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Abstract

This thesis is concerned with the development of reduced basis methods for
parametrized partial differential equations (PPDEs) with stochastic influences. We
consider uncertainties in the operator, right-hand side, boundary conditions and
in the underlying domain. We are particularly interested in situations where the
PPDE has to be evaluated quite often for various instances of the deterministic
parameters and the stochastic influences. In the stochastic framework, such a
situation occurs, e.g., in Monte Carlo simulations to compute statistical quantities
such as mean, variance, or other moments.

For the efficient application of the reduced basis method, it is necessary to de-
velop affine decompositions with respect to the stochastic influences. We therefore
extend the methodology of the empirical interpolation for the application in the
stochastic setting, in particular for noisy input data. Alternatively, we also use
a truncated Karhunen—Loéve (KL) expansion to resolve and affinely decompose
the stochasticity. We derive a-posteriori error bounds for the state variable and
output functionals, including also the KL-truncation errors. Non-standard dual
problems are introduced for the approximation and analysis of special quadratic
outputs which can in particular be applied to efficiently approximate statistical
quantities such as mean and moments. We provide new error bounds for such
outputs, outperforming standard approximations.

To reduce the number of affine terms and hence for the improvement of the
efficiency of the reduced simulations, we generalized the partitioning concepts for
explicitly given deterministic parameter domains to arbitrary input functions with
possibly unknown, high-dimensional, or even without direct parameter dependen-
cies. No a-priori information about the input is necessary.

We use all the presented methods for the application to PPDEs with stochastic

influences on stochastic and additionally parametrized domains.






Zusammenfassung

Diese Arbeit befasst sich mit der Entwicklung von Reduzierten—Basis—Methoden
fiir parametrisierte partielle Differentialgleichungen mit stochastischen Einfliissen.
Diese konnen sowohl im Operator, in der rechten Seite, in den Randbedingun-
gen als auch im zugrundeliegenden Gebiet auftreten. Besonders interessant im
Zusammenhang mit Modellreduktion sind Problemstellungen, bei denen die Diffe-
rentialgleichung fiir viele Realisierungen eines Parameters und der stochastischen
Einfliisse gelost werden muss. Die Berechnung von statistischen Grofen wie Er-
wartungswert, Varianz oder Momente wird oft iiber Monte—Carlo Simulationen
vollzogen und birgt demzufolge hohes Reduktionspotenzial.

Zur effizienten Anwendung der Reduzierten—Basis—Methoden ist es notwendig,
affine Zerlegungen beziiglich der zufilligen Einfliisse zu entwickeln. Wir erwei-
tern dazu die Methodik der empirischen Interpolation auf den stochastischen Fall,
um insbesondere auch verrauschte Eingabedaten verarbeiten zu konnen. Alterna-
tiv betrachten wir zur Auflésung und affinen Zerlegung der Stochastizitét zudem
die auf endlich viele Terme begrenzte Karhunen-Loéve (KL) Entwicklung. Unter
Einbeziehung des Abschneidefehlers werden a-posteriori Fehlerschranken fiir die
Zustandsgrofe und die Ausgabefunktionale hergeleitet. Neben dem Erwartungs-
wert betrachten wir insbesondere quadratische statistische Grofen wie Varianz
und zweites Moment. Fiir die Approximation solcher Ausgaben entwickeln wir neue
duale Formulierungen mit deren Hilfe wir effiziente und rigorose Fehlerschranken
berechnen konnen, die gegeniiber gewohnlichen Methoden deutliche Verbesserun-
gen aufweisen.

Zur Reduktion der Anzahl affiner Terme und damit zur Verbesserung der Ef-
fizienz der Reduzierten—Basis—Methode verallgemeinern wir bestehende Konzepte
zur Partitionierung von deterministischen Parametergebieten auf beliebige Ein-
gabefunktionen. Sowohl Abhéngigkeiten von unbekannten Parametern als auch
komplett parameterunabhéngige oder hochdimensionale Parameter kénnen damit
betrachtet werden, wobei keinerlei a-priori Information notwendig ist.

Die vorgestellten Methoden werden abschliefsend auf parametrisierte partielle
Differentialgleichungen angewendet, die auf stochastischen und zuséatzlich parame-

trisierten Gebieten definiert werden.
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Chapter 1
Introduction

Reduced basis methods for partial differential equations with stochastic influences?

1.1 Motivation

Several problems in science, medicine, economics and engineering are modeled by
partial differential equations (PDEs). Often, such models contain uncertainties in
terms of imprecise, unknown, or stochastic input. One could think for example
of coefficients of the PDE that are based upon inaccurate or noisy measurements.
Furthermore, even the underlying spatial domain may be obtained by defective
measurements, e.g., by scanning or X-raying. Especially for sensitive systems, it
may be of interest to simulate how a small perturbation of the input influences
the solution, e.g., to determine tolerances for the accuracy of measurements or to
derive requirements for actual mechanical implementations. Also, unknown spatial
coefficients are often modeled stochastically. Examples include the porosity struc-
ture of Li-ion batteries, fuel cells, or the modeling of groundwater flows. Another
application is given by inverse problems, where for given (measured) outputs, the
distribution of a random input parameter is desired. Eventually, it is quite com-
mon in financial mathematics to model unknown data using stochastic processes,
e.g., mortality rates for life insurance simulations or the market price behavior for
risk analysis in the banking sector. Generally spoken, uncertainty or randomness
is more or less everywhere.

In addition to such uncertainties, many problems also depend on a number of



2 1. Introduction

deterministic parameters, i.e., one has a parametrized PDE (PPDE). Examples
include model parameters such as material properties, parametric geometries, or
forces. We are particularly interested in situations where the PPDE with stochastic
influences has to be evaluated quite often for various instances of the deterministic
parameters and the stochastic influences. In the stochastic framework, such a
situation occurs, e.g., in Monte Carlo simulations to compute statistical quantities
such as mean, variance, or other moments. For the deterministic parameters, one
might think of parameter studies or optimization. Such a many-query situation
requires the numerical solution of the PDE for many instances of the parameter
and stochastic influence, which is infeasible in particular for more complex PDEs.
Hence, model reduction is desired.

It should be noted that we are not concerned with stochastic PDEs involving
the Ito calculus. This is the reason why we use the term PDFEs with stochastic

influences, even though this might be a bit lengthy.

1.2 The Reduced Basis Method

The reduced basis method (RBM) has intensively been studied for the numerical
solution of PPDEs. One basic idea is an offline-online decomposition combined
with a rigorous a-posteriori error control.

In the offline stage, computationally expensive evaluations are performed. The
reduced basis (RB) is formed by solving the complex PPDE for certain parameter
values, so-called snapshots. The selection is usually based upon a Greedy algorithm
[14, 73, 98]. Basically, the snapshot that corresponds to the largest error bound
is selected for the basis extension. The detailed solutions are obtained using a
fine discretization, e.g., finite elements, finite differences, or finite volumes. Hence,
high-dimensional systems have to be solved. The error bounds can be used to
control the size of the reduced model.

For a new parameter, the reduced system is then used in the online stage for
a highly efficient simulation. The dimension of the system reduces to the number
of selected snapshots. The error bounds confirm the approximation quality in the
reduced setting.

Hence, besides so-called multi-query problems, where solutions of a PPDE have
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to be evaluated repeatedly for different parameter values, a typical application of
the RBM is given by real-time settings. In such cases, even very high offline costs

can be accepted.

For the efficiency of the RBM, it is required that the problem allows for an affine
decomposition with respect to the parameter, i.e., for a separation of spatial and
parametric terms. Since many problems do not naturally show such properties,
the empirical interpolation method (EIM) has been developed to generate affine
approximations of the coefficients of the PDE |7, 86| or directly of arbitrary dif-
ferential operators [19, 20, 27, 43]. Certainly, the additional approximation error

has to be considered and included in the analysis.

The RBM has been studied for wide classes of problems and many applications
have been developed in the recent past by a growing number of researchers. Besides
linear elliptic [73, 77] and parabolic equations [40, 76|, also more complicated
quadratically nonlinear problems have been reduced [24, 86, 96]. In the latter case,
the error analysis is based upon the well-known Brezzi-Rappaz-Raviart theory
[13, 16]. Furthermore, for special classes of coupled systems, e.g., saddle point
problems and especially the Stokes equations, RB theory has been introduced
[33, 34, 75]. A lot of work has been done on RBMs for problems on parametrized
geometries for several different applications, e.g., [33, 63, 78, 88|, to mention just
a few. Additionally, the RBM can be used for both parameter optimization [26]
and parameter dependent optimal control problems [39, 59|. Recently, it has been
started to consider also RBMs for parametrized variational inequalities [44]. So
far, the RBM can be efficiently applied only to stationary inequalities. However,
work is going on to extend the results to instationary problems for the application
to option pricing in financial mathematics. In this context, RBMs based upon
weak formulations in space and time are considered, which have already been
successfully applied to time-periodic problems [83]. Also for other instationary
problems, it could be shown that such formulations lead to additional reduction
capabilities [90, 106].

Furthermore, to improve the efficiency of the RBM, several different domain de-
composition methodologies have been developed. While for the parameter domain
partitioning, it is enough to generate separate reduced bases on each subdomain

[30, 31, 41|, the processing of separated time domains 25| and spatial domains
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[28, 53, 67, 94| requires special treatments at the intersecting boundaries. Also,
alternatives to the Greedy basis selection have been developed such that the basis

can be adapted to the current parameter in the online stage [61].

So far, not much work on RBMs regarding stochastic problems has been done.
In [12], a specific problem with stochastic Robin-type boundary conditions is stud-
ied. However, the analysis presented there does not cover the case of general
stochastic influences, e.g., in terms of random spatial coefficients. In this sense,

the present work will generalize and extend the findings in [12].

For the sake of completeness, let us also mention some further related work. In
[11], an RB control variate technique for variance reduction is introduced. Fur-
thermore, the terminology “reduced basis” is also used in the context of model

reduction via Krylov subspaces, e.g., in [70, 79|, also for stochastic problems.

1.3 Objective

The aim of this work is to develop a general framework of reduced basis methods for
PPDESs with stochastic influences that can be applied to wide classes of problems.
We want to consider both linear and non-linear problems, in particular with a
focus on quadratic non-linearities. The methods are meant to deal with various

instances of uncertainties, including stochastic influences

(a) in the coefficients of the PDE;, i.e., in the operator,

(b) in the right-hand side,

(c) in the boundary conditions, and

(d) in the domain.

Furthermore, in the context of randomness and uncertainties, one often depends
on noisy input data.

For the efficient application of the RBM, it is necessary to develop affine de-
compositions with respect to the random input, i.e., spatial and random influences
have to be separated. Therefore, one objective of the thesis is to generalize the
EIM methodology for the application to stochastic and noisy data. Alternatively,
to make use of the specific properties of stochastic inputs, it is also desired to con-

nect the RBM with the Karhunen—Loéve (KL) expansion and polynomial chaos.
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A main issue of problems with random input is the approximation of linear and
non-linear statistical outputs such as mean, variance, and other moments. Hence,
besides the approximation of linear output functionals, we want to focus on the
development of RBMs that are in particular adapted to the approximation of such

statistical quantities.

1.4 Qutline of the Work

We start with an introduction of different known techniques to solve PDEs with
stochastic influences in Chapter 2. These methods will serve as detailed solu-
tions underlying the RBM. We focus on two different classes: formulations weak
in space and strong in probability such as Monte Carlo methods as well as for-
mulations weak in space and probability, e.g., stochastic Galerkin methods and
stochastic collocation methods. For a simple illustrative problem, we provide the
necessary ingredients for the modeling of the stochasticity and the application of
the methods, namely the Karhunen—-Loéve expansion and polynomial chaos.

In Chapter 3, we consider the construction of affine decompositions with respect
to deterministic parameters and random influences. After a short introduction
about the application of affine decompositions in the context of the RBM, we gen-
eralize the framework of the EIM to the stochastic case and consider in particular
approximations in the presence of noise. The proper orthogonal decomposition
(POD) is applied on the given input data. We show that the replacement of the
usual EIM basis, using now the POD eigenmodes, leads to improved affine ap-
proximations in mean-squared sense. Connections of the method to the so-called
discrete EIM (DEIM) are derived and we show that we obtain the same results
with less run-time complexity, allowing now to apply the EIM error estimators to
both methods. In a second step, we introduce a least—squares EIM that uses more
knots than basis functions. We show that the method generates close to optimal
affine approximations.

It is common to partition parameter domains and construct separate reduced
bases on each subdomain for more efficient online simulations. Known partitioning
methods relate on explicit descriptions of compact parameter domains. In Chapter

4, we develop implicit partitioning methods (IPMs) that can be applied to all
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classes of parameter domains, even to unknown parameters or non-parametric
input data. We develop three different approaches, all connected to the EIM.
For two of the methods, the partitioning is based upon the EIM approximation
error, where for the first method, the partition also depends on the number of used
affine terms for the EIM approximation. The subdividing scheme of third method
relates on the EIM coefficients and enables tree based assignment procedures. We
provide several examples and demonstrate that, applied to compact parameter
domains, the IPMs generate better results than explicit partitioning methods for

wide classes of problems.

In Chapter 5, we develop the RBM for linear PPDEs with stochastic influences
in coefficients, right-hand side, and boundary conditions. We assume the avail-
ability of an affine decomposition with respect to the deterministic parameter and
apply the KL expansion to the stochastic terms. We develop error bounds for the
state variable and for linear random outputs that also take the KL truncation er-
ror into account. Using additional non-standard dual problems, we can also derive
good approximations and error bounds for nonlinear statistical outputs such as
second moment and variance. We show that the approach can, to some extend,
also be applied to higher moments. We can furthermore derive that parts of the
KL truncation error do not influence the RB approximation of the statistical out-
puts such that the developed bounds clearly outperform direct approaches. We
illustrate the results using an example of heat transfer in a two-dimensional porous
medium, where the porosity and the boundary conditions are modeled using spatial

stochastic processes.

In Chapter 6, the results of Chapter 5 are generalized to quadratically nonlinear
problems. It is shown that the error analysis, especially of the statistical outputs,
can be adopted in a very similar form. The used dual formulations remain linear
such that the complexity for the dual solutions correspond to just one Newton
iteration of the primal problem. Hence, the improved error bounds become highly
efficient. We demonstrate this effect for the example of a convection-diffusion

problem in a porous medium.

Chapter 7 combines the results of Chapters 3 to 6 for the application of stochas-
tic PPDEs on stochastic, parametric domains. Using a diffeomorphic mapping

from a fixed reference domain to the original domain, we show how the problem
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can be transformed such that all parametric and stochastic dependencies are con-
tained in the coefficients of the PDE. Two known methods to build such mappings
are described and compared. For two different cases, purely stochastic domains as
well as stochastic and parametric domains, we show how the RBM can be applied.
In the first case, we use a special form of the KL expansion to derive that the
RBMs of Chapters 5 and 6 can be used. We furthermore provide a method to
apply the IPMs of Chapter 4, maintaining still the good approximation results of
the KL expansion. In the case of stochastic and parametric domains, we show that
the EIM can be used in combination with techniques known from deterministic
problems. Naturally, the IPM can also be applied. We illustrate the different ap-
proaches using the example of a plate where a random hole appears on the bottom
side.

Finally, in Chapter 8, we briefly describe further applications of the presented
methods to instationary problems as well as to formulations weak in space and

probability. Additionally, areas of future research are provided.

Chapter 3 is based upon joint work with K. Urban and the main results have
already been published in [92] in a very similar form. We added a section about
affine decompositions in the context of the RBM.

Chapter 5 is based upon joint work with B. Haasdonk and K. Urban and the
main results have already been published in [45] in a very similar form. We added
sections about higher moments, non-coercive problems, and showed that some as-
sumptions regarding stochastic independence can be weakened such that more gen-
eral classes of problems can be considered.

Chapter 6 is based upon joint work with K. Urban and the main results have al-
ready been published in [93] in a very similar form. We showed that some assump-
tions regarding stochastic independence can be weakened such that more general

classes of problems can be considered.






Chapter 2

Solutions of PDEs with Stochastic

Influences

Popular techniques to solve PDEs with stochastic influences include perturbation
methods [64, 95] and second order analysis [48, 50]. Both methods are based upon
an expansion of the random quantities in a Taylor series about their respective
mean values. Hence, good results can only be obtained for small perturbations,

i.e., under specific smoothness conditions of the uncertain behavior.

Another technique is the Neumann series approach, where the inverse of the
uncertain operator is approximated by its Neumann series |4, 35]. For example,
the method has been applied to examine the response variability arising from

spatially uncertain material properties [80, 105].

In this chapter, we introduce two different solution concepts for PDEs with
stochastic influences. Formulations weak in space and strong in probability are
considered as well as formulations weak in space and probability. We start with a
simple example in Section 2.1 that will be used to illustrate the general problem and
the different techniques. In Sections 2.2 and 2.3, we introduce the Karhunen—Loéve
(KL) and the Polynomial Chaos (PC) expansion, respectively, that are used for the
modeling of the stochastic influences, i.e., of spatial stochastic processes. In Section
2.4, we briefly describe the Monte Carlo (MC) method as an example of the weak-
strong concept. In Sections 2.5 and 2.6, we introduce two methods based upon the
weak-weak formulation, stochastic Galerkin methods and stochastic collocation

methods.
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2.1 Mathematical Formulation

2.1.1 Model Problem

Let (€2,2(,P) be a probability space, where {2 denotes a set of elementary events,
2A a o-algebra on Q and P a probability measure on 2, and let D C R? denote
a bounded spatial domain. Furthermore, let ¢ denote a real-valued second order
spatial stochastic process, i.e., ¢ : D x Q — R, (z;w) — c¢(x;w). For each w €
2, the trajectory c(w) = c¢(;w) : D +— R is supposed to be in Ly(D). We
assume the existence of constants ¢, ¢™ € R, independent of x and w, such that
0 < ¢ <c¢(r;w) <t < oo. Hence, for any bounded spatial stochastic process
d: D xQ — R with d(w) := d(;w) € La(D), we consider the linear elliptic

problem,

—V - (c(z;w) Vu(z;w)) = d(z;w) in D,
u(z; w) =0 on 0D.

(2.1)

The coefficient ¢(z;w) my describe the random diffusivity or conductivity of the
underlying system. Then, the solution u(z;w) of the PDE denotes the correspond-

ing concentration or temperature.

2.1.2 D-weak/Q-strong Formulation

In weak or variational formulations, PDEs and their solutions are not considered
pointwise, as it would be the case using strong formulations. Instead, both the
operator and the right-hand side are multiplied by some test function in a previ-
ously specified test space. Then, the integral over the given domain is considered.
A solution is called weak if it solves this integral formulation of the problem for
all test functions.

In this section, we consider solutions that are weak in space but strong in prob-
ability. Hence, the integral in the variational formulation is taken only over the
spatial domain D and the solutions are considered pointwise in 2. For each re-
alization of the underlying stochastic processes ¢ and d, we obtain a respective
deterministic spatial variational problem. Exemplarily, we now derive the varia-

tional formulation of (2.1) and provide existence and uniqueness results.
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Let us consider the Hilbert space H'(D) C Lo(D) on the spatial domain D with

the inner product
(w,v) g1 = / w(x)v(z) + Vw(z) - Vo(x) d,
D

and let us denote the subspace of functions in H'(D) vanishing in the trace sense at
the boundary of D by H} := H}(D) :={v € H(D)|v =0 on dD}. Furthermore,
let the bilinear form a : H} x Hj x Q — R be defined by

a(w,v;w) = /Dc(x;w)Vw(x) -Vo(z) dx. (2.2)

The bilinear form a is uniformly coercive and uniformly continuous for all w € €2,
i.e., there are constants oy > 0 and 7., < oo such that
(v, v;w)

a(w) := inf ¢

>« uniform coercivit
Ay Wl = "

a(w, v;w)

v(w) := sup sup < Yoo, (uniform continuity).

wend very |[W[[a[[o] ar
This can be easily shown using the Poincaré inequality [2| and the fact that ¢(z; w)
is strictly positive and bounded from above and below by constants independent

of x and w. Next, we define the linear form f: H} x Q — R by

fv;w) ::/Dd(x;w)v(x)dx. (2.3)

Since d(w) € Lo(D) for all w € Q, f is bounded, i.e., f is continuous.
The D-weak/{-strong formulation of (2.1) is now given as follows. For any

random event w € €, find u(w) € H} such that
a(u(w),v;w) = f(v;w), Yov € Hy(D). (2.4)

Hence, using the D-weak/Q-strong formulation, the PDE can be solved separately
for any realization w € (). In some way, one could consider these solutions as
“pointwise” in ).

It remains to provide results concerning the existence and uniqueness of solu-
tions of (2.4).

Proposition 2.1. For each w € Q, the variational problem (2.4) admits a unique

solution u(w) € H} depending continuously on the right-hand side f.

Proof. The result follows from Lax-Milgram Theorem, using the uniform coercivity

and the uniform continuity of a as well as the continuity of f [2]. O
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2.1.3 D-weak/Q-weak Formulation

In this section, we consider formulations weak in space and probability. Let us
first denote the space of all square integrable random variables on € by Ly(€2).
We define the corresponding inner product of two random variables £, 7 € Ly(12)

by their correlation, i.e.
(€ My = Bl = | €(hnP(de).
For D-weak/Q-weak formulations, we now consider the tensor product Hilbert
space Hj(D) ® Ly(2). The inner product on H} (D) ® Lo() is given by
(W, V) m (D)oL = B[ (w,0)m]

= [ [ wlasopeiw) + Vulzi) - Votaio) dePla)

Similar to the D-weak/{Q-strong case, we define a bilinear form a : (H}(D) ®
Ly () x (HY(D) ® Ly(Q)) — R and a linear form f : H} (D) ® Ly(Q2) — R by

a(w,v) = E {/D (s ) V(z: ) - Vv(x;-)dx] | (2.50)
fv) =K {/D d(x;~)v(x;-)dx} | (2.5b)

respectively. Using again the positivity and boundedness of ¢ as well as the
Poincaré inequality, it can easily be shown that a is coercive and continuous in the
D-weak/Q-weak sense. In other words, we have

a(v,v)

vEHY(D)®L2 () ||U||H3(D)®L2(Q)
a(w,v)
v o= sup < 0.

wweHS(D)®L2 () Hw”H(}(D)@LQ(Q) HUHH(}(D)QQLQ(Q)

The forms a and f no longer depend on realizations w since the uncertainties are
implied in the Hilbert space H}(D) ® Ly(Q), i.e., in the arguments of a and f.
Consequently, the coercivity and continuity constants are as well independent of
specific realizations and we do not need a “uniform” definition. Furthermore, it is
clear that f is again continuous.

The D-weak/Q-weak formulation of (2.1) is given as follows. Find u € H}(D)®
Lo (€2) such that

a(u,v) = f(v), Vv € Hy(D)® Ly(Q). (2.6)
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Hence, the solution of (2.6) contains the complete uncertainty information. It is
possible to directly evaluate statistical quantities such as mean and correlations.
Additionally, solutions of specific realizations can still be evaluated. However, we
will see in Sections 2.4 and 2.5 that solutions of (2.6) can be computationally very
expensive, also compared to the complexity of multiple solutions of (2.4).

We close the section providing results concerning the existence and uniqueness

of solutions of (2.6).

Proposition 2.2. The variational problem (2.6) admits a unique solution u €

H} ® Ly(Q) depending continuously on the right-hand side f.

Proof. Follows from Lax-Milgram Theorem, using the coercivity and the continuity

of a as well as the continuity of f [2]. O

2.2 Karhunen—Loéve Expansion

The approximation of spatial or time-dependent stochastic processes with high
accuracy requires the sampling at many points in space or time and increases
the computational costs, e.g., of Monte Carlo methods. The objective of the
Karhunen-Loéve (KL) expansion is the separation of random and spatial or time
dependencies. This facilitates not only the sampling procedure but is also a key
requirement of solution procedures for PDEs with stochastic influences such as
stochastic finite elements.

In this section, we introduce the main concept of the KL expansion. It has
been investigated separately by K. Karhunen [60] and M. Loéve [65] and is closely
connected to Proper Orthogonal Decomposition (POD) [62] or Singular Value De-
composition (SVD). We first introduce the theoretical concept of the KL expansion
and of the KL truncation error. For this part, we follow the concept of [35]. How-
ever, we generalize the results from an Ls-based formulation to arbitrary Hilbert
spaces. We then introduce the so-called method of snapshots that provides a
procedure to efficiently construct the KL expansion without the knowledge of a
covariance function, using just a finite number of random samples (82, 47|. Finally,
we generalize the results of the first two sections to obtain joint KL expansions for
vector-valued processes or of several scalar-valued but correlated processes. We

follow the concept of [46], generalizing again to arbitrary Hilbert spaces.
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2.2.1 Theoretical Aspects

As in Section 2.1.1, let (Q,2,P) be a probability space and let D C R? denote a
spatial domain. For some appropriate Hilbert space X on D with inner product
(-, )x, let ¢ : D x Q — R now denote a second order real-valued spatial stochastic
process with trajectories c(w) € X = X (D) for each w € Q. We split ¢ into its
expectation ¢(z) := E [¢(z; )] and a fluctuating part é(z,w) = c¢(z;w) — ¢(z) such
that E [¢(x;-)] =0, i.e.,

c(r;w) = é(x) + é(z;w). (2.7)

Furthermore, let ¢ be a second order process, i.e., square integrable with respect

to the probability measure P. Then, its covariance function
C(xy, @) := E[é(x1;)é(mg; )] (2.8)

is bounded by the Cauchy-Schwarz inequality and symmetric positive definite.

