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1 Introduction

This paper describes a problem set for automated theorem provers taken from a
KIV case study on the implementaion of depth-first search on graphs. The goal
is to prove 54 consequences of the axioms specifying directed graphs. We present

— a structured algebraic specification of directed graphs with 165 axioms.

— 54 theorems, at least 46 of which can be proved without induction (some of
the theorems rely on the 8 consequences, which have been proved in KIV
with the help of induction)

* This research was partly sponsored by the German Research Foundation (DFG)
under grant Re 828/2-2.



Test files are available for the common syntax of the DFG-Schwerpunkt “De-
duktion” ([RH96]), the Syntax of Otter ((WOLB92]) and as clauses for Setheo
([GLMS94]), the latter two using a functional encoding of sorts. Section 2 de-
scribes the specification of the datatype. Section 3 gives a listing of the available
axioms and Section 4 contains the theorems to prove. Finally Section 5 describes
the test scenario

2 The Datatype of Directed Graphs

The set of theorems deals with a variant of the abstract datatype of directed
graphs (no multiple edges), where the set of nodes is an initial segment {0, ...n
—1} of the natural numbers. This represenation allows efficient iteration over
all nodes in the KIV-implementation of depth-first search, as well as an efficient
implementation using adjacency lists.

A graph with node set {0 ...n —1} and no edges can be constructed with
mkpg(n). For a graph pg with node set {0 ...n —1}, the new graph pg ++ (where
++ is written postfix) contains one new node (so it has node set {0 ...n}) and
the same set of edges as pg. #, pg gives the number of nodes in pg, so the test,
whether node m is contained in pg, is m < #, pg.

Edges are constructed as pairs of two natural numbers (source and target)
by n => m (so => is an infix constructor for pairs). Adding an edge to a graph
is done with pg +pe 7 => m (+p. is also written infix). This operation adds the
edge n => m to the set of graph edges only if both nodes n and m are already
contained in the graph, i.e. are below #, pg. Otherwise it does not change the
graph.

An edge can be deleted with pg —p. n => m (again —. is infix). Membership
in the set of graph edges can be checked with n => m €, pg. #pe pg gives the
number of edges of a graph, and finally psuccs(pg,n) gives the ordered list of all
nodes m for which the graph contains an edge n => m (i.e. the successors of

To describe a datatype like directed graphs, KIV ([RSS95],[Rei95],[RSS97])
uses structured algebraic specifications. They are built up from elementary first-
order theories with the usual operations known in algebraic specification: union,
enrichment, parameterization, actualization and renaming. Their semantics is
the class of all models (loose semantics). Reachability constraints like “nat gen-
erated by 0, +1” or “list generated by nil, cons” restrict the semantics to term-
generated models. The constraints are reflected by induction principles in the
calculus for theorem proving used in KIV. The structure of a specification is
visualized as a specification graph. Roughly, each arrow in such a specification
graph indicates that one specification is based upon the other (for formal details
see [Rei95]).

Fig. 2 shows the specification graph for the datatype of graphs: Specification
NatBasic describes natural numbers with zero (0), successor and predecessor
(postfix +1 and —1). It is written like an ML ([MTHS89]) datatype declaration.
The axioms listed in Sect. 3.1 are generated automatically (including the induc-
tion principle “nat generated by 0,+1”). Specifications Add and Sub enrich



NatBasic by addition an subtraction, Nat is their union. Specification List spec-
ifies the datatype of lists with arbitrary elements. Memlist is an enrichment of
lists with a membership function in, a function last to select the last element of
a list, and an infix function until. [ until e selects the prefix of the list [ until the
first occurence of e, or the whole list, if e is not in L

Specification Pair defines generic pairs with arbitrary elements. All these
specifications have been taken from the KIV-library of predefined specifications.
Therefore they contain functions, which would not be neccessary for the task of
defining directed Graphs in the toplevel specification Graph.

The toplevel specifications given in Fig. 2 uses pairs of natural numbers (spec-
ification Edge) as edges, and lists of natural number (Natlist) enriched with an
ordered-predicate (OrderedList) as successors (as result of the function psuces).
The auxiliary specifications are all given in Fig. 2.

