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Für meine Eltern





“Thermodynamik ist ein komisches Fach. Das erste Mal, wenn man sich
damit befasst, versteht man nichts davon. Beim zweiten Durcharbeiten
denkt man, man hätte nun alles verstanden, mit Ausnahme von ein oder
zwei kleinen Details. Das dritte Mal, wenn man den Stoff durcharbeitet,
bemerkt man, dass man fast gar nichts davon versteht, aber man hat
sich inzwischen so daran gewöhnt, dass es einen nicht mehr stört.”

Arnold Sommerfeld [1]
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Abstract

This work covers a revision of balance equations in moving geometries. Based on general
transport theorems, local equations of balance for volumes and surfaces are generally
derived. This set of equations is then used to derive a coupled thermo-electrodynamic
field theory, with local mass, momentum and energy densities. A mixture theory is then
employed, based on a local second law, for the description of liquid and solid electrolytes
(and thus also for intercalation electrodes). The application of this model framework is
straight forward applied to model a lithium ion battery on the cell level. Porous electrode
theory with a consistent reaction boundary condition is finally stated and compared to
standard modeling approaches.
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Overview and Summary

Mathematical modeling of lithium ion batteries is a key feature for a profound understand-
ing of the whole spectrum of phenomena occurring in such electrochemical systems. Due
to their inherent multiscale nature, batteries cannot be described with a single equation.
Contrary, it is necessary to fully understand the whole framework of coupled thermo-
and electrodynamics in order to derive consistent theoretical models in terms of partial
differential equations. In this sense, I carefully revise the derivation of field equations in
thermo-electrodynamics based on general balance equations.

Local field equations are essentially obtained from a generalization of the Leibniz inte-
gral rule, i.e. the prescription of exchanging a (parametric) derivative and a (volumetric)
integration. Chapter 1 covers the derivation of the Leibniz integral rule for volumes as
well as embedded surfaces and curves in R3. Applying this concept in the R3 with an
additional parameter t ∈ I, a step wise derivation of the general Reynold transport theo-
rem for time dependent volumes Ω(t), surfaces Σ(t) ∈ R3 and curves Ψ(t) ∈ R3 is given.
From a variational principle the local partial differential equation for scalar and vectorial
properties in the volume Ω(t) and on the surface Σ(t) are obtained. General coordinate
transformations between different Eulerian descriptions of a time dependent domain are
further investigated, leading to transformation laws of the local PDEs.

In chapter 2, the concept of density functions, i.e. the integral description of macroscopic
properties such as mass M or momentum ~p, is employed to derive local balance equations
for a mixture of n different species. With a derivation of Maxwells equations, based on
balance equations of flux properties, the momentum and energy of the electromagnetic
field are derived. It is then shown that neither energy nor momentum of the field is
conserved, as well as the momentum and kinetic energy of mass. Due to a local version of
Newtons second law, i.e. conservation of total momentum, the general Lorentz force (in a
field theoretical sense) for polarize and magnetizeable materials is derived. Similar, a local
version of the first law of thermodynamics introduces the internal energy density ρu and
states the conservation of total energy. The actual sink of kinetic- and electromagnetic
energy arises as source of internal energy.
Thermodynamics arises then with the introduction of an entropy function ρs, coupling

all the independent field variables. The second law of thermodynamics is then stated in
the form of a balance equation for ρs, with a non-negative source term rs, i.e. the entropy
production. With a similar formulation of the local second law for embedded surfaces, one
obtains the continuity condition of the chemical potential as well as the Young–Laplace
equation. The explicit exploitation of the local second law (i.e. the entropy principle)
leads to necessary conditions of the mass and heat flux, regarding their dependency on
the thermodynamic driving forces. Variable changes and transformations lead then to the
concept of the free energy, i.e. the Helmholtz free energy ρψ and the Gibbs free energy g,
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Overview and Summary

in a field theoretical sense. The concept of material functions is consequently introduced,
stating an explicit representation of the physical property g in terms of the unknown field
variables, e.g. g = g(T, p, c1, . . . , cn−1). Sketching the concept of Pfaffian forms and inte-
grability conditions, explicit material functions are further derived. The entropy function
is essentially obtained from two concepts of counting particles, i.e. the configurational
entropy in free space and on a lattice. Additional contributions to the material due to
pressure and temperature are briefly stated, leading finally to complete material functions
for an incompressible liquid electrolyte mixture as well as a solid electrolyte mixture (with
constant lattice). Note that these concepts cover also materials in which only uncharged
species are present.