Hence, the eigenvalues A\g, k € N, of the covariance integral kernel T': X — X,
(Tv)(x) := (C(x,-),v)x, veEX, (2.9)

are strictly positive and the corresponding eigenfunctions ¢, € X, k € N, can be
orthonormalized such that (cx,¢;)x = 0k, where  denotes the Kronecker delta.
The subsequent theorem provides a decomposition of the stochastic process in the

desired form.

Theorem 2.3 (Karhunen-Loéve Expansion). Let ¢(z;w), C(z1,22) and (Tv)(x)
be as defined in (2.7), (2.8), and (2.9), respectively. Then, it holds that

&(r;w) = > Vb)), (2.10)

where A\, and ¢, k € N, denote the eigenvalues and eigenfunctions of T', respec-
tively, and &, k € N, are uncorrelated random variables with zero mean and unit

variance. They are given by
Ep(w) == —=(¢(;w), ) x - (2.11)

Proof. Using the spectral theorem, it is clear that ¢(z;w) can be expanded as a

linear combination of the eigenfunctions. Hence, we can assume that ¢(x;w) is of
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the form of (2.10) and it remains to show that the random variables & fulfill the

proposed properties. Using (2.10), the covariance can be written as
C(xy, 22) = E[e(x1;)c(wa; )]

- Z ZE [k (D)& )]V Aedicr (1) er(2).

k=1 I=1

We use this form of the covariance function and apply the operator 7" on the

eigenfunction ¢,. The orthonormality of the eigenfunction yields

/\nCN(x) = (Tcnxx) = (C(% ')7cn)X

= 3D EGO&O]VANea) () x

k=1 I=1
00

- ZE [k ()& ()] V Ak Ancr ().

Taking the inner product of both left-hand and right-hand side with the eigen-

function ¢, yields

)‘n(cm Cm)X = /\n(;m,n = ZE [gk()fn()] V )‘k)‘n<ckv Cm)X
k=1
=E [§m<)£n()] AmAn.

Since Ay > 0, k € N, we directly obtain E[£,()&,(-)] = 0mn. Hence, all random
variables & are uncorrelated and have unit variance. Considering the expectation

of ¢ which is known to be zero,
E[&(z;)] = > VME()]ex(x) =0,
k=1

we obtain E[¢] = 0. To show (2.11), we consider the inner product of ¢ with the

eigenfunction ¢;.

(5 w) a)x = DV Abew)(er e)x = VNG(w)

which proves the claim. ]
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For numerical purposes, one needs a finite approximation of the KL expansion.
We assume that the eigenvalues are sorted in descending order, i.e., Ay > Ao > ...,

and truncate the series after K terms. The truncation error is denoted by

Z \/)\_k&c(w)ck z

k=K+1
It is straightforward to derive the mean squared truncation error as the sum over

the remaining eigenvalues,

E[llexl%] = Z Z MNE [6:61] (cr, ) x Z A (2.12)

k=K+1I1=K+1 k=K+1

2.2.2 Method of Snapshots

In many cases, the covariance function C is not given analytically and it has to be
approximated by Monte Carlo procedures. Let ¢(-,wy,), 1 < 1 < Ngrain, b Nypain

instances of the stochastic process. Then, one uses the Monte Carlo approximation

1 Ntrain

Cumel(xy, o) := c(x1; wp)e(Ta; wy). (2.13)

Ntrain | —]
We define the covariance operator Ty¢ analogously to (2.9), using Cys¢ instead of
C.

In discretized form, the covariance functions C and Cy;c can be represented by
positive (semi-)definite matrices which we denote covariance matrices. Then, the
evaluation of T and Tyc reduces to a matrix-vector product. Let A/ be the number
of degrees of freedom of the discretization. If 7., is smaller than N, the rank of
the A-dimensional covariance matrix is at most nai, and the method of snapshots
[82] provides an alternative procedure to evaluate the non-zero eigenvalues and
the corresponding eigenfunctions. We define the ny.,;,-dimensional matrix C =

(Cpm)in | by

Coun = —— (@l5n), 5 m)) (2.14)

Ntrain

and denote its eigenvalues by A with corresponding fy-orthonormalized eigenvec—
tors v, € RMrain | [ = , Mirain- Lhe ith component of vy is denoted by v . We

define the functions

Ntrain

ce(z) == Z v,gn)é(x;wn), (2.15)

n=1
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k=1,..., Nrain, and show that ;\k coincide with the non-zero eigenvalues of C,;¢,
where ¢, denote the corresponding eigenfunctions. We evaluate the covariance
operator Tyic at ¢. Using the definitions of Cyc in (2.13) and of ¢ in (2.15), we

obtain

(Tacér) (2) = (Cue(z,-), ér)x

n=1 m=1
Ntrain Ntrain 1
=Y dwswn) Y o (5 wa), &5 wm))x
—1 —1 Ntrain
n m

The latter part of the right-hand side is just the definition of @nm as introduced
n (2.14). Using the eigenvalue properties of C yields

Ntrain Ntrain R
(Tvcér) (@) = Y &wswn) Y Comry™
n=1 m=
MNtrain
= é(x; wn)/\kvlin)
n=1
= A\l

Hence, A is eigenvalue and ¢, eigenfunction of Tyc. It is easy to show that the

eigenfunctions ¢, are orthogonal. The inner product is given by

TMtrain Ntrain

(G i) =D Y oo™ (@5 wn), 6 wn))x

n=1 m=1

and using the definition of C and its eigenvalue properties, we obtain

Ttrain Mtrain

(Ck7 Cl)X = TNtrain E E Uk n mvl

n=1 m=1

T
= )\l Ntrain Vp V1 = )\l ntrain(sk’,l-

Hence, after normalization and sorting the eigenvalues in descending order, we

obtain
1

Vv /\kntrain

As a consequence, it is possible to obtain the relevant eigenvalues and eigenfunc-

A

Cp — C.

tions of the covariance operator by solving only a smaller problem. The remaining
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eigenvectors that correspond to zero eigenvalues do not contain important infor-
mation for the representation of the stochastic since the mean squared truncation

error from (2.12), using just the first n.;, eigenfunctions, is obviously zero.

2.2.3 Multi-Component KL Expansion

So far, we introduced the KL expansion for scalar functions. Often, it is desirable
to generate expansions also for vector-valued processes [46]. Let X", r € N, denote
the space of r-dimensional functions, where each component is a function in X.
For ¢,d € X7, let

r

(c.d)x- =) (c,d’)x

j=1
be the inner product on X", where ¢’ denotes the jth component of ¢. Now, for
some r-dimensional random process ¢ : D x Q — R, ¢(-;w) € X", with é(z) =
Ele(x; )] and é(z;w) = e(x;w) — €(x), the objective is to generate expansions

analogously to (2.10),
ewiw) = > vV be(w)er(@), (2.16)
k=1

where all ¢, € X" are orthonormal with respect to (-, -) x» and & (w) are real scalar-
valued random variables with zero mean and unit variance. Such an expansion can
also be useful to jointly model several scalar-valued but correlated processes. Then,
the correlation is already included in the expansion and one does not need any
further processing of the different random variables of each process. Furthermore,
the total number of terms needed for a good approximation of the processes may
be smaller for the resulting joint expansion than for separate expansions.

For the construction of the multi-component KL expansion, we define the co-

variance function C similarly to (2.8) by

€1, = B e 603,
Clor,m2) = E [&(oss )& )] € R,

and the covariance operator 7' : X" — X" is given as

(Te)(x) = ((C(x,-),¢)xr)_,, ceX"

i=1"
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Let \g, k£ € N, be the eigenvalues of T" and ¢, € X" the corresponding orthonor-

malized eigenfunctions. With the random variables
.
Ek(w) = I (€(5w), ek)xr s
the fluctuating part ¢ of the stochastic process ¢ is given by (2.16). For the proof

of the representation, we use

ey (z) = (Tey)(x) = ((Cl’ )X7‘)::1
:((E [Ei e()] Cn)XT):=1
_ ZZE )]V Ak () (e, en) xr

k=1 I=1
and the remaining part is equivalent to the proof of Theorem 2.3. Furthermore, it
is clear that the mean squared truncation error is given analogously to (2.12) by
ZZO:K+1 Ak
It is still possible to apply the method of snapshots analogously to the scalar-

valued case. We define the ni.,-dimensional matrix C by

~ 1 5 -
Cn,m = e (C(';wn)ac(';wm»X’"
train

and evaluate its eigenvalues j\k and eigenvectors vy, € R™min L = 1 ... Niain-
Then, the eigenvalues A, coincide with the non-zero eigenvalues of the Monte Carlo
approximation Tyic of T and the corresponding orthonormalized eigenfunctions of

Ty are given by
1 Ntrain

Ck(l') = \/T
train

The proof works analogously to the scalar-valued case.

v,i")c(x; Wp)-

n=1

2.3 Polynomial Chaos Expansion

It remains to model the random variables & : 2 — R, k € N. Certainly, equation
(2.11) is not appropriate for numerical purposes since it already requires the knowl-
edge of the specific realization of ¢(+;w). Furthermore, the evaluation of the inner
product in (2.11) can be expensive. Even with the respective density functions of

& at hand, they may be difficult to simulate since they are only uncorrelated but
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not necessarily independent. Hence, it would be desirable to represent & using a
set of independent random variables with known density function.

The Polynomial Chaos (PC) expansion, first introduced by Norbert Wiener in
1938 [101], provides such a method. Let {n; : Q@ — R}3°; be a set of uncorrelated
standard normally distributed random variables. It is shown that the space of all
polynomials in {;}$°, is dense in Ly(£2), i.e., dense in the space of all second order
random variables. Hence, any second order random variable £ can be represented
by a series of orthogonal polynomials in {n;}°; [35].

One possible choice of orthogonal polynomials are Hermite polynomials [101].
For the n-dimensional vector of coordinates 1 = (1;);_, and a subset {n;,,...,7n;,},

we denote the Hermite polynomials of degree p by
Hp(nila s 777¢p> = 6%77 K (_1>p—€7%n ?77 (217)

where 7, is not necessarily different to n;, for r # s. Hermite polynomials are

orthogonal with respect to the weighting function wgy(n) = (2#)_”/2 e e,

& Hp(n’ip cee 777ip)Hq(77j17 cee 777jq> wH(T’) dn - hi17---,ip . 5{2'1,...,1'17},{]'1,..,,]}1}7

where h;, . ;, denotes the norm of Hy(n;,,...,m:,),

i,y = /]R \Hy iy - - omi,)| s () dmp.

Since the weighting function wy corresponds to the Gaussian probability density
function, Hermite polynomials in standard normally distributed random variables

{n;}22, are also orthogonal with respect to the Gaussian probability measure, i.e.,

E [Hyiys - i, ) Hg (15 - sm5,)] = Ry O b irsda}-

Now, h;, ..., denotes the second moment of H,(n;, (w),...,n;,(w)) and any second

order random variable £ € Ly(€2) can be expanded as
Ew)=aHo+Y D g Hy(, (@), (@), (2.18)
p=1 1> >ip>1

where ag and a;,.;, denote deterministic coefficients independent of w,

E |¢EH i1y T
=], . = [3:8G miy)]

i1 yerip
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Hence, the PC expansion can be seen as the projection of £ : 2 — R into the space
of polynomials with respect to {n; : Q@ — R}2,.

For numerical purposes, it is necessary to truncate the infinite PC series (2.18).
Therefore, we specify a maximal degree r of the polynomials and restrict to the
maximal number n of independent random variables. Then, the total number of
remaining terms is given by P + 1 = (”ZT) Now, it is common to rewrite the
truncated version of (2.18) in the form

P
Ew) =) aH,y(n(w)). (2.19)

p=0
where each coefficient @, and each polynomial H,(n(w)) in (2.19) corresponds to
a specific coeflicient a;, . ;, and polynomial H,(n;, (w),...,n;,(w)) in (2.18), respec-
tively. We assume that the entities in (2.19) appear in the particular order that
is indicated in (2.18), i.e., first the polynomial of degree 0, then n polynomials of

degree 1 and so on. Hence,

~

Qg = Aag, ..., Ap = Ap, Ap41 = A11, Qp42 = A21, Ap43 = A22, Apyq = A3, - - .

and analogously for the polynomials.

It is also possible to use other than normally distributed random variables to
model second order processes. As observed before, the weighting function wgy
of Hermite polynomials corresponds to the probability density function of the
Gaussian random variables. Similarly, e.g., the weighting functions of Laguerre,
Jacobi, and Legendre polynomials correspond to the probability density functions
of gamma, beta, and uniformly distributed random variables, respectively [103].
Hence, analogous derivations of (2.18) and (2.19) can be done using other appro-
priate polynomials and random variables. It has been shown that the convergence
rate of (2.19) depends on the selected polynomials and random variables. Hence,
it depends on the specific problem which representation provides optimal conver-

gence. For more information, we refer to [103].

2.4 Monte Carlo Method

The most straightforward example for D-weak /€Q)-strong formulations is the Monte

Carlo (MC) method [69, 72|. For each random realization of the random input,
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we obtain a deterministic problem and can hence use known deterministic solvers.

Considering the example given in Section 2.1.1, we create a discretized subspace
X C H}(D) with the basis {¢1,...,px}, e.g., by using the finite element method.
For each random realization ¢(x;w) and d(z;w), we construct a discretized formu-
lation of (2.4), i.e., the matrix A(w) := (a(yp;, gpi;w))ﬁgzl and the right-hand side
F(w) == (f(ps5;w))Y,, where a and f are given in (2.2) and (2.3), respectively.
Now, let u € RV be the solution of the linear system A(w)u(w) = F(w). Then,
the solution u € X of the discretized version of (2.4) is given by

N
@) =Y w@ei)

Using the KL expansions of ¢(x; w) and d(z;w), it is possible to efficiently evalu-
ate the system components A(w) and F(w). Let ¢, k € N, be the kth eigenfunction
of the KL expansion of ¢ with corresponding eigenvalue A\, and random variable
&x. We assume that ¢ and d are sufficiently precise approximated by using only
the first K terms of the corresponding KL expansions. For w,v € X, let aj(w,v)
be given by

ap(w,v) := / cx(z)Vw(x) - Vo(z) de,
D

k=0,..., K, where ¢y is given by the mean of ¢ for notational convenience and we
denote )\0 =1, & = 1. Now, we define Ay := (ak(gaj,goz))” - Then A(w) can be
constructed as A(w) = Zk:o VAe&r(w) Ay, Analogously, we can construct F(w).
For the evaluation of statistical outputs such as mean or variance of the solution
w or of any from u derived output of interest s(u), we solve the discretized version of
(2.4) for a large set of random realizations of ¢ and d. Then, the MC approximation
of the mean and the variance of s(u), i.e., the sample mean and sample variance,

are given by

Enc [ % Z s(u (2.20)
Ve [s(u) — > (s — Enc [s(u)])?, (2.21)

respectively, where M denotes the number of samples used for the approximation

and w,,, m = 1,..., M, the respective underlying random events.
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The advantages of the Monte Carlo method include simplicity concerning the
implementation. Not only that well known deterministic solvers can be used, it
is also clear that parallelization techniques can directly be applied. Furthermore,
the convergence rate of the sample mean and variance with respect to the number
of used samples M is independent of the dimensionality of the random space, i.e.,
independent of the number of random variables used to characterize the random
inputs in the KL and PC expansion [15, 32].

On the other hand, the convergence is rather slow. The error decreases only
in the order of O(1/v/M). Hence, it depends on the actual dimension of the
probability space if the Monte Carlo method outperforms other techniques that
are presented in the subsequent sections.

Several modifications of the Monte Carlo method have been introduced to im-
prove the convergence of the statistical outputs. E.g., using the quasi-Monte
Carlo method, the random selection of the samples is replaced by a determinis-
tic sequence of properly chosen points, so-called quasi-random or low-discrepancy
sequences [15]. Recently, another Monte Carlo approach has been introduced for
stochastic PDEs, called multilevel Monte Carlo method |8, 21|, where the PDE is
solved for several spatial discretizations. Instead of the straightforward MC ap-
plication, as for example given in (2.20), the MC mean is evaluated based on a
very coarse grid and “updated” by an MC mean of the difference of the outputs of
different grids. E.g.,

1 <l
Enimc [s(uv)] = A > s(ung (wm)) + A > (s(un(wm)) = s(ung (@),

m=1 m=1

where uy and wup,, No < N, denote the solutions of a PDE based upon dis-
cretizations with A and N, degrees of freedom, respectively. It can be shown that
the computational costs compared to the straightforward MC application can be

reduced [21].

2.5 Stochastic Galerkin Method

The stochastic Galerkin method has first been proposed by R. G. Ghanem and P.
D. Spanos in [35] and denotes the first D-weak/Q-weak formulation. It has been
further discussed for example in [69] and [103] that form the basis for the following
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discussion. The method is also known as stochastic finite element method. How-
ever, this denomination is also used in other contexts, even for D-weak/{)-strong
formulations. Hence, we prefer the non-ambiguous name.

As for the D-weak/{-strong formulation, we use a discretized space X with
the basis {1, ..., onx}. Additionally, we now discretize the space of second order
random variables Lo(£2). We use the KL expansions of the coefficients ¢ and d and
model the occurring random variables using PC expansions. In the combination
with the truncated KL expansion, the number n of used random variables nn =
(M1, ...,m,) usually coincides with the total number K of used KL terms [35].
Hence, for a maximal degree r of the polynomial chaos, we obtain P + 1 = (K;g T)
orthogonal basis functions H,(n(w)), p =0, ..., P, as defined in (2.19). These basis
functions span the discretized subspace S = S(£2) of Ly(Q2), i.e., the discretized
version of the D-weak/Q-weak formulation (2.6) is based upon the N - (P + 1)-
dimensional subspace X (D) ® S(Q) C H} (D) ® Ly(Q). A basis of X ® S is given
by {¢; - Hy|i = 1,...,N,p = 0,...,P}. In the following, we assume that the
polynomial chaos functions ﬁp are normalized and therefore orthonormal.

Using the definitions of Section 2.1.3, it is clear that we can define the determin-
istic stiffness matrix A € RV (PHDXN(P+1) and the right-hand side F € RN (P+1)
of the discretized problem (2.6) by

A= (a(gojI:Iq, g0"']:11’)>¢,j:1 ,,,,, g (2.22a)
p,g=20,..., P
Fi= <f(‘piﬁp>>¢:1,..‘w ; (2.22b)
p=20,..., P

respectively. Now, let u € RV (P41 be the solution of the linear system Au = F.
Then, the solution u € X ® S of the discretized version of (2.6) is given by

Z u; ppi(@) Hy (1(w)).

The evaluation of the mean and the variance of u is straightforward. Since,
by definition (2.17) and the orthogonality property of the Hermite polynomials,
Hy(n) = 1 and E[H,(n)] = 0 for p > 0, we have

N
Elu(z; )] = ) wopi(2).

i=1
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Due to the orthonormality of the polynomial chaos basis functions I—:Tp, the corre-

lation function of u is given by

N N P
(Cu(xla I'Q) = E[U(Il’ x2; Z Z Zuup—j,pgpl 1 QOJ <x2)

i=1 j=1 p=1

The variance of u at a specific point is given by V{u(z;-)] = C,(z, x).

For linear output functionals s(u), the derivation of mean and variance of s
is straightforward, e.g., E[s(u)] = s(E[u]) = Zfil u; 05(pi(z)). For nonlinear
outputs, the evaluation may be more involved and may require the knowledge
of higher moments of I:Ip. However, it is still possible to evaluate sample mean
and sample variance as introduced in Section 2.4 since u(z;w) can be evaluated

pointwise for random realizations n(w).

2.5.1 The Stiffness Matrix

Let us now take a closer look to the stiffness matrix A for stochastic Galerkin
methods. We use the KL expansion (2.10) of the coefficient ¢ as introduced in (2.7).
The KL sum is truncated after K terms and we model the arising random variables
&k using the PC expansion. For notational convenience, we set ¢o(z) := ¢(x), Ao = 1

and £ = 1. Then, c is given by

= > VA& @)er(@) = 3 Vwen() (Z dkmff%"'(w”) -

The components A a(gij:Iq, goilffp) of the stiffness matrix A can therefore

(4,p),(4,q) —
be written as

Alip),Ga) = Z VALE {/ &ren(@) Vi (x)Hy(n) - Vi (x) Hy(n) dﬁ]

_Z\/_(/ 2)V;(z) - Vi(z)d ) [fk J(mH, (77)]'

Hence, we see that we can separate A into components with different dependen-
cies. On the one hand, we have parts depending just on quantities in the space X
of functions on the spatial domain D. On the other hand, we have parts depend-

ing only on the quantities in the space S of second order random variables. We
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Figure 2.1: Sparsity pattern of the matrix A7 for r = 1,2, 3, 4, respectively.

therefore define the corresponding matrices as

N
AX = (/ cr(x)Voji(x) - Vi(x) dx) e RV, (2.23a)
D ij=1
s 2 2 P j
A= (E [kaq(n)Hp(n)])
p,q=0
P P
- (Z i E | }<n>ﬁq<n>ﬁp<n>}) e RPN (2.93)
r=0 p,q=0
k =0,..., K, such that the stiffness matrix is given by the sum of matrix tensor

products
K
A=) "V (A ® A7) . (2.23¢)
k=0

Hence, this formulation separates random and spatial influences.

The matrices A;f correspond to the stiffness matrices of the respective deter-
ministic discretizations and hence show the known sparsity pattern. E.g., using
the finite element methods with a linear Lagrange basis to discretize H} (D), the
matrices Ay are tridiagonal.

The construction of the matrices A7 include the evaluations of the mean values
of E[H,(n)H,(n)H,(m)], r,p,q =0, ..., P. However, this can be done analytically
since the random variables in 1(w) are mutually independent with known moments.
Furthermore, the values of E[H,(n)H,(n)H,(n)] are actually independent of the
current problem and can hence be evaluated and stored once and reused for many
different problems. The sparsity pattern of the matrix AY, k = 1, is given in Figure

2.1 for a KL expansion with K = 10 terms and four different maximal polynomial
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degrees r = 1,2, 3, and 4, respectively. For » = 1, we obtain 13 non-zeros terms
which denotes about 10.74% of the entries whereas for r = 4, we obtain 15931
non-zeros terms, i.e., 1.590% of the entries.

Using the tensor product formulation (2.23c), we can describe the shape of
Ay = A ® A7 as a block matrix of the sparsity pattern of A;X, where each block
shows the sparsity pattern of A7. Obviously, Ay can analogously be constructed
vice versa, i.e., as a block matrix of the shape of A?, where each block has the
pattern of A;X. In any case, it is clear that a complete decoupling of random and
spatial influences is not possible.

Provided that the solutions u are sufficiently smooth in the random space,
stochastic Galerkin methods exhibit fast convergence rates with increasing order
of the KL. and PC expansions. The resolution of the random space S is very
high whereas Monte Carlo methods need many simulations to obtain a similar
approximation quality. However, in contrast to Monte Carlo methods, the use of a
larger number of random variables and higher order polynomials strongly increases
the computational effort. The dimension of A7 and therefore of the stiffness matrix

A grows exponentially fast in the number K of KL terms and with the maximal

K+r
K

on the actual choice of K and r if Galerkin methods outperform the Monte Carlo

degree r of the polynomial chaos, recalling that P+ 1 = ( ) Hence, it depends

method that converges rather slow.

2.6 Stochastic Collocation Method

In this section, we briefly describe the idea of stochastic collocation methods [6, 9,
10, 102] that can be seen as a generalization of the stochastic Galerkin method. The
objective is to combine the advantages of both Monte Carlo methods and stochastic
Galerkin methods. The main idea is to decouple random and spatial dependencies
such that the implementation can be done using basically deterministic solvers as
for the Monte Carlo method but maintain the high resolution of S as obtained
using stochastic Galerkin methods.

Stochastic collocation methods are also based upon D-weak/Q-weak formula-
tions, i.e., for the example provided in Section 2.1.1, solutions in the tensor product

space Hg(D) ® Ly(Q) are desired. As before, the method performs a Galerkin ap-
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proximation in space and one obtains a discrete subset X of Hj(D), e.g., using
finite elements. Additionally, the method takes advantage of multivariate polyno-
mial interpolations. The random space Lo({2) is approximated using a collocation
in the zeros of suitable tensor product orthogonal polynomials. Hence, the ap-
proximation S of Ly(Q2) is again spanned by orthogonal polynomials.

In contrast to stochastic Galerkin methods, the solution procedure requires
only evaluations of the corresponding deterministic problems at each interpolation
point. Naturally, this leads to uncoupled problems as in the Monte Carlo approach.
At the same time, the fast convergence for sufficiently smooth processes can be
conserved [6, 102].

The effectivity of such methods depends on proper choices of interpolation
points since the overall complexity corresponds to the solution of M determin-
istic problems, where M is the number of selected knots. Hence, the objective
is to choose as few points as possible. Referring to the KL expansion (2.10), a
“point” in Ly(€2) can be considered to be represented as one random realization
of the random variables &;,...,£x. Hence, the space to be represented can be
transformed to the multidimensional cube [0, 1]% C RE.

Several possibilities for appropriate interpolation point selections have been
introduced. Besides the straightforward K-dimensional tensor product of a set
of knots in the one-dimensional interval [0, 1], e.g., sparse grids based upon the
Smolyak algorithm or Stroud’s cubature methods have been proposed. For more

details, see [102] and the references therein.



Chapter 3

Affine Decompositions of

Parametric Stochastic Processes

This chapter is based upon joint work with K. Urban and the main results have
already been published in [92] in a very similar form. We added Section 3.1 about
affine decompositions in the context of the RBM.

