
= 1.

Using Task 3.4 find G1(e, B) for

(e, B) = HEP (a, b, s0, δ).

Lemma 3.24 shows that

G1(ẽ, B̃) =

(
1 0
0 sinα

)
G1(e, B)

with
(ẽ, B̃) = HEPα,β(e, B).

Using Lemma 3.20 determine

(ã, b̃) ∈ (0,∞)× (0,∞)

with
∃s̃0, β̃ ∈ R : (ẽ, B̃) = HERβ̃(HEP (ã, b̃, s̃0, δ))

Using Task 3.4 determine

G1(HEPα,β(HEP (a, b, t0, δ))).

Using Lemma 3.27 determine

G2(HEPα,β(HEP (a, b, t0, δ))).

�
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Definition 3.27 For (a, γ, β) ∈ R2 × (0,∞)× R half ellipse transformation
HETa,γ,β is defined as follows:

HETa,γ,β :


HE → HE

(e, B) 7→

((
Ta ◦ Sγ ◦Rβ(e1)

Ta ◦ Sγ ◦Rβ(e2)

)
, {Ta ◦ Sγ ◦Rβ(x)|x ∈ B}

)

Finally it is possible to determine how perspective change alters bow point
of a half ellipse.

Task 3.6 For (e, B) ∈ HE and (α, β) ∈ (0, π)× R determine

G2(HEPα,β(e, B)).

Implementation: As for

(a, b, t0, δ) ∈ [0, π)× [0, π)× R× {−1, 1}

and
(c, γ, λ) ∈ R2 × (0,∞)× R

with
(e, B) = HETc,γ,λ(HEP (a, b, t0, δ))

we have

G2(HEPα,β(e, B)) = G2(HEPα,β+λ(HEP (a, b, t0, δ)))

use Task 3.5 to determine

G2(HEPα,β+λ(HEP (a, b, t0, δ))).

�
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3.4.4 Code Point Velocity

The key point of gaining perspective robustness of the bow point represen-
tation is construction of the minimal coverage of a hemisphere segment -
strategy known from the representation of straight edge combinations. The
main challenge thereby is to find out how fast a code point changes through
alteration of the view point. The following subsection aims to determine the
velocity of this process.

Definition 3.28 For (e, B) ∈ HE the function G3
(e,B) is defined as follows:

G3
(e,B) :

{
(0, π)× R→ R2

(α, β) 7→ G3(HEPα,β(e, B))

Lemma 3.28 For (e, B) ∈ HE we have(
∃x ∈ B :

(
F 2
e1+e2

2
, e1

(x)
)
1
> 1
)
⇔ G2

1(e, B) > 0

and (
∃x ∈ B :

(
F 2
e1+e2

2
, e1

(x)
)
1
< −1

)
⇔ G2

1(e, B) < 0.

Lemma 3.29 For f, g : [a, b]→ R continuous and ε > 0 with

max
t∈[a,b]

|f(t)− g(t)| ≤ ε

we have ∣∣∣∣max
t∈[a,b]

|f(t)| − max
t∈[a,b]

|g(t)|
∣∣∣∣ ≤ ε.

Proof : Considering

max
t∈[a,b]

|g(t)| ≤ max
t∈[a,b]

(|g(t)− f(t)|+ |f(t)|) ≤ ε+ max
t∈[a,b]

|f(t)|

and

max
t∈[a,b]

|f(t)| ≤ ε+ max
t∈[a,b]

|g(t)|

we get

−ε ≤ max
t∈[a,b]

|g(t)| − max
t∈[a,b]

|f(t)| ≤ ε.

�
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Lemma 3.30 For f1/2 : [a, b]→ R continuous with

f1/2(a) = 1, f1/2(b) = −1

choose t1/2 ∈ [a, b] with

|f1/2(t1/2)| = max
t∈[a,b]

|f1/2(t)|.