Chapter 3 uses the framework derived in Chapter 2 for a thermodynamic consistent mod-
eling of an intercalation battery. After briefly sketching the setup of a common lithium
ion cell, separate models for the electrolyte and the electrode phase are developed. The
electrolyte is essentially modeled as an ideal, incompressible mixture. Generalized Poisson–
Nernst–Planck equations are then derived and compared to classical results. Assuming
further a strong electroneutrality condition leads to a generalized ohmic law for the cations
in the electrolyte phase, as well as a balance equations for the anions and a corresponding
heat equation.
Modeling of the porous electrode phase is hierarchically built up, starting from a single
particle model via a discrete many particle model finally leading to a porous electrode the-
ory. In the single particle model, the general balance equations for intercalated lithium on
a lattice structure are stated. Various material functions are briefly discussed, including
ideal and regular mixtures on a lattice, as well as phase boundary contributions. Based
on equilibrium conditions for all thermodynamic driving forces, the open circuit potential
of a cell is derived. With a regular solution model the open circuit potential of a two
particle electrode is investigated. It shows a homogenized phase separation, i.e. within
each particle the phases are homogenous, however, different from particle to particle. This
effect was also found to be the origin of hysteresis[2] in LiFePO4 based batteries. Stepping
further to a many particle model, porous electrode theory is motivated due to the huge
amount of single particles in a realistic battery electrode.
Averaging techniques are employed to derive homogenized balance equations of the mixed
electrode/electrolyte phase from the equation framework. The porous electrolyte phase is
then described with an averaged electrochemical potential of charge and an averaged anion
density as well as an averaged temperature. Based on the strong electroneutrality assump-
tion, a macroscopic ohmic law is derived, with a (macroscopic) volumetric source/sink
term covering the electrochemical intercalation reaction. The porous electrode, however,
is described with a multiscale variable θ̂(x, r, t), where the micro scale covers the amount
of intercalated lithium within a particle and the macro scale its actual position in space.
Based on a single electrode model, i.e. an ideal solution on a lattice, a multiscale transport
equation is derived, which covers the intercalation reaction as flux boundary condition.
A comparison to classically used models (i.e. the Newman model [3]) regarding the open
circuit potential is then briefly performed. It is shown that the Newman model actually
relays on a doubtable material model for the (microscopic) electrode particle. This cir-
cumstance is understood as cause of the thermodynamic inconsistent prediction1 of the
open circuit potential in porous electrode theory.
Finally, a thermodynamic consistent reaction rate model for the intercalation reaction is
stated. Dependent on the respective thermodynamic ansatz function (to ensure the local

1Actually an additional parameter is introduced in the model, fitted to experimental data, to correct this
circumstance.
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second law), either the Tafel- or the Buttler–Voler equation is obtained. The transition of
a Buttler–Voler-equation for porous electrodes is finally sketched, with a consistent incor-
poration of the open circuit potential.

In summary, the work is to be understood as a very basis of a thermodynamic consistent
modeling procedure to address a variety of questions arising in battery cell chemistry.
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1
Mathematical basics, transport theorems and

balance equations

In this chapter the mathematical basics are derived which are required to formulate a
coupled thermodynamic and electrodynamic field theory in chapter 2. It consist mainly of
the derivation of transport theorems, the formulation of balance equations and coordinate
transformations.

1.1 Transport theorems
The local equations of continuum mechanics, in general partial differential equations
(PDEs), are essentially obtained from global integral equations and the condition that
these global equations hold for each and every subset of the desired domain. Transport
theorems are used to exchange time derivatives and spatial integration, leading to expres-
sions like

ˆ

Ω(t)

hV (f(x, t), ∂tf(x, t),∇f(x, t), . . . ) dV = 0. (1.1)

Clearly, if this equation holds for arbitrary ω ⊂ Ω(t) one deduces via a variational principle
the local equation

hV (f(x, t), ∂tf(x, t),∇f(x, t), . . . ) = 0. (1.2)

Such local equations for scalar and vector fields in volumes, on surfaces and on curves will
gradually be derived in this section, following the hierarchy given in figure 1.1 and 1.2.
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1. Mathematical basics, transport theorems and balance equations

Surface Substitution

Volume Substitution
ˆ

⌦

f dV =

ˆ

⌦0
g dV 0

g = f · det (F )

Line Substitution

⌦ = �(⌦0)

⌃ = �(⌃0)

 = �( 0)

Leibniz Rule for parametric volume, surface and line integrals

Volume Substitution
d

dt

ˆ

⌦(t)

f(x) dV

Surface Substitution Line Substitution

Reynolds transport theorem for volumes, surfaces and lines f(x) ! f(x, t) f(x) ! f(x, t)

Reynold for Volumes Reynold for Areas Reynold for Lines

d

dt

ˆ

⌦(t)

f(x, t) dV

global volume, surface and line balance equations

Coordinate 
transformation

Volume, Surface, Line Integrals
⌦ = pV(V ), pV : V ⇢ R3 ! R3

⌃ = pA(S), pA : S ⇢ R2 ! R3

 = pC(I), pC : I ⇢ R ! R3

ˆ

⌃

fT · dA =

ˆ

⌃0
gT · dA0

g = det (F)FT · f

ˆ

 

fT · ds =

ˆ

 0
gT · ds0

g = FT · f

d

dt

ˆ

 (t)

fT(x) · ds

d

dt

ˆ

 (t)

fT(x, t) · ds
d

dt

ˆ

⌃(t)

fT(x, t) · dA

d

dt

ˆ

⌃(t)

fT(x) · dA

Figure 1.1.: Schematic overview and hierarchy of the derivation of Reynold’s transport
theorem for volumes, surfaces and curves. The diffeomorphism χ : R3 ⊃
Ω′ → Ω ⊂ R3 is the mapping function from the initial domain Ω′ to the
Eulerian domain Ω(t).
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1.1. Transport theorems
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!
=

ˆ

⌃(t)

RT(x, t) · dA
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dt
=

d

dt

ˆ
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Figure 1.2.: Schematic overview and hierarchy of the derivation of the local PDEs from
global balance or conservation equations. Coordinate transformations ensure
the formulation of the resulting PDEs in different frames of reference.
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1. Mathematical basics, transport theorems and balance equations

1.1.1 Integral transformations

At the very beginning in the derivation of transport theorems are integral transformations
on surfaces, volumes and curves. Usually, surface and line integral transformations are
performed with a diffeomorphism mapping the parametric domain of the desired surface
or curve to another one. Here, however, the diffeomorphism maps the embedded surface
in R3 onto another one in R3 (and similar for curves). Identifying the vector gradient
(or jacobian) of some general diffeomorphism as linear operator on the respective tangent
space allows generalization of linear transformation theorems. Based on this, paramet-
ric domains can be mapped onto some reference or fixed domain which allows then an
exchange of integration and the parametric derivative. This leads to generalizations of
the Leibniz integral theorem for volumes, surfaces and curves, and finally to Reynolds
transport theorem for termed manifolds. The order

• surface integrals

• volume integrals

• curve integrals

is due to the emphasis on surface transformations and its deviation from classical surface
integral transformations.

