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Abstract 

We consider sets Turing reducible to p-selective sets under various re­
source bounds and restricted nurober of queries to the oracle. We show 
that there is a hierarchy among the sets polynomial-time Turing reducible 
to p-selective sets with respect to the degree of a polynomial bounding 
the number of adaptive queries used by a reduction. We give a charac­
terization of EXP /poly in terms of exponential-time Turing reducibility 
to p-selective sets. Finally we show that EXP can not be reduced to the 
p-selective sets under 2lin time reductions with at most nk queries for any 
fixed k E N. 

1 Introduction 

Selman [13] introduced p-selective sets as a polynomial time analogue to the 
semirecursive sets as studied by Jockusch [8]. Roughly speaking, a set is p­
selective if there is a polynomial-time procedure which decides for a pair of 
strings which of them is "more likely" tobe in the set. Sehnan used p-selective 
sets to show that polynomial-time Turing reducibility and many-one reducibility 
differ on NP, unless E = NE. 

Since then much attention has been paid to sets reducible to p-selective 
sets under various polynomial-time reducibilities. This extends a long line of 
research of sets reducible to sets of low density, such as tally and sparse sets ( for 
a survey, see [16]). Toda [15] showed various collapses under the assumption 
that all sets in certain complexity classes are truth-table reducible to some p­
selective set. In particular, he showed that if each set in UP is truth-table 
reducible to some p-selective set then P = UP and if each set in Ll.~ is truth­
table reducible to some p-selective set then P = NP. Recently it has been 
shown that if each set in NP is truth-table reducible to some p-selective set then 
P = NP [1, 4, 12]. A rather detailed examination of the relationships between 
sets reducible or equivalent to the p-selective sets under various reducibilities 
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has been given by Hemaspaandra et a1.[6]. Fora survey on results concerning 
p-selective sets we refer to [5] 

Herewe concentrate on sets Turing reducible to p-selective sets. Westart by 
showing that there is a proper hierarchy between the Ptt(P-sel) and PT(P-sel) 
with respect to the degree of a polynomial bounding the number of adaptive 
queries to some p-selective orade. The proof is by diagonalization based on a 
simple fact concerning the nurober of sets selected by a single selector-function. 

Seiman [13] showed that each tally set is polynomial-time Turing reducible 
to some p-selective set. Ko [9] showed that the p-selective sets are contained 
in the nonuniform advice dass PI poly which in turn is precisely the dass of 
sets polynomial-time Turing reducible to some tally set. Hence Plpoly can be 
characterized by the sets polynomial-time Turing reducible to some p-selective 
set. In Section 4 we adress the question wether a similar characterization of the 
classes EXP /poly and Ejlin can be given. It should be mentioned that a char­
acterization of EXP I poly via tally sets is impossible since every set is already 
exponential-time many-one reducible to some tally set, namely its tally version 
where each instance is encoded in unary. However, we can show that EXP /poly 
is precisely the dass of sets which are exponential-time Turing reducible to 
some p-selective set using at most polynomially many adaptive queries. Fur­
thermore we show that a set which is Turing reducible in time 0(21in) to some 
p-selective set using at most linearly many queries is contained in E/ lin. Here 
the converse falls. Concerning the non-uniform complexity ofp-selective setsvia 
linear-length advices there is a recent result by Hemaspaandra and Torenvliet 
showing P-sel s NP/ lin n coNP / lin [7]. 

The proofs are based on an observation which informally can be stated as 
follows: Suppose that V is a finite set and we know the nurober of strings in 
A n V for some p-selective set A. Then we can decide whether x is in A for 
each string in V, by simply counting the strings in V that are "more likely" 
than x in A. We apply this o bservation to sets Thring reducible to p-selective 
sets considering various resource bounds. We thereby obtain a close relation 
between the nurober of oracle queries to some p-selective set and the length of 
the advice needed to decide a set reducible to some p-selective set nonuniformly. 