If we have
(∃t ∈ [a, b] : f1/2(t) > 1)⇔ f1/2(t1/2) > 1

∧
(∃t ∈ [a, b] : f1/2(t) < 1)⇔ f1/2(t1/2) < 1

then for ε > 0 we get

max
t∈[a,b]

|f1(t)− f2(t)| ≤ ε⇒

| (f1(t1)− SIGNUM(f1(t1)))− (f2(t2)− SIGNUM(f2(t2))) | ≤ 2ε.

Proof : Ass for f1(t1) · f2(t2) > 0 the statement is obvious assume

f1(t1) > 1, f2(t2) < −1.

It will be shown now f1(t1)− 1 ≤ ε:

f1(t1)− 1 > ε⇒ f2(t1) > 1⇒ f2(t2) > 1

Similarly we get
−1− f2(t2) ≤ ε.

Finally

| (f1(t1)− SIGNUM(f1(t1)))− (f2(t2)− SIGNUM(f2(t2))) |

≤ |f1(t1)− 1|+ |f2(t2) + 1| ≤ 2ε.

�

Theorem 3.2 For (e, B) ∈ HE set

m = G1(e, B).

For
(α1/2, β1/2) ∈ (0, π)× R and ζ > 0

with
|α1 − α2|, |β1 − β2| ≤ ζ, α1 + ζ < π

we get ∥∥G3
(e,B)(α1, β1)−G3

(e,B)(α2, β2)
∥∥
max
≤ 8ζ|m|

sin4(α1 + ζ)
.
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Proof : Without loss of generality let us assume that (e, B) = HEP (a, b, t0, δ)
for

(a, b, t0, δ) ∈ [0,∞)× [0,∞)× R× {−1, 1}.

For

x :


[0, π]→ R2

t 7→

(
a cos(t0 + δt)

b sin(t0 + δt)

)
set

y1/2 :

{
[0, π]→ R2

t 7→ Pα1/2,β1/2(x(t))

and

z1/2 :

{
[0, π]→ C
t 7→ y1/2(t)

y1/2(0)

.

For t
1/2
1 , t

1/2
2 ∈ [0, π] with∣∣∣z1/21 (t

1/2
1 )
∣∣∣ = max

t∈[0,π]

∣∣∣z1/21 (t)
∣∣∣ , ∣∣∣z1/22 (t

1/2
2 )
∣∣∣ = max

t∈[0,π]

∣∣∣z1/22 (t)
∣∣∣

we obviously have

G3
(e,B)(α1/2, β1/2) =

(
z1/2(t

1/2
1 )− SIGNUM(z1/2(t

1/2
1 ))

z1/2(t
1/2
2 )

)
.

Corollary 3.3 shows that

max
t∈[0,π]

∥∥z1(t)− z2(t)∥∥
max
≤ 4ζ‖m‖

sin4(α1 + ζ)

Considering previous Lemmas we finally get∥∥G3
(e,B)(α1, β1)−G3

(e,B)(α2, β2)
∥∥
max
≤ 8ζ‖m‖

sin4(α1 + ζ)
.

�
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3.4.5 Code Point Net

This subsection finally describes how the perspective net has to be spanned to
make bow point representation robust to view point alteration. The purpose
is to consume as less storage and to cover as large surface of the perspective
hemisphere as possible. Having the previous section just the last trivial step
has to be done to achieve this goal.

Lemma 3.31 For ε > 0, γ ∈ [0, π/2), C > 0 build the net

NC
ε
2
,γ = (αn, (β

n
m)m∈{1,...,Mn})n∈{0,...,N}.

For (e, B) ∈ HE with ‖G2(e, B)‖ ≤ C we have

∀(α, β) ∈ [π/2− γ, π/2 + γ]× R ∃(n,m) ∈ {0, ..., N} × {1, ...,Mn} :∥∥G3
(e,B)(α, β)−G3

(e,B)(αn, β
n
m)
∥∥
max
≤ ε.

Proof : For β̃ ∈ [0, 2π] with

∃n ∈ Z : β̃ + 2nπ = β

we get by construction of NC
ε
2
,γ that

∃(n,m) ∈ {0, ..., N} × {1, ...,Mn} : |α− αn|, |β̃ − βnm| ≤ δn.