The transformation laws are derived via some descriptive examples on transformations
of parallelograms and parallelepipeds under linear transformations. These are then gener-
alized to transformations of arbitrary surfaces and volumes under linear transformations,
and finally studied for general diffeomorphisms.

Surface integrals

Let a parallelogram Σ be spanned by a and b and the offset x0, i.e. the graph of paral-
lelogram is given by

pA(u, v) = x0 + ua + vb (u, v) ∈ S = [0, 1]2. (1.3)

Then Σ = pA(S) ∈ R3 and the area of Σ is calculated via

area{Σ} =
ˆ

Σ

dA =
¨

S

∣∣∣∣∣∣∣∣∂ pA
∂ u

× ∂ pA
∂ v

∣∣∣∣∣∣∣∣ d(u, v) (1.4)

=
¨

S

||a × b|| d(u, v) (1.5)

= ||a × b|| . (1.6)

Since Σ is a surface embedded in R3, two kinds of surface integrals arise, either for scalar
functions f(x), x ∈ Σ or vector fields f(x).

Definition 1 (Surface integral of the first and second kind).
Let a surface Σ in the three dimensional space be parametrized by some graph pA(u, v), (u, v) ∈
S = [0, 1]2 and assume Σ = pA(S) is a regular surface (i.e. ∂ pA

∂ u and ∂ pA
∂ v are linear in-

dependent). The surface integral of the first kind of a function f(x), x ∈ Σ is then

14



1.1. Transport theorems

defined as
ˆ

Σ

f(x) dA(x) :=
¨

S

f(pA(u, v))
∣∣∣∣∣∣∣∣∂ pA
∂ u

× ∂ pA
∂ v

∣∣∣∣∣∣∣∣ d(u, v). (1.7)

For a vector field f(x) ∈ C∞(Rn), x ∈ Σ the surface integral of the second kind is
defined as
ˆ

Σ

fT(x) · dA(x) :=
¨

S

fT(pA(u, v)) ·
(
∂ pA
∂ u

× ∂ pA
∂ v

)
d(u, v) (1.8)

=
¨

S

fT(pA(u, v)) ·
∂ pA
∂ u ×

∂ pA
∂ v∣∣∣∣∣∣∂ pA

∂ u ×
∂ pA
∂ v

∣∣∣∣∣∣︸ ︷︷ ︸
=:n(pA(u,v))

∣∣∣∣∣∣∣∣∂ pA
∂ u

× ∂ pA
∂ v

∣∣∣∣∣∣∣∣ d(u, v) (1.9)

=
ˆ

Σ

fT(x) · n(x) dA(x). (1.10)

Sometimes the equivalent typeface
ˆ

Σ

fT(x) · dA(x) =
ˆ

Σ

〈f(x), dA(x)〉 =
ˆ

Σ

〈f(x),n(x)〉 dA(x) (1.11)

will also be used.

If a second parallelogram Σ′, spanned by a′ and b′ and the offset ξ0, is mapped onto Σ
by a (linear) transformation T : Σ′ ⊂ R3 → Σ ∈ R3 with ξ 7→ F · ξ and T (Σ′) = Σ, then

x0 = F · ξ0 (1.12)
a = F · a′ (1.13)
b = F · b′ (1.14)

and the graph of Σ could be written as

pA(u, v) = F · ξ0 + uF · a′ + vF · b′ (1.15)
= F · p′A(u, v). (1.16)

Hence, the integral of the first kind could be transformed (or traced back) to Σ′ via

ˆ

Σ

f(x) dA(x) =
ˆ

Σ′

f(F · ξ)|det (F) |

∣∣∣∣∣∣F−T · (a′ × b′)
∣∣∣∣∣∣

||a′ × b′|| dA′(ξ). (1.17)

Note in this case, since F,a′,b′,a and b are constant, the fraction

| det (F) |

∣∣∣∣∣∣F−T · (a′ × b′)
∣∣∣∣∣∣

||a′ × b′|| = area{Σ}
area{Σ′} (1.18)

corresponds to the area change due to the linear transformation T . Another interpretation,
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1. Mathematical basics, transport theorems and balance equations

or just typeface, is obtained by identifying

a′ × b′
||a′ × b′|| = n′, (1.19)

i.e. the unit normal vector of Σ′. The integral transformation due to the linear mapping
T (ξ) = F · ξ with T (Σ′) = Σ of the first kind surface integral could thus be written as

ˆ

Σ

f(x) dA(x) =
ˆ

Σ′

f(F · ξ)| det (F) |
∣∣∣∣∣∣F−T · n′∣∣∣∣∣∣ dA(ξ)′. (1.20)

Auxiliary calculation 1.1:
ˆ

Σ

f(x) dA(x) =
¨

S

f(pA(u, v))
∣∣∣∣∣∣∣∣∂ pA
∂ u

× ∂ pA
∂ v

∣∣∣∣∣∣∣∣ d(u, v)

=
¨

S

f(F · p′A(u, v))
∣∣∣∣∣∣∣∣(F∂ p′A

∂ u

)
×
(

F∂ p′A
∂ v

)∣∣∣∣∣∣∣∣ d(u, v)

=
¨

S

f(F · p′A(u, v))|det (F) |
∣∣∣∣∣∣∣∣F−T ·

(
∂ p′A
∂ u

× ∂ p′A
∂ v

)∣∣∣∣∣∣∣∣ d(u, v)

=
¨

S

f(F · p′A(u, v))| det (F) |
∣∣∣∣F−T · (a′ × b′)

∣∣∣∣ d(u, v)

=
¨

S

f(F · p′A(u, v))| det (F) |
∣∣∣∣F−T · (a′ × b′)

∣∣∣∣
||a′ × b′|| ||a′ × b′|| d(u, v)

=
ˆ

Σ′

f(F · ξ)| det (F) |
∣∣∣∣F−T · (a′ × b′)

∣∣∣∣
||a′ × b′|| dA′(ξ)

Generalizing this concept leads to the following lemma.