In Section 5 we consider the relationship of (uniform) exponential-time com­
plexity classes and sets Turing reducible to some p-selective set. It is an open 
question whether EXP is included in P jpoly. Regarding the characterization of 
P /poly in terms of sets polynomial-time Turing reducible to some p-selective set 
it is natural to ask whether one can settle the relationship between subclasses of 
P /poly and EXP, where this subclasses are obtained from restricting the access 
to some p-selective oracle. In fact, Toda [15] showed that EXP is not induded 
in the dass of sets polynomial-time truth-table reducible to some p-selective 
set. Here we extend this result to sets Turing reducible to some p-selective 
set where the reduction may use at most q(n) adaptive queries for every fixed 
polynomial q( n). 
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2 Preliminaries 

We write N to denote the set of nonnegative integers. A string is a finite 
sequence of characters over the two letter alphabet 'E = {0, 1}. We write 'E* 
for the set of all strings induding the empty string and lxl for the length of a 
string x E 'E*. We use II All to denote the cardinality of a finite set A. Let A$n 
denote the set of strings in A of length at most n. A =n is the set of strings in 
A of length n. A tally set is a set A ~ { on : n E N}. Let TALLY denote the 
dass of all tally sets. 

We use determ.inistic-, nondeterministic- and orade Turing machines and 
other notions of comple:xity theory, as can be found in [2]. We are espe­
cially interested in the following deterministic time complexity classes P = 
UkeN DTIME(nk), E = UceN DTIME(2cn) and EXP = UkeN DTIME(2nk). 

A set A is Turing reducible to a set B if there exists an orade Turing machine 
suchthat A = L(M, B). A query tree of an oracle Turing machine Moninput 
x is a binary tree in which the nodes are labeled with aJl possible queries M can 
ask on input x, i.e. the root is labeled with the first query, and for each internal 
node corresponding to a query q, the left (resp. right) successor corresponds to 
the next query M asks with a positive (resp. negative) answer on q. Fora time 
bound t(n) and a dass of sets C, let DTIME(t(n))T(C) denote the dass of all 
sets that are Turing reducible to some set in C via a t( n) time bounded orade 
Turing machine. Fora function q: N -4 N let DTIME(t(n))q(n)-r(C) denote 
the class of all sets in DTIME(t(n))r(C) where the oracle Turing machine asks 
at most q( n) queries on every path of the query tree. We extend this notation 
to complexity dasses and function dasses, for example as P g(n)-T(C), Plin-T(C), 
P paly-T(C) etc. 

Throughout a computation an orade Turing machine may ask queries which 
depend on the answers to previously asked queries. These kind of queries are 
called adaptive queries. In contrast, a set Ais truth-table reducible to a set B if 
there e:xists an orade Turing machine M suchthat A = L(M, B) and all queries 
asked by M are nonadaptive, i.e. do not depend on the answers to previously 
asked queries. Fora time bound t(n) and a dass of sets C, let DTIME(t(n))tt(C) 
denote the dass of all sets that are truth-table reducible to some set in C via a 
t( n) time bounded oracle Turing machine asking only nonadaptive queries. 

All time bounds and functions bounding the numbet of queries are assumed 
to be monotonic increasing and time constructible. 

3 A hierarchy between polynomial-time truth-table 
and Turing reducibility to p-selective sets 

We show that there is a proper hierarchy between the dass Ptt(P-sel) and 
PT(P-sel) with respect to the degree of a polynomial bounding the number of 
queries to some p-selective oracle. First we briefly review the definition and a 
standard construction of p-selective sets from [13]. 

Definition 3.1 ([13]). A set A ~ 'E* is p-selective ifthere is a polynomial-time 
computable function f : :E* x 'E* -4 :E* such that for all strings x, y E 'E*, 
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1. f(x, y) = x or f(x, y) = y, and 

2. if x E A or y E A, then /( x, y) E A 

A function f fulfilling Conditions (i) and (ii) is called a p-selector for A. 