Finally

‖G3
(e,B)(α, β)−G3

(e,B)(αn, β
n
m)‖max = ‖G3

(e,B)(α, β̃)−G3
(e,B)(αn, β

n
m)‖max

≤ 8δn ‖G2(e, B)‖
sin4(αn + δn)

≤ 2 · 4δnC

sin4(αn + δn)
≤ 2 · ε

2
.

�
With the new net, one can easily modify the algorithm A5

ε,c,γ to make
it able to compare combinations of half ellipses. The new representation is
invariant to rotation, scaling, translation and reflection. Additionally, the
representation is robust to perspective change and partial occlusion. Actu-
ally, it was the goal of the Chapter 3 and the central task of the thesis to
build such a representation. Now it is achieved.



Chapter 4

Extraction of Half Ellipses

4.1 Basic Idea

Figure 4.1: Outline of Half Ellipse Extraction

Figure 4.1 shows a draft of half ellipse detection. To find out, whether a
curve is a half ellipse the system finds its bow point. In the second step the

73



74 CHAPTER 4. EXTRACTION OF HALF ELLIPSES

perfect half ellipse with the same bow and end points has to be determined.
In the next step it is to verify whether the curve lies in a predefined neigh-
borhood of a half ellipse with respect to maximum norm. At the end color
on the both sides of the curve gets extracted.

4.2 Edge Detection

Only in this chapter, the terms edge and line are going to be distinguished.
A line stands for a line section connecting two points. An edge stands for
the side of a pixel. As next the new concept of an edge will be introduced in
a more detailed way.

(1,1,1)

(1,1,1)

(1,1,1)

(1,1,1)

(1,1,1)

(1,1,1)

(1,1,1)

(1,1,1)

(0,0,0)

Figure 4.2: A 3× 3 pixel grid. One black pixel with RGB values (0, 0, 0) at
the center. Other pixels are white and have RGB values (1, 1, 1).

A pixel corner will be denoted as a vertex Figure 4.3. An edge is a pair

Figure 4.3: The set of vertexes of the pixel grid.

of neighbored vertexes. There are horizontal and vertical edges Figure 4.4.
Now it will be described how vertical contrast edges are detected. The

horizontal ones are getting detected in exactly the same way after having
transposed the pixel grid. Each line is getting processed separately. A line
of pixels is a sequence of RGB vectors (pi)i∈{1,...,n} ⊆ R3. For 1 ≤ i < j ≤ n
contrast intensity CI(i, j) is defined as

CI(i, j) =
‖pj − pi‖
j − i+ 2

−

(
j−1∑
k=i

‖pk+1 − pk‖ − ‖pj − pi‖

)
. (4.1)
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Figure 4.4: Horizontal and vertical edges.

The first term
‖pj−pi‖
j−i+2

says the contrast intensity is the higher the bigger the
difference and shorter transition is. Number 2 or generally j− i+ 2 is chosen
heuristically. This choice is due to adapt the edge detection to human visual
perception. The second term

∑j−1
k=i ‖pk+1−pk‖−‖pj−pi‖ is due to diminish

0,0

0,2

0,4

0,6

0,8

1,0

0,0

0,2

0,4

0,6

0,8

1,0

Figure 4.5: Good(left) and bad(right) transition of the red RGB component
in a line.

the contrast intensity in case of a ”bad” transition as showed in Figure 4.5.
In case of a ”good” transition the term is equal zero otherwise it is positive.

The first step of edge detection is to find 1 ≤ i < j ≤ n pairs with

i ≤ k < l ≤ j ⇒ CI(k, l) ≤ CI(i, j) (4.2)

In other words contrast intensity of (i, j)-transition should be bigger than
contrast intensity of any inner transition. An (i, j)-transition satisfying 4.2
will be denoted as (i, j)-true transition. In the second step such (i, j)-true
transitions have to be excluded for which a (k, l)-transition exists with

k < i < j ≤ l ∨ k ≤ i < j < l. (4.3)

In the next step a central edge has to be extracted from an (i, j)-transition
as Figure 4.6 shows. In the last step each side of the extracted edge gets a
RGB value. An edge is defined as an ordered pair of vertexes. Having the
first and the second vertex an edge gets the left and the right side. As Figure
4.7 shows the left side of the edge gets the RGB value of the left outer pixel
of a transition. The right side - that of the right outer one.
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Figure 4.6: An edge at the center of a transition

�rst vertex

second vertex
left
pixel

right
pixel

Figure 4.7: Color extraction for an edge.

