
Universität Ulm

Fakultät für Mathematik und Wirtschaftswissenschaften

Institut für Numerische Mathematik

Reduced Basis Methods

for Partial Differential Equations

with Stochastic Influences

Dissertation zur Erlangung des Doktorgrades

Dr. rer. nat.

der Fakultät für Mathematik und Wirtschaftswissenschaften

der Universität Ulm

vorgelegt von

Bernhard Wieland
aus Stuttgart–Bad Cannstatt

April 2013



dummy

Dekan: Prof. Dr. Dieter Rautenbach

Erstgutachter: Prof. Dr. Karsten Urban

Zweitgutachter: Jun.-Prof. Dr. Bernard Haasdonk

Abgabe der Doktorarbeit: 15. April 2013

Tag der Promotion: 26. Juni 2013



Abstract
This thesis is concerned with the development of reduced basis methods for

parametrized partial differential equations (PPDEs) with stochastic influences. We
consider uncertainties in the operator, right-hand side, boundary conditions and
in the underlying domain. We are particularly interested in situations where the
PPDE has to be evaluated quite often for various instances of the deterministic
parameters and the stochastic influences. In the stochastic framework, such a
situation occurs, e.g., in Monte Carlo simulations to compute statistical quantities
such as mean, variance, or other moments.

For the efficient application of the reduced basis method, it is necessary to de-
velop affine decompositions with respect to the stochastic influences. We therefore
extend the methodology of the empirical interpolation for the application in the
stochastic setting, in particular for noisy input data. Alternatively, we also use
a truncated Karhunen–Loève (KL) expansion to resolve and affinely decompose
the stochasticity. We derive a-posteriori error bounds for the state variable and
output functionals, including also the KL-truncation errors. Non-standard dual
problems are introduced for the approximation and analysis of special quadratic
outputs which can in particular be applied to efficiently approximate statistical
quantities such as mean and moments. We provide new error bounds for such
outputs, outperforming standard approximations.

To reduce the number of affine terms and hence for the improvement of the
efficiency of the reduced simulations, we generalized the partitioning concepts for
explicitly given deterministic parameter domains to arbitrary input functions with
possibly unknown, high-dimensional, or even without direct parameter dependen-
cies. No a-priori information about the input is necessary.

We use all the presented methods for the application to PPDEs with stochastic
influences on stochastic and additionally parametrized domains.





Zusammenfassung
Diese Arbeit befasst sich mit der Entwicklung von Reduzierten–Basis–Methoden

für parametrisierte partielle Differentialgleichungen mit stochastischen Einflüssen.
Diese können sowohl im Operator, in der rechten Seite, in den Randbedingun-
gen als auch im zugrundeliegenden Gebiet auftreten. Besonders interessant im
Zusammenhang mit Modellreduktion sind Problemstellungen, bei denen die Diffe-
rentialgleichung für viele Realisierungen eines Parameters und der stochastischen
Einflüsse gelöst werden muss. Die Berechnung von statistischen Größen wie Er-
wartungswert, Varianz oder Momente wird oft über Monte–Carlo Simulationen
vollzogen und birgt demzufolge hohes Reduktionspotenzial.

Zur effizienten Anwendung der Reduzierten–Basis–Methoden ist es notwendig,
affine Zerlegungen bezüglich der zufälligen Einflüsse zu entwickeln. Wir erwei-
tern dazu die Methodik der empirischen Interpolation auf den stochastischen Fall,
um insbesondere auch verrauschte Eingabedaten verarbeiten zu können. Alterna-
tiv betrachten wir zur Auflösung und affinen Zerlegung der Stochastizität zudem
die auf endlich viele Terme begrenzte Karhunen–Loève (KL) Entwicklung. Unter
Einbeziehung des Abschneidefehlers werden a-posteriori Fehlerschranken für die
Zustandsgröße und die Ausgabefunktionale hergeleitet. Neben dem Erwartungs-
wert betrachten wir insbesondere quadratische statistische Größen wie Varianz
und zweites Moment. Für die Approximation solcher Ausgaben entwickeln wir neue
duale Formulierungen mit deren Hilfe wir effiziente und rigorose Fehlerschranken
berechnen können, die gegenüber gewöhnlichen Methoden deutliche Verbesserun-
gen aufweisen.

Zur Reduktion der Anzahl affiner Terme und damit zur Verbesserung der Ef-
fizienz der Reduzierten–Basis–Methode verallgemeinern wir bestehende Konzepte
zur Partitionierung von deterministischen Parametergebieten auf beliebige Ein-
gabefunktionen. Sowohl Abhängigkeiten von unbekannten Parametern als auch
komplett parameterunabhängige oder hochdimensionale Parameter können damit
betrachtet werden, wobei keinerlei a-priori Information notwendig ist.

Die vorgestellten Methoden werden abschließend auf parametrisierte partielle
Differentialgleichungen angewendet, die auf stochastischen und zusätzlich parame-
trisierten Gebieten definiert werden.
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Chapter 1

Introduction

Reduced basis methods for partial differential equations with stochastic influences?

1.1 Motivation

Several problems in science, medicine, economics and engineering are modeled by
partial differential equations (PDEs). Often, such models contain uncertainties in
terms of imprecise, unknown, or stochastic input. One could think for example
of coefficients of the PDE that are based upon inaccurate or noisy measurements.
Furthermore, even the underlying spatial domain may be obtained by defective
measurements, e.g., by scanning or X-raying. Especially for sensitive systems, it
may be of interest to simulate how a small perturbation of the input influences
the solution, e.g., to determine tolerances for the accuracy of measurements or to
derive requirements for actual mechanical implementations. Also, unknown spatial
coefficients are often modeled stochastically. Examples include the porosity struc-
ture of Li-ion batteries, fuel cells, or the modeling of groundwater flows. Another
application is given by inverse problems, where for given (measured) outputs, the
distribution of a random input parameter is desired. Eventually, it is quite com-
mon in financial mathematics to model unknown data using stochastic processes,
e.g., mortality rates for life insurance simulations or the market price behavior for
risk analysis in the banking sector. Generally spoken, uncertainty or randomness
is more or less everywhere.

In addition to such uncertainties, many problems also depend on a number of
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2 1. Introduction

deterministic parameters, i.e., one has a parametrized PDE (PPDE). Examples
include model parameters such as material properties, parametric geometries, or
forces. We are particularly interested in situations where the PPDE with stochastic
influences has to be evaluated quite often for various instances of the deterministic
parameters and the stochastic influences. In the stochastic framework, such a
situation occurs, e.g., in Monte Carlo simulations to compute statistical quantities
such as mean, variance, or other moments. For the deterministic parameters, one
might think of parameter studies or optimization. Such a many-query situation
requires the numerical solution of the PDE for many instances of the parameter
and stochastic influence, which is infeasible in particular for more complex PDEs.
Hence, model reduction is desired.

It should be noted that we are not concerned with stochastic PDEs involving
the Itô calculus. This is the reason why we use the term PDEs with stochastic
influences, even though this might be a bit lengthy.

1.2 The Reduced Basis Method

The reduced basis method (RBM) has intensively been studied for the numerical
solution of PPDEs. One basic idea is an offline-online decomposition combined
with a rigorous a-posteriori error control.

In the offline stage, computationally expensive evaluations are performed. The
reduced basis (RB) is formed by solving the complex PPDE for certain parameter
values, so-called snapshots. The selection is usually based upon a Greedy algorithm
[14, 73, 98]. Basically, the snapshot that corresponds to the largest error bound
is selected for the basis extension. The detailed solutions are obtained using a
fine discretization, e.g., finite elements, finite differences, or finite volumes. Hence,
high-dimensional systems have to be solved. The error bounds can be used to
control the size of the reduced model.

For a new parameter, the reduced system is then used in the online stage for
a highly efficient simulation. The dimension of the system reduces to the number
of selected snapshots. The error bounds confirm the approximation quality in the
reduced setting.

Hence, besides so-called multi-query problems, where solutions of a PPDE have
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to be evaluated repeatedly for different parameter values, a typical application of
the RBM is given by real-time settings. In such cases, even very high offline costs
can be accepted.

For the efficiency of the RBM, it is required that the problem allows for an affine
decomposition with respect to the parameter, i.e., for a separation of spatial and
parametric terms. Since many problems do not naturally show such properties,
the empirical interpolation method (EIM) has been developed to generate affine
approximations of the coefficients of the PDE [7, 86] or directly of arbitrary dif-
ferential operators [19, 20, 27, 43]. Certainly, the additional approximation error
has to be considered and included in the analysis.

The RBM has been studied for wide classes of problems and many applications
have been developed in the recent past by a growing number of researchers. Besides
linear elliptic [73, 77] and parabolic equations [40, 76], also more complicated
quadratically nonlinear problems have been reduced [24, 86, 96]. In the latter case,
the error analysis is based upon the well-known Brezzi-Rappaz-Raviart theory
[13, 16]. Furthermore, for special classes of coupled systems, e.g., saddle point
problems and especially the Stokes equations, RB theory has been introduced
[33, 34, 75]. A lot of work has been done on RBMs for problems on parametrized
geometries for several different applications, e.g., [33, 63, 78, 88], to mention just
a few. Additionally, the RBM can be used for both parameter optimization [26]
and parameter dependent optimal control problems [39, 59]. Recently, it has been
started to consider also RBMs for parametrized variational inequalities [44]. So
far, the RBM can be efficiently applied only to stationary inequalities. However,
work is going on to extend the results to instationary problems for the application
to option pricing in financial mathematics. In this context, RBMs based upon
weak formulations in space and time are considered, which have already been
successfully applied to time-periodic problems [83]. Also for other instationary
problems, it could be shown that such formulations lead to additional reduction
capabilities [90, 106].

Furthermore, to improve the efficiency of the RBM, several different domain de-
composition methodologies have been developed. While for the parameter domain
partitioning, it is enough to generate separate reduced bases on each subdomain
[30, 31, 41], the processing of separated time domains [25] and spatial domains



4 1. Introduction

[28, 53, 67, 94] requires special treatments at the intersecting boundaries. Also,
alternatives to the Greedy basis selection have been developed such that the basis
can be adapted to the current parameter in the online stage [61].

So far, not much work on RBMs regarding stochastic problems has been done.
In [12], a specific problem with stochastic Robin-type boundary conditions is stud-
ied. However, the analysis presented there does not cover the case of general
stochastic influences, e.g., in terms of random spatial coefficients. In this sense,
the present work will generalize and extend the findings in [12].

For the sake of completeness, let us also mention some further related work. In
[11], an RB control variate technique for variance reduction is introduced. Fur-
thermore, the terminology “reduced basis” is also used in the context of model
reduction via Krylov subspaces, e.g., in [70, 79], also for stochastic problems.

1.3 Objective

The aim of this work is to develop a general framework of reduced basis methods for
PPDEs with stochastic influences that can be applied to wide classes of problems.
We want to consider both linear and non-linear problems, in particular with a
focus on quadratic non-linearities. The methods are meant to deal with various
instances of uncertainties, including stochastic influences

(a) in the coefficients of the PDE, i.e., in the operator,

(b) in the right-hand side,

(c) in the boundary conditions, and

(d) in the domain.

Furthermore, in the context of randomness and uncertainties, one often depends
on noisy input data.

For the efficient application of the RBM, it is necessary to develop affine de-
compositions with respect to the random input, i.e., spatial and random influences
have to be separated. Therefore, one objective of the thesis is to generalize the
EIM methodology for the application to stochastic and noisy data. Alternatively,
to make use of the specific properties of stochastic inputs, it is also desired to con-
nect the RBM with the Karhunen–Loève (KL) expansion and polynomial chaos.
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A main issue of problems with random input is the approximation of linear and
non-linear statistical outputs such as mean, variance, and other moments. Hence,
besides the approximation of linear output functionals, we want to focus on the
development of RBMs that are in particular adapted to the approximation of such
statistical quantities.

1.4 Outline of the Work

We start with an introduction of different known techniques to solve PDEs with
stochastic influences in Chapter 2. These methods will serve as detailed solu-
tions underlying the RBM. We focus on two different classes: formulations weak
in space and strong in probability such as Monte Carlo methods as well as for-
mulations weak in space and probability, e.g., stochastic Galerkin methods and
stochastic collocation methods. For a simple illustrative problem, we provide the
necessary ingredients for the modeling of the stochasticity and the application of
the methods, namely the Karhunen–Loève expansion and polynomial chaos.

In Chapter 3, we consider the construction of affine decompositions with respect
to deterministic parameters and random influences. After a short introduction
about the application of affine decompositions in the context of the RBM, we gen-
eralize the framework of the EIM to the stochastic case and consider in particular
approximations in the presence of noise. The proper orthogonal decomposition
(POD) is applied on the given input data. We show that the replacement of the
usual EIM basis, using now the POD eigenmodes, leads to improved affine ap-
proximations in mean-squared sense. Connections of the method to the so-called
discrete EIM (DEIM) are derived and we show that we obtain the same results
with less run-time complexity, allowing now to apply the EIM error estimators to
both methods. In a second step, we introduce a least–squares EIM that uses more
knots than basis functions. We show that the method generates close to optimal
affine approximations.

It is common to partition parameter domains and construct separate reduced
bases on each subdomain for more efficient online simulations. Known partitioning
methods relate on explicit descriptions of compact parameter domains. In Chapter
4, we develop implicit partitioning methods (IPMs) that can be applied to all
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classes of parameter domains, even to unknown parameters or non-parametric
input data. We develop three different approaches, all connected to the EIM.
For two of the methods, the partitioning is based upon the EIM approximation
error, where for the first method, the partition also depends on the number of used
affine terms for the EIM approximation. The subdividing scheme of third method
relates on the EIM coefficients and enables tree based assignment procedures. We
provide several examples and demonstrate that, applied to compact parameter
domains, the IPMs generate better results than explicit partitioning methods for
wide classes of problems.

In Chapter 5, we develop the RBM for linear PPDEs with stochastic influences
in coefficients, right-hand side, and boundary conditions. We assume the avail-
ability of an affine decomposition with respect to the deterministic parameter and
apply the KL expansion to the stochastic terms. We develop error bounds for the
state variable and for linear random outputs that also take the KL truncation er-
ror into account. Using additional non-standard dual problems, we can also derive
good approximations and error bounds for nonlinear statistical outputs such as
second moment and variance. We show that the approach can, to some extend,
also be applied to higher moments. We can furthermore derive that parts of the
KL truncation error do not influence the RB approximation of the statistical out-
puts such that the developed bounds clearly outperform direct approaches. We
illustrate the results using an example of heat transfer in a two-dimensional porous
medium, where the porosity and the boundary conditions are modeled using spatial
stochastic processes.

In Chapter 6, the results of Chapter 5 are generalized to quadratically nonlinear
problems. It is shown that the error analysis, especially of the statistical outputs,
can be adopted in a very similar form. The used dual formulations remain linear
such that the complexity for the dual solutions correspond to just one Newton
iteration of the primal problem. Hence, the improved error bounds become highly
efficient. We demonstrate this effect for the example of a convection-diffusion
problem in a porous medium.

Chapter 7 combines the results of Chapters 3 to 6 for the application of stochas-
tic PPDEs on stochastic, parametric domains. Using a diffeomorphic mapping
from a fixed reference domain to the original domain, we show how the problem
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can be transformed such that all parametric and stochastic dependencies are con-
tained in the coefficients of the PDE. Two known methods to build such mappings
are described and compared. For two different cases, purely stochastic domains as
well as stochastic and parametric domains, we show how the RBM can be applied.
In the first case, we use a special form of the KL expansion to derive that the
RBMs of Chapters 5 and 6 can be used. We furthermore provide a method to
apply the IPMs of Chapter 4, maintaining still the good approximation results of
the KL expansion. In the case of stochastic and parametric domains, we show that
the EIM can be used in combination with techniques known from deterministic
problems. Naturally, the IPM can also be applied. We illustrate the different ap-
proaches using the example of a plate where a random hole appears on the bottom
side.

Finally, in Chapter 8, we briefly describe further applications of the presented
methods to instationary problems as well as to formulations weak in space and
probability. Additionally, areas of future research are provided.

Chapter 3 is based upon joint work with K. Urban and the main results have
already been published in [92] in a very similar form. We added a section about
affine decompositions in the context of the RBM.

Chapter 5 is based upon joint work with B. Haasdonk and K. Urban and the
main results have already been published in [45] in a very similar form. We added
sections about higher moments, non-coercive problems, and showed that some as-
sumptions regarding stochastic independence can be weakened such that more gen-
eral classes of problems can be considered.

Chapter 6 is based upon joint work with K. Urban and the main results have al-
ready been published in [93] in a very similar form. We showed that some assump-
tions regarding stochastic independence can be weakened such that more general
classes of problems can be considered.





Chapter 2

Solutions of PDEs with Stochastic

Influences

Popular techniques to solve PDEs with stochastic influences include perturbation
methods [64, 95] and second order analysis [48, 50]. Both methods are based upon
an expansion of the random quantities in a Taylor series about their respective
mean values. Hence, good results can only be obtained for small perturbations,
i.e., under specific smoothness conditions of the uncertain behavior.

Another technique is the Neumann series approach, where the inverse of the
uncertain operator is approximated by its Neumann series [4, 35]. For example,
the method has been applied to examine the response variability arising from
spatially uncertain material properties [80, 105].

In this chapter, we introduce two different solution concepts for PDEs with
stochastic influences. Formulations weak in space and strong in probability are
considered as well as formulations weak in space and probability. We start with a
simple example in Section 2.1 that will be used to illustrate the general problem and
the different techniques. In Sections 2.2 and 2.3, we introduce the Karhunen–Loève
(KL) and the Polynomial Chaos (PC) expansion, respectively, that are used for the
modeling of the stochastic influences, i.e., of spatial stochastic processes. In Section
2.4, we briefly describe the Monte Carlo (MC) method as an example of the weak-
strong concept. In Sections 2.5 and 2.6, we introduce two methods based upon the
weak-weak formulation, stochastic Galerkin methods and stochastic collocation
methods.

9
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2.1 Mathematical Formulation

2.1.1 Model Problem

Let (Ω,A,P) be a probability space, where Ω denotes a set of elementary events,
A a σ-algebra on Ω and P a probability measure on A, and let D ⊂ Rd denote
a bounded spatial domain. Furthermore, let c denote a real-valued second order
spatial stochastic process, i.e., c : D × Ω → R, (x;ω) 7→ c(x;ω). For each ω ∈
Ω, the trajectory c(ω) := c(·;ω) : D 7→ R is supposed to be in L2(D). We
assume the existence of constants c−, c+ ∈ R, independent of x and ω, such that
0 < c− ≤ c(x;ω) ≤ c+ < ∞. Hence, for any bounded spatial stochastic process
d : D × Ω → R with d(ω) := d(·;ω) ∈ L2(D), we consider the linear elliptic
problem,




−∇ ·

(
c(x;ω) ∇u(x;ω)

)
= d(x;ω) in D,

u(x;ω) = 0 on ∂D.
(2.1)

The coefficient c(x;ω) my describe the random diffusivity or conductivity of the
underlying system. Then, the solution u(x;ω) of the PDE denotes the correspond-
ing concentration or temperature.

2.1.2 D-weak/Ω-strong Formulation

In weak or variational formulations, PDEs and their solutions are not considered
pointwise, as it would be the case using strong formulations. Instead, both the
operator and the right-hand side are multiplied by some test function in a previ-
ously specified test space. Then, the integral over the given domain is considered.
A solution is called weak if it solves this integral formulation of the problem for
all test functions.

In this section, we consider solutions that are weak in space but strong in prob-
ability. Hence, the integral in the variational formulation is taken only over the
spatial domain D and the solutions are considered pointwise in Ω. For each re-
alization of the underlying stochastic processes c and d, we obtain a respective
deterministic spatial variational problem. Exemplarily, we now derive the varia-
tional formulation of (2.1) and provide existence and uniqueness results.
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Let us consider the Hilbert space H1(D) ⊂ L2(D) on the spatial domain D with
the inner product

(w, v)H1 =

∫

D

w(x)v(x) +∇w(x) · ∇v(x) dx,

and let us denote the subspace of functions inH1(D) vanishing in the trace sense at
the boundary of D by H1

0 := H1
0 (D) := {v ∈ H1(D) | v = 0 on ∂D}. Furthermore,

let the bilinear form a : H1
0 ×H1

0 × Ω→ R be defined by

a(w, v;ω) :=

∫

D

c(x;ω)∇w(x) · ∇v(x) dx. (2.2)

The bilinear form a is uniformly coercive and uniformly continuous for all ω ∈ Ω,
i.e., there are constants α0 > 0 and γ∞ <∞ such that

α(ω) := inf
v∈H1

0

a(v, v;ω)

‖v‖2
H1

≥ α0, (uniform coercivity),

γ(ω) := sup
w∈H1

0

sup
v∈H1

0

a(w, v;ω)

‖w‖H1‖v‖H1

≤ γ∞, (uniform continuity).

This can be easily shown using the Poincaré inequality [2] and the fact that c(x;ω)

is strictly positive and bounded from above and below by constants independent
of x and ω. Next, we define the linear form f : H1

0 × Ω→ R by

f(v;ω) :=

∫

D

d(x;ω)v(x) dx. (2.3)

Since d(ω) ∈ L2(D) for all ω ∈ Ω, f is bounded, i.e., f is continuous.
The D-weak/Ω-strong formulation of (2.1) is now given as follows. For any

random event ω ∈ Ω, find u(ω) ∈ H1
0 such that

a(u(ω), v;ω) = f(v;ω), ∀v ∈ H1
0 (D). (2.4)

Hence, using the D-weak/Ω-strong formulation, the PDE can be solved separately
for any realization ω ∈ Ω. In some way, one could consider these solutions as
“pointwise” in Ω.

It remains to provide results concerning the existence and uniqueness of solu-
tions of (2.4).

Proposition 2.1. For each ω ∈ Ω, the variational problem (2.4) admits a unique
solution u(ω) ∈ H1

0 depending continuously on the right-hand side f .

Proof. The result follows from Lax-Milgram Theorem, using the uniform coercivity
and the uniform continuity of a as well as the continuity of f [2].
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2.1.3 D-weak/Ω-weak Formulation

In this section, we consider formulations weak in space and probability. Let us
first denote the space of all square integrable random variables on Ω by L2(Ω).
We define the corresponding inner product of two random variables ξ, η ∈ L2(Ω)

by their correlation, i.e.

(ξ, η)L2(Ω) := E[ξ η] :=

∫

Ω

ξ(ω)η(ω)P(dω).

For D-weak/Ω-weak formulations, we now consider the tensor product Hilbert
space H1

0 (D)⊗ L2(Ω). The inner product on H1
0 (D)⊗ L2(Ω) is given by

(w, v)H1
0 (D)⊗L2(Ω) = E [ (w, v)H1 ]

=

∫

Ω

∫

D

w(x;ω)v(x;ω) +∇w(x;ω) · ∇v(x;ω) dxP(dω).

Similar to the D-weak/Ω-strong case, we define a bilinear form a : (H1
0 (D) ⊗

L2(Ω))× (H1
0 (D)⊗ L2(Ω))→ R and a linear form f : H1

0 (D)⊗ L2(Ω)→ R by

a(w, v) := E
[∫

D

c(x; ·)∇w(x; ·) · ∇v(x; ·) dx
]
, (2.5a)

f(v) := E
[∫

D

d(x; ·)v(x; ·) dx
]
, (2.5b)

respectively. Using again the positivity and boundedness of c as well as the
Poincaré inequality, it can easily be shown that a is coercive and continuous in the
D-weak/Ω-weak sense. In other words, we have

α := inf
v∈H1

0 (D)⊗L2(Ω)

a(v, v)

‖v‖2
H1

0 (D)⊗L2(Ω)

> 0,

γ := sup
w,v∈H1

0 (D)⊗L2(Ω)

a(w, v)

‖w‖H1
0 (D)⊗L2(Ω)‖v‖H1

0 (D)⊗L2(Ω)

<∞.

The forms a and f no longer depend on realizations ω since the uncertainties are
implied in the Hilbert space H1

0 (D) ⊗ L2(Ω), i.e., in the arguments of a and f .
Consequently, the coercivity and continuity constants are as well independent of
specific realizations and we do not need a “uniform” definition. Furthermore, it is
clear that f is again continuous.

The D-weak/Ω-weak formulation of (2.1) is given as follows. Find u ∈ H1
0 (D)⊗

L2(Ω) such that

a(u, v) = f(v), ∀v ∈ H1
0 (D)⊗ L2(Ω). (2.6)
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Hence, the solution of (2.6) contains the complete uncertainty information. It is
possible to directly evaluate statistical quantities such as mean and correlations.
Additionally, solutions of specific realizations can still be evaluated. However, we
will see in Sections 2.4 and 2.5 that solutions of (2.6) can be computationally very
expensive, also compared to the complexity of multiple solutions of (2.4).

We close the section providing results concerning the existence and uniqueness
of solutions of (2.6).

Proposition 2.2. The variational problem (2.6) admits a unique solution u ∈
H1

0 ⊗ L2(Ω) depending continuously on the right-hand side f .

Proof. Follows from Lax-Milgram Theorem, using the coercivity and the continuity
of a as well as the continuity of f [2].

2.2 Karhunen–Loève Expansion

The approximation of spatial or time-dependent stochastic processes with high
accuracy requires the sampling at many points in space or time and increases
the computational costs, e.g., of Monte Carlo methods. The objective of the
Karhunen–Loève (KL) expansion is the separation of random and spatial or time
dependencies. This facilitates not only the sampling procedure but is also a key
requirement of solution procedures for PDEs with stochastic influences such as
stochastic finite elements.

In this section, we introduce the main concept of the KL expansion. It has
been investigated separately by K. Karhunen [60] and M. Loève [65] and is closely
connected to Proper Orthogonal Decomposition (POD) [62] or Singular Value De-
composition (SVD). We first introduce the theoretical concept of the KL expansion
and of the KL truncation error. For this part, we follow the concept of [35]. How-
ever, we generalize the results from an L2-based formulation to arbitrary Hilbert
spaces. We then introduce the so-called method of snapshots that provides a
procedure to efficiently construct the KL expansion without the knowledge of a
covariance function, using just a finite number of random samples [82, 47]. Finally,
we generalize the results of the first two sections to obtain joint KL expansions for
vector-valued processes or of several scalar-valued but correlated processes. We
follow the concept of [46], generalizing again to arbitrary Hilbert spaces.
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2.2.1 Theoretical Aspects

As in Section 2.1.1, let (Ω,A,P) be a probability space and let D ⊂ Rd denote a
spatial domain. For some appropriate Hilbert space X on D with inner product
(·, ·)X , let c : D×Ω→ R now denote a second order real-valued spatial stochastic
process with trajectories c(ω) ∈ X = X(D) for each ω ∈ Ω. We split c into its
expectation c̄(x) := E [c(x; ·)] and a fluctuating part c̃(x, ω) = c(x;ω)− c̄(x) such
that E [c̃(x; ·)] = 0, i.e.,

c(x;ω) = c̄(x) + c̃(x;ω). (2.7)

Furthermore, let c be a second order process, i.e., square integrable with respect
to the probability measure P. Then, its covariance function

C(x1, x2) := E [c̃(x1; ·)c̃(x2; ·)] (2.8)

is bounded by the Cauchy-Schwarz inequality and symmetric positive definite.
Hence, the eigenvalues λk, k ∈ N, of the covariance integral kernel T : X → X,

(Tv)(x) := (C(x, ·), v)X , v ∈ X, (2.9)

are strictly positive and the corresponding eigenfunctions ck ∈ X, k ∈ N, can be
orthonormalized such that (ck, cl)X = δk,l, where δ denotes the Kronecker delta.
The subsequent theorem provides a decomposition of the stochastic process in the
desired form.

Theorem 2.3 (Karhunen–Loève Expansion). Let c(x;ω), C(x1, x2) and (Tv)(x)

be as defined in (2.7), (2.8), and (2.9), respectively. Then, it holds that

c̃(x;ω) =
∞∑

k=1

√
λkξk(ω)ck(x), (2.10)

where λk and ck, k ∈ N, denote the eigenvalues and eigenfunctions of T , respec-
tively, and ξk, k ∈ N, are uncorrelated random variables with zero mean and unit
variance. They are given by

ξk(ω) :=
1√
λk

(c̃(·;ω), ck)X . (2.11)

Proof. Using the spectral theorem, it is clear that c̃(x;ω) can be expanded as a
linear combination of the eigenfunctions. Hence, we can assume that c̃(x;ω) is of
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the form of (2.10) and it remains to show that the random variables ξk fulfill the
proposed properties. Using (2.10), the covariance can be written as

C(x1, x2) = E [c̃(x1; ·)c̃(x2; ·)]

=
∞∑

k=1

∞∑

l=1

E [ξk(·)ξl(·)]
√
λkλlck(x1)cl(x2).

We use this form of the covariance function and apply the operator T on the
eigenfunction cn. The orthonormality of the eigenfunction yields

λncn(x) = (Tcn)(x) = (C(x, ·), cn)X

=
∞∑

k=1

∞∑

l=1

E [ξk(·)ξl(·)]
√
λkλlck(x) (cl, cn)X

=
∞∑

k=1

E [ξk(·)ξn(·)]
√
λkλnck(x).

Taking the inner product of both left-hand and right-hand side with the eigen-
function cm yields

λn(cn, cm)X = λnδm,n =
∞∑

k=1

E [ξk(·)ξn(·)]
√
λkλn(ck, cm)X

= E [ξm(·)ξn(·)]
√
λmλn.

Since λk > 0, k ∈ N, we directly obtain E [ξm(·)ξn(·)] = δm,n. Hence, all random
variables ξk are uncorrelated and have unit variance. Considering the expectation
of c̃ which is known to be zero,

E[c̃(x; ·)] =
∞∑

k=1

√
λkE[ξk(·)]ck(x) = 0,

we obtain E[ξk] = 0. To show (2.11), we consider the inner product of c̃ with the
eigenfunction cl.

(c̃(·;ω), cl)X =
∞∑

k=1

√
λkξk(ω)(ck, cl)X =

√
λlξl(ω)

which proves the claim.
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For numerical purposes, one needs a finite approximation of the KL expansion.
We assume that the eigenvalues are sorted in descending order, i.e., λ1 ≥ λ2 ≥ . . .,
and truncate the series after K terms. The truncation error is denoted by

εK(x;ω) :=
∞∑

k=K+1

√
λkξk(ω)ck(x).

It is straightforward to derive the mean squared truncation error as the sum over
the remaining eigenvalues,

E
[
‖εK‖2

X

]
=

∞∑

k=K+1

∞∑

l=K+1

√
λkλlE [ξkξl] (ck, cl)X =

∞∑

k=K+1

λk. (2.12)

2.2.2 Method of Snapshots

In many cases, the covariance function C is not given analytically and it has to be
approximated by Monte Carlo procedures. Let c(·, ωn), 1 ≤ n ≤ ntrain, be ntrain
instances of the stochastic process. Then, one uses the Monte Carlo approximation

CMC(x1, x2) :=
1

ntrain

ntrain∑

n=1

c̃(x1;ωn)c̃(x2;ωn). (2.13)

We define the covariance operator TMC analogously to (2.9), using CMC instead of
C.

In discretized form, the covariance functions C and CMC can be represented by
positive (semi-)definite matrices which we denote covariance matrices. Then, the
evaluation of T and TMC reduces to a matrix-vector product. Let N be the number
of degrees of freedom of the discretization. If ntrain is smaller than N , the rank of
the N -dimensional covariance matrix is at most ntrain and the method of snapshots
[82] provides an alternative procedure to evaluate the non-zero eigenvalues and
the corresponding eigenfunctions. We define the ntrain-dimensional matrix Ĉ =

(Ĉn,m)ntrain
n,m=1 by

Ĉn,m :=
1

ntrain

(c̃(·;ωn), c̃(·;ωm))X (2.14)

and denote its eigenvalues by λ̂k with corresponding `2-orthonormalized eigenvec-
tors vk ∈ Rntrain , k = 1, . . . , ntrain. The ith component of vk is denoted by v(i)

k . We
define the functions

ĉk(x) :=

ntrain∑

n=1

v
(n)
k c̃(x;ωn), (2.15)
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k = 1, . . . , ntrain, and show that λ̂k coincide with the non-zero eigenvalues of CMC ,
where ĉk denote the corresponding eigenfunctions. We evaluate the covariance
operator TMC at ĉk. Using the definitions of CMC in (2.13) and of ĉk in (2.15), we
obtain

(TMCĉk) (x) = (CMC(x, ·), ĉk)X

=

(
1

ntrain

ntrain∑

n=1

c̃(x;ωn)c̃(·;ωn),

ntrain∑

m=1

v
(m)
k c̃(·;ωm)

)

X

=

ntrain∑

n=1

c̃(x;ωn)

ntrain∑

m=1

v
(m)
k

1

ntrain

(c̃(·;ωn), c̃(·;ωm))X .

The latter part of the right-hand side is just the definition of Ĉn,m as introduced
in (2.14). Using the eigenvalue properties of Ĉ yields

(TMC ĉk) (x) =

ntrain∑

n=1

c̃(x;ωn)

ntrain∑

m=1

Ĉn,mv
(m)
k

=

ntrain∑

n=1

c̃(x;ωn)λ̂kv
(n)
k

= λ̂kĉk.

Hence, λ̂k is eigenvalue and ĉk eigenfunction of TMC. It is easy to show that the
eigenfunctions ĉk are orthogonal. The inner product is given by

(ĉk, ĉl)X =

ntrain∑

n=1

ntrain∑

m=1

v
(n)
k v

(m)
l (c̃(·;ωn), c̃(·;ωn))X

and using the definition of Ĉ and its eigenvalue properties, we obtain

(ĉk, ĉl)X = ntrain

ntrain∑

n=1

ntrain∑

m=1

v
(n)
k Ĉn,mv

(m)
l

= λl ntrain v
T
k vl = λl ntrainδk,l.

Hence, after normalization and sorting the eigenvalues in descending order, we
obtain

ck =
1√

λkntrain

ĉk.

As a consequence, it is possible to obtain the relevant eigenvalues and eigenfunc-
tions of the covariance operator by solving only a smaller problem. The remaining
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eigenvectors that correspond to zero eigenvalues do not contain important infor-
mation for the representation of the stochastic since the mean squared truncation
error from (2.12), using just the first ntrain eigenfunctions, is obviously zero.

2.2.3 Multi–Component KL Expansion

So far, we introduced the KL expansion for scalar functions. Often, it is desirable
to generate expansions also for vector-valued processes [46]. Let Xr, r ∈ N, denote
the space of r-dimensional functions, where each component is a function in X.
For c,d ∈ Xr, let

(c,d)Xr =
r∑

j=1

(c j, d j)X

be the inner product on Xr, where c j denotes the jth component of c. Now, for
some r-dimensional random process c : D × Ω → Rr, c(·;ω) ∈ Xr, with c̄(x) =

E[c(x; ·)] and c̃(x;ω) = c(x;ω) − c̄(x), the objective is to generate expansions
analogously to (2.10),

c̃(x;ω) =
∞∑

k=1

√
λkξk(ω)ck(x), (2.16)

where all ck ∈ Xr are orthonormal with respect to (·, ·)Xr and ξk(ω) are real scalar-
valued random variables with zero mean and unit variance. Such an expansion can
also be useful to jointly model several scalar-valued but correlated processes. Then,
the correlation is already included in the expansion and one does not need any
further processing of the different random variables of each process. Furthermore,
the total number of terms needed for a good approximation of the processes may
be smaller for the resulting joint expansion than for separate expansions.

For the construction of the multi-component KL expansion, we define the co-
variance function C similarly to (2.8) by

Ci,j(x1, x2) := E
[
c̃ i(x1; ·)c̃ j(x2; ·)

]
,

C(x1, x2) := E
[
c̃(x1; ·)c̃(x2; ·)T

]
∈ Rr×r,

and the covariance operator T : Xr → Xr is given as

(Tc)(x) :=
(
(Ci,·(x, ·), c)Xr

)r
i=1

, c ∈ Xr.
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Let λk, k ∈ N, be the eigenvalues of T and ck ∈ Xr the corresponding orthonor-
malized eigenfunctions. With the random variables

ξk(ω) :=
1√
λk

(c̃(·;ω), ck)Xr ,

the fluctuating part c̃ of the stochastic process c is given by (2.16). For the proof
of the representation, we use

λncn(x) = (Tcn)(x) =
((
C i,·(x, ·), cn

)
Xr

)r
i=1

=
((
E
[
c̃ i(x; ·)c̃(·; ·)

]
, cn
)
Xr

)r
i=1

=
∞∑

k=1

∞∑

l=1

E [ξk(·)ξl(·)]
√
λkλlck(x) (cl, cn)Xr

and the remaining part is equivalent to the proof of Theorem 2.3. Furthermore, it
is clear that the mean squared truncation error is given analogously to (2.12) by
∑∞

k=K+1 λk.
It is still possible to apply the method of snapshots analogously to the scalar-

valued case. We define the ntrain-dimensional matrix Ĉ by

Ĉn,m :=
1

ntrain

(c̃(·;ωn), c̃(·;ωm))Xr

and evaluate its eigenvalues λ̂k and eigenvectors vk ∈ Rntrain , k = 1, . . . , ntrain.
Then, the eigenvalues λ̂k coincide with the non-zero eigenvalues of the Monte Carlo
approximation TMC of T and the corresponding orthonormalized eigenfunctions of
TMC are given by

ck(x) :=
1√

λkntrain

ntrain∑

n=1

v
(n)
k c̃(x;ωn).

The proof works analogously to the scalar-valued case.

2.3 Polynomial Chaos Expansion

It remains to model the random variables ξk : Ω→ R, k ∈ N. Certainly, equation
(2.11) is not appropriate for numerical purposes since it already requires the knowl-
edge of the specific realization of c(·;ω). Furthermore, the evaluation of the inner
product in (2.11) can be expensive. Even with the respective density functions of
ξk at hand, they may be difficult to simulate since they are only uncorrelated but
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not necessarily independent. Hence, it would be desirable to represent ξk using a
set of independent random variables with known density function.

The Polynomial Chaos (PC) expansion, first introduced by Norbert Wiener in
1938 [101], provides such a method. Let {ηi : Ω→ R}∞i=1 be a set of uncorrelated
standard normally distributed random variables. It is shown that the space of all
polynomials in {ηi}∞i=1 is dense in L2(Ω), i.e., dense in the space of all second order
random variables. Hence, any second order random variable ξ can be represented
by a series of orthogonal polynomials in {ηi}∞i=1 [35].

One possible choice of orthogonal polynomials are Hermite polynomials [101].
For the n-dimensional vector of coordinates η = (ηi)

n
i=1 and a subset {ηi1 , . . . , ηip},

we denote the Hermite polynomials of degree p by

Hp(ηi1 , . . . , ηip) := e
1
2
ηTη (−1)p

∂p

∂ηi1 . . . ∂ηip
e−

1
2
ηTη, (2.17)

where ηir is not necessarily different to ηis for r 6= s. Hermite polynomials are
orthogonal with respect to the weighting function wH(η) = (2π)−n/2 e−

1
2
ηTη, i.e.,

∫

Rn
Hp(ηi1 , . . . , ηip)Hq(ηj1 , . . . , ηjq)wH(η) dη = hi1,...,ip · δ{i1,...,ip},{j1,...,jq},

where hi1,...,ip denotes the norm of Hp(ηi1 , . . . , ηip),

hi1,...,ip =

∫

Rn

∣∣Hp(ηi1 , . . . , ηip)
∣∣2wH(η) dη.

Since the weighting function wH corresponds to the Gaussian probability density
function, Hermite polynomials in standard normally distributed random variables
{ηi}∞i=1 are also orthogonal with respect to the Gaussian probability measure, i.e.,

E
[
Hp(ηi1 , . . . , ηip)Hq(ηj1 , . . . , ηjq)

]
= hi1,...,ip · δ{i1,...,ip},{j1,...,jq}.

Now, hi1,...,ip denotes the second moment of Hp(ηi1(ω), . . . , ηip(ω)) and any second
order random variable ξ ∈ L2(Ω) can be expanded as

ξ(ω) = a0H0 +
∞∑

p=1

∑

i1≥...≥ip≥1

ai1,...,ipHp(ηi1(ω), . . . , ηip(ω)), (2.18)

where a0 and ai1...ip denote deterministic coefficients independent of ω,

a0 = E [ξ] , ai1...ip =
E
[
ξHp(ηi1 , . . . , ηip)

]

hi1,...,ip
.
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Hence, the PC expansion can be seen as the projection of ξ : Ω→ R into the space
of polynomials with respect to {ηi : Ω→ R}∞i=1.

For numerical purposes, it is necessary to truncate the infinite PC series (2.18).
Therefore, we specify a maximal degree r of the polynomials and restrict to the
maximal number n of independent random variables. Then, the total number of
remaining terms is given by P + 1 =

(
n+r
n

)
. Now, it is common to rewrite the

truncated version of (2.18) in the form

ξ(ω) =
P∑

p=0

âpĤp(η(ω)), (2.19)

where each coefficient âp and each polynomial Ĥp(η(ω)) in (2.19) corresponds to
a specific coefficient ai1...ip and polynomial Hp(ηi1(ω), . . . , ηip(ω)) in (2.18), respec-
tively. We assume that the entities in (2.19) appear in the particular order that
is indicated in (2.18), i.e., first the polynomial of degree 0, then n polynomials of
degree 1 and so on. Hence,

â0 = a0, . . . , ân = an, ân+1 = a1,1, ân+2 = a2,1, ân+3 = a2,2, ân+4 = a3,1, . . .

and analogously for the polynomials.
It is also possible to use other than normally distributed random variables to

model second order processes. As observed before, the weighting function wH

of Hermite polynomials corresponds to the probability density function of the
Gaussian random variables. Similarly, e.g., the weighting functions of Laguerre,
Jacobi, and Legendre polynomials correspond to the probability density functions
of gamma, beta, and uniformly distributed random variables, respectively [103].
Hence, analogous derivations of (2.18) and (2.19) can be done using other appro-
priate polynomials and random variables. It has been shown that the convergence
rate of (2.19) depends on the selected polynomials and random variables. Hence,
it depends on the specific problem which representation provides optimal conver-
gence. For more information, we refer to [103].

2.4 Monte Carlo Method

The most straightforward example for D-weak/Ω-strong formulations is the Monte
Carlo (MC) method [69, 72]. For each random realization of the random input,
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we obtain a deterministic problem and can hence use known deterministic solvers.

Considering the example given in Section 2.1.1, we create a discretized subspace
X ⊂ H1

0 (D) with the basis {ϕ1, . . . , ϕN}, e.g., by using the finite element method.
For each random realization c(x;ω) and d(x;ω), we construct a discretized formu-
lation of (2.4), i.e., the matrix A(ω) := (a(ϕj, ϕi;ω))Ni,j=1 and the right-hand side
F (ω) := (f(ϕi;ω))Ni=1, where a and f are given in (2.2) and (2.3), respectively.
Now, let u ∈ RN be the solution of the linear system A(ω)u(ω) = F (ω). Then,
the solution u ∈ X of the discretized version of (2.4) is given by

u(x;ω) =
N∑

i=1

ui(ω)ϕi(x).

Using the KL expansions of c(x;ω) and d(x;ω), it is possible to efficiently evalu-
ate the system components A(ω) and F (ω). Let ck, k ∈ N, be the kth eigenfunction
of the KL expansion of c with corresponding eigenvalue λk and random variable
ξk. We assume that c and d are sufficiently precise approximated by using only
the first K terms of the corresponding KL expansions. For w, v ∈ X, let ak(w, v)

be given by

ak(w, v) :=

∫

D

ck(x)∇w(x) · ∇v(x) dx,

k = 0, . . . , K, where c0 is given by the mean of c for notational convenience and we
denote λ0 = 1, ξ0 = 1. Now, we define Ak := (ak(ϕj, ϕi))

N
i,j=1. Then A(ω) can be

constructed as A(ω) =
∑K

k=0

√
λkξk(ω)Ak. Analogously, we can construct F (ω).

For the evaluation of statistical outputs such as mean or variance of the solution
u or of any from u derived output of interest s(u), we solve the discretized version of
(2.4) for a large set of random realizations of c and d. Then, the MC approximation
of the mean and the variance of s(u), i.e., the sample mean and sample variance,
are given by

EMC [s(u)] =
1

M

M∑

m=1

s(u(ωm)), (2.20)

VMC [s(u)] =
1

M − 1

M∑

m=1

(s(u(ωm))− EMC [s(u)])2 , (2.21)

respectively, where M denotes the number of samples used for the approximation
and ωm, m = 1, . . . ,M , the respective underlying random events.
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The advantages of the Monte Carlo method include simplicity concerning the
implementation. Not only that well known deterministic solvers can be used, it
is also clear that parallelization techniques can directly be applied. Furthermore,
the convergence rate of the sample mean and variance with respect to the number
of used samples M is independent of the dimensionality of the random space, i.e.,
independent of the number of random variables used to characterize the random
inputs in the KL and PC expansion [15, 32].

On the other hand, the convergence is rather slow. The error decreases only
in the order of O(1/

√
M). Hence, it depends on the actual dimension of the

probability space if the Monte Carlo method outperforms other techniques that
are presented in the subsequent sections.

Several modifications of the Monte Carlo method have been introduced to im-
prove the convergence of the statistical outputs. E.g., using the quasi–Monte
Carlo method, the random selection of the samples is replaced by a determinis-
tic sequence of properly chosen points, so-called quasi-random or low-discrepancy
sequences [15]. Recently, another Monte Carlo approach has been introduced for
stochastic PDEs, called multilevel Monte Carlo method [8, 21], where the PDE is
solved for several spatial discretizations. Instead of the straightforward MC ap-
plication, as for example given in (2.20), the MC mean is evaluated based on a
very coarse grid and “updated” by an MC mean of the difference of the outputs of
different grids. E.g.,

EMLMC [s(uN )] =
1

M0

M0∑

m=1

s(uN0(ωm)) +
1

M1

M1∑

m=1

(s(uN (ωm))− s(uN0(ωm))) ,

where uN and uN0 , N0 < N , denote the solutions of a PDE based upon dis-
cretizations with N and N0 degrees of freedom, respectively. It can be shown that
the computational costs compared to the straightforward MC application can be
reduced [21].

2.5 Stochastic Galerkin Method

The stochastic Galerkin method has first been proposed by R. G. Ghanem and P.
D. Spanos in [35] and denotes the first D-weak/Ω-weak formulation. It has been
further discussed for example in [69] and [103] that form the basis for the following
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discussion. The method is also known as stochastic finite element method. How-
ever, this denomination is also used in other contexts, even for D-weak/Ω-strong
formulations. Hence, we prefer the non-ambiguous name.

As for the D-weak/Ω-strong formulation, we use a discretized space X with
the basis {ϕ1, . . . , ϕN}. Additionally, we now discretize the space of second order
random variables L2(Ω). We use the KL expansions of the coefficients c and d and
model the occurring random variables using PC expansions. In the combination
with the truncated KL expansion, the number n of used random variables η =

(η1, . . . , ηn) usually coincides with the total number K of used KL terms [35].
Hence, for a maximal degree r of the polynomial chaos, we obtain P + 1 =

(
K+r
K

)

orthogonal basis functions Ĥp(η(ω)), p = 0, . . . , P , as defined in (2.19). These basis
functions span the discretized subspace S = S(Ω) of L2(Ω), i.e., the discretized
version of the D-weak/Ω-weak formulation (2.6) is based upon the N · (P + 1)-
dimensional subspace X(D)⊗ S(Ω) ⊂ H1

0 (D)⊗ L2(Ω). A basis of X ⊗ S is given
by {ϕi · Ĥp | i = 1, . . . ,N , p = 0, . . . , P}. In the following, we assume that the
polynomial chaos functions Ĥp are normalized and therefore orthonormal.

Using the definitions of Section 2.1.3, it is clear that we can define the determin-
istic stiffness matrix A ∈ RN·(P+1)×N·(P+1) and the right-hand side F ∈ RN·(P+1)

of the discretized problem (2.6) by

A :=
(
a(ϕjĤq, ϕiĤp)

)
i, j = 1, . . . ,N
p, q = 0, . . . , P

, (2.22a)

F :=
(
f(ϕiĤp)

)
i = 1, . . . ,N
p = 0, . . . , P

, (2.22b)

respectively. Now, let u ∈ RN·(P+1) be the solution of the linear system Au = F .
Then, the solution u ∈ X ⊗ S of the discretized version of (2.6) is given by

u(x;ω) =
N∑

i=1

P∑

p=0

ui,pϕi(x)Ĥp(η(ω)).

The evaluation of the mean and the variance of u is straightforward. Since,
by definition (2.17) and the orthogonality property of the Hermite polynomials,
Ĥ0(η) = 1 and E[Ĥp(η)] = 0 for p > 0, we have

E[u(x; ·)] =
N∑

i=1

ui,0ϕi(x).
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Due to the orthonormality of the polynomial chaos basis functions Ĥp, the corre-
lation function of u is given by

Cu(x1, x2) = E[u(x1; ·)u(x2; ·)] =
N∑

i=1

N∑

j=1

P∑

p=1

ui,puj,pϕi(x1)ϕj(x2).

The variance of u at a specific point is given by V[u(x; ·)] = Cu(x, x).

For linear output functionals s(u), the derivation of mean and variance of s
is straightforward, e.g., E[s(u)] = s(E[u]) =

∑N
i=1 ui,0s(ϕi(x)). For nonlinear

outputs, the evaluation may be more involved and may require the knowledge
of higher moments of Ĥp. However, it is still possible to evaluate sample mean
and sample variance as introduced in Section 2.4 since u(x;ω) can be evaluated
pointwise for random realizations η(ω).

2.5.1 The Stiffness Matrix

Let us now take a closer look to the stiffness matrix A for stochastic Galerkin
methods. We use the KL expansion (2.10) of the coefficient c as introduced in (2.7).
The KL sum is truncated after K terms and we model the arising random variables
ξk using the PC expansion. For notational convenience, we set c0(x) := c̄(x), λ0 = 1

and ξ0 = 1. Then, c is given by

c(x;ω) =
K∑

k=0

√
λkξk(ω)ck(x) =

K∑

k=0

√
λkck(x)

(
P∑

r=0

âk,rĤr(η(ω))

)
.

The components A(i,p),(j,q) = a(ϕjĤq, ϕiĤp) of the stiffness matrix A can therefore
be written as

A(i,p),(j,q) =
K∑

k=0

√
λk E

[∫

D

ξkck(x)∇ϕj(x)Ĥq(η) · ∇ϕi(x)Ĥp(η) dx

]

=
K∑

k=0

√
λk

(∫

D

ck(x)∇ϕj(x) · ∇ϕi(x)dx

)
· E
[
ξkĤq(η)Ĥp(η)

]
.

Hence, we see that we can separate A into components with different dependen-
cies. On the one hand, we have parts depending just on quantities in the space X
of functions on the spatial domain D. On the other hand, we have parts depend-
ing only on the quantities in the space S of second order random variables. We
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Figure 2.1: Sparsity pattern of the matrix AS1 for r = 1, 2, 3, 4, respectively.

therefore define the corresponding matrices as

AXk :=

(∫

D

ck(x)∇ϕj(x) · ∇ϕi(x) dx

)N

i,j=1

∈ RN×N , (2.23a)

ASk :=
(
E
[
ξkĤq(η)Ĥp(η)

])P
p,q=0

=

(
P∑

r=0

âk,rE
[
Ĥr(η)Ĥq(η)Ĥp(η)

])P

p,q=0

∈ R(P+1)×(P+1), (2.23b)

k = 0, . . . , K, such that the stiffness matrix is given by the sum of matrix tensor
products

A :=
K∑

k=0

√
λk
(
AXk ⊗ ASk

)
. (2.23c)

Hence, this formulation separates random and spatial influences.
The matrices AXk correspond to the stiffness matrices of the respective deter-

ministic discretizations and hence show the known sparsity pattern. E.g., using
the finite element methods with a linear Lagrange basis to discretize H1

0 (D), the
matrices AXk are tridiagonal.