Let P-sel denote the dass of all p-selective sets. It immediately follows from 
the definition that every set in P is p-selective. On the other hand, Seiman [13] 
showed that for every tally set there exists a polynom.ial-time Turing equivalent 
p-selective set. Hence there are arbitrarily difficult p-selective sets. The proof 
of this fact makes use of a of a subdass of the p-selective sets, namely the dass 
of standard leftcuts with respect to an infinite binary sequence ( cf. [13, 9]). 
Recall that the dictionary ordering of binary strings over the alphabet {0, 1} 
can be defined as follows: 0 -< 1, and for x = x1 ••• Xm, y = Yt . · · Yn, x -< Y 
iff (i) m = n and (3i s m)('v'j < i)[xj = Yi & Xi -< Yi], or (ii) m < n and 
x ::5 Yt •.• Ym, or (iii) m > n and x1 ••. Xn ~ y. The standard leftcut Lex with 
respect to an infinite binary sequence o is the set of strings x which are less 
than or equal to the initial segment of a of length lxl. 

Proposition 3.2 ([13]). Every standard leftcut is p-selective. 

Prooj. Every standard leftcut is selected by the p-selector !( x, y) = x if x ~ 
y eise y. [] 

We go on to consider sets reducible to some p-selective set. It is known 
that 2k - 1 nonadaptive queries to some p-selective set can be simulated by k 
adaptive queries of a polynomial-time bounded oracle Turing machine. A proof 
of this fact can be found in [6]. Though it is stated there only for a constant 
number of queries it can be easily generalized to the case where the nonadaptive 
queries are bounded only by the running time of the reduction. 

Proposition 3.3 ([6]). Ptt(P-sel) = Po(logn)-T(P-sel). 

We next show a hierarchy theorem among the sets polynomial-time Turing 
reducible to some p-selective set with respect to the number of adaptive queries 
used by the reduction. In the case of constant number of queries Hemaspaandra 
et al. [6] showed a tight hierarchy theorem: Pk-T(P-sei) C Pk+l-T(P-sel), k 2::: 1. 
They use a construction of p-selective sets introduced by N aik et al. [11]. If 
the number of queries depends on the length of the input we get a less tight 
hierarchy. The constructed setwill be reducible to some p-selective leftcut. We 
isolate the combinatorial part of the diagonalization in the following lemma ( cf. 
[6]). 

Lemma 3.4. Let f be a P -selector and V a finite set of strings. Then 

II{W ~V: f selects W}ll ~ IIWII. 

Proof. Suppose that there are more than IIWII subsets of W which are selected 
by f. Hence among these sets there exists distinct sets W1 , W2 ~ W with the 
same cardinality. That is, for some Xt' X2 E w' Xt E Wt-w2 and X2 E w2-wl. 

It follows that f(xt, x2) cannot select both of W1 and W2, [] 
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Proposition 3.5. P k (P-sel) C P k_+l (P-sel), k ~·l. 
n~-T n~-T 

Proof. Let Mo, M1 , ••• be an enumeration of all polynomial-time oracle ma­
chines asking at most n ~ queries on an input of length n. Let j 0 , f 1 , • •. be an 
enumeration of all polynomial-time transducers suchthat f(x, y) E {x, y}. 

Let J.L( s) = 28+4 , and let Fn denote the lexicographically first n ~ + ( k + 1) · 
log( n) strings of length n. 

We will construct a set A in stages. The set A will consist only of strings 
of FJ.L(s)' s ~ 0. Instage s = (i,j), we will satisfy the following requirement: 

(Ra) for any set B which is selected by fi, Ais not accepted by Mi with oracle 
B. 

The construction proceeds as follows. Let A' denote the set of strings put into A 
priortostage s. Let n = J.L( s) and Qn be the set of aJl queries in the query-tree 

of Mi on an all inputs x E Fn. Then IIQnll :$; n~ +(k+l)·log(n)·2n~. By Lemma 
3.4, there exist at most IIQnll subsets of Qn which are selected by fi· Hence Mi 

can agree on at most ( n~ + (k + 1) ·log( n)) · 2n~ < nk+l. 2n! = 2n~ +(k+l)·log(n) 

subsets of Fn with some oracle selected by fi. But there are 2n~ +(k+l)·log(n) 
distinct subsets of Fn. Hence there exists some (smallest) set Dn ~ Fn which 
cannot be accepted by Mi with any oracle selected by fi· Setting A = A' U Dn 
we thus established ( Rs). 