We consider parameter dependent spatial stochastic processes in the context of
PDEs and model order reduction. For a given parameter, a random sample of
such a process specifies a sample coefficient function of a PDE, e.g., characteristics
of porous media such as Li-ion batteries or random influences in biomechanical
systems. To apply the Reduced Basis Method (RBM) to parametrized systems
with stochastic or deterministic parameter dependencies, it is necessary to get
affine decompositions of the systems in parameter and space [45, 73|.

For deterministic problems, it is common to use the Empirical Interpolation
Method (EIM) [7, 86] for parametric coefficients and the Discrete EIM (DEIM)
[19, 20] as well as the Operator EIM (OEIM) |27, 43| for discrete operator approxi-
mations. For stochastic coefficients, one can apply the Karhunen—Loéve expansion
|60, 65] where the terms with stochastic dependencies are assumed to satisfy cer-
tain distributions and are modeled using polynomial chaos expansions [101, 103].

In this chapter, we extend the EIM to parametrized spatial stochastic processes.
The goal is to develop efficiently computable affine decompositions of not only pa-

rameter dependent but also stochastic systems that separate spatial dependencies

29
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from parametric and probabilistic influences without any assumptions on the dis-
tribution of non-spatial terms. We will use the basic concept of the EIM together
with ideas from Proper Orthogonal Decomposition (POD). We emphasize that the
presented methods are not limited to stochastic functions but work analogously
on noisy input data or on other hardly decomposable functions.

We start the chapter introducing the necessity and applicability of affine decom-
positions in the context of reduced methods. In Section 3.2, we provide necessary
information about the POD, EIM, Operator EIM, and DEIM that will be used
to introduce two new approaches to construct affine decompositions of paramet-
ric, stochastic, and possibly non-smooth processes. In Section 3.3, we introduce a
Proper Orthogonal Interpolation Method (POIM) that is based on the EIM and
the POD and replaces the L..-based basis selection by an Lo-‘optimal’ basis. We
show a connection to the DEIM and provide new error estimates that can be used
for both methods. We then introduce a Least-Squares EIM (LSEIM) in Section
3.4 that uses more knots than basis functions. A similar approach as already been
presented in [71]. In Section 3.5 we provide a numerical example and show that
these methods can be used to obtain close to optimal approximations of random

and also noisy input data.

3.1 Affine Decompositions in the Context of the
RBM

In this section, we show how affine decompositions can be used to efficiently solve
parametric PDEs using a small set of basis functions. The objective is to assemble
and solve the system independently of the dimension of the actual full discretiza-
tion but depending only on the size of the reduced basis.

We consider again the example problem given in Section 2.1.1 and the corre-
sponding D-weak /(2-strong formulation of Section 2.1.2. For now, w may denote
either a deterministic parameter or a stochastic event. As in Section 2.4, we denote
N as the dimension of the full discretized problem, i.e., as the size of the corre-
sponding basis {¢1, ..., @} of the discretized Hilbert space X. Furthermore, let
N < N denote the size of a ‘reduced basis’ {(1,...,(n}, span{(y,...,(n} =:
Xy C X, where ¢, = Z;\il Zin Pi-
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We assume the availability of affine decompositions of the bilinear form a from
(2.2) and of the linear form f from (2.3) given by

a(w,v;w) Z@“ A (W, V), (3.1)

= Z O (w) fin(v), (3.2)

respectively, where M?, M/ < N'. As described in Section 2.4, the stiffness matrix
of the discretized system is given by A(w) := (a(y;, vi; w))?’;zl and the right-hand
side can be evaluated as F(w) := (f(¢i;;w))Y,. Furthermore, we define the w-
independent matrices A,, = (am(goj,@z))” s m = 1,...,M" and the vectors
F(w) = (fu(@))Y,m=1,..., M/

The reduced problem formulation (2.4) reads as follows: For any w € €, find
un(w) € Xy such that

aluy(w),v;w) = f(v;w), Yo € Xy.

Using the reduced basis stiffness matrix (An(w) = a(Cr, ¢asw))h sy and right-
hand side Fy(w) := (f(Cy;w))),, the reduced basis solution uy(w) is given by
uy(w) = SN U, (W)Cn, where uy(w) € RY denotes the solution of Ay (w)uy =
Fy(w). Hence, it suffices to solve a linear equation of dimension N < N. For
adequately chosen reduced basis functions, we expect u(w) ~ uy(w).

However, for each parameter or random sample w € {2, we have to assemble
a new reduced basis stiffness matrix and right-hand side. The straightforward

construction of Ay(w) involves the evaluation of

N N
a(Crs Gnsw) = Z Z ZjkZim 05 i w)-

j=1 i=1

In other words, using the reduced basis coefficient matrix Zy := (2;,)i=1,...A7,, We
n=1,....N

have Ay(w) = ZLA(w)Zy, and analogously, we can evaluate Fyy(w) = ZLF(w).
Hence, the assembling of the reduced system is not independent of A" and therefore
not efficient. Using directly the definitions of a and f in (2.2) and (2.3), the
construction of the system involves the integration over the domain D which also

depends on the fine discretization, i.e., on N.
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Let us now describe the application of the affine decompositions (3.1) and (3.2)
of a and f for the efficient construction of the system. Using the above definitions
of the w-independent quantities A,, and F;,,, we define the corresponding reduced
basis quantities Ay, == Z4AnZn € RN and Fy,,, := ZL F,, € RY. Since these
components are also w-independent, they have to be evaluated only once and can
be stored for further use. For each new parameter or random sample w € €2, using

(3.1) and (3.2), we can now assemble

Zea VANm, Fn( Zef )EN s (3.3)

with the computational complexities O(M¢N?) and O(M/ N), respectively. Hence,
using affine decompositions, the assembling of the system can be performed inde-

pendently of NV, and the reduced solution can be obtained efficiently.

3.2 Preliminaries

In this section, we briefly review some of the basic known facts on POD and EIM

that are needed in order to describe our new approaches.

3.2.1 Problem Formulation

Let (2,2, P) be a probability space, P C RP be a set of deterministic parameters,
and let D C R denote a spatial domain. Furthermore, let ¢: D x (P x Q) — R
denote a real-valued parameter dependent spatial stochastic process. For each pair
(u,w) € P x Q, we assume to obtain a trajectory c(u,w) € X C Loo(D)NC°(D)
for some appropriate Hilbert space X on D.

Let now ¢(u,w) denote a coefficient or right-hand side in some PDE. Provided
that c¢(u,w) is an affine function of the parameters and the spatial variables, it is
also possible to get an affine approximation of the bilinear form a and the linear
form f. In general, however, this requirement is not fulfilled, in particular in the
presence of stochastic influences. The objective of this chapter is thus (i) to find

an affine approximation of ¢(u,w) of the form

e p, w Z O (11, ) G () (3.4)
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with so-called collateral basis functions ¢, € X, m = 1,..., M, (ii) to construct
efficient evaluation procedures for the coefficients 6,,(u,w) € R, m = 1,..., M,
and (iii) the derivation of effective a-posteriori error estimators to choose M € N
possibly small in order to guarantee a certain accuracy in (3.4).

Suppose an affine decomposition in the deterministic parameter is already given,
ie.,

ow; pr,w) = Y 0g(1) ¢l w),
q=1

where 6,(11) can be evaluated efficiently, possibly analytically. We can evaluate the
respective KL expansions of the stochastic functions ¢,, truncate each expansion,

and obtain a decomposition of the desired form,

Kq

C(ZE; M w) ~ Z 6)q(:u)cq,k(w) \/mcq,k(x)'

q=1 k=0

Otherwise, more involved algorithms are necessary.

3.2.2 Proper Orthogonal Decomposition (POD)

As already mentioned, the POD can be seen as the deterministic equivalent of
the KL expansion. Similarly, one evaluates the eigenfunctions and eigenvalues
of a covariance operator to determine an orthonormal basis and to estimate the
approximation quality of the corresponding subspace. In the deterministic context,
the POD is often formulated as an optimization problem based upon a set of
training snapshots:

For some training set Zi.;m C P X € of cardinality 7., and corresponding

VPOD

trajectories ¢(p, w), (i, w) € Egrain, the POD space V,,°7 of dimension M is defined

via the following optimization problem

1
ViPP :=arg inf Z inf |le(p,w) — w3 | (3.5)
Vi CXrain \ Mtrain ~ wrr €V
dim V=M (M:W)e:‘train

where Xiain 1= span{c(u,w)|(i,w) € Ziain}. It yields hierarchical spaces, i.e.,
V-1 C Vi, and is Lo-optimal in the sense that the average squared Ls-error of

the representation of the training trajectories is minimized.
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As for the KL expansion, a hierarchical basis of V},°P is given by the eigenfunc-

tions v,, of decreasing eigenvalues \,,, m = 1,..., M, of the covariance operator
Cpop : D x D — R defined as

1
CPOD(fEth) = Z 0(371;#7&)) C($2;M7w)7 T1,%2 € D.

Ntrain —
(,u,w) €Z¢train

Analogously to the KL expansion, the average squared approximation error of the

trajectories in the training set is given by

LS Jemw) — EP @) = 3 A,

Ntrain —
( H,w )G:‘train m>M

POD (14, w) denotes the orthogonal projection of c(u,w) onto VEOP. For

where ¢
more details, see for example [62]. As for the KL expansion, it is also possible
to apply the method of snapshots for the evaluation of the eigenvalues and the
construction of the eigenfunctions of Cpop.

However, using the eigenfunctions v,,, m = 1,..., M, as collateral basis, it is
not possible to efficiently evaluate the corresponding coefficients 6, (u,w), m =
1,..., M. In contrast to the KL expansion, these coefficients do not satisfy a cer-
tain probability distribution and can not be modeled using PC expansion. Hence,

it is not possible to directly apply the POD for our purpose.

3.2.3 Empirical Interpolation Method (EIM)

We briefly review the EIM as introduced for example in [7] and [86]. In these pub-
lications, it has been used to derive affine decompositions of parametric functions.
Here, we use the parametric stochastic specification that we consider in this work.

The main idea of the EIM is to use a collateral basis such that the affine approx-
imation of a new function c¢ requires only the values of ¢ at a set of interpolation
points of the same size as the basis. The construction of the basis ensures that
the approximation is exact at the knots and that the coefficients are efficiently

evaluable.

EIM: Offline-phase

A general form of the EIM offline procedure is described in Algorithm 3.1. It
generates the so-called collateral basis Qn = {q1,...,qu} of cardinality M and
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Algorithm 3.1 Offline — Empirical Interpolation Method.
1 for M =1 to M, do

2 ¢ = getNextBasisFunction(Q—1, Tar—1, Ztrain)

3 BM - = getApproximation(Qas_1, Th_1, €)

4 Ty = C— c%}l\_/ll

5 ty = argesssup,ep [rm (@), T = {Tv-1,tm}

6 qu = ru/ru(ty),  Qu = {Qm-1,qm}

7 end for

the corresponding set of interpolation points Ty = {t1,...,tm}, M < Myax, where

M.,.x denotes the maximal allowed number of affine terms. We will describe the
main steps below. The ingredient of the algorithm is a training set Ziam C P X €2
such that the space span{c(u,w) | (¢, w) € Eirain} sufficiently covers the family of
functions {c(u,w) | (1, w) € P x Q}. Furthermore, we start with an empty set of
basis functions Qg = {} and an empty set of interpolation points Ty = {}.

We start with the procedure that computes the affine approximation in line 3 of
Algorithm 3.1. In the first step of the loop, for an empty basis @)y, the procedure
getApproximation(Qy, Ty, ¢) returns zero, i.e., cs™ = 0 for all functions ¢ € X.
Otherwise, for any non-empty basis (s, getApproximation(Q s, T, ¢) computes

the coefficients @,;(c) = (6;(c))}L, by solving the linear system
M
> 0i()qi(ts) = c(t),i=1,..., M, (3.6)
j=1

and returns the approximation cff™ = Zj\il 6,(c)g;. By construction, this approx-
imation is exact at the knots t;,i = 1,..., M. Denoting By := (q;(t;))}—, and

ey = (c(t;))M, allows to rewrite (3.6) as By0y(c) = ¢y such that

Here, Qy = {q1,- .-, qu} is associated with the “matrix” where each column refers
to one basis function.

The procedure getNextBasisFunction(Qar—1, Tar—1, Etrain) in line 2 evaluates EIM
approximations ™, (i, w) of all trajectories ¢(u,w), (4, w) € Eirain, and returns
the trajectory that is so far worst approximated in the L.-sense. Hence, in the

first step, the procedure returns the training function with the largest magnitude.
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In line 4, the residual is evaluated. The next knot t,; is defined in line 5
in order to supremize the residual, i.e., as that point where ¢ is so far worst
approximated. Hence, the interpolation point selection procedure is based upon
the L-error. The next collateral basis function ¢, is added in line 6, defined as
the L.-normalized residual. We denote the approximation space at step M by
WM = span{qi, ..., qu}.

As mentioned before, the approximation is exact at the knots, i.e., the residual
rar 18 zero at tq, ...ty 1. This implies that the linear system (3.6) is lower trian-
gular with diagonal unity, i.e., (By);; = ¢;(t;) = 1 and (By);; = ¢;(t;) = 0 for
1 < j. The computational complexity of the evaluation of the EIM coefficients 8,
is thus O(M?).

EIM: Online-phase

In the online phase, sketched in Algorithm 3.2, we affinely approximate a new
trajectory c(u,w) for (u,w) € P x Q. We choose an M < My, that is assumed
to be sufficiently large for a good approximation quality. Additionally, we define
M™* with M < M+ < M. that is used for the error estimation.

We then call getCoefficients(M™, ¢(u,w)) that evaluates the trajectory at the
knots (t;,)™] and returns the solution 6+ (i, w) of the lower triangular linear

system
M+
> 0 w)gi(ts) = et pw), i=1,... M. (3.8)
j=1

For an efficient application of the EIM, we require that evaluations of trajectories at
the knots (t;)X] are fast, ideally of complexity O(M*). Due to the lower triangular
form of the linear system (3.8), the solutions show a hierarchical structure, i.e.,
Orri1 = (Orr, 01 41).

We use only the first M coefficients to evaluate the approximation ¢¥™(u, w) of
the given trajectory, see line 4 of Algorithm 3.2. This evaluation is not independent
of the dimension N of a given discretization of the function space X. However,
as we have seen in Section 3.1, it is not even necessary in the RBM context to
evaluate ci™(u,w) in the online phase at all, only the coefficients 8, are used.
Hence, line 4 of Algorithm 3.2 can be skipped.

One usually uses the additional coefficients to get error estimators. Under the
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Algorithm 3.2 Online — Empirical Interpolation Method.
1 choose M and M™ such that M < M < M.«

2 select a trajectory ¢(u,w) for some (p,w) € P x 2
3 O+ (p,w) = getCoefficients(M™, ¢(p,w))

4 evaluate approximation

M
ch (i w) =Y 6;(n,w)g; (3.9)
j=1
5 evaluate the L..-error estimator
M+
AT (pw) = > 10;(pw)| (3.10)
j=M+1

assumption that the trajectory c(u, w) is in WM, the quantity AT, (p,w) from

(3.10) provides a rigorous upper bound of the L.-error. The respective bound for
the Lo-error could be given by ij\gwﬂ llg;11210; (1, w)|. However, the assumption
c(p,w) € WitM usually does not hold and AFM . just provides a non-rigorous
(but in practice very good) estimate. For more details on EIM error estimators

and more accurate bounds, see [86].

3.2.4 Empirical Interpolation of Differential Operators

The DEIM [20] and the empirical operator interpolation [27, 43] work in a similar
context. Both methods generate affine decompositions of discretized differential
operators. As opposed to the EIM, the basis function selection is based upon
operator evaluations and the knots represent indices of the discrete operator. In
the online phase, the discrete operator evaluations are approximated instead of
trajectories c¢(u,w). Hence, Algorithms 3.1 and 3.2 can directly be used for the
empirical operator interpolation, considering ¢; to be indices and ¢ to be operator
evaluations.

In this context, the evaluation of the operator — typically nonlinear and /or time
dependent — at an index ¢; involves the evaluation of the solution of the equation

from a previous time step or iteration at several points. It is required that the
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Algorithm 3.3 Offline - DEIM.
1 for M =1 to M., do

2 select vs as next basis function

3 cDEM — getApproximation(Vas_1, Thr—1, var)

4 ™M = Up — clj\DJE_H}/[

5 tay = argesssupyep [rm(®)|, T = {Tv-1.tm}
6 Vir = {Var—1,vnm}

7 end for

number of such points is constant and much smaller than the number of degrees
of freedom of the discretization. This property is also called H-independence [27].
Typical discretization techniques such as finite element, finite volume, or finite
difference methods fulfill this requirement. In the following we do not explicitly
address this topic. However, it is important to keep in mind that the evaluation

at an index ¢; can be expensive.

The DEIM implies further modifications of the presented algorithms. At the
start of the method, one applies a POD on the discrete operator generating eigen-
values A\; > Xy > .- and corresponding orthonormal eigenfunctions vy, vg, - - -.
The further steps are sketched in Algorithm 3.3.

Instead of getNextBasisFunction() in Algorithm 3.1, we directly select the M-th
POD eigenfunction in iteration M. Furthermore, in the DEIM context, we do
not add the residual to the collateral basis, but the eigenfunction itself. Hence,
line 6 of Algorithm 3.1 reduces to Vy; = {Vas_1,va} and the approximation space
reads WDE™M .= gpan{vy, ..., vy }. Lines 3 to 5 remain necessary to determine the

knots.

Due to the different selection method, the linear systems (3.6), solved in line 3 of
Algorithm 3.3, and (3.8), solved online, become full. The complexity increases to
O(M?) and O((M™)3), respectively. Furthermore, the error estimator introduced
in line 5 of Algorithm 3.2 is not valid anymore since in this context, it does not
hold that the coefficients are hierarchical, i.e., Oy11 # (Opr,0011). There are

some non-rigorous a-priori average-error estimates, see [20].
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3.3 A Proper Orthogonal (Empirical) Interpola-
tion Method (POIM)

In this section, we propose a Proper Orthogonal Interpolation Method (POIM)
that is based on the EIM and POD. The main idea is to replace the basis selection
based upon the L..-error by some Lo-‘optimal’ procedure. Even though the method
is motivated by stochastic problems, it can be applied to deterministic formulations
as well and may lead to improved approximations in that case, too.

The method has some similarities to the DEIM, even though the DEIM orig-
inally applies to differential operators. In fact, we show that we can modify the
DEIM according to the POIM methodology, making it faster but still producing
the same approximations. Furthermore, we show that the provided a-posteriori
error estimates for the POIM can also be applied to the DEIM.

3.3.1 Outline of the Method

We adopt the concept of the DEIM and apply the POD to our problem in a

first step. In other words, we define a training set Zi.., C P X Q, evaluate

trajectories ¢(u,w), (4, w) € Egaim, and compute POD eigenvalues A, ..., Ay,
and eigenfunctions vy, ..., vy .., using either the method of snapshots or the direct
approach.

As for the DEIM, we select in each iteration the respective POD eigenfunction
as next basis function and evaluate its approximation to define the residual and
the knot. However, in contrast to the DEIM, we do not directly add the POD
eigenfunction to the collateral basis, but we use the L.,-normalized residual q,,
as described in Algorithm 3.4, line 6. This part of the algorithm has been adopted
from the EIM and ensures that the linear systems (3.6) and (3.8) are still lower
triangular. Therefore, the procedure getApproximation(Qas, Ty, -) is identical to
the one used in Algorithm 3.1 and the online phase of the POIM is identical to
the online phase of the EIM provided in Algorithm 3.2.

WPOIM

It is clear that the approximation space W,,”** is still Lo-optimal in the sense

of (3.5). In other words, we have

W]PMOIM = span{ql, Ce ,QM} = Span{Ub s aUM} = W]BEIM7 (311)
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Algorithm 3.4 Offline - POIM.
1 for M =1 to M., do

2 select vs as next basis function

3 cFOM — getApproximation(Qas—1, Ths—1, Var)

4 v = Upm —clj/[O_HlV[

5 ty = argesssup,ep ["m (@), T = {Tvw-1,tm}
6 qu = ru/ru(ty),  Qu = {Qm-1,qm}

7 end for

which can be easily shown by induction over M. The basis ()5, is not orthonormal
and the knots still depend on the L..-error of the residual r,,;. However, since r),
is a linear combination of the first M POD eigenfunctions, it is typically smooth

and the knot should be adequately chosen.

3.3.2 Error Estimators

We can directly apply the error estimator defined in Algorithm 3.2, line 5, i.e., we
solve the lower triangular system (3.8) in O((M™)?) for some M+ > M and use

the additional coefficients 011, ..., 0+ to evaluate AFM (1, w).

3.3.3 Application within the DEIM Context

As indicated in Section 3.2.4, the concepts of EIM and DEIM differ only slightly,
using operator evaluations instead of trajectories and indices instead of interpo-
lation points. Hence, the POIM can directly be used to approximate operators
as well. In view of (3.11), the approximation spaces of the DEIM and the POIM
coincide. In the following two lemmas, we show that both methods also produce

the same approximations.

Lemma 3.1. Let c be an arbitrary function and let 5™, ¢DE™ be approxvimations

using M basis functions generated by the POIM and the DEIM, respectively, using

the same interpolation points. Then, chP™ = (DEIM,

Proof. Let Qn = {q1,---,qu} denote the matrix of POIM-basis functions and
Ve = {v1,..., vy} the matrix of DEIM-basis functions, where each column of

the respective matrices refers to one basis function. Since both bases span the
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same space, there exists a matrix ¥, € RM*M guch that Q) = Vs - Uay. Due
to the construction of @), in Algorithm 3.4, Wy, is upper triangular. Let T);, =
(t1,...,tn) denote the selected knots. We define

BE™ = (gt ) BEP™ = (), € RMX,
and cy; = (c(t;))M, € R™. Since Qy = Vs - Wy, it is also clear that we can

write BYO™ = BPEIM ., Then, using the form of (3.7) for the respective linear

systems, we obtain

CljaOIM = Qu - ( ]F\’/IOIM)*l Cus
= V- (BYY™)

-1
—Vy - ( B]‘%EIM) cy = cDEM
which proves the claim. O

We furthermore note that the upper triangular matrix W), is hierarchical in the
sense that W), ; is given as the restriction of ¥,; to the first M — 1 rows and
columns. This is clear from the construction of Q3 in Algorithm 3.4, line 4 as
a linear combination of {Qp—1,va}. Since span{Qp—1} = span{Vy;_1}, qu can
also be written as a linear combination of the basis V).

It remains to show that the knots produced by the different methods coincide.

Lemma 3.2. The DEIM in Algorithm 3.3 and the POIM in Algorithm 3.4 generate

the same set of interpolation points.

Proof. Let (t£O™)M = denote the POIM-knots and (tPE™M)M -~ the DEIM-knots.
The proof is now done by induction. Since for both methods, the approximation
procedures getApproximation(+) return zero for empty basis sets Qo or Vp, respec-
tively, we have that r; = v; for both methods and therefore tTO™ = ¢DEIM et
the assertion be true for M — 1. Then, Lemma 3.1 provides that both methods
return the same approximation, i.e., ¢ = ¢PFIM Hence, both methods use the

same residual to evaluate the next knot such that tFP™ = ¢DEIM O

As a consequence of the two results above, we can use the POIM instead of the
DEIM, generating the same approximations, but solving only a triangular system.

Hence, the online complexity reduces to O(M?). Furthermore, we can now use
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the EIM a-posteriori error estimates for the DEIM as well. At the same time, the
DEIM a-priori error estimates are still valid since neither the approximation space
is changed nor the actual approximations.

Even if an orthonormal basis would be needed and the DEIM is directly applied,
we can now implement the DEIM more efficiently, including also the evaluation of
a-posteriori error estimates. We first solve the triangular system (3.8) for coeffi-
cients 852%™ which also includes the evaluation of 85°™ due to the hierarchical

behavior of the coefficients. It holds that
GUEN _ g, gTON  gBEIN _ 1y grOI (3.12)

Since W), is upper triangular, the complexities of the evaluations in (3.12) are
O(M?) and O((M™)?), respectively. Hence, the DEIM coefficients can be evalu-
ated with a total complexity of O(2M?). Furthermore, we can still apply the error
estimator (3.10) with the POIM coefficients 85217, ..., 07 2™, The computational
complexity of the error estimator is therefore O(2(M™)?). We do not need to
store two sets of basis functions but only the orthonormal basis Vj;+ and the two

triangular matrices W+ and B} ™ of the POIM.

3.4 A Least-Squares Empirical Interpolation Meth-
od (LSEIM)

In this section, we introduce a Least—-Squares Empirical Interpolation Method
(LSEIM) that uses more knots than basis functions and solves a least-squares
problem to evaluate @,;. This can be combined with both EIM and POIM.

3.4.1 Outline of the Method

The general concept of the LSEIM offline procedure is described in Algorithm 3.5.
The main steps are described below. We again initialize the algorithm with an
empty basis @y = {} and an empty set of knots Ty = {}. Furthermore, we denote
the number of used knots in step M by I, and set Iy = 0.