The construction of the matrices ASk include the evaluations of the mean values
of E[Ĥr(η)Ĥq(η)Ĥp(η)], r, p, q = 0, . . . , P . However, this can be done analytically
since the random variables in η(ω) are mutually independent with known moments.
Furthermore, the values of E[Ĥr(η)Ĥq(η)Ĥp(η)] are actually independent of the
current problem and can hence be evaluated and stored once and reused for many
different problems. The sparsity pattern of the matrix ASk , k = 1, is given in Figure
2.1 for a KL expansion with K = 10 terms and four different maximal polynomial
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degrees r = 1, 2, 3, and 4, respectively. For r = 1, we obtain 13 non-zeros terms
which denotes about 10.74% of the entries whereas for r = 4, we obtain 15931

non-zeros terms, i.e., 1.590% of the entries.

Using the tensor product formulation (2.23c), we can describe the shape of
Ak := AXk ⊗ASk as a block matrix of the sparsity pattern of AXk , where each block
shows the sparsity pattern of ASk . Obviously, Ak can analogously be constructed
vice versa, i.e., as a block matrix of the shape of ASk , where each block has the
pattern of AXk . In any case, it is clear that a complete decoupling of random and
spatial influences is not possible.

Provided that the solutions u are sufficiently smooth in the random space,
stochastic Galerkin methods exhibit fast convergence rates with increasing order
of the KL and PC expansions. The resolution of the random space S is very
high whereas Monte Carlo methods need many simulations to obtain a similar
approximation quality. However, in contrast to Monte Carlo methods, the use of a
larger number of random variables and higher order polynomials strongly increases
the computational effort. The dimension of ASk and therefore of the stiffness matrix
A grows exponentially fast in the number K of KL terms and with the maximal
degree r of the polynomial chaos, recalling that P + 1 =

(
K+r
K

)
. Hence, it depends

on the actual choice of K and r if Galerkin methods outperform the Monte Carlo
method that converges rather slow.

2.6 Stochastic Collocation Method

In this section, we briefly describe the idea of stochastic collocation methods [6, 9,
10, 102] that can be seen as a generalization of the stochastic Galerkin method. The
objective is to combine the advantages of both Monte Carlo methods and stochastic
Galerkin methods. The main idea is to decouple random and spatial dependencies
such that the implementation can be done using basically deterministic solvers as
for the Monte Carlo method but maintain the high resolution of S as obtained
using stochastic Galerkin methods.

Stochastic collocation methods are also based upon D-weak/Ω-weak formula-
tions, i.e., for the example provided in Section 2.1.1, solutions in the tensor product
space H1

0 (D)⊗L2(Ω) are desired. As before, the method performs a Galerkin ap-
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proximation in space and one obtains a discrete subset X of H1
0 (D), e.g., using

finite elements. Additionally, the method takes advantage of multivariate polyno-
mial interpolations. The random space L2(Ω) is approximated using a collocation
in the zeros of suitable tensor product orthogonal polynomials. Hence, the ap-
proximation S of L2(Ω) is again spanned by orthogonal polynomials.

In contrast to stochastic Galerkin methods, the solution procedure requires
only evaluations of the corresponding deterministic problems at each interpolation
point. Naturally, this leads to uncoupled problems as in the Monte Carlo approach.
At the same time, the fast convergence for sufficiently smooth processes can be
conserved [6, 102].

The effectivity of such methods depends on proper choices of interpolation
points since the overall complexity corresponds to the solution of M determin-
istic problems, where M is the number of selected knots. Hence, the objective
is to choose as few points as possible. Referring to the KL expansion (2.10), a
“point” in L2(Ω) can be considered to be represented as one random realization
of the random variables ξ1, . . . , ξK . Hence, the space to be represented can be
transformed to the multidimensional cube [0, 1]K ⊂ RK .

Several possibilities for appropriate interpolation point selections have been
introduced. Besides the straightforward K-dimensional tensor product of a set
of knots in the one-dimensional interval [0, 1], e.g., sparse grids based upon the
Smolyak algorithm or Stroud’s cubature methods have been proposed. For more
details, see [102] and the references therein.



Chapter 3

Affine Decompositions of

Parametric Stochastic Processes

This chapter is based upon joint work with K. Urban and the main results have
already been published in [92] in a very similar form. We added Section 3.1 about
affine decompositions in the context of the RBM.

We consider parameter dependent spatial stochastic processes in the context of
PDEs and model order reduction. For a given parameter, a random sample of
such a process specifies a sample coefficient function of a PDE, e.g., characteristics
of porous media such as Li-ion batteries or random influences in biomechanical
systems. To apply the Reduced Basis Method (RBM) to parametrized systems
with stochastic or deterministic parameter dependencies, it is necessary to get
affine decompositions of the systems in parameter and space [45, 73].

For deterministic problems, it is common to use the Empirical Interpolation
Method (EIM) [7, 86] for parametric coefficients and the Discrete EIM (DEIM)
[19, 20] as well as the Operator EIM (OEIM) [27, 43] for discrete operator approxi-
mations. For stochastic coefficients, one can apply the Karhunen–Loève expansion
[60, 65] where the terms with stochastic dependencies are assumed to satisfy cer-
tain distributions and are modeled using polynomial chaos expansions [101, 103].

In this chapter, we extend the EIM to parametrized spatial stochastic processes.
The goal is to develop efficiently computable affine decompositions of not only pa-
rameter dependent but also stochastic systems that separate spatial dependencies

29
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from parametric and probabilistic influences without any assumptions on the dis-
tribution of non-spatial terms. We will use the basic concept of the EIM together
with ideas from Proper Orthogonal Decomposition (POD). We emphasize that the
presented methods are not limited to stochastic functions but work analogously
on noisy input data or on other hardly decomposable functions.

We start the chapter introducing the necessity and applicability of affine decom-
positions in the context of reduced methods. In Section 3.2, we provide necessary
information about the POD, EIM, Operator EIM, and DEIM that will be used
to introduce two new approaches to construct affine decompositions of paramet-
ric, stochastic, and possibly non-smooth processes. In Section 3.3, we introduce a
Proper Orthogonal Interpolation Method (POIM) that is based on the EIM and
the POD and replaces the L∞-based basis selection by an L2-‘optimal’ basis. We
show a connection to the DEIM and provide new error estimates that can be used
for both methods. We then introduce a Least-Squares EIM (LSEIM) in Section
3.4 that uses more knots than basis functions. A similar approach as already been
presented in [71]. In Section 3.5 we provide a numerical example and show that
these methods can be used to obtain close to optimal approximations of random
and also noisy input data.

3.1 Affine Decompositions in the Context of the

RBM

In this section, we show how affine decompositions can be used to efficiently solve
parametric PDEs using a small set of basis functions. The objective is to assemble
and solve the system independently of the dimension of the actual full discretiza-
tion but depending only on the size of the reduced basis.

We consider again the example problem given in Section 2.1.1 and the corre-
sponding D-weak/Ω-strong formulation of Section 2.1.2. For now, ω may denote
either a deterministic parameter or a stochastic event. As in Section 2.4, we denote
N as the dimension of the full discretized problem, i.e., as the size of the corre-
sponding basis {ϕ1, . . . , ϕN} of the discretized Hilbert space X. Furthermore, let
N � N denote the size of a ‘reduced basis’ {ζ1, . . . , ζN}, span{ζ1, . . . , ζN} =:

XN ⊂ X, where ζn =
∑N

i=1 zi,n ϕi.
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We assume the availability of affine decompositions of the bilinear form a from
(2.2) and of the linear form f from (2.3) given by

a(w, v;ω) =
Ma∑

m=1

θam(ω) am(w, v), (3.1)

f(v;ω) =
Mf∑

m=1

θfm(ω) fm(v), (3.2)

respectively, whereMa,M f � N . As described in Section 2.4, the stiffness matrix
of the discretized system is given by A(ω) := (a(ϕj, ϕi;ω))Ni,j=1 and the right-hand
side can be evaluated as F (ω) := (f(ϕi;ω))Ni=1. Furthermore, we define the ω-
independent matrices Am := (am(ϕj, ϕi))

N
i,j=1, m = 1, . . . ,Ma, and the vectors

Fm(ω) := (fm(ϕi))
N
i=1, m = 1, . . . ,M f .

The reduced problem formulation (2.4) reads as follows: For any ω ∈ Ω, find
uN(ω) ∈ XN such that

a(uN(ω), v;ω) = f(v;ω), ∀v ∈ XN .

Using the reduced basis stiffness matrix (AN(ω) := a(ζk, ζn;ω))Nn,k=1 and right-
hand side FN(ω) := (f(ζn;ω))Nn=1, the reduced basis solution uN(ω) is given by
uN(ω) =

∑N
n=1 uN,n(ω)ζn, where uN(ω) ∈ RN denotes the solution of AN(ω)uN =

FN(ω). Hence, it suffices to solve a linear equation of dimension N � N . For
adequately chosen reduced basis functions, we expect u(ω) ≈ uN(ω).

However, for each parameter or random sample ω ∈ Ω, we have to assemble
a new reduced basis stiffness matrix and right-hand side. The straightforward
construction of AN(ω) involves the evaluation of

a(ζk, ζn;ω) =
N∑

j=1

N∑

i=1

zj,kzi,n a(ϕj ϕi;ω).

In other words, using the reduced basis coefficient matrix ZN := (zi,n)i=1,...,N ,
n=1,...,N

, we

have AN(ω) = ZT
NA(ω)ZN , and analogously, we can evaluate FN(ω) = ZT

NF (ω).
Hence, the assembling of the reduced system is not independent of N and therefore
not efficient. Using directly the definitions of a and f in (2.2) and (2.3), the
construction of the system involves the integration over the domain D which also
depends on the fine discretization, i.e., on N .
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Let us now describe the application of the affine decompositions (3.1) and (3.2)
of a and f for the efficient construction of the system. Using the above definitions
of the ω-independent quantities Am and Fm, we define the corresponding reduced
basis quantities AN,m := ZT

NAmZN ∈ RN×N and FN,m := ZT
NFm ∈ RN . Since these

components are also ω-independent, they have to be evaluated only once and can
be stored for further use. For each new parameter or random sample ω ∈ Ω, using
(3.1) and (3.2), we can now assemble

AN(ω) =
Ma∑

m=1

θam(ω)AN,m, FN(ω) =
Mf∑

m=1

θfm(ω)FN,m, (3.3)

with the computational complexitiesO(MaN2) andO(M fN), respectively. Hence,
using affine decompositions, the assembling of the system can be performed inde-
pendently of N , and the reduced solution can be obtained efficiently.

3.2 Preliminaries

In this section, we briefly review some of the basic known facts on POD and EIM
that are needed in order to describe our new approaches.

3.2.1 Problem Formulation

Let (Ω,A,P) be a probability space, P ⊂ Rp be a set of deterministic parameters,
and let D ⊂ Rd denote a spatial domain. Furthermore, let c : D × (P × Ω) → R
denote a real-valued parameter dependent spatial stochastic process. For each pair
(µ, ω) ∈ P × Ω, we assume to obtain a trajectory c(µ, ω) ∈ X ⊂ L∞(D) ∩ C0(D)

for some appropriate Hilbert space X on D.
Let now c(µ, ω) denote a coefficient or right-hand side in some PDE. Provided

that c(µ, ω) is an affine function of the parameters and the spatial variables, it is
also possible to get an affine approximation of the bilinear form a and the linear
form f . In general, however, this requirement is not fulfilled, in particular in the
presence of stochastic influences. The objective of this chapter is thus (i) to find
an affine approximation of c(µ, ω) of the form

c(x;µ, ω) ≈
M∑

m=1

θm(µ, ω) qm(x) (3.4)
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with so-called collateral basis functions qm ∈ X, m = 1, . . . ,M , (ii) to construct
efficient evaluation procedures for the coefficients θm(µ, ω) ∈ R, m = 1, . . . ,M ,
and (iii) the derivation of effective a-posteriori error estimators to choose M ∈ N
possibly small in order to guarantee a certain accuracy in (3.4).

Suppose an affine decomposition in the deterministic parameter is already given,
i.e.,

c(x;µ, ω) =

Q∑

q=1

θq(µ) cq(x;ω),

where θq(µ) can be evaluated efficiently, possibly analytically. We can evaluate the
respective KL expansions of the stochastic functions cq, truncate each expansion,
and obtain a decomposition of the desired form,

c(x;µ, ω) ≈
Q∑

q=1

Kq∑

k=0

θq(µ)cq,k(ω)
√
λq,kcq,k(x).

Otherwise, more involved algorithms are necessary.

3.2.2 Proper Orthogonal Decomposition (POD)

As already mentioned, the POD can be seen as the deterministic equivalent of
the KL expansion. Similarly, one evaluates the eigenfunctions and eigenvalues
of a covariance operator to determine an orthonormal basis and to estimate the
approximation quality of the corresponding subspace. In the deterministic context,
the POD is often formulated as an optimization problem based upon a set of
training snapshots:

For some training set Ξtrain ⊂ P × Ω of cardinality ntrain and corresponding
trajectories c(µ, ω), (µ, ω) ∈ Ξtrain, the POD space V POD

M of dimensionM is defined
via the following optimization problem

V POD
M := arg inf

VM⊂Xtrain
dimVM=M


 1

ntrain

∑

(µ,ω)∈Ξtrain

inf
wM∈VM

‖c(µ, ω)− wM‖2
2


 , (3.5)

where Xtrain := span{c(µ, ω)|(µ, ω) ∈ Ξtrain}. It yields hierarchical spaces, i.e.,
VM−1 ⊂ VM , and is L2-optimal in the sense that the average squared L2-error of
the representation of the training trajectories is minimized.
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As for the KL expansion, a hierarchical basis of V POD
M is given by the eigenfunc-

tions vm of decreasing eigenvalues λm, m = 1, . . . ,M , of the covariance operator
CPOD : D ×D → R defined as

CPOD(x1, x2) :=
1

ntrain

∑

(µ,ω)∈Ξtrain

c(x1;µ, ω) c(x2;µ, ω), x1, x2 ∈ D.

Analogously to the KL expansion, the average squared approximation error of the
trajectories in the training set is given by

1

ntrain

∑

(µ,ω)∈Ξtrain

‖c(µ, ω)− cPOD
M (µ, ω)‖2

2 =
∑

m>M

λm,

where cPOD
M (µ, ω) denotes the orthogonal projection of c(µ, ω) onto V POD

M . For
more details, see for example [62]. As for the KL expansion, it is also possible
to apply the method of snapshots for the evaluation of the eigenvalues and the
construction of the eigenfunctions of CPOD.

However, using the eigenfunctions vm, m = 1, . . . ,M , as collateral basis, it is
not possible to efficiently evaluate the corresponding coefficients θm(µ, ω), m =

1, . . . ,M . In contrast to the KL expansion, these coefficients do not satisfy a cer-
tain probability distribution and can not be modeled using PC expansion. Hence,
it is not possible to directly apply the POD for our purpose.

3.2.3 Empirical Interpolation Method (EIM)

We briefly review the EIM as introduced for example in [7] and [86]. In these pub-
lications, it has been used to derive affine decompositions of parametric functions.
Here, we use the parametric stochastic specification that we consider in this work.

The main idea of the EIM is to use a collateral basis such that the affine approx-
imation of a new function c requires only the values of c at a set of interpolation
points of the same size as the basis. The construction of the basis ensures that
the approximation is exact at the knots and that the coefficients are efficiently
evaluable.

EIM: Offline-phase

A general form of the EIM offline procedure is described in Algorithm 3.1. It
generates the so-called collateral basis QM = {q1, . . . , qM} of cardinality M and
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Algorithm 3.1 Offline – Empirical Interpolation Method.
1 for M = 1 to Mmax do

2 c = getNextBasisFunction(QM−1, TM−1, Ξtrain)

3 cEIM
M−1 = getApproximation(QM−1, TM−1, c)

4 rM = c− cEIM
M−1

5 tM = arg ess supx∈D |rM(x)|, TM = {TM−1, tM}
6 qM = rM/rM(tM), QM = {QM−1, qM}
7 end for

the corresponding set of interpolation points TM = {t1, . . . , tM},M ≤Mmax, where
Mmax denotes the maximal allowed number of affine terms. We will describe the
main steps below. The ingredient of the algorithm is a training set Ξtrain ⊂ P ×Ω

such that the space span{c(µ, ω) | (µ, ω) ∈ Ξtrain} sufficiently covers the family of
functions {c(µ, ω) | (µ, ω) ∈ P × Ω}. Furthermore, we start with an empty set of
basis functions Q0 = {} and an empty set of interpolation points T0 = {}.

We start with the procedure that computes the affine approximation in line 3 of
Algorithm 3.1. In the first step of the loop, for an empty basis Q0, the procedure
getApproximation(Q0, T0, c) returns zero, i.e., cEIM

0 = 0 for all functions c ∈ X.
Otherwise, for any non-empty basis QM , getApproximation(QM , TM , c) computes
the coefficients θM(c) = (θj(c))

M
j=1 by solving the linear system

M∑

j=1

θj(c)qj(ti) = c(ti), i = 1, . . . ,M, (3.6)

and returns the approximation cEIM
M =

∑M
j=1 θj(c)qj. By construction, this approx-

imation is exact at the knots ti, i = 1, . . . ,M . Denoting BM := (qj(ti))
M
i,j=1 and

cM := (c(ti))
M
i=1 allows to rewrite (3.6) as BMθM(c) = cM such that

cEIM
M = QMθM(c) = QMB

−1
M cM . (3.7)

Here, QM = {q1, . . . , qM} is associated with the “matrix” where each column refers
to one basis function.

The procedure getNextBasisFunction(QM−1, TM−1,Ξtrain) in line 2 evaluates EIM
approximations cEIM

M−1(µ, ω) of all trajectories c(µ, ω), (µ, ω) ∈ Ξtrain, and returns
the trajectory that is so far worst approximated in the L∞-sense. Hence, in the
first step, the procedure returns the training function with the largest magnitude.
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In line 4, the residual is evaluated. The next knot tM is defined in line 5
in order to supremize the residual, i.e., as that point where c is so far worst
approximated. Hence, the interpolation point selection procedure is based upon
the L∞-error. The next collateral basis function qM is added in line 6, defined as
the L∞-normalized residual. We denote the approximation space at step M by
WEIM
M := span{q1, . . . , qM}.
As mentioned before, the approximation is exact at the knots, i.e., the residual

rM is zero at t1, . . . , tM−1. This implies that the linear system (3.6) is lower trian-
gular with diagonal unity, i.e., (BM)j,j = qj(tj) = 1 and (BM)i,j = qj(ti) = 0 for
i < j. The computational complexity of the evaluation of the EIM coefficients θM
is thus O(M2).

EIM: Online-phase

In the online phase, sketched in Algorithm 3.2, we affinely approximate a new
trajectory c(µ, ω) for (µ, ω) ∈ P × Ω. We choose an M < Mmax that is assumed
to be sufficiently large for a good approximation quality. Additionally, we define
M+ with M < M+ ≤Mmax that is used for the error estimation.

We then call getCoefficients(M+, c(µ, ω)) that evaluates the trajectory at the
knots (ti)

M+

i=1 and returns the solution θM+(µ, ω) of the lower triangular linear
system

M+∑

j=1

θj(µ, ω)qj(ti) = c(ti;µ, ω), i = 1, . . . ,M+. (3.8)

For an efficient application of the EIM, we require that evaluations of trajectories at
the knots (ti)

M+

i=1 are fast, ideally of complexityO(M+). Due to the lower triangular
form of the linear system (3.8), the solutions show a hierarchical structure, i.e.,
θM+1 = (θM , θM+1).

We use only the first M coefficients to evaluate the approximation cEIM
M (µ, ω) of

the given trajectory, see line 4 of Algorithm 3.2. This evaluation is not independent
of the dimension N of a given discretization of the function space X. However,
as we have seen in Section 3.1, it is not even necessary in the RBM context to
evaluate cEIM

M (µ, ω) in the online phase at all, only the coefficients θM are used.
Hence, line 4 of Algorithm 3.2 can be skipped.

One usually uses the additional coefficients to get error estimators. Under the
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Algorithm 3.2 Online – Empirical Interpolation Method.
1 choose M and M+ such that M < M+ ≤Mmax

2 select a trajectory c(µ, ω) for some (µ, ω) ∈ P × Ω

3 θM+(µ, ω) = getCoefficients(M+, c(µ, ω))

4 evaluate approximation

cEIM
M (µ, ω) =

M∑

j=1

θj(µ, ω)qj (3.9)

5 evaluate the L∞-error estimator

∆EIM
M,M+(µ, ω) =

M+∑

j=M+1

|θj(µ, ω)| (3.10)

assumption that the trajectory c(µ, ω) is in WEIM
M+ , the quantity ∆EIM

M,M+(µ, ω) from
(3.10) provides a rigorous upper bound of the L∞-error. The respective bound for
the L2-error could be given by

∑M+

j=M+1 ‖qj‖2|θj(µ, ω)|. However, the assumption
c(µ, ω) ∈ WEIM

M+ usually does not hold and ∆EIM
M,M+ just provides a non-rigorous

(but in practice very good) estimate. For more details on EIM error estimators
and more accurate bounds, see [86].

3.2.4 Empirical Interpolation of Differential Operators

The DEIM [20] and the empirical operator interpolation [27, 43] work in a similar
context. Both methods generate affine decompositions of discretized differential
operators. As opposed to the EIM, the basis function selection is based upon
operator evaluations and the knots represent indices of the discrete operator. In
the online phase, the discrete operator evaluations are approximated instead of
trajectories c(µ, ω). Hence, Algorithms 3.1 and 3.2 can directly be used for the
empirical operator interpolation, considering ti to be indices and c to be operator
evaluations.

In this context, the evaluation of the operator — typically nonlinear and/or time
dependent — at an index ti involves the evaluation of the solution of the equation
from a previous time step or iteration at several points. It is required that the
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Algorithm 3.3 Offline – DEIM.
1 for M = 1 to Mmax do

2 select vM as next basis function
3 cDEIM

M−1 = getApproximation(VM−1, TM−1, vM)

4 rM = vM − cDEIM
M−1

5 tM = arg ess supx∈D |rM(x)|, TM = {TM−1, tM}
6 VM = {VM−1, vM}
7 end for

number of such points is constant and much smaller than the number of degrees
of freedom of the discretization. This property is also called H-independence [27].
Typical discretization techniques such as finite element, finite volume, or finite
difference methods fulfill this requirement. In the following we do not explicitly
address this topic. However, it is important to keep in mind that the evaluation
at an index ti can be expensive.

The DEIM implies further modifications of the presented algorithms. At the
start of the method, one applies a POD on the discrete operator generating eigen-
values λ1 ≥ λ2 ≥ · · · and corresponding orthonormal eigenfunctions v1, v2, · · · .
The further steps are sketched in Algorithm 3.3.

Instead of getNextBasisFunction() in Algorithm 3.1, we directly select the M -th
POD eigenfunction in iteration M . Furthermore, in the DEIM context, we do
not add the residual to the collateral basis, but the eigenfunction itself. Hence,
line 6 of Algorithm 3.1 reduces to VM = {VM−1, vM} and the approximation space
reads WDEIM

M := span{v1, . . . , vM}. Lines 3 to 5 remain necessary to determine the
knots.

Due to the different selection method, the linear systems (3.6), solved in line 3 of
Algorithm 3.3, and (3.8), solved online, become full. The complexity increases to
O(M3) and O((M+)3), respectively. Furthermore, the error estimator introduced
in line 5 of Algorithm 3.2 is not valid anymore since in this context, it does not
hold that the coefficients are hierarchical, i.e., θM+1 6= (θM , θM+1). There are
some non-rigorous a-priori average-error estimates, see [20].
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3.3 A Proper Orthogonal (Empirical) Interpola-

tion Method (POIM)

In this section, we propose a Proper Orthogonal Interpolation Method (POIM)
that is based on the EIM and POD. The main idea is to replace the basis selection
based upon the L∞-error by some L2-‘optimal’ procedure. Even though the method
is motivated by stochastic problems, it can be applied to deterministic formulations
as well and may lead to improved approximations in that case, too.

The method has some similarities to the DEIM, even though the DEIM orig-
inally applies to differential operators. In fact, we show that we can modify the
DEIM according to the POIM methodology, making it faster but still producing
the same approximations. Furthermore, we show that the provided a-posteriori
error estimates for the POIM can also be applied to the DEIM.

3.3.1 Outline of the Method

We adopt the concept of the DEIM and apply the POD to our problem in a
first step. In other words, we define a training set Ξtrain ⊂ P × Ω, evaluate
trajectories c(µ, ω), (µ, ω) ∈ Ξtrain, and compute POD eigenvalues λ1, . . . , λMmax

and eigenfunctions v1, . . . , vMmax , using either the method of snapshots or the direct
approach.

As for the DEIM, we select in each iteration the respective POD eigenfunction
as next basis function and evaluate its approximation to define the residual and
the knot. However, in contrast to the DEIM, we do not directly add the POD
eigenfunction to the collateral basis, but we use the L∞-normalized residual qM ,
as described in Algorithm 3.4, line 6. This part of the algorithm has been adopted
from the EIM and ensures that the linear systems (3.6) and (3.8) are still lower
triangular. Therefore, the procedure getApproximation(QM , TM , ·) is identical to
the one used in Algorithm 3.1 and the online phase of the POIM is identical to
the online phase of the EIM provided in Algorithm 3.2.

It is clear that the approximation space WPOIM
M is still L2-optimal in the sense

of (3.5). In other words, we have

WPOIM
M = span{q1, . . . , qM} = span{v1, . . . , vM} = WDEIM

M , (3.11)
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Algorithm 3.4 Offline – POIM.
1 for M = 1 to Mmax do

2 select vM as next basis function
3 cPOIM

M−1 = getApproximation(QM−1, TM−1, vM)

4 rM = vM − cPOIM
M−1

5 tM = arg ess supx∈D |rM(x)|, TM = {TM−1, tM}
6 qM = rM/rM(tM), QM = {QM−1, qM}
7 end for

which can be easily shown by induction overM . The basis QM is not orthonormal
and the knots still depend on the L∞-error of the residual rM . However, since rM
is a linear combination of the first M POD eigenfunctions, it is typically smooth
and the knot should be adequately chosen.

3.3.2 Error Estimators

We can directly apply the error estimator defined in Algorithm 3.2, line 5, i.e., we
solve the lower triangular system (3.8) in O((M+)2) for some M+ > M and use
the additional coefficients θM+1, . . . , θM+ to evaluate ∆EIM

M,M+(µ, ω).

3.3.3 Application within the DEIM Context

As indicated in Section 3.2.4, the concepts of EIM and DEIM differ only slightly,
using operator evaluations instead of trajectories and indices instead of interpo-
lation points. Hence, the POIM can directly be used to approximate operators
as well. In view of (3.11), the approximation spaces of the DEIM and the POIM
coincide. In the following two lemmas, we show that both methods also produce
the same approximations.

Lemma 3.1. Let c be an arbitrary function and let cPOIM
M , cDEIM

M be approximations
using M basis functions generated by the POIM and the DEIM, respectively, using
the same interpolation points. Then, cPOIM

M = cDEIM
M .

Proof. Let QM = {q1, . . . , qM} denote the matrix of POIM-basis functions and
VM = {v1, . . . , vM} the matrix of DEIM-basis functions, where each column of
the respective matrices refers to one basis function. Since both bases span the
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same space, there exists a matrix ΨM ∈ RM×M such that QM = VM · ΨM . Due
to the construction of QM in Algorithm 3.4, ΨM is upper triangular. Let TM =

(t1, . . . , tM) denote the selected knots. We define

BPOIM
M := (qj(ti))

M
i,j=1, BDEIM

M := (vj(ti))
M
i,j=1 ∈ RM×M ,

and cM := (c(ti))
M
i=1 ∈ RM . Since QM = VM · ΨM , it is also clear that we can

write BPOIM
M = BDEIM

M ·ΨM . Then, using the form of (3.7) for the respective linear
systems, we obtain

cPOIM
M = QM ·

(
BPOIM
M

)−1
cM

= VMΨM ·
(
BPOIM
M

)−1
cM

= VM ·
(
BDEIM
M

)−1
cM = cDEIM

M

which proves the claim.

We furthermore note that the upper triangular matrix ΨM is hierarchical in the
sense that ΨM−1 is given as the restriction of ΨM to the first M − 1 rows and
columns. This is clear from the construction of QM in Algorithm 3.4, line 4 as
a linear combination of {QM−1, vM}. Since span{QM−1} = span{VM−1}, qM can
also be written as a linear combination of the basis VM .

It remains to show that the knots produced by the different methods coincide.

Lemma 3.2. The DEIM in Algorithm 3.3 and the POIM in Algorithm 3.4 generate
the same set of interpolation points.

Proof. Let (tPOIM
i )Mi=1 denote the POIM-knots and (tDEIM

i )Mi=1 the DEIM-knots.
The proof is now done by induction. Since for both methods, the approximation
procedures getApproximation(·) return zero for empty basis sets Q0 or V0, respec-
tively, we have that r1 = v1 for both methods and therefore tPOIM

1 = tDEIM
1 . Let

the assertion be true for M − 1. Then, Lemma 3.1 provides that both methods
return the same approximation, i.e., cPOIM

M−1 = cDEIM
M−1 . Hence, both methods use the

same residual to evaluate the next knot such that tPOIM
M = tDEIM

M .

As a consequence of the two results above, we can use the POIM instead of the
DEIM, generating the same approximations, but solving only a triangular system.
Hence, the online complexity reduces to O(M2). Furthermore, we can now use
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the EIM a-posteriori error estimates for the DEIM as well. At the same time, the
DEIM a-priori error estimates are still valid since neither the approximation space
is changed nor the actual approximations.

Even if an orthonormal basis would be needed and the DEIM is directly applied,
we can now implement the DEIM more efficiently, including also the evaluation of
a-posteriori error estimates. We first solve the triangular system (3.8) for coeffi-
cients θPOIM

M+ which also includes the evaluation of θPOIM
M due to the hierarchical

behavior of the coefficients. It holds that

θDEIM
M = ΨMθ

POIM
M , θDEIM

M+ = ΨM+θPOIM
M+ . (3.12)

Since ΨM is upper triangular, the complexities of the evaluations in (3.12) are
O(M2) and O((M+)2), respectively. Hence, the DEIM coefficients can be evalu-
ated with a total complexity of O(2M2). Furthermore, we can still apply the error
estimator (3.10) with the POIM coefficients θPOIM

M+1 , . . . , θ
POIM
M+ . The computational

complexity of the error estimator is therefore O(2(M+)2). We do not need to
store two sets of basis functions but only the orthonormal basis VM+ and the two
triangular matrices ΨM+ and BPOIM

M+ of the POIM.

3.4 A Least-Squares Empirical Interpolation Meth-

od (LSEIM)

In this section, we introduce a Least–Squares Empirical Interpolation Method
(LSEIM) that uses more knots than basis functions and solves a least-squares
problem to evaluate θM . This can be combined with both EIM and POIM.

3.4.1 Outline of the Method

The general concept of the LSEIM offline procedure is described in Algorithm 3.5.
The main steps are described below. We again initialize the algorithm with an
empty basis Q0 = {} and an empty set of knots T0 = {}. Furthermore, we denote
the number of used knots in step M by IM and set I0 = 0.

The procedure getNextBasisFunction() in line 2 returns either the so far worst
approximated snapshot, as described for the EIM in Section 3.2.3, or the M -th
POD eigenfunction, if the LSEIM is combined with the POIM.
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Algorithm 3.5 Offline – LSEIM.
1 for M = 1 to Mmax do

2 c = getNextBasisFunction()

3 cLSEIM
M−1 = getApproximation(QM−1, TIM−1

, c)

4 rM = c− cLSEIM
M−1

5 (ti)
IM
i=IM−1+1 = getNextKnots(rM), TIM = {TIM−1

, (ti)
IM
i=IM−1+1}

6 qM = getL2orthonormal(rM), QM = {QM−1, qM}
7 end for

For the LSEIM-approximation in line 3, we solve the least-squares problem

IM∑

i=1

(
M∑

j=1

θj(c)qj(ti)− c(ti)
)2

→ min (3.13)

for the coefficients θM ∈ RM and evaluate cLSEIM
M = QMθM . Since the approxima-

tion and thus the residual rM are no longer exact at the knots, the system is full
and the complexity of solving (3.13) increases to O(IMM

2).
There is no unique way to determine the number and location of the new knots

(ti)
IM
i=IM−1+1 in line 5. For the examples in Section 3.5, we used a constant number

of two new knots per basis function, defined by the essential infimum and the
essential supremum of the residual, respectively: tIM−1 := arg ess infx∈D rM(x)

and tIM := arg ess supx∈D rM(x) with IM = 2M .
It is also possible to use iterative and adaptive selection methods. A natural

procedure would be to first add the basis function and iteratively add knots in a
second step. The actual number of knots, i.e., the number of iterations, can also
be determined in several different ways. One choice could be to add knots until
the approximations of the functions in the training set are close to optimal in the
sense of their L2-projections into the space WPOD

M = span(QM). Alternatively,
one could also measure the error between the L2-optimal and LSEIM coefficients
θL2
M and θLSEIMM which might be cheaper. A third way could be to just minimize

the approximation error for the last basis function. In any case, it is crucial to
adequately specify the error term ‘close to optimal’, i.e., the error tolerance. This
can be difficult and my depend on the actual problem. Hence, we prefer the above
mentioned simple method and we will see in Section 3.5 that it works very well in
practice.
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To extend the L2-orthonormal basis in line 6, we add the L2-projection of the
residual on W LSEIM

M−1 := span{q1, . . . , qM−1} to the basis. Analogously to Lemmas
3.1 and 3.2, we can show that this is equivalent to add L∞-normalized residuals.
We just replace the solution of BMθM = cM in the proof of Lemma 3.1 by the
solution of a minimization problem of the form (3.13). However, since the system
is full anyway, we prefer the L2-orthonormal basis.

Once M is fixed in the online phase, one can compute and store the QR-
decomposition and solve (3.13) in O(IMM) for any new right-hand side. Under
the assumption that the number of selected knots per iteration is O(1), i.e., IM ∈
O(M), the cost increases only moderately. A drawback in the online application is
the necessity to evaluate trajectories c(µ, ω) at additional knots to get new right-
hand sides, which can be expensive. However, we hope to reduce the number
M of affine terms such that the overall cost decreases. Furthermore, within the
RBM context, the total online complexity to assemble the system and to compute
solution and error bounds is O(IMM + MN2 + N3 + M2N2), where N is the
dimension of the reduced space (cf. [73]). Thus, a smallM becomes more important
than a decrease of the number of knots.

3.4.2 Error Estimators

It is not possible to directly adopt the error estimators used for the EIM and
POIM since θM+1 6= (θM , θM+1). Instead, we separately solve (3.13) for M and
M+ and denote the solutions by (θMj )Mj=1 and (θM

+

j )M
+

j=1, respectively. Since QM is
L2-orthonormal, the L2-error estimator is given by

∆LSEIM
M,M+ :=

M∑

j=1

∣∣∣θM+

j − θMj
∣∣∣+

M+∑

j=M+1

∣∣∣θM
+
j

∣∣∣ (3.14)

whereas the respective L∞-error estimator is given by
∑M

j=1 ‖qj‖∞|θM
+

j −θMj | +∑M+

j=M+1 ‖qj‖∞|θM
+
j |. The computational complexity increases compared to EIM

and DEIM, even though it still is O((M+)2) for given QR-decompositions and
IM ∈ O(M).
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Figure 3.1: Four random trajectories c(µ, ω) as defined in (3.15) for different
smoothing parameter configurations.

3.5 Numerical Example

We consider a Wiener process W : R × Ω → R with probability space (Ω,A,P)

such that W (x;ω)−W (y;ω) is normally distributed with zero mean and variance
|x − y|. The variance at x = 0 is assumed to be zero. Furthermore, we apply
a parameter dependent smoothing filter F (x, y;µ) = 1√

2πµ
exp(−1

2
(x−y)2

µ2
) with de-

terministic parameters µ ∈ P = [10−3, 10−1]. The objective is to evaluate affine
approximations of processes c(µ, ω) : [0, 1]→ R of the form

c(x;µ, ω) =

∫ x+1/2

x−1/2

F (x, y;µ)W (y;ω)dy. (3.15)

Thus, the trajectories are continuous with increasing smoothness for larger µ.
Hence, we will approximate a set of functions with different smoothness properties.
Figure 3.1 shows random trajectories for four values of µ, logarithmically equally
spaced on P .

In the RBM context, we use c(µ, ω) as a stochastic coefficient of some PDE, e.g.,
∇ · (c(µ, ω)∇u(µ, ω)) = f . Here, c(µ, ω) is constructed to exemplarily represent
both the case of random functions and the case of noisy input data.



46 3. Affine Decompositions of Parametric Stochastic Processes

0 50 100 150 200 250

10
−2

10
−1

10
0

Number M of basis functions

M
ea
n
L

2
-e
rr
o
r
o
f
tr
a
in
in
g
se
t

 

 

EIM
POIM
DEIM
LSEIM
POD

Figure 3.2: Average L2-error of training trajectories.

We used a discretization of N = 400 equidistant subintervals of the domain
D = [0, 1]. For the construction of trajectories c(µ, ω), we generated samples
of the Wiener process W on the interval [−1/2, 3/2] and evaluated (3.15). We
used a training set Ξtrain ⊂ P × Ω with a total of 3000 samples, divided on 30
logarithmically spaced parameters µ ∈ P . This training set has been used to
perform the POD, EIM, DEIM, POIM and LSEIM. We used POD eigenfunctions
for the generation of the LSEIM basis.

Figure 3.2 shows the average L2-error of all training trajectories c(µ, ω), (µ, ω) ∈
Ξtrain. In this context, the POD provides the minimal error that can not be
improved, i.e., the error of the L2-projection on the L2-optimal POD basis in the
sense of (3.5). We can see that the average EIM-error convergence rate is far
from optimal whereas the LSEIM almost reaches the minimum. Even though the
POIM uses the same basis as the LSEIM, the error is noticeably larger. Thus, the
coefficients are not adequately evaluated. For an error tolerance of 10−2, 105 basis
functions and 210 knots are needed for the LSEIM whereas the POIM needs 240
knots and basis functions and the EIM more than 350. In this case, the LSEIM
needs even less knots than the POIM and would considerably save online time
within an RBM. As shown in Section 3.3.3, the POIM and DEIM produce the
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Figure 3.3: Maximal L∞-error of training trajectories.

same results.
Figure 3.3 shows the maximal L∞-error convergence of all considered methods.

Here, the EIM and the POIM show a similar behavior. The errors decrease very
slowly and significant variations can be observed. For the POIM, it is clear that
the low convergence rate is caused by imprecise coefficients since the LSEIM still
produces better results using the same basis. Even though the construction of
the EIM is based on maximum L∞-error minimization, the convergence is not
monotonic either, since inappropriate basis functions may be selected.

Table 3.1: Effectivities of the L∞-error estimators for 3200 test trajectories, 1 ≤
M ≤ N−8, and M+ = M+8

Minimal Average Maximal % < 1

EIM 0.373 3.025 9.148 0.022 %
POIM 0.320 3.411 14.849 0.014 %
LSEIM 0.446 2.431 6.992 0.024 %

In Table 3.1, we provide the effectivities of the introduced L∞-error estimators,
i.e., the ratio ∆M,M+/|cM − c| of error estimator and real error. We used a test
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set Ξtest ⊂ P × Ω with a total of 3200 samples, divided on 32 logarithmically
spaced parameters µ ∈ P . For all error estimators, we used 8 additional coeffi-
cients, i.e., M+ = M + 8, and the table shows the minimal, average, and maximal
effectivities of all test trajectories and all M ≤ N − 8. We can see that the error
is not rigorous since effectivities less than one occur. However, the percentage of
ineffective estimators, given in the last column, is very low. For higher accuracy,
we could increase M+. In most cases, the estimators denote error bounds and the
effectivities are rather small, where the LSEIM yields slightly better results than
the EIM and the POIM, respectively.

3.6 Conclusions

We demonstrated that it is useful to add POD eigenfunctions instead of snap-
shots to generate the EIM basis if these may be non-smooth. We proved that
the described method produces the same approximation as the DEIM with less
computational cost and provided error estimators for both methods. Furthermore,
we showed that using more knots than basis functions improves the approximation
quality and arrives at close to optimal results.



Chapter 4

Implicit Partitioning Methods for

Unknown Parameter Domains

In the context of RBM for PDEs with deterministic parameter dependencies, it is
common to split the parameter domain into several parts and construct separate
reduced bases for each parameter subdomain [30, 31, 41]. It is assumed that the
variation of the parametric coefficients of the PDEs and therefore the variation of
the corresponding solutions become small on each subdomain. Then, only small
numbers of basis functions are needed and the online cost of the RBM decreases.

In this chapter, we generalize the partitioning concepts developed for determin-
istic and compact parameter domains to arbitrary, possibly unknown parameter
domains. No explicit description of the parameter domain — if existent at all
— will be required, and no particular information about the problem is needed.
Furthermore, we will show that our new implicit partitioning methods also out-
perform the existing methods for wide classes of problems even in the setting of
known parameter domains.

In Section 4.1, we briefly introduce two different partitioning procedures for
known, explicitly given parameter domains. The first method, the so-called p-
Partitioning [41], requires the availability of an affine decomposition in the pa-
rameter whereas the second method, the hp-Partitioning [30, 31], is based upon
the EIM and generates affine decompositions, i.e., collateral EIM bases, and parti-
tions simultaneously. In Section 4.2, we introduce the general concept of unknown
parameter domains and of affine decompositions with respect to unknown param-

49
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eters. Furthermore, we introduce some necessary assumptions and requirements
for our new implicit partitioning methods.

As the hp-Partitioning, the here introduced Implicit Partitioning Method (IPM)
generates affine decompositions and partitions in parallel. We will develop two
different concepts for the IPM. In Section 4.3, we introduce an IPM where the
form of the subdomains is not fixed but depends on the used collateral basis size.
The method is therefore called Moving Shapes (MS) IPM. Next, in Section 4.4, we
develop IPMs where the forms of the subdomains are supposed to be stationary.
These methods are called Fixed Shapes (FS) IPM. Finally, in Section 4.6, we
provide several numerical examples and compare the different methods.

4.1 Preliminaries

We start introducing the partitioning concepts for known, deterministic, and com-
pact parameter domains. Let D ⊂ Rd denote a bounded spatial domain and let
P ⊂ Rp be a compact parameter domain which is for now assumed to be a p-
dimensional hypercube. Furthermore, let c : D ×P → R, (x;µ) 7→ c(x;µ), denote
a parametrized coefficient of an arbitrary PDE. Suppose detailed solutions of the
PDE on a discrete Hilbert space X of dimension N are available, based upon any
discretization scheme such as finite elements or finite differences. Let XN ⊂ X

denote a reduced space of dimension N . Then, for the partitioning, we assume
the availability of rigorous and efficiently evaluable error bounds ∆(µ) of the er-
ror between the detailed and the reduced solution of the PDE for the parameter
µ ∈ P .

We define Nmax as the largest allowed basis size such that a certain maximal
online run time for a reduced solution is not exceeded. At the same time, an
error tolerance εtol is desired. Hence, the objective is to divide P into multiple
subdomains and generate individual reduced bases such that

(i) the dimension of all reduced spaces is smaller than Nmax,

(ii) the maximal error on each subdomain does not exceed εtol,

(iii) each parameter µ ∈ P can be assigned efficiently to the right subdomain,

whereas the number of subdomains should be as small as possible.
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Algorithm 4.1 p-Partitioning(Pj, Nmax, εtol, J)

1 create Ξj
train from Pj

2 for N = 1 to Nmax do

3 SjRB,N = addBasisFunction(SjRB,N−1, Ξj
train)

4 ∆N,max = getMaxErrorBound(SjRB,N , Ξj
train)

5 if ∆N,max < εtol then

6 return SjRB,N , Pj
7 end if

8 end for

9 {PJ+i | i = 1, . . . , 2p} = refinePartition(Pj)
10 Jnew = J + 2p

11 for i = 1 to 2p do

12 p-Partitioning(PJ+i, Nmax, εtol, Jnew)

13 end for

4.1.1 p-Partitioning

We first introduce the so-called p-Partitioning [41]. The “p” refers to “parameter”
and distinguishes the method from other concepts such as time domain parti-
tioning (t-Partitioning) [25] and a diversity of domain decomposition and related
methods [1, 53, 58, 66]. For the p-Partitioning, it is assumed that the PDE already
allows for an affine decomposition in the parameter µ ∈ P which is either given or
approximated using the EIM or similar techniques as described in Chapter 3.

The method starts with a coarse uniform grid on the p-dimensional hypercube
P which defines the initial parameter domain partition. Hence, each subdomain
itself defines a p-dimensional hypercube. For each initial subdomain, we call the
procedure described in Algorithm 4.1, where Pj ⊂ P denotes the current subdo-
main and J the total number of created subdomains. The algorithm recursively
generates structs SjRB,N for each subdomain Pj that include all the RB-related
data, e.g., the basis itself, the RB system matrices and vectors, and the data that
is necessary to evaluate the error bounds. We briefly describe the main steps.

In line 1, we create an appropriate set of training parameters Ξj
train ⊂ Pj. In

[41], an adaptive training set extension procedure is used for the Ξj
train. However,

we can also assume a fixed training set without changing the theoretical aspects
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Figure 4.1: Two refinement steps using the p-Partitioning procedure for P = [0, 1]2.

of the p-Partitioning.

From line 2 to 8, the reduced basis for the actual subdomain Pj is constructed.
We first add a basis function to the reduced space in line 3 and update the RB-
related data in SjRB,N . For the basis selection, it is common to use a Greedy
approach, i.e., the solution for the parameter in the training set that is so far
worst approximated is added [73, 98]. For instationary problems, not the com-
plete trajectory is used but only the first POD eigenfunction, based upon the
error trajectory of the solutions at all time steps for the selected parameter. This
procedure is denoted as POD-Greedy [42]. Next, in line 4, we evaluate the maxi-
mal error bound over all training samples. If this error bound is small enough, we
return the actual subdomain and the corresponding reduced basis. Both are then
stored for later use in the online stage. Otherwise, we repeat the procedure until
Nmax is reached.

If the error still exceeds the tolerance εtol for N = Nmax, the variation of the
solutions on the current subdomain is too large. Hence, the current subdomain
and the corresponding basis are discarded and we perform the refinement step in
line 9. We divide the hypercube Pj ⊂ Rp into 2p “subhypercubes” of identical
sizes, i.e., the edge length of the new hypercubes is half of the length of the edges
of Pj. Figure 4.1 shows two exemplary refinement steps for a two dimensional
parameter domain P = [0, 1]2.

Next, we set the number of subdomains from J to J+2p and recursively call the
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procedure p-Partitioning(·) for all new subdomains. Note that the number J also
includes already discarded subdomains. However, the indices j in Algorithm 4.1
and hence the total number J are only specified to facilitate the understanding of
the procedure. In practice, the indexing will be done in a tree-based scheme. The
algorithm returns only the RB data for leaf-subdomains, and all other reduced
bases are not stored.

The assignment of a new parameter µ ∈ P to the appropriate subdomain in the
online stage can be done using the tree structure of the partition. For any point
in a hypercube P ⊂ Rp with 2p subdomains as described above, it is possible to
identify the subdomain where the point is located in O(p). This procedure can
be repeated iteratively. Hence, assuming a well balanced partition tree of depth
O(log J), the assignment complexity reads O(log J · p).

One basic disadvantage of the proposed partitioning method is the increase
of the offline run-time. During the refinement procedure, many reduced bases
are discarded after Nmax iterations. Each iteration requires the computation of a
large number of reduced solutions and one detailed solution and is therefore ex-
pensive. Hence, it is desired to detect at an early stage if Nmax basis functions
will not suffice to adequately represent the solutions on the current subdomain.
The maximal error for Nmax basis functions can be predicted by extrapolating
∆N,max, where the decay of the error is often assumed to be exponentially fast.
The basis extension is stopped and the partition is directly refined as soon as
the prediction indicates that we will not reach the error tolerance. Hence, Al-
gorithm 4.1 is changed in the following way. After line 7, we add the following
part:

∆pred
Nmax,max = getPredictedMaxErrorBoundAtNmax(∆1,max, . . . ,∆N−1,max)

if ∆pred
Nmax,max > εtol then

break

end if

Many superfluous computations are hereby avoided.

Compared to straightforward basis constructions without partitioning, the stor-
age complexity increases. However, it is now possible to control the online complex-
ity by choosing Nmax as desired, although for instationary problems, the minimal
choice of εtol is not independent of Nmax. If εtol is chosen too small, it can be neces-
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sary to use more than Nmax basis functions to cover the complexity of a trajectory
over time even for a single parameter.

4.1.2 hp-Partitioning

Independently of the p-Partitioning, another similar method, called “hp certified
RBM”, has been proposed in [30]. The term “hp” is adopted from the finite element
(FE) theory, where “h” refers to the mesh size and “p” to the polynomial degree of
the local FE basis function which both are determined and refined adaptively. In
the context of parameter domain partitioning, the “h” analogously represents the
refinement of the partition and the “p” stands for the improvement of the basis on
a subdomain, i.e., the selection of further reduced basis functions.

In [30] and [29], the hp-Partitioning has been introduced for stationary and
instationary problems, respectively, for already affine problems. The methods
differ only slightly from the p-Partitioning of Section 4.1.1. The main distinction
are two different procedures for the splitting into subdomains, leading to theoretical
convergence results for some special cases. In [31], the hp-Partitioning is introduced
for non-affine problems and is connected to the EIM. Here, the p-refinement step
refers to the selection of an additional collateral basis function for the EIM (cf.
Section 3.2.1). In this section, we only describe the latter method since it shows
some similarities to our implicit partitioning methods. Furthermore, we introduce
the two splitting techniques that have also been used in the other publications
about hp-Partitioning, the so-called anchor point splitting scheme and the gravity
center splitting scheme.

In contrast to the p-Partitioning from Section 4.1.1, the hp-Partitioning is di-
vided into two completely separate parts, the h-part with the refinement of the
partition and the p-part with the basis construction. We introduce two separate
error tolerances εhtol and ε

p
tol and two maximal numbers Mh

max and Mp
max of collat-

eral EIM basis functions for the h-part and the p-part. The error tolerances refer
now to the EIM error. The h-indexed quantities are only employed to make the
subdividing scheme cheaper whereas the p-indexed quantities refer to the actual
desired values.

Algorithm 4.2 describes the general h-part of the hp-Partitioning that is com-
mon to both splitting schemes. Given an initial partition, we call the procedure
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Algorithm 4.2 hp-Partitioning(Pj, Mh
max, ε

h
tol, J)

1 create Ξj
train from Pj

2 for M = 1 to Mh
max do

3 {SjEIM,M , µ
j
M} = addBasisFunction(SjEIM,M−1, Ξj

train)

4 εM,max = getMaxError(SjEIM,M , Ξj
train)

5 if εM,max < εhtol then

6 return SjEIM,M , Pj
7 end if

8 end for

9 {PJ+i | i = 1, . . . , Jadd} = refinePartition(Pj, µj1, . . . , µjMmax
)

10 Jnew = J + Jadd

11 for i = 1 to Jadd do

12 hp-Partitioning(PJ+i, Mh
max, ε

h
tol, Jnew)

13 end for

for each initial subdomain. The refinement and basis construction works again re-
cursively. The relatively large error tolerance εhtol is used and only a small number
Mh

max of maximal basis functions per subdomain is allowed. In that way, the con-
struction of superfluous bases functions for subdomains that are discarded anyway
is avoided. The total number of current subdomains is denoted by J .

Compared to Algorithm 4.1, the main difference is that we do not construct
the RB system but EIM collateral bases and structs SjEIM,M containing the com-
plete EIM data, where j refers again to the subdomain and M to the number of
basis functions. Hence, the procedure addBasisFunction(·) in line 3 performs one
iteration of the offline EIM construction as described in Algorithm 3.1, line 2 to 6.
Additionally, it now returns the parameter that corresponds to the just selected
basis function. These parameters are used for the new refinement procedures in
line 9. Since no error estimators for the EIM can be evaluated during the con-
struction of the collateral basis, the exact L∞-error is evaluated in line 4 and used
as termination condition in line 5.

Before we introduce the different refinement procedures that can be used in
line 9, we briefly provide the second step of the hp-Partitioning, the p-part. The
actual basis on each subdomain is constructed analogously to the EIM Algorithm
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Figure 4.2: Two refinement steps using the gravity center splitting scheme for P =

[0, 1]2. Gravity centers µ̄1 = [0.35, 0.40] for the first step (left) and µ̄2 = [0.75, 0.60]

for the second step (right).

3.1. For each final subdomain, we call Algorithm 3.1 and iterate until the small
error tolerance εptol or the maximal number Mp

max is reached.