4.3 Line Detection

At first a heuristic way to check if three discrete points ”build” a line will be
introduced. For the well known Manhattan norm ‖ · ‖M defined as

‖a‖M =
2∑
i=1

|ai| (4.4)

three vertices a, b, c build a line or line(a, b, c) = 1 if

‖c− a‖M = ‖c− b‖M + ‖b− a‖M (4.5)

and ∣∣∣∣‖b− a‖M‖c− a‖M
|c.x− a.x| − |b.x− a.x|

∣∣∣∣ ≤ 1. (4.6)

The last term can be formulated as integer multiplication

||c.x− a.x|‖b− a‖M − |b.x− a.x|‖c− a‖M | ≤ ‖c− a‖M . (4.7)

A line is defined as an ordered sequence of edges (vi1, v
i
2)i∈{1,...,n} ∈

∏
i∈{1,...,n}R2×

R2. To checks if a point p lies on a line the algorithm takes the first point of
the line first and tests for every vertex vij of every edge if line(first, vij, p) =
1. To check if an edge (p, q) lies on a line (vi1, v

i
2)i∈{1,...,n} both vertexes p, q

of the edge get tested if they lie on the line. Finally line(begin, p, q) = 1 has
to be true.



4.4. MAKING LINE CHAINS 77

The process of line detection is the process of line proceeding. A typical
situation is: a line is given; it has to be checked if there is an edge in direct
neighborhood of the last point of the line which lies on the line in the sense
defined above; if so a new edge gets added to the line. Initially a line consists
of a single edge. The purpose is to proceed it maximally.

good
edge

bad
edge

edge
candidates

Figure 4.8: Two edge candidates to proceed a line. The bad one offends the
first condition (4.5) of the line test.

4.4 Making Line Chains

Segmentation of a curve in lines is normally used to describe its form [Fre61],
[DGR83], [RDLR11]. The process of composition of a curve from lines is
inverse to the segmentation. Its purpose is detection of an intuitively coherent
curve.

Last section delivers a set of lines. The purpose of this section is to
combine them to chains. Surely, there are a lot of possible ways. To avoid
the unnecessary details the most trivial one will be described.

To initialize a chain one line has to be selected randomly. A chain now
consists of this one line. One of the endpoints of the initial line gets chosen
arbitrarily. Let it be denoted as p. Than a set of all lines with one endpoint
in some neighborhood of p has to be built. If the set is not empty a line l̃
has to be selected with for example the angle between l and l̃ closest to 180◦.
The selected line l̃ should be added to the chain and the procedure should
be repeated for the remaining endpoint of l̃. The procedure must be iterated
until the chain can not be proceeded any more. The entire process has to be
replicated for the remaining end point of the initial line l.

One line can be part of only one chain. After having been chosen a line
gets tagged as a used one and can not be used any more. It is due to reduce
the number of produced chains and therefore run time.

The next chain should be initialized with a line untagged as a used one.
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4.5 Detection of a Half Ellipse with Color

This section shows how to check whether a chain of lines is a half ellipse.
A chain should be interpreted as a pair (e, B) ∈ C2 × P (C). e1, e2 are the
endpoints of the line chain. B ⊆ C consists of all points of the chain.