The procedure getNextBasisFunction() in line 2 returns either the so far worst
approximated snapshot, as described for the EIM in Section 3.2.3, or the M-th
POD eigenfunction, if the LSEIM is combined with the POIM.
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Algorithm 3.5 Offline — LSEIM.
1 for M =1 to M, do

¢ = getNextBasisFunction()

cKBEIM —  getApproximation(Qas_1, 17, ., €)

Ty = c— ckIEM

2
3
4
5 (t:)l = getNextKnots(ry,), 11, = {T1,,_,, () 1)
6
7

i=Iprq+1 i=1p_
aqm = getLQOrthonormaI(rM), QM = {QMfl,qM}
end for

For the LSEIM-approximation in line 3, we solve the least-squares problem

Iy

> ( 0;(c)a;(t:) — C(ti)> — min (3.13)

i=1

IE/?EIM = Qn0). Since the approxima-

for the coefficients 8,; € R™ and evaluate ¢
tion and thus the residual r;; are no longer exact at the knots, the system is full
and the complexity of solving (3.13) increases to O(Iy M?).

There is no unique way to determine the number and location of the new knots
(t:) iI:M[M_l 41 in line 5. For the examples in Section 3.5, we used a constant number
of two new knots per basis function, defined by the essential infimum and the
essential supremum of the residual, respectively: t;,,-1 = argessinf,cpra(z)
and t7,, = argesssup,.p ry(z) with Iy, = 2M.

It is also possible to use iterative and adaptive selection methods. A natural
procedure would be to first add the basis function and iteratively add knots in a
second step. The actual number of knots, i.e., the number of iterations, can also
be determined in several different ways. One choice could be to add knots until
the approximations of the functions in the training set are close to optimal in the
sense of their Lo-projections into the space WEPP = span(Q,;). Alternatively,
one could also measure the error between the Ls-optimal and LSEIM coefficients
Oﬁ/f and GﬁfE[ M \which might be cheaper. A third way could be to just minimize
the approximation error for the last basis function. In any case, it is crucial to
adequately specify the error term ‘close to optimal’, i.e., the error tolerance. This
can be difficult and my depend on the actual problem. Hence, we prefer the above
mentioned simple method and we will see in Section 3.5 that it works very well in

practice.
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To extend the Ls-orthonormal basis in line 6, we add the Lo-projection of the
residual on WESS™ = span{q,...,quy_1} to the basis. Analogously to Lemmas
3.1 and 3.2, we can show that this is equivalent to add L..-normalized residuals.
We just replace the solution of B0, = cj; in the proof of Lemma 3.1 by the
solution of a minimization problem of the form (3.13). However, since the system

is full anyway, we prefer the Lo-orthonormal basis.

Once M is fixed in the online phase, one can compute and store the Q)R-
decomposition and solve (3.13) in O(Iy M) for any new right-hand side. Under
the assumption that the number of selected knots per iteration is O(1), i.e., I €
O(M), the cost increases only moderately. A drawback in the online application is
the necessity to evaluate trajectories ¢(u,w) at additional knots to get new right-
hand sides, which can be expensive. However, we hope to reduce the number
M of affine terms such that the overall cost decreases. Furthermore, within the
RBM context, the total online complexity to assemble the system and to compute
solution and error bounds is O(IyyM + MN? + N3 + M?N?), where N is the
dimension of the reduced space (cf. [73]). Thus, a small M becomes more important

than a decrease of the number of knots.

3.4.2 FError Estimators

It is not possible to directly adopt the error estimators used for the EIM and
POIM since Oy41 # (0pr,0011). Instead, we separately solve (3.13) for M and
M and denote the solutions by (6})}L, and (6} i )JM;l, respectively. Since @y is
Lo-orthonormal, the Lo-error estimator is given by

M M+
NS U Ea S U

j=1 j=M+1

(3.14)

whereas the respective L.-error estimator is given by Zj\il quHOO|9§”+ —0M| +
Z;\Sw 1 ||qj|]oo|(9Mj+ |. The computational complexity increases compared to EIM
and DEIM, even though it still is O((M™)?) for given QR-decompositions and
Iy € O(M).
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Figure 3.1: Four random trajectories c¢(u,w) as defined in (3.15) for different

smoothing parameter configurations.

3.5 Numerical Example

We consider a Wiener process W : R x Q@ — R with probability space (2,2, P)
such that W (z;w) — W (y;w) is normally distributed with zero mean and variance
|z — y|. The variance at * = 0 is assumed to be zero. Furthermore, we apply
a parameter dependent smoothing filter F'(z,y; ) = ﬁu exp(—%(’:;—ém) with de-
terministic parameters g € P = [1073,107!]. The objective is to evaluate affine

approximations of processes c¢(u,w) : [0,1] — R of the form

x+1/2
c(x; pyw) = / F(z,y; p) W(y;w)dy. (3.15)

—-1/2

Thus, the trajectories are continuous with increasing smoothness for larger pu.
Hence, we will approximate a set of functions with different smoothness properties.
Figure 3.1 shows random trajectories for four values of u, logarithmically equally
spaced on P.

In the RBM context, we use ¢(u, w) as a stochastic coefficient of some PDE; e.g.,
V - (e(p,w)Vu(p,w)) = f. Here, ¢(u,w) is constructed to exemplarily represent

both the case of random functions and the case of noisy input data.
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Figure 3.2: Average Lo-error of training trajectories.

We used a discretization of N/ = 400 equidistant subintervals of the domain
D = [0,1]. For the construction of trajectories c(u,w), we generated samples
of the Wiener process W on the interval [—1/2,3/2] and evaluated (3.15). We
used a training set Sy C P x Q with a total of 3000 samples, divided on 30
logarithmically spaced parameters p € P. This training set has been used to
perform the POD, EIM, DEIM, POIM and LSEIM. We used POD eigenfunctions
for the generation of the LSEIM basis.

Figure 3.2 shows the average Lo-error of all training trajectories ¢(u, w), (u,w) €
Zirain- In this context, the POD provides the minimal error that can not be
improved, i.e., the error of the Lo-projection on the Ls-optimal POD basis in the
sense of (3.5). We can see that the average EIM-error convergence rate is far
from optimal whereas the LSEIM almost reaches the minimum. Even though the
POIM uses the same basis as the LSEIM, the error is noticeably larger. Thus, the
coefficients are not adequately evaluated. For an error tolerance of 1072, 105 basis
functions and 210 knots are needed for the LSEIM whereas the POIM needs 240
knots and basis functions and the EIM more than 350. In this case, the LSEIM
needs even less knots than the POIM and would considerably save online time

within an RBM. As shown in Section 3.3.3, the POIM and DEIM produce the
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Figure 3.3: Maximal L..-error of training trajectories.

same results.

Figure 3.3 shows the maximal L.-error convergence of all considered methods.
Here, the EIM and the POIM show a similar behavior. The errors decrease very
slowly and significant variations can be observed. For the POIM, it is clear that
the low convergence rate is caused by imprecise coefficients since the LSEIM still
produces better results using the same basis. Even though the construction of
the EIM is based on maximum L.-error minimization, the convergence is not

monotonic either, since inappropriate basis functions may be selected.

Table 3.1: Effectivities of the L.-error estimators for 3200 test trajectories, 1 <
M < N-8,and MT = M+8

Minimal Average Maximal % <1

EIM 0.373 3.025 9.148 0.022 %

POIM 0.320 3.411 14.849 0.014 %

LSEIM 0.446 2.431 6.992 0.024 %

In Table 3.1, we provide the effectivities of the introduced L..-error estimators,

i.e., the ratio Ay p+/|car — | of error estimator and real error. We used a test
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set Ziest C P x ) with a total of 3200 samples, divided on 32 logarithmically
spaced parameters p € P. For all error estimators, we used 8 additional coeffi-
cients, i.e., M+t = M + 8, and the table shows the minimal, average, and maximal
effectivities of all test trajectories and all M < N — 8. We can see that the error
is not rigorous since effectivities less than one occur. However, the percentage of
ineffective estimators, given in the last column, is very low. For higher accuracy,
we could increase M. In most cases, the estimators denote error bounds and the
effectivities are rather small, where the LSEIM yields slightly better results than
the EIM and the POIM, respectively.

3.6 Conclusions

We demonstrated that it is useful to add POD eigenfunctions instead of snap-
shots to generate the EIM basis if these may be non-smooth. We proved that
the described method produces the same approximation as the DEIM with less
computational cost and provided error estimators for both methods. Furthermore,
we showed that using more knots than basis functions improves the approximation

quality and arrives at close to optimal results.



Chapter 4

Implicit Partitioning Methods for

Unknown Parameter Domains

In the context of RBM for PDEs with deterministic parameter dependencies, it is
common to split the parameter domain into several parts and construct separate
reduced bases for each parameter subdomain [30, 31, 41]. It is assumed that the
variation of the parametric coefficients of the PDEs and therefore the variation of
the corresponding solutions become small on each subdomain. Then, only small

numbers of basis functions are needed and the online cost of the RBM decreases.

In this chapter, we generalize the partitioning concepts developed for determin-
istic and compact parameter domains to arbitrary, possibly unknown parameter
domains. No explicit description of the parameter domain — if existent at all
— will be required, and no particular information about the problem is needed.
Furthermore, we will show that our new implicit partitioning methods also out-
perform the existing methods for wide classes of problems even in the setting of

known parameter domains.

In Section 4.1, we briefly introduce two different partitioning procedures for
known, explicitly given parameter domains. The first method, the so-called p-
Partitioning [41], requires the availability of an affine decomposition in the pa-
rameter whereas the second method, the hp-Partitioning 30, 31], is based upon
the EIM and generates affine decompositions, i.e., collateral EIM bases, and parti-
tions simultaneously. In Section 4.2, we introduce the general concept of unknown

parameter domains and of affine decompositions with respect to unknown param-
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eters. Furthermore, we introduce some necessary assumptions and requirements
for our new implicit partitioning methods.

As the hp-Partitioning, the here introduced Implicit Partitioning Method (IPM)
generates affine decompositions and partitions in parallel. We will develop two
different concepts for the IPM. In Section 4.3, we introduce an IPM where the
form of the subdomains is not fixed but depends on the used collateral basis size.
The method is therefore called Moving Shapes (MS) IPM. Next, in Section 4.4, we
develop IPMs where the forms of the subdomains are supposed to be stationary.
These methods are called Fixed Shapes (FS) IPM. Finally, in Section 4.6, we

provide several numerical examples and compare the different methods.

4.1 Preliminaries

We start introducing the partitioning concepts for known, deterministic, and com-
pact parameter domains. Let D C R? denote a bounded spatial domain and let
P C RP be a compact parameter domain which is for now assumed to be a p-
dimensional hypercube. Furthermore, let ¢ : D x P — R, (x; u) — c(z; i), denote
a parametrized coefficient of an arbitrary PDE. Suppose detailed solutions of the
PDE on a discrete Hilbert space X of dimension A are available, based upon any
discretization scheme such as finite elements or finite differences. Let Xy C X
denote a reduced space of dimension N. Then, for the partitioning, we assume
the availability of rigorous and efficiently evaluable error bounds A(u) of the er-
ror between the detailed and the reduced solution of the PDE for the parameter
nweP.

We define N,,.x as the largest allowed basis size such that a certain maximal
online run time for a reduced solution is not exceeded. At the same time, an
error tolerance g, is desired. Hence, the objective is to divide P into multiple

subdomains and generate individual reduced bases such that

(i) the dimension of all reduced spaces is smaller than Ny.y,
(ii) the maximal error on each subdomain does not exceed e,

(iii) each parameter p € P can be assigned efficiently to the right subdomain,

whereas the number of subdomains should be as small as possible.
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Algorithm 4.1 p-Partitioning(P?, Nyax, €tol, /)

=J J
1 create =j;, from P

2 for N =1to Ny., do

3 Sf'{B’N = addBasisFunction(Sf{Bnyl, E{rain)
4 AN max = getMaxErrorBound(SﬂBW, E{rain)
5 if Anmax < €101 then

6 return S]?{B,N’ Pi

7 end if

8 end for

9 {P/*i|i=1,...,2°} = refinePartition(P?)

10 Jyew = J+2P

11 for =1 to 2P do

12 p-Partitioning(P7 ™+, N, €tol, Juew)

13 end for

4.1.1 p-Partitioning

We first introduce the so-called p-Partitioning [41]. The “p” refers to “parameter”
and distinguishes the method from other concepts such as time domain parti-
tioning (¢-Partitioning) [25] and a diversity of domain decomposition and related
methods [1, 53, 58, 66]. For the p-Partitioning, it is assumed that the PDE already
allows for an affine decomposition in the parameter pu € P which is either given or
approximated using the EIM or similar techniques as described in Chapter 3.

The method starts with a coarse uniform grid on the p-dimensional hypercube
P which defines the initial parameter domain partition. Hence, each subdomain
itself defines a p-dimensional hypercube. For each initial subdomain, we call the
procedure described in Algorithm 4.1, where P/ C P denotes the current subdo-
main and J the total number of created subdomains. The algorithm recursively
generates structs Sﬂa v for each subdomain P’ that include all the RB-related
data, e.g., the basis itself, the RB system matrices and vectors, and the data that
is necessary to evaluate the error bounds. We briefly describe the main steps.

In line 1, we create an appropriate set of training parameters =/ . C P7. In
[41], an adaptive training set extension procedure is used for the =/ . . However,

we can also assume a fixed training set without changing the theoretical aspects
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Figure 4.1: Two refinement steps using the p-Partitioning procedure for P = [0, 1]°.

of the p-Partitioning.

From line 2 to 8, the reduced basis for the actual subdomain P’ is constructed.
We first add a basis function to the reduced space in line 3 and update the RB-
related data in Sf{R y- For the basis selection, it is common to use a Greedy
approach, i.e., the solution for the parameter in the training set that is so far
worst approximated is added |73, 98]. For instationary problems, not the com-
plete trajectory is used but only the first POD eigenfunction, based upon the
error trajectory of the solutions at all time steps for the selected parameter. This
procedure is denoted as POD-Greedy [42]. Next, in line 4, we evaluate the maxi-
mal error bound over all training samples. If this error bound is small enough, we
return the actual subdomain and the corresponding reduced basis. Both are then
stored for later use in the online stage. Otherwise, we repeat the procedure until
Nopax 18 reached.

If the error still exceeds the tolerance e, for N = Np.., the variation of the
solutions on the current subdomain is too large. Hence, the current subdomain
and the corresponding basis are discarded and we perform the refinement step in
line 9. We divide the hypercube P/ C RP into 2P “subhypercubes” of identical
sizes, i.e., the edge length of the new hypercubes is half of the length of the edges
of P7. Figure 4.1 shows two exemplary refinement steps for a two dimensional
parameter domain P = [0, 1]2.

Next, we set the number of subdomains from J to J+2P and recursively call the
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procedure p-Partitioning(-) for all new subdomains. Note that the number J also
includes already discarded subdomains. However, the indices j in Algorithm 4.1
and hence the total number .J are only specified to facilitate the understanding of
the procedure. In practice, the indexing will be done in a tree-based scheme. The
algorithm returns only the RB data for leaf-subdomains, and all other reduced

bases are not stored.

The assignment of a new parameter u € P to the appropriate subdomain in the
online stage can be done using the tree structure of the partition. For any point
in a hypercube P C RP with 2P subdomains as described above, it is possible to
identify the subdomain where the point is located in O(p). This procedure can
be repeated iteratively. Hence, assuming a well balanced partition tree of depth
O(log J), the assignment complexity reads O(log J - p).

One basic disadvantage of the proposed partitioning method is the increase
of the offline run-time. During the refinement procedure, many reduced bases
are discarded after V.. iterations. Each iteration requires the computation of a
large number of reduced solutions and one detailed solution and is therefore ex-
pensive. Hence, it is desired to detect at an early stage if N., basis functions
will not suffice to adequately represent the solutions on the current subdomain.
The maximal error for N, basis functions can be predicted by extrapolating
AN max, Where the decay of the error is often assumed to be exponentially fast.
The basis extension is stopped and the partition is directly refined as soon as
the prediction indicates that we will not reach the error tolerance. Hence, Al-
gorithm 4.1 is changed in the following way. After line 7, we add the following

part:

‘ﬁrijx max = getPredictedMaxErrorBoundAt Nyyax (A1 maxs - - - s AN—1,max)

. d
if A%;x,max > gi then

break
end if

Many superfluous computations are hereby avoided.

Compared to straightforward basis constructions without partitioning, the stor-
age complexity increases. However, it is now possible to control the online complex-
ity by choosing N.x as desired, although for instationary problems, the minimal

choice of g is not independent of N,... If €4, is chosen too small, it can be neces-
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sary to use more than N, basis functions to cover the complexity of a trajectory

over time even for a single parameter.

4.1.2 hp-Partitioning

Independently of the p-Partitioning, another similar method, called “hp certified
RBM?”, has been proposed in [30]. The term “hp” is adopted from the finite element
(FE) theory, where “h” refers to the mesh size and “p” to the polynomial degree of
the local FE basis function which both are determined and refined adaptively. In
the context of parameter domain partitioning, the “A” analogously represents the
refinement of the partition and the “p” stands for the improvement of the basis on
a subdomain, i.e., the selection of further reduced basis functions.

In [30] and [29], the hp-Partitioning has been introduced for stationary and
instationary problems, respectively, for already affine problems. The methods
differ only slightly from the p-Partitioning of Section 4.1.1. The main distinction
are two different procedures for the splitting into subdomains, leading to theoretical
convergence results for some special cases. In [31], the hp-Partitioning is introduced
for non-affine problems and is connected to the EIM. Here, the p-refinement step
refers to the selection of an additional collateral basis function for the EIM (cf.
Section 3.2.1). In this section, we only describe the latter method since it shows
some similarities to our implicit partitioning methods. Furthermore, we introduce
the two splitting techniques that have also been used in the other publications
about hp-Partitioning, the so-called anchor point splitting scheme and the gravity
center splitting scheme.

In contrast to the p-Partitioning from Section 4.1.1, the Ap-Partitioning is di-
vided into two completely separate parts, the h-part with the refinement of the
partition and the p-part with the basis construction. We introduce two separate
error tolerances ') and 7 | and two maximal numbers M/ and MP__ of collat-
eral EIM basis functions for the h-part and the p-part. The error tolerances refer
now to the EIM error. The h-indexed quantities are only employed to make the
subdividing scheme cheaper whereas the p-indexed quantities refer to the actual
desired values.

Algorithm 4.2 describes the general h-part of the hp-Partitioning that is com-

mon to both splitting schemes. Given an initial partition, we call the procedure
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Algorithm 4.2 hp-Partitioning(P?, Mk e —J)
1 create =/ . from PJ
for M =1 to M" _do

max

{S%IM’M, H?\/[} = addBasisFunction(Séﬂ\/LM_17 E{mm)
EMmax = getMaxError(S]éIMM, E{ram)
if €/ max < e,’}ol then
return SéIM’M, Pi
end if
end for
{P/*i|i=1,..., Juaa} = refinePartition(P’, pl,... 1}, )

© 00 N O Ut s W N

10 Jnew = J + Jada

11 for i=1 to J,qq do

12 hp-Partitioning(P7+, M . el Joew)
13 end for

for each initial subdomain. The refinement and basis construction works again re-
cursively. The relatively large error tolerance " is used and only a small number
M!,  of maximal basis functions per subdomain is allowed. In that way, the con-

struction of superfluous bases functions for subdomains that are discarded anyway

is avoided. The total number of current subdomains is denoted by J.

Compared to Algorithm 4.1, the main difference is that we do not construct
the RB system but EIM collateral bases and structs Sé'IM’ u containing the com-
plete EIM data, where j refers again to the subdomain and M to the number of
basis functions. Hence, the procedure addBasisFunction(-) in line 3 performs one
iteration of the offline EIM construction as described in Algorithm 3.1, line 2 to 6.
Additionally, it now returns the parameter that corresponds to the just selected
basis function. These parameters are used for the new refinement procedures in
line 9. Since no error estimators for the EIM can be evaluated during the con-
struction of the collateral basis, the exact L..-error is evaluated in line 4 and used

as termination condition in line 5.

Before we introduce the different refinement procedures that can be used in
line 9, we briefly provide the second step of the hp-Partitioning, the p-part. The

actual basis on each subdomain is constructed analogously to the EIM Algorithm
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Figure 4.2: Two refinement steps using the gravity center splitting scheme for P =
[0,1]2. Gravity centers ii' = [0.35,0.40] for the first step (left) and j1* = [0.75,0.60]
for the second step (right).

3.1. For each final subdomain, we call Algorithm 3.1 and iterate until the small

error tolerance ! | or the maximal number MP _ is reached.

Gravity Center Splitting Scheme

For the gravity center refinement procedure, it is assumed that that the parameter
domain P C R? and each subdomain are given by a p-dimensional hypercube. In
the refinement step, we cut the current subdomain P’ into J,gq = 2P subhyper-
cubes. As opposed to the p-Partitioning, these new subdomains are not equally
sized. The splitting is now based on the so-called “gravity center” i’ which is
evaluated using the parameters that correspond to the selected basis functions of
the EIM in the subdomain P/,

M

max

h
ﬂj = M% Z Ngvr
max A7
Now, the gravity center denotes the (only) point of P? that all 2”7 new subdomains
share, i.e., the coordinates of ji’ define the splitting positions of P’. Figure 4.2
exemplarily shows two refinement steps using the gravity center splitting scheme
for the square P = [0, 1], First, the square is split based upon the gravity center

fi' = [0.35,0.40]. The subdomain in the upper right corner is then divided based
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upon the gravity center 2 = [0.75,0.60].

As for the p-Partitioning, the online assignment of a new parameter ;o € P C RP
to the appropriate subdomain is done using a tree search. Only the gravity centers
have to be stored to completely define the final partition as well as the partition
tree. In each step, the identification of the next subdomain is of complexity O(p).
Thus, for a well balanced tree of depth O(log J), the assignment complexity reads
O(log J - p) again.

Anchor Point Splitting Scheme

The anchor point splitting scheme divides the current parameter domain P7 into
Jaaa = 2 subdomains, independently of its shape and dimension. For the splitting,
it is assumed that one can define a distance measure d : P x P — R on the
parameter domain. The two subdomains are then specified by the proximity to
the parameters ;] and pi, — the so-called anchor points — that have been returned
by the procedure addBasisFunction(-) in line 3 of Algorithm 4.2 and correspond to
the two first selected EIM basis functions in the subdomain P’. Then, the new

subdomains in line 9 of Algorithm 4.2 are defined in the following way,
P = {p e P d(p, 1) < d(p, 13)},
P2 = e P d(p ) < dlp, 1)}

Each parameter p € P’ is associated with the closest anchor point. Figure 4.3

(4.1)

exemplarily shows two refinement steps using the anchor point splitting scheme for
the square P = [0, 1]%. In the first step (left), the anchor points u} = [0.1,0.1] and
pd =10.9,0.9] have been used such that the cross section of the new subdomains
is given by the diagonal from the upper left to the lower right corner of P. In
the second step, the anchor points p? = [0.1,0.1] and p3 = [0.8,0.1] lead to the
separation parallel to the y-coordinate at x = 0.45.

Since only two anchor points are needed for the next refinement step, it is
enough to set M = 2. Furthermore, the two subdomains can inherit the basis
function of the “parent” domain that corresponds to their respective anchor point.
In other words, for the domain P’ with the two “child” subdomains P/*! and
P72 as defined in (4.1), we have ! := 1 and p/*? := 1. Thus, only one more
iteration has to be performed for each new subdomain. In the example in Figure

4.3, we already applied this simplification and used p? = pi.
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Figure 4.3: Two refinement steps using the anchor point splitting scheme for P =
[0,1]2. Anchor points for the first (left) and second refinement step (right).

As before, we use a tree search in the online stage to find the appropriate
subdomain for a given new parameter p € P. We iteratively select the nearest
anchor point and “move” to the corresponding subdomain until a final subdomain
is reached. For P C RP, one can use the Euclidean distance measure. Then, the
evaluation of the distances to the anchor points is of complexity O(p). Assuming
a balanced tree of depth O(log.J), the total tree search is again of complexity
O(log J - p).

Compared to the p-Partitioning and the hp-Partitioning based upon the gravity
center splitting, the anchor point splitting produces the most flexible shapes and is
the cheapest since during the refinement procedure only M" = 2 basis functions

are needed for each subdomain. Furthermore, only one basis extension is required

per subdomain by reusing the anchor points.

However, for the optimal application of the hp-Partitioning, the choice of el
is crucial. Using a tolerance that is too large, the resulting partition may not be
fine enough and it may be impossible to reach the tolerance £}, with MP__ basis
functions in the p-part. Then, more refinement steps are necessary and the so
far constructed bases have to be discarded. Still, it is possible to apply the error
prediction method as presented for the p-Partitioning to decrease the number of

superfluous computations.
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4.2 Partitioning of Unknown Parameter Domains

4.2.1 Unknown Parameter Domains

Let us start with the illustration of the concept of unknown parameter domains
using some practical examples. First, one may consider coefficient functions of
PDEs that are based upon measurements. On the one hand, underlying parameters
can be hidden since the information of the system that produces the measured
outcome is not completely accessible. On the other hand, the measured input
functions could be completely non-parametric and merely belong to a common class
of functions in terms of boundedness, regularity, and/or similar shape. Another
application of unknown parameters are stochastic inputs, where the “parameter
domain” can be seen as a set () of stochastic events that does not imply a feasible
metric. Hence, the theory of compact parameter domains does not apply. As an
example of such events, one may consider the porosity structure of any physical
medium such as sandstone (cf. Sections 5.8 and 6.5) or Li-ion batteries.

In general, any input function in discretized form can be adopted to an N-
dimensional parameter setting, where N denotes the number of degrees of free-
dom of the discretization. However, since the online parameter assignment of the
presented partitioning methods of Section 4.1 depends on the dimension of the
parameter domain, they are inappropriate for such a setting.