Gravity Center Splitting Scheme

For the gravity center refinement procedure, it is assumed that that the parameter
domain P ⊂ Rp and each subdomain are given by a p-dimensional hypercube. In
the refinement step, we cut the current subdomain Pj into Jadd = 2p subhyper-
cubes. As opposed to the p-Partitioning, these new subdomains are not equally
sized. The splitting is now based on the so-called “gravity center” µ̄j which is
evaluated using the parameters that correspond to the selected basis functions of
the EIM in the subdomain Pj,

µ̄j :=
1

Mh
max

Mh
max∑

M=1

µjM .

Now, the gravity center denotes the (only) point of Pj that all 2p new subdomains
share, i.e., the coordinates of µ̄j define the splitting positions of Pj. Figure 4.2
exemplarily shows two refinement steps using the gravity center splitting scheme
for the square P = [0, 1]2. First, the square is split based upon the gravity center
µ̄1 = [0.35, 0.40]. The subdomain in the upper right corner is then divided based
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upon the gravity center µ̄2 = [0.75, 0.60].
As for the p-Partitioning, the online assignment of a new parameter µ ∈ P ⊂ Rp

to the appropriate subdomain is done using a tree search. Only the gravity centers
have to be stored to completely define the final partition as well as the partition
tree. In each step, the identification of the next subdomain is of complexity O(p).
Thus, for a well balanced tree of depth O(log J), the assignment complexity reads
O(log J · p) again.

Anchor Point Splitting Scheme

The anchor point splitting scheme divides the current parameter domain Pj into
Jadd = 2 subdomains, independently of its shape and dimension. For the splitting,
it is assumed that one can define a distance measure d : P × P → R on the
parameter domain. The two subdomains are then specified by the proximity to
the parameters µj1 and µ

j
2 — the so-called anchor points — that have been returned

by the procedure addBasisFunction(·) in line 3 of Algorithm 4.2 and correspond to
the two first selected EIM basis functions in the subdomain Pj. Then, the new
subdomains in line 9 of Algorithm 4.2 are defined in the following way,

PJ+1 := {µ ∈ Pj | d(µ, µj1) < d(µ, µj2)},
PJ+2 := {µ ∈ Pj | d(µ, µj2) ≤ d(µ, µj1)}.

(4.1)

Each parameter µ ∈ Pj is associated with the closest anchor point. Figure 4.3
exemplarily shows two refinement steps using the anchor point splitting scheme for
the square P = [0, 1]2. In the first step (left), the anchor points µ1

1 = [0.1, 0.1] and
µ1

2 = [0.9, 0.9] have been used such that the cross section of the new subdomains
is given by the diagonal from the upper left to the lower right corner of P . In
the second step, the anchor points µ2

1 = [0.1, 0.1] and µ2
2 = [0.8, 0.1] lead to the

separation parallel to the y-coordinate at x = 0.45.
Since only two anchor points are needed for the next refinement step, it is

enough to set Mh
max = 2. Furthermore, the two subdomains can inherit the basis

function of the “parent” domain that corresponds to their respective anchor point.
In other words, for the domain Pj with the two “child” subdomains PJ+1 and
PJ+2 as defined in (4.1), we have µJ+1

1 := µj1 and µJ+2
1 := µj2. Thus, only one more

iteration has to be performed for each new subdomain. In the example in Figure
4.3, we already applied this simplification and used µ2

1 = µ1
1.
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Figure 4.3: Two refinement steps using the anchor point splitting scheme for P =

[0, 1]2. Anchor points for the first (left) and second refinement step (right).

As before, we use a tree search in the online stage to find the appropriate
subdomain for a given new parameter µ ∈ P . We iteratively select the nearest
anchor point and “move” to the corresponding subdomain until a final subdomain
is reached. For P ⊂ Rp, one can use the Euclidean distance measure. Then, the
evaluation of the distances to the anchor points is of complexity O(p). Assuming
a balanced tree of depth O(log J), the total tree search is again of complexity
O(log J · p).

Compared to the p-Partitioning and the hp-Partitioning based upon the gravity
center splitting, the anchor point splitting produces the most flexible shapes and is
the cheapest since during the refinement procedure only Mh

max = 2 basis functions
are needed for each subdomain. Furthermore, only one basis extension is required
per subdomain by reusing the anchor points.

However, for the optimal application of the hp-Partitioning, the choice of εhtol

is crucial. Using a tolerance that is too large, the resulting partition may not be
fine enough and it may be impossible to reach the tolerance εptol with M

p
max basis

functions in the p-part. Then, more refinement steps are necessary and the so
far constructed bases have to be discarded. Still, it is possible to apply the error
prediction method as presented for the p-Partitioning to decrease the number of
superfluous computations.
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4.2 Partitioning of Unknown Parameter Domains

4.2.1 Unknown Parameter Domains

Let us start with the illustration of the concept of unknown parameter domains
using some practical examples. First, one may consider coefficient functions of
PDEs that are based upon measurements. On the one hand, underlying parameters
can be hidden since the information of the system that produces the measured
outcome is not completely accessible. On the other hand, the measured input
functions could be completely non-parametric and merely belong to a common class
of functions in terms of boundedness, regularity, and/or similar shape. Another
application of unknown parameters are stochastic inputs, where the “parameter
domain” can be seen as a set Ω of stochastic events that does not imply a feasible
metric. Hence, the theory of compact parameter domains does not apply. As an
example of such events, one may consider the porosity structure of any physical
medium such as sandstone (cf. Sections 5.8 and 6.5) or Li-ion batteries.

In general, any input function in discretized form can be adopted to an N -
dimensional parameter setting, where N denotes the number of degrees of free-
dom of the discretization. However, since the online parameter assignment of the
presented partitioning methods of Section 4.1 depends on the dimension of the
parameter domain, they are inappropriate for such a setting.

In the following, it is assumed that the input coefficient functions can be ob-
tained without the detailed knowledge of any underlying parameter or stochastic
event. Hence, no information about the parameter domain is required, and there-
fore, no distance measures on the parameter domain can be assumed to exist. We
now define the family of possible input functions by

M := {c(µ) : D → R |µ ∈ P}, (4.2)

where D ⊂ Rd denotes a bounded spatial domain. The parameter µ ∈ P can
also be interpreted as a reference to an arbitrary real life event that underlies the
function c(µ), or just as an index to the associated c(µ) ∈ M. Alternatively, it
could also be seen as a parameter vector of the possibly infinite dimension ofM.
In any case, µ is not a parameter in the classical sense and the p- or hp-Partitioning
are not applicable.
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Another interpretation could be to consider the whole function c(µ) as a pa-
rameter, i.e., to consider a parameter function µ(x) in a certain function spaceM.
The subsequent theory and methods remain valid for such cases.

4.2.2 Affine Decomposition for Unknown Parameters

For the application of the EIM even for unknown parameter domains or arbitrary
sets of functions, and for the applicability of partitioning methods, we postulate:

Assumption 4.1. A mechanism is available that delivers arbitrarily many func-
tions c(µ), µ ∈ P, from the family of functions M as defined in (4.2). For any
given ε > 0, it is possible to create a finite training set of functionsMtrain ⊂M of
cardinality ntrain ∈ N that sufficiently covers the variety of M up to the maximal
error tolerance ε, i.e.,

sup
c(µ)∈M

inf
v∈span(Mtrain)

‖c(µ)− v‖X ≤ ε (4.3)

for a given norm ‖ · ‖X . Furthermore, let M be replaced by any subset M0 ⊂⊂
M with significantly less variation, i.e., of less complexity. Then, Mtrain can be
replaced by a subsetM0

train ⊂⊂Mtrain of significantly less cardinality n0
train � ntrain

such that (4.3) still holds.

Now, the offline and online EIM Algorithms 3.1 and 3.2 can directly be adopted
for our case. Instead of a training parameter set Ξtrain for the Greedy step (in
line 2 of Algorithm 3.1), we can directly use the training functions Mtrain. Let
QM = {q1, . . . , qM} be a given collateral basis and let TM = {t1, . . . , tM} be the
EIM interpolation points. For any function c = c(µ) ∈M, we can evaluate the co-
efficients θM(c) = (θi(c))

M
i=1 for the affine approximation cEIM

M =
∑M

m=1 θm(c)qi

using the linear system (3.6) without the knowledge of a possibly underlying
parameter. We evaluate the vector cM := (c(ti))

M
i=1 and the triangular matrix

BM = (qj(ti))
M
i,j=1 such that θM(c) = B−1

M cM .

4.2.3 Implicit Partitioning Problem Formulation

We now formulate the tasks and the main idea of the IPM. Input functions that
are based upon unknown parameters naturally do not directly admit for an affine
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decomposition. Hence, the partitioning is connected to the EIM as we have already
seen for the hp-Partitioning. We define the implicit partitioning problem.

Problem 4.2 (Implicit Partitioning Problem). For a family of input functionsM
that suffices Assumption 4.1, create a partition of the parameter domain,

(a) without the use of an explicit description of either P orM,

(b) without an explicit description of the partitions and subdomains,

(c) with efficient and suitable assignments of new input functions c(µ).

For each subdomain, create separate affine decompositions with respect to the
unknown parameter as described in Section 4.2. The partition is supposed to be
fine enough such that

(d) the affine approximations are precise up to a tolerance εtol,

(e) the number of collateral basis functions per subdomain does not exceedMmax.

The basic idea of the following implicit partitioning methods is the construction
of several EIM bases that cover different parts of the family of input functionsM.
As opposed to the p- and hp-Partitioning, the splitting of the parameter domain is
based upon the proximity of functions inM to the spaces spanned by the different
collateral EIM bases and not on geometrical aspects of the parameter domain.
In the offline stage, during the construction of the collateral basis functions, the
proximity can directly be based upon the approximation error. In the online stage,
we have to use the error estimates to fulfill the efficiency requirement of the Implicit
Partitioning Problem 4.2(c).

Under Assumption 4.1, it is possible to generate a training set of functions
Mtrain ⊂M of cardinality ntrain ∈ N that sufficiently covers the complexity ofM.
Furthermore, the second part of Assumption 4.1 assures that a partitioning based
upon a training set Mtrain is possible under the condition that M itself can be
split into several parts of less complexity.

In fact, the presented implicit partitioning methods can rather be seen as a
partitioning of the familyM or of the space spanned byM. Thus, functions c(µ)

are assigned to an appropriate subspace of span(M) rather than µ is assigned to
a subdomain of P . However, for an easier understanding, we often stay in the
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parameter setting and still refer to parameters and subdomains. We construct the
structs SjEIM,M , j = 1, . . . , J , that contain the complete EIM data for each sub-
domain, respectively. The term “struct” is adopted from programming languages
like C where a struct denotes a single structured data type that unites a set of
components of different data types. Here, SjEIM,M also defines the subspaces Mj

of dimension M which correspond to the parameter subdomains Pj, j = 1, . . . , J .
In the following, we just refer to subdomain j and mean the subdomain defining
components Pj,Mj, or SjEIM,M . For a better illustration of the methods, we also
use parametric functions for explicitly given parameter domains.

4.3 Moving Shapes IPM

We introduce different implicit partitioning procedures. As mentioned before, the
common approach is the construction of several EIM bases that are supposed to
cover different parts of the family of input functionsM. The first procedure, the
Moving Shapes (MS) Implicit Partitioning Method (IPM), simultaneously gener-
ates the number of J EIM bases for a previously fixed number J of subdomains.
It is desired that the partition is formed such that the complexity ofM is equally
distributed on the J different subdomains and the least possible number of basis
functions is obtained. This is achieved by letting the subdomains reshape in each
iteration instead of using a fixed partition. Thus, the actual partition depends on
the used number M of basis functions.

4.3.1 Outline of the Method

The MS IPM is described in Algorithms 4.3 and 4.4. Let J denote the desired
number of subdomains and let εtol > 0 be the desired approximation error toler-
ance. Furthermore, let the set of training parameters be given by {µ1, . . . , µntrain

}
such that the set of training functions reads Mtrain = {c(µn) |n = 1, . . . , ntrain}.
Algorithm 4.3 generates J structs SjEIM,M , j = 1, . . . , J , M ∈ N, containing the
EIM data for the corresponding subdomains. Since the number of subdomains
and the error tolerance εtol are (at least for now) fixed, we do not set a maximal
number of basis functions per subdomain, differently to the hp-Partitioning where
Mmax and εtol were fixed and J was flexible.
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Algorithm 4.3 MovingShapesIPM(Mtrain, εtol, J)

1 set M = 0

2 repeat

3 M = M + 1

4 if M==1 then
5 S0

EIM,J+1 = doInitialEIM(Mtrain, J + 1)

6 {S1
EIM,1, . . . ,SJEIM,1} = initialFirstBasisFunction(S0

EIM,J+1, J)

7 else

8 for j = 1 to J do

9 SjEIM,M = addBasisFunction(SjEIM,M−1,Mj
train)

10 end for

11 end if

12 {I1
M , . . . , IJM} = getOfflineAssignment(S1

EIM,M , . . . ,SJEIM,M ,Mtrain)

13 for j = 1 to J do

14 Mj
train = {c(µ) ∈Mtrain |µ ∈ IjM}

15 εjM,max = getMaxError(SjEIM,M ,Mj
train)

16 end for

17 until max
j∈{1,...,J}

{
εjM,max

}
< εtol

18 return
{
S1

EIM,M , . . . ,SJEIM,M

}

We start the description of the MS IPM with the initialization of the EIM structs
SjEIM,1, j = 1, . . . , J , in the first iteration of the loop in Algorithm 4.3, for M = 1.
In line 5, we perform J + 1 steps of the normal EIM, as described in Section 4.2.2,
based upon the training setMtrain and without any partitioning. We refer to this
step as initial EIM and denote the resulting EIM struct by S0

EIM,J+1. Then, in line
6, we discard the first basis function of S0

EIM,J+1 and distribute the remaining J
functions that have been selected by the initial EIM to the EIM structs SjEIM,1,
j = 1, . . . , J , as initial basis functions, respectively.

Neglecting the first basis function of the initial EIM is not crucial to the basis
assignment. In our experiments, it led to a more balanced initial distribution of
the complexity to the subdomains.

In line 12 of Algorithm 4.3, we call the procedure getOfflineAssignment(·) that is
further described in Algorithm 4.4. For each subdomain j, the procedure returns a
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Algorithm 4.4 getOfflineAssignment(S1
EIM,M , . . . ,SJEIM,M ,Mtrain)

1 I1 = . . . = IJ = {}
2 for n = 1 to ntrain do

3 for j = 1 to J do

4 ε jM(µn) = getError(SjEIM,M , c(µn))

5 end for

6 i = arg inf
j
{ε jM(µn) | j = 1, . . . , J}

7 I iM = I iM ∪ {µn}
8 end for

set of assigned parameters IjM that refer to the corresponding functions inMtrain,
where the assignment is based upon the EIM approximation error. In detail, for
a given parameter µn, n ∈ {1, . . . , ntrain}, we evaluate the EIM approximation
error of the corresponding function c(µn) in all subdomains. This is performed in
Algorithm 4.4, line 3 to 5. Then, the parameter is assigned to the subdomain that
best approximates c(µn) in line 6 and 7. Note that we distinguish Pj used for the
p- and hp-Partitioning from Ij. While Ij denotes a discrete set of parameters, Pj
provides the explicit description of the complete subdomain j.

The further steps work very similar to Algorithm 4.2, but simultaneously for
all subdomains. In line 15 of Algorithm 4.3, we evaluate the maximal error on
each subdomain, or more precisely, the maximal error out of the set of currently
assigned functions Mj

train := {c(µ) ∈ Mtrain |µ ∈ IjM}. In line 17, we check
if all maximal errors already fall below the tolerance εtol. We do not stop the
basis extensions until convergence on all subdomains is obtained, i.e., even if the
tolerance is reached on a certain subdomain, we add more basis functions if the
error on other subdomains still exceeds the desired value. For M > 1, the basis
extension is done in line 9. As for the hp-Partitioning, we select the so far worst
approximated function of the subdomain. Here, this means that for subdomain j,
the next basis function is selected out of the set of currently assigned functions
Mj

train that are represented by the corresponding parameters IjM−1.

A new effect in comparison to the hp-Partitioning is that the basis extension
also changes the shape of the partitions since the assignment of parameters is based
upon the EIM approximation error. The selection of a new basis function c(µjM)
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(a) M = 1 (b) M = 2 (c) M = 60 (d) M = 120

Figure 4.4: MS IPM subdomains (top row) and selected parameters for basis
extension (bottom row) for four different basis sizes M .

for some µjM located close to the boundary of the subdomain j yields a movement
of the respective shape towards the just selected parameter. Functions c(µ) for µ
close to µjM will be assigned to subdomain j in the next iteration.

This effect is illustrated in Figure 4.4. It provides the result of the MS IPM
for an explicitly given parametric function c : D × P → R on the spatial domain
D = [0, 1]2 and with parameters µ = (µ1, µ2) ∈ P = [0.3, 0.7]2, given by

c(x;µ) = e−50((x1−µ1)2+(x2−µ2)2). (4.4)

We used a uniform discretization of D with N = 2601 degrees of freedom and
ntrain = 1600 logarithmically distributed parameter samples. In detail, Figure 4.4
shows the partitions of the parameter domain afterM = 1, 2, 60, and 120 iterations
in the top row with a resolution of 40 · 40 pixels. The respective parameters that
have been selected for the bases extensions are provided in the bottom row. It
can be seen that the shapes of the subdomains change especially during the first
iterations. Later, the changes are rather small and the shapes seem to converge.
In the second step, for M = 2, the black part selected a basis function that
corresponds to the parameter from the lower left corner of the subdomain forM =

1. Therefore, it “takes over” huge parts of the other subdomains. In the iterations
between M = 60 and M = 120, the basis extensions are mostly based upon
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Figure 4.5: Convergence of the MS IPM for J = 3 compared to a single EIM.

parameters inside the subdomains and therefore, the boundaries do not change
significantly.

The objective of the subdomain reshaping is a more effective use of the ba-
sis functions. For fixed shapes, the first basis functions are usually selected at
the border of subdomains. Consequently, adjacent subdomains would select basis
functions that cover the same area. Furthermore, the reshaping results in a good
distribution of the complexity ofM on the different subdomains. The subdomains
are likely to be formed such that the respective numbers of basis functions neces-
sary for a given approximation tolerance differs only very slightly. In Figure 4.5,
we confirm this assumption for the given example. The figure shows the error
convergence of a single EIM without partitioning and the convergence result using
the MS IPM and J = 3 subdomains. More examples are provided in Section 4.6.

It can be observed in Figure 4.4(b) that two subdomains can select basis func-
tions close to each other in the same step (see the green and blue subdomain). This
is not optimal since both functions cover again the same part ofM and less than
possible information is therefore added in this iteration. However, it is very diffi-
cult to avoid such cases. The straightforward approach would be to successively
extend the bases. Before the next subdomain selects a parameter, a reassignment
is performed based upon the new approximation errrors. However, this procedure
does not work properly. Especially at the beginning of the procedure, the extension
of only one basis by one function yields very unbalanced shapes. The larger basis
outperforms the others on most of the parameter domain and therefore covers a
too large area. Certainly, it is possible to develop more sophisticated methods to
avoid such cases. However, a general heuristic that works as a black box for all
kind of input functions is not known but would be desired in the case of unknown
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Algorithm 4.5 getOnlineAssignment(S1
EIM,M+ , . . . ,SJEIM,M+ , c(µ), M, M+)

1 for j = 1 to J do

2 θ jM+(µ) = getCoefficients(SjEIM,M+ , c(µ))

3 ∆j
M,M+(µ) =

∑M+

m=M+1 |θjm(µ)|
4 end for

5 i = arg inf
j
{∆j

M,M+(µ) | j = 1, . . . , J}
6 return {i, θ iM+(µ)}

parameters.
Even though we obtain very balanced convergence rates, we can not completely

prevent that two subdomains partially cover the same part of the parameter do-
main. It can be seen in Figure 4.4(c) and 4.4(d) that some of the selected basis
functions are separated and enclosed by a different subdomain. However, for other
values ofM , these basis functions are within their respective subdomain and there-
fore necessary to obtain best approximation qualities with a minimal basis size.
Furthermore, it is not possible to discard such functions from the basis even for
values of M where they are separated from their subdomain. In other words, they
still play an important role for the approximation quality.

Let N be the number of degrees of freedom of the discretized functions inM.
Then, the complexity of an iteration in the offline stage of the MS IPM consists of
O(JM2 ·ntrain) for the computation of the approximations of the training samples
inM, O(JM2 · ntrain · N ) for the evaluation of the EIM errors, and O(J · ntrain)

to assign the training snapshots to the subdomains. Thus, the total complexity is
given by O(JM2ntrainN ).

4.3.2 Online Assignment

In the online stage, it is not possible to evaluate the exact EIM approximation
errors independently of the dimensionN . Hence, the assignment is now based upon
the EIM error estimator. The straightforward procedure is given in Algorithm 4.5.
For a new parameter µ and an input function c(µ), we evaluate the coefficients
θ jM+(µ) and error bounds ∆j

M,M+(µ) for all j = 1, . . . , J . Then, we select the
subdomain with the smallest error estimator. The algorithm returns the selected
subdomain i and the corresponding coefficients θ iM+(µ) that can be used for the
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(a) “True” partition (b) Online assignment
using Alg. 4.5

(c) Online assignment
using Alg. 4.6 and
εtol = 10−4

(d) First assignment
trial in Alg. 4.6
using arg max |θj1|

Figure 4.6: MS IPM online assignments for M = 60 and M+ = 66

further processing of the input function c(µ).

It is clear that the assigned subdomain is not necessarily optimal in the sense
of the real error. However, it is not essential that we hit the best subdomain
but to select a sufficiently precise approximation. Figure 4.6(b) shows the online
assignment based upon the smallest error estimator for the example provided in
(4.4). The result is shown for M = 60 basis functions and the error estimator uses
6 additional coefficients, i.e., M+ = 66. In comparison to the “true” partition in
Figure 4.6(a), based upon the exact EIM approximation error, only minor devia-
tions can be observed. The use of more than 6 coefficients for the error estimates
would furthermore lead to results closer to the “true” partition.

Online Complexity

The online complexity for the assignment of a new parameter µ ∈ P to the ap-
propriate subdomain according to Algorithm 4.5 consists of O(JM) for the eval-
uation of c(µ) ∈ M at the interpolation points, O(JM2) for the computation of
the coefficients and the error bounds, and O(J) for the actual assignment to the
subdomain. Thus, the total complexity reads O(JM2), where it has been assumed
that M+ = O(M).

Compared to the p- and hp-Partitioning, the online complexity increased sig-
nificantly. For both methods, the parameter assignment is independent of the
computation of the coefficients and error bounds which yields an additive term
of O(M2) instead of a multiplication. Furthermore, the number of subdomains
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Algorithm 4.6 getFastOnlineAssignment(S1
EIM,M+ , . . . ,SJEIM,M+ , c(µ),M,M+)

1 for j = 1 to J do

2 θj1(µ) = getCoefficients(SjEIM,1, c(µ), 1)

3 end for

4 {j1, . . . , jJ} = sortCoefficientsDescending(|θ1
1(µ)|, . . . , |θJ1 (µ)|)

5 for k = 1 to J do

6 θjkM+(µ) = getCoefficients(SjkEIM,M+ , c(µ), M+)

7 ∆jk
M,M+(µ) =

M+∑
i=M+1

|θjki (µ)|

8 if ∆jk
M,M+(µ) < εtol then

9 return {jk, θ jkM+(µ)}
10 end if

11 end for

J enters only logarithmically. Yet, the assignment according to Algorithm 4.5 is
independent of the dimension of the parameter domain.

Nevertheless, the online complexity of the MS IPM is acceptable. On the one
hand, the number M of basis functions decreases with increasing number J of
subdomains. In the current example, the run-time is approximately constant in J .
On the other hand, the main complexity in the context of RB methods commonly
amounts toO(M2·N2+N3), whereN denotes the number of basis functions for the
reduced basis. Since separate reduced bases are constructed for each subdomain,
N is decreasing in J , too. Hence, the most expensive computations in the RB
context decrease significantly.

Improved Online Complexity

The key requirement of the assignment is to obtain approximations that fulfill a
certain error tolerance εtol and not to find the best subdomain. As a consequence,
it is possible to break the loop over j in Algorithm 4.5 as soon as ∆j

M,M+(µ)

falls below εtol for any value of j. Then, the average online complexity is already
reduced to half. In Algorithm 4.6, we present a heuristic that provides a more
suitable search order of the subdomains than just checking the error estimators
step by step.
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The EIM is generated in a form such that the importance of the basis functions
decreases in M . In other words, the coefficients of the first basis functions are
usually larger than the following ones. At the same time, using a collateral basis
that does not fit to the input data, the coefficients are rather equally distributed
over all basis functions and the first coefficients are therefore comparatively small.

We use this effect for the search order heuristic. In line 2 of Algorithm 4.6, we
evaluate only the first coefficients θj1 of the affine approximations of a given input
function c(µ) for all subdomains j = 1, . . . , J . In line 4, we sort these coefficients
in descending order with respect to their absolute values and return an ordered list
of subdomains. Then, we iteratively check if the error estimator of the subdomains
fall below the tolerance εtol, starting with the subdomain with the largest coefficent
θj1. Once we find the first subdomain that approximates c(µ) sufficiently precise,
we return the subdomain and the corresponding coefficients θ jkM+(µ) for the affine
approximation.

Figure 4.6(c) shows the online assignment based upon Algorithm 4.6 for the
error tolerance εtol = 10−4. Again, we used M = 60 basis functions and an addi-
tional number of 6 coefficients for the error estimators. The partition reveals some
larger deviations compared to the “true” partition 4.6(a) and the direct assignment
4.6(b) based upon Algorithm 4.5, respectively. However, for all parameters, both
the error estimator and the true error fall below εtol.

In Figure 4.6(d), the result of the heuristic of Algorithm 4.6 is provided. It
shows the first assignment attempt, i.e., the assignment based upon the largest
first coefficient. We can see that large parts coincide with the assignment in
Figure 4.6(c). In fact, 80.8% of the parameters in Figure 4.6(d) are associated
to the same subdomain as in Figure 4.6(c) and are therefore directly assigned
after just one iteration. Hence, in most cases, the online complexity reduces to
O(J +M2). For another 17.6%, we need two attempts until a subdomain is found
that approximates the corresponding function sufficiently well. For only 1.6% of
the parameters, we have to evaluate the coefficients for all subdomains.

We conclude that the alternative assignment procedure determines appropriate
subdomains very fast. In several examples (see also Section 4.6), we observed that
the great majority of the parameters are assigned in the first attempt. Further-
more, for examples where the first coefficient is not sufficient for a fast assignment,
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it is also possible to use more than one. In fact, this procedure is in some way the
opposite to the assignment based upon the error bounds. Instead of the smallest
error bound, i.e., the smallest coefficients |θjm| for some large values of m, we take
the largest coefficients |θjm| for some small m.

4.3.3 Refinement Procedure

So far, we fixed the number of subdomains in advance, whereas for many ap-
plications, a certain maximal number Mmax of basis functions is desired and the
necessary number of subdomains is unknown. Thus, we start the MS IPM with an
initial guess J0 of needed subdomains. Once we detect that Mmax will be reached
but the error still exceeds the tolerance εtol, we need a refinement of the partition.
In contrast to the p- and hp-Partitioning, it is not possible for the MS IPM to
directly divide a subdomain into several parts. Hence, a refinement now yields to
a complete restart of the procedure with an increased number of subdomains.

It is too expensive to perform the complete MS IPM until Mmax is reached
before a refinement is performed. However, we can adopt the ideas of both p- and
hp-Partitioning. As for the hp-Partitioning in Section 4.1.2, it is possible to define
additional quantities Mh

max � Mmax and εhtol � εtol. Then, we perform the MS
IPM using the new tolerance, the new maximal number of basis functions, and
an initial number J of subdomains. Once Mh

max is reached but the error does not
fall below εhtol, we increase J by one and iterate the procedure. After convergence,
we finally restart the MS IPM using the before detected number of subdomains
and the actually desired quantities εtol and Mmax. However, the procedure may
still be expensive and it is very difficult to define εhtol and Mh

max such that the final
number of subdomains is indeed sufficient. Hence, it may happen that additional
expensive refinements are needed.

Alternatively, we can adopt the prediction methodology from the p-Partitioning
presented in Section 4.1.1. We start the MS IPM as described in Algorithm 4.3
with an initial number J of subdomains. Let MJ(εtol) denote the number of basis
functions that are necessary to reach the tolerance εtol for the given number J of
subdomains. After each basis extension, before line 17 of Algorithm 4.3, we predict
MJ(εtol) by extrapolating the maximal errors of the previous steps. We denote the
prediction of MJ(εtol) by Mpred

J (εtol). If Mpred
J (εtol) ≤Mmax, we proceed the basis
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extension. Otherwise, we increase the number of subdomains to some Jnew > J

and restart the MS IPM.
For the efficiency of this refinement procedure, it is crucial to appropriately

select the new number of subdomains. In the ideal case, a perfectly well sepa-
rable family of functions M, twice as many subdomains would lead to a halved
number of necessary basis functions and the relation J0MJ0(εtol) = J1MJ1(εtol)

would hold. Hence, the new number of subdomains should be determined by
Jnew = JMpred

J (εtol)/Mmax. However, this ideal case is very unrealistic and pro-
vides only a lower bound for the actually needed number of subdomains. Instead,
we assume a nonlinear dependence and use

Jnew = J ·
(
Mpred

J (εtol)

Mmax

)α

(4.5)

for some α > 1. The exponent α depends on the separability ofM. We therefore
start with a rather small α, e.g., α = 2. If further refinement steps are necessary, α
can be increased step by step. Alternatively, it would also be possible to determine
an appropriate choice of α using the hp methodology. For some εhtol � εtol and
several numbers of subdomains J ∈ {J1, . . . , Jn}, n ∈ N, we determine MJ(εtol) or
Mpred

J (εtol) and fit α such that

Jp ·
(
MJp(εtol)

)α ≈ Jq ·
(
MJq(εtol)

)α
, p, q = 1, . . . , n.

4.4 Fixed Shapes IPM

In the previous section, we developed a partitioning method for unknown parame-
ter domains that is very flexible and automatically adapts the shapes to the given
problem. The convergence in the different subdomains is well-balanced, the online
assignments are adequate, and, for the majority of parameters, fast.

However, the refinement procedure can be relatively expensive since the bases
on all subdomains are discarded and a complete restart is necessary. Furthermore,
it is common in the EIM context to adaptively determine the number M of basis
functions. Coefficients are added until the error estimator is precise enough. This
can be done without an increased complexity. Since the use of more basis functions
may yield a shift to a different subdomain, this adaptive selection of M is difficult
in the context of moving shapes.
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The objective of the Fixed Shapes (FS) IPM in this section is the development
of an adaptive implicit partitioning method that fulfills the requirements of the
Implicit Partitioning Problem 4.2 but allows a fast refinement procedure and an
adaptive use of the number of basis functions M . Furthermore, the assignment of
parameters are supposed to be based upon a tree based structure. Altogether, we
could decrease offline and online complexity.

We develop two methods that fulfill different aspects of the above mentioned
requirements. They have in common that the subdomains do not move with
increasing M . We first present a procedure where the assignment is still based
upon the approximation error. Then, in Section 4.4.2, an alternative is presented
that is based upon the heuristic that has been already used in Algorithm 4.6, i.e.,
upon the first approximation coefficients.

4.4.1 Error Based FS IPM

For the following approach, we do not reassign the parameters to the subdomains
in each iteration anymore. The assignment based upon the minimal approximation
error of the first iteration is fixed for all further steps. Thus, the subdomains are
independent of each other and also the generation of the EIM collateral bases can
be performed independently. Furthermore, a subdomain can again be subdivided
into several new subdomains with the same procedure and we can construct the
partition in a tree-based scheme.

The detailed procedure of this FS IPM is described in Algorithm 4.7. It reveals
strong similarities to the p-Partitioning of Algorithm 4.1 and the hp-Partitioning
of Algorithm 4.2. We assume that the initial assignment for an arbitrary number
J of subdomains and a training setMtrain has been performed analogously to the
initial step of the MS IPM, producing J disjoint sub-training setsMj

train ⊂Mtrain

and the initial EIM structs SjEIM,M0
, j = 1, . . . , J , M0 = 1. We use the more

general notation with an arbitrary initial M0 in Algorithm 4.7 for later reference.
For now, we constantly set M0 ≡ 1. Algorithm 4.7 is started independently for
each subdomain.

From line 1 to 7 of Algorithm 4.7, the already known EIM basis extension on
subdomain j is performed, using always the same set of training samples. Once
the maximal error falls below the tolerance εtol, the EIM struct SjEIM,M is returned
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Algorithm 4.7 FixedShapesIPM(SjEIM,M0
,Mj

train, Mmax, εtol, J)

1 for M = M0 + 1 to Mmax do

2 SjEIM,M = addBasisFunction(SjEIM,M−1,Mj
train)

3 εjM,max = getMaxError(SjEIM,M ,Mj
train)

4 if εjM,max < εtol then

5 return SjEIM,M

6 end if

7 end for

8 {SJ+1
EIM,1, . . . ,SJ+Jadd

EIM,1 } = initialFirstBasisFunction(SjEIM,Jadd+1, Jadd)

9 {IJ+1, . . . , IJ+Jadd} = getOfflineAssignment(SJ+1
EIM,1, . . . ,SJ+Jadd

EIM,1 ,Mj
train)

10 Jnew = J + Jadd

11 for i = 1 to Jadd do

12 MJ+i
train = {c(µ) ∈Mtrain |µ ∈ IJ+i}

13 FixedShapesIPM(SJ+i
EIM,M0

,MJ+i
train, Mmax, εtol, Jnew)

14 end for

in line 5.

When Mmax is reached without convergence, a refinement procedure has do be
performed. Let Jadd denote the number of new subdomains. As in the initial step
of the MS IPM, we use the first Jadd + 1 selected basis functions of the current
subdomain to initialize the new EIM structs in line 8. Again, we omit the first
basis for a better distribution of the subdomains. In line 9, we assign the functions
in Mtrain to the appropriate subdomain based upon the approximation error as
described in Algorithm 4.4. From line 11 to 14, we recursively start Algorithm 4.7
for each new subdomain.

Since the shapes are fixed, we do not have to evaluate the approximation error
for all input functions on all subdomains in each iteration. Hence, the offline run-
time decreases. To further improve the offline complexity, it is now possible to
adapt both the hp and the prediction methodology to the current algorithm. In
other words, it is possible to create the subdomains based upon a comparatively
large error tolerance εhtol � εtol and perform the basis extension in the second step.
Furthermore, Jadd can be chosen adaptively using the predicted number of needed
basis functions Mpred

1 on the current domain and Equation (4.5).
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Figure 4.7: Initial partition for J = 3 (a). Refinement steps using the FS IPM of
Algorithm 4.7 and Jadd = 2 ((b) – (e)). Error decay in the final subdomains (f).

In Figure 4.7, the refinements for the example provided in (4.4) with a desired
accuracy of εtol = 10−8 and a maximal number of basis function Mmax = 100 is
shown. We started with the initial partition already used for the MS IPM for J = 3

and used a constant number of Jadd = 2. After four refinements, the partition is
fine enough. Figure 4.7(f) shows the convergence in the final subdomains. It
can be observed that the convergence rate is not balanced between the different
subdomains anymore. For the desired accuracy, the subdomains need between 56

and 95 basis functions.

Online Procedure

In the online assignment, it is not straightforward to use the tree structure of the
partition for efficient assignments. At a certain node of the tree of subdomains, we
can evaluate the EIM error estimators for all child subdomains and proceed at the
subdomain with the best result. However, for accurate results, it is not enough
to only use small numbers M and M+. In each node, M should be chosen such
that the accuracy εtol is already reached. Otherwise, it is possible that we select
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branches where the error can never fall below the desired tolerance. Hence, large
values of M > Mmax will be needed in the tree search. Thus, also offline run-time
and the storage complexity increases.

Alternatively, we only store the leaf subdomains and apply the online assign-
ment that has already been used for the MS IPM. It is also possible to use the
heuristic of Algorithm 4.6 for a more efficient assignment. However, due to the un-
balanced convergence rates, the subdomains that converge faster may cover parts
that are too large. Hence, the adaptive basis size selection is not always possible
in this case. In any way, compared to the MS IPM, the offline complexity has been
significantly reduced.

4.4.2 Coefficient Based FS IPM

For both the MS IPM and the error based FS IPM, we tried to accelerate the
assignment using the heuristic introduced in Algorithm 4.6 which is based upon
the first coefficients of the affine approximations. In Figure 4.6(d), the result of
this heuristic has been shown. It can be observed that the heuristic partition based
upon the largest first coefficient almost exactly coincides with the initial true error
based partition as show in Figure 4.4(a) and Figure 4.7(a). Hence, it seems to be
a natural idea to use the heuristic not only in the online stage for a more efficient
assignment but for the complete partitioning procedure. In other words, we could
already base the splitting of a subdomain upon the largest coefficient.

However, it is not always possible to directly apply the heuristic. Consider the
example problem used in [7] for the introduction of the EIM,

c(x;µ) = (x1 + µ1)2 + (x2 + µ2)2, (4.6)

x ∈ D = [0, 1]2, µ ∈ P = [0.01, 1]2. Independently of µ, the maximum of c
is located at xmax = (1, 1). Hence, each subdomains selects the same first EIM
interpolation knot t1 = xmax = arg maxx∈D q

j
1(x), where qj1 denotes the first basis

function in subdomain j. Then, for the approximation of a function c(µ), µ ∈ P ,
the first coefficients in all subdomains are equal to c(xmax, µ) due to the L∞-
normalization of the basis functions. Hence, we follow a slightly different approach
and use a flexible and adaptive number of coefficients for the assignment.
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Algorithm 4.8 getCoefficientBasedAssignment(S1
EIM,M0

, . . . ,SJEIM,M0
, c(µ), M0)

1 for j = 1 to J do

2 θjM0
(µ) = getCoefficients(SjEIM,M0

, c(µ), M0)

3 end for

4 return i = arg max
j
{‖θjM0

(µ)‖1 , j = 1, . . . , J}

Generally, for a given number M0 of used coefficients and a given function c(µ),
the coefficient based assignment procedure is given in Algorithm 4.8. We evaluate
the vector θjM0

(µ) of the first M0 approximation coefficients for all subdomains j
and return the subdomain where the sum of the respective coefficients in absolute
values is maximal.

Since the assignment is independent of the number of degrees of freedom, the
procedure getCoefficientBasedAssignment(·) can be used in both offline and online
stage. Furthermore, the assignment is independent of the actually used number
of basis function. Thus, the subdomains are now completely fixed and online and
offline shapes exactly coincide.

The main structure of the offline phase of the coefficient based FS IPM works
analogously to the error based FS IPM in Algorithm 4.7, i.e., we build a tree of
subdomains. A leaf subdomain will be refined if the given error tolerance εtol is
not reached with a maximal number Mmax of basis functions. The only change
occurs in line 9 of Algorithm 4.7. Instead of the error based assignment procedure
getOfflineAssignment(·), we call

{IJ+i, SJ+i
EIM,M0

| i = 1, . . . , Jadd}
= refineCoefficientBased(SJ+1

EIM,1, . . . ,SJ+Jadd
EIM,1 ,Mj

train, SjEIM,Mmax
, Jadd+1).

that is provided in Algorithm 4.9 and described in the following. It automatically
detects the necessary number M0 of used coefficients for an appropriate splitting
of the domain. It returns not only the sets of assigned parameters IJ+i but also
the to M0 basis functions updated EIM structs SJ+i

EIM,M0
, i = 1, . . . , Jadd. Besides

the initial EIM structs and the training functions, the input of the procedure also
includes the EIM struct of the parent subdomain and the index of its last basis
function that has been used as initial basis for a child subdomain.

Algorithm 4.9 starts trying to use a single coefficient for the assignment. From
line 2 to 6, we perform the assignment based upon Algorithm 4.8. In line 7 of



78 4. Implicit Partitioning Methods for Unknown Parameter Domains

Algorithm 4.9 refineCoefficientBased(S1
EIM,1, . . . ,SJEIM,1,Mtrain, S0

EIM,Mmax
, Jinit)

1 for M0 = 1 to Mmax
0 do

2 I1 = . . . = IJ = {}
3 for n = 1 to ntrain do

4 j = getCoefficientBasedAssignment(S1
EIM,M0

, . . . ,SJEIM,M0
, c(µn), M0)

5 Ij = Ij ∪ {µn}
6 end for

7 if I1, . . . , IJ 6= ∅ then

8 return {Ij, SjEIM,M0
| j = 1, . . . , J}

9 end if

10 {SjEIM,M0+1 | j = 1, . . . , J} = doMSIPMStep(S1
EIM,M0

, . . . ,SJEIM,M0
,Mtrain)

11 end for

12 for j = 1 to J do

13 if Ij = ∅ then

14 Jinit = Jinit + 1

15 SjEIM,1 = newInitialBasisFunction(S0
EIM,Mmax

, Jinit)

16 end if

17 end for

18 refineCoefficientBased(S1
EIM,1, . . . ,SJEIM,1,Mtrain, S0

EIM,Mmax
, Jinit)

Algorithm 4.8, we check if the assignment worked. More precisely, if none of the
sets of parameters Ij is empty, we accept the new partition and return the result.
For each subdomain, we also store the used number M0 of coefficients for the
assignment.

If at least one of the sets is empty, we discard the assignment. This happens for
example if the coefficients of the different subdomains all have the same magnitude.
Hence, we try to use more coefficients. We perform one step of the MS IPM in
line 10 to determine one additional basis function for each subdomain. Then, the
assignment procedure is iterated.

Suppose a maximal number Mmax
0 of allowed coefficients is reached without

an appropriate assignment, we reset the subdomains with new initial bases from
line 12 to 17. For each subdomain j with Ij = ∅, we replace its initial basis by
the next function of the parent subdomain that has not been used for any initial
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basis in line 15. If Jinit > Mmax, we can not assign a new initial basis and the
algorithm would have to be stopped. Otherwise, we restart the whole procedure
refineCoefficientBased(·) in line 18 with M0 = 1. In other words, we discard all
the selected basis functions except the first ones and use only the (partially new)
initial EIM structs.

As mentioned before, we build a tree of subdomains such that we can perform
a very efficient tree search in the online stage. Let c(µ) be a new input function.
At each node, we evaluate the first M0 approximation coefficients θjM0

of all child
subdomains j which is of complexity O(JaddM

2
0 ). We move to the child subdomain

where ‖θjM0
‖1 is maximal until a leaf subdomain is reached. Hence, the assign-

ment of a function to the right leaf subdomain can be achieved with complexity
O(log (J) ·M2

0 ). Usually, M0 is very small, even 1 for most examples and nodes,
and the assignment is very fast.

At most nodes in the tree, only M0 basis functions have to be stored. Only for
leaf subdomains, the complete EIM structs are stored. For additional accelerations
of the offline stage, the method can be combined with the hp methodology and/or
the prediction techniques.

There is no guarantee that the partitioning converges by using more coefficients
or by resetting the initial basis functions as suggested. However, in the examples
in Section 4.6, we see that the method works well, even for the very unfavorable
example introduced in (4.6). As for the error based FS IPM, we do not have the
balanced convergence of the MS IPM. However, to avoid subdomains with only
very few input functions, we could also replace the condition in line 7 and reject
partitions where the distribution of the parameters is very unbalanced. E.g., a
partition would be accepted only if all subdomains contain at least a postulated
percentage of the parameters. In the examples below, we required that each sub-
domain obtains at least 5% of the parameters.

4.5 Combinations

It is possible to combine the different implicit partitioning methods in several ways.
To save offline run time but still generate flexible shapes, it could be useful to first
perform some steps of the error based FS IPM and generate a tree of subdomains.
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At some step, we then switch to the MS IPM starting with the initial bases on the
generated leaf subdomains. In the online stage, we would then use the assignment
as given for the MS IPM.

In a similar way, it is possible to combine the coefficient based FS IPM and the
MS IPM. Again, a small tree can be built resulting in a rough partition. Then,
on each leaf subdomain j, we could generate a new partition using the MS IPM,
respectively. To some extend, we would keep the flexible shapes and balanced
convergence in this way. Furthermore, we would now save online and offline run
time. In the offline stage, we do not need to evaluate all approximation errors
on all input functions and all subdomains in the “tree phase”. For the “MS IPM
phase”, the partitioning needs less refinement steps. In the online stage, we first
perform an efficient tree search to find the appropriate leaf subdomain. Then, the
more expensive online assignment based upon Algorithm 4.5 on the final partition
is only used for a smaller number of subdomains.

If in any case, the coefficient based FS IPM does not terminate but produces
inappropriate subdomains, it is therefore still possible to proceed with the MS
IPM to still obtain the desired accuracy with less than Mmax basis functions.

4.6 Numerical Examples and Comparisons

In this section, we consider three different examples to illustrate the different
properties of the presented partitioning methods. For all examples, explicitly given
parameter domains have been used. An additional example for stochastic input
data can be found in Section 7.6.3. We compare the results of the implicit methods
with the hp anchor point and hp gravity center methods and discuss advantages
and disadvantages.

The desired L∞ error tolerance in the construction of the partitions is given
by εtol = 10−8 for all examples. For the tree based refinement steps of the FS
IPM, Jadd has been set to 2 for all cases to facilitate the comparison to the other
methods and to guarantee efficient tree structures. For the coefficient based FS
IPM, we rejected partitions if one of the two subdomain obtained less than 5%
of the parameters of the parent subdomain. The maximal number of coefficients
used for the assignment has been set to Mmax

0 = 6.
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No error prediction techniques to accelerate the offline process have been used
in order not to generate more subdomains than necessary and to obtain “optimal”
partitioning results. Consequently, we also used εhtol = εptol and M

h
max = Mp

max for
the hp-Partitioning.

Example 1

We first consider the example adopted from [31] and already provided in (4.4).
For the spatial domain D = [0, 1]2 and the explicitly given parameter domain
P = [0.3, 0.7]2, the input function c : D × P → R is given by

c(x;µ) = e−50((x1−µ1)2+(x2−µ2)2).

For the discretization of the spatial domain, we used a uniform grid with edge
length 0.02 such that the number of degrees of freedom is given by N = 2601.
The parameter samples for the offline stage are selected using a logarithmically
distributed grid with 72 parameters in each direction and ntrain = 5184 samples.

For all refinement steps of the coefficient based FS IPM, it was sufficient to
use only M0 = 1 coefficient for the assignment. Since the results of the coefficient
based and the error based FS IPM were almost identical in numbers and shapes
of subdomains, we omitted the error based results.

In Figure 4.8, we compare the efficiency of the implicit methods with the hp
results. For given maximal number of basis functionsMmax, the respective numbers
J of generated subdomains are displayed in a logarithmic scale. A single EIM on
the complete parameter domain D needs M = 199 basis functions for the error
tolerance εtol = 10−8. We can see that the differences of the numbers of needed
subdomains for the shown methods are very small. Only the hp gravity center
method generated better results than the MS IPM. However, this method is far less
flexible since only partitions with J = 4, 16 and 64 subdomains could be obtained.
Hence, it would also generate more than necessary subdomains for most values
Mmax. Furthermore, the determination of the gravity center is based upon the
total number of Mmax parameters and may be less appropriate for Mh

max �Mmax

in real applications. The coefficient based FS IPM generated very similar results
to the hp anchor point method with about the same offline and online complexity
but without any knowledge of the parameters.
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Figure 4.8: Comparison: number of subdomains J necessary for a given maximal
number of affine terms Mmax for Example 1.

(a) M = 1 (b) M = 33 (c) M = 78

Figure 4.9: Moving partitions for Example 1 using the MS IPM for J = 8, leading
to M = 33 for εtol = 10−4 and M = 78 for εtol = 10−8.

(a) FS IPM coeff. based (b) FS IPM error based (c) hp anchor point

Figure 4.10: Partitioning results for Example 1 and Mmax = 80 using different
tree-based methods.
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In Figure 4.9, we see the partitioning result of the MS IPM for the given number
of J = 8 subdomains and three different numbersM of basis functions. Comparing
the initial partition for M = 1 with the partitions for M = 33 and M = 78, we
see again that in later basis extension steps, only few reshaping occurs. For the
error tolerance εtol = 10−4, the different subdomains needed between M = 31 and
M = 33 basis functions. Hence, the convergence rate is very well-balanced. The
error tolerance εtol = 10−8 has been reached between M = 75 and M = 78.

We tested the MS IPM online stage using a test sample set of 10,000 parameters
and the fast assignment of Algorithm 4.6. The first assignment trial, i.e., the
partition based upon the largest first coefficient, coincided in over 98% of the
samples with the partitioning result of the MS IPM for M = 1. In other words,
the first assignment trial partition looked almost like Figure 4.9(a).

The following list shows the necessary assignment trials until an appropriate
subdomain has been selected for M = 33, M+ = 36 and εtol = 10−4. The first line
provides the number of trials, the second line the number of samples in % that
have been assigned to an appropriate partition in the corresponding step.

1. 2. 3. 4. 5. 6. 7. 8. -

77.99% 13.33% 3.25% 4.30% 0.56% 0.05% 0.00% 0.00% 0.52%

We can see that the great majority has been assigned in the first two steps. Hence,
the procedure is very efficient. On average, we needed less than 1.39 assignment
trials per sample, even though for 0.52% of the samples, the error estimator was
larger than εtol on all subdomains. Here, a larger number M would be needed.
For a second example with a large number J = 64 of subdomains and M = 40,
M+ = 44, the average number of assignment trials was still less than 2.

Figure 4.10 compares the partitioning result of both tree structured implicit
methods with the result hp anchor point method for a given Mmax = 80 and
εtol = 10−8. The coefficient based and the error based FS IPM generate almost
identical partitions with J = 8 subdomains whereas the hp method needed J = 9

subdomains in this case.

Example 2

We now consider the example that has been used in [7] to introduce the idea of
the EIM and which has briefly been mentioned in Section 4.4.2. For a spatial
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domain D = [0, 1]2 and the parameter domain P = [0.01, 1]2, the input functions
c : D × P → R are defined by

c(x;µ) = (x1 + µ1)2 + (x2 + µ2)2.

As for the Example 1, we use a uniform grid on D with edge length 0.02 and
N = 2601 degrees of freedom. The parameter domain P is sampled using a
logarithmically distributed grid with 72 parameters in each direction leading to
ntrain = 5184.

We already mentioned that the maximum of c is located at xmax = (1, 1) inde-
pendently of µ. Since the first interpolation knot is located at the maximum of
the first basis function, all subdomains select the same first knot and therefore,
the first approximation coefficient θj1(µ) is identical for all subdomains j. Hence,
the coefficient based FS IPM needs at least two coefficients for the assignments.
On average over all performed runs and nodes, it selected about 2.8 coefficients
for the assignments. Especially in the lower parts of the constructed trees, i.e., for
large numbers of subdomains, we had to reset the initial basis functions to obtain
appropriate partitions.

In Figure 4.11, we compare again the numbers of generated subdomains for
different values of Mmax, where the numbers of subdomains are plotted logarith-
mically. For this example, the MS IPM clearly outperforms the other methods.
On average, the coefficient based FS IPM and the hp methods produced similar
numbers of subdomains. For the hp gravity center method, only the very few
numbers of J = 4, 7, 16 and 25 could be reached at all.

In Figure 4.12, we compare the partitions generated by the different methods for
a desired number of Mmax = 55 basis functions. We observe that the shapes and
numbers of subdomains differ significantly, where the MS IPM in Figure 4.12(a)
seems to divide the parameter domain in the best way. It is also interesting to see
that some of the subdomains of the coefficient based FS IPM in Figure 4.12(b)
are divided into several parts that are not connected. E.g., the “black subdomain”
consists of parameters in the lower left and lower right part of the parameter
domain. For the construction of this partition, two resets of the initial partition
were necessary and the average number of coefficients for the assignment was 2.75.

It turned out that it is also possible to use a constant number M0 > 1 of
coefficients for the assignment for this example. If a partition in a node is rejected,
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Figure 4.11: Comparison: number of subdomains J necessary for a given maximal
number of affine terms Mmax for Example 2.

(a) MS IPM final:
J = 4

(b) FS IPM coefficient
based: J = 9

(c) hp anchor point:
J = 8

(d) hp gravity center:
J = 7

Figure 4.12: Partitioning result for Ex. 2 and desired Mmax = 55 using different
partitioning methods.