Now (a, b, t0, δ) ∈ [0,∞) × [0,∞) × R × {−1, 1} and (c, β) ∈ C × R
must be found for which the corresponding half ellipse (e, B̃) would have
G2(e, B̃) = G2(e, B). At first G1(e, B) = M ∈ C has to be determined. It is
trivial to calculate as x ∈ B just have to be inserted in F 2

e1+e2
2

, e1
(·). For

c =

√
(M2

1 +M2
2 ) +

√
(M2

1 +M2
2 )2 − 4M2

2

2
(4.8)

and

d =

√
(M2

1 +M2
2 )−

√
(M2

1 +M2
2 )2 − 4M2

2

2
(4.9)

it can be shown that a can be chosen as ‖e1−e2‖
2

c, b as ‖e1−e2‖
2

d. It is known
that

cos2 t0 =
1− d2

c2 − d2
. (4.10)

For t = arctan(sin t0/ cos t0) set t0 = −t if G2
1/2(e, B) ≥ 0 or G2

1/2(e, B) ≤ 0.

Otherwise set t0 = t. If G2
2(e, B) ≥ 0 than δ = 1 otherwise δ = −1.

The system says (e, B) is a half ellipse if all x ∈ B lay in some ε-
neighborhood of (ẽ, B̃) with respect to maximum norm, which can be an-
alytically determined as (a, b, t0, δ) are known and only intersection points of
four lines with the half ellipse are to be found Figure 4.1.

Similarly to an edge, a half ellipse has the first and the last point. Hence,
it also has the left and the right site. A half ellipse is a sequence of lines. A
line is a sequence of edges. The color of the right side of a half ellipse is set
as the arithmetic mean of the right side RGB values of all edges belonging to
the half ellipse. The color of the left site is set correspondingly Figure 4.9.

Finally, it is possible to extract a half ellipse with two color average values
on its both sides, which was the goal of this chapter.



4.5. DETECTION OF A HALF ELLIPSE WITH COLOR 79

Figure 4.9: The left and the right site of a half ellipse.
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Chapter 5

Flow Estimation

Figure 5.1: Impact of one pixel difference on the bow representation of a half
ellipse.

The usage of half ellipses to estimate flow faces one major problem. Most
half ellipses are so small that the representation used for object recognition
is not stable enough. Figure 5.1 shows two tiny half ellipses with breadth
and height less or equal 3 pixels. They appear identical to an observer under
normal conditions. The invariant representation of these half ellipses is (0, 2)T

and (1, 2). As the ε-error-bond for bow used to validate the system is 0.2
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}

}

y

x

Figure 5.2: Representation vector (x, y)T of the bow of a half ellipse.

the half ellipses would not be considered as similar anymore. Whereas for a
half ellipse with secant length of 20 pixels a one pixel deviation would not
have any influence on recognition with bow error tolerance ε = 0.2. For
that reason a more stable representation of the bow as shown in Figure 5.2
was chosen. For the endpoints of half ellipses a trivial translation invariant
encoding was used. The disadvantage of this representation obviously is
restriction to translation handling small half ellipses. With other words a
combination won’t be recognized after e.g. 90◦ rotation.

The first point of the first half ellipse of a combination should be denoted
as its initial point. The translation invariant representation of the endpoints
is built throw shifting of the initial point to the point of origin. The bow
representation is more stable because a half ellipse does not have to be nor-
malized. So one pixel deviation has the same impact on the representation
for all half ellipses independently from the size.

Estimating flow one has to compare two frames. From the first frame the
system extracts e.g. 20,000 half ellipses. For each half ellipse A a combina-
tion from some neighbored half ellipses gets built with A at the beginning.
After having extracted half ellipses from the second frame the system tries
to match each combination from the first frame. If the match is good enough
e.g. in terms of the length of the corresponding subcombination the first
half ellipse of the learned combination gets a translation vector assigned.
The translation vector is built for example through subtracting of the initial
points of two matched combinations. A combination from the first frame
does not get compared with all combinations from the second frame. Thank
to assumption that shifting of small half ellipses is small a combination A
can be compared to combinations from the second frame whose initial points
are in some neighborhood of the initial point of A.