Lemma 1 (Transformation of surface integrals under linear transformation).
Let Σ′ be a surface in R3 with graph p′A(u, v), (u, v) ∈ S ⊂ R2 and T : R3 → R3 be a
linear transformation T (ξ) = F · ξ, ξ ∈ Σ′. Further, let Σ be the (embedded) surface in
R3 with Σ = T (Σ′) and det (F) 6= 0 ∀ξ ∈ Σ′. Then, for x ∈ Σ and x = T (ξ) = F · ξ

ˆ

Σ

f(x) dA(x) =
ˆ

Σ′

f(F · ξ)|det (F) |
∣∣∣∣∣∣F−T · n′∣∣∣∣∣∣ dA′(ξ) (1.21)

=
ˆ

Σ′

f(F · ξ) |det (F) |
∣∣∣∣∣
∣∣∣∣∣F−T ·

(
∂ p′A
∂ u

× ∂ p′A
∂ v

) ∣∣∣∣
ξ

∣∣∣∣∣
∣∣∣∣∣ dA′(ξ). (1.22)

Clearly, this lemma could be further generalized to arbitrary diffeomorphisms mapping
Σ′ onto Σ.
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1.1. Transport theorems

S 2 R2

⌃ 2 R3⌃0 2 R3
�(⇠)

⇠ 2 ⌃0 x 2 ⌃

(u, v)

p0
A(u, v) pA(u, v)

Figure 1.3.: The diffeomorphism χ : R3 → R3 maps the embedded surface Σ′ onto Σ. The
parametrization of Σ′ is p′A(u, v) while the parametrization of Σ is pA(u, v).
Even though Σ′ and Σ belong to the same parametric domain S, for a given
pair (u∗, v∗) in general p′A(u∗, v∗) 6= pA(u∗, v∗).

Theorem 1 (Transformation of surface integrals under diffeomorphisms).
Let Σ′ be a regular surface in R3 with graph p′A(u, v), (u, v) ∈ S ⊂ R2 and let χ : Σ′ →
Σ ⊂ R3 be a diffeomorphism with Σ′ 3 ξ 7→ χ(ξ) = x ∈ Σ. Then the graph of Σ is given
by pA(u, v) = χ(p′A(u, v)), (u, v) ∈ S and Σ is regular. If the vector gradient or Jacobian
of χ is abbreviated as

∇χ(ξ) =: F(ξ) (1.23)

then the surface integral of the first kind transforms as

ˆ

Σ

f(x) dA(x) =
ˆ

Σ′

|det (F) | f(χ(ξ))
∣∣∣∣∣∣F−T(ξ) · n(ξ)′

∣∣∣∣∣∣ dA′(ξ) (1.24)

and the surface integral of the second kind as
ˆ

Σ

fT(x) · dA(x) =
ˆ

Σ′

det (F) fT(χ(ξ)) · F−T(ξ) · dA′(ξ) (1.25)

=
ˆ

Σ′

det (F)
〈
F−1(ξ) · f(χ(ξ)), dA′(ξ)

〉
. (1.26)

Proof. Since χ is a diffeomorphism det (F) 6= 0. From the definition of the surface integral,
one writes

ˆ

Σ

f(x) dA(x) =
¨

S

f(pA(u, v))
∣∣∣∣∣∣∣∣∂ pA
∂ u

× ∂ pA
∂ v

∣∣∣∣∣∣∣∣ d(u, v). (1.27)

17



1. Mathematical basics, transport theorems and balance equations

With pA(u, v) = χ(p′A(u, v)) one obtains thus∣∣∣∣∣∣∣∣∂ pA
∂ u

× ∂ pA
∂ v

∣∣∣∣∣∣∣∣ (1.28)

=
∣∣∣∣∣∣∣∣(∇χ

∂ p′A
∂ u

)
×
(

∇χ
∂ p′A
∂ v

)∣∣∣∣∣∣∣∣ (1.29)

eq. (A.6)=| det
(
F(p′A(u, v))

)
| ·
∣∣∣∣∣∣∣∣F−T(p′A(u, v)) ·

(
∂ p′A
∂ u

× ∂ p′A
∂ v

)∣∣∣∣∣∣∣∣ (1.30)

=| det
(
F(p′A(u, v))

)
| ·
∣∣∣∣F−T(p′A(u, v)) ·

∂ p′A
∂ u ×

∂ p′A
∂ v∣∣∣∣∣∣∂ p′A

∂ u ×
∂ p′A
∂ v

∣∣∣∣∣∣︸ ︷︷ ︸
n(ξ)

∣∣∣∣ · ∣∣∣∣∣∣∣∣∂ p′A
∂ u

× ∂ p′A
∂ v

∣∣∣∣∣∣∣∣ (1.31)

= |det (F(ξ)) | ·
∣∣∣∣∣∣F−T(ξ) · n′(ξ)

∣∣∣∣∣∣ · ∣∣∣∣∣∣∣∣∂ p′A
∂ u

× ∂ p′A
∂ v

∣∣∣∣∣∣∣∣ ∣∣∣∣
ξ

(1.32)

where
∣∣∣∣∣∣∂ p′A

∂ u ×
∂ p′A
∂ v

∣∣∣∣∣∣ 6= 0 since Σ is regular (i.e. ∂ p′A
∂ u and ∂ p′A

∂ v are linear independent
∀(u, v) ∈ S). Hence
ˆ

Σ

f(x) dA(x) =
¨

S

f(χ(p′A(u, v))) · | det
(
F(p′A(u, v))