(a) based on M0 = 2

coefficients
(b) based on M0 = 3

coefficients
(c) based on M0 = 4

coefficients
(d) based on M0 = 5

coefficients

Figure 4.13: Partitioning result for Ex. 2 and using the coefficient based FS IPM
for constant M0 and J = 6.
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we directly substitute the initial basis as described in Algorithm 4.9. Figure 4.13
shows the partitioning result after five refinement steps, i.e., for J = 6 subdomains,
for different numbers M0. For this example, the initial bases have been reset only
if no parameters have been assigned, i.e., if Ij = ∅ for some subdomain j. It can
be seen that the shapes of the subdomains strongly depend on the used number of
coefficients. From the appearance of the shapes, we would guess thatM0 = 3 leads
to the best results, whereas the shapes in Figure 4.12(b) show some similarities
to the result of Figure 4.13(a) for M0 = 2. Indeed, the FS IPM with constant
M0 = 3 produced better results for many cases. E.g., for Mmax = 40, it needed
only J = 12 and for Mmax = 60 only J = 5 subdomains whereas the “regular”
FS IPM needed J = 18 and J = 7 subdomains, respectively. However, it is not
possible to know the proper number a priori. Hence, the procedure proposed in
Algorithm 4.9 seems to be more appropriate, especially for unknown parameter
domains.

Example 3

In the last example of this section, we consider a special parameter dependency.
For the spatial domain D = [0, 1]2 and the explicitly given parameter domain
P = [0, 1]2, the input function c : D × P → R is given by

c(x;µ) = e
−50

((
x1−4

(
µ1−

1
2

)2
−µ22
)2

+x22

)
.

Now, for parameters µ ∈ P on the elliptic curves

4
(
µ1 − 1

2

)2
+ µ2

2 ≡ const,

the input functions c(µ) are identical. Hence, it is desirable that the partition-
ing methods detect this dependency and adjust the splitting of the subdomains
accordingly.

For the discretization of the spatial domain, we used again a uniform grid with
edge length 0.02 and obtain N = 2601 degrees of freedom. The parameter samples
for the offline stage are now selected using a uniform grid on P = [0, 1]2 with 72

parameters in each direction. Hence, we obtain ntrain = 5184 uniformly distributed
samples.
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Figure 4.14: Comparison: number of subdomains J necessary for a given maximal
number of affine terms Mmax for Example 3.

(a) MS IPM initial:
J = 2

(b) MS IPM final:
J = 2

(c) hp anchor point:
J = 23

(d) hp gravity center:
J = 46

Figure 4.15: Partitioning result for Example 3 and desired Mmax = 18 using
different partitioning methods.

(a) refinement 1 (b) refinement 2 (c) refinement 3 (d) refinement 4

Figure 4.16: Tree structured refinement steps for Example 3 using the coefficient
based FS IPM.
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A single EIM on the complete subdomain converged forM = 27 basis functions.
For Mmax = 18, the partitioning results of the MS IPM and the two hp methods
are provided in Figure 4.15. For the MS IPM, two subdomains are sufficient. We
provide the initial partition for M = 1 and the final partition for M = 18 in
Figures 4.15(a) and 4.15(b), respectively. In Figure 4.15(a), we also marked the
two parameters that have been used for the initial basis. It can directly be seen
that the subdomains are defined by the band around the ellipse of parameters on
which the initial parameters are located.

Contrarily, the hp results in Figures 4.15(c) and 4.15(d) do not properly detect
the geometric parameter dependency of the input functions. Not even the sym-
metry along the axis µ1 = 1

2
has been used. As a consequence, a huge number of

subdomains is needed. At the same time, many subdomains cover the same part of
the family of input functions. Especially for the hp anchor point method, one can
see that many small subdomains have been created along one parameter ellipse.

Also in Figure 4.14, it can be observed that the hp methods do not detect the
more special parameter dependency. On average, the anchor point method needs
about 10 times more subdomains to appropriately cover the complexity of M.
The number of subdomains created by the gravity center splitting procedure is an
additional factor of around two larger.

The number and shapes of the subdomains created for the MS IPM and the
FS IPM differ only slightly. In Figure 4.16, the tree structure of the coefficient
based FS IPM is provided. In each step, one of the subdomains is divided into
two parts. We see that shapes of the subdomains keep their elliptic appearance.
For the parameter assignments, one approximation coefficient was sufficient.

4.7 Conclusions

We developed implicit partitioning methods that assign parametric input functions
to an appropriate subdomain without the knowledge of the actual parameter or
any other additional information. On each subdomain, an EIM is performed that
creates affine approximations of the input functions with respect to the unknown
parameter. The methods automatically detect complex parametric structures such
as symmetries or other patterns of the parametric dependency. Hence, for wide
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Table 4.1: Comparison of the different partitioning methods.

MS FS: I jfirst FS: θ jM0
hp

implicit + + + −

offline complexity − + + +

online complexity − − + +

adaptive basis size − ◦ + +

balanced convergence + − − −
flexible shapes + ◦ ◦ −
robustness + + − +

classes of problems, the implicit methods outperform other partitioning methods
even for known explicitly given parameters.

In Table 4.1, a summary of the advantages and disadvantages of the methods is
provided and the behavior is compared to the hp-Partitioning methods. In the first
column, the characteristics of the MS IPM are illustrated. Next, the properties
of the error based and the coefficient based FS IPM are shown. In the last row,
we compare the implicit methods with the hp methods that need explicitly given
parameter dependencies.

As mentioned before, a tree structure is desired offline and online for a fast con-
struction of the partition and for fast assignments. The only implicit method that
fulfills both requirements is the coefficient based FS IPM. The online assignment
for the MS IPM and the error based IPM can be accelerated using the heuristic
of Algorithm 4.6. Since the shapes are not absolutely fixed for the error based
FS IPM, it can not be guaranteed that the adaptive choice of the number of used
basis function is possible.

Only the MS IPM creates partitions where the convergence rate of the EIM in
all subdomains is well-balanced. Furthermore, the shapes of the subdomains show
the largest amount of flexibility and adaptively try to optimize the distribution
of the parameters. The shapes generated by the error and coefficient based FS
IPM are less adapted to the problem. Nevertheless, symmetries and other regular
parametric patterns are detected and used for a more efficient partitioning as shown
in Example 3 in Section 4.6.



90 4. Implicit Partitioning Methods for Unknown Parameter Domains

The coefficient based FS IPM is less robust in the sense that it can not be
guaranteed that the splitting into several subdomains works appropriately. It may
be necessary to adjust for example the maximal number Mmax

0 of coefficients for
the assignment or the minimal percentage of parameters that are required in each
subdomain in the splitting phase. Hence, it is more difficult to use the method as
a black box, even though it worked quite well for our examples.



Chapter 5

RBM for Linear Parametric PDEs

with Stochastic Influences

This chapter is based upon joint work with B. Haasdonk and K. Urban and the main
results have already been published in [45] in a very similar form. We added sections
about higher moments, non-coercive problems, and showed that some assumptions
regarding stochastic independence can be weakened such that more general classes
of problems can be considered.

In this chapter, we introduce the RB methodology for parametrized partial
differential equations (PPDEs) with stochastic influences. We consider problems
that are already affine with respect to the deterministic parameter. Furthermore,
strong solutions in probability are used such that the problem is solved in a Monte
Carlo context. One might now think that the RB approach for deterministic
problems can immediately be used in this context as well, viewing the stochasticity,
i.e., stochastic events or inputs, as additional parameters. However, unlike for
deterministic parameters, we have generally no distance measure in the probability
space at our disposal, and so the ideas cannot be transferred directly. A basic
assumption of the RBM is a smooth dependence of the solution of the PPDE with
respect to the parameter, which cannot be assured due to the lack of the distance
measure. Furthermore, the dimension of the parameter space crucially influences
the efficiency of the RBM. In the case of stochastic influences, the parameter space
may be infinite-dimensional.

91
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As a way out, we propose using a Karhunen–Loève (KL) expansion (cf. Section
2.2) of the stochastic process and appropriately truncating it. Even though the
resulting expansion coefficients are still random variables, i.e., functions with re-
spect to the stochastic event, we treat them in some way as parameters that can
be modeled using polynomial chaos (PC) expansions (cf. Section 2.3). The KL
truncation error of course has to be be analyzed. The KL expansion shows some
resemblance to the empirical interpolation method (cf. Section 3.2.3) in order to
obtain an affine decomposition of random and spatial variables, where the random
variables correspond to the parameter dependent EIM coefficients. Consequently,
our analysis is in some parts similar to the EIM analysis in, e.g., [86].

Particularly in the presence of stochastic influences, one is interested not only in
a good approximation of the state, i.e., the solution of the PPDE, but also in accu-
rate outputs, together with corresponding statistical quantities such as expectation
or variance. The latter requires the computation of quadratic output functionals.
Different RBMs for quadratic outputs have been studied. These methods use ex-
panded formulations that eliminate the nonlinearity [54] or introduce special dual
problems [56]. Due to the KL truncation effects, however, these approaches cannot
be used directly for our problem at hand. Hence, we introduce two more modi-
fied dual linear problems in order to derive a posteriori error bounds also for the
above-mentioned statistical quantities. These error estimates can then be used in
a standard Greedy approach [98] for the offline snapshot selection.

The remainder of the chapter is organized as follows. In Section 5.1, we collect
known facts on variational problems with stochastic influences, the KL expan-
sion, and the RBM. We restrict ourselves to linear coercive problems. Section 5.3
contains our a posteriori error analysis for the primal and dual solutions as well
as linear and quadratic outputs. In Section 5.4 and 5.5, we introduce the error
analysis for statistical quantities such as moments and variances. Note that since
the operator has stochastic influences, we cannot derive a deterministic PDE for
linear moments such as the expectation even for linear PDEs. In Section 5.6, the
methodology and error analysis are expanded to non-coercive but inf-sup stable
problems. The offline-online decomposition is presented in Section 5.7 as well as a
method to compute coercivity lower bounds adjusted to stochastic problems. Our
numerical experiments are described in Section 5.8.
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5.1 Problem Formulation

In this section, we collect the basic features of the problem under consideration.

5.1.1 Variational Problems with Stochastic Influences

Let D ⊂ Rd be an open, bounded domain, P ⊂ Rp a set of deterministic parame-
ters, and (Ω,A,P) a probability space. For some X ⊂ H1(D), accounting also for
the corresponding boundary conditions, let a : X ×X ×P ×Ω→ R be a possibly
nonsymmetric form that is bilinear, continuous, and coercive with respect to the
first two arguments, and let f : X×P×Ω→ R be a form with f(·;µ, ω) ∈ H−1(D),
(µ, ω) ∈ P×Ω, that is stochastically independent of a(·, ·;µ, ω) such that the vari-
ational problem

a(u, v;µ, ω) = f(v;µ, ω), v ∈ X, (5.1)

admits a unique solution u(µ, ω) = u(·;µ, ω) ∈ X for all (µ, ω) ∈ P × Ω. As
an example, think of a linear elliptic second order PDE whose coefficients and
right-hand side depend on deterministic parameters µ ∈ P and stochastic inputs
ω ∈ Ω. In particular, we have in mind the case in which a coefficient function
on D depends on stochastic influences modeled by ω. A formulation of the type
(5.1) is also called D-weak/Ω-strong [12], and the difference from a variational
approach with respect to both terms, e.g., stochastic Galerkin methods [69], should
be noted. As already mentioned in the introduction, the direct view of ω — which
represents an underlying stochastic event — as an additional parameter is not
entirely possible. One should think of it merely as an uncertainty; i.e., a(·, ·; ·, ω)

is a random variable or a stochastic process. Nevertheless, we sometimes refer to
ω as the stochastic parameter.

In order to achieve computational efficiency of an RBM for (5.1), we assume
that both terms in (5.1) allow for an affine decomposition with respect to the
deterministic parameter µ, namely,

a(w, v;µ, ω) =

Qa∑

q=1

θaq (µ)
[
āq(w, v) + aq(w, v;ω)

]
, (5.2)

f(v;µ, ω) =

Qf∑

q=1

θfq (µ)
[
f̄q(v) + fq(v;ω)

]
, (5.3)
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with Qa, Qf ≥ 1, θaq , θfq : P → R, āq, aq(·, ·;ω) : X × X → R, and f̄q,
fq(·;ω) : X → R bounded for all ω ∈ Ω. Note that āq and f̄q denote the ex-
pectations of the terms in brackets; aq(·, ·;ω) and fq(·;ω) denote the respective
fluctuating parts. We assume that all parts aq, fq are stochastically independent.
In general, we do not require any further assumption on these terms. However, in
Section 5.7, some restrictions are introduced in order to use an alternative method
for the computation of coercivity lower bounds. In cases in which a and f do not
allow for a decomposition in the form of (5.2) and (5.3), respectively, a standard
tool to derive affine approximations of nonaffine functions is the empirical inter-
polation method (EIM) [7]. A possible use of the EIM would require a technically
more involved error analysis which is not discussed in this chapter; cf. Chapter 3,
Chapter 7, and [86].

In order to describe the well-posedness of (5.1), one usually defines the coercivity
and continuity constants, respectively, as

α(µ, ω) := inf
v∈X

a(v, v;µ, ω)

‖v‖2
X

, γ(µ, ω) := sup
w∈X

sup
v∈X

a(w, v;µ, ω)

‖w‖X‖v‖X
. (5.4)

We assume that for some 0 < α0, γ∞ <∞, we have

α(µ, ω) ≥ α0 > 0 (uniform coercivity), (5.5a)

γ(µ, ω) ≤ γ∞ <∞ (uniform continuity) (5.5b)

for all (µ, ω) ∈ P ×Ω. Under these assumptions, the Lax–Milgram theorem guar-
antees the well-posedness of (5.1). Next, for (µ, ω) ∈ P ×Ω, we define parameter-
dependent inner products and energy norms as

(w, v)µ,ω := a(w, v;µ, ω), ‖w‖2
µ,ω := (w,w)µ,ω, v, w ∈ X. (5.6)

In many situations, one is not (or not only) interested in the state u(µ, ω) or
the error in the energy norm, but in some quantity of interest in terms of a linear
continuous functional ` : X × P × Ω→ R. Again, we assume that ` is affine, i.e.,

`(v;µ, ω) =

Q`∑

q=1

θ`q(µ)
[
¯̀
q(v) + `q(v;ω)

]
(5.7)
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with Q` ≥ 1, θ`q : P → R, and ¯̀
q, `q(·;ω) : X → R bounded and linear for

all ω ∈ Ω. It is assumed that all parts `q are stochastically independent as well
as that ` is independent of a. If ` is deterministic, we set `q ≡ 0. The output
s : P × Ω→ R is given as

s(µ, ω) := `(u(µ, ω);µ, ω). (5.8)

If ` = f , the output coincides with the right-hand side; this is called the compliant
case. In the noncompliant case, it is fairly standard to consider a dual problem of
finding p(1) = p(1)(µ, ω) such that for given (µ, ω) ∈ P × Ω one has

a(v, p(1);µ, ω) = −`(v;µ, ω), v ∈ X. (5.9)

The superscript (1) in (5.9) is motivated by the fact that we will introduce further
dual problems later on.

5.1.2 Karhunen–Loève Expansion

As already stated in the introduction of the chapter, we consider the well-known
Karhunen–Loève (KL) expansion (cf. Section 2.2 and [60, 65]). Let us briefly recall
the main facts. Let κ : D×Ω→ R be a spatial stochastic process with zero mean
and existing covariance operator Covκ(x, y) := E

[
κ(x; ·)κ(y; ·)

]
, x, y ∈ D. Let

(λk, κk(x)), k = 1, . . . ,∞, be the eigenvalue/eigenfunction-pairs of the covariance
operator; then the KL expansion reads

κ(x;ω) =
∞∑

k=1

√
λk ξk(ω)κk(x), (5.10)

where ξk : Ω→ R are uncorrelated random variables with zero mean and variance
1. The eigenvalues are ordered λ1 ≥ λ2 ≥ · · · ≥ 0, and for numerical purposes,
we assume a fast decay. One of the main reasons we consider the KL expansion
is now obvious since the above equation allows for a separation of the stochastic
and the spatial terms. This is very similar to an affine expansion of a form with
respect to a deterministic parameter as is common in RBMs. Here, we can use
the deterministic and purely space-dependent terms for calculations in the offline
phase so that the stochastic influences enter only through the coefficients in the
KL expansion and are thus scalar quantities.
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Since the KL expansion requires zero-mean random variables, the affine decom-
positions in (5.2), (5.3), and (5.7) are obtained by a separation into the deter-
ministic expectations āq, f̄q, ¯̀

q and the zero-mean stochastic parts. We apply the
KL expansion to the factors aq, fq, and `q. For b ∈ {a, f, `}, we get, using the
appropriate arguments and our assumptions regarding stochastic independence,

b(·;µ, ω) =

Qb∑

q=1

θbq(µ)

[
b̄q(·) +

∞∑

k=1

ξbq,k(ω) bq,k(·)
]
, (5.11)

where for notational convenience bq,k also contains
√
λbq,k from the spectral decom-

position of the corresponding covariance operator.

For numerical purposes, one usually restricts the infinite sums to some finite
numbers Kb

q <∞ of terms. It is well known that the KL approximation is optimal
in a certain sense [60, 65]. For b ∈ {a, f, `} we obtain the truncated forms

bK(·;µ, ω) :=

Qb∑

q=1

θbq(µ)

[
b̄q(·) +

Kb
q∑

k=1

ξbq,k(ω) bq,k(·)
]
. (5.12)

Here and in the following, an index or superscript K indicates that the expression
is, or is derived from, a truncated form. We do not distinguish the dependencies
on Kb

q , q = 1, . . . , Qb, b ∈ {a, f, `}. The truncated primal and dual problems read,
for (µ, ω) ∈ P × Ω,

aK(uK(µ, ω), v;µ, ω) = fK(v;µ, ω), v ∈ X, (5.13)

aK(v, p
(1)
K (µ, ω);µ, ω) = −`K(v;µ, ω), v ∈ X, (5.14)

with solutions uK = uK(µ, ω) and p(1)
K = p

(1)
K (µ, ω), respectively.

5.1.3 Output of Interest

Often, one is interested in the state u(µ, ω) as well as in the output functional

s(µ, ω) := `(u(µ, ω);µ).

Furthermore, we may be interested in the squared functional

s2(µ, ω) := (`(u(µ, ω), µ))2.
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Besides these random outputs, we want to evaluate some statistical quantities
such as first and second moments of s(µ, ·), denoted by

M1(µ) := E[s(µ, ·)] and M2(µ) := E[s2(µ, ·)],

respectively. Additionally, we need the squared first moment M2
1(µ) = (E[s(µ, ·)])2

to evaluate the variance V(µ, ω), given by

V(µ) = M2(µ)−M2
1(µ).

5.2 Reduced Basis Approximation

We consider an RB approximation with respect to our parameters (µ, ω) ∈ P ×Ω.
To this end, we first consider the detailed approximation of the primal and dual
problems, e.g., by a finite element discretization on a sufficiently fine grid. The
corresponding spaces are usually again denoted by X, indicating that the detailed
approximation and the exact solution are (numerically) indistinguishable. We
assume that dim(X) = N , where N is assumed to be “large”. Consequently, as is
typical in the RBMs, the error analysis will address only the error of the reduced
to the detailed solution.

The primal and dual RB spaces are then appropriate subspaces

XN ⊂ X, dim(XN) = N � N , X̃
(1)
N ⊂ X, dim(X̃

(1)
N ) = Ñ (1) � N .

Here and in what follows, an index N indicates that the expression denotes or is
based on reduced systems. We do not explicitly indicate the dependencies on the
different dimensions of the reduced systems. Nevertheless, the dimensions of the
reduced spacesXN and X̃(·)

N defined below may be different. We obtain a truncated
primal-dual RB formulation. For (µ, ω) ∈ P × Ω, determine uN,K = uN,K(µ, ω) ∈
XN , p

(1)
N,K = p

(1)
N,K(µ, ω) ∈ X̃(1)

N such that

aK(uN,K , v;µ, ω) = fK(v;µ, ω), v ∈ XN , (5.15)

aK(v, p
(1)
N,K ;µ, ω) = −`K(v;µ, ω), v ∈ X̃(1)

N . (5.16)

We will comment later on the specific construction of XN and X̃(1)
N .
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5.3 A posteriori Error Analysis

Now, we focus on the introduction of a posteriori error bounds for the primal and
dual problems as well as for linear and quadratic output functionals. We will follow
considerations partly similar to those in [86].

5.3.1 Notation

We start by fixing some notations for the subsequent analysis. In many cases,
where it should be clear from the setting, we will omit the parameter (µ, ω) for
notational convenience. Let

eRB(µ, ω) := uK(µ, ω)− uN,K(µ, ω), (5.17a)

ẽ
(1)
RB(µ, ω) := p

(1)
K (µ, ω)− p(1)

N,K(µ, ω) (5.17b)

be the primal and dual RB errors, respectively, where again uK and p
(1)
K denote

the solutions of (5.13) and (5.14), respectively. The corresponding residuals read

rRB(v;µ, ω) := fK(v;µ, ω)− aK(uN,K , v;µ, ω) = aK(eRB, v;µ, ω), (5.18a)

r̃
(1)
RB(v;µ, ω) := −`K(v;µ, ω)− aK(v, p

(1)
N,K ;µ, ω) = aK(v, ẽ

(1)
RB;µ, ω). (5.18b)

Assuming the availability of a computable lower bound 0 < αLB(µ, ω) ≤ α(µ, ω)

of the coercivity constant, it is fairly standard to derive RB error bounds in terms
of the following quantities:

∆RB(µ, ω) :=
1

αLB(µ, ω)
sup
v∈X

rRB(v;µ, ω)

‖v‖X
, (5.19a)

∆̃
(1)
RB(µ, ω) :=

1

αLB(µ, ω)
sup
v∈X

r̃
(1)
RB(v;µ, ω)

‖v‖X
. (5.19b)

Following the arguments of standard RB a posteriori error analysis [73], the terms
∆RB and ∆̃

(1)
RB account for the error caused by restricting X to XN or X̃(1)

N , i.e.,
the RB error, given the truncated KL forms in (5.13, 5.14).

Next, we investigate the KL truncation error. In view of the definition of aK ,
fK , and `K , we see that any truncation error depends on the random variable ω
and thus on the particular realization. This dependence is somehow unsatisfactory
since all derived bounds would depend on a realization of a random variable.
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Thus, we propose replacing the random variables ξbq,k(ω), k > Kb
q , b ∈ {a, f, `}, by

some ω-independent quantity. If the probability density functions of the random
variables have finite support or the problem that underlies the PDE restricts their
variations, we can use rigorous upper bounds ξbUB, i.e., |ξbq,k(ω)| ≤ ξbUB, b ∈ {a, f, `},
for all ω ∈ Ω. In many cases, however, it is also appropriate to use quantiles
instead. For some 0 < ρ < 1, we define ξbUB such that |ξbq,k(ω)| ≤ ξbUB holds
with probability 1− ρ, where ρ should be sufficiently small to be negligible in the
following analysis. Hence, we can define the error terms for the primal and dual
problems as

δKL(v;µ, ω) :=

Qa∑

q=1

|θaq (µ)|
∞∑

k=Ka
q+1

ξaUB |aq,k(uN,K(µ, ω), v)|, (5.20a)

δ̃
(1)
KL(v;µ, ω) :=

Qa∑

q=1

|θaq (µ)|
∞∑

k=Ka
q+1

ξaUB |aq,k(v, p(1)
N,K(µ, ω))|, (5.20b)

as well as for the right-hand sides b ∈ {f, `},

δbKL(v;µ) :=

Qb∑

q=1

|θbq(µ)|
∞∑

k=Kb
q+1

ξbUB |bq,k(v)|. (5.20c)

Note, that δKL and δ̃
(1)
KL still depend on ω via the RB solutions uN,K and p

(1)
N,K .

The right-hand side terms δfKL and δ`KL are deterministic and thus depend only on
µ ∈ P . For numerical realizations, the terms in (5.20) are usually truncated at
some Kmax, where Kb

q < Kmax � N <∞. In a fashion similar to that for the RB
error, we set

∆KL(µ, ω) :=
1

αLB(µ, ω)
sup
v∈X

δKL(v;µ, ω)

‖v‖X
, (5.21a)

∆̃
(1)
KL(µ, ω) :=

1

αLB(µ, ω)
sup
v∈X

δ̃
(1)
KL(v;µ, ω)

‖v‖X
, (5.21b)

as well as

∆b
KL(µ, ω) :=

1

αLB(µ, ω)
sup
v∈X

δbKL(v;µ)

‖v‖X
, b ∈ {f, `}. (5.21c)

Remark 5.1. Since the definition of δKL in (5.20) includes absolute values, it is
not linear in v and we can not define ‖δKL(·;µ, ω)‖X′ . Therefore, we use the (for
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linear forms equivalent) formulation supv∈X δKL(v;µ, ω)/‖v‖X in (5.21). Still, it is
possible to efficiently evaluate the estimates of the truncation errors. More details
are provided in Section 5.7.2.

Remark 5.2. Certainly, the error bounds in (5.20) and (5.21) can be defined
without replacing the random variables ξbq,k(ω), k > Kb

q , b ∈ {a, f, `}, by some
upper bound or quantile. This might be reasonable in some applications, especially
if one is interested only in statistical outputs such as mean or variance. Note that
in this case, the absolute values in the definitions would be omitted and the δKL-
forms remain linear. Then, the KL truncation error bounds would obviously be
much smaller since the upper bounds ξbUB, b ∈ {a, f, `}, already represent the worst
case scenario of the truncation.

5.3.2 Primal and Dual Errors

We start by estimating primal and dual errors involving both KL and RB trunca-
tion, i.e.,

e(µ, ω) := u(µ, ω) − uN,K(µ, ω), (5.22a)

ẽ(1)(µ, ω) := p(1)(µ, ω)− p(1)
N,K(µ, ω), (5.22b)

where u and p(1) denote the detailed primal and dual solutions of (5.1) and (5.9),
respectively. For better readability and notational compactness, we omit the pa-
rameters µ and ω in the following whenever it does not affect the meaning.

Proposition 5.3. Setting

∆(µ, ω) := ∆RB(µ, ω) + ∆KL(µ, ω) + ∆f
KL(µ, ω),

we get ‖e(µ, ω)‖X ≤ ∆(µ, ω) for all (µ, ω) ∈ P × Ω.

Proof. We have for any v ∈ X that

a(e, v) = a(u, v)− a(uN,K , v)

=
(
f(v)−fK(v)

)
+
(
aK(uN,K , v)−a(uN,K , v)

)
+
(
fK(v)−aK(uN,K , v)

)
.
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The last term coincides with the residual rRB(v) = aK(eRB, v) in (5.18). Testing
with v = e and using the coercivity of a yields

‖e‖X ≤ αLB
−1 a(e, e)

‖e‖X
≤ |f(e)− fK(e)|

αLB ‖e‖X
+
|aK(uN,K , e)− a(uN,K , e)|

αLB ‖e‖X
+
|rRB(e)|
αLB ‖e‖X

≤ ∆f
KL + ∆KL + ∆RB

by standard RB estimates, using the definitions of the bounds in (5.19, 5.21).

Corollary 5.4. Setting

∆̃(1)(µ, ω) = ∆̃(1) := ∆̃
(1)
RB + ∆̃

(1)
KL + ∆`

KL

yields the estimate ‖ẽ(1)(µ, ω)‖X ≤ ∆̃(1)(µ, ω) for all (µ, ω) ∈ P × Ω.

Proof. In a way similar to the above we get for any v ∈ X that

a(v, ẽ(1)) = a(v, p(1))− a(v, p
(1)
N,K)

=
(
`K(v)−`(v)

)
+
(
aK(v, p

(1)
N,K)−a(v, p

(1)
N,K)

)
−
(
`K(v)+aK(v, p

(1)
N,K)

)
,

and using v = ẽ(1) yields the desired estimate.

The next step is to investigate the effectivity of the above estimators. To this
end, we define the Riesz representations of primal and dual residuals as

(
ERB(µ, ω), v

)
X

= rRB(v;µ, ω), v ∈ X, (5.23a)
(
Ẽ (1)

RB(µ, ω), v
)
X

= r̃
(1)
RB(v;µ, ω), v ∈ X, (5.23b)

for µ ∈ P and ω ∈ Ω. Since ERB is the Riesz representative of rRB, we have that
‖ERB(µ, ω)‖X = ‖rRB(µ, ω)‖X′ , and thus by definition

‖ERB(µ, ω)‖X = αLB(µ, ω) ∆RB(µ, ω),

‖Ẽ (1)
RB(µ, ω)‖X = αLB(µ, ω) ∆̃

(1)
RB(µ, ω).

Analogously, we define the Riesz representations of the KL residuals by

(
EKL(µ, ω), v

)
X

= r(v;µ, ω)− rRB(v;µ, ω), (5.24a)
(
Ẽ (1)

KL(µ, ω), v
)
X

= r̃(v;µ, ω)− r̃(1)
RB(v;µ, ω), (5.24b)



102 5. RBM for Linear Parametric PDEs with Stochastic Influences

where the detailed residuals are defined as

r(v;µ, ω) := f(v;µ, ω)− a(uN,K , v;µ, ω),

r̃(v;µ, ω) := −`(v;µ, ω)− a(v, p
(1)
N,K ;µ, ω).

We obtain that

‖EKL‖X = ‖r − rRB‖X′ = ‖f − a(uN,K , ·)− fK + aK(uN,K , ·)‖X′
≤ ‖f−fK‖X′ + ‖a(uN,K , ·)−aK(uN,K , ·)‖X′
≤ αLB(µ, ω)(∆f

KL+∆KL), (5.25)

and similarly ‖Ẽ (1)
KL‖X ≤ αLB(∆`

KL + ∆̃
(1)
KL). Finally, in order to estimate the effec-

tivities

η(µ, ω) :=
∆(µ, ω)

‖e(µ, ω)‖X
, η̃(1)(µ, ω) :=

∆̃(1)(µ, ω)

‖ẽ(1)(µ, ω)‖X
, (5.26)

we define the following quantities:

c(µ, ω) :=
∆KL(µ, ω) + ∆f

KL(µ, ω)

∆RB(µ, ω)
, (5.27a)

c̃(1)(µ, ω) :=
∆̃

(1)
KL(µ, ω) + ∆`

KL(µ, ω)

∆̃
(1)
RB(µ, ω)

. (5.27b)

Proposition 5.5. If c(µ, ω) ∈ [0, 1), we get

η(µ, ω) ≤ γUB(µ, ω)

αLB(µ, ω)

1 + c(µ, ω)

1− c(µ, ω)
,

where γUB(µ, ω) ≥ γ(µ, ω) is an upper continuity bound.

Proof. It is straightforward to see that for v ∈ X we have

a(e, v) = r(v;µ, ω)

= (r(v;µ, ω)− rRB(v;µ, ω)) + rRB(v;µ, ω)

= (EKL(µ, ω), v)X + (ERB(µ, ω), v)X

= (EKL(µ, ω) + ERB(µ, ω), v)X .

Thus, with v = ERB − EKL, we get

a(e, ERB − EKL) = (EKL + ERB, ERB − EKL)X

= ‖ERB‖2
X − ‖EKL‖2

X ,
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and hence

‖ERB‖2
X − ‖EKL‖2

X = a(e, ERB − EKL) ≤ γUB ‖e‖X (‖ERB‖X + ‖EKL‖X)

= γUB ‖e‖X
‖ERB‖2

X − ‖EKL‖2
X

‖ERB‖X − ‖EKL‖X
.

Therefore, by the above estimates,

‖e‖X ≥
1

γUB

(‖ERB‖X − ‖EKL‖X) ≥ αLB

γUB

(∆RB −∆KL −∆f
KL).

This finally implies that

η =
∆

‖e‖X
≤ γUB

αLB

∆RB + ∆KL + ∆f
KL

∆RB −∆KL −∆f
KL

=
γUB

αLB

1 + c

1− c,

which proves the claim.

Completely analogously we can estimate the dual effectivity as follows.

Corollary 5.6. If c̃(1)(µ, ω) ∈ [0, 1), we get

η̃(1)(µ, ω) ≤ γUB(µ, ω)

αLB(µ, ω)

1 + c̃(1)(µ, ω)

1− c̃(1)(µ, ω)
.

Finally, for later reference, we note another result. Defining

η0(µ, ω) :=

√
γUB(µ, ω)

αLB(µ, ω)

(
1 + c(µ, ω)

1− c(µ, ω)

)
, (5.28)

we get the following estimate for the effectivity with respect to the energy norm.

Corollary 5.7. If c(µ, ω) ∈ [0, 1), we get

√
αLB(µ, ω)∆(µ, ω)

‖e(µ, ω)‖µ,ω
≤ η0(µ, ω).

Proof. In the proof of Proposition 5.5, we replace ‖e‖X by ‖e‖µ,ωγUB
−1/2.
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5.3.3 Output Error

Now we consider the approximation `K(uN,K ;µ, ω) to the output `(u;µ, ω) =

s(µ, ω). As already known from the RB a posteriori error analysis of linear output
functionals [73], we add a correction term and consider

sN,K(µ, ω) := `K(uN,K ;µ, ω)− rRB(p
(1)
N,K ;µ, ω) (5.29)

and define the output error estimator by

∆s(µ, ω) := αLB∆∆̃(1) + δKL(p
(1)
N,K) + δfKL(p

(1)
N,K) + δ`KL(uN,K). (5.30)

Then, we obtain the following estimate.

Theorem 5.8. |s(µ, ω)− sN,K(µ, ω)| ≤ ∆s(µ, ω) holds for all µ ∈ P and ω ∈ Ω.

Proof. By standard arguments, we get (omitting the argument (µ, ω))

s− sN,K = `(u)− `K(uN,K) + rRB(p
(1)
N,K)

= `(u)− `K(uN,K) + fK(p
(1)
N,K)− aK(uN,K , p

(1)
N,K)

= [`K(u)− `K(uN,K)] + [f(p
(1)
N,K)− aK(uN,K , p

(1)
N,K)]

+ [`(u)− `K(u)]− [f(p
(1)
N,K)− fK(p

(1)
N,K)].

For the first term on the right-hand side, we have

`K(u)− `K(uN,K) = −aK(u, p
(1)
K ) + aK(uN,K , p

(1)
K ) = −aK(e, p

(1)
K ).

Using f(p
(1)
N,K) = a(u, p

(1)
N,K), we get for the first two terms

[`K(u)− `K(uN,K)] + [f(p
(1)
N,K)− aK(uN,K , p

(1)
N,K)]

= −aK(e, p
(1)
K ) + a(u, p

(1)
N,K)− aK(uN,K , p

(1)
N,K)

= −aK(e, p
(1)
K ) + aK(u− uN,K , p(1)

N,K) + [a(u, p
(1)
N,K)− aK(u, p

(1)
N,K)]

= −aK(e, p
(1)
K − p

(1)
N,K) + [a(u, p

(1)
N,K)− aK(u, p

(1)
N,K)]

= −aK(e, ẽ
(1)
RB) + [a(u, p

(1)
N,K)− aK(u, p

(1)
N,K)]

= −r̃(1)
RB(e) + [a(u, p

(1)
N,K)− aK(u, p

(1)
N,K)].

Using `(u)− `K(u) = `(e + uN,K)− `K(e + uN,K) and a(u, p
(1)
N,K)− aK(u, p

(1)
N,K) =

a(e+ uN,K , p
(1)
N,K)− aK(e+ uN,K , p

(1)
N,K) and putting all this together yields

s− sN,K =− r̃(1)
RB(e) + [a(e, p

(1)
N,K)− aK(e, p

(1)
N,K)] + [`(e)− `K(e)]

+ [`(uN,K)− `K(uN,K)] − [f(p
(1)
N,K)− fK(p

(1)
N,K)]

+ [a(uN,K , p
(1)
N,K)− aK(uN,K , p

(1)
N,K)].

(5.31)
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Using the triangle inequality, we estimate the first three terms separately, i.e.,

|r̃(1)
RB(e;µ, ω)| ≤ ‖e‖X supv∈X(r̃

(1)
RB(v)/‖v‖X) ≤ αLB ∆ ∆̃

(1)
RB,

|a(e, p
(1)
N,K)− aK(e, p

(1)
N,K)| ≤ ‖e‖X supv∈X(δ̃

(1)
KL(v)/‖v‖X) ≤ αLB ∆ ∆̃

(1)
KL,

|`(e)− `K(e)| ≤ ‖e‖X supv∈X(δ`KL(v)/‖v‖X) ≤ αLB ∆ ∆`
KL,

by Proposition 5.3. Furthermore, |`(uN,K) − `K(uN,K)| ≤ δ`KL(uN,K), |f(p
(1)
N,K) −

fK(p
(1)
N,K)| ≤ δfKL(p

(1)
N,K) and |a(uN,K , p

(1)
N,K)−aK(uN,K , p

(1)
N,K)| ≤ δKL(p

(1)
N,K). We put

everything together, which yields the desired result.

The above analysis shows two effects. First, the RB and KL error terms
∆RB,∆KL,∆

f
KL and ∆̃

(1)
RB, ∆̃

(1)
KL,∆

`
KL appear in pairwise products in the first term

of (5.30). In order to obtain the full order of approximation, RB and KL error
terms should thus be of comparable sizes. Second, as opposed to the deterministic
case, we obtain the additional additive terms δKL(p

(1)
N,K), δfKL(p

(1)
N,K), and δ`KL(uN,K)

as we see from the estimates of |a(u, p
(1)
N,K) − aK(u, p

(1)
N,K)|, |f(p

(1)
N,K) − fK(p

(1)
N,K)|,

and |`(u)− `K(u)|.
Finally, we investigate the effectivity of the output error bound for the special

case of a compliant output, i.e., ` = f , and symmetric bilinear form a. For this
case, we have p(1)

N,K = −uN,K , Ñ (1) = N and ∆s = αLB ∆2 + δcomp
KL , δcomp

KL :=

δKL(uN,K) + 2δfKL(uN,K).

Proposition 5.9. In the compliant case with a symmetric bilinear form a and for
η0(µ, ω) from (5.28), we assume that αLB(µ, ω)∆(µ, ω)2 ≥ η0(µ, ω)2δcomp

KL (µ, ω).
Then, the effectivity ηs(µ, ω) := ∆s(µ,ω)

|s(µ,ω)−sN,K(µ,ω)| is bounded by

ηs(µ, ω) ≤ η0(µ, ω)2 αLB(µ, ω)∆(µ, ω)2 + δcomp
KL (µ, ω)

αLB(µ, ω)∆(µ, ω)2 − η0(µ, ω)2δcomp
KL (µ, ω)

. (5.32)

Proof. Following the proof of Theorem 5.8 yields for ` = f and p(1)
N,K = −uN,K

s− sN,K = f(u)− 2 fK(uN,K) + aK(uN,K , uN,K)

= a(u, u) + 2[f(uN,K)− fK(uN,K)]− 2f(uN,K) + a(uN,K , uN,K)

− [a(uN,K , uN,K)− aK(uN,K , uN,K)]

= a(e, e) + 2[f(uN,K)− fK(uN,K)]− [a(uN,K , uN,K)− aK(uN,K , uN,K)].
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Hence, we can estimate

a(e, e) = s− sN,K − 2[f(uN,K)− fK(uN,K)] + [a(uN,K , uN,K)− aK(uN,K , uN,K)]

≤ |s− sN,K |+ δcomp
KL .

Using Corollary 5.7, we get
αLB

η2
0

∆2 ≤ ‖e‖2
µ,ω = a(e, e) ≤ |s− sN,K |+ δcomp

KL

which implies |s− sN,K | ≥ αLB

η20
∆2 − δcomp

KL . This yields

∆s

|s− sN,K |
≤ αLB∆2 + δcomp

KL
αLB

η20
∆2 − δcomp

KL

,

which proves the claim.

The assumption αLB(µ, ω)∆(µ, ω)2 ≥ η0(µ, ω)2δcomp
KL (µ, ω) is rather restrictive

and can be validated only a posteriori. It requires either the energy norm error
effectivity η0 or the KL truncation error δcomp

KL to be small. However, the effectivity
bound is consistent with the deterministic case in the sense that for large K, it
converges to the energy norm error effectivity bound η2

0 as provided in Corollary
5.7, where c is approaching zero at the same time.

5.3.4 Quadratic Output

As a next step, we consider quadratic output functions of the form

s2(µ, ω) := [`(u(µ, ω);µ)]2,

where ` is an ω-independent linear functional. If ` were stochastic itself, the subse-
quently constructed error bounds would include terms depending on the magnitude
of sN,K (cf. Remark 5.11). Also, it is readily seen that just squaring the output
sN,K from (5.29) is not sufficient. In fact, since

s2 − (sN,K)2 = (s− sN,K)(s+ sN,K) ≤ ∆s · (s+ sN,K), (5.33)

the right-hand side does not have the desirable “square” effect, as is typical in
RBMs. Hence, we follow a different path by introducing an additional dual prob-
lem, namely, determining p(2)

K (µ, ω) ∈ X such that

aK(v, p
(2)
K (µ, ω);µ, ω) = −2 sN,K(µ, ω) · `(v;µ) =: −`(2)(v;µ, ω), v ∈ X. (5.34)
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Of course, the solution of (5.34) reads p(2)
K = 2 sN,K p

(1)
K , which, however, is use-

less in the RB context since we have a different parameter-dependent right-hand
side and thus different RB spaces. Hence, we consider an RB space X̃(2)

N ⊂ X,
dim(X̃

(2)
N ) = Ñ (2) and determine some p(2)

N,K(µ, ω) ∈ X̃(2)
N such that

aK(v, p
(2)
N,K(µ, ω);µ, ω) = −`(2)(v;µ, ω), v ∈ X̃(2)

N . (5.35)

We can apply the analysis performed in Section 5.3.2 and just need to ad-
just the notation. The dual error reads ẽ(2)

RB := p
(2)
K − p

(2)
N,K , the residual as

r̃
(2)
RB(v) := aK(v, ẽ

(2)
RB) and the RB bounds as ∆̃

(2)
RB := αLB

−1 supv∈X
(
r̃

(2)
RB(v)/‖v‖X

)
.

The KL truncation term δ̃
(2)
KL is defined analogously to (5.20b) by replacing p(1)

N,K

by p
(2)
N,K , and analogously to (5.21), ∆̃

(2)
KL := αLB

−1 supv∈X
(
δ̃

(2)
KL(v)/‖v‖X

)
. The

terms δ`(2)KL (v;µ) and ∆`(2)

KL (µ, ω) vanish since ` is deterministic. Then, Proposition
5.3 and Corollary 5.4 yield the following estimate for ẽ(2) := p(2) − p(2)

N,K :

‖ẽ(2)(µ, ω)‖X ≤ ∆̃(2)(µ, ω) := ∆̃
(2)
RB(µ, ω) + ∆̃

(2)
KL(µ, ω). (5.36)

We consider the approximation [`(uN,K(µ, ω);µ, ω)]2. Similar to the definition
of sN,K in Section 5.3.3, we add correction terms and consider

s
[2]
N,K(µ, ω) := (`(uN,K))2 −

(
rRB(p

(1)
N,K)

)2

− rRB(p
(2)
N,K). (5.37)

It is important to keep in mind that we distinguish the squared approximation
(sN,K)2 = sN,K · sN,K from the approximation s[2]

N,K of the square of s. In fact, it
is easy to see that we can also write s[2]

N,K in terms of sN,K = `(uN,K)− rRB(p
(1)
N,K),

s
[2]
N,K(µ, ω) = (sN,K)2 + 2sN,K · rRB(p

(1)
N,K)− rRB(p

(2)
N,K), (5.38)

i.e., we have two additional correction terms. For X̃(2)
N = X̃

(1)
N , the correction

terms in (5.38) would cancel out. We define the quadratic output error bound

∆s2(µ, ω) := (∆s)2 + αLB∆∆̃(2) + δKL(p
(2)
N,K) + δfKL(p

(2)
N,K) (5.39)

and obtain the following result.

Theorem 5.10.
∣∣s2(µ, ω)− s[2]

N,K(µ, ω)
∣∣ ≤ ∆s2(µ, ω) holds for all µ ∈ P, ω ∈ Ω.
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Proof. With (5.38), the output error is given by

s2 − s[2]
N,K = s2 − (sN,K)2 − 2sN,K rRB(p

(1)
N,K) + rRB(p

(2)
N,K)

= (s− sN,K)2 + 2sN,K(s− sN,K)− 2sN,K rRB(p
(1)
N,K) + rRB(p

(2)
N,K).

Using sN,K = `(uN,K)− rRB(p
(1)
N,K) yields

2sN,K(s− sN,K) = 2sN,K

(
`(u)− `(uN,K) + rRB(p

(1)
N,K)

)
.

Putting these together, replacing 2sN,K` by `(2), we have

s2 − s[2]
N,K = (s− sN,K)2 + `(2)(u)− `(2)(uN,K) + rRB(p

(2)
N,K). (5.40)

From Theorem 5.8, we know that (s− sN,K)2 ≤ (∆s)2. The second part of (5.40)
can be estimated analogously to Theorem 5.8 by replacing ` by `(2) and p(1) by
p(2). Since ` = `K , we obtain

`(2)(u)− `(2)(uN,K) + rRB(p
(2)
N,K)

= − r̃
(2)
RB(e) + [a(e, p

(2)
N,K)− aK(e, p

(2)
N,K)]

− [f(p
(2)
N,K)− fK(p

(2)
N,K)] + [a(uN,K , p

(2)
N,K)− aK(uN,K , p

(2)
N,K)],

(5.41)

which can be bounded by αLB∆∆̃
(2)
RB + αLB∆∆̃

(2)
KL + δfKL(p

(2)
N,K) + δKL(p

(2)
N,K).

If ∆s is already small, the first part of the error bound ∆s2 will be comparatively
negligible. The second part of the error bound is of the same form as ∆s in (5.30).
Hence, we can hope that ∆s2 is approximately of the same order as ∆s.

Remark 5.11. If ` were stochastic itself, we would have to take the respective
truncation error of the right-hand side `(2) into account. Since `(2) = sN,K`,
this error directly depends on sN,K . Hence, we would have to add the terms
αLB∆ · sN,K∆`

KL and sN,Kδ`KL(p
(2)
N,K) to the error bound in (5.39).

5.4 Statistical Output Error Analysis

In this section, we consider first and second moments of the linear output functional
s(µ, ω) = `(u(µ, ω);µ),

M1(µ) := E [s(µ, ·)] , M2(µ) := E
[
s2(µ, ·)

]
, V(µ) := M2(µ)− (M1(µ))2 .
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We assume again that the functional ` is deterministic, i.e., that there is no ex-
plicit dependence on the stochastic parameter ω but the randomness of the output
functional s is only through u. We start with the following lemma.

Lemma 5.12. Assuming independence of a and f as stated in Section 5.1.1, we
have

E
[
a(uN,K , p

(i)
N,K)− aK(uN,K , p

(i)
N,K)

]
= 0, E

[
f(p

(i)
N,K)− fK(p

(i)
N,K)

]
= 0,

i = 1, 2, 3, where p(3)
N,K(µ, ω) is given in (5.45) and ` is assumed to be deterministic.

Proof. Since uN,K and p
(i)
N,K depend only on truncated forms, they depend only

on the random variables
{
ξaq,k
}k=1,...,Ka

q

q=1,...,Qa
and

{
ξfq,k
}k=1,...,Kf

q

q=1,...,Qf
. Since ξbq,k and ξb

′

q′,k′

are uncorrelated for (q, k, b) 6= (q′, k′, b′), both uN,K and p(i)
N,K are uncorrelated to

{
ξaq,k
}k>Ka

q

q=1,...,Qa
and

{
ξfq,k
}k>Kf

q

q=1,...,Qf
. We thus obtain

E
[
a(uN,K , p

(i)
N,K)− aK(uN,K , p

(i)
N,K)

]

= E



Qa∑

q=1

∞∑

k=Ka
q+1

θaq (µ)ξaq,k(·)aq,k(uN,K , p(i)
N,K)




=

Qa∑

q=1

∞∑

k=Ka
q+1

θaq (µ)E
[
ξaq,k(·)

]

︸ ︷︷ ︸
=0

E
[
aq,k(uN,K , p

(i)
N,K)

]
= 0

and, analogously, E[f(p
(i)
N,K)− fK(p

(i)
N,K)] = 0.

Remark 5.13. In the proof of Lemma 5.12 we see that the assumption in Section
5.1.1 that all parts aq and fq in (5.2) and (5.3), respectively, are stochastically in-
dependent is too strong. It suffices to assume that uN,K and p(i)

N,K are uncorrelated
to
{
ξbq,k
}k>Kb

q

q=1,...,Qb
, b ∈ {a, f}, i.e., that

{
ξbq,k
}k=1,...,Kb

q

q=1,...,Qb
, b ∈ {a, f}, are uncorrelated

to
{
ξbq,k
}k>Kb

q

q=1,...,Qb
, b ∈ {a, f}. We have seen in Section 2.2.3 that it is possible to

obtain joint KL expansions for different, possibly correlated, processes aq, aq′ or
fq, fq′ , q 6= q′, or even aq, fq′ . In this case, the respective random variables are
identical. For our case, we would have ξaq,k = ξaq′,k, ξ

f
q,k = ξfq′,k, or ξ

a
q,k = ξfq′,k.

Using the same truncation values for correlated terms, i.e., Ka
q = Ka

q′ , Kf
q = Kf

q′ ,
or Ka

q = Kf
q′ , it is still certified that Lemma 5.12 holds. Therefore, it is possible

to deal with completely dependent terms and it is thus also possible to apply the
subsequent theory to very general problem classes.
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Hence, for the presented a-posteriori analysis, it is sufficient to require that the
following assumption holds.

Assumption 5.14. The sets of random variables
{
ξbq,k
}k=1,...,Kb

q

q=1,...,Qb
, b ∈ {a, f}, and

{
ξbq,k
}k>Kb

q

q=1,...,Qb
, b ∈ {a, f},

are uncorrelated from each other.

5.4.1 First and Second Moments

The straightforward estimate for the first moment M1(µ) is given by M1,NK(µ) :=

E [sN,K(µ, ·)], and we define the error bound

∆M1(µ) := E
[
αLB∆∆̃(1)

]
. (5.42)

Corollary 5.15. |M1(µ)−M1,NK(µ)| ≤ ∆M1(µ) holds for all µ ∈ P.

Proof. Equation (5.31), Lemma 5.12, and ` = `K yield

M1 −M1,NK = E
[
−r̃(1)

RB(e) + a(e, p
(1)
N,K)−aK(e, p

(1)
N,K)

]

+ E
[
a(uN,K , p

(1)
N,K)−aK(uN,K , p

(1)
N,K)

]
− E

[
f(p

(1)
N,K)−fK(p

(1)
N,K)

]

= E
[
−r̃(1)

RB(e) + a(e, p
(1)
N,K)−aK(e, p

(1)
N,K)

]
.

Following the proof of Theorem 5.8, we obtain the desired result.

Analogously, the straightforward estimate for the second momentM2(µ) is given
by M2,NK(µ) := E

[
s

[2]
N,K(µ, ·)

]
and we define the error bound

∆M2(µ) := E
[
(∆s)2 + αLB∆∆̃(2)

]
. (5.43)

Corollary 5.16. |M2(µ)−M2,NK(µ)| ≤ ∆M2(µ) holds for all µ ∈ P.

Proof. Equations (5.40) and (5.41), Lemma 5.12, and ` = `K yield

M2 −M2,NK = E
[
(s− sN,K)2

]
− E

[
r̃

(2)
RB(e) + a(e, p

(2)
N,K)− aK(e, p

(2)
N,K)

]

− E[f(p
(2)
N,K)−fK(p

(2)
N,K)] + E[a(uN,K , p

(2)
N,K)−aK(uN,K , p

(2)
N,K)]

= E
[
(s− sN,K)2

]
− E

[
r̃

(2)
RB(e) + a(e, p

(2)
N,K)− aK(e, p

(2)
N,K)

]
.