In contrast to object recognition, the new flow estimator compares two
combinations pairwise. The object recognition system introduced in this the-
sis simultaneously compares one combination with all combinations learned
thanks to the new type of storage. In case of flow estimation one has to com-
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pare a combination A from the first frame with e.g. 10 combinations from
the second frame in some neighborhood of the initial point of A. Building
the complicated storage just for 10 combinations needs far more time than
explicit pairwise comparison of A with each of the 10 combinations. The core
algorithm of the comparison of two combinations robust to partial occlusion
and invariant to permutations will be formulated and implemented now.

Task 5.1 Assume d, lu, lv ∈ N and two combinations u ∈
∏

i∈{1,...,lu}R
d,

v ∈
∏

i∈{1,...,lv}R
d. The task is to determine m ∈ N0 defined as

m = |{i ∈ {1, ..., lu}|∃j ∈ {1, ..., lv} : ‖ui − vj‖ ≤ ε}| (5.1)

with ε > 0. Return m + 1 if ‖u0 − v0‖ ≤ ε else 0. u, v are translation
invariant representations of two combinations. They are not considered as
similar if the first half ellipses are not similar.

Implementation:

Set<Integer> indices = new HashSet<Integer>();

for (int i = 1; i <= l_u; i++)

for (int j = 1; j <= l_v; j++)

if (||u_i - v_j||_max < epsilon)

indices.add(i);

if (||u_0 - v_0||_max <= epsilon)

return indices.size() + 1;

else

return 0;

�
To propagate the flow from half ellipses to the entire plane the system

checks for each pixel if there are two different half ellipses in two different
cardinal direction with similar translation vectors assigned and no other half
ellipses between them and the pixel. If so the pixel gets the arithmetic mean
of the two translation vectors attached as the Figure 5.3 shows. If no such

Figure 5.3: Propagation strategy.
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two half ellipses are available for a pixel, the pixel gets an average translation
vector of the nearest pixels whose translation vectors could be determined
the way described above.



Chapter 6

Experimental Results

6.1 Color Information

Color information can be added to the pure form representation described
above. Color extraction for a half ellipse was already discussed in Section
4.5. A half ellipse has a first and a last point. Hence it also has a right
and a left side. After the extraction of a half ellipse the system determines
arithmetic RGB average along the right side of the half ellipse as well as
along the left one. Thus it determines two RGB vectors l, r ∈ R3. Color
code c ∈ R6 is just Cartesian product of this two vectors c = (l, r). A
representation vector a ∈ R6n of a half ellipse combination b ∈ HEn gets
extended to ã ∈ R6n+6n with color code (ci)i∈{1,...,n} ∈

∏
i∈{1,...,n}R6 for each

half ellipse of the combination. An additional threshold value ε̃ > 0 is used
to compare the color information of two representation vectors with respect
to the maximum norm.

6.2 Object Recognition

6.2.1 COIL-100

To evaluate the system the well known database COIL-100 (Columbia Object
Image Library) was used. The data set is described in [NNM96]. It contains
7200 color images of 100 3D objects shown in Figure6.1. One image is taken
per 5◦ of rotation.
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Figure 6.1: COIL-100 objects

6.2.2 Experiment Settings and Results

The computer used in the experiments has a processor Intel(R) Core(TM)2
Duo CPU P8600 @2.40 GHz 2.40 GHz and 4.00 GB RAM. The system is
implemented in Java.

Basically, 2 experiments with slightly different parameter settings were
made. In the first experiment 18 views(1 per 20◦) were used to learn each
object. The remaining 5400 images were analyzed. A recognition rate of
99.2% was reached. The time demand to learn all objects is 277 seconds.
The average time demand to analyze one image is 980 milliseconds. In the
second experiment 8 views(1 per 45◦) were used to learn an object. The other
6400 were analyzed. A recognition rate of 96.3% was reached. The system
needs 142 seconds to learn all objects. The time demand to analyze a single
image is 1593 milliseconds.

6.2.3 Learning and Recognition Scheme Used for COIL-
100

As mentioned above the system uses e.g. 8 images to learn an object. For one
image it constructs e.g. 10 combinations of half ellipses. Each combination
is represented with e.g 6 feature vectors. Each vector is labeled with the
number N ∈ {1, ..., 100} of the object it refers to.