It remains to show that A is Turing reducible to some p-selective set with 
at most n ~ adaptive queries. Let dn, for n = J.L( s ), the string of length 

n~ + (k + 1) ·log( n) denoting the (finite) characteristic function of Dn in the 
construction of A in stage s. Define a p-selective set B to be the leftcut with 
respect to the infinite sequence dJ.L(o)dJL(l)dJL(2 ) •••• The membership of some x 

of length n = J.L( s) in A is fixed by dn. It thus suffices to reconstruct dn from 
the oracle B. By prefix search, this requires at most 2:~~Jn)(2i)~ + (k + 1) · i:::; 
log(n) · n~ + (k + 1) ·log2(n):::; -Jii · n~ = n~ adaptive queries. 0 

The announced hierarchy between Ptt(P-sel) and Pr(P-sel) now follows as 
a corollary. 

Corollary 3.6. 1. Ptt(P-sel) C Pn-T(P-sel). 

2. P nk-T(P-sel) C P nk+l.T(P-sel), k ~ 1. 

3. P nk-T(P-sel) C PT(P-sel), k ~ 1. · 

4 Exponential-time advice classes 

We consider the nonuniform complexity of sets Turing reducible to p-selective 
sets in terms of advice classes. As the main result we obtain a characterization 
of EXP /poly in terms of reducibility to p-selective sets. 

5 



Definition 4.1. An advice function is a function h : N -+ ~* · For a func­
tion q : N -+ N, Iet ADV( q( n)) denote the set of all advice functions. h 
with jh(n)l :s; q(n) for aJl n E N. For functions t, q : N -+ N, the ~dmce 
class DTIME(t(n))/ADV(q(n)) is the dass of sets B for which there eXJsts a 
set A E DTIME(t(n)) and an advice function h(n) E ADV(q(n)) such that 

B = {x : (x, h(!xl)) E A}. 

Using Definition 4.1 we can redefine P fpoly as UkeN DTJME(nk)jADV(nk). 
Additionally we consider the advice classes E/ lin and EXP /poly which can be 

defined similarly. 
The following lemma is the key observation which leads to all subsequent 

results of this paper. 

Lemma 4.2. Let A be a p-selective set with selector-function f. Let V a fi­
nite set of strings. Then for each x E V, x E A if and only if II { x' : x' E 

V and f(x,x') = x'}ll :s; IIA n VII· 
Proof. Fix astring x E V. First assume that x is in A. By the definition of a 
p-selector, f(x, x') = x' implies x' E A. Therefore, the number of strings x' in 
V for which f(x,x') = x' is at most IIA n VII· If xisnot in A, then for all x' 
in A, f(x,x') = x'. Additionally, f(x,x) = x. Hence for more than IIA n VII 
strings x' in V it holds that f( x, x') = x'. D 

Consider a p-selective set A and a p-selector f for A. Let the advice be 
the binary representation of the nurober of strings in A of length n. Then 
the length of the advice is at most n + 1. By Lemma 4.2, for each string 
x of length n, the membership of x A can be decided with the help of the 
advice by counting the strings x' of length n for which f(x,x') = x'. Since 
f is polynomial-time computable, this can be done in time 0(22n). That is, 
P-sel k DT111E(22n)/ADV(n + 1). This argument can be generalized to sets 
Turing reducible to p-selective sets, whereby we obtain a relationship between 
the nurober of oracle queries and the length of the advice. 

Lemma 4.3. 

DTIME(t(n))q(n)-r(P-sel) ~ U DTIME(t(n)k · 22q(n)+2n)/ADV(q(n) + n + 1) 
k~O 

Prooj. Let A be a set Turing reducible to a p-selective set B via a O(t(n)) time 
bounded oracle Turing machine which asks at most q(n) queries on every path 
of the query tree on some input of length n. Let f be the p-selector for B and 
assume that f is computable in time 0( nk) for some constant k E N. 