Following the proof of Theorem 5.10, we obtain the desired result.
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5.4.2 Squared First Moment

In order to get an estimation of the variance, it remains to find an estimation for
the the squared first moment. We follow the same approach as in Section 5.3.4 and
introduce a third dual problem with right-hand side `(3)(v;µ) := 2M1,NK(µ) `(v;µ).
The dual and the corresponding reduced systems are then given by

aK(v, p
(3)
K ;µ, ω) = −`(3)(v;µ), v ∈ X, (5.44)

aK(v, p
(3)
N,K ;µ, ω) = −`(3)(v;µ), v ∈ X̃(3)

N , (5.45)

respectively, where X̃(3)
N ⊂ X denotes the RB space of dimension dim(X̃

(3)
N ) = Ñ (3).

The error analysis is now mainly straightforward, following Section 5.3.4. We de-
note the new dual error by ẽ

(3)
RB := p

(3)
K − p

(3)
N,K and the residual by r̃

(3)
RB(v) :=

aK(v, ẽ
(3)
RB) to define the RB bound ∆̃

(3)
RB := αLB

−1 supv∈X(r̃
(3)
RB(v)/‖v‖X). The KL

truncation term δ̃
(3)
KL is defined analogously to (5.20b) by replacing p(1)

N,K by p(3)
N,K ,

and analogously to (5.21), ∆̃
(3)
KL := αLB

−1 supv∈X(δ̃
(3)
KL(v)/‖v‖X). Then, Proposi-

tion 5.3 and Corollary 5.4 yield the following estimate for ẽ(3) := p(3) − p(3)
N,K :

‖ẽ(3)(µ, ω)‖X ≤ ∆̃(3)(µ, ω) := ∆̃
(3)
RB(µ, ω) + ∆̃

(3)
KL(µ, ω). (5.46)

We define the approximation of the squared first moment, adding some correc-
tion terms. Analogously to (5.38), we consider

M[2]
1,NK(µ) = (M1,NK)2 + 2M1,NK · E

[
rRB(p

(1)
N,K)

]
− E

[
rRB(p

(3)
N,K)

]
. (5.47)

Note the distinction between the squared approximation (M1,NK)2 = M1,NK ·
M1,NK and the direct approximation M[2]

1,NK of the squared first moment. The
error bound is given by

∆M2
1(µ) := (∆M1)2 + E

[
αLB∆∆̃(3)

]
. (5.48)

Theorem 5.17.
∣∣M2

1(µ)−M[2]
1,NK(µ)

∣∣ ≤ ∆M2
1(µ) holds for all µ ∈ P.

Proof. Analogously to Theorem 5.10, the output error is given by

M2
1 −M[2]

1,NK = (M1 −M1,NK)2 + E
[
`(3)(u)− `(3)(uN,K) + rRB(p

(3)
N,K)

]
.
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From Corollary 5.15, we know that (M1 −M1,NK)2 ≤ (∆M1)2. Analogously to
Theorem 5.8, using ` = `K and replacing ` by `(3) and p(1) by p(3), we obtain

E
[
`(3)(u)− `(3)(uN,K) + rRB(p

(3)
N,K)

]

= E
[
−r̃(3)

RB(e) + a(e, p
(3)
N,K)−aK(e, p

(3)
N,K)

]

− E
[
f(p

(3)
N,K)−fK(p

(3)
N,K)

]
+ E

[
a(uN,K , p

(3)
N,K)−aK(uN,K , p

(3)
N,K)

]

= E
[
−r̃(3)

RB(e) + a(e, p
(3)
N,K)−aK(e, p

(3)
N,K)

]
,

where the last equation is obtained by Lemma 5.12. The result can be bounded
analogously to Theorem 5.8 by E[αLB∆∆̃

(3)
RB + αLB∆∆̃

(3)
KL].

5.4.3 Variance

It is straightforward to define

VNK(µ) := M2,NK(µ)−M[2]
1,NK(µ), (5.49)

and it is furthermore clear that |V−VNK | ≤ E[∆s2 ]+∆M2
1 is an upper bound for the

error. However, we can derive more precise error bounds. Denoting r̃(2−3)
RB (v) :=

aK(v, ẽ
(2)
RB − ẽ

(3)
RB) and ∆̃

(2−3)
RB := αLB

−1 supv∈X
(
r̃

(2−3)
RB (v)/‖v‖X

)
as well as defining

the KL truncation term δ̃
(2−3)
KL by (5.20b), replacing p(1)

N,K by (p
(2)
N,K − p

(3)
N,K), and

analogously to (5.21), ∆̃
(2−3)
KL := αLB

−1 supv∈X
(
δ̃

(2−3)
KL (v)/‖v‖X

)
, we obtain ‖ẽ(2)−

ẽ(3)‖X ≤ ∆̃(2−3) := ∆̃
(2−3)
RB + ∆̃

(2−3)
KL and the variance error bound

∆V(µ) := E [(∆s)2] + (∆M1)2 + E
[
αLB∆∆̃(2−3)

]
. (5.50)

Theorem 5.18. |V(µ)− VNK(µ)| ≤ ∆V(µ) holds for all µ ∈ P.

Proof. From Theorems 5.10 and 5.17 we know that

V− VNK = E
[
(s− sN,K)2

]
− (M1 −M1,NK)2

+ E
[
`(2)(u)− `(2)(uN,K) + rRB(p

(2)
N,K)

]

− E
[
`(3)(u)− `(3)(uN,K) + rRB(p

(3)
N,K)

]
,

and the first two terms can be bounded by E [(∆s)2] and (∆M1)2, respectively.
From (5.41), Lemma 5.12, and Theorem 5.17, we have for i = 2, 3

E
[
`(i)(u)− `(i)(uN,K)+rRB(p

(i)
N,K)

]
= E

[
−r̃(i)

RB(e) + a(e, p
(i)
N,K)−aK(e, p

(i)
N,K)

]
.
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We subtract the two expressions and again follow the proof of Theorem 5.8. The
claim follows directly using the definitions above.

In our numerical experiments, we have observed that it is sufficient to use the
same reduced space for the two additional dual problems (5.35) and (5.45), i.e.,
X̃

(2)
N = X̃

(3)
N . Then, it holds that p(3)

N,K(µ, ω) = p
(2)
N,K(µ, ω)M1,NK(µ)/sN,K(µ, ω),

and it is sufficient to solve only one additional dual problem. Hence, we consider

aK(v, p
(4)
N,K(µ, ω);µ, ω) = −2`(v;µ), v ∈ X̃(2)

N , (5.51)

such that p(2)
N,K = sN,K · p(4)

N,K and p(3)
N,K = M1,NK · p(4)

N,K . For a faster evaluation of
the variance error bound (5.50), we could use p(2)

N,K − p
(3)
N,K = (sN,K−M1,NK) p

(4)
N,K .

Furthermore, defining δ̃(4)
KL, ∆̃

(4)
KL, ∆̃

(4)
RB, and ∆̃(4) analogously to δ̃(1)

KL, ∆̃
(1)
KL, ∆̃

(1)
RB,

and ∆̃(1), respectively, we obtain, e.g., ∆̃
(2−3)
RB = |sN,K−M1,NK | ∆̃(4)

RB. Analogously,
we can construct the error terms δ̃(i)

KL, ∆̃
(i)
KL, ∆̃

(i)
RB, and ∆̃(i), i ∈ {2, 3, 2− 3}, using

the respective term for i = 4. Still, it is possible to use two different RB spaces
such that both dual problems (5.35) and (5.45) have to be solved. The theory does
not change for that case.

5.5 Higher Moments

Often, it is desirable to evaluate higher moments, i.e., E [(s(µ, ω))n], n > 2. To
some extend, it is possible to extend the proposed scheme of Section 5.3.4 and use
additional dual problems to improve the approximation of such outputs. However,
it is not completely straightforward to derive the appropriate estimates and we
do not have a simple general form for arbitrary moments. Furthermore, the error
bounds do not show the same nice form as for the quadratic outputs and contain
terms directly dependent on sN,K . Exemplarily, we provide results for the third
and fourth moment in this section.

5.5.1 Third Moment

We follow the approach of Section 5.3.4 and introduce a new dual problem with
right-hand side `(5)(v;µ, ω) := 3 (sN,K(µ, ω))2 `(v;µ). The dual and the corre-
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sponding reduced systems are then given by

aK(v, p
(5)
K ;µ, ω) = −`(5)(v;µ, ω), v ∈ X, (5.52)

aK(v, p
(5)
N,K ;µ, ω) = −`(5)(v;µ, ω), v ∈ X̃(5)

N , (5.53)

respectively, where X̃(5)
N ⊂ X denotes the RB space of dimension dim(X̃

(5)
N ) = Ñ (5).

We define the RB and KL residuals r̃(5)
RB(v) and δ̃(5)

KL analogously to Section 5.3.1,
replacing p(1)

N,K by p
(5)
N,K , and obtain the corresponding new RB and KL bounds

∆̃
(5)
RB and ∆̃

(5)
KL. Let p(5)(µ, ω) be the solution of the untruncated version of (5.52)

and let ẽ(5) := p(5) − p
(5)
N,K . Then, Proposition 5.3 and Corollary 5.4 yield the

following estimate:

‖ẽ(5)(µ, ω)‖X ≤ ∆̃(5)(µ, ω) := ∆̃
(5)
RB(µ, ω) + ∆̃

(5)
KL(µ, ω). (5.54)

We define an approximation of the the cubed output (s(µ, ω))3, adding addi-
tional correction terms. We consider

s
[3]
N,K(µ, ω) := (sN,K)3 + 3(sN,K)2rRB(p

(1)
N,K)− rRB(p

(5)
N,K) (5.55)

=
(
`(uN,K)

)3 −
(
rRB(p

(1)
N,K)

)3 − rRB(p
(5)
N,K)− 3sN,K

(
rRB(p

(1)
N,K)

)2
.

Comparing the approximation of the second equation with the approximation of
the squared output in (5.37), it may be surprising that the last term is not removed
by an additional correction term. However, we will show that this is not (cf.
Remark 5.21).

We define the cubic output error bound

∆s3(µ, ω) := (∆s)3 + 3|sN,K |(∆s)2 + αLB∆∆̃(5) + δfKL(p
(5)
N,K) + δKL(p

(5)
N,K) (5.56)

and obtain the following result.

Proposition 5.19.
∣∣s3(µ, ω)−s[3]

N,K(µ, ω)
∣∣ ≤ ∆s3(µ, ω) holds for all (µ, ω) ∈ P×Ω.

Proof. With (5.55), the cubic output error is given by

s3 − s[3]
N,K = s3 − (sN,K)3 − 3(sN,K)2rRB(p

(1)
N,K) + rRB(p

(5)
N,K).

It is straightforward to rewrite the first two terms, i.e., the error without correction
terms, as

s3 − (sN,K)3 = (s− sN,K)3 + 3ssN,K(s− sN,K)

= (s− sN,K)3 + 3(sN,K)2(s− sN,K) + 3sN,K(s− sN,K)2.



5.5. Higher Moments 115

From Theorem 5.8, we know that |s−sN,K |3 ≤ (∆s)3, and |3sN,K(s−sN,K)2| ≤
3|sN,K |(∆s)2. It remains to estimate the second term with the correction terms.
We obtain

3(sN,K)2(s− sN,K)− 3(sN,K)2rRB(p
(1)
N,K) + rRB(p

(5)
N,K)

= 3(sN,K)2(`(u)− `(uN,K)) + rRB(p
(5)
N,K)

= −
(
`(5)(u)− `(5)(uN,K) + rRB(p

(5)
N,K)

)

which can be estimated analogously to Theorem 5.10 by αLB∆∆̃(5) + δfKL(p
(5)
N,K) +

δKL(p
(5)
N,K).

The estimate for the third momentM3(µ) is given byM3,NK(µ) := E
[
s

[3]
N,K(µ, ·)

]
,

and we define the error bound

∆M3(µ) := E
[
(∆s)3 + 3|sN,K |(∆s)2 + αLB∆∆̃(5)

]
. (5.57)

Corollary 5.20. |M3(µ)−M3,NK(µ)| ≤ ∆M3(µ) holds for all µ ∈ P.

Proof. We use the results of Theorem 5.19 and Lemma 5.12. Analogously to
Corollary 5.15 and Corollary 5.16, we derive

M3 −M3,NK = E
[
(s− sN,K)3 + 3sN,K(s− sN,K)2

]

− E
[
r̃

(5)
RB(e) + a(e, p

(5)
N,K − aK(e, p

(5)
N,K)

]

which directly leads to the desired result.

Certainly, the term 3|sN,K |(∆s)2 in the error bounds for the cubed output and
the third moment are unsatisfactory. However, the error bound still outperforms
straightforward estimations. In the following remark, we show the problem that
occurs while trying to remove the term.

Remark 5.21. To avoid the terms 3|sN,K |(∆s)2 in (5.56) and (5.57), we would like
to introduce a new dual problem with the right-hand side `(6)(v) = 3sN,K`(v)`(v).
Obviously, this is not possible. However, assuming we could make the impossible
come true, we would add the correction terms 3sN,K

(
rRB(p

(1)
N,K)

)2 and rRB(p
(6)
N,K)

in (5.55). Then, the approximation would be consistent to (5.37) and the error
bound for M3,NK would be of the form E

[
(∆s)3 + αLB∆(∆̃(5) + ∆̃(6))

]
.
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5.5.2 Fourth Moment

It is clear that the problem of the given approach that occurred in the deriva-
tion of good error bounds for the third moment will be rather more critical for
higher moments. We will briefly show this aspect for the fourth moment, where a
straightforward estimation of s4(µ, ω) could be given by

(
s

[2]
N,K

)2 such that

s4−
(
s

[2]
N,K

)2
= (s2− s[2]

N,K)2 + 2s
[2]
N,K(s2− s[2]

N,K) ≤ (∆s2)2 + 2s
[2]
N,K ∆s2 . (5.58)

Alternatively, let us introduce the additional dual problem, already in reduced
form, following the idea of the previous sections:

aK(v, p
(6)
N,K ;µ, ω) = −`(6)(v;µ, ω), v ∈ X̃(6)

N , (5.59)

where `(6)(v;µ, ω) := 4sN,K(µ, ω) s
[2]
N,K(µ, ω) `(v;µ). We then define an approxima-

tion of s4, using again two correction terms. We obtain

s
[4]
N,K(µ, ω) :=

(
s

[2]
N,K

)2
+ 2s

[2]
N,K · rRB(p

(2)
N,K)− rRB(p

(6)
N,K)

which is exactly analogous to the approximation s
[2]
N,K in (5.38). Analogously to

the error of the squared output in the proof of Theorem 5.10, we have

s4 − s[4]
N,K = (s2 − s[2]

N,K)2 + 2s
[2]
N,K(s2 − s[2]

N,K)− 2s
[2]
N,K · rRB(p

(2)
N,K)− rRB(p

(6)
N,K).

A reformulation of the second term yields

2s
[2]
N,K(s2 − s[2]

N,K) = 2s
[2]
N,K(s− sN,K)2 + 4sN,Ks

[2]
N,K`(u)− 4sN,Ks

[2]
N,K`(uN,K)

+ 2s
[2]
N,KrRB(p

(2)
N,K).

Together, using `(6)(v) = 4 sN,K s
[2]
N,K `(v), we have

s4 − s[4]
N,K = (s2−s[2]

N,K)2 + 2s
[2]
N,K(s−sN,K)2 +

(
`(6)(u)− `(6)(uN,K) + rRB(p

(6)
N,K)

)

which is estimated, using the same techniques as in Theorems 5.10 and 5.19, by

∆s4(µ, ω) := (∆s2)2 + 2s
[2]
N,K(∆s)2 + αLB∆∆̃(6)+δfKL(p

(6)
N,K)+δKL(p

(6)
N,K). (5.60)

Compared to the straightforward error bound in (5.58), we replaced the term
2s

[2]
N,K ∆s2 by a more precise bound based upon the solution of (5.59) (recall that

∆s2 already contains (∆s)2).
However, differently to the bound for s[3]

N,K of the previous section, the second
term of (5.60) contains the factor s[2]

N,K instead of sN,K . Thus, for good results, ∆s

might be required to be very small.
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5.6 Inf-Sup Stable Problems

It is possible to maintain the presented error analysis in analogous form if a is not
coercive but only inf-sup stable. For the primal problem, we require

β(µ, ω) := inf
v∈X

sup
w∈X

a(v, w;µ, ω)

‖v‖X‖w‖X
> β0 > 0 ∀µ, ω ∈ P × Ω.

Then, existence and uniqueness of the solution of (5.1) are still valid [3]. Anal-
ogously, we require the inf-sup stability of the dual problem (5.9). Let βLB(µ, ω)

be a lower bound of both primal and dual inf-sup constants. The bounds in
∆KL, ∆̃

(i)
KL,∆RB and ∆̃

(i)
RB, i = 1, . . . , 4, are now redefined replacing αLB by βLB.

For the proof of the error bound for the primal solution uN,K in Proposition 5.3,
we obtain

‖e‖X ≤
1

βLB

sup
w∈X

a(e, w)

‖w‖X

≤ sup
w∈X

f(w)− fK(w)

βLB‖w‖X
+ sup

w∈X

aK(uN,K , w)− a(uN,K , w)

βLB‖w‖X
+ sup

w∈X

rRB(w)

βLB‖w‖X
≤ ∆f

KL + ∆KL + ∆RB.

Analogously, the error bound of the dual solution p
(1)
N,K in Corollary 5.4 can be

proven in the inf-sup case which directly implies the error bounds for the further
dual solution p(i)

N,K , i = {2, 3, 4}. Since Equation (5.25) remains valid in the inf-sup
stable case, replacing again αLB by βLB, it is straightforward that the effectivity
bounds for the primal and dual error bounds in Proposition 5.5 and Corollary 5.6
still hold.

Besides the replacement of αLB by βLB, we do not need any further changes to
prove the output error bounds for sN,K and s

[2]
N,K in Theorem 5.8 and Theorem

5.10, respectively. Analogously, the statistical output bounds ∆M1 , ∆M2
1 , ∆M2 and

∆V remain valid. Also, the effectivity bound of ∆s for symmetric bilinear forms
and compliant outputs can directly be adopted.

5.7 Offline-Online Decomposition

In this section, we describe the offline and online procedures and provide corre-
sponding run-time and storage complexities. We start with the description of a
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method to evaluate lower bounds for the coercivity constant. For this method,
we assume the bilinear form a to be parametrically coercive with respect to the
deterministic parameter; i.e., θaq (µ) > 0 for all µ ∈ P and āq(v, v)+aq(v, v;ω) ≥ 0,
v ∈ X, for all ω ∈ Ω and 1 ≤ q ≤ Qa.

5.7.1 Coercivity Lower Bound

From the deterministic case, we know the following methods to determine lower
bounds αLB(µ, ω) for α(µ, ω): the min-θ approach [73] and the successive con-
straint method (SCM) [57]. The latter approach is less restrictive and could be
directly applied to the stochastic parameter case and also to inf-sup stable prob-
lems. However, it requires much more effort, online as well as offline. The min-θ
approach requires the bilinear form a to be parametrically coercive with respect to
the deterministic and the stochastic parameters. Therefore, the extension of the
method to our case is not possible. We would require ξq,k(ω) to be positive.

To partially maintain the advantage of the min-θ approach, we propose a com-
bination of both methods. We fix some parameter µ̄ ∈ P and get the inequality

α(µ, ω) = inf
v∈X

a(v, v;µ, ω)

‖v‖2
X

≥ inf
v∈X

a(v, v;µ, ω)

a(v, v; µ̄, ω)
· inf
v∈X

a(v, v; µ̄, ω)

‖v‖2
X

. (5.61)

If a is parametrically coercive, we apply the min-θ approach on the first term.
Precisely, for θmin(µ) := min1≤q≤Qa{θaq (µ)/θaq (µ̄)}, we obtain ω-independent lower
bounds

a(v, v;µ, ω)

a(v, v; µ̄, ω)
≥ θmin(µ) ∀v ∈ X, ∀(µ, ω) ∈ P × Ω

analogously to [73]. For the approximation of the second term, we first apply the
SCM to the truncated form and obtain µ-independent lower bounds

aK(v, v; µ̄, ω)

‖v‖2
X

≥ αKSCM(ω) ∀v ∈ X, ∀ω ∈ Ω.

To take the truncation error into account, we consider the parameter independent
truncation error

∆α
KL := sup

v∈X

(
Qa∑

q=1

θaq (µ̄)
Kmax∑

k=K+1

ξUB
aq,k(v, v)

‖v‖2
X

)
(5.62)
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such that −∆α
KL‖v‖2

X ≤ a(v, v; µ̄, ω)−aK(v, v; µ̄, ω). Hence, we define αSCM(ω) :=

αKSCM(ω) − ∆α
KL and obtain the coercivity lower bound αLB(µ, ω) := θmin(µ) ·

αSCM(ω). It is essential that K be large enough to obtain a positive αSCM.
Both αSCM(ω) and θmin(µ) can be evaluated independently. Therefore, it might

be useful to store αSCM for many random realizations and reuse these values in
combination with different µ. This is possible if the same random realizations can
be used for several parameters. Then αLB(µ, ω) can be evaluated very quickly in
the online stage.

5.7.2 Assembling of the Error Bounds

We exemplarily show the construction of the error bound of the primal solution
∆(µ, ω) = ∆RB(µ, ω)+∆KL(µ, ω)+∆f

KL(µ, ω) from Proposition 5.3. Let ζ1, . . . , ζN

be the basis of the primal reduced spaceXN . The error bounds can be evaluated us-
ing the Riesz representatives Aq,k,n, q = 1, . . . , Qa, k = 1, . . . , Ka

max, n = 1, . . . , N ,
and Fq,k, q = 1, . . . , Qf , k = 1, . . . , Kf

max, given by

(
Aq,k,n, v

)
X

= aq,k(ζn, v),
(
Fq,k, v

)
X

= fq,k(v), v ∈ X.

These quantities are independent of the parameters and can be evaluated in the
offline stage. However, we only store the pairwise inner products

(
Aq,k,n,Aq′,k′,n′

)
X
,
(
Aq,k,n,Fq′,k′

)
X
,
(
Fq,k,Fq′,k′

)
X
. (5.63)

We start with the construction of the RB-part of the error bound, ∆RB(µ, ω) =
1

αLB(µ,ω)
‖rRB(·;µ, ω)‖X′ , which implies the evaluation of the dual norm of the resid-

ual. Let R(µ, ω) be the Riesz representative of rRB(·;µ, ω),

(
R(µ, ω), v

)
X

= rRB(v;µ, ω) = fK(v;µ, ω)− aK(uN,K(µ, ω), v;µ, ω), v ∈ X.

For uN,K(µ, ω) =
∑N

n=1 ūn(µ, ω)ζn, we can evaluate R(µ, ω) as

R(µ, ω) =

Qf∑

q=1

Kf
q∑

k=1

θfq (µ)ξfq,k(ω)Fq,k −
Qa∑

q=1

Ka
q∑

k=1

N∑

n=1

θaq (µ)ξaq,k(ω)ūn(µ, ω)Aq,k,n.

The dual norm of the residual is now given by ‖rRB(·;µ, ω)‖X′ = ‖R(µ, ω)‖X =√
(R(µ, ω),R(µ, ω))X which can now be evaluated using the stored inner products

of (5.63) in O((QfKf +QaKaN)2), independently of N .
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As mentioned in Remark 5.1, the definition of δKL in (5.20) includes absolute
values and we can not define ‖δKL(·;µ, ω)‖X′ . However, it is still possible to effi-
ciently estimate the truncation error for the bilinear form, using the inner products
of Riesz representatives. We obtain

sup
v∈X

δKL(v;µ, ω)

‖v‖X
= sup

v∈X

Qa∑

q=1

Ka
max∑

k=Ka
q+1

∣∣θaq (µ)ξUB

∣∣
∣∣∣∣∣
N∑

n=1

ūn(µ, ω)
(Aq,k,n, v)X
‖v‖X

∣∣∣∣∣

≤
Qa∑

q=1

Ka
max∑

k=Ka
q+1

∣∣θaq (µ)ξUB

∣∣ sup
v∈X

∣∣∣∣∣
N∑

n=1

ūn(µ, ω)
(Aq,k,n, v)X
‖v‖X

∣∣∣∣∣

=

Qa∑

q=1

Ka
max∑

k=Ka
q+1

∣∣θaq (µ)ξUB

∣∣
∥∥∥∥∥

N∑

n=1

ūn(µ, ω)Aq,k,n
∥∥∥∥∥
X

, (5.64)

which can be evaluated in O(Qa(Ka
max − Ka)N2), where the different values Ka

q

have been replaced by some Ka for notational reaasons. It is clear that the pre-
sented bound does not directly coincide with the definition of ∆KL in (5.21) since
an additional estimate has been performed in the second line. However, the direct
evaluation of ∆KL is difficult. Consider the bound

δKL(v;µ, ω) =

Qa∑

q=1

Ka
max∑

k=Ka
q+1

σq,k(µ, ω)︸ ︷︷ ︸
±1

θaq (µ)ξaUB

N∑

n=1

ūn(µ, ω) (Aq,k,n, v)X ,

where, compared to the definition of δKL(v;µ, ω) in (5.20), the absolute values have
been replaced by an appropriate sign function σq,k(µ, ω) ∈ {−1,+1}. Then, the
bound ∆KL(µ, ω) can be written as

sup
v∈X

δKL(v;µ, ω)

‖v‖X
=

∥∥∥∥∥∥

Qa∑

q=1

Ka
max∑

k=Ka
q+1

σq,k(µ, ω) θaq (µ)ξaUB

N∑

n=1

ūn(µ, ω)Aq,k,n

∥∥∥∥∥∥
X

.

For given values of σq,k(µ, ω), q = 1, . . . , Qa, k = Ka
q , . . . , K

a
max, this bound can

be efficiently evaluated in O
(
(Qa(Ka

max −Ka)N)2
)
. However, to find the correct

bound, it would be necessary to test all possibilities of σq,k(µ, ω), i.e., it would
be necessary to evaluate the bound 2Q

a(Ka
max−Ka) times, leading to a complexity of

O
(
(Qa(Ka

max−Ka)N)2 ·2Qa(Ka
max−Ka)

)
. Even though the evaluation is independent

of N , we prefer the much cheaper bound in (5.64).
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As mentioned in Remark 5.2, it is also possible to use random variables instead
of the upper bounds ξUB. Then, the evaluation of ∆KL is straightforward,

∆KL(µ, ω) =

∥∥∥∥∥∥

Qa∑

q=1

Ka
max∑

k=Ka
q+1

θaq (µ)ξaq,k

N∑

n=1

ūn(µ, ω)Aq,k,n

∥∥∥∥∥∥
X

,

which is of complexity O
(
(Qa(Ka

max −Ka)N)2
)
.

5.7.3 Online Procedure

We first summarize the run-time complexity to solve a reduced system and evaluate
the corresponding outputs and bounds. Assuming the availability of all necessary
terms, the complexity is the same for all primal and dual problems. For notational
compactness, we do not distinguish between Qb, Kb, Kb

max for b ∈ {a, f, `}, but
just use Q, K, and Kmax, respectively. In the same way, we just use N instead of
N , Ñ (1), Ñ (2), and Ñ (3).

The complexity to assemble a reduced system for a new parameter pair reads
O(QKN2); the solution is then obtained in O(N3) operations. For the output
evaluation, we need to assemble some additional matrices and vectors — again
with complexity O(QKN2) — to evaluate the residuals. The actual evaluation is
then of complexity O(N2). For the error bounds, we first evaluate the coercivity
lower bound. The complexity depends on the chosen method, optimally O(Q). For
the ∆KL- and ∆RB-error bounds, we use the previously evaluated and stored Riesz
representative inner products and compute the bounds in O(Q(Kmax−K)N2) and
O(Q2K2N2), respectively. For the δKL-error bounds, we just needO(Q(Kmax−K))

matrix-vector and vector-vector multiplications; the total complexity is therefore
O(Q(Kmax −K)N2).

Suppose we use M random realizations to evaluate the Monte Carlo estimates
for any given deterministic parameter; the overall run-time complexity for the
computation of the statistical outputs is O(M(N3 +(Q2K2 +Q(Kmax−K))N2)),
including the complexity for the evaluation of the error bounds.

If we are interested in both second moment and variance, the online procedure
works as follows. We solve the primal and first dual problems for M realizations
and some fixed µ. For all realizations, we store sN,K , which is later used to solve
the second and third dual problem (5.35) and (5.45). For the quadratic output
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evaluations, we additionally store rRB(p
(1)
N,K) as well as the primal solutions uN,K

needed for the computation of the respective last terms in (5.38) and (5.47). Fur-
thermore, for the corresponding error bounds (5.39) and (5.50), we store ∆ and
∆s. Hence, the overall storage complexity is O((N + 4)M).

Using the same reduced space for the second and third dual problems (5.35)
and (5.45), it is possible to evaluate all statistical outputs with storage complexity
O(M). For some fixed µ, the basic concept is to solve (5.51) for each random
realization at the same time as the primal and first dual problems (5.15) and
(5.16). It is clear that the evaluation of s[2]

N,K in (5.38) and the second moment
M2,NK = E[s

[2]
N,K ] as well as its error bounds ∆s2 from (5.39) and ∆M2 = E[∆s2 ]

can be obtained with storage complexity O(1). As a consequence of the use of
(5.51), we have E[rRB(p

(3)
N,K)] = M1,NKE[rRB(p

(4)
N,K)], and the evaluation of M[2]

1,NK

in (5.47) is of storage complexity O(1), too, and hence the evaluation of VNK =

M2,NK −M[2]
1,NK . Analogously, E[αLB∆∆̃(3)] = |M1,NK | · E[αLB∆∆̃(4)], and hence

the storage complexity to evaluate ∆M2
1 in (5.48) is constant. Therefore, using

only the less precise variance error bound |V−VNK | ≤ ∆M2 + ∆M2
1 , it would even

be possible to solve all problems with storage complexity O(1). However, for the
variance error bound presented in (5.50), we additionally store sN,K and αLB∆∆̃(4)

for each realization with storage complexity O(M) to enable the evaluation of
E[αLB∆∆̃(2−3)] = E

[
|sN,K −M1,NK | · αLB∆∆̃(4)

]
.

5.7.4 Greedy Basis Selection

To generate the bases of the reduced spaces, we perform a Greedy algorithm as it is
well known in the RB context [98, 73]. For a training parameter set Ξtrain ⊂ P×Ω

and some initial basis, given by an arbitrary single snapshot, we solve the reduced
primal and dual problems (5.15), (5.16), (5.35), and (5.45) and evaluate the error
bounds for the desired outputs. For each problem, we select the parameter pair
for which the RB error part of the desired output error bound is maximal and add
the corresponding solution of the unreduced problem to the respective basis. We
iterate the procedure until the error bounds fall below an intended tolerance for
all training parameters.

To generate Ξtrain, we use the random variables of the KL expansion (5.11) for
the actual sampling of Ω. Hence, we have to sample a high-dimensional space for
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the Greedy algorithm. Since the “importance” of KL random variables ξk decrease
in k, the most obvious sampling procedure would be a Monte Carlo approach.
Alternatively to the sampling, it is also possible to use optimization algorithms to
find a good random sample for the basis extension. For more information, we refer
to [91].

Next, we are going to describe how to specify the KL truncation, precisely the
numbers of affine terms used for the approximation, Kb, b ∈ {a, f, `}, and the
number of terms used to estimate the truncation error, Kb

max, b ∈ {a, f, `}. We
integrate the specification into the Greedy algorithm. For different truncation
lengths and very large Kmax values, we solve the reduced system and evaluate the
KL error bounds for all training parameters. Kb, b ∈ {a, f, `}, are chosen as the
minimal numbers such that the KL error bounds do not exceed a given tolerance,
respectively. This tolerance should be rather small compared to the allowed output
errors. Similarly, we make Kb

max, b ∈ {a, f, `}, as small as possible such that we
underestimate the KL error bounds only negligibly. Since the KL truncation errors
do not depend on the dimension of the RB spaces, Kb and Kb

max, b ∈ {a, f, `},
are likely to be appropriate for all reduced spaces and can be fixed for all further
computations. However, it would also be possible to make further adjustments
during the Greedy algorithm.

Suppose that Ξtrain consists of ntrain deterministic parameters andMtrain random
realizations for each of the parameters. Then, the Greedy complexity is O(Nntrain)

times the online complexity to find the “optimal” parameters in each iteration, i.e.,
O(NntrainMtrain(N3 + (Q2K2+Q(Kmax−K))N2)), plus O(QKmaxNN ) to solve for
the corresponding detailed solutions. Furthermore, the construction of the reduced
system matrices and vectors is of complexity O(QKmaxN

2N ) and the evaluation
of the used Riesz representatives and the pairwise inner products is of complexity
O(Q2K2

maxN
2N ).

We store these RB system matrices and vectors as well as the Riesz represen-
tative inner products that are used to construct the ∆KL- and ∆RB-error bounds.
Hence the total storage complexity is O((Q2K2+Q(Kmax−K))N2).

Especially for stochastic problems, it is not clear if the parameter range is
sufficiently covered by the random training set Ξtrain. However, since we evaluate
a posteriori error bounds, we detect such cases in the online stage and could still
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extend both Ξtrain and the basis.

5.8 Numerical Realization and Experiments

In this section, an example of a two-dimensional porous medium is chosen to il-
lustrate the different aspects of the proposed methods. We consider heat transfer
in a wet sandstone with porosity modeled by a random function κ(x;ω) that rep-
resents the rate of pore space within some control volume. We construct κ gener-
ating N standard normally distributed random variables and applying a Gaussian
smoothing filter of the form exp (−‖x− y‖2/σ2), where σ = 1/5. Additionally, we
perform a Wiener process–like algorithm on the N new variables. Hence, κ(·;ω)

is (at least) almost surely everywhere continuous, and hence κ(·;ω) ∈ L2(D). Fur-
thermore, our model depends on a deterministic parameter µ ∈ P = [0.01, 1] that
denotes the global water saturation in the pores. Hence, the proportion of air in
the pores is given by (1 − µ). Let cs = 2.40 be the heat conductivity constant
of pure (theoretically imporous) sandstone and let cw = 0.60, ca = 0.03 be the
respective heat conductivity constants of water and air. With this notation, the
total heat conductivity of a wet sandstone is assumed to be

c(x;µ, ω) = cs · (1− κ(x;ω)) + (µcw + (1− µ)ca)κ(x;ω)

= cs + (−cs + µcw + (1− µ)ca)κ(x;ω).
(5.65)

We consider a domain D = (0, 1)2 ⊂ R2 and impose homogeneous Dirichlet bound-
ary conditions on some boundary part ΓD and nonhomogeneous Neumann bound-
ary conditions on the opposite “output” boundary Γout, where the right-hand side
of the boundary condition is a random function g(ω) : [0, 1] → R, stochastically
independent of κ, representing some random loss of heat at the output boundary
and modeled by a smoothed Wiener bridge process. On the other boundaries,
we impose homogeneous Neumann conditions, representing isolated parts of the
sandstone. For a given µ ∈ P and some random realization of κ, we are interested
in the average temperature at the “output” boundary Γout, denoted by s(µ, ω).
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Sample 1 Sample 2 Sample 3 Sample 4

Figure 5.1: Four random realizations of κ

First Mode Second Mode Third Mode Fourth Mode

Figure 5.2: First four modes of κ̃

Now, the PDE reads as follows: for given (µ, ω) ∈M, find u(µ, ω) such that




−∇ ·
(
c(µ, ω) ∇u(µ, ω)

)
= 0 in D,

u(µ, ω) = 0 on ΓD,

n ·
(
c(µ, ω) ∇u(µ, ω)

)
= 0 on ΓN,

n ·
(
c(µ, ω) ∇u(µ, ω)

)
= g(ω) on Γout.

(5.66)

In the weak form, we compute u(µ, ω) ∈ X such that a(u(µ, ω), v;µ, ω) = f(v;ω)

for all v ∈ X, where a(w, v;µ, ω) =
∫
D
c(µ, ω)∇w · ∇v and f(v;ω) =

∫
Γout

g(ω)v.
For the functional `(v) =

∫
Γout

v, the noncompliant output is given by

s(µ, ω) := `(u(µ, ω)) =

∫

Γout

u(µ, ω).

The affine decomposition of the bilinear form a in µ is straightforward. Let
κ̄(x) denote the mean of κ(x; ·) and κ̃(x;ω) := κ(x;ω) − κ̄(x) its stochastic part
with zero mean. We define θ1(µ) :≡ cs and θ2(µ) := −cs + µcw + (1 − µ)ca.
Then, using the notation of (5.2), ā1(w, v) =

∫
D
∇w · ∇v, whereas a1(w, v;ω) ≡

0 vanishes. For the second affine term, we have ā2(w, v) =
∫
D
κ̄∇w · ∇v and

a2(w, v;ω) =
∫
D
κ̃(ω)∇w · ∇v. In the same way, we denote by ḡ(x) the mean
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Figure 5.3: Four random realizations of g
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Figure 5.4: First four modes of g̃

of g(x; ·) and by g̃(x;ω) its stochastic part and define f̄1(v) =
∫

Γout
ḡv as well as

f1(v;ω) =
∫

Γout
g̃(ω)v, where θf1 = 1. Using KL expansions of κ̃ and g̃, we directly

obtain affine decompositions of a2 and f1 in ω, respectively. Since ` is independent
of µ and ω, we put all forms into the framework of (5.11) with Qa = 2, Qf = 1,
and Q` = 1, where ξa1,k(ω) = 0 for all k ≥ 1, and therefore Ka

1 = 0 in (5.12).

Figure 5.1 shows four random realizations of κ and Figure 5.2 the first four
eigenmodes of the KL expansion of κ̃. Its eigenvalues are provided in Figure
5.5(a). The expectation of κ is supposed to be constant in space, κ̄(x) ≡ 0.33.
We assume the random coefficients ξa2,k(ω) to be standard normally distributed.
Since κ(x;ω) is restricted to [0, 1], whereas ξa2,k(ω) are unbounded, we dismiss
realizations that do not satisfy the physical constraints. However, this can be
done easily online, and this happens with a probability of less than 2.5 · 10−6 in
our model. Then, c(x;µ, ω) > µcw + (1 − µ)ca > 0.0357 > 0, and the PDE is
uniformly coercive. Figure 5.3 shows four random realizations of g and Figure 5.4
the first four eigenmodes of the KL expansion of g̃. Its eigenvalues are provided in
Figure 5.5(b). The expectation of g is constant in space, ḡ(x) = 1. The random
coefficients ξf1,k(ω) are assumed to be standard normally distributed. Here, we do
not restrict g to a certain interval. However, negative values of g are very unlikely.

For the detailed approximations, we choose a finite element (FE) space X with
linear Lagrange elements and N = 4841 degrees of freedom. Furthermore, we
use Ka

detail = 78 and Kf
detail = 18 terms to assemble the detailed forms a and f ,

respectively. These numbers of terms are already precise enough compared to the
FE error.
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Figure 5.5: Eigenvalues and truncation values of the Karhunen–Loève expansions.

The bilinear form a with the affine decomposition introduced before is not para-
metrically coercive since θa2(µ) < 0. However, since ā2(·) = 0.33 · ā1(·), resorting
the affine terms to

a(·;µ, ω) = θa1(µ)
(
ā1(·)− ā2(·)− a2(·;ω)

)
+ (θa1(µ) + θa2(µ))

(
ā2(·) + a2(·;ω)

)

leads to a decomposition that fulfills the requirements of the method proposed in
Section 5.7.1 to evaluate coercivity lower bounds. That is, we first create several
random samples of the sandstone in the online stage and store the respective
αSCM. Then, for all water saturations µ ∈ P , we use the same samples and can
reuse αSCM.

Using the initial basis of the Greedy algorithm, we specify the KL truncation as
described in Section 5.7.4. For a relative error tolerance εtol = 10−3, we choose Ka

and Kf such that the respective truncation errors, especially the δKL-parts, do not
exceed 0.1εtol. This leads to Ka = 23, Ka

max = 31, Kf = 11, and Kf
max = 15, as

marked in Figures 5.5(a) and 5.5(b). For the KL error bounds, we use the upper
bound ξUB := 5.2 such that |ξq,k| > ξUB with a probability of less than 2.5 · 10−7.

As mentioned, we use the same space for the second and third dual spaces,
X̃

(2)
N = X̃

(3)
N , and solve only the additional dual problem (5.51). Figure 5.6(a)

shows the decay of the maximal relative error bounds of the primal and dual
solutions u and p(1), and of the difference of the additional dual solutions p(2)−p(3)

that is used for the construction of the variance. In Figure 5.6(b) we provide the
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Figure 5.6: Greedy error decay.

decay of the error bounds of the desired outputs. We omit the δKL-parts since
they do not decrease with the number of basis functions and could therefore have a
negative effect on the basis selection procedure. It turns out that (N, Ñ (1), Ñ (2)) =

(16, 11, 16) is sufficient for relative error below the tolerance for all outputs.

On our reference system, a 3.06 GHz Intel Core 2 Duo processor, 4 GB RAM,
we used Comsol 3.5.0.608 (3.5a) to construct and store the FE system components
and MATLAB 7.8.0 (R2009a) to implement and run both the detailed and reduced
models. For the solutions, we used the MATLAB mldivide function which auto-
matically adapts to the structure of the system, e.g., sparsity patterns. Solving
the detailed problem with N = 4841 degrees of freedom, we needed about 0.211

seconds per sample on average, whereas the reduced problem could be solved in
about 0.00603 seconds per sample, including the solution of all primal and dual
problems and the evaluation of all outputs and error bounds. Hence, we gain a
speedup by a factor of about 35. To show that the number of reduced basis func-
tions is independent of the degrees of freedom of the detailed problem, we started
another Greedy algorithm using N = 19121. Again, the error bounds fell below
the desired error tolerance for (N, Ñ (1), Ñ (2)) = (16, 11, 16). On average, the com-
putation of the larger detailed problem needed about 0.837 seconds per sample.
Since the size of the reduced system did not change, we gain a speedup by a factor
greater than 138.

The result of the reduced computation is shown in Figure 5.7(a). For each
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parameter of a test set of 30 logarithmically distributed values of µ, we evaluated
the output s, its mean, and the variance V using 10000 random samples. In Figure
5.7(a), we plotted the mean and standard deviations of sN,K as well as 100 random
samples for each parameter of the test set.

In Figure 5.8, we show the errors and error bounds for the output s for two
values of µ and 200 random samples each. The samples are sorted according to
∆s. We see that the error bound is effective. The average effectivity ∆s/|s− sN,K |
is about 200. We furthermore separated the error bound into its different parts.
One can see that the δKL part hardly varies since it is not directly dependent on
the current random realization. While for µ = 0.01, αLB∆∆̃(1) contributes most
to ∆s, the δKL parts contribute most for µ = 1.00. Hence, adaptive choices of Ka

and Kf could improve the error bounds and reduce the run-time and will be a
part of future work.

In Figure 5.9 we compare our variance evaluation method and corresponding
error bounds with two other evaluation procedures based upon the use of the
sample variance E[(sN,K)2]− (ENK)2. For the “direct” bound, we follow (5.33) and
replace s by (s−sN,K)+sN,K , which can be estimated by ∆s+|sN,K |. Analogously,
we obtain |M1| ≤ ∆M1 + |M1,NK |, which leads us to the “direct” variance error
bound

|V− VNK | ≤ E[∆s(∆s + 2|sN,K |)] + ∆M1(∆M1 + 2|M1,NK |).

For the “sophisticated” bound, we refer the reader to Appendix A or [12]. We
see that our variance approximations and the corresponding error estimates in
fact give sharper bounds. The direct error bound is about 160 times larger; the
sophisticated error bound still is about 12 times larger on average.

Compared to the deterministic problems, the effectivity bound η(µ, ω) from
(5.26) contains an additional factor of the form (1 + c)/(1 − c), where c is given
by (5.27). Figure 5.7(b) shows the average factor, its standard deviation, and
100 random samples for each parameter of the test set. We can see that the
additional factor takes an average value of about 2.4. Hence, compared to the
deterministic case, the effectivity upper bound increases only moderately in most
cases. However, there are cases in which c(µ, ω) ≈ 1 and the effectivity bound
becomes inappropriate or, for c(µ, ω) > 1, even nonexistent. This can be avoided
using larger K.
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5.9 Conclusions and Outlook

We presented a general RB framework for linear coercive PPDEs with stochastic
influences. Efficient a posteriori error bounds have been developed for the state
and output functionals, also dealing with additional KL-truncation errors. We
furthermore introduced a new error analysis for special quadratic and statistical
outputs such as second moment and variance using additional nonstandard dual
problems. We showed that parts of the KL-truncation errors vanish for such
outputs. Furthermore, the current framework has been adapted to noncoercive
inf-sup stable problems.





Chapter 6

RBM for Quadratically Nonlinear

Parametric PDEs with Stochastic

Influences

This chapter is based upon joint work with K. Urban and the main results have al-
ready been published in [93] in a very similar form. We showed that some assump-
tions regarding stochastic independence can be weakened such that more general
classes of problems can be considered.

Deterministic parametrized quadratically nonlinear problems and RBM have
been studied for affine problems [96] and non-affine problems [18]. The analysis is
based on the Brezzi-Rappaz-Raviart (BRR) theory [13, 16]. RBM for stochastic
parametrized linear problems have been studied in [12, 45] and in the previous
chapter. The evaluation of statistical outputs such as second moment or variance
requires good approximation procedures for quadratic output functionals which
have already been developed in Chapter 5 for this special case and a linear PDE
setting. In general, quadratic output functionals in the RB context are introduced
in [55, 56].

In this chapter, we combine the methods for quadratic deterministic and linear
stochastic problems for the case of a given affine decomposition with respect to the
deterministic parameter. The affine decomposition with respect to the stochastic
dependency is obtained using the KL expansion. Consequently, especially the

133
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error analysis of state and linear output functional is very similar to [96] and [18],
whereas the analysis of quadratic and statistical outputs is strongly based upon
the results of chapter 5 and [45].

We begin in Section 6.1 with the introduction of the general variational formu-
lation and its Frèchet derivative for the class of problems we are dealing with. Fur-
thermore, we briefly describe the KL expansion and introduce the desired random
and statistical outputs of interest. In Section 6.2, we present the nonlinear primal
RB formulation of the problem and appropriate linear dual RB problems used for
the RB approximation of the different outputs of interest. The a-posteriori analy-
sis of the error of state and outputs is developed in Section 6.3. The offline-online
decomposition is briefly described in Section 6.4, where also evaluation procedures
for the inf-sup and continuity constants are presented, which are needed for the
evaluation of the error bounds. Finally, in Section 6.5, we provide numerical ex-
periments for a stationary quadratic convection-diffusion problem.

6.1 Problem Formulation

6.1.1 Variational Formulation

Let D ⊂ Rd denote an open, bounded, spatial domain, P ⊂ Rp a set of determinis-
tic parameters, and (Ω,A,P) a probability space. For some subspace X ⊂ H1(D)

of dimension dim(X) = N , let a0 : X ×X × P × Ω → R be a bilinear form with
respect to the first two arguments, a1 : X ×X ×X ×P ×Ω→ R a trilinear form
with respect to the first three arguments, and let f : X×P×Ω→ R be linear and
bounded. We assume uniformly boundedness of a0 and a1, i.e., for (µ, ω) ∈ P ×Ω,
there are continuity constants 0 < ρ0(µ, ω) < ρ̄0 <∞ and 0 < ρ1(µ, ω) < ρ̄1 <∞
such that

|a0(u, v;µ, ω)| ≤ ρ0(µ, ω) ‖u‖X ‖v‖X , u, v ∈ X, (6.1)

|a1(u,w, v;µ, ω)| ≤ ρ1(µ, ω) ‖u‖X ‖w‖X ‖v‖X , u, w, v ∈ X. (6.2)

For (µ, ω) ∈ P × Ω and w, v ∈ X, we define

g(w, v;µ, ω) := a0(w, v;µ, ω) + a1(w,w, v;µ, ω)− f(v;µ, ω) (6.3)
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and solve the nonlinear, parametrized, and random variational problem

g(u(µ, ω), v;µ, ω) = 0 ∀v ∈ X. (6.4)

For the moment, we assume the existence of a solution of (6.4) for each pair (µ, ω).
A detailed proof is given in Section 6.3, following the well known Brezzi–Rappaz–
Raviart (BRR) theory [13].

6.1.2 Affine Decomposition via Karhunen–Loève Expansion

In order to achieve computational efficiency of an RBM, we assume g to allow for
an affine decomposition in the deterministic parameter µ, namely

g(w, v;µ, ω) =

Q∑

q=1

θq(µ)
[
ḡq(w, v) + gq(w, v;ω)

]
, (6.5)

where ḡq : X × X → R, q = 1, . . . , Q, are bounded and denote the expectations
of the terms in brackets, and gq : X × X × Ω → R, q = 1, . . . , Q, have zero
mean and represent the fluctuating parts. To separate also stochastic and spatial
dependencies, we express gq(w, v;ω) using Karhunen–Loève expansions [60, 65],
and obtain

gq(w, v;ω) =
∞∑

k=0

ξq,k(ω) gq,k(w, v), q = 1, . . . , Q. (6.6)

The random variables ξq,k : Ω→ R are uncorrelated and have zero mean and unit
variance. The bilinear forms gq,k : X × X → R, q = 1, . . . , Q, k = 1, . . . , K, are
bounded and the magnitude is typically assumed to decrease exponentially fast
in k. For numerical purposes, the infinite sums are usually restricted by some
sufficiently large K < ∞, leading to truncated forms gKq and thereby gK . The
corresponding solution of the truncated form of (6.4) is denoted by uK(µ, ω).

In practice, we may have different numbers Q of affine terms for a0, a1 and
f , and we may truncate each of the respective decomposed forms at different
values of K. However, for notational convenience, we do not explicitly specify
all dependencies but indicate them just by Q and K, respectively. Furthermore,
an index or superscript K indicates that the expression denotes or is based upon
truncated systems.
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6.1.3 Newton Iteration

We iteratively solve (6.4) or the respective truncated problem using Newton’s
method. The Frèchet derivative of g at some point z ∈ X is given by

dg(u, v;µ, ω)[z] = a0(u, v;µ, ω) + a1(u, z, v;µ, ω) + a1(z, u, v;µ, ω) (6.7)

and the respective truncated form is denoted by dgK . For some initial guess
u

[0]
K (µ, ω), we solve

dgK(du
[i]
K(µ, ω), v;µ, ω)[u

[i]
K(µ, ω)] = −gK(u

[i]
K(µ, ω), v;µ, ω), ∀v ∈ X (6.8)

and evaluate the Newton update u[i+1]
K (µ, ω) = u

[i]
K(µ, ω) + du

[i]
K(µ, ω).

6.1.4 Output of Interest

As in Chapter 5, we are not only interested in the state u(µ, ω) but also in some
output functional

s(µ, ω) := `(u(µ, ω);µ),

where ` : X × P → R denotes a parametric linear form. Furthermore, we may be
interested in the squared functional s2(µ, ω) := (`(u(µ, ω), µ))2.

Besides these random outputs, we again want to evaluate some statistical quan-
tities such as first and second moment of s(µ, ω), denoted by M1(µ) := E[s(µ, ·)]
and M2(µ) := E[s2(µ, ·)], respectively. Additionally, we have to provide the
squared first moment M2

1(µ) = (E[s(µ, ·)])2 to evaluate the variance, given by

V(µ) = M2(µ)−M2
1(µ).

6.2 Reduced Basis System

In this section, we introduce reduced primal and dual systems that are used to de-
rive good approximations of the desired random and statistical outputs of interest.
For the construction of the dual problems, we combine the ideas of [18, 96], where
dual problems for quadratically nonlinear problems with linear outputs are de-
rived, and the methods of Chapter 5, where dual formulations for linear problems
in combination with quadratic and statistical outputs have been introduced.
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6.2.1 Primal-Dual Formulation for Linear Outputs

We create a reduced basis from solutions ζn := uK(µn, ωn) for some appropriate
parameter set {µn, ωn}Nn=1 ∈ (P × Ω)N , N � N . The reduced space is given by
XN = span({ζn}Nn=1) ⊂ X. Due to the affine decomposition of g and dg, it is
possible to assemble and approximately solve the reduced system

gK(uN,K(µ, ω), v;µ, ω) = 0, v ∈ XN . (6.9)

for each (µ, ω) ∈ P ×Ω with computational complexity O(QKN3I), independent
of N , where I denotes the number of Newton iterations. We also introduce a linear
dual problem in full and truncated, reduced form,

dg(v, p(1)(µ, ω);µ, ω)[1
2
(u(µ, ω)+uN,K(µ, ω))] = −`(v;µ), v ∈ X, (6.10)

dgK(v, p
(1)
N,K(µ, ω);µ, ω)[uN,K(µ, ω)] = −`(v;µ), v ∈ X̃(1)

N , (6.11)

with solutions p(1)(µ, ω) ∈ X and p(1)
N,K(µ, ω) ∈ X̃(1)

N , respectively. The superscript
(1) is motivated by the fact that we will introduce further dual problems later on.
The reduced dual space X̃(1)

N of dimension Ñ (1) � N is constructed analogously
to XN as the span of solutions of (6.10) or of the corresponding truncated system
for appropriate parameter pairs (µ, ω) ∈ P ×Ω. The complexity to solve the dual
problem corresponds to just one Newton iteration of the primal problem. Here and
in the following, an index or superscript N indicates that the expression denotes
or is based on reduced systems. We do not explicitly indicate the dependencies on
the different dimensions of the primal and dual reduced systems. For notational
simplicity, we also omit the parameter pair (µ, ω) in many cases, where it does not
affect the understanding.