In the following, it is assumed that the input coefficient functions can be ob-
tained without the detailed knowledge of any underlying parameter or stochastic
event. Hence, no information about the parameter domain is required, and there-
fore, no distance measures on the parameter domain can be assumed to exist. We

now define the family of possible input functions by
M :={c(n): D= R|pue P}, (4.2)

where D C R? denotes a bounded spatial domain. The parameter y € P can
also be interpreted as a reference to an arbitrary real life event that underlies the
function ¢(p), or just as an index to the associated c(u) € M. Alternatively, it
could also be seen as a parameter vector of the possibly infinite dimension of M.
In any case, p is not a parameter in the classical sense and the p- or Ap-Partitioning

are not applicable.
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Another interpretation could be to consider the whole function ¢(u) as a pa-
rameter, i.e., to consider a parameter function p(z) in a certain function space M.

The subsequent theory and methods remain valid for such cases.

4.2.2 Affine Decomposition for Unknown Parameters

For the application of the EIM even for unknown parameter domains or arbitrary

sets of functions, and for the applicability of partitioning methods, we postulate:

Assumption 4.1. A mechanism is available that delivers arbitrarily many func-
tions c(u), p € P, from the family of functions M as defined in (4.2). For any
given € > 0, 1t is possible to create a finite training set of functions Miain C M of
cardinality Ny € N that sufficiently covers the variety of M up to the maximal
error tolerance €, i.e.,
sup inf c(p) —v|ly <e 4.3

S o ) le(p) —vllx (4.3)

for a given norm || - ||x. Furthermore, let M be replaced by any subset M° CC

M with significantly less variation, i.e., of less complexity. Then, M can be

0
train

such that (4.3) still holds.

replaced by a subset M CC Main 0f significantly less cardinality nl. . < Nirain

Now, the offline and online EIM Algorithms 3.1 and 3.2 can directly be adopted
for our case. Instead of a training parameter set Zi., for the Greedy step (in
line 2 of Algorithm 3.1), we can directly use the training functions My,i,. Let
Qyv = {q1,---,qu} be a given collateral basis and let Ty; = {t1,...,ty} be the
EIM interpolation points. For any function ¢ = ¢(u) € M, we can evaluate the co-
efficients 6y(c) = (8;(c))X, for the affine approximation cii™M = M 4, (c)g:

using the linear system (3.6) without the knowledge of a possibly underlying

parameter. We evaluate the vector ¢y := (c(t;))M, and the triangular matrix
By = (q;(t:))—; such that 6y (c) = B/ e

4.2.3 Implicit Partitioning Problem Formulation

We now formulate the tasks and the main idea of the IPM. Input functions that

are based upon unknown parameters naturally do not directly admit for an affine
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decomposition. Hence, the partitioning is connected to the EIM as we have already

seen for the hp-Partitioning. We define the implicit partitioning problem.

Problem 4.2 (Implicit Partitioning Problem). For a family of input functions M

that suffices Assumption 4.1, create a partition of the parameter domain,
(a) without the use of an explicit description of either P or M,
(b) without an explicit description of the partitions and subdomains,
(c) with efficient and suitable assignments of new input functions ¢(u).

For each subdomain, create separate affine decompositions with respect to the
unknown parameter as described in Section 4.2. The partition is supposed to be

fine enough such that
(d) the affine approximations are precise up to a tolerance &,

(e) the number of collateral basis functions per subdomain does not exceed M, ax.

The basic idea of the following implicit partitioning methods is the construction
of several EIM bases that cover different parts of the family of input functions M.
As opposed to the p- and hp-Partitioning, the splitting of the parameter domain is
based upon the proximity of functions in M to the spaces spanned by the different
collateral EIM bases and not on geometrical aspects of the parameter domain.
In the offline stage, during the construction of the collateral basis functions, the
proximity can directly be based upon the approximation error. In the online stage,
we have to use the error estimates to fulfill the efficiency requirement of the Implicit
Partitioning Problem 4.2(c).

Under Assumption 4.1, it is possible to generate a training set of functions
Mirain C M of cardinality ny..;, € N that sufficiently covers the complexity of M.
Furthermore, the second part of Assumption 4.1 assures that a partitioning based
upon a training set M. is possible under the condition that M itself can be
split into several parts of less complexity.

In fact, the presented implicit partitioning methods can rather be seen as a
partitioning of the family M or of the space spanned by M. Thus, functions ¢(p)
are assigned to an appropriate subspace of span(M) rather than pu is assigned to

a subdomain of P. However, for an easier understanding, we often stay in the



62 4. Implicit Partitioning Methods for Unknown Parameter Domains

parameter setting and still refer to parameters and subdomains. We construct the
structs SélM,M, j =1,...,J, that contain the complete EIM data for each sub-
domain, respectively. The term “struct” is adopted from programming languages
like C where a struct denotes a single structured data type that unites a set of
components of different data types. Here, Sénv[, A also defines the subspaces M7
of dimension M which correspond to the parameter subdomains P7, j =1,...,J.
In the following, we just refer to subdomain j and mean the subdomain defining
components P74, M7, or SéIM, - For a better illustration of the methods, we also

use parametric functions for explicitly given parameter domains.

4.3 Moving Shapes IPM

We introduce different implicit partitioning procedures. As mentioned before, the
common approach is the construction of several EIM bases that are supposed to
cover different parts of the family of input functions M. The first procedure, the
Moving Shapes (MS) Implicit Partitioning Method (IPM), simultaneously gener-
ates the number of J EIM bases for a previously fixed number J of subdomains.
It is desired that the partition is formed such that the complexity of M is equally
distributed on the J different subdomains and the least possible number of basis
functions is obtained. This is achieved by letting the subdomains reshape in each
iteration instead of using a fixed partition. Thus, the actual partition depends on

the used number M of basis functions.

4.3.1 Outline of the Method

The MS IPM is described in Algorithms 4.3 and 4.4. Let J denote the desired
number of subdomains and let ., > 0 be the desired approximation error toler-
ance. Furthermore, let the set of training parameters be given by {1, ..., fn,..,
such that the set of training functions reads M = {c(in) |7 = 1,. .. Nirain }-
Algorithm 4.3 generates J structs S%HM,M, 7 =1,...,J, M € N, containing the
EIM data for the corresponding subdomains. Since the number of subdomains
and the error tolerance ey, are (at least for now) fixed, we do not set a maximal
number of basis functions per subdomain, differently to the hp-Partitioning where

M.« and gy, were fixed and J was flexible.
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Algorithm 4.3 MovingShapesIPM(M ain, €tol, J)

1 set M =0
2 repeat
3 M = M+1
4 if M==1 then
5 Sty = dolnitialEIM(Main, J + 1)
6 {Sbiv1s---» St} = initialFirstBasisFunction(Spyy 541, J)
7 else
8 for j =1 to J do
9 Sl = addBasisFunction(Siy 171, Main)
10 end for
11 end if
12 {Zy, ... Z{;} = getOfflineAssignment(Sgi ars - - - » St ar» Mirain)
13 for j=1 to J do
14 My = {c1t) € Muain |1 € Ty}
15 5M7max = getMaxError(S}, RIS M{ram)
16 end for
17 until  max {&?M max} < Etol
Je{l,..J
18 return {SEIM’M, o ,SEIM,M}

We start the description of the MS IPM with the initialization of the EIM structs
S%IM’I, j=1,...,J, in the first iteration of the loop in Algorithm 4.3, for M = 1.
In line 5, we perform J + 1 steps of the normal EIM, as described in Section 4.2.2,
based upon the training set M,.in and without any partitioning. We refer to this
step as initial EIM and denote the resulting EIM struct by Spyy; ;.. Then, in line
6, we discard the first basis function of S&M 741 and distribute the remaining J
functions that have been selected by the initial EIM to the EIM structs Sénv[,lv
j=1,...,J, as initial basis functions, respectively.

Neglecting the first basis function of the initial EIM is not crucial to the basis
assignment. In our experiments, it led to a more balanced initial distribution of
the complexity to the subdomains.

In line 12 of Algorithm 4.3, we call the procedure getOfflineAssignment(-) that is

further described in Algorithm 4.4. For each subdomain 7, the procedure returns a
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Algorithm 4.4 getOfflineAssignment (Sg ars - - - » S ars Mirain)
1 I'=...=77={}

2 forn=1 to N, do
3 for j=1 to J do
4 et () = getError(SéIM,M7 c(pn))
5 end for
6 i = arginf{e], (1) |j=1,...,J}
J
7 Iy = Thy Y{pa}
8 end for

set of assigned parameters Ifg that refer to the corresponding functions in M ain,
where the assignment is based upon the EIM approximation error. In detail, for
a given parameter p,, n € {1,...,Nyain}, We evaluate the EIM approximation
error of the corresponding function ¢(u,) in all subdomains. This is performed in
Algorithm 4.4, line 3 to 5. Then, the parameter is assigned to the subdomain that
best approximates ¢(i,) in line 6 and 7. Note that we distinguish P? used for the
p- and hp-Partitioning from Z7. While Z7 denotes a discrete set of parameters, P’

provides the explicit description of the complete subdomain j.

The further steps work very similar to Algorithm 4.2, but simultaneously for
all subdomains. In line 15 of Algorithm 4.3, we evaluate the maximal error on
each subdomain, or more precisely, the maximal error out of the set of currently
assigned functions M{ . = {c(it) € Muwin | € T);}. In line 17, we check
if all maximal errors already fall below the tolerance €y,. We do not stop the
basis extensions until convergence on all subdomains is obtained, i.e., even if the
tolerance is reached on a certain subdomain, we add more basis functions if the
error on other subdomains still exceeds the desired value. For M > 1, the basis
extension is done in line 9. As for the hp-Partitioning, we select the so far worst
approximated function of the subdomain. Here, this means that for subdomain 7,
the next basis function is selected out of the set of currently assigned functions

M . that are represented by the corresponding parameters 77, .

A new effect in comparison to the hp-Partitioning is that the basis extension
also changes the shape of the partitions since the assignment of parameters is based

upon the EIM approximation error. The selection of a new basis function ¢(zz},)
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(a) M =1 (b) M =2 (c) M =60 (d) M =120

Figure 4.4: MS IPM subdomains (top row) and selected parameters for basis

extension (bottom row) for four different basis sizes M.

for some ,ugw located close to the boundary of the subdomain j yields a movement
of the respective shape towards the just selected parameter. Functions ¢(u) for p
close to ,ufw will be assigned to subdomain 7 in the next iteration.

This effect is illustrated in Figure 4.4. It provides the result of the MS IPM
for an explicitly given parametric function ¢ : D x P — R on the spatial domain

D = [0, 1) and with parameters u = (u1, u2) € P = [0.3,0.7]?, given by
o(w; ) = e O(@r=m)*+2pa)), (4.4)

We used a uniform discretization of D with NV = 2601 degrees of freedom and
Ngraim = 1600 logarithmically distributed parameter samples. In detail, Figure 4.4
shows the partitions of the parameter domain after M = 1, 2, 60, and 120 iterations
in the top row with a resolution of 40 - 40 pixels. The respective parameters that
have been selected for the bases extensions are provided in the bottom row. It
can be seen that the shapes of the subdomains change especially during the first
iterations. Later, the changes are rather small and the shapes seem to converge.
In the second step, for M = 2, the black part selected a basis function that
corresponds to the parameter from the lower left corner of the subdomain for M =
1. Therefore, it “takes over” huge parts of the other subdomains. In the iterations

between M = 60 and M = 120, the basis extensions are mostly based upon
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Figure 4.5: Convergence of the MS IPM for J = 3 compared to a single EIM.

parameters inside the subdomains and therefore, the boundaries do not change
significantly.

The objective of the subdomain reshaping is a more effective use of the ba-
sis functions. For fixed shapes, the first basis functions are usually selected at
the border of subdomains. Consequently, adjacent subdomains would select basis
functions that cover the same area. Furthermore, the reshaping results in a good
distribution of the complexity of M on the different subdomains. The subdomains
are likely to be formed such that the respective numbers of basis functions neces-
sary for a given approximation tolerance differs only very slightly. In Figure 4.5,
we confirm this assumption for the given example. The figure shows the error
convergence of a single EIM without partitioning and the convergence result using

the MS IPM and J = 3 subdomains. More examples are provided in Section 4.6.

It can be observed in Figure 4.4(b) that two subdomains can select basis func-
tions close to each other in the same step (see the green and blue subdomain). This
is not optimal since both functions cover again the same part of M and less than
possible information is therefore added in this iteration. However, it is very diffi-
cult to avoid such cases. The straightforward approach would be to successively
extend the bases. Before the next subdomain selects a parameter, a reassignment
is performed based upon the new approximation errrors. However, this procedure
does not work properly. Especially at the beginning of the procedure, the extension
of only one basis by one function yields very unbalanced shapes. The larger basis
outperforms the others on most of the parameter domain and therefore covers a
too large area. Certainly, it is possible to develop more sophisticated methods to
avoid such cases. However, a general heuristic that works as a black box for all

kind of input functions is not known but would be desired in the case of unknown
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Algorithm 4.5 getOnlineAssignment(SéIM7M+, . ,SéIM7M+, c(p), M, M)
1 for j=1 to J do

2 OXM () = getCoefficients(‘S’ljén\LM+7 c(p))
. N ‘

3 A?\/‘r,MJr (1) = Z%:M—H 107, ()|

4 end for

5 0 = arginf{A}, . (W)]i=1,...,J}
j I
6 return {i, 65, (1)}

parameters.

Even though we obtain very balanced convergence rates, we can not completely
prevent that two subdomains partially cover the same part of the parameter do-
main. It can be seen in Figure 4.4(c) and 4.4(d) that some of the selected basis
functions are separated and enclosed by a different subdomain. However, for other
values of M, these basis functions are within their respective subdomain and there-
fore necessary to obtain best approximation qualities with a minimal basis size.
Furthermore, it is not possible to discard such functions from the basis even for
values of M where they are separated from their subdomain. In other words, they
still play an important role for the approximation quality.

Let NV be the number of degrees of freedom of the discretized functions in M.
Then, the complexity of an iteration in the offline stage of the MS IPM consists of
O(JM? - Nirain) for the computation of the approximations of the training samples
in M, O(JM? - Ngain - N) for the evaluation of the EIM errors, and O(J - Nipain)
to assign the training snapshots to the subdomains. Thus, the total complexity is

given by O(JM?*nainN).

4.3.2 Online Assignment

In the online stage, it is not possible to evaluate the exact EIM approximation
errors independently of the dimension /. Hence, the assignment is now based upon
the EIM error estimator. The straightforward procedure is given in Algorithm 4.5.
For a new parameter p and an input function c¢(u), we evaluate the coefficients
9]]\'# (1) and error bounds A?W’MJr (u) for all j = 1,...,J. Then, we select the
subdomain with the smallest error estimator. The algorithm returns the selected

subdomain 4 and the corresponding coefficients @}, (1) that can be used for the
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(a) “True” partition (b) Online assignment (c) Online assignment (d) First assignment
using Alg. 4.5 using Alg. 4.6 and trial in Alg. 4.6

Ero] = 1074 using arg max |6 |

Figure 4.6: MS IPM online assignments for M = 60 and M+ = 66

further processing of the input function c(u).

It is clear that the assigned subdomain is not necessarily optimal in the sense
of the real error. However, it is not essential that we hit the best subdomain
but to select a sufficiently precise approximation. Figure 4.6(b) shows the online
assignment based upon the smallest error estimator for the example provided in
(4.4). The result is shown for M = 60 basis functions and the error estimator uses
6 additional coefficients, i.e., M = 66. In comparison to the “true” partition in
Figure 4.6(a), based upon the exact EIM approximation error, only minor devia-
tions can be observed. The use of more than 6 coefficients for the error estimates

would furthermore lead to results closer to the “true” partition.

Online Complexity

The online complexity for the assignment of a new parameter u € P to the ap-
propriate subdomain according to Algorithm 4.5 consists of O(JM) for the eval-
uation of ¢(u) € M at the interpolation points, O(JM?) for the computation of
the coefficients and the error bounds, and O(J) for the actual assignment to the
subdomain. Thus, the total complexity reads O(JM?), where it has been assumed
that M™ = O(M).

Compared to the p- and hp-Partitioning, the online complexity increased sig-
nificantly. For both methods, the parameter assignment is independent of the
computation of the coefficients and error bounds which yields an additive term

of O(M?) instead of a multiplication. Furthermore, the number of subdomains
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Algorithm 4.6 getFastOnlineAssignment(S}}ZIM’M+, o ?SéIM,M+’ c(p), M, M)
1 for j=1 to J do

2 0l (1) = getCoefficients(‘S’éIM17 c(p), 1)
3 end for
4 {j1,...,73s7} = sortCoefficientsDescending (|01 ()], ..., |07 (u)])
5 for k=1 to J do
6 0?{%(”) = getCoefficients(‘S’]Jé’}l\LM+7 c(p), M)
+
T AL = X [0
4 i=M+1
8 if A%’}M+ (1) < €t then
9 return {ji, 075 (1)}
10 end if
11 end for

J enters only logarithmically. Yet, the assignment according to Algorithm 4.5 is
independent of the dimension of the parameter domain.

Nevertheless, the online complexity of the MS IPM is acceptable. On the one
hand, the number M of basis functions decreases with increasing number J of
subdomains. In the current example, the run-time is approximately constant in .J.
On the other hand, the main complexity in the context of RB methods commonly
amounts to O(M?- N2+ N3), where N denotes the number of basis functions for the
reduced basis. Since separate reduced bases are constructed for each subdomain,
N is decreasing in J, too. Hence, the most expensive computations in the RB

context decrease significantly.

Improved Online Complexity

The key requirement of the assignment is to obtain approximations that fulfill a
certain error tolerance ¢, and not to find the best subdomain. As a consequence,
it is possible to break the loop over j in Algorithm 4.5 as soon as Ag\/l,M+ ()
falls below e, for any value of j. Then, the average online complexity is already
reduced to half. In Algorithm 4.6, we present a heuristic that provides a more
suitable search order of the subdomains than just checking the error estimators

step by step.
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The EIM is generated in a form such that the importance of the basis functions
decreases in M. In other words, the coefficients of the first basis functions are
usually larger than the following ones. At the same time, using a collateral basis
that does not fit to the input data, the coefficients are rather equally distributed

over all basis functions and the first coefficients are therefore comparatively small.

We use this effect for the search order heuristic. In line 2 of Algorithm 4.6, we
evaluate only the first coefficients 9{ of the affine approximations of a given input
function ¢(u) for all subdomains j = 1,...,J. In line 4, we sort these coeflicients
in descending order with respect to their absolute values and return an ordered list
of subdomains. Then, we iteratively check if the error estimator of the subdomains
fall below the tolerance e, starting with the subdomain with the largest coefficent
9{. Once we find the first subdomain that approximates c¢(u) sufficiently precise,
we return the subdomain and the corresponding coefficients J]\'/ﬁ(,u) for the affine

approximation.

Figure 4.6(c) shows the online assignment based upon Algorithm 4.6 for the
error tolerance ¢, = 107, Again, we used M = 60 basis functions and an addi-
tional number of 6 coefficients for the error estimators. The partition reveals some
larger deviations compared to the “true” partition 4.6(a) and the direct assignment
4.6(b) based upon Algorithm 4.5, respectively. However, for all parameters, both

the error estimator and the true error fall below &.

In Figure 4.6(d), the result of the heuristic of Algorithm 4.6 is provided. It
shows the first assignment attempt, i.e., the assignment based upon the largest
first coefficient. We can see that large parts coincide with the assignment in
Figure 4.6(c). In fact, 80.8% of the parameters in Figure 4.6(d) are associated
to the same subdomain as in Figure 4.6(c) and are therefore directly assigned
after just one iteration. Hence, in most cases, the online complexity reduces to
O(J + M?). For another 17.6%, we need two attempts until a subdomain is found
that approximates the corresponding function sufficiently well. For only 1.6% of

the parameters, we have to evaluate the coefficients for all subdomains.

We conclude that the alternative assignment procedure determines appropriate
subdomains very fast. In several examples (see also Section 4.6), we observed that
the great majority of the parameters are assigned in the first attempt. Further-

more, for examples where the first coefficient is not sufficient for a fast assignment,
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it is also possible to use more than one. In fact, this procedure is in some way the
opposite to the assignment based upon the error bounds. Instead of the smallest
error bound, i.e., the smallest coefficients |67 | for some large values of m, we take

the largest coefficients |6 | for some small m.

4.3.3 Refinement Procedure

So far, we fixed the number of subdomains in advance, whereas for many ap-
plications, a certain maximal number M., of basis functions is desired and the
necessary number of subdomains is unknown. Thus, we start the MS IPM with an
initial guess Jy of needed subdomains. Once we detect that M., will be reached
but the error still exceeds the tolerance €., we need a refinement of the partition.
In contrast to the p- and hp-Partitioning, it is not possible for the MS IPM to
directly divide a subdomain into several parts. Hence, a refinement now yields to
a complete restart of the procedure with an increased number of subdomains.

It is too expensive to perform the complete MS IPM until M,,,, is reached
before a refinement is performed. However, we can adopt the ideas of both p- and
hp-Partitioning. As for the hp-Partitioning in Section 4.1.2, it is possible to define
additional quantities M" < M. and €| > e. Then, we perform the MS
IPM using the new tolerance, the new maximal number of basis functions, and
an initial number J of subdomains. Once M”__is reached but the error does not
fall below el |, we increase J by one and iterate the procedure. After convergence,
we finally restart the MS IPM using the before detected number of subdomains
and the actually desired quantities ey, and M,,... However, the procedure may
still be expensive and it is very difficult to define e and M __such that the final
number of subdomains is indeed sufficient. Hence, it may happen that additional
expensive refinements are needed.

Alternatively, we can adopt the prediction methodology from the p-Partitioning
presented in Section 4.1.1. We start the MS IPM as described in Algorithm 4.3
with an initial number J of subdomains. Let M;(e) denote the number of basis
functions that are necessary to reach the tolerance ey, for the given number J of
subdomains. After each basis extension, before line 17 of Algorithm 4.3, we predict
M (g401) by extrapolating the maximal errors of the previous steps. We denote the

prediction of M;(gi1) by M}Jred(etol). If M}}’red(swl) < Max, We proceed the basis
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extension. Otherwise, we increase the number of subdomains to some J,ow > J
and restart the MS IPM.

For the efficiency of this refinement procedure, it is crucial to appropriately
select the new number of subdomains. In the ideal case, a perfectly well sepa-
rable family of functions M, twice as many subdomains would lead to a halved
number of necessary basis functions and the relation JoM,(eto)) = J1 My, (Eto1)
would hold. Hence, the new number of subdomains should be determined by
Jpew = J M}}’red(gtol) /M ax. However, this ideal case is very unrealistic and pro-
vides only a lower bound for the actually needed number of subdomains. Instead,
we assume a nonlinear dependence and use

Mpred . @
Jnew = J- (%) (45)

for some o > 1. The exponent o depends on the separability of M. We therefore
start with a rather small «, e.g., a = 2. If further refinement steps are necessary, o
can be increased step by step. Alternatively, it would also be possible to determine
an appropriate choice of a using the hp methodology. For some €| > &, and
several numbers of subdomains J € {Ji,...,J,}, n € N, we determine M (o) or
M};red(gtol) and fit a such that

Ip - (MJp(gtol))a ~ g (MJq(é?tol))a, p,g=1,...,n.

4.4 Fixed Shapes IPM

In the previous section, we developed a partitioning method for unknown parame-
ter domains that is very flexible and automatically adapts the shapes to the given
problem. The convergence in the different subdomains is well-balanced, the online
assignments are adequate, and, for the majority of parameters, fast.

However, the refinement procedure can be relatively expensive since the bases
on all subdomains are discarded and a complete restart is necessary. Furthermore,
it is common in the EIM context to adaptively determine the number M of basis
functions. Coefficients are added until the error estimator is precise enough. This
can be done without an increased complexity. Since the use of more basis functions
may yield a shift to a different subdomain, this adaptive selection of M is difficult

in the context of moving shapes.
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The objective of the Fixed Shapes (F'S) IPM in this section is the development
of an adaptive implicit partitioning method that fulfills the requirements of the
Implicit Partitioning Problem 4.2 but allows a fast refinement procedure and an
adaptive use of the number of basis functions M. Furthermore, the assignment of
parameters are supposed to be based upon a tree based structure. Altogether, we
could decrease offline and online complexity.

We develop two methods that fulfill different aspects of the above mentioned
requirements. They have in common that the subdomains do not move with
increasing M. We first present a procedure where the assignment is still based
upon the approximation error. Then, in Section 4.4.2, an alternative is presented
that is based upon the heuristic that has been already used in Algorithm 4.6, i.e.,

upon the first approximation coefficients.

4.4.1 Error Based FS IPM

For the following approach, we do not reassign the parameters to the subdomains
in each iteration anymore. The assignment based upon the minimal approximation
error of the first iteration is fixed for all further steps. Thus, the subdomains are
independent of each other and also the generation of the EIM collateral bases can
be performed independently. Furthermore, a subdomain can again be subdivided
into several new subdomains with the same procedure and we can construct the
partition in a tree-based scheme.

The detailed procedure of this FS IPM is described in Algorithm 4.7. It reveals
strong similarities to the p-Partitioning of Algorithm 4.1 and the hp-Partitioning
of Algorithm 4.2. We assume that the initial assignment for an arbitrary number
J of subdomains and a training set M., has been performed analogously to the
initial step of the MS IPM, producing .J disjoint sub-training sets M{rain C Mrain
and the initial EIM structs SélM’MO, 7 =1,...,J, My = 1. We use the more
general notation with an arbitrary initial M, in Algorithm 4.7 for later reference.
For now, we constantly set My = 1. Algorithm 4.7 is started independently for
each subdomain.