Let Qn = Ulxl=n Q(x) where Q(x) denotes the set of all queries in the 
query-tree of M on an input x. Define the advice function h : N -+ ~* to be 
the binary representation of IIB n Qnll· Thus the length of h(n) is less or equal 
to q( n) + n + 1. 

For a string x of length n, we decide x E A by the following algorithm. First 
generate a list of all queries q E Qn by traversing the query trees of M for a11 
inputs of length n. In order to avoid counting a single query more than once in 
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the following step, elim.inate multiple occurrences of queries in thls list. N ow 
simulate M on x. Whenever M asks a query q, count the strings q' in the list 
suchthat f(q,q') = q'. Ifthls number is less or equal to h(n), continue with the 
answer "YES", otherwise continue with "NO". Accept if and only if M accepts 
x. 

By Lemma 4.2, we always continue with the correct answer. Therefore, we 
accept x iff x E A. To compute the list of a1l queries in Qn, we have to generate 
successively Q(x) for all x oflength n. This can be donein time 0(2n.2q(n).t(n)). 
Eliminating multiple occurrences of queries in this list requires additionally time 
0((2n·2q(n))2 ·t(n)). Todetermine the answer for a query q, we have to compute 
the p-selector f on at most 2n · 2q( n) strings of length less or equal to t( n). Since 
f is computable in time O(nk), thls requires time O((t(n))k · 2n · 2q(n)). We 
conclude that the whole algorithm runsintime O(t(n)k · 22q(n)+2n). 0 

Applying Lemma 4.3 and the standard leftcut construction we obtain the 
characterization of EXP /poly. 

Theorem 4.4. EXP pol:v-T(P -sel) = EXP /poly 

Proof. By Lemma 4.3, EXPpol:v-T(P-sel) ~ EXP /poly. To see the inverse in­
clusion let A be accepted by an exponential-time Turing machine M with the 
advice function h. Define an infinite binary sequence a = h(O)Olh(l )01 ... , 
where x denotes the string x with each bit doubled. In order to decide x E A 
with the p-selective leftcut Lex, first compute h(O)Olh(l)Ol ... Olh(jxj) from Lex 
by prefix search. Then simulate M with input x and the advice h(!xl). Since 
the length of h( I x I) is polynomially bounded, both the number and the length 
of the queries are bounded by some polynomial. It follows that h(jxj) can be 
obtained from the oracle Lex in polynomial-time. Hence the whole algorithm 
runs in exponential-time. 0 

Remark 4.5. Note that in the above proof the queries used by the exponential­
time reduction are polynom.ially length bounded. Thus it follows from Theorem 
4.4 that every set in EXP pol:v-T(P-sel) can be exponential-time Turing reduced 
to some p-selective set where both the number and the length of the queries are 
polynomially bounded. 

A characterization similar to Theorem 4.4 fails for E/lin. Adapting a proof 
in [3], we show that Elin-T(P-sel) is properly included in E/ lin. In the proof 
we use a Kolmogorov-random sequence. For the definition of Kolmogorov com­
plexity and related facts we refer to (10]. 

Theorem 4.6. Elin-T(P-sel) C E/lin 

Proof. The inclusion Elin-T(P-sel) ~ E/lin follows from Lemma 4.3. Moreover, 
replacing Qn = Ulxl=n Q(x) by Q~n = Ulxl~n Q(x) in the proof of Lemma 
4.3 we see that for a set in Elin-T(P-sel) all strings up to length n can be 
decided in exponential-time with an advice of linear length. This implies that 
the Kolmogorov complexity of all initial segments of the characteristic sequence 
up to strings of length n is at most linear in n. 
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Now consider a binary Kolmogorov random infinite sequence p. That is, a 
sequence such that the Kolmogorov complexity of its prefixes is at least linear 
in the length of the prefixes infinitely often. We define a set A which contains 
at most the first n strings of length n. Let x be the le1cofjraphically i-th string, 
i S n, of length n. Then x E A if and only if the ( n n2-