)
|

·
∣∣∣∣∣∣F−T(p′A(u, v)) · n′(p′A(u, v))

∣∣∣∣∣∣ · ∣∣∣∣∣∣∣∣∂ p′A
∂ u

× ∂ p′A
∂ v

∣∣∣∣∣∣∣∣ d(u, v) (1.33)

=
ˆ

Σ′

f(χ(ξ)) · | det (F(ξ)) | ·
∣∣∣∣∣∣F−T(ξ) · n′(ξ)

∣∣∣∣∣∣ dA(ξ). (1.34)

Quite similar, the definition of the second kind surface integral
ˆ

Σ

fT(x) · dA(x) =
¨

S

fT(pA(u, v)) ·
(
∂ pA
∂ u

× ∂ pA
∂ v

)
d(u, v). (1.35)

together with

∂ pA
∂ u

× ∂ pA
∂ v

= det
(
F(p′A(u, v))

)
F−T(p′A(u, v)) ·

(
∂ p′A
∂ u

× ∂ p′A
∂ v

)
(1.36)

leads to
ˆ

Σ

fT(x) · dA(x) =
¨

S

det
(
F(p′A(u, v))

)
fT(χ(p′A(u, v)))

· F−T(p′A(u, v)) ·
(
∂ p′A
∂ u

× ∂ p′A
∂ v

)
d(u, v) (1.37)

=
ˆ

Σ′

det (F(ξ)) fT(χ(ξ)) · F−T(ξ) · dA(ξ). (1.38)
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1.1. Transport theorems

Remark 1 (Nanson’s formula or relation).
The relationship

dA = | det (F) |F−T(ξ) dA′ (1.39)

between the differential dA and dA′, which one might conclude from equation (1.25), is
often called Nanson’s formula or relation.

Volume integral transformations

Similar to the derivation of surface integral transformations, I will start with a brief
derivation of volume integrals based on parallelepipeds and linear transformations of those.
This will then be generalized to diffeomorphisms on regular volumes and thus lead to the
volume integral transformation (i.e. multivariate integral substitution).
Let Ω be a parallelepiped spanned by a, b and c and the offset x0, i.e. the graph of Ω

is given by

pV (u, v, w) = x0 + ua + v b + w c (u, v, w) ∈ V = [0, 1]3 (1.40)

with Ω = pV (V ) ⊂ R3. The volume of Ω is calculated via

vol{Ω} =
ˆ

Ω

dV =
˚

V

∣∣∣∣(〈∂ pV
∂ u

,
∂ pV
∂ v
× ∂ pV

∂ w

〉)∣∣∣∣ d(u, v, w) (1.41)

=
˚

V

| det ((a,b, c))| d(u, v, w) (1.42)

= |det ((a,b, c))| (1.43)

This motivates the following definition of the volume integral.
Definition 2 (Volume integral).
Let a geometric object Ω in the three dimensional space be parametrized by some graph
pV (u, v, w), (u, v, w) ∈ V = [0, 1]3 with a regular volume Ω = pV (V ) (i.e. ∂ pV

∂ u ,∂ pV
∂ v , and

∂ pV
∂ w are pairwise linear independent). The volume integral of a function f(x), x ∈ Ω over

Ω is then defined as
ˆ

Ω

f(x) dV (x) :=
˚

V

f(pV (u, v, w))
∣∣∣∣〈∂ pV

∂ u
,

(
∂ pV
∂ v
× ∂ pV

∂ w

)〉∣∣∣∣ d(u, v, w). (1.44)

Consider another parallelepiped Ω′ (spanned by ξ0, a′,b′ and c′) with graph p′V (u, v, w),
(u, v, w) ∈ [0, 1]3, Ω′ = p′V (V ), and a linear transformation T , mapping Ω′ onto Ω, i.e.
T (Ω′) = Ω. Then the graph of Ω is obviously

pV (u, v, w) = F · p′V (u, v, w) (u, v, w) ∈ [0, 1]3 = V (1.45)
= F · ξ0 + uF · a′ + vF · b′ + wF · c′ (1.46)

and the volume integral of some arbitrary function f(x), x ∈ Ω over Ω could be traced
back to Ω′ via

ˆ

Ω

f(x) dV (x) =
ˆ

Ω′

f(F · ξ)|det (F) | dV ′(ξ). (1.47)
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1. Mathematical basics, transport theorems and balance equations

Auxiliary calculation 1.2:
ˆ

Ω

f(x) dV (x) =
˚

V

f(pV (u, v, w))
∣∣∣∣〈∂ pV

∂ u
,

(
∂ pV
∂ v

× ∂ pV
∂ w

)〉∣∣∣∣ d(u, v, w)

=
˚

V

f(F · p′V (u, v, w))
∣∣∣∣(F · a′)T ·

(
(F · b′)× (F · c′)

)∣∣∣∣ d(u, v, w)

=
˚

V

f(F · p′V )| det (F) | ·
∣∣(F · a′)T · F−T · (b′ × c′)

∣∣ d(u, v, w)

=
˚

V

f(F · p′V )| det (F) | · |〈a′,b′ × c′〉| d(u, v, w)

=
˚

V

f(F · p′V )| det (F) | ·
∣∣∣∣〈∂ p′V

∂ u
,

(
∂ p′V
∂ v

× ∂ p′V
∂ w

)〉∣∣∣∣ d(u, v, w)

=
ˆ

Ω′

f(F · ξ)| det (F) | dV ′(ξ).