From line 1 to 7 of Algorithm 4.7, the already known EIM basis extension on
subdomain j is performed, using always the same set of training samples. Once

the maximal error falls below the tolerance €., the EIM struct 81]511\/17 a7 1s returned
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Algorithm 4.7 FixedShapesIPM(SZiy 170, Miiains Minax: Etol, J)
1 for M = My+ 1 to M., do

2 St = addBasisFunction(‘S%‘H\“/[_17 M)

3 5?\4,max = ge’CMaXE”O"(SéIM,M> M i)

4 if 5§w,max < €t then

5 return Sé'IM, M

6 end if

7 end for

8 {S{hi1 - Samiae} = initialFirstBasisFunction(Syy ;1. Jadd)

9 {Z7F!,.. ., I/Haa} = getOfflineAssignment(SZfiy. - - -, éf{\iafd, M)

10 Jpew = J + Joaa
11 for i=1 to J,gq do

12 M"C]r;flzn = {C(/,L) € Mtrain ‘ 1% € IJ—H}

13 FixedShapeslPl\/I(Séf{\iMo, MIE Mo €01y Jnew)
14 end for

in line 5.

When M. is reached without convergence, a refinement procedure has do be
performed. Let J,qq denote the number of new subdomains. As in the initial step
of the MS IPM, we use the first J.qq + 1 selected basis functions of the current
subdomain to initialize the new EIM structs in line 8. Again, we omit the first
basis for a better distribution of the subdomains. In line 9, we assign the functions
in Min to the appropriate subdomain based upon the approximation error as
described in Algorithm 4.4. From line 11 to 14, we recursively start Algorithm 4.7

for each new subdomain.

Since the shapes are fixed, we do not have to evaluate the approximation error
for all input functions on all subdomains in each iteration. Hence, the offline run-
time decreases. To further improve the offline complexity, it is now possible to
adapt both the hp and the prediction methodology to the current algorithm. In
other words, it is possible to create the subdomains based upon a comparatively
large error tolerance /| > £, and perform the basis extension in the second step.
Furthermore, J,qq can be chosen adaptively using the predicted number of needed

basis functions M on the current domain and Equation (4.5).
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Figure 4.7: Initial partition for J = 3 (a). Refinement steps using the FS IPM of
Algorithm 4.7 and J,qq = 2 ((b) — (e)). Error decay in the final subdomains (f).

In Figure 4.7, the refinements for the example provided in (4.4) with a desired
accuracy of gy = 107% and a maximal number of basis function M. = 100 is
shown. We started with the initial partition already used for the MS IPM for J = 3
and used a constant number of J,qq = 2. After four refinements, the partition is
fine enough. Figure 4.7(f) shows the convergence in the final subdomains. It
can be observed that the convergence rate is not balanced between the different
subdomains anymore. For the desired accuracy, the subdomains need between 56

and 95 basis functions.

Online Procedure

In the online assignment, it is not straightforward to use the tree structure of the
partition for efficient assignments. At a certain node of the tree of subdomains, we
can evaluate the EIM error estimators for all child subdomains and proceed at the
subdomain with the best result. However, for accurate results, it is not enough
to only use small numbers M and M™. In each node, M should be chosen such

that the accuracy gy, is already reached. Otherwise, it is possible that we select
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branches where the error can never fall below the desired tolerance. Hence, large
values of M > M., will be needed in the tree search. Thus, also offline run-time
and the storage complexity increases.

Alternatively, we only store the leaf subdomains and apply the online assign-
ment that has already been used for the MS IPM. It is also possible to use the
heuristic of Algorithm 4.6 for a more efficient assignment. However, due to the un-
balanced convergence rates, the subdomains that converge faster may cover parts
that are too large. Hence, the adaptive basis size selection is not always possible
in this case. In any way, compared to the MS IPM, the offline complexity has been

significantly reduced.

4.4.2 Coefficient Based FS IPM

For both the MS IPM and the error based FS IPM, we tried to accelerate the
assignment using the heuristic introduced in Algorithm 4.6 which is based upon
the first coefficients of the affine approximations. In Figure 4.6(d), the result of
this heuristic has been shown. It can be observed that the heuristic partition based
upon the largest first coefficient almost exactly coincides with the initial true error
based partition as show in Figure 4.4(a) and Figure 4.7(a). Hence, it seems to be
a natural idea to use the heuristic not only in the online stage for a more efficient
assignment but for the complete partitioning procedure. In other words, we could
already base the splitting of a subdomain upon the largest coefficient.

However, it is not always possible to directly apply the heuristic. Consider the

example problem used in [7| for the introduction of the EIM,
c(a; ) = (21 + p)? + (22 + o), (4.6)

r €D =[0,12 p € P = [0.01,1]°. Independently of y, the maximum of c
is located at zp.x = (1,1). Hence, each subdomains selects the same first EIM
interpolation knot t; = x,.c = argmax,cp q{ (x), where q{ denotes the first basis
function in subdomain j. Then, for the approximation of a function c¢(u), u € P,
the first coefficients in all subdomains are equal to ¢(Zyax, ) due to the Lo
normalization of the basis functions. Hence, we follow a slightly different approach

and use a flexible and adaptive number of coefficients for the assignment.
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Algorithm 4.8 getCoefficientBased Assignment (Sgn azo» - - - » Stz > €(1), Mo)
1 for j=1 to J do

2 0?\40(/0 = getCoefficients(S%IM’MO, c(p), My)
3 end for
4 return i = argmjax{”@fwo(u)ﬂl,j:1,...,J}

Generally, for a given number M, of used coefficients and a given function c(u),
the coefficient based assignment procedure is given in Algorithm 4.8. We evaluate
the vector ngo (p) of the first My approximation coefficients for all subdomains j
and return the subdomain where the sum of the respective coefficients in absolute
values is maximal.

Since the assignment is independent of the number of degrees of freedom, the
procedure getCoefficientBasedAssignment(-) can be used in both offline and online
stage. Furthermore, the assignment is independent of the actually used number
of basis function. Thus, the subdomains are now completely fixed and online and
offline shapes exactly coincide.

The main structure of the offline phase of the coefficient based FS IPM works
analogously to the error based FS IPM in Algorithm 4.7, i.e., we build a tree of
subdomains. A leaf subdomain will be refined if the given error tolerance e is
not reached with a maximal number M., of basis functions. The only change
occurs in line 9 of Algorithm 4.7. Instead of the error based assignment procedure
getOfflineAssignment(-), we call

{277, S i =1, Jaaa}

= reﬂneCoefficientBased(Séf“l\/il, . ,Sém’*jd, . S%IM,MMX, Jaaa+1).

that is provided in Algorithm 4.9 and described in the following. It automatically
detects the necessary number M, of used coefficients for an appropriate splitting
of the domain. It returns not only the sets of assigned parameters Z7/+¢ but also
the to My basis functions updated EIM structs Séf{\}[ My 0= 1,..., Jaaa. Besides
the initial EIM structs and the training functions, the input of the procedure also
includes the EIM struct of the parent subdomain and the index of its last basis
function that has been used as initial basis for a child subdomain.

Algorithm 4.9 starts trying to use a single coefficient for the assignment. From

line 2 to 6, we perform the assignment based upon Algorithm 4.8. In line 7 of
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Algorithm 4.9 refineCoefficientBased(Sgyy 1 - - - » S 1» Merains Spivag,., Jinit)
1 for My =1to M do
IT'=...=77={}

2

3 for n =1 to N, do

4 j = getCoefficientBasedAssignment(Skn s - - - » St azg> C(tin)s Mo)
5 77 = VU {u,}

6 end for

7 if 7',...,77 #( then

8 return {77, Sl [ =1,...,J}

9

end if
10 {Shivinsger | =1,..., J} =doMSIPMStep(Skin ass - - - » Stininggs Mirain)
11 end for
12 for =1 to J do
13 if 77 =( then
14 Jinit = Jinie + 1
15 Sk, = newlnitialBasisFunction(Siy z.. .+ Jinit)
16 end if
17 end for
18  refineCoefficientBased(Sgyyr 1, - - - » Sting1s Mirains SPivas,.,s Jinit)

Algorithm 4.8, we check if the assignment worked. More precisely, if none of the
sets of parameters Z7 is empty, we accept the new partition and return the result.
For each subdomain, we also store the used number M, of coefficients for the

assignment.

If at least one of the sets is empty, we discard the assignment. This happens for
example if the coefficients of the different subdomains all have the same magnitude.
Hence, we try to use more coefficients. We perform one step of the MS IPM in
line 10 to determine one additional basis function for each subdomain. Then, the

assignment procedure is iterated.

Suppose a maximal number M of allowed coeflicients is reached without
an appropriate assignment, we reset the subdomains with new initial bases from
line 12 to 17. For each subdomain j with Z9 = (), we replace its initial basis by

the next function of the parent subdomain that has not been used for any initial
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basis in line 15. If Ji,i > Muax, We can not assign a new initial basis and the
algorithm would have to be stopped. Otherwise, we restart the whole procedure
refineCoefficientBased(-) in line 18 with M, = 1. In other words, we discard all
the selected basis functions except the first ones and use only the (partially new)
initial EIM structs.

As mentioned before, we build a tree of subdomains such that we can perform
a very efficient tree search in the online stage. Let ¢(u) be a new input function.
At each node, we evaluate the first M, approximation coefficients 03.\40 of all child
subdomains j which is of complexity O(J,qaMZ). We move to the child subdomain
where HO?WOHI is maximal until a leaf subdomain is reached. Hence, the assign-
ment of a function to the right leaf subdomain can be achieved with complexity
O(log (J) - M2). Usually, M, is very small, even 1 for most examples and nodes,
and the assignment is very fast.

At most nodes in the tree, only M, basis functions have to be stored. Only for
leaf subdomains, the complete EIM structs are stored. For additional accelerations
of the offline stage, the method can be combined with the hp methodology and/or
the prediction techniques.

There is no guarantee that the partitioning converges by using more coefficients
or by resetting the initial basis functions as suggested. However, in the examples
in Section 4.6, we see that the method works well, even for the very unfavorable
example introduced in (4.6). As for the error based FS IPM, we do not have the
balanced convergence of the MS IPM. However, to avoid subdomains with only
very few input functions, we could also replace the condition in line 7 and reject
partitions where the distribution of the parameters is very unbalanced. E.g., a
partition would be accepted only if all subdomains contain at least a postulated
percentage of the parameters. In the examples below, we required that each sub-

domain obtains at least 5% of the parameters.

4.5 Combinations

It is possible to combine the different implicit partitioning methods in several ways.
To save offline run time but still generate flexible shapes, it could be useful to first

perform some steps of the error based FS IPM and generate a tree of subdomains.
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At some step, we then switch to the MS IPM starting with the initial bases on the
generated leaf subdomains. In the online stage, we would then use the assignment
as given for the MS IPM.

In a similar way, it is possible to combine the coefficient based FS IPM and the
MS IPM. Again, a small tree can be built resulting in a rough partition. Then,
on each leaf subdomain j, we could generate a new partition using the MS IPM,
respectively. To some extend, we would keep the flexible shapes and balanced
convergence in this way. Furthermore, we would now save online and offline run
time. In the offline stage, we do not need to evaluate all approximation errors
on all input functions and all subdomains in the “tree phase”. For the “MS IPM
phase”, the partitioning needs less refinement steps. In the online stage, we first
perform an efficient tree search to find the appropriate leaf subdomain. Then, the
more expensive online assignment based upon Algorithm 4.5 on the final partition
is only used for a smaller number of subdomains.

If in any case, the coefficient based FS IPM does not terminate but produces
inappropriate subdomains, it is therefore still possible to proceed with the MS

IPM to still obtain the desired accuracy with less than M., basis functions.

4.6 Numerical Examples and Comparisons

In this section, we consider three different examples to illustrate the different
properties of the presented partitioning methods. For all examples, explicitly given
parameter domains have been used. An additional example for stochastic input
data can be found in Section 7.6.3. We compare the results of the implicit methods
with the Ap anchor point and hp gravity center methods and discuss advantages
and disadvantages.

The desired L., error tolerance in the construction of the partitions is given
by et = 1078 for all examples. For the tree based refinement steps of the FS
IPM, J.4q has been set to 2 for all cases to facilitate the comparison to the other
methods and to guarantee efficient tree structures. For the coefficient based FS
IPM, we rejected partitions if one of the two subdomain obtained less than 5%
of the parameters of the parent subdomain. The maximal number of coefficients

used for the assignment has been set to My*** = 6.
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No error prediction techniques to accelerate the offline process have been used
in order not to generate more subdomains than necessary and to obtain “optimal”
partitioning results. Consequently, we also used €| = & and M" = MP__for

max max

the hp-Partitioning.

Example 1

We first consider the example adopted from [31] and already provided in (4.4).
For the spatial domain D = [0,1]?> and the explicitly given parameter domain
P = [0.3,0.7), the input function ¢ : D x P — R is given by

oz p) = o~ 30((@1—pm) +(z2—p12)?)

For the discretization of the spatial domain, we used a uniform grid with edge
length 0.02 such that the number of degrees of freedom is given by N' = 2601.
The parameter samples for the offline stage are selected using a logarithmically
distributed grid with 72 parameters in each direction and ny.,, = 5184 samples.

For all refinement steps of the coefficient based FS IPM, it was sufficient to
use only My = 1 coefficient for the assignment. Since the results of the coefficient
based and the error based FS IPM were almost identical in numbers and shapes
of subdomains, we omitted the error based results.

In Figure 4.8, we compare the efficiency of the implicit methods with the hp
results. For given maximal number of basis functions M, ., the respective numbers
J of generated subdomains are displayed in a logarithmic scale. A single EIM on
the complete parameter domain D needs M = 199 basis functions for the error
tolerance gy, = 107®. We can see that the differences of the numbers of needed
subdomains for the shown methods are very small. Only the hp gravity center
method generated better results than the MS IPM. However, this method is far less
flexible since only partitions with J = 4, 16 and 64 subdomains could be obtained.
Hence, it would also generate more than necessary subdomains for most values
M. Furthermore, the determination of the gravity center is based upon the
total number of M., parameters and may be less appropriate for M, < My
in real applications. The coefficient based FS IPM generated very similar results
to the hp anchor point method with about the same offline and online complexity

but without any knowledge of the parameters.
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Figure 4.8: Comparison: number of subdomains J necessary for a given maximal

number of affine terms M., for Example 1.

(a) M =1 (b) M = 33 (c) M =18

Figure 4.9: Moving partitions for Example 1 using the MS IPM for J = 8, leading
to M = 33 for £, = 107* and M = 78 for £,y = 1075.

(a) FS IPM coeff. based (b) FS IPM error based (c) hp anchor point

Figure 4.10: Partitioning results for Example 1 and M., = 80 using different

tree-based methods.



4.6. Numerical Examples and Comparisons 83

In Figure 4.9, we see the partitioning result of the MS IPM for the given number
of J = 8 subdomains and three different numbers M of basis functions. Comparing
the initial partition for M = 1 with the partitions for M = 33 and M = 78, we
see again that in later basis extension steps, only few reshaping occurs. For the
error tolerance gy, = 107%, the different subdomains needed between M = 31 and
M = 33 basis functions. Hence, the convergence rate is very well-balanced. The
error tolerance ey, = 1078 has been reached between M = 75 and M = 78.

We tested the MS IPM online stage using a test sample set of 10,000 parameters
and the fast assignment of Algorithm 4.6. The first assignment trial, i.e., the
partition based upon the largest first coefficient, coincided in over 98% of the
samples with the partitioning result of the MS IPM for M = 1. In other words,
the first assignment trial partition looked almost like Figure 4.9(a).

The following list shows the necessary assignment trials until an appropriate
subdomain has been selected for M = 33, M* = 36 and e4,; = 10~*. The first line
provides the number of trials, the second line the number of samples in % that
have been assigned to an appropriate partition in the corresponding step.

o2 |3 |4 | s e || s | -
77.99% | 13.33% | 3.25% | 4.30% | 0.56% | 0.05% | 0.00% | 0.00% | 0.52%

We can see that the great majority has been assigned in the first two steps. Hence,

the procedure is very efficient. On average, we needed less than 1.39 assignment
trials per sample, even though for 0.52% of the samples, the error estimator was
larger than e, on all subdomains. Here, a larger number M would be needed.
For a second example with a large number J = 64 of subdomains and M = 40,
M™ = 44, the average number of assignment trials was still less than 2.

Figure 4.10 compares the partitioning result of both tree structured implicit
methods with the result hp anchor point method for a given M., = 80 and
gl = 1078, The coefficient based and the error based FS IPM generate almost
identical partitions with J = 8 subdomains whereas the hp method needed J =9

subdomains in this case.

Example 2

We now consider the example that has been used in [7] to introduce the idea of

the EIM and which has briefly been mentioned in Section 4.4.2. For a spatial
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domain D = [0, 1]*> and the parameter domain P = [0.01, 1]?, the input functions
c¢:D x P — R are defined by

o(w; ) = (21 + )” + (22 + p2)”.

As for the Example 1, we use a uniform grid on D with edge length 0.02 and
N = 2601 degrees of freedom. The parameter domain P is sampled using a
logarithmically distributed grid with 72 parameters in each direction leading to
Nirain = D184.

We already mentioned that the maximum of ¢ is located at zp.x = (1,1) inde-
pendently of p. Since the first interpolation knot is located at the maximum of
the first basis function, all subdomains select the same first knot and therefore,
the first approximation coefficient 67 (y) is identical for all subdomains j. Hence,
the coefficient based FS IPM needs at least two coefficients for the assignments.
On average over all performed runs and nodes, it selected about 2.8 coefficients
for the assignments. Especially in the lower parts of the constructed trees, i.e., for
large numbers of subdomains, we had to reset the initial basis functions to obtain
appropriate partitions.

In Figure 4.11, we compare again the numbers of generated subdomains for
different values of M., where the numbers of subdomains are plotted logarith-
mically. For this example, the MS IPM clearly outperforms the other methods.
On average, the coefficient based FS IPM and the hp methods produced similar
numbers of subdomains. For the hp gravity center method, only the very few
numbers of J = 4,7,16 and 25 could be reached at all.

In Figure 4.12, we compare the partitions generated by the different methods for
a desired number of M,,,, = 55 basis functions. We observe that the shapes and
numbers of subdomains differ significantly, where the MS IPM in Figure 4.12(a)
seems to divide the parameter domain in the best way. It is also interesting to see
that some of the subdomains of the coefficient based F'S IPM in Figure 4.12(b)
are divided into several parts that are not connected. E.g., the “black subdomain”
consists of parameters in the lower left and lower right part of the parameter
domain. For the construction of this partition, two resets of the initial partition
were necessary and the average number of coefficients for the assignment was 2.75.

It turned out that it is also possible to use a constant number M, > 1 of

coefficients for the assignment for this example. If a partition in a node is rejected,
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Figure 4.11: Comparison: number of subdomains J necessary for a given maximal

number of affine terms M., for Example 2.

(a) MS IPM final: (b) FS IPM coefficient (c) hp anchor point:  (d) hp gravity center:
J=4 based: J =9 J =28 J=1

Figure 4.12: Partitioning result for Ex. 2 and desired My, = 55 using different

partitioning methods.

(a) based on My =2 (b) based on My =3 (c) based on My =4 (d) based on My =5
coefficients coefficients coeflicients coefficients

Figure 4.13: Partitioning result for Ex. 2 and using the coefficient based FS IPM

for constant My and J = 6.
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we directly substitute the initial basis as described in Algorithm 4.9. Figure 4.13
shows the partitioning result after five refinement steps, i.e., for J = 6 subdomains,
for different numbers M,. For this example, the initial bases have been reset only
if no parameters have been assigned, i.e., if Z/ = () for some subdomain j. It can
be seen that the shapes of the subdomains strongly depend on the used number of
coefficients. From the appearance of the shapes, we would guess that My = 3 leads
to the best results, whereas the shapes in Figure 4.12(b) show some similarities
to the result of Figure 4.13(a) for My = 2. Indeed, the FS IPM with constant
My = 3 produced better results for many cases. E.g., for M., = 40, it needed
only J = 12 and for M.« = 60 only J = 5 subdomains whereas the “regular”
FS IPM needed J = 18 and J = 7 subdomains, respectively. However, it is not
possible to know the proper number a priori. Hence, the procedure proposed in
Algorithm 4.9 seems to be more appropriate, especially for unknown parameter

domains.

Example 3

In the last example of this section, we consider a special parameter dependency.
For the spatial domain D = [0,1]? and the explicitly given parameter domain
P = [0,1]?, the input function ¢ : D x P — R is given by

“a0( (mr-a (b)) a3)

clzsp) =e
Now, for parameters p € P on the elliptic curves
4 (Ml — %)2 + pa = const,

the input functions ¢(u) are identical. Hence, it is desirable that the partition-
ing methods detect this dependency and adjust the splitting of the subdomains
accordingly.

For the discretization of the spatial domain, we used again a uniform grid with
edge length 0.02 and obtain N = 2601 degrees of freedom. The parameter samples
for the offline stage are now selected using a uniform grid on P = [0, 1]? with 72
parameters in each direction. Hence, we obtain n.,;, = 5184 uniformly distributed

samples.
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Figure 4.14: Comparison: number of subdomains J necessary for a given maximal

number of affine terms M., for Example 3.

) MS IPM initial: (b) MS IPM final: ¢) hp anchor point:  (d) hp gravity center:
J=2 J=2 J =23 J =46

Figure 4.15: Partitioning result for Example 3 and desired My,x = 18 using

different partitioning methods.

) refinement 1 ) refinement 2 (¢) refinement 3 (d) refinement 4

Figure 4.16: Tree structured refinement steps for Example 3 using the coefficient
based FS IPM.
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A single EIM on the complete subdomain converged for M = 27 basis functions.
For M.« = 18, the partitioning results of the MS IPM and the two hp methods
are provided in Figure 4.15. For the MS IPM, two subdomains are sufficient. We
provide the initial partition for M = 1 and the final partition for M = 18 in
Figures 4.15(a) and 4.15(b), respectively. In Figure 4.15(a), we also marked the
two parameters that have been used for the initial basis. It can directly be seen
that the subdomains are defined by the band around the ellipse of parameters on
which the initial parameters are located.

Contrarily, the hp results in Figures 4.15(c) and 4.15(d) do not properly detect
the geometric parameter dependency of the input functions. Not even the sym-
metry along the axis py; = % has been used. As a consequence, a huge number of
subdomains is needed. At the same time, many subdomains cover the same part of
the family of input functions. Especially for the hp anchor point method, one can
see that many small subdomains have been created along one parameter ellipse.

Also in Figure 4.14, it can be observed that the hp methods do not detect the
more special parameter dependency. On average, the anchor point method needs
about 10 times more subdomains to appropriately cover the complexity of M.
The number of subdomains created by the gravity center splitting procedure is an
additional factor of around two larger.

The number and shapes of the subdomains created for the MS IPM and the
FS IPM differ only slightly. In Figure 4.16, the tree structure of the coefficient
based FS IPM is provided. In each step, one of the subdomains is divided into
two parts. We see that shapes of the subdomains keep their elliptic appearance.

For the parameter assignments, one approximation coefficient was sufficient.

4.7 Conclusions

We developed implicit partitioning methods that assign parametric input functions
to an appropriate subdomain without the knowledge of the actual parameter or
any other additional information. On each subdomain, an EIM is performed that
creates affine approximations of the input functions with respect to the unknown
parameter. The methods automatically detect complex parametric structures such

as symmetries or other patterns of the parametric dependency. Hence, for wide
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Table 4.1: Comparison of the different partitioning methods.

MS | FS: T, | FS: 6], hp

implicit + + + —
offline complexity — -+ + +
online complexity — — + +
adaptive basis size — o + +
balanced convergence + — — —
flexible shapes + 0 o _
robustness + + — +

classes of problems, the implicit methods outperform other partitioning methods
even for known explicitly given parameters.

In Table 4.1, a summary of the advantages and disadvantages of the methods is
provided and the behavior is compared to the hp-Partitioning methods. In the first
column, the characteristics of the MS IPM are illustrated. Next, the properties
of the error based and the coefficient based FS IPM are shown. In the last row,
we compare the implicit methods with the hp methods that need explicitly given
parameter dependencies.

As mentioned before, a tree structure is desired offline and online for a fast con-
struction of the partition and for fast assignments. The only implicit method that
fulfills both requirements is the coefficient based F'S IPM. The online assignment
for the MS IPM and the error based IPM can be accelerated using the heuristic
of Algorithm 4.6. Since the shapes are not absolutely fixed for the error based
FS TPM, it can not be guaranteed that the adaptive choice of the number of used
basis function is possible.

Only the MS IPM creates partitions where the convergence rate of the EIM in
all subdomains is well-balanced. Furthermore, the shapes of the subdomains show
the largest amount of flexibility and adaptively try to optimize the distribution
of the parameters. The shapes generated by the error and coefficient based FS
IPM are less adapted to the problem. Nevertheless, symmetries and other regular
parametric patterns are detected and used for a more efficient partitioning as shown

in Example 3 in Section 4.6.
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The coefficient based FS IPM is less robust in the sense that it can not be
guaranteed that the splitting into several subdomains works appropriately. It may
be necessary to adjust for example the maximal number Mj*** of coefficients for
the assignment or the minimal percentage of parameters that are required in each
subdomain in the splitting phase. Hence, it is more difficult to use the method as

a black box, even though it worked quite well for our examples.



Chapter 5

RBM for Linear Parametric PDEs

with Stochastic Influences

This chapter is based upon joint work with B. Haasdonk and K. Urban and the main
results have already been published in [45] in a very similar form. We added sections
about higher moments, non-coercive problems, and showed that some assumptions
regarding stochastic independence can be weakened such that more general classes

of problems can be considered.