Analyzing an image the system at first determines the maximal length
m ∈ N of the matched subsequences for each learned feature vector. Let the
set of such lengths be denoted as M . For m̃ = maxM the system depicts all
feature vectors for which subsequences of the length m̃ were matched. The
object with the greatest number of such feature vectors will be returned as
the recognized one. Having several such objects the system chooses one of
them randomly.
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6.2.4 Comparison to Alternative Approaches

The Table 6.1 is based on the results described in [YRA00], [CHPN00],
[OM11]. It shows that the new approach is at least comparable to the state-
of-the-art methods when solving a standard object recognition task.

Table 6.1: Comparison with Alternative Results
Method 18 views 8 views
LAFs 99.9% 99.4%

Half Ellipses 99.2% 96.3%
SNoW / edges 94.1% 89.2%

SNoW / intensity 92.3% 85.1%
Linear SVM 91.3% 84.8%

Spin-Glass MRF 96.8% 88.2%
Nearest Neighbor 87.5% 79.5%
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6.3 Flow Estimation

Construction of flow estimator based on half ellipses is not over yet. It means
a satisfying validation by means of a state of the art benchmark is not possible
at the moment. Just a proof of principle could be delivered by now. Based
on the test sequence Hydrangea of the Middlebury benchmark Figure 6.2 it
could be shown that a flow estimator can be built this way. Error is 1.5
with respect to maximum norm. Time demand is 81 seconds. Extraction of
half ellipses from both frames requires 79 seconds. Comparison of half ellipse
combinations needs consequently just a couple of seconds.

Figure 6.2: Frame 10 of the sequence hydrangea.



Chapter 7

Summary

7.1 Comparison to Other Methods

A typical object recognition system consists of three parts:

• primary digital image processor which detects e.g. edges [Can86]

• representation vectors e.g. integral image [VJ01] and corresponding
camera model e.g. pinpoint camera [Bis07]

• machine learning algorithm e.g. neural networks [Bis07]

All three parts of the approach introduced in this thesis are new. As all
three parts could be used separately as components of other systems, it is
worth mentioning what is new about each of them.

The half ellipse detector finds straight lines as well as cycles. In addition,
its capable to find endpoints of a half ellipse, which is a serious hurdle for
e.g. as hough transformation. Furthermore, the detector determines color
on both sides of a half ellipse - on the one hand it works with color images in
contrast to some major contemporary methods as Canny filter, on the other
hand it passes the color information to the system for the further processing.
The basic disadvantage of the algorithm is its running time. Detection of all
half ellipses from a 500× 500-image can last several minutes when using the
contemporary Intel processor based Java implementation.

The new architecture of the representation vectors together with the new
machine learning algorithm offer a combination of useful features. Some
subset of these features can be offered by each object recognition system.
Unlike other approaches the new one provides all the following properties at
the same time:
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• robustness to partial occlusion: the property follows from the construc-
tion of the new machine learning algorithm, experimentally it is verified
as 3D objects used for validation partially occlude themselves through
rotation and can still be recognized.

• robustness to affine transformations: for 2D objects the property fol-
lows from the definition of representation, experimentally it can be
confirmed again as 3D objects of the benchmark COIL-100 rotate.

• robustness to deformation: the property is given, as error tolerance is a
freely selectable parameter, experimentally it can be seen, because the
system interprets a 3D object as a set of 2D objects with an identical
label - a 2D projection of a 3D object gets deformed through rotation
of this object

• combination of color with form representation: directly implemented
in the system

• ability to handle not path-connected objects: the property has the same
reason as the robustness to partial occlusion and follows immediately
from the definition.