ONatList

Nat

MemList

List | | Pair

| Eleml ElemlI

s
/

| Aad | | sw | | Elenm

NatBasic

Fig. 1. Specification graph



Graph =

enrich ONatList, Edge with

sorts graph;

functions
mkpg : nat — graph ;
. +pe - : graph x edge — graph ;
. —pe - : graph x edge — graph ;

#, . :graph — nat ;
#pe - graph — nat ;
psuccs : graph X nat — natlist ;
. ++ :graph — graph ;

predicates . €,, . : edge x graph;
variables pg,, pg;, pg: graph; n4, ns, nz, n;: nat;
axioms
graph generated by mkpg, +p.;
pg: = P82
< #,p8 = #, pg>
ANVm,n  m<#,pg An<#,pg
— (m =>n €,y pg; <> M => 10 €pg PE»)),
#, mkpg(n) = n, #,(pg +pe pe) = #, pg, #,(Pg —pc PE) = #, DS,
#, pg ++ = (#, pg) +1,
- pe €pg mkpg(n),
- < #,pgV o ne < #, pg — P +pe N1 => N2 = g,
-1 < #, pgV 7 n2 < #, pg = Pg —pe N1 => N2 = pg,
n; => N2 €pg Pg ++ < n1 => N2 €pg Pg,
n; < #, pg A n2 < #, pg
— ( n3 =>nq €pg pg +pe N1 => N2
< n3g =>mn4 =n1 =>n2 Vg =>ng €py pg),
n < #, pg A n2 < #, pg
— ( n3 =>n4 €Epg Pg —pe N1 => N2
< n3 =>ng4 #n; =>n3 A ng =>1n4 Epy pPg),
#p. mkpg(n) =0,
n; < #, pg An2 < #, pg A 7 n1 => 12 €pg Pg
= #,.(Pg +pe 1 => n2) = (#,. pg) +1,
n < #, pg Anz <#, pg Ani =>ns €y pg
= #,c (P8 —pe M1 => n2) = (#,,. pg) —1,
n inn psuccs(pg, m) <> m => n €,4 pg, ordered(psuccs(pg, m))
end enrich

Fig. 2. Toplevel Specification of Directed Graphs



Eleml =
rename Elem by morphism

elem — elem’
end rename

ElemlIl =
rename Elem by morphism

elem — elem”
end rename

Pair =

generic data specification
parameter Eleml + ElemlII

pair = mkp(. .pl : elem’, . .p2 : elem”);
variables p: pair;

end generic data specification

Edge =
actualize Pair with Natbasic
bymorphism
elem’ — nat, elem” — nat,
pair — edge, mkp — =>,
.pl — .pel, .p2 — .pe2,
p — pe
end actualize

NatBasic =
data specification
nat = 0] .+1 (. —1 : nat);
variables m, n: nat;
order predicates
. < .:nat X nat;
end data specification

Add =
enrich Nat with
functions
.+ . :nat X nat — nat ;

axioms

n+ 0 =n,

m+n+1=(m+ n) +1
end enrich

Sub =
enrich NatBasic with
functions
. — . :nat X nat — nat;

axioms

m—0=m,

m—-n+l=(m-—n) -1
end enrich

Nat = Add + Sub

Elem =
specification
sorts elem;

end specification

List =
generic data specification
parameter Elem using Nat

list = mil | . +; . (car : elem, cdr : list);
variables I: list;
size functions #; . : list — nat ;

order predicates . < . : list x list;
end generic data specification

MemlList =
enrich List with
functions
last : list — elem ;
. until . : list X elem — list
predicates . in . : elem X list;

variables ele;: elem,;
axioms
nil until ele = nil,
(ele +; 1) until ele = ele +; nil,
ele # ele;

— (ele; +; 1) until ele = ele; +; | until ele,

last(ele +; nil) = ele,

last(ele +; ele; +; 1) = last(ele; +; 1),

= ele in nil,

ele in ele; +; 1 ¢> ele = ele; V elein 1
end enrich

NatList =
actualize MemList with Nat
bymorphism
elem — nat, list — natlist,
nil — nnil, +; = +,,
car — ncar, cdr — ncdr,
#l — #n7<< —= Lp,
last — nlast, until — nuntil,
in — inn, 1 = nl
end actualize