In this chapter, we introduce the RB methodology for parametrized partial
differential equations (PPDEs) with stochastic influences. We consider problems
that are already affine with respect to the deterministic parameter. Furthermore,
strong solutions in probability are used such that the problem is solved in a Monte
Carlo context. One might now think that the RB approach for deterministic
problems can immediately be used in this context as well, viewing the stochasticity,
i.e., stochastic events or inputs, as additional parameters. However, unlike for
deterministic parameters, we have generally no distance measure in the probability
space at our disposal, and so the ideas cannot be transferred directly. A basic
assumption of the RBM is a smooth dependence of the solution of the PPDE with
respect to the parameter, which cannot be assured due to the lack of the distance
measure. Furthermore, the dimension of the parameter space crucially influences
the efficiency of the RBM. In the case of stochastic influences, the parameter space

may be infinite-dimensional.

91
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As a way out, we propose using a Karhunen—Loéve (KL) expansion (cf. Section
2.2) of the stochastic process and appropriately truncating it. Even though the
resulting expansion coefficients are still random variables, i.e., functions with re-
spect to the stochastic event, we treat them in some way as parameters that can
be modeled using polynomial chaos (PC) expansions (cf. Section 2.3). The KL
truncation error of course has to be be analyzed. The KL expansion shows some
resemblance to the empirical interpolation method (cf. Section 3.2.3) in order to
obtain an affine decomposition of random and spatial variables, where the random
variables correspond to the parameter dependent EIM coefficients. Consequently,

our analysis is in some parts similar to the EIM analysis in, e.g., [86].

Particularly in the presence of stochastic influences, one is interested not only in
a good approximation of the state, i.e., the solution of the PPDE, but also in accu-
rate outputs, together with corresponding statistical quantities such as expectation
or variance. The latter requires the computation of quadratic output functionals.
Different RBMs for quadratic outputs have been studied. These methods use ex-
panded formulations that eliminate the nonlinearity [54] or introduce special dual
problems [56]. Due to the KL truncation effects, however, these approaches cannot
be used directly for our problem at hand. Hence, we introduce two more modi-
fied dual linear problems in order to derive a posteriori error bounds also for the
above-mentioned statistical quantities. These error estimates can then be used in

a standard Greedy approach 98] for the offline snapshot selection.

The remainder of the chapter is organized as follows. In Section 5.1, we collect
known facts on variational problems with stochastic influences, the KL expan-
sion, and the RBM. We restrict ourselves to linear coercive problems. Section 5.3
contains our a posteriori error analysis for the primal and dual solutions as well
as linear and quadratic outputs. In Section 5.4 and 5.5, we introduce the error
analysis for statistical quantities such as moments and variances. Note that since
the operator has stochastic influences, we cannot derive a deterministic PDE for
linear moments such as the expectation even for linear PDEs. In Section 5.6, the
methodology and error analysis are expanded to non-coercive but inf-sup stable
problems. The offline-online decomposition is presented in Section 5.7 as well as a
method to compute coercivity lower bounds adjusted to stochastic problems. Our

numerical experiments are described in Section 5.8.
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5.1 Problem Formulation

In this section, we collect the basic features of the problem under consideration.

5.1.1 Variational Problems with Stochastic Influences

Let D C R? be an open, bounded domain, P C RP? a set of deterministic parame-
ters, and (€2, 2, P) a probability space. For some X C H'(D), accounting also for
the corresponding boundary conditions, let a : X x X x P x Q — R be a possibly
nonsymmetric form that is bilinear, continuous, and coercive with respect to the
first two arguments, and let f : X x P xQ — R be a form with f(-; u,w) € H (D),
(1, w) € P x €, that is stochastically independent of a(-, -; i, w) such that the vari-

ational problem

a(u,v; p,w) = f(v; p,w), veX, (5.1)

admits a unique solution u(p,w) = u(-;p,w) € X for all (p,w) € P x Q. As
an example, think of a linear elliptic second order PDE whose coefficients and
right-hand side depend on deterministic parameters p € P and stochastic inputs
w € . In particular, we have in mind the case in which a coefficient function
on D depends on stochastic influences modeled by w. A formulation of the type
(5.1) is also called D-weak/Q-strong [12|, and the difference from a variational
approach with respect to both terms, e.g., stochastic Galerkin methods [69], should
be noted. As already mentioned in the introduction, the direct view of w — which
represents an underlying stochastic event — as an additional parameter is not
entirely possible. One should think of it merely as an uncertainty; i.e., a(-,-; -, w)
is a random variable or a stochastic process. Nevertheless, we sometimes refer to
w as the stochastic parameter.

In order to achieve computational efficiency of an RBM for (5.1), we assume
that both terms in (5.1) allow for an affine decomposition with respect to the

deterministic parameter , namely,

a(w, v; p, w Z@ ) [ag(w,v) + ag(w,v;w)], (5.2)

Flosp,w Zef )+ fo(v;w)], (5.3)
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with Q¢, Qf > 1, 83,05 : P = R, a,, a,(,5w) 0 X x X — R, and f,,
fo(sw) © X — R bounded for all w € €2. Note that a, and f, denote the ex-
pectations of the terms in brackets; a,(-,-;w) and f,(-;w) denote the respective
fluctuating parts. We assume that all parts a,, f, are stochastically independent.
In general, we do not require any further assumption on these terms. However, in
Section 5.7, some restrictions are introduced in order to use an alternative method
for the computation of coercivity lower bounds. In cases in which a¢ and f do not
allow for a decomposition in the form of (5.2) and (5.3), respectively, a standard
tool to derive affine approximations of nonaffine functions is the empirical inter-
polation method (EIM) [7]. A possible use of the EIM would require a technically
more involved error analysis which is not discussed in this chapter; cf. Chapter 3,
Chapter 7, and [86].

In order to describe the well-posedness of (5.1), one usually defines the coercivity

and continuity constants, respectively, as

_a(v, 05, w) a(w, v; j1, w)
a(p,w) = inf ———"—= v(p, w) == sup sup ————————. (5.4)
nf = SR SR Tl ol
We assume that for some 0 < g, 7 < 00, We have
alp,w) > ap >0 (uniform coercivity), (5.5a)
Y, w) < Yoo < 00 (uniform continuity) (5.5b)

for all (p,w) € P x Q. Under these assumptions, the Lax—Milgram theorem guar-
antees the well-posedness of (5.1). Next, for (u,w) € P x €2, we define parameter-

dependent inner products and energy norms as
(W, v) 0w = a(w,v; p,w), w2, = (w,w)yw, v,we X, (5.6)

In many situations, one is not (or not only) interested in the state u(u,w) or
the error in the energy norm, but in some quantity of interest in terms of a linear

continuous functional ¢ : X x P x 2 — R. Again, we assume that ¢ is affine, i.e.,

QZ
(ospw) = 3 00) [Fy (o) + £y (05 )] (5.7)
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with Qf > 1, 05 : P — R, and ¢, {,(;w) : X — R bounded and linear for
all w € Q. It is assumed that all parts ¢, are stochastically independent as well
as that ¢ is independent of a. If ¢ is deterministic, we set {, = 0. The output

s: P xQ — Ris given as

s(k, w) = Llu(p, w); p, w). (5:8)

If ¢ = f, the output coincides with the right-hand side; this is called the compliant
case. In the noncompliant case, it is fairly standard to consider a dual problem of

finding p™ = p™ (1, w) such that for given (u,w) € P x Q one has
a(v, p: i, w) = —C(v; p, w), veX. (5.9)

The superscript () in (5.9) is motivated by the fact that we will introduce further

dual problems later on.

5.1.2 Karhunen—Loéve Expansion

As already stated in the introduction of the chapter, we consider the well-known
Karhunen—Loéve (KL) expansion (cf. Section 2.2 and [60, 65]). Let us briefly recall
the main facts. Let k : D x 2 — R be a spatial stochastic process with zero mean
and existing covariance operator Cov,(z,y) := E[s(z;-) s(y;-)], z,y € D. Let
(Mg, kk(x)), k= 1,...,00, be the eigenvalue/eigenfunction-pairs of the covariance

operator; then the KL expansion reads
Rlziw) =Y V() (), (5.10)
k=1

where & : 2 — R are uncorrelated random variables with zero mean and variance
1. The eigenvalues are ordered A\y > Ay > --- > 0, and for numerical purposes,
we assume a fast decay. One of the main reasons we consider the KL expansion
is now obvious since the above equation allows for a separation of the stochastic
and the spatial terms. This is very similar to an affine expansion of a form with
respect to a deterministic parameter as is common in RBMs. Here, we can use
the deterministic and purely space-dependent terms for calculations in the offline
phase so that the stochastic influences enter only through the coefficients in the

KL expansion and are thus scalar quantities.
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Since the KL expansion requires zero-mean random variables, the affine decom-
positions in (5.2), (5.3), and (5.7) are obtained by a separation into the deter-
ministic expectations a,, f,, £, and the zero-mean stochastic parts. We apply the
KL expansion to the factors a,, f,, and ¢,. For b € {a, f,(}, we get, using the

appropriate arguments and our assumptions regarding stochastic independence,
Q° 00
i) = D0 8000 (1) + 3 €l a0 (5.11)
q=1 k=1

where for notational convenience b, j, also contains /\27 . from the spectral decom-
position of the corresponding covariance operator.

For numerical purposes, one usually restricts the infinite sums to some finite
numbers K 3 < oo of terms. It is well known that the KL approximation is optimal

in a certain sense [60, 65]. For b € {a, f, ¢} we obtain the truncated forms

Q Kq
V(s w) =) O(n) {bq(-) + D Eou() bq,k(')} : (5.12)

Here and in the following, an index or superscript K indicates that the expression
is, or is derived from, a truncated form. We do not distinguish the dependencies
on Kfl’, q=1,...,Q% b€ {a, f ¢} The truncated primal and dual problems read,
for (p,w) € P x Q,

CLK(UK(,U,CU),’U;ILL,UJ) = fK('U;/,L,OJ), UGXa (513)

aK(v,pg) (W) pyw) = —05(v;p,w), v e X, (5.14)

with solutions uyx = ug(p,w) and pg) = pgp (u,w), respectively.

5.1.3 Output of Interest

Often, one is interested in the state u(u,w) as well as in the output functional
s(p, w) == L(u(p, w); ).
Furthermore, we may be interested in the squared functional

s*(p,w) = (C(up, w), 1))
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Besides these random outputs, we want to evaluate some statistical quantities

such as first and second moments of s(u, -), denoted by

M (p) == E[s(p,-)] and My () :=E[s*(y, )],

respectively. Additionally, we need the squared first moment M2 (u) = (E[s(u, -)])?

to evaluate the variance V(u,w), given by

V(1) = Ma(p) — M ().

5.2 Reduced Basis Approximation

We consider an RB approximation with respect to our parameters (u,w) € P x €.
To this end, we first consider the detailed approximation of the primal and dual
problems, e.g., by a finite element discretization on a sufficiently fine grid. The
corresponding spaces are usually again denoted by X, indicating that the detailed
approximation and the exact solution are (numerically) indistinguishable. We
assume that dim(X) = A, where N is assumed to be “large”. Consequently, as is
typical in the RBMs, the error analysis will address only the error of the reduced
to the detailed solution.

The primal and dual RB spaces are then appropriate subspaces
Xy CX, dim(Xy)=N<N, XV cX, dmX))=ND <N

Here and in what follows, an index N indicates that the expression denotes or is
based on reduced systems. We do not explicitly indicate the dependencies on the
different dimensions of the reduced systems. Nevertheless, the dimensions of the
reduced spaces Xy and X ](V') defined below may be different. We obtain a truncated
primal-dual RB formulation. For (u,w) € P x Q, determine un x = un i (pt,w) €

Xn, pg\lf,)K = %?K(u,w) € X](\}) such that

Fluwse,vipw) = [ ime), e Xy, (5.15)
aK(v,pE\l,?K;u,w) = —5(v; p,w), UEX](\P. (5.16)

We will comment later on the specific construction of Xy and X ](\} :
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5.3 A posteriori Error Analysis

Now, we focus on the introduction of a posteriori error bounds for the primal and
dual problems as well as for linear and quadratic output functionals. We will follow

considerations partly similar to those in [86].

5.3.1 Notation

We start by fixing some notations for the subsequent analysis. In many cases,
where it should be clear from the setting, we will omit the parameter (u,w) for

notational convenience. Let

erp(p,w) = ug(p,w) —uy x(p,w), (5.17a)

Ehn(w) = pi(1w) — pi (1, w) (5.17b)

be the primal and dual RB errors, respectively, where again ux and pg) denote

the solutions of (5.13) and (5.14), respectively. The corresponding residuals read

TRB(U;Mvw) = fK(U;:u?w> - CLK<UN7K,U;/L,M) = CLK<6RB7U;M7M)7 (5183)

(1 1 (1

(03 pow) = =05 (03 pw) — a (v, p i w) = a’(v,exp pow).  (5.18b)
Assuming the availability of a computable lower bound 0 < app(p,w) < a(u,w)
of the coercivity constant, it is fairly standard to derive RB error bounds in terms

of the following quantities:

1 rrs (v 1, w)
Arp(p,w) = ———— sup 22 5.19a
ra(iw) = T S T ol (5.19a)
A(l)( ) 1 f}%%(”? %) (5.19b)
w = —) Sup—/—///™/™. .
Rl (W) wex |lvlix

Following the arguments of standard RB a posteriori error analysis [73], the terms
Agrp and Ag])g account for the error caused by restricting X to Xy or X](\;), ie.,
the RB error, given the truncated KL forms in (5.13, 5.14).

Next, we investigate the KL truncation error. In view of the definition of a”,
&, and (%, we see that any truncation error depends on the random variable w
and thus on the particular realization. This dependence is somehow unsatisfactory

since all derived bounds would depend on a realization of a random variable.
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Thus, we propose replacing the random variables fg,k(w), k> K fl’, be{a,f l}, by
some w-independent quantity. If the probability density functions of the random
variables have finite support or the problem that underlies the PDE restricts their
variations, we can use rigorous upper bounds £/, i.e., ]fgvk(wﬂ < &g be{a, f, 0},
for all w € €. In many cases, however, it is also appropriate to use quantiles
instead. For some 0 < p < 1, we define & such that |€,(w)| < &g holds
with probability 1 — p, where p should be sufficiently small to be negligible in the
following analysis. Hence, we can define the error terms for the primal and dual

problems as

Qa

Ok (v p,w) ==Y |03 (n) Z &0 |agk(un ik (1, w), )], (5.20a)
q=1 k= Ka+1

(1) & - (1)

O, (v pyw) 1= Z‘%(N)‘ Z 5%13’%&(”719]\/,[((%00))’7 (5.20b)
q=1 k=Kg+1

as well as for the right-hand sides b € {f, ¢},

KL v ) Z |9b Z g%B |bg,1:(v)]. (5.20c)

k:Kg+1

Note, that dk;, and 5&1& still depend on w via the RB solutions uy x and pg\l,?K.

The right-hand side terms 8{, and 0%, are deterministic and thus depend only on
p € P. For numerical realizations, the terms in (5.20) are usually truncated at
some K.x, where K f]’ < Kpax K N < 00. In a fashion similar to that for the RB

error, we set

1 6KL<U;,U7W)
A ,Ww) = su , 5.21a
aalinw) = D) S ol (5-21a)

N 1 5 (v; p, w)
AW = KL s 5.21b
KL(M7W> aLB(Maw) flgl)g HUHX ( )

as well as
1 Oer, (v; 1)

A% (p,w) = sup S22 p e {f, 0} 5.21c¢
KL(Iu ) aLB(Maw) ve)Ig HUHX {f } ( )

Remark 5.1. Since the definition of dkr, in (5.20) includes absolute values, it is

not linear in v and we can not define |0k (+; i, w)||xs. Therefore, we use the (for
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linear forms equivalent) formulation sup,c y 0xr(v; i, w)/||v]|x in (5.21). Still, it is
possible to efficiently evaluate the estimates of the truncation errors. More details

are provided in Section 5.7.2.

Remark 5.2. Certainly, the error bounds in (5.20) and (5.21) can be defined
without replacing the random variables f;’,k(w), k > Kg, b € {a, f,(}, by some
upper bound or quantile. This might be reasonable in some applications, especially
if one is interested only in statistical outputs such as mean or variance. Note that
in this case, the absolute values in the definitions would be omitted and the dkr.-
forms remain linear. Then, the KL truncation error bounds would obviously be
much smaller since the upper bounds &2y, b € {a, f, £}, already represent the worst

case scenario of the truncation.

5.3.2 Primal and Dual Errors

We start by estimating primal and dual errors involving both KL and RB trunca-

tion, i.e.,

e(,u,w) = U(ILL,QJ) _uN,K(/vbvw)v (5228‘)
eV (u,w) = pW(p,w) — Py (1, w), (5.22b)

where u and p(") denote the detailed primal and dual solutions of (5.1) and (5.9),
respectively. For better readability and notational compactness, we omit the pa-

rameters p and w in the following whenever it does not affect the meaning.
Proposition 5.3. Setting
A(p,w) = Arp (1, w) + A (1, w) + Afeg (1),
we get |le(p, w)||x < A(p,w) for all (p,w) € P x Q.
Proof. We have for any v € X that

a(e,v) = a(u,v) — a(un k,v)

= ()= (0)) + (0" (e v)—alun i) + (£ ()= (uy i, v)).
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The last term coincides with the residual rrp(v) = a” (egp,v) in (5.18). Testing

with v = e and using the coercivity of a yields

lelly < app 489
|| [BS

U@ =55 o (v ©) ol ] (o)

~  awsllellx ars |le|x ars |le|x

< AL+ Axr + Ars
by standard RB estimates, using the definitions of the bounds in (5.19, 5.21). O
Corollary 5.4. Setting
AO(pw)y =AW .= A + AD 4 AL
yields the estimate ||eM (1, w)||x < AW (p,w) for all (1,w) € P x Q.

Proof. In a way similar to the above we get for any v € X that

a(v,eWV) = a(v,p) — a(v, px)
= (X () =€) + (a* (0, p3)0) —alv,py)x0)) = (¢ (0) +a" (v, 0V))).

and using v = é1) yields the desired estimate. O

The next step is to investigate the effectivity of the above estimators. To this

end, we define the Riesz representations of primal and dual residuals as

(5RB(M7 w),v)X = rre(v;p,w), veE X, (5.23a)
(gl(%l]%(u,w),v)X = 7:1({1])3<U§,u7w)7 vE X, (5.23b)

for p € P and w € €. Since Egrp is the Riesz representative of rgrg, we have that

I Ern(4.)lx = llrre (1wl 7, and thus by definition

[€rp (1, w)||x = aLs(p,w) Arp (1, w),

I1ES (1, ) | x = aws(p, ) ALY (1, w).

Analogously, we define the Riesz representations of the KL residuals by

(Exn(p,w), U)X = r(v; p,w) — rre(V; 1, W), (5.24a)
(EQL(,w), ) = 7(v; 1, w) — T (v 1, w), (5.24b)
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where the detailed residuals are defined as

r(vsp,w) = f(osp,w) — aluy g, v p,w),
(v p,w) = —L(v; p,w) — a(v,pg\l,?K; [, w).
We obtain that
I€kllx = lIr —rrellx = [If = alun,-) = F5 +a (un i, )l x
< f =5 lxr + lalun i, ) —a® (un i, )| x0
< (i, w)(Afy,+Axw), (5.25)

and similarly ||5~I(<13|| x < arp(Ak + A%{) Finally, in order to estimate the effec-
tivities

pw) = M (5.26)

Alp, w) ~(1)
:9) = e o)

n(p, w) == ma n

we define the following quantities:

Agr(p,w) + Al (11, w)

c(p,w) = A () : (5.27a)
. A L w) + Al (i, w
C(l)(u,w) — KL(M~(1>) kL (4 ) (5.27h)
Apg(p,w)

Proposition 5.5. If c(u,w) € [0,1), we get

Yus (i, w) 14 c(p,w)
CVLB(H, w) 1 - C(H’? CU) ’

n(p,w) <
where yup (i, w) > y(p,w) is an upper continuity bound.
Proof. 1t is straightforward to see that for v € X we have

ale,v) = r(v;p,w)

(r(v; p,w) — rrB(V; 1y W)) + rRB(V; 1y W)
= (kL w),v)x + (Erp(, w),v)x
(gKL (/1’7 UJ) + ERB (M? (.U), U)X'
ThUS, with v = 8RB - gKL; we get

ale,&rp — k1) = (Exr + Erp, ErB — EKL) X

= ||&rsl% — lI€xLll%
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and hence

I€ral% — €Ll = ale,&rp — k) < yusllellx (|€rsllx + [|ExL]x)
€% — II€xel%

[€rBllx — l1€xellx

= 7UB ||€||X

Therefore, by the above estimates,

1 a
lellx > —(I€rpllx — I€xLllx) > —=(Ars — A — Aky).
YuB YUB

This finally implies that

A < Jus ARB+AKL+A{(L B L+c

" Tellx = s Ams— A — AL, amml-¢

which proves the claim. O

Completely analogously we can estimate the dual effectivity as follows.

Corollary 5.6. If ¢V (u,w) € [0,1), we get

’YUB(Ma w) 1+ 5(1) (/% (.O)

5(1) <
(T ) R )
O]
Finally, for later reference, we note another result. Defining
VB (1, w) (1 + e, w))
,Ww) = , 5.28
" (HJ ) QLB (Ma Cd) 1—- C(:ua W) ( )

we get the following estimate for the effectivity with respect to the energy norm.

Corollary 5.7. If c(u,w) € [0,1), we get

QLB (ﬂ? W)A(/% w)
lleh, )] u

S 770(”7 W).

Proof. In the proof of Proposition 5.5, we replace ||e||x by |le]| o2 O
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5.3.3 Output Error

Now we consider the approximation ¢ (uy x;u,w) to the output £(u;u,w) =
s(p,w). As already known from the RB a posteriori error analysis of linear output

functionals |73], we add a correction term and consider
sv (s w) = O (un s s w) — rre (0 s 1, w) (5.29)
and define the output error estimator by
A*(pw) = arsAAD + 5y (P ) + 0, (PV i) + Ofer (v xc). (5.30)
Then, we obtain the following estimate.
Theorem 5.8. |s(u,w) — sy (@, w)| < A%(u,w) holds for all p € P and w € Q.

Proof. By standard arguments, we get (omitting the argument (u,w))

(UN i)+ T’RB(Z?SV)K)

(1) (1)

s—sykg = l(u)—
= l(u) — 5 (uyn ) + 5 (Pnk) — aK(quK’pN,K)
(u

= [0F(u) — 5 (un )] + [F (N ) — a (un i, D))

+ [(w) = € @)] = [F(pix) = (o).
For the first term on the right-hand side, we have

K (u) — 5 (uy ) = —a™ (u, p2) + o (un i, pY) = —a

Using f(pg\})K) = a(u,pg\?[(), we get for the first two terms
[0 () = €% (un )] + [F (D) — 0" (une, o)

= —a(e pﬁ)) + a(u pg\lf)K) - CLK(UN,K;psv,)K)

1
N a (= un e, p )+ [alu, p ) — a® (u, pl)]

K( (1)).

oK (1)

(
= (e, pK
= —a®(e.p — pVi) + lalu, P k) — a (u, pi )]
= —a(e, ) + [a(u, pi) — @ (u, p{)]
= 7o) + [alu, pVy) — a(u, p)].
Using £(u) — 05 (u) = £(e + un i) — €5 (e + un ) and a(u, piy) — a”(u, px) =
ale + uN7K,pS\1,7)K) Ele +uy K,pNK) and putting all this together yields
s —swi = —Tap(e) + lale, i) — a"(e,pili)] + [(e) — ()]
+ [(unie) = (uni)] = [f <pNK> — X (Pl ) (5.31)
[G(UN KapN K) K<UN KapN K)]
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Using the triangle inequality, we estimate the first three terms separately, i.e.,
1 (1
Prm(e @)l < llellx supuex(Frn(v)/I[v]x)

1 T(1 X (1
lale, pix) — a® (e, p )l < llellx supex (Or(v)/[vllx) < ars AAY,

0e) = @) < Nlellx sup,ex (ke (0)/Ivllx) < as A Ay,

IN

1B A Ag%,

A\

<

by Proposition 5.3. Furthermore, |((uy k) — 5 (un )| < 0k (un i), |f(p%)K)

FEON] < ko (W) and Ja(un e, piv) = 0" (e i) | < Sen (b)) We put
everything together, which yields the desired result. O]

The above analysis shows two effects. First, the RB and KL error terms
Agrg, Ak, A{;L and Agl)g, A%)J, AL, appear in pairwise products in the first term
of (5.30). In order to obtain the full order of approximation, RB and KL error
terms should thus be of comparable sizes. Second, as opposed to the deterministic
case, we obtain the additional additive terms ok, (p%)K) . (pg\})K) and 0y (uy k)
as we see from the estimates of ]a(u,pg\?[() — a®(u, pNK)] |f(pNK) fK(pg\PK)\
and [0(u) — €5 (u)|.