Clearly, one is not restricted to parallelepipeds as volume objects in R3, which states the
following lemma.

Lemma 2 (Transformation of volume integrals under linear transformations).
Let Ω′ be a volume element in R3 with graph p′V (u, v, w), (u, v, w) ∈ V ⊂ R3 and T :
R3 → R3 be a linear transformation T (ξ) = F · ξ, ξ ∈ Ω′. Further, let Ω be the volume
obtained from from the linear transformation of Ω′, i.e. Ω = T (Ω′), and det (F) 6= 0.
Then, for x = T (ξ) = F · ξ the volume integral transforms according to

ˆ

Ω

f(x) dV (x) =
ˆ

Ω′

f(F · ξ)| det (F) | dV ′(ξ). (1.48)

Again, one is not restricted to linear transformations but could derive an integral trans-
formation for general diffeomorphisms.

Theorem 2 (Transformation of volume integrals under diffeomorphisms).
Let Ω′ be a regular volume in R3 with graph p′V (u, v, w), (u, v, w) ∈ V ⊂ R3 and let
χ : Ω′ → Ω ⊂ R3 be a diffeomorphism with Ω′ 3 ξ 7→ χ(ξ) = x ∈ Ω. Then the graph of
Ω is given by pV (u, v, w) = χ(p′V (u, v, w)), (u, v, w) ∈ V and Ω is regular. If the vector
gradient or jacobian of χ is abbreviated as

∇χ(ξ) =: F(ξ) (1.49)

then the volume integral transforms as
ˆ

Ω

f(x) dA(x) =
ˆ

Ω′

f(χ(ξ))| det (F(ξ)) | dA′(ξ). (1.50)

Proof. The proof is straight forward derived from equations (1.47)-(1.48) since the vector
gradient ∇χ is a linear map.
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1.1. Transport theorems

⌃
n

h lim
h!0

ˆ

⌦h

f(x) dV (x) =

ˆ

⌃

f
s
(x) dA(x)

n

⌦h

⌃

f(x)
f
s
(x)

Figure 1.4.: Formal derivation of a surface field f
s
(x) from a vanishing volume element and

a volume density f(x).

Besides the definition (1.8) of the surface integral of the first kind, one could also deduce
the surface integral from a limit process of some volume integral. Consider a surface Σ ∈ R3

embedded in a parallel volume element Ωh as shown in figure 1.4 . The surface Σ obeys
the parametrization pA(u, v), (u, v) ∈ S with Σ = pA(S) and

n =
∂ pA
∂ u ×

∂ pA
∂ v∣∣∣∣∣∣∂ pA

∂ u ×
∂ pA
∂ v

∣∣∣∣∣∣ (1.51)

Hence, Ωh is parametrized by

pV (u, v, w) = pA(u, v) + h · w n (u, v, w) ∈ [0, 1]3 = V (1.52)

and 〈
∂ pV
∂ w

,
∂ pV
∂ u

× ∂ pV
∂ v

〉
= h

〈
n, ∂ pA

∂ u
× ∂ pA

∂ v

〉
(1.53)

= h

∣∣∣∣∣∣∣∣∂ pA
∂ u

× ∂ pA
∂ v

∣∣∣∣∣∣∣∣ (1.54)

Next, consider a scalar field f which is a volumetric density of some finite integral
value Fh, i.e.

Fh =
ˆ

Ωh

f(x) dV (x). (1.55)

At some fixed position x one could build a small envelope of height h in normal direction
around some surface Σ and write the volume density as

f(x) ≈ 1
h
f
s
(x), (1.56)

where f
s
is the corresponding surface density. Note that f

s
is a surface density (2D

measure) while f is a volume density (i.e. 3D measure). Building hence the limit h → 0
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1. Mathematical basics, transport theorems and balance equations

one derives the surface value of F
s

= limh→0 Fh as

F
s

= lim
h→0

ˆ

Ωh

f(x) dV (x) (1.57)

= lim
h→0

˚

V

1
h
f
s
(pV (u, v, w))

〈
∂ pV
∂ w

,
∂ pV
∂ u

× ∂ pV
∂ v

〉
d(u, v, w) (1.58)

=
˚

V

lim
h→0

f
s
(pV (u, v, w))

∣∣∣∣∣∣∣∣∂ pA
∂ u

× ∂ pA
∂ v

∣∣∣∣∣∣∣∣ d(u, v, w) (1.59)

=
¨

S

f
s
(pA(u, v))

∣∣∣∣∣∣∣∣∂ pA
∂ u

× ∂ pA
∂ v

∣∣∣∣∣∣∣∣ d(u, v) (1.60)

=
ˆ

Σ

f
s
(x) dA(x). (1.61)

However, the rigorous definition of surface fields is a longstanding discussion, which
started with the work of J.W. Gibbs on surface tension. In this work I will always assume
either an interface has no independent existence, and thus no explicit surface field, or I will
state an explicit surface field. For further discussions on the derivation of surface fields I
refer to [4].

Line integrals

Beside surface and volume integrals, line integrals over some parametric curves in the
three dimensional space (e.g. a conductor loop) arise in the theory of balance equations
and transport theorems. However, the overall derivation is abbreviated and only the
definitions of the different kinds of line integrals as well as their transformation laws under
diffeomorphisms are given.