Let rRB(v;µ, ω) := gK(uN,K(µ, ω), v;µ, ω) be the residual of the reduced primal
problem for some v ∈ X. We define the RB approximation of the linear output
s(µ, ω) and its corresponding linear statistical output, the first moment M1(µ), by

sN,K(µ, ω) := `(uN,K ;µ) + rRB(p
(1)
N,K ;µ, ω), (6.12)

M1,NK(µ) := E[sN,K(µ, ·)], (6.13)

respectively, where rRB(p
(1)
N,K(µ, ω);µ, ω) has been added as a correction term to

improve the approximation. In Section 6.3, we will provide error bounds to show
that this choice leads to good results.
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6.2.2 Dual Formulations for Quadratic Outputs

As mentioned in Section 6.1.4, we are also interested in the squared output s2(µ, ω).
Since the straightforward approximation (sN,K(µ, ω))2 does not lead to accurate
results (cf. Section 5.3.4), we define `(2)(µ, ω) := 2sN,K(µ, ω)`(v;µ) and introduce
the additional linear dual problems, full and reduced,

dg(v, p(2)(µ, ω);µ, ω)[1
2
(u(µ, ω)+uN,K(µ, ω))] = −`(2)(v;µ, ω), v ∈ X, (6.14)

dgK(v, p
(2)
N,K(µ, ω);µ, ω)[uN,K(µ, ω)] = −`(2)(v;µ, ω), v ∈ X̃(2)

N , (6.15)

with solutions p(2)(µ, ω) ∈ X and p
(2)
N,K(µ, ω) ∈ X̃

(2)
N , respectively, using some

appropriate reduced dual space X̃(2)
N of dimension Ñ (2) � N . Analogously to

Chapter 5, the RB approximation of the quadratic output s2(µ, ω) and its corre-
sponding statistical output, the second moment M2(µ), are then defined by

s
[2]
N,K(µ, ω) := (sN,K)2 + 2sN,K rRB(p

(1)
N,K ;µ, ω)− rRB(p

(2)
N,K ;µ, ω), (6.16)

M2,NK(µ) := E
[
s

[2]
N,K(µ, ·)

]
, (6.17)

i.e., we add two additional correction terms compared to the straightforward ap-
proximation.

6.2.3 Dual Formulation for the Variance Approximation

To develop good approximations of the variance V(µ) = M2(µ)−M2
1(µ), it remains

to find RB estimates of M2
1(µ). We define `(3)(µ, ω) := 2M1,NK(µ, ω)`(v;µ) and

introduce the additional linear dual problems, full and reduced,

dg(v, p(3)(µ, ω);µ, ω)[1
2
(u(µ, ω)+uN,K(µ, ω))] = −`(3)(v;µ, ω), v ∈ X, (6.18)

dgK(v, p
(3)
N,K(µ, ω);µ, ω)[uN,K(µ, ω)] = −`(3)(v;µ, ω), v ∈ X̃(3)

N , (6.19)

with solutions p(3)(µ, ω) ∈ X and p
(3)
N,K(µ, ω) ∈ X̃

(3)
N , respectively, using some

appropriate reduced dual space X̃(3)
N of dimension Ñ (3) � N . The RB approxi-

mations of the squared first moment M2
1(µ) and the variance V(µ) are then given

by

M[2]
1,NK(µ) := (M1,NK)2 + 2M1,NKE

[
rRB(p

(1)
N,K)

]
− E

[
rRB(p

(3)
N,K)

]
, (6.20)

VNK(µ) := E
[
s

[2]
N,K(µ, ·)

]
− M[2]

1,NK(µ), (6.21)



6.3. A-Posteriori Analysis 139

respectively. Analogously to (6.16), we added two correction terms.

In our numerical experiments, we have observed that it is sufficient to use the
same reduced space for the second and third dual problem, i.e., X̃(2)

N = X̃
(3)
N .

Hence, we just solve

dgK(v, p
(4)
N,K(µ, ω);µ, ω)[uN,K(µ, ω)] = −2`(v;µ, ω), ∀v ∈ X̃(2)

N (6.22)

for p(4)
N,K(µ, ω) ∈ X̃(2)

N such that p(2)
N,K = sN,K · p(4)

N,K and p(3)
N,K = M1,NK · p(4)

N,K .

6.3 A-Posteriori Analysis

Parts of the following analysis are based on the Brezzi-Rappaz-Raviart (BRR) the-
ory [13, 16] which has already been used in the RB context for affine deterministic
problems, e.g., in [96], and non-affine deterministic problems, e.g., in [18]. Con-
sequently, especially the analysis in Sections 6.3.2 to 6.3.4 is very similar to parts
of the mentioned publications. The analysis of quadratic and statistical outputs
is based upon the results in Chapter 5, where the linear stochastic case has been
discussed.

Under the assumption that solutions u(µ, ω) of (6.4) and uN,K(µ, ω) of (6.9)
exist, we define the inf-sup constant β(µ, ω) as

β(µ, ω) := inf
w∈X

sup
v∈X

dg(w, v;µ, ω)[uN,K(µ, ω)]

‖w‖X‖v‖X
. (6.23)

We furthermore assume the existence of some β0 > 0 such that β(µ, ω) > β0 for all
(µ, ω) ∈ P×Ω. Existence and uniqueness of solutions of the dual problems (6.11),
(6.15) and (6.19) follows immediately. We furthermore assume the availability of
a positive lower bound βLB(µ, ω) of the inf-sup constant β(µ, ω) and an efficient
evaluation procedure, compare Section 6.4.2.

6.3.1 Notation

We first introduce some notation for the subsequent analysis. Let

eRB(µ, ω) := uK(µ, ω)− uN,K(µ, ω),

ẽ
(i)
RB(µ, ω) := p

(i)
K (µ, ω)− p(i)

N,K(µ, ω), i = 1, 2, 3,
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denote the error between the reduced primal and dual solutions and the corre-
sponding solutions of the full but truncated systems, respectively. Furthermore,
let

e(µ, ω) := u(µ, ω)− uN,K(µ, ω),

ẽ(i)(µ, ω) := p(i)(µ, ω)− p(i)
N,K(µ, ω), i = 1, 2, 3,

denote the total error of the reduced primal and dual solutions, respectively. We
define the RB residuals

rRB(v;µ, ω) := gK(uN,K , v;µ, ω) = gK(eRB, v;µ, ω),

r̃
(i)
RB(v;µ, ω) := dgK(v, p

(i)
N,K)[uN,K ] + `(i)(v) = dgK(v, ẽ

(i)
RB)[uN,K ], i = 1, 2, 3,

as a “measure” of the error that results from the basis reduction. Additionally, we
define some KL “residuals” indicating the truncation errors g − gK and dg − dgK .
To obtain truncation bounds independent of the actual random realization, we
replace the random variables ξq,k, k > K by some %-quantile ξ%UB, i.e., we define
some 0 ≤ %� 1 such that |ξq,k| ≤ ξ%UB holds with probability 1− %. We define

δKL(v;µ, ω) :=

Q∑

q=1

|θq(µ)|
∞∑

k=K+1

ξ%UB |gq,k(uN,K , v)| ,

δ̃
(i)
KL(v;µ, ω) :=

Q∑

q=1

|θq(µ)|
∞∑

k=K+1

ξ%UB |dgq,k(v, p
(i)
N,K)[uN,K ]|, i = 1, 2, 3.

For numerical purposes, the possibly infinte sums in the above definitions will be
truncated as well at some large Kmax > K such that the additional truncation
error is negligible.

Since we replaced the random variables ξq,k(ω) by its %-quantile ξ%UB, the KL
residuals δKL and δ̃

(i)
KL are not residuals in the classical sense but represent cor-

responding quantiles, i.e., δKL(v) ≥ |(g − gK)(uN,K , v)| and δ̃
(i)
KL(v) ≥ |(dg −

dgK)(v, p
(i)
N,K)[uN,K ]| holds with a certain probability. In many cases, the ran-

dom variables ξq,k(ω) are bounded since the underlying problem restricts their
variations. Then, we can choose % = 0 and obtain rigorous bounds. Otherwise, %
should be sufficiently small to be negligible in the following analysis.



6.3. A-Posteriori Analysis 141

Based on the introduced residuals, we define RB and KL bounds for i ∈ {1, 2, 3},

∆RB(µ, ω) :=
1

βLB

sup
v∈X

(
rRB(v)

‖v‖X

)
, ∆̃

(i)
RB(µ, ω) :=

1

βLB

sup
v∈X

(
r̃

(i)
RB(v)

‖v‖X

)
, (6.24)

∆KL(µ, ω) :=
1

βLB

sup
v∈X

(
δKL(v)

‖v‖X

)
, ∆̃

(i)
KL(µ, ω) :=

1

βLB

sup
v∈X

(
δ̃

(i)
KL(v)

‖v‖X

)
. (6.25)

Before we provide the actual error bounds for the state and the outputs, we intro-
duce a so-called proximity indicator τ(µ, ω) which can be seen as a dimensionless
measure of the residuals. Similarly to [18, 96], we define

τ(µ, ω) := 4
ρ1(µ, ω)

βLB(µ, ω)
(∆RB(µ, ω) + ∆KL(µ, ω)) , (6.26)

where ρ1(µ, ω) is given by (6.2). For τ(µ, ω) < 1, we furthermore define

d(µ, ω) :=
(

1 +
√

1− τ(µ, ω)
)−1

(6.27)

which will appear as a factor in the upcoming error bounds. It is easy to see that
d(µ, ω) is decreasing in τ(µ, ω) and takes values in the interval [1/2, 1).

6.3.2 Primal Solution Error

For τ(µ, ω) < 1, we define the bound

∆(µ, ω) := 2d(µ, ω) (∆RB(µ, ω) + ∆KL(µ, ω)) . (6.28)

Since d(µ, ω) approaches 1/2 for small τ , the bound ∆(µ, ω) approaches ∆RB(µ, ω)+

∆KL(µ, ω) which corresponds to the bound in the linear case, cf. Chapter 5. To
show that ∆(µ, ω) is indeed an upper bound for the error of the reduced primal
solution uN,K , we need the following statement, which has been introduced and
proved almost analogously for deterministic problems in [18, 96].

Lemma 6.1. For (µ, ω) ∈ P × Ω and τ(µ, ω) < 1, let uN,K(µ, ω) be a solution of
(6.9). We define the operator Φ : X × P × Ω→ X by

dg(Φ(w;µ, ω), v;µ, ω)[uN,K(µ, ω)]

= dg(w, v;µ, ω)[uN,K(µ, ω)]− g(w, v;µ, ω) ∀v ∈ X,
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for a given w ∈ X. Then, Φ has a unique fixed point w∗(µ, ω) in the ball
B(uN,K(µ, ω), r(µ, ω)) ⊂ X where the radius r(µ, ω) is in the interval

r(µ, ω) ∈
[
∆(µ, ω),

βLB(µ, ω)

2ρ1(µ, ω)

)
.

Proof. We omit all parameter dependencies for notational convenience. First, we
show the identity

g(w2, v)− g(w1, v) = dg(w2 − w1, v)[1
2
(w2 + w1)]. (6.29)

Using just the definition of g in (6.3), we have

g(w2, v)− g(w1, v) = a0(w2 − w1, v) + a1(w2, w2, v)− a1(w1, w1, v).

With the definition of dg in (6.7), we obtain

dg(w2 − w1, v)[1
2
(w2 + w1)] = a0(w2 − w1, v) + 1

2
a1(w2 − w1, w2 + w1, v)

+ 1
2
a1(w2 + w1, w2 − w1, v)

= a0(w2 − w1, v) + a1(w2, w2, v)− a1(w1, w1, v),

where the last equation is obtained by expanding the “a1” terms. Together, we
obtain the identity (6.29).

Using again the definition of dg in (6.7) and the continuity assumption (6.2), it
is straightforward to show the inequality

dg(w, v)[z2]− dg(w, v)[z1] = a1(w, z2 − z1, v) + a1(z2 − z1, w, v)

≤ 2ρ1‖w‖X‖v‖X‖z2 − z1‖X . (6.30)

To prove the Lemma, we apply these results and use the Banach fixed point
theorem. We first show that Φ is a contraction on B̄(uN,K , r) for some r > 0. For
w1, w2 ∈ B̄(uN,K , r), we know that 1

2
(w2 + w1) ∈ B̄(uN,K , r). Using the definition

of Φ and (6.29), we obtain

dg(Φ[w2]−Φ[w1], v)[uN,K ] = dg(w2−w1, v)[uN,K ]− (g(w2, v)− g(w1, v))

= dg(w2−w1, v)[uN,K ]− dg(w2−w1, v)[1
2
(w2+w1)]

= dg(w2 − w1, v)[uN,K − 1
2
(w2 + w1)].
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Hence, applying (6.30) and the fact that 1
2
(w2 + w1) ∈ B̄(uN,K , r),

|dg(Φ[w2]− Φ[w1], v)[uN,K ]| ≤ 2ρ1‖w2 − w1‖X‖v‖X‖uN,K − 1
2
(w2 + w1)‖X

≤ 2rρ1‖w2 − w1‖X‖v‖X .

We use this result and the inf-sup constant (6.23),

‖Φ[w2]− Φ[w1]‖X ≤
1

βLB

sup
v∈X

dg(Φ[w2]− Φ[w1], v)[uN,K ]

‖v‖X
≤ 2rρ1

βLB

‖w2 − w1‖X .

Hence, Φ is a contraction for 0 < r < βLB/2ρ1.
Next, we show that there is a radius r ∈ (0, βLB/2ρ1) such that Φ maps the ball

B̄(uN,K , r) into itself. For w ∈ B̄(uN,K , r), it holds with (6.29) that

dg(Φ[w]−uN,K , v) = dg(w−uN,K , v)[uN,K ]− g(w, v)

= dg(w−uN,K , v)[uN,K ]− (g(w, v)− g(uN,K , v))− g(uN,K , v)

= dg(w−uN,K , v)[uN,K ]− dg(w−uN,K , v)[1
2
(w+uN,K)]

− g(uN,K , v).

Using again (6.30), we obtain

|dg(w−uN,K , v)[uN,K ]− dg(w−uN,K , v)[1
2
(w+uN,K)]| ≤ ρ1‖w−uN,K‖2

X‖v‖X
≤ ρ1r

2‖v‖X .

Furthermore, it is clear that

|g(uN,K , v)| ≤ |(g − gK)(uN,K , v)|+ |gK(uN,K , v)| ≤ δKL(v) + |rRB(v)|.

Hence, using again the inf-sup constant (6.23), we get

‖Φ[w]−uN,K‖X ≤
1

βLB

sup
v∈X

dg(Φ[w]−uN,K , v)

‖v‖X
≤ ρ1r

2

βLB

+ (∆KL + ∆RB).

Therefore, Φ maps B̄(uN,K , r) into itself for all r with ρ1r
2β−1

LB + ∆KL + ∆RB < r,
which holds for r ∈ [∆, βLB/(2ρ1d)]. Since d < 1 by (6.27), Φ has a unique fixed
point on B(uN,K , r) for r ∈ [∆, βLB/(2ρ1)).

Proposition 6.2. For τ(µ, ω) < 1, (µ, ω) ∈ P ×Ω, there exists a unique solution
u(µ, ω) ∈ B

(
uN,K(µ, ω), βLB(µ,ω)

2ρ1(µ,ω)

)
of (6.4) such that ‖e(µ, ω)‖X ≤ ∆(µ, ω).
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Proof. The proof follows directly from Lemma 6.1. Since the fixed point of Φ

solves (6.4), we have existence and uniqueness in B(uN,K ,
βLB

2ρ1
). Furthermore, the

fixed point is in the ball B(uN,K ,∆) which leads to the error bound.

At the beginning of Section 6.3, we assumed the existence of solutions u(µ, ω)

of (6.4) and uN,K(µ, ω) of (6.9). With Proposition 6.2, we can prove existence
and local uniqueness of u(µ, ω) a-posteriori, solving just the reduced problem and
evaluating τ(µ, ω). However, the reduced basis has to be sufficiently large to fulfill
the requirement τ(µ, ω) < 1. This reflects the fact that we can not expect well-
posedness of the nonlinear problem for all parameters µ and ω.

6.3.3 Dual Solution Error

For the dual solutions p(i)
N,K(µ, ω) of (6.11), (6.15) and (6.19), we define the bounds

∆̃(i)(µ, ω), i ∈ {1, 2, 3}, by

∆̃(i)(µ, ω) := 2d(µ, ω)
(

∆̃
(i)
RB(µ, ω)+∆̃

(i)
KL(µ, ω)

)

+ 2d(µ, ω)
ρ1(µ, ω)

βLB(µ, ω)
∆(µ, ω)‖p(i)

N,K(µ, ω)‖X . (6.31)

The last term of (6.31) can also be expressed in terms of τ and d and we obtain
the alternative notation ∆̃(i) = 2d(∆̃

(i)
RB + ∆̃

(i)
KL) + d2τ‖p(i)

N,K‖X .

Proposition 6.3. For τ(µ, ω) < 1, it holds that ‖ẽ(i)(µ, ω)‖X ≤ ∆̃(i)(µ, ω) for
i ∈ {1, 2, 3}, (µ, ω) ∈ P × Ω.

Proof. It is straightforward that

dg(v, ẽ(i))[uN,K ]

= dg(v, p(i))[1
2
(u+uN,K)]− dg(v, p(i))[1

2
(u−uN,K)]− dg(v, p

(i)
N,K)[uN,K ].

Let us consider the first and last term.

∣∣dg(v, p(i))[1
2
(u+uN,K)]− dg(v, p

(i)
N,K)[uN,K ]

∣∣

=
∣∣`(i)(v)−dgK(v, p

(i)
N,K)[uN,K ]− (dg−dgK)(v, p

(i)
N,K)[uN,K ]

∣∣

≤
∣∣r̃(i)

RB(v)
∣∣+
∣∣δ̃(i)

KL(v)
∣∣.
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For the middle term, we use p(i) = ẽ(i) + p
(i)
N,K and inequality (6.30) to obtain

∣∣dg(v, p(i))[1
2
(u−uN,K)]

∣∣ ≤ ρ1‖e‖X
(
‖ẽ(i)‖X + ‖p(i)

N,K‖X
)
‖v‖X .

We combine these results to estimate the error ẽ(i). Using the inf-sup condition
(6.23), we obtain

‖ẽ(i)‖X ≤
1

βLB

sup
v∈X

dg(v, ẽ(i))[uN,K ]

‖v‖X
≤
(
∆̃

(i)
RB + ∆̃

(i)
KL

)
+

ρ1

βLB

∆
(
‖ẽ(i)‖X + ‖p(i)

N,K‖X
)
,

i.e.,

‖ẽ(i)‖X
(

1− ρ1

βLB

∆

)
≤
(
∆̃

(i)
RB + ∆̃

(i)
KL

)
+

ρ1

βLB

∆‖p(i)
N,K‖X .

Since (1 − ρ1
βLB

∆) = (1 − 1
2
dτ) = (1 − 1

2
τ

1+
√

1−τ ) = (2
2
− 1−

√
1−τ

2
) = 1+

√
1−τ

2
= 1

2d
,

using the definitions of τ in (6.26) and d in (6.27), the claim is proven.

6.3.4 Linear Output Error

In the subsequent sections, we provide bounds for the errors between the outputs
defined in Section 6.1.4 and its approximations. In all proofs, we omit the param-
eters (µ, ω) for notational compactness. In this section, we provide error bounds
for the approximations of the linear output s(µ, ω) and the first moment M1(µ).
However, we start with some assumptions and statements that will be used in the
proofs of all output error bounds.

Assumption 6.4. The sets of random variables

{
ξq,k
}
k=1,...,K
q=1,...,Q

and
{
ξq,k
}
k>K
q=1,...,Q

from (6.6) are uncorrelated from each other.

Assumption 6.4 is fulfilled for example if the different gq from (6.5) are stochasti-
cally independent or uncorrelated. However, it has already been stated in Remark
5.13 that it is also possible to deal with correlated terms gq and gq′ , using joint KL
expansions (cf. Section 2.2.3). Hence, Assumption 6.4 can easily be fulfilled for all
kinds of problems.
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Lemma 6.5. Under Assumption 6.4, we have

E
[
g(uN,K , p

(i)
N,K)− gK(uN,K , p

(i)
N,K)

]
= 0, i = 1, 2, 3.

Proof. Since uN,K and p
(i)
N,K depend only on truncated forms, they depend only

on the random variables
{
ξq,k
}
k=1,...,K
q=1,...,Q

. Since, by Assumption 6.4,
{
ξq,k
}
k=1,...,K
q=1,...,Q

is

uncorrelated to
{
ξq,k
}
k>K
q=1,...,Q

, both uN,K and p(i)
N,K are uncorrelated to

{
ξq,k
}
k>K
q=1,...,Q

.
We thus obtain

E
[
g(uN,K , p

(i)
N,K)− gK(uN,K , p

(i)
N,K)

]

= E

[
Q∑

q=1

∞∑

k=K+1

θq(µ)ξq,k(·)gq,k(uN,K , p(i)
N,K)

]

=

Q∑

q=1

∞∑

k=K+1

θq(µ)E
[
ξq,k(·)

]

︸ ︷︷ ︸
=0

E
[
gq,k(uN,K , p

(i)
N,K)

]
= 0

which proves the claim.

Lemma 6.6. Let u(µ, ω) be the solution of (6.4), uN,K(µ, ω) the solution of (6.9)
and p(i)(µ, ω), i = 1, 2, 3, the solutions of (6.10), (6.14) and (6.18), respectively.
For i ∈ {1, 2, 3}, it holds that `(i)(u)− `(i)(uN,K) = g(uN,K , p

(i)).

Proof. Since `(i)(u)− `(i)(uN,K) = `(i)(e) and using the respective dual formulation
(6.10), (6.14) or (6.18), we have

`(i)(u)−`(i)(uN,K) = −dg(e, p(i))[1
2
(u+ uN,K)]

= −a0(e, p(i))− 1
2
a1(e, u+uN,K , p

(i))− 1
2
a1(u+uN,K , e, p

(i))

= −a0(u, p(i))− a1(u, u, p(i))

+a0(uN,K , p
(i)) + a1(uN,K , uN,K , p

(i))

= −f(p(i)) + a0(uN,K , p
(i)) + a1(uN,K , uN,K , p

(i))

= g(uN,K , p
(i)),

which proves the postulated equality.

Let us now introduce the bound for the error between the linear output s(µ, ω)

and its approximation sN,K(µ, ω) defined in (6.12). We define the bound ∆s(µ, ω)

by

∆s(µ, ω) :=
βLB(µ, ω)

2d(µ, ω)
∆(µ, ω)∆̃(1)(µ, ω) + δKL(p

(1)
N,K(µ, ω);µ, ω). (6.32)
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Proposition 6.7. For τ(µ, ω) < 1, it holds that |s(µ, ω)− sN,K(µ, ω)| ≤ ∆s(µ, ω).

Proof. From Lemma 6.6, we know that `(u)−`(uN,K) = g(uN,K , p
(1)). Hence, with

sN,K from (6.12), we obtain

s− sN,K = g(uN,K , p
(1))− gK(uN,K , p

(1)
N,K)

= gK(uN,K , p
(1))− gK(uN,K , p

(1)
N,K) + (g − gK)(uN,K , p

(1))

= gK(uN,K , ẽ
(1)) + (g − gK)(uN,K , ẽ

(1)) + (g − gK)(uN,K , p
(1)
N,K).

We use the definition of the bounds introduced in Section 6.3.1 and estimate

|s− sN,K | ≤ |rRB(ẽ(1))|+ δKL(ẽ(1)) + δKL(p
(1)
N,K)

≤ βLB∆RB‖ẽ(1)‖X + βLB∆KL‖ẽ(1)‖X + δKL(p
(1)
N,K)

≤ βLB(∆RB + ∆KL)∆̃(1) + δKL(p
(1)
N,K),

which proves the claim.

With Proposition 6.7 and Lemma 6.5 at hand, it is clear that we can easily define
a good bound for the error between the first moment M1(µ) and its approximation
M1,NK(µ) as defined in (6.13). We define the bound ∆M1(µ) by

∆M1(µ) := E
[
βLB(µ, ·)
2d(µ, ·) ∆(µ, ·)∆̃(1)(µ, ·)

]
, (6.33)

i.e., compared to E[∆s], the last term has been omitted.

Corollary 6.8. Under Assumption 6.4, for µ ∈ P and τ(µ, ·) < 1, it holds that
|M1(µ)−M1,NK(µ)| ≤ ∆M1(µ).

Proof. From the proof of Proposition 6.7 and Definition (6.13), we know that

M1(µ)−M1,NK(µ) = E
[
gK(uN,K , ẽ

(1)) + (g − gK)(uN,K , ẽ
(1))
]

+ E
[
(g − gK)(uN,K , p

(1)
N,K)

]
.

Since Assumption 6.4 holds, we can apply Lemma 6.5 and the last term vanishes.
Following the proof of Proposition 6.7 directly leads to the desired result.
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6.3.5 Quadratic Output Error

We continue with the quadratic outputs s2(µ, ω) and M2(µ) and start with the
bound for the error between the squared output s2(µ, ω) and its approximation
s

[2]
N,K(µ, ω) from (6.16). We define the bound ∆s2(µ, ω) by

∆s2(µ, ω) :=
(
∆s(µ, ω)

)2

+
βLB(µ, ω)

2d(µ, ω)
∆(µ, ω)∆̃(2)(µ, ω) + δKL(p

(2)
N,K(µ, ω);µ, ω). (6.34)

Proposition 6.9. For τ(µ, ω) < 1, it holds that |s2(µ, ω)−s[2]
N,K(µ, ω)| ≤ ∆s2(µ, ω).

Proof. With the definition of s[2]
N,K in (6.16), the output error is given by

s2 − s[2]
N,K = s2 − (sN,K)2 − 2sN,K rRB(p

(1)
N,K) + rRB(p

(2)
N,K)

= (s− sN,K)2 + 2sN,K(s− sN,K)− 2sN,K rRB(p
(1)
N,K) + rRB(p

(2)
N,K).

Using sN,K = `(uN,K)− rRB(p
(1)
N,K) from (6.12) yields

2sN,K(s− sN,K) = 2sN,K

(
`(u)− `(uN,K) + rRB(p

(1)
N,K)

)
.

Together, replacing 2sN,K` by `(2), we have

s2 − s[2]
N,K = (s− sN,K)2 + `(2)(u)− `(2)(uN,K) + rRB(p

(2)
N,K). (6.35)

From Proposition 6.7, we know that (s−sN,K)2 ≤ (∆s)2. The second part of (6.35)
can be estimated analogously to Proposition 6.7 by replacing ` by `(2) as well as
p(1) by p(2) and with Lemma 6.6. We obtain

∣∣`(2)(u)− `(2)(uN,K) + rRB(p
(2)
N,K)

∣∣

=
∣∣gK(uN,K , ẽ

(2)) + (g − gK)(uN,K , ẽ
(2)) + (g − gK)(uN,K , p

(2)
N,K)

∣∣

≤ |rRB(ẽ(2))|+ δKL(ẽ(2)) + δKL(p
(2)
N,K)

≤ βLB

2d
∆∆̃(2) + δKL(p

(2)
N,K)

which proves the claim.

Since the second moment M2(µ) and its approximation M2,NK(µ) defined in
(6.17) are just the expectations of s2(µ, ·) and s

[2]
N,K(µ, ·), respectively, it is clear
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that we can define the bound ∆M2(µ) by the expectation of ∆s2(µ, ·) and omitting
again the last term, i.e.,

∆M2(µ) := E
[(

∆s(µ, ω)
)2

+
βLB(µ, ω)

2d(µ, ω)
∆(µ, ω)∆̃(2)(µ, ω)

]
. (6.36)

Corollary 6.10. Under Assumption 6.4, for µ ∈ P and τ(µ, ·) < 1, it holds that
|M2(µ)−M2,NK(µ)| ≤ ∆M2(µ).

Proof. From the proof of Proposition 6.9 and Definition (6.17), we know that

M2
1(µ)−M[2]

1,NK(µ) = E
[
(s− sN,K)2

]
+ E

[
gK(uN,K , ẽ

(2)) + (g − gK)(uN,K , ẽ
(2))
]

+ E
[
(g − gK)(uN,K , p

(2)
N,K)

]
.

Since Assumption 6.4 holds, we can apply Lemma 6.5 and the last term vanishes.
Following the proof of Proposition 6.9 directly leads to the desired result.

6.3.6 Variance Output Error

We start with the bound for the error between squared first moment M2
1(µ) and

its approximation M[2]
1,NK(µ). We define the bound ∆M2

1(µ) by

∆M2
1(µ) := (∆M1(µ))2 + E

[βLB(µ, ·)
2d(µ, ·) ∆(µ, ·)∆̃(3)(µ, ·)

]
. (6.37)

Proposition 6.11. Under Assumption 6.4, for µ ∈ P and τ(µ, ·) < 1, it holds
that |M2

1(µ)−M[2]
1,NK(µ)| ≤ ∆M2

1(µ).

Proof. Analogously to Proposition 6.9, the output error is given by

M2
1 −M[2]

1,NK = (M1 −M1,NK)2 + E
[
`(3)(u)− `(3)(uN,K) + rRB(p

(3)
N,K)

]
.

From Corollary 6.8, we know (M1 −M1,NK)2 ≤ (∆M1)2 = (E [∆s])2. We estimate
the remaining term analogously to Proposition 6.7, replacing ` by `(3) as well as
p(1) by p(3) and with Lemma 6.6. Using Lemma 6.5, we obtain

E
[
`(3)(u)− `(3)(uN,K) + rRB(p

(3)
N,K)

]
= E

[
gK(uN,K , ẽ

(3)) + (g − gK)(uN,K , ẽ
(3))
]

which can be estimated by E
[
βLB

2d
∆∆̃(3)

]
analogously to Proposition 6.7.
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From the above results, it is clear that the variance error could directly be
bounded by

|V(µ)− VNK(µ)| ≤ ∆M2(µ) + ∆M2
1(µ). (6.38)

However, we can derive more precise error bounds. Analogously to Section 6.3.1,
we define dual RB and KL residuals r̃(2−3)

RB (v;µ, ω) and δ̃
(2−3)
KL (v;µ, ω), replacing

p
(i)
N,K by (p

(2)
N,K − p

(3)
N,K),

r̃
(2−3)
RB (v;µ, ω) := dgK(v, p

(2)
N,K−p

(3)
N,K)[uN,K ] + `(i)(v),

δ̃
(2−3)
KL (v;µ, ω) :=

Q∑

q=1

|θq(µ)|
∞∑

k=K+1

ξ%UB |dgq,k(v, p
(2)
N,K − p

(3)
N,K)[uN,K ]|.

The corresponding bounds read

∆̃
(2−3)
RB (µ, ω) := β−1

LB(µ, ω) sup
v∈X

(
r̃

(2−3)
RB (v;µ, ω)/‖v‖X

)
,

∆̃
(2−3)
KL (µ, ω) := β−1

LB(µ, ω) sup
v∈X

(
δ̃

(2−3)
KL (v;µ, ω)/‖v‖X

)
.

As a consequence of Proposition 6.3, we obtain

‖ẽ(2) − ẽ(3)‖X ≤ ∆̃(2−3) := 2d
(

∆̃
(2−3)
RB + ∆̃

(2−3)
KL

)
+ 2d

ρ1

βLB

∆‖p(2)
N,K−p

(3)
N,K‖X .

Thus, we can define the variance error bound ∆V(µ) by

∆V(µ) := E
[
(∆s(µ, ·))2

]
+ (∆M1(µ))2 + E

[
βLB(µ, ·)
2d(µ, ·) ∆(µ, ·)∆̃(2−3)(µ, ·)

]
. (6.39)

Proposition 6.12. Under Assumption 6.4, for µ ∈ P and τ(µ, ·) < 1, it holds
that |V(µ)− VNK(µ)| ≤ ∆V(µ).

Proof. From Propositions 6.9 and 6.11, we know

V− VNK = E
[
(s− sN,K)2

]
− (M1 −M1,NK)2

+ E
[
`(2)(u)− `(2)(uN,K) + rRB(p

(2)
N,K)

]

− E
[
`(3)(u)− `(3)(uN,K) + rRB(p

(3)
N,K)

]

and the first two terms can be bounded by E [(∆s)2] and (∆M1)2, respectively.
From Lemma 6.6 and the definition of the residual rRB, we know that

`(i)(u)− `(i)(uN,K) + rRB(p
(i)
N,K) = g(uN,K , p

(i))− gK(uN,K , p
(i)
N,K), i = 2, 3.

We subtract the two expressions and follow again the proof of Proposition 6.7.
The claim follows directly, using the above definitions and Lemma 6.5.
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6.4 Offline-Online Decomposition

The aim of the RBM are online evaluation procedures of state, outputs and corre-
sponding error bounds independent of the dimension N of X. In this section, we
describe the offline-online decomposition and provide the respective complexities.

For the N -independence, it is of crucial importance to efficiently evaluate the
continuity constant ρ1(µ, ω) from (6.2) and the inf-sup constant βLB(µ, ω) from
(6.23). We start with an evaluation procedure for the continuity constant.

6.4.1 Continuity Constant

The derivation of the continuity constant ρ1(µ, ω) from (6.2) is commonly done
using Hölder’s inequality and applying the Sobolev embedding theorem [23, 89],
where the existence of a so-called Sobolev embedding constant ρX with ‖v‖4 ≤
ρX‖v‖X for all v ∈ X is shown. However, the actual derivation of ρ1(µ, ω) depends
on the specific form of the trilinear form a1. Here, we exemplarily provide the
derivation strategy for a specific trilinear form that also (but not only) covers the
example problem discussed in Section 6.5. Let a1 be given by

a1(u,w, v;µ, ω) :=

∫

D

~ν(µ, ω) · ∇uwv =

∫

D

ν1(µ, ω)uxwv +

∫

D

ν2(µ, ω)uywv,

where ν(µ, ω) : D×P×Ω→ R2 denotes some parametric spatial stochastic process.
For the first part, omitting ν for one moment, we apply Hölder’s inequality twice,

∫

D

uxwv ≤
[∫

D

(ux)
2

]1/2 [∫

D

(wv)2

]1/2

≤
[∫

D

(ux)
2

]1/2 [∫

D

(ww)2

]1/4 [∫

D

(vv)2

]1/4

.

Analogously, we estimate the second part. For ν̄(µ, ω) := maxi∈{1,2} ‖νi(µ, ω)‖∞,
we directly obtain the bound a1(u,w, v;µ, ω) ≤ ν̄(µ, ω)(‖ux‖2 + ‖uy‖2)‖w‖4‖v‖4.

Using Young’s inequality, we can easily show that ‖ux‖2+‖uy‖2 ≤
√

2‖u‖X . Hence,

a1(u,w, v;µ, ω) ≤
√

2ν̄(µ, ω)‖u‖X‖w‖4‖v‖4.

Now, we apply the Sobolev embedding theorem and obtain the desired continuity
constant ρ1(µ, ω) :=

√
2ν̄(µ, ω)ρ2

X . Suppose ~ν allows for an affine decomposition
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in the parameters (µ, ω), it is clear that ν̄ and therefore ρ1 can be decomposed as
well with the same number of affine terms. Hence, the online evaluation of ρ1(µ, ω)

can be done efficiently.
It remains to compute the Sobolev embedding constant ρX which involves the

solution of a nonlinear eigenproblem of the form
∫

D

φ3v = λ · (φ, v)X , ∀v ∈ X, ‖φ‖X = 1. (6.40)

The solution of (6.40) can be obtained using e.g., fixed point or homotopy proce-
dures [96]. The Sobolev embedding constant ρX is then given by (λmax)1/4. The
evaluation can be done offline.

6.4.2 Inf-Sup Constant

For the evaluation of the inf-sup constant, we refer to the successive constraint
method (SCM) [57] that can almost directly be applied to the stochastic case.
However, due to the KL truncation, we have to subtract a correction term. Let
βKLB(µ, ω) be a lower bound of the inf-sup constant with respect to the truncated
form dgK(w, v;µ, ω)[uN,K(µ, ω)]. We furthermore define

∆β
KL(µ, ω) := sup

w∈X
sup
v∈X

(
Q∑

q=1

|θq(µ)|
Kmax∑

k=K+1

ξ%UB

|dgq,k(v, w)[uN,K ]|
‖w‖X‖v‖X

)

and obtain the lower bound (cf. [18], Section 5.7.1)

βLB(µ, ω) := βKLB(µ, ω)−∆β
KL(µ, ω) ≤ β(µ, ω).

In [57], it is shown that the online evaluation of βKLB(µ, ω) is independent of N .
However, it involves the solution of a linear program with about (QKN)2/2 degrees
of freedom. One can show that the online evaluation of ∆β

KL(µ, ω) is of complexity
O(Q(Kmax−K)N). The combined offline evaluations for βKLB(µ, ω) and ∆β

KL(µ, ω)

include QKmaxN eigenvalue problems of the full dimension N .

6.4.3 Offline Complexity

To generate the reduced basis, we use a Greedy algorithm as it is well known in
the RB context [97, 73]. Suppose we use a training set of ntrain samples, the basis
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selection procedure needs O(N · ntrain) times the online run-time. Furthermore,
the evaluation of the actual basis is of complexity O(IQKdetailNN ), where I is the
number of used Newton iterations, assuming that the detailed computation uses
Kdetail terms of the KL expansion. The complexity to compute the matrices and
vectors of the reduced system is O(QKmaxN

3). For the evaluation of the ∆KL and
∆RB error bounds, we evaluate O(QKmaxN

2) Riesz representatives, one for each
affine term of the residuals, and its pairwise inner products. Thus, the complexity
reads O(Q2K2

maxN
4N ). We store the reduced system matrices and vectors and the

Riesz representative inner products, i.e., the storage complexity is O(Q2K2
maxN

4).

6.4.4 Online Complexity

Let us summarize the online run-time complexity to assemble and solve the re-
duced system for one parameter pair (µ, ω) ∈ P × Ω and to evaluate outputs
and error bounds. Let I denote again the number of Newton iterations. In each
iteration, we have to assemble and solve the reduced primal system which is of
complexity O(QKN3) and O(N3), respectively. The evaluation of the residu-
als rRB — needed as correction terms for the outputs — is done in O(QKN3)

as well. Furthermore, we need to assemble and solve the linear dual problems
with complexity O(QKN3 + N3), i.e., the complexity of just one Newton it-
eration. For the error bounds, we first evaluate βLB, solving a linear program
with about (QKN)2/2 degrees of freedom. The evaluation of ρ1 can be done in
O(QK). For the δKL-error bounds, we need Q(Kmax − K) matrix-vector multi-
plications, i.e., the complexity is O(Q(Kmax − K)N2). For the ∆KL and ∆RB

error bounds, we have to assemble the inner products of the Riesz representatives
with the total complexity O

(
(Q2K2 +Q(Kmax−K))N4

)
, where the ∆KL bounds

are evaluated analogously to Section 5.7.2. Hence, the overall complexity reads
O(IQKN3) +O

(
(Q2K2+Q(Kmax−K))N4

)
.

The storage complexity is O(QKmaxN
3) for all reduced matrices and vectors,

and O(Q2K2
maxN

4) for the Riesz inner products. Suppose we use M realizations
to evaluate Monte Carlo statistical outputs. Then, we have an additional storage
complexity of O(M) to store certain RB outputs or we need to reevaluate the
respective quantities when needed. However, using the less precise variance error
bound (6.38), it is possible to evaluate all quantities with an additional storage
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complexity of just O(1). For more details, we refer to Section 5.7.3.

6.5 Numerical Experiment

In this section, we consider a two-dimensional stationary convection-diffusion pro-
cess in a porous medium. We model the concentration or mass of a physical
quantity transported through a wet sandstone. The diffusivity depends on the
porosity, modeled by some spatial stochastic process, and the water saturation of
the sandstone, given by some deterministic parameter. The nonlinear convective
term includes the gradient of the concentration together with a given dominant
direction and a scalar intensity factor given by another deterministic parameter.

Let D = (0, 1)2 ⊂ R2 denote the physical domain of the sandstone and (Ω,A,P)

some probability space. The porosity, i.e., the rate of pore space within some
control volume, is denoted by the spatial stochastic process κ : D×Ω→ [0, 1] and
is assumed to be smooth in space. Furthermore, the global water saturation in
the pores is given by µ1 ∈ [0.05, 1.00]. Let ηs = 0.04 be the diffusivity constant of
pure (theoretically imporous) sandstone and ηw = 3.10, ηa = 1.20 the respective
diffusivity constants of water and air. With these notations, the diffusivity of a
wet sandstone is assumed to be

η(x;µ, ω) = ηs · (1− κ(x;ω)) + (µ1ηw + (1− µ1)ηa)κ(x;ω)

= ηs + (−ηs + µ1ηw + (1− µ1)ηa)κ(x;ω).
(6.41)

We denote the scaled dominant convection direction by ~ν(µ2) = µ2√
2

(
1
1

)
, where µ2 ∈

[0.2, 1.0]. Finally, we introduce a random zero mean Neumann outlet condition
γ(ω) at one part of the boundary. For µ := (µ1, µ2) ∈ P := [0.05, 1.00]×[0.20, 1.00],
the PDE reads as follows: for given (µ, ω) ∈ P × Ω, find u(µ, ω) such that





−∇ ·
(
η(µ1, ω) ∇u(µ, ω)

)
+ ~ν(µ2) · ∇uu = 0 in D,

u(µ, ω) = 0 on ΓD,

n ·
(
η(µ1, ω) ∇u(µ, ω)

)
= 0 on ΓN,

n ·
(
η(µ1, ω) ∇u(µ, ω)

)
= γ(ω) on Γout.

(6.42)

In the weak form, this leads to the trilinear form a1(w, z, v;µ) =
∫
D
~ν(µ2) ·∇w z v,

the bilinear form a0(w, v;µ, ω) =
∫
D
η(µ1, ω)∇w∇v, and the linear form f(v;ω) =
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(a) Eigenvalues of the KL expansion of κ̃ and
KL truncation values Kκ=40, Kκ
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(b) Eigenvalues of the KL expansion of g̃ and
KL truncation values Kγ =13, Kγ
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detail =18.

Figure 6.1: Eigenvalues and truncation values of the Karhunen–Loève expansions.

∫
Γout

γ(ω)v. We define θ1(µ) := ηs and θ2(µ) := −ηs + µ1ηw + (1 − µ1)ηa using
(6.41), as well as θ3(µ) := µ2, and θ4(µ) := 1. Hence, the affine decompositions
with respect to µ of a0, a1 and f are given by

a0(w, v;µ, ω) = θ1(µ)

∫

D

∇w∇v + θ2(µ)

∫

D

κ(ω)∇w∇v,

a1(w, z, v;µ) = θ3(µ)

∫

D

1√
2

(
1

1

)
· ∇w z v,

f(v;ω) = θ4(µ)

∫

Γout

γ(ω) v.

As for the numerical example in Chapter 5, let κ̄(x) denote the mean of the
porosity κ(x; ·) and κ̃(x;ω) := κ(x;ω)−κ̄(x) its stochastic part with zero mean and
the KL expansion κ̃(x;ω) =

∑Kκ,max

k=1 ξκk (ω)κk(x), where κ̄(x) ≡ 0.62 is supposed to
be constant in space. We use the same model for κ̃ as in the numerical example
of Chapter 5. Four random realizations and the first four KL modes of κ̃ have
already been provided in Figure 5.1 and 5.2, respectively. Analogously, we have
the KL expansion for the zero mean outlet given by γ(x;ω) =

∑Kγ,max

k=1 ξγk (ω)γk(x),
where γ is again adopted from Chapter 5. Four random realizations and the first
four KL modes of γ have been provided in Figure 5.3 and 5.4, respectively. The
KL eigenvalues of κ̃ and γ are plotted in Figure 6.1. For the detailed solution, we
use Kκ

detail = 78 terms to specify κ̃ and Kγ
detail = 18 terms to specify γ. In the

reduced setting, Kκ = 40 and Kγ = 13 terms are used, respectively. The error is
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Figure 6.2: Greedy error decay

measured using Kκ
max = 55 and Kγ

max = 15, respectively, such that the additional
truncation error is negligible compared to the given error tolerance. In total, the
affine decomposition of g with respect to µ and ω consists of 3+Kκ

detail+K
γ
detail = 99

terms, the affine decomposition of dg of 2+Kκ
detail = 80 terms, and the respective

truncated forms of 3+Kκ+Kγ = 44 and 2+Kκ = 32.

The output of interest is assumed to be the average concentration at the “out-
put” boundary Γout, i.e., for `(v) =

∫
Γout

v, we define the output s(µ, ω) :=

`(u(µ, ω)). Furthermore, we are interested in its mean, second moment and vari-
ance.

For the detailed solution, we use a finite element space X ⊂ {v ∈ H1(D) | v =

0 on ΓD} with linear Lagrange elements and N = 3191 degrees of freedom. For
the corresponding H1-norm ‖ · ‖X , we evaluate the Sobolev embedding constant
ρX = supv∈X ‖v‖4/‖v‖X as described in Section 6.4.1 and obtain ρx = 0.60077.

For the basis construction, we use a greedy algorithm such that X̃(2)
N = X̃

(3)
N .

Figure 6.2(a) shows the decay of the maximal RB error bounds of the primal and
dual solutions u and p(1) as well as the difference of the additional dual solutions
p(2)−p(3). For (N, Ñ (1), Ñ (2)) = (28, 7, 28), the error bounds of the desired outputs
fall below the given tolerance tol = 10−3 for all (µ, ω) in the training sample. The
decay of the output error bounds is provided in Figure 6.2(b), omitting the δKL-
parts that do not decrease in N and are therefore ignored in the greedy procedure.
We simultaneously created XN and X̃(2)

N that are used for the reduced solution of
s2 and V, assuming that Ñ (1) is already large enough such that the terms (∆s)2
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average error bound factor

simple 5.193 · 10−3 55.85 ·∆V

sophisticated 9.366 · 10−4 10.07 ·∆V

∆V 9.299 · 10−5 1.000 ·∆V

Table 6.1: Comparison of different variance error bounds for a test set of 256

parameters, using 10.000 random samples for each parameter.

and (∆M1)2 in the respective error bounds ∆s2 and ∆V are sufficiently small. For
N ≥ 15 primal basis functions, we obtained τ < 1 for all (µ, ω) in the training set.
Then, we created X̃

(1)
N such that ∆s and ∆M1 indeed become sufficiently small.

Since N was already large, only a small number of Ñ (1) = 7 basis functions were
needed.

To compare detailed and reduced solutions, we used a 3.06 GHz Intel Core 2
Duo processor, 4 GB RAM. We used MATLAB 7.9.0 (R2012a) to run reduced
simulations and MATLAB 7.9.0 with the link to Comsol 3.5a for the detailed
computations. For the (rather small) detailed system with N = 3.191, we already
achieved a speedup factor of about 26 from full to reduced simulations, where in
the reduced case, the evaluations of all error bounds are included. Tests with finer
meshes and hence larger N for the full solutions showed that the desired error
tolerance can still be reached with the same numbers of basis functions. E.g., for
N = 12.555 and (N, Ñ (1), Ñ (2)) = (28, 7, 28), the speedup factor was about 78.

In Table 6.1, we compare the presented method to evaluate variances VNK and
the error bound ∆V with two alternative procedures. Neither of the two needs
additional dual problems. The simplest method just uses the estimations

|s2 − (sN,K)2| = |(s− sN,K)(s+ sN,K)| ≤ ∆s(∆s + 2|sN,K |)

and analogously |M2
1− (M1,NK)2| ≤ ∆M1(∆M1 + 2|M1,NK |). For the more sophisti-

cated method, we refer to [12] or Appendix A. Both methods already use the good
approximations and bounds for s(µ, ω) and M1(µ) from Section 6.3.4. We see
that our variance evaluation and the error bounds produce much sharper results.
Compared to the “simple” method, the bound is about 56 times smaller, compared
to the “sophisticated” method, it still is more than 10 times smaller. The costs, on
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the other hand, increase only moderately. The evaluation of the additional dual
problem (6.22) corresponds to just one Newton iteration of the primal problem.



Chapter 7

Application of the RBM to PDEs on

Stochastic Domains

For the quality of the solution of a given PDE, it is essential to adequately model
the underlying domain. In many cases, however, the description of the domain is
obtained by imperfect or defective measurements, e.g., by scanning or X-raying.
Further digital image processing to detect the boundaries may yield further errors
(cf., e.g., [5, 68], [100, Ch. 5]). Also, deviations from the description of a domain to
the mechanical implementation can play an important role, e.g., in very sensitive
aerodynamic systems. Hence, it may be of interest to investigate how perturba-
tions of the boundary affect the solution of the PDE, also to define tolerances
for the actual production process of mechanical systems. Furthermore, for some
applications, the boundary of a domain is directly modeled using stochastic pa-
rameters. E.g., in bone fracture healing simulations, the shape of the bones could
be modeled stochastically [81, 99]. The stochastic description of the bones could
be obtained using sample data and the method of snapshots (cf. Section 2.2).

Besides straightforward but expensive Monte Carlo procedures, several tech-
niques to solve PDEs on stochastic domains have been developed. E.g., in [17], a
“fictitious domain” is used that encloses the the stochastic domain. The PDE is
solved on the larger domain and the boundary conditions of the stochastic domain
are modeled using Lagrange multipliers. This yields a saddle-point formulation,
where the stiffness matrix is independent of the stochasticity. A different approach
has been introduced for example in [49, 50]. The variation of the random bound-
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ary, compared to its known mean, is assumed to be small. For a given two-point
correlation function, deterministic formulations for mean, variance, and correlation
functions of the solution and output functionals, respectively, are derived, using
“second order shape calculus”.

In this chapter, we follow an ansatz that has already been used for both stochas-
tic boundaries [84, 104] and also for parametric domains [63, 87], in the latter ref-
erences already in the context of RBMs. The random and/or parametric domain is
projected to a fixed and deterministic reference domain, using a bijective mapping.
Then, the weak formulation of the PDE on the original domain is transformed to
the reference domain using the change of variables formula, i.e., the spatial vari-
able is substituted by the mapping from the reference domain. The stochasticity
and/or parametric dependencies are thereby shifted into the coefficients of the
PDE. For the detailed solution, Monte Carlo approaches or stochastic Galerkin
methods can now be employed as described in Chapter 2.

The chapter is organized as follows. In Section 7.1, we provide an exemplary
PDE to explain the projection of a boundary value problem to a reference domain
and to introduce the requirements for the domain mapping function. Two differ-
ent procedures to construct such bijective mappings for parametric and stochastic
boundaries are introduced in Section 7.2, the Laplace equation based mapping
[85, 104] and the transfinite element mapping [36, 37]. In Section 7.3, we discuss
the problem of preserving of affine decompositions from the original to the mapped
weak formulation. For the special case of stochastic but non-parametric domains,
we show in Section 7.4 how the RBMs from Chapter 5 and 6 can be applied. For
stochastic and parametric domains, alternative RBM procedures and their require-
ments are briefly described in Section 7.5. In Section 7.6, we provide numerical
examples for both cases. We demonstrate that we can also use the IPMs from
Chapter 4 to decrease the online costs for both non-parametric and parametric,
stochastic boundaries.

7.1 Preliminaries

We start with the formulation of the exemplary problem that will be used through-
out the whole chapter. For now, we do not specify any parametric or stochastic
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dependence of the domain or any other quantity.