Finally, we investigate the effectivity of the output error bound for the special
case of a compliant output, i.e., £ = f, and symmetric bilinear form a. For this
case, we have pﬁ@,{ = —ung, NO = N and A* = apg A? + 50, oo™ =

(5KL(UN,K) -+ 25I£L(UN,K>‘

Proposition 5.9. In the compliant case with a symmetric bilinear form a and for

no(p,w) from (5.28), we assume that arp(u,w)A(u,w)? > no(w,w)?dx (1, w).
Then, the effectivity n°(u,w) = ‘s(”wajg;i{)(%w)‘ is bounded by
A 5comp
2 OZLB(M,(U) (M) ) + ( 7w) (532)

s 7w S 7w comy *
7 (@) < (s 0) o (p, w) A, w)? — no(p, w) 2o " (1, w)

Proof. Following the proof of Theorem 5.8 yields for ¢ = f and p N K = —UNK

S —SNK = f(u) — 2fK(UN,K) + CLK(UN’K,’U,NJ()
= a(u,u) + 2[f (un,r) — [ (unr)] — 2f (un,r) + a(un i, un x)
- [G(UN,K,UN,K) - GK(UN,K,UN,K)]

= ale,e) + 2[f (unx) — 5 (unx)] — la(un i, un k) — o™ (un i, un )]
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Hence, we can estimate

a(e, 6) =S —SNK — 2[f(UN,K) - fK(UN,K)] + [G(UN,Ka UN,K) - CLK(UN,K, UN,K)]

<|s—snk|+ 0"

Using Corollary 5.7, we get

o
—PA* < |2, = ale,e) < |s— sy k| + OGP
0
which implies |s — sy x| > %AQ — 0y P, This yields
0
As < O./LBA2 + 5§é)ﬁnp
|S - SN,Kl - %A2 - 5Icgﬁnp7

which proves the claim. ]

The assumption arg(p, w)A(u,w)? > no(p, w)?dxp * (1, w) is rather restrictive
and can be validated only a posteriori. It requires either the energy norm error
effectivity 1o or the KL truncation error o+ to be small. However, the effectivity
bound is consistent with the deterministic case in the sense that for large K, it
converges to the energy norm error effectivity bound 77 as provided in Corollary

5.7, where c is approaching zero at the same time.

5.3.4 Quadratic Output

As a next step, we consider quadratic output functions of the form

s*(p,w) = [lu(p,w); )],

where ¢ is an w-independent linear functional. If £ were stochastic itself, the subse-
quently constructed error bounds would include terms depending on the magnitude
of sy x (cf. Remark 5.11). Also, it is readily seen that just squaring the output

sy x from (5.29) is not sufficient. In fact, since

82 — (SNJ()Q = (S — SNJ()(S + SNJ() S AS . (S + SNJ(), (533)

the right-hand side does not have the desirable “square” effect, as is typical in
RBMs. Hence, we follow a different path by introducing an additional dual prob-
lem, namely, determining pg)(u,w) € X such that

0" (v, P2 (11, w); o w) = =2 sy s, w) - Lvs p) = (P (v p,w), v E€ X, (5.34)
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(2)

Of course, the solution of (5.34) reads pj; ()

= 25N,k P) , Which, however, is use-
less in the RB context since we have a different parameter-dependent right-hand
side and thus different RB spaces. Hence, we consider an RB space )N(](\?) C X,

dim(X?) = N® and determine some p%}K(u, w) € X such that
o (0, PR (o w)i pw) = —LP(v;pw), ve XY (5.35)

We can apply the analysis performed in Section 5.3.2 and just need to ad-
just the notation. The dual error reads ég}; = pg) pg\?)K, the residual as
flgé( ) == af (v, e%B) and the RB bounds as A(])3 = arp ' Sup,cy (T’RB( )/ vllx)-

The KL truncation term 5KL is defined analogously to (5.20b) by replacing pSV)K

by pNK, and analogously to (5.21), A(% = arp ' SUpyex (SI((ZIZ(U)/HUH)() The
terms 0%, (v; i) and A%y (u,w) vanish since ¢ is deterministic. Then, Proposition

5.3 and Corollary 5.4 yield the following estimate for 62 := p(?) — pg\??K:

”é(Q)(M,UJ)HX < A(Q)(u,w) — A%)S(H’w)—i-ﬁgi(u,w). (5.36)

We consider the approximation [((uy (@, w); p,w)]?. Similar to the definition

of sy i in Section 5.3.3, we add correction terms and consider

55\27]1((#7 w) 1= (g(UN7K))2 - (TRB(I?%,)K))2 - TRB(pE\Z/,)K)' (5.37)

It is important to keep in mind that we distinguish the squared approximation
2]

(sn, K)?=s Nk - Sn,x from the approximation s NI of the square of s. In fact, it

is easy to see that we can also write 85\2,]7[( in terms of sy x = l(un k) — TRB (p%?K),

s (1, w) = (snk)” + 288k - TrE (DN x) — TRB(PN k), (5.38)

i.e., we have two additional correction terms. For )N(](\?) = X](\}), the correction

terms in (5.38) would cancel out. We define the quadratic output error bound
A% (ow) = (A% + arsAA® + 6 (05 ) + 0 (D) (5.39)
and obtain the following result.

Theorem 5.10. }sz(u,w) - SE%;{K(,[L,W” < A% (p,w) holds for all p € P, w € Q.



108 5. RBM for Linear Parametric PDEs with Stochastic Influences

Proof. With (5.38), the output error is given by
$*— s = 8 — (swi)? — 25Nk TRE(PY ) + TRE(PY )0

= (s —snvk)* +2snK(s— Snrk) — 25N.K TRB(pﬁé,)K) + TRB(pﬁ,)K)-

USiIlg SN,K = E(uN,K) - TRB(I?g\l[’)K) yields
2sn k(S — SNK) = 25Nk <€(U) —l(unk) + TRB(pEV)K)>

Putting these together, replacing 2sy x¢ by (@ we have

$* = s = (s —sni)® + (D) — 0D (uy k) + rre(p k). (5.40)

From Theorem 5.8, we know that (s — sy.x)? < (A%)*. The second part of (5.40)
can be estimated analogously to Theorem 5.8 by replacing ¢ by ¢? and p™) by
p@. Since ¢ = (X, we obtain

(9 () = 09 (uy i) + (P )

= — () + lale.pix) — a*(e.px)] (5.41)

= [FR) = O] + Tolun, pRk) = o (un e, )
which can be bounded by aLBAA + aLBAAKL + 5KL(pNK) + 5KL(p§V)K) O

If A% is already small, the first part of the error bound A% will be comparatively
negligible. The second part of the error bound is of the same form as A® in (5.30).

Hence, we can hope that A*” is approximately of the same order as A°®.

Remark 5.11. If ¢ were stochastic itself, we would have to take the respective
truncation error of the right-hand side ¢ into account. Since ¢(2) = snil,
this error directly depends on sy . Hence, we would have to add the terms

arpA - sy g A% and SN,Kéf;L(pg\,)K) to the error bound in (5.39).

5.4 Statistical Output Error Analysis

In this section, we consider first and second moments of the linear output functional

s(p, w) = L(u(p, w); p),

My (p) == E[s(p, )], Ma(p) :=E[*(, )], V() := M) — (M ())*.
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We assume again that the functional ¢ is deterministic, i.e., that there is no ex-
plicit dependence on the stochastic parameter w but the randomness of the output

functional s is only through u. We start with the following lemma.

Lemma 5.12. Assuming independence of a and f as stated in Section 5.1.1, we

have

E [a(uvi, px) — a* (uvie, p8)| = 0. E[f0R0) = 00| = 0.
i=1,2,3, where pNK(u, ) is given in (5.45) and € is assumed to be deterministic.
Proof. Since uy x and pj\z,’ x depend only on truncated forms, they depend only

. k=1,..., k=1,...K] . /
on the random variables {f k} ! Qj and {5&} ! Q? Since fbk and fb, g

are uncorrelated for (¢, k,b) # (¢, k’ ,b'), both upn g and pN) 5 are uncorrelated to
{f }k>K 0 and {f }k>K o We thus obtain

E [G(UN,K7P%),K) - CLK(UN Kapg\f)K)]

= Z Z Ha )ag, k(U’NKapgv)K)

q=1 k= K“—i—l
Q" o0 .
=3 Y GO Elagluncp)] = 0
=1 k=Kg+1 ——
=0
and, analogously, E[f(pg\l,)[{) — fK(p%),K)] =0. O

Remark 5.13. In the proof of Lemma 5.12 we see that the assumption in Section

5.1.1 that all parts a, and f, in (5.2) and (5.3), respectively, are stochastically in-

dependent is too strong. It suffices to assume that uy x and p§@> 5 are uncorrelated
b — b

to {fbk}k>Kq ob b€ {a, f}, ie., that {fgk}’;;llgf, b € {a, f}, are uncorrelated

to {5 k}

obtain JOlIlt KL expansions for different, possibly correlated, processes a4, a, or

k>Kq | ov b € {a, f}. We have seen in Section 2.2.3 that it is possible to

fo fory @ # ¢, or even ag, fy. In this case, the respective random variables are
identical. For our case, we would have £, = &0, 5 = f,k, or ) = 5({%.
Using the same truncation values for correlated terms, i.e., Ky = K, K g =K ;,,
or Kj = K 5,, it is still certified that Lemma 5.12 holds. Therefore, it is possible
to deal with completely dependent terms and it is thus also possible to apply the

subsequent theory to very general problem classes.
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Hence, for the presented a-posteriori analysis, it is sufficient to require that the

following assumption holds.

Assumption 5.14. The sets of random variables

b
k>K}

{ﬁgk}l;j """ gf’ bed{af}y,  and  {gu},

.....

Qb? be {a”f}7

.....

are uncorrelated from each other.

5.4.1 First and Second Moments

The straightforward estimate for the first moment M (¢t) is given by My yx (1) :==

E [sy.k(u, )], and we define the error bound

AMi(y) = [@LBAA“)] . (5.42)
Corollary 5.15. | M (u) — My nx ()| < AMi(p) holds for all p € P.
Proof. Equation (5.31), Lemma 5.12, and ¢ = (¥ yield

My~ Mivi = B |~73(e) + ale,pys) —a* (. o)
+E [a(uN,K7pg\lf,)K) —GK(UN,KWS\?K)} —-E [f (PNx)— f K(pgé,)K)]
=E [_7:1({1])3(6) + a(@apg\lf?K)_aK(e»pg\lf,)K)] .

Following the proof of Theorem 5.8, we obtain the desired result. O

Analogously, the straightforward estimate for the second moment My (p) is given

by Mo v (1) == E[S%{K(u, -)] and we define the error bound
AMe())) .= E [(A8)2 + asAA®] (5.43)
Corollary 5.16. |My(u) — My n ()| < AM2(p) holds for all p € P.
Proof. Equations (5.40) and (5.41), Lemma 5.12, and ¢ = (X yield
Ms — Mok = E [(s = sx.)?] — B [fih(e) + ale,n) = a* (e, py )]
B K@ N LR OIS )
[f(pNJ() / (pN,K)] + [a(uN,KapNJ() a (UN,Kva,K)]
(2) (2) (2)

= E [(s - swa)’] — B [Fi3(0) + ale,pifs) - a¥ (el

Following the proof of Theorem 5.10, we obtain the desired result. O
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5.4.2 Squared First Moment

In order to get an estimation of the variance, it remains to find an estimation for
the the squared first moment. We follow the same approach as in Section 5.3.4 and
introduce a third dual problem with right-hand side £ (v; p) := 2M yr (1) £(v; ).

The dual and the corresponding reduced systems are then given by

aK(U,pg?;,u,w) = —O(v;p), veX, (5.44)
N iw) = O (osp), ve XY, (5.45)

respectively, where X ](\‘;)) C X denotes the RB space of dimension dim(f( ](\‘;’)) = N®,

The error analysis is now mainly straightforward, following Section 5.3.4. We de-

note the new dual error by ég% = pg) — pg\?;,)K and the residual by fg)g(v) =

a (v, ég)g) to define the RB bound AS])B = arp™! supveX(fS%(v)/HvHX). The KL

truncation term gg’ﬁ is defined analogously to (5.20b) by replacing pg\l,)K by pg\?;?K,

and analogously to (5.21), A%)J = arp supvex(gl(?ﬁ(v)/HvHX). Then, Proposi-

tion 5.3 and Corollary 5.4 yield the following estimate for é® = p(3 — pg\??K:

6@ (1, w)[x < AP (u,w) = Alp(p,w) + A (1, w). (5.46)

We define the approximation of the squared first moment, adding some correc-

tion terms. Analogously to (5.38), we consider

M () = (Mo ) + Mk - E [res ()| — B [ras@$h)] - (65.47)
Note the distinction between the squared approximation (M nx)? = My yg -

M, nx and the direct approximation M[12]NK of the squared first moment. The

error bound is given by

AME(h) = (AM1)2 4 E [aLBAA@} . (5.48)
Theorem 5.17. | M3 (u) — M[f]NK(;L)} < AMi(p) holds for all € P.
Proof. Analogously to Theorem 5.10, the output error is given by

M% - M[12]NK = (M1 - MI,NK>2 + E [6(3)(“) — (@ (“NK) + TRB(pE\?,)K) )
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From Corollary 5.15, we know that (M; — M yx)® < (AM)2 Analogously to
Theorem 5.8, using ¢ = ¢X and replacing ¢ by /© and p() by p® we obtain

E [ﬁ(g)(u) - 6(3)(UN,K) + TRB(PE\?K)}

- ~3 3 3 T
= E _—7”1({])3(6) + a(eapg\/’)K) a (6 pSV)K)

-k [f(pNK) Xy (3) )] +E [aWNK@E\?K)_aK(uN’K’ps\?,)K)

[ .3 3 3) ]
= E|~7ip(e) + a<e,p$V?K> a"(e.pix) |

where the last equation is obtained by Lemma 5.12. The result can be bounded

analogously to Theorem 5.8 by ]E[aLBAAS])g + aLBAA%)J]. O

5.4.3 Variance

It is straightforward to define

Vg (1) = Moy vrc(12) — My e (1), (5.49)

and it is furthermore clear that |[V—V x| < E[A**]4+AM is an upper bound for the

. . (23
error. However, we can derive more precise error bounds. Denoting T%B )(v) =

a® (v, eg])g - eg’%) and Ag];?’) = arp” ! SUp,cy (ﬁ%;?’) (v)/||v]lx) as well as defining

the KL truncation term 6 * by (5.20Db), replacing p%)K by (pgg)K — pg\?;?K), and
2-3) | -1

analogously to (5.21), A( ‘= arp” SUDycx ( ( )/lIvllx), we obtain ||¢ —
e®|x < A3 .= AL 3) + A2 and the variance error bound
AV(p) = E[A%]+ (A% + E arpAACI). (5.50)
Theorem 5.18. |V (i) — Vg (p)| < AV (i) holds for all p € P.
Proof. From Theorems 5.10 and 5.17 we know that
V—Vyk =E[(s—snk)] — (M — M yk)?
+ B [0 w) — 02 (uxc ) + s ()|
— E[(9w) = 9 () + rrapiVy)|

and the first two terms can be bounded by E[(A®)?] and (AM1)2) respectively.
From (5.41), Lemma 5.12, and Theorem 5.17, we have for i = 2,3

E [0 (u) — €9 (un 1) + (00| = E [ () + ale, o) —a (e, 0]
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We subtract the two expressions and again follow the proof of Theorem 5.8. The

claim follows directly using the definitions above. O

In our numerical experiments, we have observed that it is sufficient to use the
same reduced space for the two additional dual problems (5.35) and (5.45), i.e.,
)N(](\?) = )N(](\i,)’) Then, it holds that ps\?}K(,u,w) = pf,’)K(,u,w)MLNK(u)/sMK(,u,w),

and it is sufficient to solve only one additional dual problem. Hence, we consider

(0, PV (o w)i pow) = —20(vsp), ve XY, (5.51)

such that p%)K = SNK -pgf})K and pg\?;)K = M vk -pgé)K. For a faster evaluation of

the variance error bound (5.50), we could use p%)K — pg\?;?K = (snyxk—Mi nK) p%?K.

Furthermore, defining 6}(?&, Ag‘%, Aﬁ;%, and A® analogously to SI(Q{, Aﬁﬁ, Agg,
and A, respectively, we obtain, e.g., Ag}j’) = |snyx—Mi Nk] Ag%. Analogously,
we can construct the error terms SE)L, A%)L, Ag])g, and A® ;e {2,3,2 — 3}, using
the respective term for ¢+ = 4. Still, it is possible to use two different RB spaces
such that both dual problems (5.35) and (5.45) have to be solved. The theory does

not change for that case.

5.5 Higher Moments

Often, it is desirable to evaluate higher moments, i.e., E[(s(u,w))"], n > 2. To
some extend, it is possible to extend the proposed scheme of Section 5.3.4 and use
additional dual problems to improve the approximation of such outputs. However,
it is not completely straightforward to derive the appropriate estimates and we
do not have a simple general form for arbitrary moments. Furthermore, the error
bounds do not show the same nice form as for the quadratic outputs and contain
terms directly dependent on sy x. Exemplarily, we provide results for the third

and fourth moment in this section.

5.5.1 Third Moment

We follow the approach of Section 5.3.4 and introduce a new dual problem with
right-hand side ¢©)(v; 1, w) = 3 (sy.x(p,w))* £(v; ). The dual and the corre-
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sponding reduced systems are then given by

aK(U,pgg);,u,w) = O p,w), veX, (5.52)
(v, pVxiw) = —(O(v;pw), ve XY, (5.53)

respectively, where X ]({;’) C X denotes the RB space of dimension dim(f( ](\‘?) ) = NG,
We define the RB and KL residuals fg)g (v) and SSIZ analogously to Section 5.3.1,
replacing pg\l,?K by pﬁé?K, and obtain the corresponding new RB and KL bounds
Ag)g and A%{ Let p® (1, w) be the solution of the untruncated version of (5.52)
and let é® = pO® — pg\?)K Then, Proposition 5.3 and Corollary 5.4 yield the

following estimate:

16D, w)|x < AP (pw) = ARL(pw) + A (1 w). (5.54)
We define an approximation of the the cubed output (s(u,w))?, adding addi-
tional correction terms. We consider
S (1, w) = (sw.x)* + 3(sw.x0) *TrB (P ) — TR (PN ) (5.55)
3 3 2
= (f(UN,K)) - (TRB(]?E\I/,)K)) - TRB(pg\Bf,)K) — 3SN,K (TRB(pg\lf,)K)) .

Comparing the approximation of the second equation with the approximation of
the squared output in (5.37), it may be surprising that the last term is not removed
by an additional correction term. However, we will show that this is not (cf.

Remark 5.21).

We define the cubic output error bound

A (p,w) = (A% + 3[sw k| (A%)? + s AAD) 4 68, (07) + ok (pR)  (5.56)
and obtain the following result.
Proposition 5.19. |s3(u,w)—35§7K(u,w)’ < A (u,w) holds for all (p,w) € PxQ.

Proof. With (5.55), the cubic output error is given by

= s =" — (snk)® = 3(swk) e (DN k) + TRE (PN x0)-

It is straightforward to rewrite the first two terms, i.e., the error without correction

terms, as

83 — (SN,K)g = (S — SN,K)?) + 388]\[7[((8 — SN,K)

= (8 — SN,K)?) + 3(8]\[,[()2(8 — SN,K) + 3SN,K(8 — 5N,K>2-
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From Theorem 5.8, we know that |s—syx|> < (A%)3, and [3sy k(s —snx)?] <
3lsn.r|(A%)2. Tt remains to estimate the second term with the correction terms.

We obtain

3(sni)2(s — sw.) — 3(sw)*rre (PN k) + TR (PN k)

= 3(snr)*(l(u) — Llun ) + TRB(pg\?,)K)
= _ (6(5)(u) - 6(5)(uN,K) + TRB(pS\E;,)K>)

which can be estimated analogously to Theorem 5.10 by a;pAA®) 4 (5KL (pN K) +
5 (5) O
KL(PN )

The estimate for the third moment M3 () is given by M3 yx (1) := E [353\’,11((#, 9],

and we define the error bound
AMa(y) = [(A5)3 + 3]sy (A2 + aLBAA(5)] . (5.57)
Corollary 5.20. |M;(u) — Mz v (p)| < AM2(u) holds for all p € P.

Proof. We use the results of Theorem 5.19 and Lemma 5.12. Analogously to
Corollary 5.15 and Corollary 5.16, we derive

Ms —Ms vk = E [(8 —snk)? +3sy k(s — sy K)Q]

(5 5 5
—E[f{(e) + ale.px — a(e,n0)]
which directly leads to the desired result. O]

Certainly, the term 3|sy x|(A%)? in the error bounds for the cubed output and
the third moment are unsatisfactory. However, the error bound still outperforms
straightforward estimations. In the following remark, we show the problem that

occurs while trying to remove the term.

Remark 5.21. To avoid the terms 3|sy x|(A*)? in (5.56) and (5.57), we would like
to introduce a new dual problem with the right-hand side £ (v) = 3sx £(v){(v).
Obviously, this is not possible. However, assuming we could make the impossible
come true, we would add the correction terms 3sy (TRB (pg\l,?K))Q and Trp (pg\?)K)
n (5.55). Then, the approximation would be consistent to (5.37) and the error

bound for M yx would be of the form E[(A®)® + a5 A(A® + A©®)].
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5.5.2 Fourth Moment

It is clear that the problem of the given approach that occurred in the deriva-
tion of good error bounds for the third moment will be rather more critical for
higher moments. We will briefly show this aspect for the fourth moment, where a

straightforward estimation of s*(u,w) could be given by (SE\ZA K)2 such that
st = (sk)” = (2= i) + 258 k(P — s k) < (A)?2 4 25 AT (5.58)

Alternatively, let us introduce the additional dual problem, already in reduced

form, following the idea of the previous sections:

(v, pVgiw) = —(O(v;pw), ve XY, (5.59)

where () (v; i, w) = 4sy g (11, w) sgaK(u, w) £(v; ). We then define an approxima-

tion of s, using again two correction terms. We obtain

4 2 2 6
siac (1) 1= (50)” + 250 T (PR) = s (P

which is exactly analogous to the approximation sgv]  in (5.38). Analogously to

the error of the squared output in the proof of Theorem 5.10, we have
st — SEZ\LZ]K = (5" - SE\%}K) + 2SEV]K(82 - 8537]1() - 23[2] 'TRB(pE\?,)K> - TRB(FES,)K)-
A reformulation of the second term yields

23[2] (s — 5\2,]1() = 235311((3 — SN K)2 + 43N,K35\2,]7K€(u) — 43N,Ks£3]7K€(uN7K)
+ 2540 e (PN K )-

Together, using /) (v) = 4 sy SE\AK {(v), we have

st — s = (8= s i) + 280 e (s— ) + (€9 (u) — (9 (up i) + rre (P k)
which is estimated, using the same techniques as in Theorems 5.10 and 5.19, by
AS4(Naw) = (A82)2 + 285\2[},K(AS)2 + O‘LBAA +5KL(pNK)+5KL(pN)K) (5.60)

Compared to the straightforward error bound in (5.58), we replaced the term
2353,]7 « A% by a more precise bound based upon the solution of (5.59) (recall that
A** already contains (A*)2).

However, differently to the bound for 55:3{ ;. of the previous section, the second
term of (5.60) contains the factor sgg,]y , instead of sy k. Thus, for good results, A®

might be required to be very small.
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5.6 Inf-Sup Stable Problems

It is possible to maintain the presented error analysis in analogous form if a is not

coercive but only inf-sup stable. For the primal problem, we require

. G(an;ﬂaw)
B(p,w) := inf sup —————=
(:0) = 1ok 0 ol

>y >0 Yu,weP x.

Then, existence and uniqueness of the solution of (5.1) are still valid [3]. Anal-
ogously, we require the inf-sup stability of the dual problem (5.9). Let Sip(u,w)
be a lower bound of both primal and dual inf-sup constants. The bounds in
AKL,AE)L,ARB and Agg, 1 = 1,...,4, are now redefined replacing a;g by (is.

For the proof of the error bound for the primal solution uy x in Proposition 5.3,

we obtain
ale, w)
ellx < sup
lellx < 570 sup Ty
_ K K _
< sup f(w) / (w)+supa (UN,KJU) G(UN,KJU) + sup TRB(w)
weEX BLBHwHX weX ﬁLBHwHX weX 5LB||UJ||X

< AL+ Axp + Ags.

Analogously, the error bound of the dual solution pg\l,?K in Corollary 5.4 can be

proven in the inf-sup case which directly implies the error bounds for the further
dual solution pE@) 0 ={2,3,4}. Since Equation (5.25) remains valid in the inf-sup
stable case, replacing again arg by [ig, it is straightforward that the effectivity
bounds for the primal and dual error bounds in Proposition 5.5 and Corollary 5.6
still hold.

Besides the replacement of apg by fig, we do not need any further changes to
prove the output error bounds for sy x and 35\2,]7 5 in Theorem 5.8 and Theorem
5.10, respectively. Analogously, the statistical output bounds AMt, AMI AM2 apd
AV remain valid. Also, the effectivity bound of A® for symmetric bilinear forms

and compliant outputs can directly be adopted.

5.7 Offline-Online Decomposition

In this section, we describe the offline and online procedures and provide corre-

sponding run-time and storage complexities. We start with the description of a



118 5. RBM for Linear Parametric PDEs with Stochastic Influences

method to evaluate lower bounds for the coercivity constant. For this method,
we assume the bilinear form a to be parametrically coercive with respect to the
deterministic parameter; i.e., 07 (p) > 0 for all 4 € P and a,(v, v) +aq(v,v;w) > 0,
ve X, forallwe Qand 1 < g < Q%

5.7.1 Coercivity Lower Bound

From the deterministic case, we know the following methods to determine lower
bounds app(p,w) for a(p,w): the min-6 approach [73] and the successive con-
straint method (SCM) [57|. The latter approach is less restrictive and could be
directly applied to the stochastic parameter case and also to inf-sup stable prob-
lems. However, it requires much more effort, online as well as offline. The min-6
approach requ