1 + i)-th bit of p is 1. 
That is, we divide p into consecutive subsequences of length 1, 2, ... , n, ... and 
the n-th subsequence of length n denotes the membership of the first n strings 
of length n in A. It follows that A is in E/lin. We use a prefix of length n 2 of 
p to define A up tostrings of length n. Hence the Kolmogorov complexity of 
the pre:fi.xes of the characteristic sequence of A up to strings of length n is at 
least quadratic in n infinitely often.· Thus Ais not in Elin-T(P-sel). D 

Remark ..(. 7. Throughout this paper we consider only bounded query reductions 
to p-selective sets. The reason is that if we do not restriet the nurober of 
queries, then every set is reducible in linear exponential time to p-selective sets. 
In order to see that, fix any set A. Then A can be many-one reduced in linear 
exponential-time to its tally version tally(A) = {01 : Si E A}, where Si is the 
i-th string in the lexicographical erdering on 'E*. Furthermore, every tally set 
can be Turing reduced to some p-selective set in polynomial time [13]. Hence 
Ais in Em(PT(P-sel)). Since Em(Pr(P-sel)) ~ ET(P-sel), we conclude that A 
is in Er(P-sel). 

5 Turing reducibility to p-selective sets and uniform 
exponential-time complexity 

We locate sets Turing reducible to p-selective sets in (uniform) exponential-time 
classes using Lemma 4.3 and the following proposition. 

Proposition 5.1. Let f: N -t N be a function with n s f(n) < 2n. Then 
DTIME(24·f(n)) ~ DTIME(2f(n))fADV(f(n)). 

Proof. Let Mo, Mt, . .. be an enumeration of all Turing machines Mi running 
in time i2f(n). We will construct a set A in stages. Each stage determines the 
membership of all strings of length n. In stage n, we will satisfy the following 
requirement: 

(Rn) for any advice function h E ADV(f(n)), Ais not accepted by Mn with 
advice h. 

This clearly implies A rf. DTIME(2f(n))j ADV(f( n) ). Let A' denote the set of 
strings put into A priortostage n. There are at most 2J(n) < 22n sets of strings 
oflength n which can be accepted by Mn with some advice oflength f(n). Since 
there are 22

n distinct subsets of 'E=n there is a ( smallest) set Dn ~ 'E=n which 
is not accepted by Mn with some advice of length f( n ). Setting A = A' U Dn 
we thus established (Rn)· 

In order to decide x E A ( uniformly) for some string x of length n we only 
have to determine the set Dn in the above construction. Butthis can be done 
in time 0(2f(n} · 2n · n · 2f(n)), hence Ais in DTIME(24f(n)). D 
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Theorem 5.2. Fix c, k E N. Then 

1. E ~ P cn-T(P-sel) 

2. EXP ~ Enk-T(P-sel) 

Proof. (1) By Lemma 4.3, for every c E N, P cn-T(P-sel) ~ DTIME(2c'n)IADV(c'n) 
for some constant c' E N. But E ~ DTIME(2c'n)/ADV(c'n) by Proposition 
5.1. The proof of (2) is similar. 0 

Remark 5.3. Theorem 5.2 (1) holds not only for polynomial-time reducibility, 
but also for super polynomial-time bounds. More precisely, for all t( n) such 
that, for aJl k E N, t(n)k E 0(2n), E ~ DTIME(t(n))cn-T(P-sel). 

6 Conclusion 

We showed that there is a hierarchy among the sets Turing reducible to p­
selective sets with respect to the degree of the polynomial bounding the nurober 
of adaptive queries used by a reduction. Furthermore, we gave a characteriza­
tion of EXP I poly in terms of Turing reducibility to p-selective sets. 

Furthermore, we extended Toda's result EXP ~ Ptt(P-sel) to EXP ~ Enk-T(P-sel) 
for every :fixed k E N. Wilson [14] constructed an oracle relative to which 
EXPNP ( and hence EXP) is included in PI poly = PT(P-sel). Thus our sepa­
ration seems tobe the best possible without using nonrelativizing techniques. 
However, since EXP ~ PI poly if and only if EXP I poly ~ PI poly, our charac­
terization might shed some light on the EXP ~ PI poly question. 
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