7.1.1 Model Problem

Let D̃ ⊂ Rd, d ∈ N, be an arbitrary bounded spatial domain. In the context of
stochastic and parametric domains, D̃ can be seen as a random realization for a
given parameter. However, for the moment, we do not explicitly indicate such
a dependence. Let ã and g̃ ∈ L2(D̃) be real valued, bounded functions on D̃

and b̃, c̃ : D̃ → Rd functions in (L2(D̃))d, where each component is bounded as
well. Furthermore, let ∂D̃ denote the boundary of D̃ with the boundary segments
Γ̃D and Γ̃N, Γ̃D ∪ Γ̃N = ∂D̃, Γ̃D ∩ Γ̃N = ∅. We define the real valued function
h̃ ∈ L2(Γ̃N) on the segment Γ̃N to describe a Neumann boundary outlet condition
of the following quadratically nonlinear, stationary PDE,




−∇ ·
(
ã(x̃)∇ũ(x̃)

)
+ b̃(x̃) · ∇ũ(x̃) + c̃(x̃) · ∇ũ(x̃)ũ(x̃) = g̃(x̃), x̃ ∈ D̃,

ũ(x̃) = 0, x̃ ∈ Γ̃D,

ñ(x̃) ·
(
(ã(x̃) ∇ũ(x̃)

)
= h̃(x̃), x̃ ∈ Γ̃N,

(7.1)

where ñ(x̃) denotes the outward normal on Γ̃N. For some appropriate Hilbert space
X̃ = X(D̃) ⊂ H1(D̃), accounting also for the boundary conditions, the weak form
of (7.1) can be formulated in the following way: find ũ ∈ X̃ such that

ã0(ũ, ṽ) + ã1(ũ, ũ, ṽ) = f̃(ṽ), ṽ ∈ X̃, (7.2)

where, for ũ, w̃, ṽ ∈ X̃, we used

ã0(ũ, ṽ) :=

∫

D̃

ã(x̃)∇ũ(x̃) · ∇ṽ(x̃)dx̃+

∫

D̃

b̃(x̃) · ∇ũ(x̃)ṽ(x̃)dx̃,

ã1(ũ, w̃, ṽ) :=

∫

D̃

c̃(x̃) · ∇ũ(x̃)w̃(x̃)ṽ(x̃)dx̃,

f̃(ṽ) :=

∫

D̃

g̃(x̃)ṽ(x̃)dx̃+

∫

Γ̃N

h̃(x̃)ṽ(x̃)dx̃.

7.1.2 Projection to a Reference Domain

We now show how the problem can be projected to an appropriate reference domain
D ⊂ Rd with Lipschitz boundary. Let T : D → D̃ be a diffeomorphism, i.e.,
a bijective and continuously differentiable mapping, where the inverse function
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T−1 : D̃ → D is also continuously differentiable. We denote the Jacobian matrix
of T by JT : D → Rd×d,

JT (x) =




∂T1
∂x1

· · · ∂T1
∂xd... . . . ...

∂Td
∂x1

· · · ∂Td
∂xd


(x),

where Ti, i ∈ {1, . . . , d}, denotes the i-th component of the mapping T . Fur-
thermore, the determinant of the Jacobian matrix is denoted by det JT (x) and is
called Jacobian determinant. In literature, det JT (x) is also just referred to as the
Jacobian. However, to avoid confusions, we keep using the full expression. We can
bijectively extend T on the boundary of D, i.e., we have ∂D̃ = T (∂D), and we
define the boundary segments ΓD := T−1(Γ̃D) and ΓN := T−1(Γ̃N).

Let us proceed with the transformation of the coefficient functions of the PDE.
For any c ∈ {a, b, c, g, h}, we define c(x) := c̃(T (x)). Since T is a diffeomorphism,
we can assume that the characteristics of the transformed coefficients are preserved,
e.g., for c̃ ∈ L2(D̃), we assume that c ∈ L2(D). Furthermore, for parametric and/or
stochastic coefficients that allow for an affine decomposition, the affinity is also
maintained. However, the orthogonality, if given, of the spatial terms in the affine
decomposition is not preserved.

For any function ũ ∈ {ũ, w̃, ṽ}, ũ ∈ X̃ = X(D̃), we define u = ũ(T (x)) anal-
ogously to the coefficient functions of the PDE. Again, it is clear that u ∈ X :=

X(D) ⊂ H1(D) since T is a diffeomorphism. Suppose higher derivatives of order
r ∈ N would be necessary for the PDE in weak form, we would have to require T
to be a Cr-diffeomorphism to guarantee that the regularity of ũ ∈ X̃ is preserved
by the transformation. In other words, T and T−1 would be required to be r times
continuously differentiable.

Let now ∇x̃ denote the gradient with respect to the spatial variable x̃ ∈ D̃ ⊂ Rd

on the original domain, and let ∇x denote the gradient with respect to the spatial
variable x ∈ D on the reference domain. Using the chain rule, the gradient of
u ∈ X is given by

∇xu(x) = ∇xũ(T (x)) =

(
d∑

j=1

∂Tj
∂xi

(x)
∂ũ

∂x̃j

(
T (x)

)
)

i=1,...,d
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=




∂T1
∂x1

· · · ∂Td
∂x1

... . . . ...
∂T1
∂xd

· · · ∂Td
∂xd


(x)




∂ũ
∂x̃1
...
∂ũ
∂x̃d



(
T (x)

)

= JTT (x)∇x̃ũ(T (x)),

where JTT (x) denotes the transposed Jacobian matrix of the mapping T . Since T
is bijective, JT (x) is a regular matrix for all x ∈ D and we obtain

∇x̃ũ(T (x)) = J−TT (x)∇xu(x),

where J−TT (x) denotes the transposed inverse Jacobian matrix of the mapping T .
Now, we can map the weak formulation of the PDE into the reference domain.
Using integration by substitution, i.e., integration by substitution, we obtain
∫

D̃

ã(x̃)∇x̃ũ(x̃) · ∇x̃ṽ(x̃)dx̃ =

∫

D

ã(T (x))∇x̃ũ(T (x)) · ∇x̃ṽ(T (x))|det JT (x)|dx

=

∫

D

((
|det JT |J−1

T J−TT
)
(x) a(x)∇xu(x)

)
· ∇xv(x)dx.

Analogously, we get
∫

D̃

b̃(x̃) · ∇x̃ũ(x̃)ṽ(x̃)dx̃ =

∫

D

((
|det JT |J−1

T

)
(x) b(x)

)
· ∇xu(x) v(x)dx,

∫

D̃

c̃(x̃) · ∇x̃ũ(x̃)ũ(x̃)ṽ(x̃)dx̃ =

∫

D

((
|det JT |J−1

T

)
(x) b(x)

)
· ∇xu(x)u(x) v(x)dx,

∫

D̃

g̃(x̃)ṽ(x̃)dx̃ =

∫

D

|det JT (x)|g(x)v(x)dx.

Since T is assumed to be bijectively extendable on the boundary of D, we can also
transform the boundary integral

∫

Γ̃N

h̃(x̃)ṽ(x̃)dx̃ =

∫

ΓN

|det JT (x)|h(x)v(x)dx.

In order to abbreviate the notation, we define

aT (x) := |det JT (x)|J−1
T (x)J−TT (x)a(x) ∈ Rd×d, (7.3a)

bT (x) := |det JT (x)|J−1
T (x)b(x) ∈ Rd, (7.3b)

cT (x) := |det JT (x)|J−1
T (x)c(x) ∈ Rd, (7.3c)

gT (x) := |det JT (x)|g(x) ∈ R, (7.3d)

hT (x) := |det JT (x)|h(x) ∈ R, (7.3e)
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and obtain the transformed forms

a0(u, v) :=

∫

D

aT (x)∇xu(x) · ∇xv(x)dx+

∫

D

bT (x) · ∇xu(x)v(x)dx, (7.4a)

a1(u,w, v) :=

∫

D

cT (x) · ∇xu(x)w(x)v(x)dx, (7.4b)

f(v) :=

∫

D

gT (x)v(x)dx+

∫

ΓN

hT (x)v(x)dx. (7.4c)

Hence, problem (7.2), projected on the reference domain D, reads: find u ∈ X

such that
a0(u, v) + a1(u, u, v) = f(v), v ∈ X. (7.5)

7.2 Construction of the Domain Mapping

Let P ⊂ RP be a set of deterministic parameters and (Ω,A,P) a probability space.
In this section, we briefly describe two methods to construct bijective mappings
T : D → D̃ for parametric and stochastic domains D̃ = D̃(µ, ω), (µ, ω) ∈ P × Ω.
We define the randomness and the parametric dependence of the domain D̃(µ, ω)

by its boundary ∂D̃(µ, ω). We assume the existence of a random parametrized
function ρ : ∂D × P × Ω 7→ Rd on the boundary of the reference domain D such
that ρ(∂D;µ, ω) = ∂D̃(µ, ω). Furthermore, we assume that ρ is already affine in
the deterministic parameter, i.e,

ρ(x;µ, ω) =

Q∑

q=1

θq(µ)
[
ρq,0(x) + ρq(x;ω)

]
, (7.6)

where ρq,0 denote the expectations of the terms in brackets and ρq(·;ω) the respec-
tive fluctuating parts. Hence, the mean of ρ(x;µ, ·), denoted by E[ρ(∂D;µ, ·)] =
∑Q

q=1 θq(µ)ρq,0(x), defines the expected boundary of D̃(µ; ·), i.e.,

E
[
∂D̃(µ, ·)

]
= E [ρ(∂D;µ, ·)] .

For non-parametric stochastic domains, the natural choice of the reference do-
main D would be the expectation of D̃(·), i.e., E[ρ(x; ·)] = x. In the parametric,
stochastic case, the expectation for a certain parameter µ̄ ∈ P may be appropriate.
However, for many application, it is also desirable to select a reference domain that
is as simple as possible, e.g., squares, cubes, or hypercubes.
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For each term ρq(x;ω) in (7.6), we assume the existence of a Karhunen–Loève
expansion. Hence, ρ is given by

ρ(x;µ, ω) =

Q∑

q=1

θq(µ)


ρq,0(x) +

Kdetail
q∑

k=1

ξq,k(ω)ρq,k(x)


 , (7.7)

where the KL sum has already been truncated at the values Kdetail
q , q = 1, . . . , Q,

that are sufficiently large to adequately represent the boundary for the detailed
simulations.

7.2.1 Laplace Equation Based Mapping

In this section, we construct a mapping based upon solutions of the Laplace equa-
tion. We follow the description of [104]. More details can be found in [85]. For
each affine term ρq,k, q = 1, . . . , Q, k = 0, . . . , Kdetail

q , of (7.7), we solve a linear
boundary value problem on the reference domain, where the boundary conditions
are given by ρq,k, i.e.,

∆Tq,k(x) = 0, x ∈ D,
Tq,k(x) = ρq,k(x), x ∈ ∂D,

(7.8)

In fact, the boundary value problem (7.8) is solved component wise, i.e., we have
to solve the number of Q(Kdetail + 1)d PDEs, where the dependence of Kdetail on q
has been omitted for notational convenience. However, the operator of the system
does not change for the different boundary conditions. Hence, the solutions of
(7.8) can be evaluated very efficiently. Furthermore, it is not necessary to use
the same fine grid as for the detailed solutions. The only requirement is that
the boundary of the reference domain is sufficiently well discretized such that the
boundary conditions for all affine terms of (7.7), i.e., for all random and parameter
samples, can be approximated adequately.

Due to the linearity of (7.8), we obtain affine decompositions of both T and JT ,

T (x;µ, ω) =

Q∑

q=1

θq(µ)


Tq,0(x) +

Kdetail
q∑

k=0

ξq,k(ω)Tq,k(x)


 , (7.9)

JT (x;µ, ω) =

Q∑

q=1

θq(µ)


JT q,0(x) +

Kdetail
q∑

k=0

ξq,k(ω)JT q,k(x)


 , (7.10)



166 7. Application of the RBM to PDEs on Stochastic Domains

where JT q,k(x) denotes the Jacobian matrix of Tq,k(x). Even though (7.9) is of the
same form as (7.7) and we still have E[ξq,k] = 0, the sums over k do not specify KL
decompositions. As opposed to the terms ρq,k, k ≥ 1, we do not have orthogonality
of the functions Tq,k, k ≥ 1. Certainly, the correlation matrices of the terms in
brackets can be easily evaluated and a new KL expansion of the respective terms
of T can be obtained (cf. Section 2.2). However, as we can see in (7.3), also affine
decompositions for more complicated terms are necessary. We will go into more
details in Sections 7.4 and 7.5.

Using the weak form of (7.8), it is clear that the mapping components Tq,k are
differentiable. However, there is no guarantee that T is a diffeomorphism, i.e., that
T is invertible. Often, this is only the case for small perturbations of the random
and/or parametric boundary. Nevertheless, it is possible to verify that the inverse
mapping exists a posteriori, using the Jacobian determinant. It is sufficient that
|det JT (x)| 6= 0 for all x ∈ D. Since T is assumed to be continuously differentiable,
this means that no change of the sign ofdet JT (x) is permitted on D.

Figures 7.1(a) and 7.1(b) show the result of the Laplace equation based map-
ping for D = [0, 1]2 and two different deformations similar to [36, Fig. 8(a)]. The
distortions of the upper and right boundary are given by sine functions with dif-
ferent amplitudes, respectively. It can be seen that the mapping is suitable for
the small deformation, whereas the large deformations yields a degenerated result.
This can also be confirmed by the sign of the respective Jacobian determinants of
JT , provided in Figures 7.1(c) and 7.1(d). Green color indicates a positive sign and
black color a negative sign. Since the sign in Figure 7.1(c) is constantly positive,
the mapping from Figure 7.1(a) is invertible. Conversely, the mapping from Figure
7.1(b) is not bijective since the sign of det JT changes on D. Since T is continu-
ously differentiable,det JT = 0 on the border between the green an the black area
of Figure 7.1(d).

An advantage of the Laplace equation based mapping is its flexibility with
respect to the reference domain that admits arbitrary shapes. Furthermore, it is
easily possible to divide the domain into several parts and to solve (7.8) separately
on each subdomain. Certainly, the boundary conditions have to be chosen such
that the mapping matches on the inner boundaries. In this way, it is possible to
enforce values of the mapping in the inner parts of the domain. However, it is not
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(a) Mapping T for a small deformation.
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(b) Mapping T for a large deformation.
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(c) Sign of the Jacobian determinantdet JT

for the mapping in Figure 7.1(a).
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(d) Sign of the Jacobian determinant det JT

for the mapping in Figure 7.1(b).

Figure 7.1: Two Laplace equation based mapping results for D = [0, 1]2.

clear if the mapping is still differentiable at the intersections of the subdomains.

In the next section, a method is introduced that generates such mappings, i.e.,
it is possible to enforce the mapping T to take certain values at the inner parts,
still keeping the differentiability.

7.2.2 Transfinite Element Mapping

The subsequent domain mapping has been introduced in the publications of Gor-
don and Hall [36, 37]. Let D̃(µ, ω) be a parametrized and stochastic domain in
Rd. In [36, 37], only the cases d ∈ {2, 3}, are considered. Here, we additionally
provide the formulation of the mapping for arbitrary dimensions d ∈ N.

The transfinite element mapping is again based upon the availability of a bound-
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ary mapping function ρ : ∂D×P ×Ω→ Rd such that ρ(∂D;µ, ω) = ∂D̃(µ, ω). It
is assumed that the reference domain is given by the unit hypercube of dimension
d, i.e., D = [0, 1]d. The parametrically stochastic mapping T (µ, ω) : D → D̃(µ, ω)

is constructed such that T (∂D;µ, ω) = ρ(·;µ, ω). Furthermore, additional hyper-
planes can be defined, called “constant generalized coordinates” [36], where T is
required to take specific predetermined values. The hyperplanes, i.e., lines for
d = 2 or planes for d = 3, are orthogonal to the coordinate axes. The values
of the mapping on the hyperplanes may depend on the current realization of the
boundary ρ(µ, ω), (µ, ω) ∈ P × Ω.

If a given random and parametrized domain can be decomposed into several
parts with different properties, e.g., material properties, it is then possible to use
this method to fix the boundaries between these different parts at a constant
location in the reference domain. On the other hand, the method can be useful for
the construction of bijective mappings on complicated domains, where a one-to-one
correspondence is hard to achieve.

Let us now introduce the ingredients of the transfinite element mapping. We
start with the mathematical description of the constant generalized coordinates.
Next, we define so-called blending functions that are used to define d projectors
Pq, q = 1, . . . , d, that propagate the deformation of the boundary segments and
generalized coordinates along the xq-axis. Finally, the mapping is constructed as
a combination of these projectors.

Constant Generalized Coordinates. We denote a constant generalized coor-
dinate, i.e., the hyperplane orthogonal to a specific coordinate axes, by the inter-
section point with the corresponding coordinate axis. E.g., for a two-dimensional
domain, a line parallel to the x2-axis and through the point (x̄1, 0), given by the
set {x = (x1, x2) ∈ D |x1 = x̄1}, is just denoted by x̄1. We partition the xq-axis
with points x̄(i)

q , i = 1, . . . , Iq − 1, Iq ∈ N, such that

0 < x̄(1)
q < . . . < x̄(Iq−1)

q < 1,

and obtain Iq−1 generalized coordinate lines orthogonal to the xq-axis, additional
to the two boundary segments x̄(0)

q = 0 and x̄(Iq)
q = 1.

In the following, we assume the knowledge of the boundary mapping function
ρ(x;µ, ω) not only on the boundary of D but also on the generalized coordinates.
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We require that T coincides with ρ on all generalized coordinates, i.e., for all points
on a general coordinate line x̄(i)

q , we require

T (x1, . . . , x̄
(i)
q , . . . , xd;µ, ω) = ρ(x1, . . . , x̄

(i)
q , . . . , xd;µ, ω)

for all i = 0, . . . , Iq, q = 1, . . . , d. For I1 = . . . = Id = 1, we would obtain the usual
condition that ρ coincides with T just on the boundary of the reference domain,
T (∂D;µ, ω) = ρ(·;µ, ω).

In most practical applications, the values of ρ on the additional hyperplanes
depend only on few values of ρ on the boundary of D. The determination of the
location of the hyperplanes and the values of the mapping clearly depends on the
current problem and the desired properties of the mapping. Thus, we do not go
into more detail about good choices of x̄(i)

q at this step. For more information, see
[36] and the examples below.

Blending Functions. To interpolate between the generalized coordinates, we
define so-called blending functions. For each coordinate direction xq, q = 1, . . . , d,
and for each boundary segment or constant generalized coordinate x̄(i)

q , i = 0, . . . , Iq,
we define an interpolating function ϕ(i)

q : R→ R as a function in xq. The functions
ϕ

(i)
q take the value one at the respective generalized coordinate x̄iq and zero at the

other generalized coordinates orthogonal to the xq-axis. In other words,

ϕ(i)
q (x̄(j)

q ) = δij, i, j = 0, . . . , Iq, q = 1, . . . , d.

The blending functions are independent of µ and ω, i.e., of the current realiza-
tion of the boundary. We can use for example the simple Lagrange polynomial
interpolation of the form

ϕ(i)
q (xq) =

∏

j 6=i

(
xq − x̄(j)

q

)/∏

j 6=i

(
x̄(i)
q − x̄(j)

q

)
. (7.11)

However, to avoid an oscillating behavior of the blending functions that would
later be carried over to the mapping, spline interpolations may be preferable for
the construction of the interpolation.

Projector Definition. We use the blending functions to define projectors Pq[ρ]

for each coordinate direction xq, q = 1, . . . , d. For notational clarity, we omit the
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(a) P1[ρ](x)
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(b) P2[ρ](x)

Figure 7.2: Projectors P1[ρ](x) and P2[ρ](x) for the example from Figure 7.1(b).

dependence of the projectors on the parameters µ and the random events ω which
is implicitly carried by the boundary mapping ρ. For x = (x1, . . . , xd)

T ∈ D, the
projector Pq[ρ] : D → Rd is given by

Pq[ρ](x) :=

Iq∑

i=0

ρ(x1, . . . , x̄
(i)
q , . . . , xd) ϕ

(i)
q (xq), q = 1, .., d. (7.12)

It coincides with ρ on the constant generalized coordinates x(i)
q , i = 0, .., Iq. Fur-

thermore, the behavior of ρ on the constant generalized coordinates is interpolated
in xq-direction using the corresponding blending functions ϕ(i)

q , i = 0, . . . , Iq.
Let us consider again the example boundary mapping from Figure 7.1(b). Using

no additional generalized coordinates but only the boundary mapping ρ : ∂D →
R2, Figure 7.2 shows the values of the projectors P1 and P2. The blending functions
are simply linear interpolation functions, i.e., ϕ(1)

q = 1− xq, ϕ(2)
q = xq, q = 1, 2.

Mapping. Certainly, an appropriate mapping can not be constructed by just
adding the different Projectors. For the assembling of the mapping, we define
products and boolean sums of projectors. Denote the product of operators by
PqPp[ρ] = Pq[Pp[ρ]]. In other words, we obtain

PpPq[ρ](x) =

Ip∑

i=0

Iq∑

j=0

ρ(x1, . . . , x̄
(i)
p , . . . , x̄

(j)
q , . . . , xd) ϕ

(i)
p (xp)ϕ

(j)
q (xq).

Using the definition of the projector in (7.12), it is straightforward to show that
PpPq[ρ](x∗) = Pq(x

∗) for x∗ ∈ D with x∗p = x̄
(m)
p . Then, the product of the k ≤ d
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projectors Pqn , n = 1, . . . , k, is given by
(

k∏

n=1

Pqn

)
[ρ](x) :=

Iq1∑

iq1=1

. . .

Iqk∑

iqk=1

(
ρ(x)

∣∣∣
m=1,...,k

xqm=x̄
(iqm )
qm

k∏

n=1

ϕ(iqn )
q (xqn)

)
(7.13)

and it is clear that (7.13) coincides with ρ on all intersection points of the cor-
responding generalized coordinates, i.e., for x0 ∈ {x ∈ D |xqn = x̄

(iqn )
qn , n =

1, . . . , k, iqn ∈ {0, . . . , Iqn}}, we have (
∏k

n=1 Pqn)[ρ](x0) = ρ(x0).
Considering the product of all projectors Pq, q = 1, . . . , d, the result coincides

with ρ at the (I1+1)·. . .·(Id+1) points (x̄
(i1)
1 , . . . , x̄

(id)
d )T . Between these points, ρ is

interpolated using the product of d blending functions. For the example provided
in Figure 7.2, this means that P1P2[ρ] coincides with ρ at the four corners of D. In
between, we linearly interpolate. Hence, we obtain P1P2[ρ](x) = x for all x ∈ D.

Next, we define the “boolean sum” of two projectors Pi and Pj by

(Pp ⊕ Pq)[ρ](x) := (Pp + Pq) [ρ](x)− (PpPq)[ρ](x).

The boolean sum coincides with ρ on all generalized coordinates
Since PpPq[ρ](x∗) = Pq(x

∗) for x∗ ∈ D with x∗p = x̄
(m)
p , (Pp⊕Pq)[ρ] coincides with

ρ on all generalized coordinates x̄(i)
p , i = 1, . . . , Ip, and x̄

(j)
q , j = 1, . . . , Iq. For the

proof, we consider an arbitrary point x∗ ∈ D such that x∗p = x̄
(m)
p . From above, we

know that PpPq[ρ](x∗) = Pq(x
∗) which leads to (Pp⊕Pq)[ρ](x∗) = Pp[ρ](x∗) = ρ(x∗)

by definition of Pp.
Hence, the following boolean sum of all d operators coincides with ρ on all

constant generalized coordinates and therefore defines the mapping T :

T (x) :=

(
d⊕

q=1

Pq

)
[ρ](x) :=

d∑

k=1

(−1)k+1

( ∑

1≤q1<...<qk≤d

k∏

n=1

Pqn

)
[ρ](x).

In two dimensions, i.e., for d=2, this formula reduces to

(P1 ⊕ P2) [ρ](x) = (P1 + P2) [ρ](x)− (P1P2) [ρ](x)

=

I1∑

i=0

ρ(x̄
(i)
1 , x2) ϕ

(i)
1 (x1) +

I2∑

j=0

ρ(x1, x̄
(j)
2 ) ϕ

(j)
2 (x2)

−
I1∑

i=0

I2∑

j=0

ρ(x̄
(i)
1 , x̄

(j)
2 ) ϕ

(i)
1 (x1)ϕ

(j)
2 (x2).
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(a) No additional generalized coordinates.
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(b) One additional generalized coordinate
x̄
(1)
1 = 0.5.

Figure 7.3: Two transfinite element mapping results for the example from Figure
7.1(b).

For d=3, we have

P1 ⊕ P2 ⊕ P3 := (P1 + P2 + P3)− (P1P2 + P1P3 + P2P3) + (P1P2P3) .

Due to the availability of an affine decomposition of ρ at the boundary ∂D as pro-
vided in (7.7) with O(QKdetail) terms, it can be assumed that ρ is also affine with
respect to the parameter pair (µ, ω) ∈ P × Ω on the additional generalized coor-
dinates. Then, it is clear that T can be decomposed accordingly with O(QKdetail)

terms. We define Tq,k(x) := (
⊕d

q=1 Pq)[ρq,k](x) and obtain the same form of T as
provided in (7.9) for the Laplace based mapping.

In Figure 7.3(a), we provide the mapping result for the example from Figure
7.1(b), using no additional generalized coordinate and the projectors as illustrated
in Figure 7.2 with linear blending functions. Obviously, the mapping is not invert-
ible.

For Figure 7.3(b), we use the additional generalized coordinate x̄(1)
1 = 0.5 and

ρ(x̄
(1)
1 , x2) = (x̄

(1)
1 , 0.1 · x2)T , where 0.9 is the maximal deviation of the upper

boundary of D. For the definition of the blending functions, we used the Lagrange
interpolation (7.11) such that ϕ(i)

1 , i = 0, 1, 2, are quadratic and ϕ
(i)
2 , i = 0, 1,

linear functions. The quadratic effect can be directly seen in the propagation
of the deformation of the right boundary in x1-direction. To reduce the strong
deviations in x1 direction on the left-hand side of x̄(1)

1 = 0.5, it would be possible
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to use splines instead of Lagrange interpolation.

Computation of the Jacobian Matrix. It is clear that the Jacobian matrix of
the mapping T can analogously be expressed as it has been provided in (7.10) for
the Laplace based mapping, where JT q,k = (

∂Tq,k
∂x1
· · · ∂Tq,k

∂xd
), where each component

is a d-dimensional vector. We exemplarily construct JT q,k for d = 2. Given
the blending functions and their derivatives, we can easily evaluate JT q,k — and
therefore JT (µ, ω) for each random parameter pair (µ, ω) ∈ P × Ω — using just
values of ρq,k and of its derivative at the constant generalized coordinates x̄(i)

p ,
p = 1, . . . , d. We obtain

∂Tq,k
∂x1

(x) =

I1∑

i=0

ρq,k(x̄
(i)
1 , x2)

∂ϕ
(i)
1

∂x1

(x1) +

I2∑

j=0

∂ρq,k
∂x1

(x1, x̄
(j)
2 ) ϕ

(j)
2 (x2)

−
I1∑

i=0

I2∑

j=0

ρq,k(x̄
(i)
1 , x̄

(j)
2 )

∂ϕ
(i)
1

∂x1

(x1)ϕ
(j)
2 (x2),

∂Tq,k
∂x2

(x) =

I1∑

i=0

∂ρq,k
∂x2

(x̄
(i)
1 , x2) ϕ

(i)
1 (x1) +

I2∑

j=0

ρq,k(x1, x̄
(j)
2 )

∂ϕ
(j)
2

∂x2

(x2)

−
I1∑

i=0

I2∑

j=0

ρq,k(x̄
(i)
1 , x̄

(j)
2 ) ϕ

(i)
1 (x1)

∂ϕ
(j)
2

∂x2

(x2).

For d = 3, the computation works analogously. Since T allows for an affine de-
composition with O(QKdetail) terms, JT can be decomposed analogously.

7.3 Affine Decomposition of the Transformed Prob-

lem

Let us consider the coefficient functions in (7.3) which are now dependent on pa-
rameters µ ∈ P and stochastic events ω ∈ Ω. On the one hand, this dependence is
contained in the Jacobian matrix JT and therefore in J−1

T anddet JT . On the other
hand, the transformed coefficients c ∈ {a, b, c, g, h}, c(x;µ, ω) := c̃(T (x;µ, ω);µ, ω),
are implicitly dependent on (µ, ω) via the mapping T and may also carry further
parametric and stochastic influences. In any case, the trilinear, bilinear, and linear
forms in (7.4) are now dependent on (µ, ω) ∈ P ×Ω and affine representations are
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required. In this section, we investigate the affinity with respect to the determin-
istic parameter µ ∈ P .

In the preceding section, we derived affine mappings T based upon affine bound-
ary mappings ρ. We furthermore assume that c̃(µ, ω) is already affine in µ, i.e.,

c̃(x̃;µ, ω) =

Qc∑

q=1

θcq(µ)c̃q(x̃;ω), c̃ ∈ {ã, b̃, c̃, g̃, h̃}, (7.14)

where ω may indicate both the dependence of the coefficient c̃ on the stochastic
domain and possibly further probabilistic dependencies. We now map the coef-
ficients to the reference domain. Considering only the affine decomposition of T
with respect to the deterministic paramater µ, i.e.,

T (x;µ, ω) =

QT∑

p=1

θTp (µ)Tp(x;ω), (7.15)

we define cq,p(x;ω) := c̃q(Tp(x;ω);ω) and obtain

c(x;µ, ω) := c̃(T (x;ω);µ, ω) =

Qc∑

q=1

θcq(µ)c̃q(T (x;µ, ω);ω)

=

Qc∑

q=1

θcq(µ)

QT∑

p=1

θTp (µ)cq,p(x;ω).

(7.16)

Hence, the mapped coefficient functions c ∈ {a, b, c, g, h} are affine with respect to
µ as well with QcQT terms.

The availability of affine decompositions of T , JT , and of the coefficient functions
c ∈ {a, b, c, g, h} is not sufficient for the definition of affine decompositions of the
trilinear, bilinear, and linear forms in (7.4). As we can see in (7.3), also the terms
|det JT |, |det JT |J−1

T , and |det JT |J−1
T J−TT are involved.

Theoretically, the Jacobian determinant can be decomposed with respect to the
deterministic parameter µ using O((QT )d) terms, since, e.g., for d = 2, we have

det JT (x;µ, ω) =

(
∂T1

∂x1

∂T2

∂x2

− ∂T1

∂x2

∂T2

∂x1

)
(x;µ, ω).

Then, the affine decomposition of det JT (x;µ, ω)c(x;µ, ω) would already include
O
(
Qc(QT )(d+1)

)
terms which might be inapplicably large. Furthermore, for d = 2,



7.4. RBM for Stochastic, Non-Parametric Domains 175

we obtain

|det JT (x;µ, ω)| · J−1
T (x;µ, ω) = sign(det JT (x;µ, ω))

(
∂T2
∂x2

−∂T1
∂x2

−∂T2
∂x1

∂T1
∂x1

)
(x;µ, ω)

which is affine with O(QT ) terms since the sign of the Jacobian determinant is
constant. However, for d > 2, we loose this affinity. Furthermore, it is not pos-
sible to directly construct an affine decomposition of the term |det JT (x;µ, ω)| ·
J−1
T (x;µ, ω)J−TT (x;µ, ω).
Summarizing, we can not directly use the affinity of T , JT , and c ∈ {a, b, c, g, h}

to construct affine decompositions of the forms in (7.4). In the following sections,
we will show how the RBM can still be efficiently applied. We will therefore
consider two different cases of the parametric and stochastic dependence of the
domain.

7.4 RBM for Stochastic, Non-Parametric Domains

In this section, we consider domains D̃(ω) ⊂ Rd, ω ∈ Ω, where the deformation
of the boundary is purely stochastic and does not carry any deterministically
parametric dependence. We will show that the coefficients cT , c ∈ {a, b, c, g, h},
allow for affine decompositions with respect to the deterministic parameter µ.
Therefore, the linear, bilinear, and trilinear forms in (7.4) are affine in µ and we
can show that it is possible to apply the theory of the Chapters 5 and 6.

For a given reference domain D ⊂ Rd, we assume the availability of a KL
expansion of the boundary mapping ρ(ω) : ∂D → ∂̃D(ω) and an appropriate
diffeomorphic mapping T (ω) : D → D̃(ω),

ρ(x;ω) = ρ0(x) +
Kdetail∑

k=1

ξk(ω)ρk(x), (7.17)

T (x;ω) = T0(x) +
Kdetail∑

k=1

ξk(ω)Tk(x). (7.18)

We furthermore assume that the possibly parametric and stochastic coefficients
ã, b̃, c̃, g̃, h̃ from (7.1) allow for affine decompositions with respect to a deterministic
parameter µ ∈ P of the form (7.14). Again, ω may indicate both the dependence
on the stochastic domain and possibly further probabilistic dependencies.
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We now map the coefficients to the reference domain. For c ∈ {a, b, c, g, h}, we
define cq(x;ω) := c̃q(T (x;ω);ω) and obtain

c(x;µ, ω) := c̃(T (x;ω);µ, ω) =

Qc∑

q=1

θcq(µ)c̃q(T (x;ω);ω) =

Qc∑

q=1

θcq(µ)cq(x;ω). (7.19)

Since the mapping T and its Jacobian matrix JT do not depend on the deterministic
parameter µ, the coefficients aT , bT , cT , gT , hT , defined in (7.3), are therefore
already affine with respect to µ. For c ∈ {a, b, c, g, h}, we denote by cT,q(x;ω) the
respective affine term analogously to (7.3) such that

cT (x;µ, ω) :=

Qc∑

q=1

θcq(µ)cT,q(x;ω).

E.g., we have aT,q(x;ω) = |det JT (x)|J−1
T (x)J−TT (x)aq(x;ω). Hence, for the efficient

application of the RBM, it remains to get affine decompositions of the coefficients
with respect to ω.

Since the random functions cT,q(x;ω), q = 1, . . . , Qc, c ∈ {a, b, c, g, h}, all depend
on the stochastic domain, they are stochastically dependent. For the application of
the RBM, it is not appropriate to apply the KL decomposition on each term sep-
arately. The resulting random variables that appear in respective KL expansions
would be correlated. Hence, we would violate Assumption 5.14 for linear problems
or Assumption 6.4 for nonlinear problems. The RBM and the a-posteriori analysis
from Sections 5.3 to 5.5 or from Section 6.3 could not be applied.

As a consequence, following Remark 5.13, it is necessary to evaluate a single
joint KL expansions for all affine terms of the coefficient functions cT,q(x;ω), q =

1, . . . , Qc, c ∈ {a, b, c, g, h} (cf. Section 2.2.3). Let cT,q,0(x) denote the mean of
cT,q(x;ω). Then, the complete affine decomposition for all coefficients reads

cT (x;µ, ω) :=

Qc∑

q=1

θcq(µ)


cT,q,0(x) +

Kjoint∑

k=1

√
λjointk ξjointk (ω)cT,q,k(x)


 , (7.20)

where λjointk and ξjointk (ω) do neither depend on q nor on the specific coefficient
c ∈ {a, b, c, g, h}.

The multi-component KL expansion can easily be constructed using the method
of snapshots. Since we already have a KL expansion of ρ and T , it is possible to
generate arbitrarily many samples of the stochastic domain.
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It is now straightforward to define the affine formulations of the linear, bilinear,
and trilinear forms in (7.4). As mentioned before, we only have to require that
each KL sum is truncated at the same value to apply the RBMs from Chapter 5
and Chapter 6.

7.5 RBM for Stochastic and Parametric Domains

Let us now consider the case of stochastic and parametric domains. We assume
the availability of an affine boundary mapping ρ(µ, ω) : ∂D → ∂D̃(µ, ω) as pro-
vided in (7.7), leading to the affine decomposition of the mapping T (µ, ω) : D →
D̃(µ, ω) of the form (7.9). Furthermore, it can be assumed that the coefficients
c̃ ∈ {ã, b̃, c̃, g̃, h̃} allow for affine decompositions of the form (7.14).

Using only the affine representation of T with respect to the parameter µ as
provided in (7.15), we obtain

c(x;µ, ω) =

Qc∑

q=1

θcq(µ)

QT∑

p=1

θTp (µ)cq,p(x;ω), c ∈ {a, b, c, g, h},

analogously to (7.16). As in Section 7.4, we apply a single joint KL expansion
on all components cq,p(x;ω), p = 1, . . . , QT , q = 1, . . . , Qc, c = a, b, c, g, h, and
Tp(x;ω), p = 1, . . . , QT , which yields a complete affine representation

c(x;µ, ω) =

Qc∑

q=1

θcq(µ)

QT∑

p=1

θTp (µ)


cq,p,0(x) +

Kjoint∑

k=1

√
λjointk ξjointk (ω)cq,p,k(x)


,

T (x;µ, ω) =

QT∑

p=1

θTp (µ)


Tp,0(x) +

Kjoint∑

k=1

√
λjointk ξjointk (ω)Tp,k(x)


,

(7.21)

c ∈ {a, b, c, g, h}. The term cq,p,0(x) denotes the mean of cq,p(x;ω) and Tp,0(x) de-
notes the mean of Tp(x;ω). Hence, it is sufficient to generate the random variables
ξjointk , k = 1, . . . , K joint, for the complete description of a random sample. Other-
wise, the modeling of the correlated terms a, b, c, g, h and T would be difficult. It is
clear that the Jacobian matrix JT (x;µ, ω) is analogously decomposed to T (x;µ, ω)

in (7.21).
However, we still can not create affine approximations of the coefficient functions

aT , bT , cT , gT , hT , as we have shown in Section 7.3, and the RBM can not directly
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be applied. Hence, it is now necessary to apply the EIM or the POIM from Chapter
3. Note that it is not necessary to apply the LSEIM even if the original stochastic
input is based upon noisy data. Since we already applied the KL expansion, we
already obtained a “smoothing effect” of the data. The KL expansion can be
truncated such that noisy data is removed or smoothed, keeping the information
that is necessary for an appropriate detailed solution.

The EIM or POIM is now based upon samples of aT , bT , cT , gT , hT that can be
generated using the components in (7.21). It has been mentioned in Chapter 3
that the evaluation of the input functions at the interpolation points is required
to be independent of the discretization. In our case, it is clear that the evalu-
ation of c(x;µ, ω) in (7.21) is of complexity O(QcQTK joint) and the complexity
for T (x;µ, ω) is of complexity O(QTK joint). Hence, the overall complexity for the
evaluation of a coefficient function aT , bT , cT , gT , hT at an interpolation point also
reads O(QcQTK joint) and the requirement of discretization independent evalua-
tions is fulfilled.

To remove redundancies in the affine approximations generated by the EIM or
POIM, it can be useful to apply the multi-component EIM or POIM for quantities
that appear in the same linear form [86]. E.g., for aT (x;µ, ω) ∈ Rd×d, it is useful
to generate only joint affine approximation for all d2 components.

Suppose the affine approximations become too large, it is also possible to apply
the implicit partitioning methods of Chapter 4 to reduce the online costs. For this
case, the p-Partitioning of Section 4.1.1 or the hp methods of Section 4.1.2 are not
appropriate since each random variable ξjointk would be considered as a parameter.
Therefore, the dimension of the parameter domain would be too large.

Given the affine approximation of our coefficients, using the EIM or POIM, we
can apply the RBM. However, it is not possible to apply the methods from Chapter
5 and Chapter 6. Instead, we refer to [86], where the RBM is used in combination
with the EIM. Most of the error analysis takes similar forms, replacing the error
analysis that occurs due to KL truncation by the analysis due to the “truncation”
of the EIM affine decomposition. However, it is not possible anymore to use
the statistical output error analysis of Sections 5.4, 5.5, and 6.3. In detail, the
requirements of Lemma 5.12 and Lemma 6.4 can not be fulfilled. Hence, we do
not obtain the improved error bounds for the statistical moments. For the error
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Figure 7.4: Expected shape of the random domain D̃(µ, ω) for µ = 0.4.

bound of the variance, we would have to fall back on the evaluation procedure in
Appendix A.

7.6 Numerical Examples

We illustrate the different approaches of Sections 7.4 and 7.5 using the example
of a plate where a hole appears on the bottom side. The plate is represented
by the domain D̃ ⊂ (0, 2) × (0, 1) ⊂ R2. The radius of the hole is modeled
by a deterministic parameter µ1 ∈ P1 := [0.1, 0.7] ⊂ R whereas the shape of
its boundary is modeled stochastically. In detail, we consider a circular hole, as
shown in Figure 7.4 for the example µ1 = 0.4, which denotes the expected shape
of the random boundary. Then, we use smoothed Wiener processes as described in
Section 3.5 to define the deviations of the hole in x1- and x2-direction. To certify
the smoothness of the boundary, the Wiener process is transformed such that the
deviation and its derivative on the very left and very right side of the hole is set
to zero.

Description of the Mapping T . We define the rectangular reference domain
D := (0, 2)× (0, 1) ⊂ R2 and use the transfinite element procedure to construct an
appropriate mapping T : D → D̃(µ1, ω). Figure 7.5 shows four random samples
of the domain D̃(µ1, ω) for different values of µ1 and the result of our mapping
T (µ1, ω) for a uniform grid of 31 times 21 points. The grid does not coincide with
the used discretization which may require local refinements for stability reasons.
The bold, green lines mark the generalized coordinates. The left, right, and top
boundary of the domain is fixed, i.e., T (x;µ1, ω) = x. Besides the bottom bound-
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(a) µ1 = 0.10. (b) µ1 = 0.30.

(c) µ1 = 0.50. (d) µ1 = 0.70.

Figure 7.5: Four random samples of of D̃(µ1, ω) for different values of µ with the
corresponding mapping T (µ1, ω) : D → D̃(µ1, ω) for a uniform grid on D.

ary, we defined two additional generalized coordinates x̄(1)
2 = 0.4 and x̄(2)

2 = 0.7.

Let us first describe the transformation of the bottom boundary. It can be
seen in Figure 7.5 that points to the left and to the right of the hole are shifted
inwards, i.e., towards the hole. In detail, points x on the reference boundary seg-
ment [0.0, 0.3]× {0} ⊂ D are mapped to x̃ ∈ [0.0, 1.0−µ1]× {0} on D̃(µ1, ω) and
analogously x ∈ [1.7, 2.0] × {0} 7→ x̃ ∈ [1.0+µ1, 2.0] × {0}. Hence, this trans-
formation only depends on the deterministic parameter and not on the stochastic
boundary. It leads to a higher resolution at the most significant regions. Further-
more, it enables bijective mappings for cases, where the boundary on the hole goes
upwards in almost vertical direction, as it can be observed for example in Figure
7.5(c) on the right side of the hole.

To emphasize this effect, especially for large µ1, the points on the generalized
coordinates x̄(1)

2 = 0.4 and x̄
(2)
2 = 0.7 are shifted outwards which can best be

observed in Figure 7.5(d). Again, the shift depends only on the deterministic
parameter and is larger at the lower generalized coordinate x̄(1)

2 than at x̄(2)
2 . It is

distributed over the whole x1-axis.
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Furthermore, the two generalized coordinates generate an upward displace-
ment of points in the inner part of the domain. The magnitude of the displace-
ment depends on the random deviation in x2-direction at the center of the hole
xcenter = (1, 0)T , i.e., on ρ2(xcenter;µ1, ω). Even though this is not optimal since
the maximal deviation on the bottom boundary is not necessarily given on xcenter
as we can observe for example in Figure 7.5(c), it provides accurate mappings and
is easy to evaluate. The determination of the overall maximum would contradict
the assumption of evaluations independent of N . The range on the generalized
coordinates where the upward shift occurs is restricted to the inner part of the
domain, in particular to points x ∈ x̄(i)

2 with x1 ∈ [0.3, 1.7], i = 1, 2.

Problem Description. Let us now describe the considered PDE on the stochas-
tic and parametric domain. We introduce an additional parameter µ0 ∈ P0 :=

[0.1, 1.0] ⊂ R and define ã(x̃;µ0) := µ0 which describes the constant heat conduc-
tivity of the plate D̃(µ1, ω). For µ = (µ0, µ1) ∈ P := P0 × P1 and ω ∈ Ω, we
define





−∇ ·
(
ã(µ0)∇ũ(x̃;µ, ω)

)
= 0, x̃ ∈ D̃(µ1, ω),

ũ(x̃;µ, ω) = 0, x̃ ∈ Γ̃D(µ1, ω),

ñ(x̃;µ, ω) ·
(
(ã(µ0) ∇ũ(x̃;µ, ω)

)
= h̃(x̃;µ1), x̃ ∈ Γ̃N(µ1, ω),

(7.22)

where Γ̃D denotes the left and Γ̃N the remaining boundary of D̃. We set h̃(x̃;µ1) =

0 on the top and right boundary. On the bottom part, we set h̃(x̃;µ1) = 1 outside
the hole and 0 otherwise.

Let Γout denote the deterministic and non-parametric right boundary of D̃(µ1, ω).
We define the output functionals ˜̀ : X(D̃(µ1, ω))→ R and ` : X(D)→ R by

`(v) =

∫

Γout

v, v ∈ X(D),

˜̀(ṽ) =

∫

Γout

ṽ, v ∈ X(D̃(µ1, ω)),

respectively. For v(x) = ṽ(T (x)), it is clear that `(v) = ˜̀(ṽ) since Γout does
not depend on (µ, ω) ∈ P . The desired output is given by s(µ, ω) = `(u(µ, ω)),
where u(µ, ω) denotes the (weak) solution of the PDE (7.22), transformed to the
reference domain. In other words, the output corresponds to the average of the
solution u(µ, ω) at the output boundary Γout.
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(c) First three modes (from left to right) of aT,1,1(x; ·) using the joint KL expansion.

Figure 7.6: Result of the joint KL expansion of aT (x;ω) and hT (x;ω).

7.6.1 The Non–Parametric Case

For this section, we set µ1 = 0.4. Hence, the domain does not carry any parametric
dependence anymore and we use µ = µ0 and P = P0. Since the PDE is affine in
µ, we can apply the RBM as proposed in Section 7.4.

Construction of the Affine Representation (7.20). As described in Sections
7.1.2 and 7.4, we first have to employ the multi-component KL expansion on the
parameter independent parts of the coefficients

aT (x;µ, ω) := |det JT (x;ω)|J−1
T (x;ω)J−TT (x;ω)ã(µ),

hT (x;ω) := |det JT (x;ω)|h̃(T (x;ω)),

to obtain affine decompositions with respect to ω. Since ã(µ0) = a(µ) = µ is
constant in space, we can just omit this term for the following considerations and
use the notation aT (x;ω) instead. Now, the application of the multi-component
KL expansion is straightforward.
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Figure 7.6 shows some results of this joint KL expansion. In Figure 7.6(a),
the eigenvalues are provided. For our reduced model, we use the first K joint = 67

modes to approximate the coefficients aT and hT . The KL error can be measured
using an additional number of 25 terms, where the detailed solution has been ob-
tained using the first 113 terms. Exemplarily, we also provide some KL results for
aT,1,1(x;ω), i.e., for the first component of the matrix aT (x;ω). In Figure 7.6(b),
the expectation of aT,1,1(x;ω) is provided. Even though T has been constructed
continuously differentiable, it can be observed that the coefficient is only continu-
ous. However, since aT is based upon the Jacobian matrix JT , it is clear that only
continuity can be guaranteed. Figure 7.6(c) shows the first 3 modes of aT,1,1(x;ω).
It is important to mention that these modes do not necessarily coincide with the
eigenmodes of a direct KL expansion of aT,1,1(x;ω).

Reduced Simulations. On our reference system, a 3.06 GHz Intel Core 2 Duo
processor, 4 GB RAM, we used Comsol 3.5.0.608 (3.5a) to construct and store the
FE system components and MATLAB 8.0.0.783 (R2012b) to implement and run
both the detailed and reduced models. For the solutions, we used the MATLAB
mldivide function which automatically adapts to the structure of the system, e.g.,
sparsity patterns. For the detailed solutions, we needed a discretization with
N = 25, 794 degrees of freedom to accurately resolve the stochastic boundary.

For the evaluation of the lower bound of the coercivity constant, we applied
the method proposed in Section 5.7.1. We assumed that we are interested in the
random outputs s(µ, ω) and s2(µ, ω) as well as in the statistical outputs M1(µ),
M2(µ), and V(µ). For the desired relative error tolerance εtol = 10−3, the greedy
converged for (N, Ñ (1), Ñ (2)) = (43, 38, 43) basis functions, where the same space
has been used for the additional dual problems, i.e., X̃(2)

N = X̃
(3)
N . Suppose we

were not interested in the random squared output s2(µ, ω) but only in the second
moment, (N, Ñ (1), Ñ (2)) = (41, 38, 41) basis functions would have been sufficient.

For the solution of the detailed problem and for the evaluation of the desired
random outputs, the average run-time was about 1.873 seconds per random sample.
For the reduced simulation, we needed only about 0.04798 seconds per sample,
where the evaluations included the outputs and the error bounds. Hence, the
reduced simulation is about 39 times faster.
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Let us take a closer look at the online run-time of the reduced system. Using
the MATLAB profile function, we could observe that the assembling of the re-
duced systems, the computation of the solutions, and the evaluation of the outputs
took only about 2.6% of the online run-time. For the evaluation of the coercivity
lower bound via the SCM, we needed about 17% of the time, where the splitting
αLB(µ, ω) = θmin(µ) · αSCM(ω) as described in Section 5.7.1 has been applied. The
highest complexity is originated by the evaluation of the error bounds. Almost 80%
of the run-time has been needed for their evaluation. This effect can be explained
by the relatively large number K joint of used KL terms which enters quadratically
into the complexity of the error bounds but only linearly in the assembling of the
reduced system. In Section 7.6.3, we will briefly describe how the IPMs of Chapter
4 can be used to decrease the number of affine terms for our case.

7.6.2 The Parametric Case

As we have described in Sections 7.3 and 7.5, we can not directly obtain affine
approximations of the transformed coefficients aT and hT in the parametric and
stochastic boundary case. Hence, the respective affine decompositions have to be
generated using the EIM or POIM (cf. Chapter 3). However, for their application,
in particular for the efficient evaluation of the functions at the interpolation points,
the availability of an affine representation of T and of the (already transformed)
coefficients a and h of the form (7.21) is still required.

Construction of the Affine Representation (7.21). On the bottom bound-
ary, the coefficient h̃(x̃;µ1) is not affine in µ1 since h̃(x̃;µ1) = 1 outside the hole
and zero otherwise. However, the mapping T is constructed such that this non-
affinity is “canceled out” by using a constant location of the hole on the reference
domain, i.e., h(x) is independent of µ. The other coefficient in the PDE (7.22),
ã(µ0) = µ0, is constant in space and linear in µ0. Hence, it is sufficient to generate
an affine decomposition of T to obtain a representation of the form (7.21).

For our example, the boundary mapping ρ : ∂D → ∂D̃(µ1, ω) is constructed
affine in µ with only two terms, where θ1(µ1) = 1 and θ2(µ1) = µ1. Furthermore,
the projection of the generalized coordinates is also decomposed into two affine
terms in µ1 with the same parameter functions θ1 and θ2. Hence, the overall
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Figure 7.7: Eigenvalues of the KL expansion of T .

number QT of affine terms of the domain mapping T (µ1, ω) : D → D̃(µ1, ω) with
respect to µ1 is also two.

Since the first parameter function θ1 = 1 is independent of µ1 and since θ2 = µ1,
it is clear that the first affine term T1 coincides with the mapping T for µ1 = 0.
Thus, the image T1(D) describes a rectangular domain with no hole anymore. As a
consequence, it is independent of the random boundary, i.e., of ω. It only contains
the parameter independent shifts of the bottom boundary and the two generalized
coordinates in horizontal direction.

We now apply the KL expansion on the second affine term T2. Since T maps
to values in R2, we actually apply a multi-component KL expansion on the two
components of T2. Figure 7.7 shows the normalized eigenvalues of the joint KL
expansion of the two components of T2. Compared to the eigenvalue decay in
Figure 7.6(a) of the joint KL expansion of the coefficients aT and hT that depend
on the Jacobian matrix and its determinant, the convergence is very fast. We take
T1, the expectation of T2, and its first 13 modes to obtain a very accurate affine
approximation of T (µ1, ω) with 15 terms. Hence, it is possible to efficiently apply
the EIM on the coefficients aT and hT , respectively.