ONatList =
enrich NatList with
predicates ordered : natlist;
axioms
ordered(nnil),
ordered(n +, nnil),
ordered(m +,, n +,, nl)
¢ m < n A ordered(n +,, nl)
end enrich

Fig. 3. Subspecifications of the Specification of Directed Graphs
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3 The Axioms

3.1 Axioms and Lemmas from NatBasic

Axioms:
ax-1:
ax-2:
ax-3:
ax-4:
ax-5:
ax-6:
ax-T:
ax-8:

genax-4:

Lemmas:
elim-pred:
lem-01:
lem-02:
lem-03:
lem-04:
lem-05:
lem-06:
lem-07:
lem-08:
lem-09:
lem-10:
lem-11:
lem-12:
lem-13:
lem-14:
lem-15:
lem-16:
lem-17:
lem-18:

n+l—-1=n
n+1=mng+1 < n=nog
0#n+1
n=0Vn=n-1+1
n<n

n<noAnp<n —n<mn
-n<0
ngo<n+l<n=nVn <n
m=0V Idmg. m =mg +1

m#0— (n=m-1+m=n+1)
0<nen#0

m; +1 <my +1 & m; < my
n#n+1

n#n+1+1
n—-141l=n¢n#0
m<n+l<<-n<m
m+l<neom<nAn#Fm+l
n—-1=n—-n=0
n<n-1—-n=0

2 0+l1<n<n=0VvVn=0+1
- m<n-1—--m+1<n
m#0+4+1 = (m—-1=0—m=0)
n—-1<nen#0
m-1l<n—>-n<mAn#0
“n<m-—(-m-1<n-—-m=0)
m<n-—(-m-1<n—m=0)
m#0— (m-1<n+m<n+1)
m#0—->m-1+1=m

3.2 Axioms and Lemmas from Add

Axioms:
ax-1:
ax-2:
ax-3:

Lemmas:

ass:
com:

n+0=n
m+n+1=(m+n) +1
n<noVn=mngVny<n

(m+n)+k=m+n+k
m+n=n-4+m



lem-01:
lem-02:
lem-03:
lem-04:
lem-05:
lem-06:
lem-07:
lem-08:
lem-09:
lem-10:
lem-11:
lem-12:
lem-13:
lem-15:
lem-16:
lem-17:
lem-18:

O+n=n

m+1l+n=(m+n)+1
m+n=(m+k)+l+n=k+1
m+k<n+kem<n
m+n=m+kecn=k

m # (m + k) +1
n#0—-m+n—-1=(m+ n)l
m+n=(m+k) +1 +1 & n=k+1+1
-m+n<m
m+n=n+l<m=0+1
m+n=m++<>n=>0
m<n+m<+<n#o0

k<mA-n<n —k+n<m+n
-m+n#0m=0An=0

k#0—= (- (k+m)-l1<n+ n<k+m)
m#0— (-(k+m)-l<n+<n<k+m)
k+n=(k+m)+l+n=m+l1

3.3 Axioms and Lemmas from Sub

Axioms:
ax-01:
ax-02:

Lemmas:

lem-01:
lem-02:
lem-03:
lem-07:
lem-08:
lem-10:
lem-11:
lem-13:
lem-14:
lem-15:
lem-16:
lem-17:
lem-21:
lem-22:
lem-23:
lem-24:
lem-25:
lem-26:
lem-27:
lem-30:
lem-37:
lem-38:

m—-0=m
m—n+1=(m—n) -1

n—n=20

n+l-n=0+1

m-1—-—n=(m-—n)-1

m<n—n-—-—-n—m=m
"n<m-—n—n—m=1m
n<mAn#0—-m-n—-1=(m-—n)+1

- m<nAn#0—-m-n-1=(m—n)+1
m<n—-n+l -—m=(n-—m)+1
“n<m-on+l—-—m=(1n-—m)+1

- n<m—+n+l-n-—m=m+l1
m<n—-n+l—-—(n—m)—-1=m+1+1
m<n—n+l-n-1-m=m+1+1
n<mAk<m-o(m-n<m-5k<+ k<n)
n<mA-m<k—(m-n<m-—k+& k<n)
-m<nAk<m-o(m-n<m-—k<+ k<n)
-m<nA-m<k—os(m-n<m-—k<+ k<n)
n<mAk<m-—>(-m-n<m-—k& -k<n)
n<mA-m<k—s(-m—-n<m-k& -k<n)
- m<nAk<m—-o>(-m-n<m-k¢& k<n)
-m<nA-m<k—os(-m-n<m-k+& -k<n)
n<n-—-m-—n<m

n—-m=0—-m<n



3.4 Lemmas from Nat

Lemmas:
elim:
lem-04:
lem-05:
lem-06:
lem-09:
lem-12:
lem-18:
lem-19:
lem-20:
lem-28:
lem-29:
lem-31:
lem-32:
lem-33:
lem-34:
lem-35:
lem-36:

-m<n—>k=m-n<m=k+n
(m+n)—n=m

m-—n+n; =(m—n)—ng

(m+n)+1 —n=m+1

—n<n - (m-n)+m=n+m)—n
m<n—(n—-m)—-1l+m=n-1
-n<m-—(n—-—m)+m=n
—n<m-—m-+n—m=n
np<n—m-n)+m=m+m)-—n
“k<m->(-k—-m<ne -k<m-+n)
“k<m-—=(k—m<n4+& k<m+n)
-m<n - (-m—-—n <n<+< -m<n-+n)
“m<n > (m-n <nsm<n+ng)
“n<n - (-m<n-—n; < m+n; <n)
n<n—(-m<n-n; < -m+n; <n)
-n<n - (m<n-—mn; < m-+n; <n)
ni<n—(m<n-mn; < m+n; <n)

3.5 Axioms and Lemmas from Pair (Edge Instances)

Axioms:
ax-1:
ax-2:
ax-3:
ax-4:

genax-3:

Lemmas:
elim-pair
lem-1:
lem-2:
lem-3:
lem-4:

(ng => n).pel =ng

(n => mno).pe2 = ng

n=>mn; =ngp=>0Nn24>n=mngpAn =ns
pe.pel => pe.pe2 = pe

3 m, mp. pe = m => myp

n = pe.pel A ngp = pe.pe2 <> pe =n => ng
pe = pe.pel =>n <> pe.pe2 =n

pe = n => pe.pe2 <> pe.pel =n

Ng =>nN=mn; => N 4> nNg = n;
n=>np=n=>0Nn] < Nnp=10n

3.6 Axioms and Lemmas from List (NatList Instances)

Axioms:
ax-01:
ax-02:

ax-1:
ax-2:
ax-3:

#, nnil = 0

#,( +, nl) = (#, nl)+1

ncar(n +, nl) =n

ncdr(n 4, nl) = nl

n +, nl =np +, nlp & n=ng A nl=nlp



ax-4: nnil # n 4+, nl

ax-b: nl = nnil V nl = ncar(nl) +,, ncdr(nl)
ax-6: - nl <, nl
ax-T7: nlg <, nl A nl <, nl; — nly <, nly
ax-8: - nl <, nnil
ax-9: nl <, n +,, nlp <> nl = nly V nl <, nly
genax-2: nl; =nnil V 3 m, nl. nl; = m 4+, nl
Lemmas:

elim-carcdr: nl # nnil - n = ncar(nl) A nlp = ncdr(nl) <> nl = n +, nlp
lem-01: ncdr(nl) <, nl <> nl # nnil
lem-02: nnil <, n 4+, nl
lem-03: nl # nnil — ncar(nl) +,, ncdr(nl) = nl
lem-04: nl # nnil = (nl = n +, ncdr(nl) <> ncar(nl) = n)

lem-05: nl # nnil — (nl = ncar(nl) 4+, nlp <> ncdr(nl) = nlp)
lem-06: nl # nnil — (nl # n +,, ncdr(nl) > ncar(nl) # n)
lem-07: nl # nnil — (nl # ncar(nl) +,, nly > ncdr(nl) # nlp)
lem-08: ncdr(nl) # nnil — (nl = n 4, nnil + false)