• an object does not have to be segmented prior to its recognition: best
seen through application to optical flow estimation - thousands of com-
binations (objects) do not have to be segmented from each other or
background in order to be recognized

• objects of varying complexity can be saved in the same storage e.g. a
gummy duck and a car of COIL-100

• ability to learn several objects simultaneously: this property is an-
chored in the definition of the system and can be verified as the object
recognition system learns 100 objects to handle the benchmark COIL-
100

• the new object recognition system can be applied to flow estimation:
verified experimentally

Further properties of the machine learning algorithm alone worth to be
mentioned are:

• time demand to learn a new object is independent of the number of
objects already learned, which makes it feasible to autonomous robotics
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• algorithm is highly parallelizable: number of half ellipses extracted =
number of independent threads

Special attention should be paid to the way the connection of the new rep-
resentation and learning algorithm delivers such properties as cancellation
of the object segmentation as a preprocessing step or robustness to partial
occlusion: the system compares all combinations on an image to be analyzed
with all combinations stored.

7.2 Conclusion

The experimental results presented in this thesis show first off all the general
ability of the approach to handle 3D real world tasks. Half ellipse detection is
at least stable enough to handle blurred edges of the COIL-100 images. The
low resolution of the benchmark can probably be helpful for the standard
methods - the new method with its special representation would definitely
profit from higher resolution. Nevertheless it is still stable enough to deliver
performance comparable to the state-of-the-art methods. Trivial but still
noteworthy is the fact, that the system considers the color of the object in
an intuitive manner without unacceptable deceleration.

High storage consumption of the system arises directly from the definition.
Huge working memory of 4GB was fully utilize to learn just 100 objects.

Sometimes the only way to find out if an image processing technology can
solve a problem is try it. The presented system might appear promising but
it is too complicated to predict whether it will be able to solve every image
processing task. Besides there are some principle problems not handle yet:
illumination invariant color representation [DWL98], texture [HkSI73].

Similar as color, texture is a powerful device in digital image processing.
It can be used for edge detection and as additional information in object
description. Texture itself is an information source - it can be used to identify
a human iris [Dau93]. Methods commonly used to analyze texture are: Laws
technique [Law79], fractal based technique [Pen84] or Markov field based
technique [HH82].

On the one hand the system is intuitively highly suitable for matching
tasks as e.g. flow estimation. On the other hand dense flow estimator has
not been ultimately developed yet. At the moment only a proof of principle
succeeded. Face matching can be solved in various ways. Practice shows
that a single class discrimination is simple enough to allow several methods
to achieve almost perfect results. Far more difficult appears classification of
e.g. 10000 animals photographed under arbitrary conditions. Learning and
recognition scheme used for COIL 100 would definitely fail in this case. A
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combination of the new method with Bayes’ Decision Theory [Bau02] and
[Pes98] appears reasonable.

Extraction of half ellipses seems to be the greatest technical challenge
for the further development of the system. On the one hand the quality of
extraction still has to increase significantly. The new flow estimator detects
tens of thousands of half ellipses in two corresponding frames. To achieve
at least state of the art performance it should be executed with sub-pixel
precision. On the other hand the detection is the predominant running time
consumer during flow estimation.

Running time optimization would generally require usage of more sophis-
ticated hardware. As half ellipse extraction has minimal working memory
demand FPGA seems a good candidate for a quicker hardware implemen-
tation. Comparison of half ellipses for object recognition has hardware re-
quirements far more difficult to satisfy. Production of code samples is perfect
candidate for NVIDIA application. Further recognition process can be split
in hundreds ore even thousands parallel processes which however need inde-
pendent access to a rather big working memory. This is exactly the tendency
of the recent years: to equip a computer with more and more independent
processors and bigger and bigger working memory.

The implementation of the perspective robustness suggested in this thesis
has two major disadvantages. First of all it is highly storage consumptive.
Then, only a trivial and robotics irrelevant case of learning a 2D object
photographed from the parallel perspective is described mathematically pre-
cisely. The actual system can still handle 3D object recognition heuristically
with success. The main advantage of the implementation is: it was designed
in a mathematically consistent way, which allowed to significantly reduce the
number of freely selectable system parameters.
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Glossary

C Complex plane, possible representation as R2. 37

initial point The first point of the first half ellipse of a combination. 81

net Set of hemisphere points used to achieve robustness to perspective change.
47, 72

sample A code vector. 19, 22
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