Definition 3 (Line integral of the first and second kind).
Let a curve C in the three dimensional space be parametrized by some graph pC(u), u ∈
L = [0, 1] with a piecewise smooth curve ΨC = pC(L). The line integral of the first
kind for a function f(x), x ∈ ΨC over the curve C is then defined as

ˆ

ΨC

f(x) ds(x) :=
ˆ

L

f(pC(u))
∣∣∣∣∣∣∣∣∂ pC
∂ u

∣∣∣∣∣∣∣∣ du (1.62)

and the line integral of the second kind for a vector field f(x) ∈ R3 as
ˆ

ΨC

f(x)T · ds(x) :=
ˆ

L

〈
f(pC(u)), ∂ pC

∂ u

〉
du. (1.63)

The length of a curve C is then simply obtained as

len{C} =
ˆ

ΨC
1 ds(x) =

ˆ

L

∣∣∣∣∣∣∣∣∂ pC
∂ u

∣∣∣∣∣∣∣∣ du. (1.64)

Theorem 3 (Transformation of line integrals under diffeomorphisms).
Let Ψ′ be a smooth curve in R3 with graph p′C(u), u ∈ L ⊂ R and let χ : Ψ′ → Ψ ⊂ R3

be diffeomorphism with Ψ′ 3 ξ 7→ χ(ξ) = x ∈ Ψ, Then the graph of Ψ is given by
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1.1. Transport theorems

pC(u) = χ(p′C(u)), u ∈ L and Ψ is smooth. Abbreviating again ∇χ =: F, the line
integral of the first kind transforms as

ˆ

Ψ

f(x) ds(x) =
ˆ

Ψ′

f(χ(ξ)) ||F(ξ) · n(ξ)|| ds′(ξ) (1.65)

and the line integral of the second kind as
ˆ

Ψ

f(x)T · ds(x) =
ˆ

Ψ′

fT(χ(ξ)) · F(ξ) ds′(x) (1.66)

=
ˆ

Ψ′

〈
FT(ξ) · f(χ(ξ)),n(ξ)

〉
ds′(ξ) (1.67)

Proof. Applying the definitions of the first kind line integral and pC(u) = χ(p′C(u)) leads
to

ˆ

Ψ

f(x) ds(x) =
ˆ

L

f(χ(p′C(u))) ·
∣∣∣∣∣∣∣∣F · ∂ p′C

∂ u

∣∣∣∣∣∣∣∣ du (1.68)

=
ˆ

L

f(χ(p′C(u))) ·
∣∣∣∣∣∣∣∣F · ∂ p′C

∂ u∣∣∣∣∣∣∂ p′C
∂ u

∣∣∣∣∣∣︸ ︷︷ ︸
=n(p′C(u))

·
∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∂ p′C

∂ u

∣∣∣∣∣∣∣∣ du (1.69)

=
ˆ

Ψ′

f(χ(ξ)) ||F(ξ) · n(ξ)|| ds′(ξ). (1.70)

Similar the transformation of the second kind line integral is derived.

Tensorial extensions

Due to the vectorial nature of some physical properties, e.g. momentum or electric flux,
the necessity of volume and surface integrals of vector fields arises. This extension is
essentially column wise and in general straight forward. However, in the context of
dyadic products some useful relationships are derived in this section.

Definition 4 (Vector integral).
Let f(s1, . . . , sn) = (f1(s1, . . . , sn), . . . , fm(s1, . . . , sn))T and fk, k = 1, . . . ,m be inte-
grable. Then

ˆ

f d(s1, . . . , sn) :=


´

f1 d(s1, . . . , sn)
...

´

fm d(s1, . . . , sn)

 =
(ˆ

fk d(s1, . . . , sn)
)
k=1,...,m

∈ Rm (1.71)

Definition 5 (Volume integral of vector fields).
The volume integral of a vector field f(x) = (f1(x), f2(x), f3(x)), x ∈ Ω over Ω is defined
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as

ˆ

Ω

f(x) dV (x) :=



˝

V

f1(pV (u, v, w))
∣∣∣〈∂ pV

∂ u ,
(
∂ pV
∂ v ×

∂ pV
∂ w

)〉∣∣∣ d(u, v, w)
˝

V

f2(pV (u, v, w))
∣∣∣〈∂ pV

∂ u ,
(
∂ pV
∂ v ×

∂ pV
∂ w

)〉∣∣∣ d(u, v, w)
˝

V

f3(pV (u, v, w))
∣∣∣〈∂ pV

∂ u ,
(
∂ pV
∂ v ×

∂ pV
∂ w

)〉∣∣∣ d(u, v, w).

 (1.72)

Definition 6 (Surface integral of tensor fields).
Let a surface Σ in the three dimensional space be parametrized by some graph pA(u, v), (u, v) ∈
S = [0, 1]2 with a regular surface Σ = pA(S) (i.e. ∂ pA

∂ u and ∂ pA
∂ v are linear independent).

The surface integral of the first kind for a vector field f(x) = (f1(x), f3(x), f3(x))T, x ∈
Σ over A is then defined as

ˆ

Σ

f(x) dA(x) :=



˜

S

f1(pA(u, v))
∣∣∣∣∣∣∂ pA

∂ u ×
∂ pA
∂ v

∣∣∣∣∣∣ d(u, v)
˜

S

f2(pA(u, v))
∣∣∣∣∣∣∂ pA

∂ u ×
∂ pA
∂ v

∣∣∣∣∣∣ d(u, v)
˜

S

f3(pA(u, v))
∣∣∣∣∣∣∂ pA

∂ u ×
∂ pA
∂ v

∣∣∣∣∣∣ d(u, v).