lem-09: #, nl = 0 <> nl = nnil

lem-10: nl # nnil A ncdr(nl) = nnil — ncar(nl) +, nnil = nl

3.7 Axioms and Lemmas from MemlList (NatList Instances)

Axioms:
ax-01: = n inn nnil
ax-02: no inn n 4+, nl <> np = n V np inn nl
ax-03: nlast(n +, nnil) = n
ax-04: nlast(n +, no +, nl) = nlast(ne +, nl)
ax-05: nnil nuntil n = nnil
ax-06: (n 4+, nl) nuntil n = n +, nnil
ax-07: no # n — (n +, nl) nuntil np = n +, nl nuntil ny
Lemmas:
lem-01: ncar((no +, nl) nuntil n) = ng
lem-02: n inn nl — nlast(nl nuntil n) = n
lem-03: n inn nl A nl <, nlg — n inn nly
lem-04: (n 4+, nl) nuntil ng # nnil
lem-05: nl # nnil — nlast(nl) inn nl
lem-06: nl # nnil A n inn nedr(nl) — n inn nl
lem-07: nl # nnil — ncar(nl) inn nl
lem-08: ninn n +, nl

lem-09:  nl # nnil — nlast(n +,, nl) = nlast(nl)



3.8 Axioms and Lemmas from ONatList

Axioms:
ax-01: ordered(nnil)
ax-02: ordered(n +, nnil)
ax-03: ordered(m +, n +, nl) > m < n A ordered(n +, nl)

Lemmas:
ext: ordered(nl;) A ordered(nls)
— (nl; = nly ¢ (V n.n inn nl; < n inn nly))
lem-01:  ordered(n +, nl) — ordered(nl)
lem-02: ordered(n +, nl) - — n inn nl
lem-03: ordered(n +, nl) A np < n — - np inn nl
lem-04: ordered(nl) A nlast(nl) < k — = k inn nl
lem-05:  ordered(n +, nl) — — nlast(n 4+, nl) < n
lem-06:  nl # nnil A ordered(nl) — ordered(ncdr(nl))
lem-07: nl # nnil A ordered(nl) — — ncar(nl) inn ncdr(nl)
lem-08: ordered(nl) — (ordered(n +, nl) <> nl = nnil V n < ncar(nl))

3.9 The Axioms from Graph

Axioms:

ax-01: pg1 = P82

< #, g = #, P8

ANVm,n  m<#,pg An<#, pg
— (m =>n €,y pg; <> M => 10 €y PL>))

ax-02: #, mkpg(n) = n
ax-03:  #,(pg +pe Pe) = #, Pg
ax-04:  #,(pg -pe Pe) = #, P8
ax-05: - pe €,y mkpg(n)
ax-06: -0 < #, pgV mny < #, pg = Pg +pe N1 => N2 = pg
ax-07: - < #,pgV ny < #, pg — Pg -pe N1 => N2 = pg
ax-08: n; < #, pg A n2 < #, pg

— ( n3 =>n4 €py pg +pe N1 => N3

& n3 =>n4 =n; =>ny Vng =>n4 €y pg)

ax-09: n < #, pg A n2 < #, pg

— ( nzg =>mn4 €pg Pg -pe N1 => N

< n3 =>ng #np =>ns Ang =>ny €y Pg)

ax-10: n inn psuccs(pg, m) <> m => n €,, pg
ax-11: ordered(psuccs(pg, m))
ax-12:  #, pg ++ = (#, pg)+1

ax-13: ny => N2 €pg Pg ++ <> N1 => N2 €py PE
ax-14: #,. mkpg(n) = 0
ax-15: ny < #, pg A nz < #, pg A = n1 => n» €pg pg

- #pe(pg +p8 n; => n2) = (#pe pg)+1
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ax-16: n < #, pg A n2 < #, pg A ni => n2 €py Pg
= #pe(Pg -pe D1 => n2) = (#,,. pg) —1
genax-1: 3 m. pg = mkpg(m) V 3 pe, pgy. P& = Pgo +pe PE