EIM Approximations of aT (µ, ω). We just consider the first component aT,1,1
of aT for the upcoming examples, although, for actual applications, it would be
more efficient to generate a joint EIM approximation of all matrix components.
We start with a POIM, i.e., an EIM where the basis functions are determined by
a previously performed POD (cf. Section 3.3). For 20 equally distributed param-
eters µ1 ∈ P1 = [0.1, 0.7], we generated 250 random samples each, and used the
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Figure 7.8: Random samples of aT,1,1(µ, ω) for four different values of µ1.

resulting ntrain = 5000 samples to compute the POD eigenmodes via the method
of snapshots. Since µ2 appears just as a multiplicative factor in the coefficient, it
can be omitted for the moment. Figure 7.8 exemplarily shows four typical random
samples of aT,1,1(µ, ω) for different parameters µ1. It is obvious that it is not trivial
to find an affine approximation.

We have shown in Section 2.2 that the mean squared KL approximation error
for a given truncation value K is given by the sum over the remaining eigenvalues
(cf. Equation (2.12)). Considering the eigenvalues of the joint KL expansion in
7.6(a), we can derive that the L2-approximation error of the coefficients aT and
hT should not exceed εtol = 10−5 ≈

(∑
k>Kjoint

max
λjointk

)1/2 for the application of the
RBM.

Figure 7.9 shows the approximation error of the POIM applied on aT,1,1(µ, ω).
We provide both the maximal L∞-error that is usually considered in the EIM
context and the mean L2-error for a better comparison to the results of the previous
section. It can be observed that both errors decay with the same convergence rate
and the values roughly coincide. For the desired accuracy of εtol = 10−5, we need
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Figure 7.9: Maximal L∞- and average L2-error of the POIM applied on aT,1,1.

about 350 terms.

Application of the Coefficient Based FS IPM. The number of affine terms
increased significantly compared to the K joint

max = 92 terms in the non-parametric
case. Thus, it is not clear if the RBM can still be efficiently applied. Furthermore,
the dimensions of the reduced spaces XN , X̃

(1)
N , and X̃

(2)
N will also increase due

to the additional parameter dependence of the domain. Hence, we would like to
perform a partitioning of the parameter domain P ×Ω to reduce the online costs.

Let us first specify our parameter setting in more detail. For now, we do not
consider the heat conductivity parameter µ0. Hence, we only obtain a single
deterministic parameter µ1 ∈ [0.1, 0.7]. Furthermore, we consider the random
variables ξTk of the KL expansion of T as additional parameters. We assume that
each random variable ξTk takes values in a bounded interval Ik := (ak, bk) ⊂ R.
Then, we can define a compact parameter domain of the dimension p = 14.

We could now try to use explicit partitioning procedures such as the p- or
the hp-Partitioning. However, both the p-Partitioning and the hp gravity center
splitting scheme divide the parameter domain into 2p = 16, 384 subdomains in each
iteration. This is certainly not appropriate. The hp anchor point splitting scheme
divides the parameter domain into two subdomains based upon the distance to
the anchor point. Hence, it can also be applied to parameter domains of higher
dimensions. Nevertheless, it is not clear if this splitting is really appropriate for
the stochastic case, since the random variables are usually not equally distributed
on the intervals Ik. Furthermore, the significance of the random variables for the
problem decreases for larger k which is not considered by the splitting scheme.
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We therefore prefer an implicit partitioning procedure of Chapter 4. Since the
evaluation of the coefficient at an interpolation point is rather expensive (O(15)),
the MS IPM could become too expensive. Hence, we apply the coefficient based
FS IPM, where the online assignment can be achieved using a binary tree search.
For the refinement, we use Algorithm 4.9 that adaptively selects the number of
necessary coefficients. We set the maximal number to 12 and reject a partition if
one of the child subdomains obtains less than 5% of the functions of the parent
subdomain.

For the desired accuracy εtol = 10−5, we tested 4 different numbers Mmax of
allowed affine terms. ForMmax = 200, we needed 5 subdomains and 13 subdomains
were sufficient for Mmax = 150. For Mmax = 100, already 51 subdomains have
been created. However, we now obtain the same approximation quality as for the
non-parametric case with about the same number of affine terms. In fact, the
average number of affine terms over the 51 subdomains is already about 63, i.e.,
much lower than 92. For most subdivisions, one coefficient was enough for the
assignment and in no situation, more than 3 coefficients have been used. Thus,
the online assignment is very efficient.

It could be argued that it is possible to apply explicit partitioning methods
just on the deterministic parameter domain P1 without considering the stochastic
influences. However, using implicit methods and taking the stochasticity into
account, we can go on with the partitioning and obtain affine approximations with
even less terms than for the non-parametric case. E.g., using 124 subdomains,
Mmax = 72 could be reached.

7.6.3 Application of the FS IPM to the Non-Parametric

Case

To demonstrate that it is also useful to implicitly partition only stochastic in-
fluences, without any deterministic parameters, we created 2000 random samples
for the fixed parameter µ1 = 0.4 and started the coefficient based FS IPM for
Mmax = 50. We reached the desired accuracy εtol = 10−5 using 25 leaf subdo-
mains, where the average number of needed affine terms already decreased to 34.
Hence, we could significantly decrease the number of affine terms.
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It remains to show that it is still possible to apply the RBM theory of Chapter
5 that has been used in the case of non-parametric domains before. We perform
separate KL expansions on each leaf subdomain using appropriate samples and
construct independent reduced systems. It can be assumed that the number of KL
modes that are necessary for appropriate approximations of the coefficients roughly
coincide with the number of affine terms of the EIM, i.e., that Kmax ≈ Mmax. In
the online stage, the actual simulations can be performed independently on each
subdomain.

However, for the evaluation of adequate statistical outputs such as mean or
variance, we have to bring together the outputs of all subdomains. Furthermore,
to apply Monte Carlo approximations, the availability of a probability measure is
required that provides the probability that a certain subdomain is selected.

It is easy to construct such a discrete probability measure. We simulate a large
number of random boundaries, using only the 13 random coefficients of the KL
expansion of T . For each sample, we determine the appropriate subdomain and
store the number of samples that have been assigned to each subdomain. Since
this assignment is very fast compared to the run-time complexities of both full
and reduced simulations, we can evaluate very accurate approximations of the
probability measure. Furthermore, it is possible to do the construction already in
the offline stage.

7.7 Conclusions

We showed the applicability of the RBM theory introduced in Chapters 5 and 6
to PPDEs on stochastic domains. We furthermore showed that the IPMs from
Chapter 4 can be applied to such problems to increase the efficiency of the RBM.

For parametric and stochastic domains, we used the POIM from Chapter 3 to
generate affine approximations of the parametric and stochastic coefficients. Now,
the RB-EIM methodology that has been developed for deterministic problems can
directly be applied to stochastic problems. We showed that the IPM can lead to
a significant improvement of the online run-time complexity, especially for such
complicated problems.





Chapter 8

Further Stochastic RBM Settings

and Conclusions

In this chapter, we briefly describe further possible applications of the RBM to
instationary, stochastic problems as well as to D-weak/Ω-weak settings (cf. Section
2.1.3), and we provide some ideas for future work. Finally, we summarize and
discuss the main contributions of this work.

8.1 Instationary Problems

So far, we considered only stationary problems. However, it is straightforward to
apply the introduced methodology also for instationary problems, as considered for
example in [27, 38, 40]. On the one hand, the results of Chapters 3 and 4 directly
provide connections of stochastic problems to the EIM such that the results of,
e.g., [27, 38], for deterministic, non-affine, instationary problems could directly
be applied. On the other hand, for affine problems with respect to deterministic
parameters, as for example considered in [40], the methods provided in Chapters
5 and 6 can easily be extended.

Certainly, various other instationary frameworks with stochastic influences can
be considered. E.g., stochastic PDEs (SPDEs) in the sense of Itô calculus play
an important role in financial mathematics. Some work about model reduction in
that context has been done in [22, 51, 52, 74], where, however, the stochasticity is
not directly considered and partial integro-differential equations are solved. Hence,

191
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studies about the RBM for Itô SPDEs, including the stochasticity, could be part
of future work.

8.2 D-weak/Ω-weak RBMs

In Chapters 5 to 7, we considered RBMs in the context of Monte Carlo simulations,
i.e., PDEs in a D-weak/Ω-strong context. However, as introduced in Chapter 2,
other techniques to solve PDEs with stochastic influences are known. In this
section, we will briefly describe how RBMs for deterministic parameters as well as
the results in this work can applied to D-weak/Ω-weak formulations.

8.2.1 RBM for Stochastic Galerkin Methods

We have introduced stochastic Galerkin methods in Section 2.5 for the example
problem (2.1). The KL expansion is employed on the stochastic coefficients of
the PDE and the resulting random variables are modeled using polynomial chaos
representations. Considering a finite element space X of dimension N and the
space of the polynomial chaos S of dimension P +1, we obtain a weak formulation
on the space X ⊗ S of dimension N · (P + 1).

Using the bilinear form a : (X ⊗ S) × (X ⊗ S) → R and the linear form
f : (X ⊗ S) → R from (2.5), we derived the corresponding deterministic stiffness
matrix A ∈ RN (P+1)×N (P+1) and the right-hand side F ∈ RN (P+1) in (2.22). In
the following, we focus on the bilinear form a and the stiffness matrix A. All
considerations can be analogously applied on the right-hand side.

We assume an additional, affine parameter dependence of the coefficient c that
enters the bilinear form a, i.e., c(x;µ, ω) =

∑Q
q=1 θq(µ)cq(x;ω). It is clear that for

each component cq, we can perform a KL expansion and evaluate the corresponding
bilinear forms aq and the stiffness matrices Aq analogously to (2.5) and (2.22),
respectively.

Since all the system components are deterministic in the D-weak/Ω-weak set-
ting, it is straightforward to apply the RBM. Let un ∈ X⊗S, n = 1, . . . , N , denote
a basis of the reduced space (X⊗S)N . For AN,q ∈ RN×N , (AN,q)n,m := aq(um, un),
we can assemble the reduced stiffness matrix AN(µ) =

∑Q
q=1 θq(µ)AN,q in O(QN2)

for each new parameter and the reduced solution can be obtained in O(N3), as it
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is well known from deterministic RBMs (cf., e.g., [73, 77]). Also, the further char-
acteristics of deterministic RBMs can directly be applied to the problem. Linear
output functionals and even expectations can be easily obtained independently of
the dimension of the detailed problem. It is straightforward to define dual prob-
lems. Error bounds of the solution and the outputs can be evaluated, assuming
coercivity or inf-sup stability of the bilinear form a, using the Riesz representatives
of the components aq(un, ·).

It would be of interest and could be part of future work to compare reducibility
of the D-weak/Ω-weak formulation with the Monte Carlo based settings developed
in this work. Similar to RBMs for “space-time” formulations [83, 90], where weak
solutions in space and time are considered, it can be hoped that the online run-time
can be significantly reduced compared to the Monte Carlo approach.

However, this online run-time reduction is at the expense of extremely high
offline costs. Recall that, in the non-parametric case, we have P + 1 =

(
K+r
K

)
,

where K denotes the number of used KL terms and r denotes the maximal degree
r of the polynomial chaos. Hence, the dimension increases exponentially fast in
K. Suppose the coefficients cq(x;ω), q = 1, . . . , Q, are stochastically independent
and suppose each coefficient is approximated using K random variables. Then,
the dimension of the full problem increases to N ·

(
QK+r
QK

)
. E.g., for K = 10 and

r = 3, the dimension would increases from 1,717 to 10,626. Hence, depending on
the actual application, the RBM for stochastic Galerkin methods may rather be
of theoretical interest than useful for actual applications.

8.2.2 RBM for Stochastic Collocation Methods

We have briefly introduced stochastic collocation methods in Section 2.6. Basically,
the idea is to find D-weak/Ω-weak solutions, where the random space S = L2(Ω) is
approximated using polynomial interpolation. An interpolation point corresponds
to a random realization of the random variables in the KL expansion. Hence, the
approximation requires only evaluations of D-weak/Ω-strong solutions and the
quality depends on the choice and number of interpolation points.

It is clear that the number of interpolation points is limited due to the high
costs using the full finite element discretization. Hence, it seems to be a natural
idea to combine the RBM as introduced in Chapters 5 to 7 with the stochastic
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collocation method.

For a fine grid of interpolation points and an initial reduced basis, we can
efficiently evaluate the reduced solutions on the whole grid and evaluate the cor-
responding error bounds. If the solutions are sufficiently accurate, we can stop
the basis extension and use the RB approximations to generate the approxima-
tion of the space X ⊗ S. Otherwise, we can use the Greedy approach — as we
have described in Section 5.7.4 — to select the next basis function and iterate the
procedure.

It could be part of future work to investigate how the RB and KL truncation
error propagates in the interpolation of the random space S, i.e., how interpo-
lation and RB/KL errors interact. Furthermore, it could be interesting how the
approximation of outputs, random and statistical, can be optimized and if the dual
problems can still be applied.

8.3 Conclusions

We presented a reduced basis framework for general linear and quadratically non-
linear parametric partial differential equations with stochastic influences. No spe-
cific assumptions regarding the random input has been used such that possible
applications include random differential operators, right-hand sides, and bound-
ary conditions. It is demonstrated that the RB methodology allows us to deal with
large nonlinear parameterized systems involving significant stochastic deviations.

For problems that allow for an affine decomposition with respect to the deter-
ministic parameter, we used the Karhunen-Loève (KL) expansion of the respective
random terms to resolve and affinely decompose the stochasticity. The KL expan-
sion is truncated for an additional reduction of the complexity. We derived efficient
a-posteriori error bounds for the state and output functionals, also dealing with
additional KL-truncation errors. Using additional non-standard dual problems, we
furthermore introduced a new analysis for special quadratic outputs which could in
particular be applied to efficiently approximate statistical quantities such as mean,
second moment and variance. We provided new error bounds for such outputs, out-
performing standard approximations, and showed that parts of the KL-truncation
errors vanish. To some extend, the methodology could be used for higher moments
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as well. However, the bounds loose some aspects of their efficiency. Hence, it de-
pends on the actual problem if the evaluation of the additional dual problems pays
off. Especially for the non-linear problems, where the non-linearity dominates the
system, the additional linear dual problems are comparatively cheap, since the
complexity corresponds just to one Newton iteration.

For stochastic problems that are not affine with respect to the parameter, we
developed new forms of the EIM which are especially useful for noisy or non-smooth
input data. Hence, apart from the stochastic context, there may be several further
applications as well. We demonstrated that it is useful to add POD eigenfunctions
instead of snapshots to generate the EIM basis. We proved that the described
method produces the same approximation as the DEIM with less computational
cost. It is shown that the EIM error estimators can therefore be used for both
methods. Furthermore, the method has been extended to a least-squares problem,
using more interpolation points than basis functions. In this way, we could improve
the approximation quality and arrived at close to optimal results.

To reduce the number of affine terms and the dimension of the reduced space,
we generalized the partitioning concepts for explicitly given deterministic, com-
pact parameter domains to arbitrary input functions with possibly unknown or
even without direct parameter dependencies. In other words, no a-priori infor-
mation about the input is necessary. The so-called implicit partitioning methods
are no more based upon distance measures in the parameter domain but upon
the approximation quality of several different empirical interpolations. It is shown
that the methods can efficiently be applied to both stochastic and deterministic
problems and outperform the known methods for wide classes of problems. Fur-
thermore, it is described how the methods can be used to decrease the online costs
even for cases where no EIM is used for the generation of affine decompositions.

Eventually, we use all the presented methods and apply them to PPDEs with
stochastic influences on parametric and/or stochastic domains. In other words,
stochasticity can now be obtained in both coefficients and in the domain. Further-
more, it is briefly described how the methods can be used, e.g., for instationary
problems and formulations weak in space and probability.





Appendix A

Alternative Variance Error Bound

The following error analysis for an approximated Variance is adopted from [12].
It is used for the numerical examples in Chapters 5 and 6 and is referred to as
sophisticated variance error bound.

Let s(ω) be a random variable with expectation M1 and variance V. Further-
more, let sN,K(ω) be an approximation of s(ω) such that |s(ω)−sN,K(ω)| ≤ ∆s(ω)

as for example provided in Chapters 5 and 6. The expectation of the approxi-
mated random variable and of the error bound are denoted by M1,NK and ∆M1 ,
respectively. The variance of the approximated random variable sN,K is denoted
by VNK and serves as an estimation of the variance V. We define

s−(ω) := sN,K(ω)−∆s(ω), s+ := sN,K(ω) + ∆s(ω),

M−1 := M1,NK −∆M1 , M+
1 := M1,NK + ∆M1 ,

such that s−(ω) ≤ s(ω) ≤ s+(ω) and M−1 ≤M1 ≤M+
1 . Next, we define

σ−(ω) = M−1 − s+(ω), σ+(ω) = M+
1 − s−(ω),

and obtain σ−(ω) ≤M1 − s(ω) ≤ σ+(ω). Let V −(ω) and V +(ω) be given by

V −(ω) :=





min{|σ−(ω)|, |σ+(ω)|}, if σ+(ω) > σ−(ω),

0, else,

V +(ω) := max{|σ−(ω)|, |σ+(ω)|}.

It can be concluded that (V −(ω))2 ≤ (M1 − s(ω))2 ≤ (V +(ω))2 such that

E
[(
V −(·)

)2
]
≤ V ≤ E

[(
V +(·)

)2
]
.
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198 A. Alternative Variance Error Bound

Then, it is clear that a bound for the approximation error |V−VNK | of the variance
is given by

|V− VNK | ≤ max
{∣∣∣VNK − E

[(
V −(·)

)2
]∣∣∣ ,
∣∣∣VNK − E

[(
V +(·)

)2
]∣∣∣
}
.



Bibliography

[1] F. Albrecht, B. Haasdonk, S. Kaulmann, and M. Ohlberger. The local-
ized reduced basis multiscale method. In A. Handlovičová, Z. Minarechové,
and D. Ševčovič, editors, Proceedings of ALGORITMY 2012, Vysoke Tatry,
Podbanske, September 9-14, 2012, pages 393–403, 2012.

[2] W. Arendt and K. Urban. Partielle Differenzialgleichungen. Eine Einführung
in analytische und numerische Methoden. Spektrum Akademischer Verlag
Heidelberg, 2010.

[3] I. Babuška. Error-bounds for finite element method. Numer. Math., 16:322–
333, 1970/1971.

[4] I. M. Babuška and P. Chatzipantelidis. On solving elliptic stochastic par-
tial differential equations. Comput. Methods Appl. Mech. Engrg., 191(37-
38):4093 – 4122, 2002.

[5] I. M. Babuška and J. Chleboun. Effects of uncertainties in the domain on
the solution of Neumann boundary value problems in two spatial dimensions.
Math. Comp., 71(240):1339–1370 (electronic), 2002.

[6] I. M. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method
for elliptic partial differential equations with random input data. SIAM J.
Numer. Anal., 45(3):1005–1034 (electronic), 2007.

[7] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. An ‘empirical
interpolation’ method: application to efficient reduced-basis discretization
of partial differential equations. C. R. Math. Acad. Sci. Paris, 339(9):667–
672, 2004.

199



200 BIBLIOGRAPHY

[8] A. Barth, A. Lang, and C. Schwab. Multilevel Monte Carlo method for
parabolic stochastic partial differential equations. BIT, 53(1):3–27, 2013.

[9] J. Beck, F. Nobile, L. Tamellini, and R. Tempone. Implementation of optimal
Galerkin and collocation approximations of PDEs with random coefficients.
In CANUM 2010, 40e Congrès National d’Analyse Numérique, volume 33 of
ESAIM Proc., pages 10–21. EDP Sci., Les Ulis, 2011.

[10] J. Beck, R. Tempone, F. Nobile, and L. Tamellini. On the optimal polyno-
mial approximation of stochastic PDEs by Galerkin and collocation methods.
Math. Models Methods Appl. Sci., 22(9):1250023, 33, 2012.

[11] S. Boyaval. A fast Monte Carlo method with a reduced basis of control vari-
ates applied to uncertainty propagation and Bayesian estimation. Comput.
Methods Appl. Mech. Engrg., 241–244(0):190–205, 2012.

[12] S. Boyaval, C. Le Bris, Y. Maday, N. C. Nguyen, and A. T. Patera. A
reduced basis approach for variational problems with stochastic parameters:
application to heat conduction with variable Robin coefficient. Comput.
Methods Appl. Mech. Engrg., 198(41-44):3187–3206, 2009.

[13] F. Brezzi, J. Rappaz, and P.-A. Raviart. Finite-dimensional approximation
of nonlinear problems. I. Branches of nonsingular solutions. Numer. Math.,
36(1):1–25, 1980/81.

[14] A. Buffa, Y. Maday, A. T. Patera, C. Prud’homme, and G. Turinici. A
priori convergence of the greedy algorithm for the parametrized reduced
basis method. ESAIM Math. Model. Numer. Anal., 46(3):595–603, 2012.

[15] R. E. Caflisch. Monte Carlo and quasi-Monte Carlo methods. In Acta nu-
merica, 1998, volume 7 of Acta Numer., pages 1–49. Cambridge Univ. Press,
Cambridge, 1998.

[16] G. Caloz and J. Rappaz. Numerical analysis for nonlinear and bifurcation
problems. In Handbook of numerical analysis, Vol. V, Handb. Numer. Anal.,
V, pages 487–637. North-Holland, Amsterdam, 1997.



BIBLIOGRAPHY 201

[17] C. Canuto and T. Kozubek. A fictitious domain approach to the numerical
solution of PDEs in stochastic domains. Numer. Math., 107(2):257–293,
2007.

[18] C. Canuto, T. Tonn, and K. Urban. A posteriori error analysis of the reduced
basis method for nonaffine parametrized nonlinear PDEs. SIAM J. Numer.
Anal., 47(3):2001–2022, 2009.

[19] S. Chaturantabut and D. Sorensen. Discrete empirical interpolation for non-
linear model reduction. In Decision and Control, 2009 held jointly with the
2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the
48th IEEE Conference on, pages 4316–4321, dec. 2009.

[20] S. Chaturantabut and D. C. Sorensen. Nonlinear model reduction via discrete
empirical interpolation. SIAM J. Sci. Comput., 32(5):2737–2764, 2010.

[21] K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup. Multilevel Monte
Carlo methods and applications to elliptic PDEs with random coefficients.
Comput. Vis. Sci., 14(1):3–15, 2011.

[22] R. Cont, N. Lantos, and O. Pironneau. A reduced basis for option pricing.
SIAM J. Financial Math., 2:287–316, 2011.

[23] M. Cwikel and E. Pustylnik. Sobolev type embeddings in the limiting case.
J. Fourier Anal. Appl., 4(4-5):433–446, 1998.

[24] S. Deparis. Reduced basis error bound computation of parameter-dependent
Navier-Stokes equations by the natural norm approach. SIAM J. Numer.
Anal., 46(4):2039–2067, 2008.

[25] M. Dihlmann, M. Drohmann, and B. Haasdonk. Model reduction of
parametrized evolution problems using the reduced basis method with adap-
tive time partitioning. In D. Aubry, P. Diez, B. Tie, and N. Pares, editors,
Adaptive Modeling and Simulation 2011, pages 156–167. CIMNE, 2011.

[26] M. Dihlmann and B. Haasdonk. Certified PDE-constrained parameter op-
timization using reduced basis surrogate models for evolution problems.



202 BIBLIOGRAPHY

Preprint, SimTech – Cluster of Excellence, Universität Stuttgart, February
2013.

[27] M. Drohmann, B. Haasdonk, and M. Ohlberger. Reduced basis approxi-
mation for nonlinear parametrized evolution equations based on empirical
operator interpolation. SIAM Journal on Scientific Computing, 34(2):A937–
A969, 2012.

[28] J. L. Eftang, D. B. P. Huynh, D. J. Knezevic, E. M. Rønquist, and A. T. Pat-
era. Port reduction in component-based static condensation for parametrized
problems: Approximation and a posteriori error estimation. In F. Breite-
necker and I. Troch, editors, Proceedings MATHMOD 2012, 7th Vienna In-
ternational Conference on Mathematical Modelling, volume 7, pages 695–699,
2012.

[29] J. L. Eftang, D. J. Knezevic, and A. T. Patera. An hp certified reduced
basis method for parametrized parabolic partial differential equations. Math.
Comput. Model. Dyn. Syst., 17(4):395–422, 2011.

[30] J. L. Eftang, A. T. Patera, and E. M. Rønquist. An “hp” certified reduced
basis method for parametrized elliptic partial differential equations. SIAM
J. Sci. Comput., 32(6):3170–3200, 2010.

[31] J. L. Eftang and B. Stamm. Parameter multi-domain hp empirical interpo-
lation. In Thesis: J. L. Eftang. Reduced Basis Methods for Parametrized
Partial Differential Equations. 2011., May 2011.

[32] G. S. Fishman. Monte Carlo: Concepts, algorithms, and applications.
Springer Series in Operations Research. Springer-Verlag, New York, 1996.

[33] A.-L. Gerner and K. Veroy. Reduced basis a posteriori error bounds for
the Stokes equations in parametrized domains: a penalty approach. Math.
Models Methods Appl. Sci., 21(10):2103–2134, 2011.

[34] A.-L. Gerner and K. Veroy. Certified Reduced Basis Methods for
Parametrized Saddle Point Problems. SIAM J. Sci. Comput., 34(5):A2812–
A2836, 2012.



BIBLIOGRAPHY 203

[35] R. G. Ghanem and P. D. Spanos. Stochastic finite elements: A spectral
approach. Springer-Verlag, New York, 1991.

[36] W. J. Gordon and C. A. Hall. Construction of curvilinear co-ordinate systems
and applications to mesh generation. Internat. J. Numer. Methods Engrg.,
7:461–477, 1973.

[37] W. J. Gordon and C. A. Hall. Transfinite element methods: blending-
function interpolation over arbitrary curved element domains. Numer. Math.,
21:109–129, 1973/74.

[38] M. A. Grepl. Reduced-Basis Approximation and A Posteriori Error Es-
timation for Parabolic Partial Differential Equations. Phd in mechanical
engineering, Massachusetts Institute of Technology, June 2005.

[39] M. A. Grepl and M. Kärcher. Reduced basis a posteriori error bounds for
parametrized linear-quadratic elliptic optimal control problems. C. R. Math.
Acad. Sci. Paris, 349(15-16):873–877, 2011.

[40] M. A. Grepl and A. T. Patera. A posteriori error bounds for reduced-bias ap-
proximations of parametrized parabolic partial differential equations. M2AN
Math. Model. Numer. Anal., 39(1):157–181, 2005.

[41] B. Haasdonk, M. Dihlmann, and M. Ohlberger. A training set and mul-
tiple bases generation approach for parameterized model reduction based
on adaptive grids in parameter space. Math. Comput. Model. Dyn. Syst.,
17(4):423–442, 2011.

[42] B. Haasdonk and M. Ohlberger. Reduced basis method for finite volume
approximations of parametrized linear evolution equations. M2AN Math.
Model. Numer. Anal., 42(2):277–302, 2008.

[43] B. Haasdonk, M. Ohlberger, and G. Rozza. A reduced basis method for evo-
lution schemes with parameter-dependent explicit operators. ETNA, Elec-
tronic Transactions on Numerical Analysis, 32:145–161, 2008.



204 BIBLIOGRAPHY

[44] B. Haasdonk, J. Salomon, and B. Wohlmuth. A Reduced Basis Method for
Parametrized Variational Inequalities. SIAM J. Numer. Anal., 50(5):2656–
2676, 2012.

[45] B. Haasdonk, K. Urban, and B. Wieland. Reduced basis methods for
parametrized partial differential equations with stochastic influences using
the Karhunen-Loève expansion. SIAM/ASA J. Uncertainty Quantification,
1:79–105, 2013.

[46] H. Hadinejad-Mahram, D. Dahlhaus, and D. Blömker. Karhunen-Loève ex-
pansion of vecor random processes. Technical report, Communications Tech-
nology Laboratory, Swiss Federal Institute of Technology Zürich, 2002.

[47] R. A. Handler, K. D. Housiadas, and A. N. Beris. Karhunen-Loeve represen-
tations of turbulent channel flows using the method of snapshots. Internat.
J. Numer. Methods Fluids, 52(12):1339–1360, 2006.

[48] H. Harbrecht. A finite element method for elliptic problems with stochastic
input data. Appl. Numer. Math., 60(3):227–244, 2010.

[49] H. Harbrecht. On output functionals of boundary value problems on stochas-
tic domains. Math. Methods Appl. Sci., 33(1):91–102, 2010.

[50] H. Harbrecht, R. Schneider, and C. Schwab. Sparse second moment analysis
for elliptic problems in stochastic domains. Numer. Math., 109(3):385–414,
2008.

[51] P. Hepperger. Option pricing in Hilbert space-valued jump-diffusion models
using partial integro-differential equations. SIAM J. Financial Math., 1:454–
489, 2010.

[52] P. Hepperger. Hedging electricity swaptions using partial integro-differential
equations. Stochastic Process. Appl., 122(2):600–622, 2012.

[53] D. B. P. Huynh, D. J. Knezevic, and A. T. Patera. A static condensation
reduced basis element method: approximation and a posteriori error estima-
tion. ESAIM Math. Model. Numer. Anal., 47(1):213–251, 2013.



BIBLIOGRAPHY 205

[54] D. B. P. Huynh and A. T. Patera. Reduced basis approximation and a
posteriori error estimation for stress intensity factors. Internat. J. Numer.
Methods Engrg, 72(10):1219–1259, 2007.

[55] D. B. P. Huynh and A. T. Patera. Reduced basis approximation and a
posteriori error estimation for stress intensity factors. International Journal
for Numerical Methods in Engineering, 72(10):1219–1259, 2007.

[56] D. B. P. Huynh, J. Peraire, A. T. Patera, and G. R. Liu. Real-time reliable
prediction of linear-elastic mode-i stress intensity factors for failure analy-
sis. In Proceedings of the 6th Singapore-MIT Alliance Annual Symposium,
Cambridge, MA, 2006.

[57] D. B. P. Huynh, G. Rozza, S. Sen, and A. T. Patera. A successive constraint
linear optimization method for lower bounds of parametric coercivity and
inf-sup stability constants. C. R. Math. Acad. Sci. Paris, 345(8):473 – 478,
2007.

[58] L. Iapichino, A. Quarteroni, and G. Rozza. A reduced basis hybrid method
for the coupling of parametrized domains represented by fluidic networks.
Comput. Methods Appl. Mech. Engrg., 221/222:63–82, 2012.

[59] M. Kärcher and M. A. Grepl. A certified reduced basis method for
parametrized elliptic optimal control problems. Preprint, RWTH Aachen
University, 2012.

[60] K. Karhunen. Über lineare Methoden in der Wahrscheinlichkeitsrechnung.
Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys., 1947(37):79, 1947.

[61] S. Kaulmann and B. Haasdonk. Online greedy reduced basis construction
using dictionaries. Preprint, SimTech – Cluster of Excellence, Universität
Stuttgart, March 2013.

[62] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition
methods for a general equation in fluid dynamics. SIAM J. Numer. Anal.,
40(2):492–515, 2002.



206 BIBLIOGRAPHY

[63] T. Lassila and G. Rozza. Parametric free-form shape design with PDE mod-
els and reduced basis method. Comput. Methods Appl. Mech. Engrg., 199(23-
24):1583–1592, 2010.

[64] W. K. Liu, T. Belytschko, and A. Mani. Random field finite elements.
Internat. J. Numer. Methods Engrg., 23(10):1831–1845, 1986.

[65] M. Loève. Probability theory. II. Springer-Verlag, New York, fourth edition,
1978. Grad. Texts in Math. 46.

[66] Y. Maday and E. M. Rønquist. A reduced-basis element method. In Pro-
ceedings of the Fifth International Conference on Spectral and High Order
Methods (ICOSAHOM-01) (Uppsala), volume 17, pages 447–459, 2002.

[67] Y. Maday and E. M. Rønquist. The reduced basis element method: ap-
plication to a thermal fin problem. SIAM J. Sci. Comput., 26(1):240–258
(electronic), 2004.

[68] S. Mallat and W. L. Hwang. Singularity detection and processing with
wavelets. IEEE Trans. Inform. Theory, 38(2, part 2):617–643, 1992.

[69] H. G. Matthies and A. Keese. Galerkin methods for linear and nonlinear el-
liptic stochastic partial differential equations. Comput. Methods Appl. Mech.
Engrg., 194(12-16):1295–1331, 2005.

[70] P. S. Mohan, P. B. Nair, and A. J. Keane. Multi-element stochastic reduced
basis methods. Comput. Methods Appl. Mech. Engrg., 197(17-18):1495–1506,
2008.

[71] N. C. Nguyen and J. Peraire. An interpolation method for the reconstruction
and recognition of face images. In VISAPP (2), pages 91–96, 2007.

[72] M. Papadrakakis and V. Papadopoulos. Robust and efficient methods for
stochastic finite element analysis using Monte Carlo simulation. Comput.
Methods Appl. Mech. Engrg., 134(3-4):325–340, 1996.

[73] A. T. Patera and G. Rozza. Reduced Basis Approximation and A Posteriori
Error Estimation for Parametrized Partial Differential Equations. Version
1.0, MIT, Cambridge, MA, 2006.



BIBLIOGRAPHY 207

[74] O. Pironneau. Calibration of options on a reduced basis. J. Comput. Appl.
Math., 232(1):139–147, 2009.

[75] D. V. Rovas. Reduced-Basis Output Bound Methods for Parametrized Partial
Differential Equations. PhD thesis, Massachusetts Institute of Technology,
February 2003.

[76] D. V. Rovas, L. Machiels, and Y. Maday. Reduced-basis output bound
methods for parabolic problems. IMA J. Numer. Anal., 26(3):423–445, 2006.

[77] G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced basis approximation
and a posteriori error estimation for affinely parametrized elliptic coercive
partial differential equations: Application to transport and continuum me-
chanics. Arch. Comput. Methods Eng., 15(3):229–275, 2008.

[78] G. Rozza and K. Veroy. On the stability of the reduced basis method for
Stokes equations in parametrized domains. Comput. Methods Appl. Mech.
Engrg., 196(7):1244–1260, 2007.

[79] S. K. Sachdeva, P. B. Nair, and A. J. Keane. Hybridization of stochas-
tic reduced basis methods with polynomial chaos expansions. Probabilistic
Engineering Mechanics, 21(2):182–192, 2006.

[80] M. Shinozuka and G. Deodatis. Response variability of stochastic finite
element systems. Journal of Engineering Mechanics, 114(3):499–519, 1988.

[81] U. Simon, P. Augat, M. Utz, and L. Claes. A numerical model of the frac-
ture healing process that describes tissue development and revascularisation.
Computer Methods in Biomechanics and Biomedical Engineering, 14(1):79–
93, 2011. PMID: 21086207.

[82] L. Sirovich. Turbulence and the dynamics of coherent structures. I. Coherent
structures. Quart. Appl. Math., 45(3):561–571, 1987.

[83] K. Steih and K. Urban. Space-time reduced basis methods for time-periodic
partial differential equations. In Proceedings MATHMOD 2012, 7th Vienna
International Conference on Mathematical Modelling (accepted), 2012.



208 BIBLIOGRAPHY

[84] D. M. Tartakovsky and D. Xiu. Stochastic analysis of transport in tubes
with rough walls. J. Comput. Phys., 217(1):248–259, 2006.

[85] J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin. Numerical grid gen-
eration. North-Holland Publishing Co., New York, 1985. Foundations and
applications.

[86] T. Tonn. Reduced-Basis Method (RBM) for Non-Affine Elliptic Parametrized
PDEs (Motivated by Optimization in Hydromechanics). PhD thesis, Ulm
University, Ulm, Germany, 2012.

[87] T. Tonn and K. Urban. A reduced-basis method for solving parameter-
dependent convection-diffusion problems around rigid bodies. In Proceedings
of the ECCOMAS CFD, 2006.

[88] T. Tonn, K. Urban, and S. Volkwein. Optimal control of parameter-
dependent convection-diffusion problems around rigid bodies. SIAM J. Sci.
Comput., 32(3):1237–1260, 2010.

[89] N. Trudinger. On imbeddings into orlicz spaces and some applications. In-
diana Univ. Math. J., 17:473–483, 1968.

[90] K. Urban and A. T. Patera. A new error bound for reduced basis approx-
imation of parabolic partial differential equations. C. R. Math. Acad. Sci.
Paris, 350(3-4):203–207, 2012.

[91] K. Urban, S. Volkwein, and O. Zeeb. Greedy sampling using nonlinear op-
timization. Preprint, Ulm University, 2012.

[92] K. Urban and B. Wieland. Affine decompositions of parametric stochastic
processes for application within reduced basis methods. In F. Breitenecker
and I. Troch, editors, Proceedings MATHMOD 2012, 7th Vienna Interna-
tional Conference on Mathematical Modelling, volume 7, pages 716–721,
2012.

[93] K. Urban and B. Wieland. Reduced basis methods for quadratically nonlin-
ear partial differential equations with stochastic influences. In J. Eberhard-
steiner, H. J. Böhm, and F. G. Rammerstorfer, editors, CD-ROM Proceedings



BIBLIOGRAPHY 209

of the 6th European Congress on Computational Methods in Applied Sciences
and Engineering (ECCOMAS 2012), September 10-14, 2012, Vienna, Aus-
tria. Vienna University of Technology, Austria, September 2012.

[94] S. Vallaghé and A. T. Patera. The static condensation reduced basis element
method for a mixed-mean conjugate heat exchanger model. Preprint, MIT,
Cambridge, MA, 2012 August.

[95] E. Vanmarcke and M. Grigoriu. Stochastic finite element analysis of simple
beams. Journal of Engineering Mechanics, 109(5):1203–1214, 1983.

[96] K. Veroy and A. T. Patera. Certified real-time solution of the parametrized
steady incompressible Navier-Stokes equations: rigorous reduced-basis a pos-
teriori error bounds. Internat. J. Numer. Methods Fluids, 47(8-9):773–788,
2005.

[97] K. Veroy, C. Prud’homme, and A. T. Patera. Reduced-basis approximation
of the viscous Burgers equation: rigorous a posteriori error bounds. C. R.
Math. Acad. Sci. Paris, 337(9):619–624, 2003.

[98] K. Veroy, C. Prud’homme, D. V. Rovas, and A. T. Patera. A posteriori error
bounds for reduced-basis approximation of parametrized noncoercive and
nonlinear elliptic partial differential equations. In AIAA paper 2003-3847,
Proceedings of the 16th AIAA Computational Fluid Dynamics Conference,
2003.

[99] T. Wehner, L. Claes, F. Niemeyer, D. Nolte, and U. Simon. Influence of the
fixation stability on the healing time—a numerical study of a patient-specific
fracture healing process. Clinical Biomechanics, 25(6):606–612, 2010.

[100] B. Wieland. Speech signal noise reduction with wavelets. Diploma Thesis,
Ulm University, Ulm, Germany, October 2009.

[101] N. Wiener. The homogeneous chaos. Amer. J. Math., 60(4):897–936, 1938.

[102] D. Xiu and J. S. Hesthaven. High-order collocation methods for differential
equations with random inputs. SIAM J. Sci. Comput., 27(3):1118–1139,
2005.



210 BIBLIOGRAPHY

[103] D. Xiu and G. E. Karniadakis. The Wiener–Askey polynomial chaos for
stochastic differential equations. SIAM J. Sci. Comput., 24(2):619–644, 2002.

[104] D. Xiu and D. M. Tartakovsky. Numerical methods for differential equations
in random domains. SIAM J. Sci. Comput., 28(3):1167–1185 (electronic),
2006.

[105] F. Yamazaki, M. Shinozuka, and G. Dasgupta. Neumann expansion
for stochastic finite element analysis. Journal of Engineering Mechanics,
114(8):1335–1354, 1988.

[106] M. Yano, A. T. Patera, and K. Urban. A space-time certified reduced basis
method for Burgers’ equation. Preprint, Ulm University, July 2012.



Lebenslauf

Persönliche Daten

Bernhard Wieland
Geb. am 22. Juli 1983 in Stuttgart–Bad Cannstatt

Schulbildung

09/1990–08/1994 Grundschule Eichbergschule, Leinfelden–Echterdingen
09/1994–07/2003 Immanuel–Kant–Gymnasium, Leinfelden–Echterdingen

Abschluss: Abitur

Studium

10/2003–10/2009 Mathematik mit Nebenfach Informatik, Universität Ulm
Abschluss: Diplom
Diplomarbeit: Speech Signal Noise Reduction with Wavelets

08/2007–05/2008 Applied Mathematics, Florida Institute of Technology, Melbourne,
FL, USA
Abschluss: Master of Science

seit 10/2009 Promotionsstudium, Institut für Numerische Mathematik, Univer-
sität Ulm

Stipendien und Auszeichnungen

07/2003 Sozialpreis des Vereins der Freunde des Immanuel–Kant–Gymnasi-
ums für besonderes soziales Engagement

07/2003 Preis für herausragende Leistungen im Abitur
08/2007–05/2008 Fulbright Stipendium
12/2009–11/2012 Promotionsstipendium nach dem Landesgraduiertenförderungsge-

setz (LGFG)

Universitäre Beschäftigungen

08/2004–07/2007 Studentische Hilfskraft an der Universität Ulm
08/2007–05/2008 Teaching Assistant in Calculus II, Florida Institute of Technology,

Melbourne, FL, USA
07/2008–09/2009 Wissenschaftliche Hilfskraft am Institut für Numerische Mathema-

tik, Universität Ulm

211



212 Lebenslauf

seit 10/2009 Wissenschaftlicher Mitarbeiter am Ulmer Zentrum für Wissenschaft-
liches Rechnen, Universität Ulm

seit 12/2012 Wissenschaftlicher Mitarbeiter am Institut für Numerische Mathe-
matik, Universität Ulm

Universitäre Gremien

10/2005–09/2007 Mitglied der Studienkommission Mathematik, Fakultät für Mathe-
matik und Wirtschaftswissenschaften, Universität Ulm

10/2006–09/2007 Mitglied des Fakultätsrats der Fakultät für Mathematik und Wirt-
schaftswissenschaften, Universität Ulm

Berufserfahrung

02/2007–04/2007 Praktikum bei der Voith Paper AG, Heidenheim: Entwicklung nu-
merischer Methoden zur Approximation der Einschwingzeit linearer
Kontrollsysteme

06/2009–07/2009 Praktikum bei der d-fine GmbH: Projektarbeit zur Verbesserung
der Berechnung von Marktpreisrisiken einer großen deutschen Bank

Ulm, 15. April 2013



Publikationen und Vorträge

Publikationen

01/2012 K. Urban and B. Wieland.
Affine decompositions of parametric stochastic processes for appli-
cation within reduced basis methods.
In Proceedings MATHMOD 2012, 7th Vienna International Confe-
rence on Mathematical Modelling, 2012.

09/2012 K. Urban and B. Wieland.
Reduced basis methods for quadratically nonlinear partial differen-
tial equations with stochastic influences.
In J. Eberhardsteiner, H. J. Böhm, and F. G. Rammerstorfer, edi-
tors, CD-ROM Proceedings of the 6th European Congress on Com-
putational Methods in Applied Sciences and Engineering (ECCO-
MAS 2012), September 10-14, 2012, Vienna, Austria. Vienna Uni-
versity of Technology, Austria, September 2012.

03/2013 B. Haasdonk, K. Urban, and B. Wieland.
Reduced basis methods for parametrized partial differential equati-
ons with stochastic influences using the Karhunen-Loève expansion.
SIAM/ASA J. Uncertainty Quantification, 1:79–105, 2013.

in Bearbeitung B. Wieland.
Implicit Partitioning Methods for Unknown Parameter Domains.

Ausgewählte Vorträge

07/2010 Reduced Basis Methods for Parametric PDEs with Stochastic In-
fluences.
Summer School Optimal Control of PDEs, Cortona, Italy.

12/2010 Reduced Basis Methods for PDEs with Stochastic Influences.
Workshop on Reduced Basis Methods, Ulm.

10/2011 Reduced Basis Methods for PDEs on Stochastic Domains.
Summer School on Reduced Basis Methods, Günzburg Reisensburg.

02/2012 Affine Decompositions of Parametric Stochastic Processes for App-
lication within Reduced Basis Methods.
MathMod, Vienna Conference on Mathematical Modelling, Vienna,
Austria.

08/2012 An Implicit Partitioning Method for Unknown Parameter Domains

213



214 Publikationen und Vorträge

(in the context of RBMs with stochastic influences).
Workshop on Reduced Basis Methods, Freudenstadt

09/2012 Reduced Basis Methods for quadratically nonlinear PDEs with sto-
chastic influences.
ECCOMAS 2012, 6th European Conference on Computational Me-
thods in Applied Sciences and Engineering, Vienna, Austria.

10/2012 An Implicit Partitioning Method for Unknown Parameter Domains.
Second International Workshop on Model Reduction for Parametri-
zed Systems (MoRePaS II), Schloss Reisensburg, Günzburg.

01/2013 Reduced Basis Methods for parametrized PDEs with stochastic in-
fluences.
29th GAMM-Seminar Leipzig on Numerical Methods for Uncer-
tainty Quantification, Max Planck Institute for Mathematics in the
Sciences, Leipzig.



Danksagungen

An dieser Stelle möchte ich mich bei allen herzlich bedanken, die durch fachli-
che und persönliche Unterstützung am Gelingen dieser Doktorarbeit beigetragen
haben.

Zuerst geht mein besonderer Dank an Prof. Dr. Karsten Urban, der bei mir das
Interesse am Themengebiet der Reduzierten–Basis–Methoden geweckt hat und der
es mir ermöglichte, mich in den letzten Jahren intensiv damit zu beschäftigen. Viele
seiner Anregungen aus zahlreichen Diskussionen sind in die Arbeit eingeflossen.
Zudem war seine intensive Betreuung und Wertschätzung meiner Forschungsarbeit
stets zusätzliche Motivation.

Mein Dank gilt weiterhin Jun.-Prof. Dr. Bernard Haasdonk, der sich trotz der
räumlichen Distanz bereit erklärt hat, als Zweitbetreuer und -gutachter zu fungie-
ren. Bei zahlreichen Gelegenheiten gab er mir wertvolle Hinweise und trug dazu
bei, Probleme und Fragestellungen aus neuen Blickwinkeln zu betrachten.

Zudem bedanke ich mich bei Dr.-Ing. Ulrich Simon. Die Betreuung der Übung
seiner Vorlesungen machte mir stets großen Spaß. Dabei profitierte ich insbesonde-
re von seinem großen Fachwissen und lernte bei zahlreichen Diskussionen selbst viel
über mechanische Problemstellungen und Lösungsansätze. Das von ihm entgegen-
gebrachte Vertrauen, ihn bei zahlreichen Firmenkontakten des Ulmer Zentrums
für Wissenschaftliches Rechnen begleiten zu dürfen, freute mich besonders, und
führte zu vielen interessanten Einblicken.

Weiter möchte ich mich bei allen Mitarbeitern des Instituts für Numerische Ma-
thematik und des Ulmer Zentrums für Wissenschaftliches Rechnen der Universität
Ulm bedanken. Die Kollegialität, Hilfsbereitschaft und das fachliche Wissen waren
eine Stütze bei der täglichen Arbeit und viele Freundschaften sind dabei entstan-
den. Für viele wertvolle Diskussionen bedanke ich mich bei Timo Tonn, der mir

215



216 Danksagungen

insbesondere am Anfang meiner Promotion sehr hilfreich war, und der gesamten
„RB–Runde“. Besonders danke ich auch Julia Springer, Theresa Springer, Kristi-
na Steih, Silke Glas, Antonia Mayerhofer, Steffen Baumann, Mladjan Radic und
Oliver Zeeb für das Korrekturlesen dieser Arbeit.

Schließlich möchte ich mich von ganzem Herzen bei meinen Eltern Elfriede
und Wolfgang Wieland bedanken, die es mir ermöglicht haben, Mathematik zu
studieren und mir darüberhinaus zu allen Zeiten eine große Unterstützung waren.

Danke!



Erklärung

Hiermit versichere ich, Bernhard Wieland, dass ich die vorliegende Arbeit selbstän-
dig angefertigt habe und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt sowie die wörtlich oder inhaltlich übernommenen Stellen als solche kennt-
lich gemacht habe. Ich erkläre außerdem, dass diese Arbeit weder im In- noch
im Ausland in dieser oder ähnlicher Form in einem anderen Promotionsverfahren
vorgelegt wurde.

Ulm, 3. Juli 2013
Dummy Bernhard Wieland


	Contents
	Symbols and Acronyms
	Introduction
	Motivation
	The Reduced Basis Method
	Objective
	Outline of the Work

	Solutions of PDEs with Stochastic Influences
	Mathematical Formulation
	Model Problem
	D-weak/-strong Formulation
	D-weak/-weak Formulation

	Karhunen–Loève Expansion
	Theoretical Aspects
	Method of Snapshots
	Multi–Component KL Expansion

	Polynomial Chaos Expansion
	Monte Carlo Method
	Stochastic Galerkin Method
	The Stiffness Matrix

	Stochastic Collocation Method

	Affine Decompositions of Parametric Stochastic Processes
	Affine Decompositions in the Context of the RBM
	Preliminaries
	Problem Formulation
	Proper Orthogonal Decomposition (POD)
	Empirical Interpolation Method (EIM)
	Empirical Interpolation of Differential Operators

	A Proper Orthogonal (Empirical) Interpolation Method (POIM)
	Outline of the Method
	Error Estimators
	Application within the DEIM Context

	A Least-Squares Empirical Interpolation Method (LSEIM)
	Outline of the Method
	Error Estimators

	Numerical Example
	Conclusions

	Implicit Partitioning Methods for Unknown Parameter Domains
	Preliminaries
	p-Partitioning
	hp-Partitioning

	Partitioning of Unknown Parameter Domains
	Unknown Parameter Domains
	Affine Decomposition for Unknown Parameters
	Implicit Partitioning Problem Formulation

	Moving Shapes IPM
	Outline of the Method
	Online Assignment
	Refinement Procedure

	Fixed Shapes IPM
	Error Based FS IPM
	Coefficient Based FS IPM

	Combinations
	Numerical Examples and Comparisons
	Conclusions

	RBM for Linear Parametric PDEs with Stochastic Influences
	Problem Formulation
	Variational Problems with Stochastic Influences
	Karhunen–Loève Expansion
	Output of Interest

	Reduced Basis Approximation
	A posteriori Error Analysis
	Notation
	Primal and Dual Errors
	Output Error
	Quadratic Output

	Statistical Output Error Analysis
	First and Second Moments
	Squared First Moment
	Variance

	Higher Moments
	Third Moment
	Fourth Moment

	Inf-Sup Stable Problems
	Offline-Online Decomposition
	Coercivity Lower Bound
	Assembling of the Error Bounds
	Online Procedure
	Greedy Basis Selection

	Numerical Realization and Experiments
	Conclusions and Outlook

	RBM for Quadratically Nonlinear PPDEs with Stochastic Influences
	Problem Formulation
	Variational Formulation
	Affine Decomposition via Karhunen–Loève Expansion
	Newton Iteration
	Output of Interest

	Reduced Basis System
	Primal-Dual Formulation for Linear Outputs
	Dual Formulations for Quadratic Outputs
	Dual Formulation for the Variance Approximation

	A-Posteriori Analysis
	Notation
	Primal Solution Error
	Dual Solution Error
	Linear Output Error
	Quadratic Output Error
	Variance Output Error

	Offline-Online Decomposition
	Continuity Constant
	Inf-Sup Constant
	Offline Complexity
	Online Complexity

	Numerical Experiment

	Application of the RBM to PDEs on Stochastic Domains
	Preliminaries
	Model Problem
	Projection to a Reference Domain

	Construction of the Domain Mapping
	Laplace Equation Based Mapping
	Transfinite Element Mapping

	Affine Decomposition of the Transformed Problem
	RBM for Stochastic, Non-Parametric Domains
	RBM for Stochastic and Parametric Domains
	Numerical Examples
	The Non–Parametric Case
	The Parametric Case
	Application of the FS IPM to the Non-Parametric Case

	Conclusions

	Further Stochastic RBM Settings and Conclusions
	Instationary Problems
	D-weak/-weak RBMs
	RBM for Stochastic Galerkin Methods
	RBM for Stochastic Collocation Methods

	Conclusions

	Alternative Variance Error Bound
	Bibliography
	Lebenslauf
	Publikationen und Vorträge
	Danksagung
	Erklärung