4 The Theorems

th-1: - n1 < #, Pg§ — Pg +pe N1 => N2 = pg

th-2: = n2 < #, Pg —> Pg +pe N1 => N2 = pg

th-3: ——nyp < #p Pg — —n1 => n2 €pg P

th-4: “ng < #p Pg — —n1 => n2 €pg P

th-5: m =>n €y pg — m < F#, pg

th-6: m =>n €,y pg = 0 < F#, Pg

th-7: Ny => N2 €pg PG +pe D1 => N2 ¢ 01 < #, pg A n2 < #, pg
th-8: - n1 < #, Pg — Pg -pe N1 => N2 = pg

th-9: —n2 < #, Pg —> Pg -pe N1 => N2 = pg

th-10: - n3 => ngq €py Pg

— ( n3 =>n4 €py pg +pe N1 => N3
< np =n3 Any =ns Anm < #, pg An2 < #, pg)

th-11: ng => N4 €pg Pg — N3 => N4 Epg PG +pe N1 => N2

th-12: n; # ng — (03 => 04 Epg P +pe N1 => N2 > N3 => Ny Epg PE)
th-13: Ny # 04 — (D3 => N4 Epg P +pe N1 => N2 > N3 => Ny Epg PE)
th-14: ny => ny €pg PG +tpe N1 => N2

< o (mn < #, pgV mn2 < #, pg)
th-15: m =>n €,y pg — — #, pg < m
th-16: ny < #p pPg — N1 => N2 €pg PE -pe D€
th-17: N => N2 Epg P -pe N1 => N2
th-18: m =>n €py pg — Pg +pe M =>1n = pg
th-19: n # n; — psuces(pg +pe N1 => Nz, n) = psuccs(pg, n)
th-20: n; < #, pg A nz < #, pg

— (Pg +pe 1 => n2)++ = pg ++ +pe 11 => 0
th-21: - #, Pg => 1 €pg Dg
th-22: - m => #, pg €pg P
th-23: - ny < #, pg — 7 N1 => N2 €pg PG +pe DE
th-24: T ne < #p pPg — 7 N1 => Ny €pg PG +pe PE

th-25: - n2 < #, pg — T 01 => N2 Epg PG ~pe PE

th-26: ni # ns = (ng => n4 Epg PE -pe N1 => N2 > N3 => N4 Epg PEL)
th-27: n1 => n3 €pg Pg -pe N1 => N2 > N1 => n3 €pg pg A N2 # n3
th-28: - n < #, pg — psuccs(pg, n) = nnil

th-29: m =>n €,g pg — #,. pg # 0

th-30: mkpg(n)++ = mkpg(n +1)

th-31: m < #, pg An < #, pg — mkpg(k) # pg +,c m =>n
th-32: n < n; — psuccs(pg +pe N1 => nz, n) = psuccs(pg, n)
th-33: n; < n — psuccs(pg +pe N1 => Nz, n) = psuccs(pg, n)
th-34: psuccs(mkpg(m), n) = nnil
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th-35: H#pe P8 ++ = #,. P8
th-36: m=>n €y pg > " #,pg <0
th-37: psuccs(pgy ++, #, Pg») = nnil
th-38: - np => ng €pg P +pe n; => n»

(—)""( n1:>n3€pgpg/\n27én3

Vny =n3 Am < #, pg Anz <#, pg)

th-39: DNy => 13 €pg P +pe N2 => N3

< - ( np =>n3 Epg pg AN F N

Vi =n2 Ani <, pgAns <#,pg)

th-40: ne # n4 — (D3 => N4 Epg PE -pe N1 => N2 <> Nz => N4 Epg PE)
th-41: n; => ng €pg Pg -pe N2 => N3 > N1 => N3 €,y pg A 01 # N2
th-42: psuccs(pg, #, pg) = nnil
th-43: = n => (#, pg)+1 €pg PG
th-44: m = #, pg — 7 n =>m E€pg Pg
th-45: m = (#, pg)+1l = - n =>m €, pg
th-46: = (#, pg)+1 =>n €y pg
th-47: n=4,pg > " n=>m €y Pg
th-48: n = (#, pg)+1l = = n =>m €,y pg
th-49: pg # mkpg(#, pg)

¢ (Fm,nm <#, pgAn<#,pgAm=>n €y pg)
th-50:  #,. pg = 0 <> pg = mkpg(#, pg)
th-51: psuccs(pg, m) = nnil -+ = m => n €,, pg
th-52: m=>n €y pg = (Pg -pe M =>n) +,, m =>n = pg
th-53:  m =>n €py pg = #,.(Pg -pe m => 1) = (#,. Pg) —1
th-54: (Pg +pe N1 => n2) +pe N1 => N2 = PG +pe N1 => N

5 The Test Scenario

5.1 Sequential Test Discipline

The proof of each of the theorems shown in Sect. 4 could be tried using the 54
axioms from Sect. 3. A far better strategy is the following: to prove theorem
th-n all the n-1 previously proved theorems as lemmas to the theory. Although
this enlarges the theory, the effect is positive: With the redundant 111 lem-
mas of NatBasic,Sub,Nat, List, ... (together 165) and the discipline to add all
previously proved test examples to the theory, the success rate of automated
theorem provers is much better (since proof lengths become much shorter, and
the number of proofs which require induction decreases drastically).

The order of the theorems is generated such that it is compatible with the
partial order induced by the hierarchy of proofs in KIV (i.e. if the KIV proof of
theorem th-n uses another theorem th-m as a lemma, then m < n).

The sequential test discipline results in three input files for each of the 54
theorems, one in DFG-Syntax, one in Setheo-Syntax and one in Otter-Syntax.
The file for th-n contains 165+n—1 axioms.
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5.2 Input Syntax

Although DFG-, Otter- and Setheo-Syntax differ, a common translation for sym-
bols was used. Since most automated theorem provers cannot handle infix sym-
bols or graphic symbols, as they are used in KIV, the symbols of the previous
sections had to be translated to ASCII symbols (also a few symbols are named
differently in the KIV case study than in this paper). The following table gives
the translation from the notation used here to the ASCII notation.

here | ASCII || here | ASCII || here | ASCII ||here/ASCII
natlist| natlist || nlast| nlast | psuccs| psuccs || nl nl
nat nat nuntil| nuntil ++ |jaddjadd|| k k
edge | primedge || +1 jsuc <= jle n n
graph |primgraph|| —1 jpre > jgr ng | no
nnil nnil => |jeqjeqjgr|| <, | jlsjlsn | pe | pe
0 jzer .pel | jdotpel inn inn pg | pg
— jsub .pe2 | jdotpe2 ||ordered| ordered || pg; | pgl
+ jadd mkpg| mkpg < jls pgy| DpE2
+n jaddn +pe | jaddpe || €pg jinpg || ny | nl
ncar ncar —pe | jsubpe m m n | n2
ncdr ncdr #p jsizp nly nll ng | n3
#n jsizn #pe | jsizpe nly nl0 ng | nd

5.3 The Input Files

The input files in DFG-syntax are given as a file graph-DFG.tar.gz. Unzipping
and untaring them (use either ‘tar -xzf graph-DFG.tar.gz’ if you have the GNU-
version of tar,or first ‘gunzip graph-DFG.tar.gz’ then ‘tar -xf graph-DFG.tar’)
creates a directory ‘DFG’, which contains files ‘th-1" ... ‘th-54’ with the goals to
prove.

Similarly the files in Otter-Syntax are given as a file graph-Otter.tar.gz. Un-
packing this file creates a directory ‘Otter’, with the input files ‘th-1.in’ ... ‘th-
54.in’ and a file named ‘settings’.

Unpacking the files in Setheo-Syntax (graph-Setheo.tar.gz) gives a directory
‘Setheo’, with input files th-1.lop ...th-54.lop.

To be suitable for Otter and Setheo, terms ¢ of sort s from KIV have been
“functionally encoded” as s(t). For Otter, they have also been partioned into
a “set of support” for the theorem to prove (see p. 552 of [WOLB92]) and the
rest of the clauses. The file ‘settings’ contains some settings for Otter, which
gave good results for some other examples we have already tried (see [SR97]; in
particular, these settings performed far better than auto-mode on our examples).
If you find better settings, please let us know.

To feed an example into otter, use the command:

cat settings th-1.in | otter > th-1.out
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For Setheo, clauses have been generated using a standard algorithm. Equal-
ity has been explicitly axiomatised (with relexivity, symmetry, transitivity and
congruence axioms). Clauses of the form {x # t, Ly, ...L;} with x ¢ Vars(t)
have been optimized to {Li[x + t], ...Li[x + t]} and tautological clauses have
been removed.

5.4 Inductive Theorems

th-3, th-4, th-5, th-6, th-29, th-35, th-49 and th-50 were proved in KIV using
induction. For these 8 theorems a noninductive proof may or may not exist (the
use of induction in KIV might have been unnecessary). All other 46 theorems
are guaranteed to be provable wtihout induction.
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