 (1.73)

For a matrix field F(x) = (f1, f2, f3) ∈ C∞(R3×3), x ∈ Σ the surface integral of the
second kind is defined as

ˆ

Σ

FT(x) · dA(x) :=



˜

S

fT1 (pA(u, v)) ·
(
∂ pA
∂ u ×

∂ pA
∂ v

)
d(u, v)

˜

S

fT2 (pA(u, v)) ·
(
∂ pA
∂ u ×

∂ pA
∂ v

)
d(u, v)

˜

S

fT3 (pA(u, v)) ·
(
∂ pA
∂ u ×

∂ pA
∂ v

)
d(u, v)

 (1.74)

=
ˆ

Σ
FT(x) · n(x) dA(x) (1.75)

Corollary 1 (Surface integral of the second kind for a dyadic product).
If a matrix field obeys F = g⊗ h then the surface integral of F could be written as

ˆ

Σ

(g(x)⊗ h(x))T · dA(x) =


´

Σ
h1(x) gT(x) · dA(x)
´

Σ
h2(x) gT(x) · dA(x)
´

Σ
h3(x) gT(x) · dA(x)

 (1.76)

=
ˆ

Σ

h(x) g(x)T · dA(x) (1.77)

=
ˆ

Σ

h(x) 〈g(x), dA(x)〉 (1.78)

The last notation is used to emphasize that the result of the integration is indeed a vector
again.

Of course, analogous definitions for the line integrals of the first and second kind of
vector and matrix fields hold.
The transformation laws of the tensor integrals are also column wise straight forward and
will not be discussed explicitly. Only their final transformation, i.e. the Reynold transport
theorem for vector and matrix fields will be given in section 1.1.3.
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1.1. Transport theorems

1.1.2 Leibniz integral rules

The Leibniz rules for parametric integrals are essentially the prescriptions how to exchange
the derivative and the integration of some function, when the integration domain depends
on the parameter of which a derivative is desired. This arises when volumes, surfaces
or curves are dependent on a time parameter, and the change of an overall property
(integral mean) with respect to time is required. Note that the parameter domains of
the surface and line integrals remain unchanged, while the embedded surface or curves
itself are transformed by the parameter. I will briefly derive the Leibniz rules for volumes,
surfaces and line integrals of scalar and vector fields.

Surface integrals

Consider now a parametric surface Σ(t) ∈ R3 which is allowed to change in time. This
is essentially the same as a parameter dependent diffeomorphism χ(ξ, t) (with F = ∇χ)
between Σ(t) and some (constant) reference surface Σ′. Clearly, theorem 1 is used to
compute

d
dt

ˆ

Σ(t)

fT(x) · dA(x) = d
dt

ˆ

Σ′

det (F(ξ, t)) fT(χ(ξ, t)) · F−T(ξ, t) · dA′(ξ) (1.79)

=
ˆ

Σ′

det (F)
(
dfT(χ(ξ, t))

dt

)
· F−T dA′(ξ)

+
ˆ

Σ′

d( det (F))
dt fT(χ(ξ, t)) · F−T dA′(ξ)

+
ˆ

Σ′

det (F) fT(χ(ξ, t)) · ∂F−T
∂t

· dA′(ξ) (1.80)

Next, some auxiliary calculations are required.

∂ χ(ξ, t)
∂ t

=: v′(ξ, t) (1.81)

∂ F(ξ, t)
∂ t

= ∂∇ξχ(ξ, t)
∂ ∂t

= ∇ξv′(ξ, t) =: G(ξ, t) (1.82)

If a velocity field v(x, t), x ∈ Σ(t) exists, satisfying

v(x, t) = v(χ(ξ, t), t) ≡ v′(ξ, t) (1.83)

one deduces further

∇ξv′(ξ, t) = ∇ξv(χ(ξ, t), t) = ∇χ(ξ,t)v′(χ, t) ·∇ξχ(ξ, t) = ∇xv(x, t) · F(ξ, t) (1.84)

⇔ ∇xv(x, t)
∣∣
x=χ(ξ,t) = G(ξ, t) · F−1(ξ, t) (1.85)

and

df(χ(ξ, t))
dt = ∇χ(ξ,t)f(χ) · ∂ χ(ξ, t)

∂ t
(1.86)

=
(
∇xf(x) · v(x, t)

)∣∣∣∣
x=χ(ξ,t)

(1.87)

25



1. Mathematical basics, transport theorems and balance equations

The right-hand side of integrals of eq. (1.80) consists of three terms which are now sepa-
rately rearranged in auxiliary calculations.

Auxiliary calculation 1.3:
ˆ

Σ′

det (F)
(
dfT(χ(ξ, t))

dt

)
· F−T dA′(ξ)

=
ˆ

Σ′

det (F)
(
vT(x, t)(∇xf(x))T) ∣∣∣∣

x=χ(ξ,t)
· FT dA′(ξ)

=
ˆ

Σ(t)

vT(x, t) · (∇xf(x))T · dA(x).

Auxiliary calculation 1.4:
ˆ

Σ′

d( det (F))
dt fT(χ(ξ, t)) · F−T dA′(ξ)

=
ˆ

Σ′

det (F) · tr
(

F−1 ∂ F
∂ t

)
fT(χ(ξ, t)) · F · dA′(ξ)

=
ˆ

Σ′

det (F) · tr(∇xv(x, t))
∣∣
x=χ(ξ,t) fT(χ(ξ, t)) · F · dA′(ξ)

=
ˆ

Σ′

det (F) · (divx v(x, t))
∣∣
x=χ(ξ,t) fT(χ(ξ, t)) · F · dA′(ξ)

=
ˆ

Σ(t)

(divx v(x, t)) fT(x) · dA(x)

Auxiliary calculation 1.5:
ˆ

Σ′

det (F) fT(χ(ξ, t)) · ∂F−T

∂t
· dA′(ξ)

= −
ˆ

Σ′

det (F) fT(χ(ξ, t)) ·
(
F−1 ·G(ξ, t) · F−1)T · dA′(ξ)

= −
ˆ

Σ′

det (F) fT(χ(ξ, t)) ·
(

F−1 ·∇xv(x, t)
∣∣
x=χ(ξ,t)

)T
· dA′(ξ)

= −
ˆ

Σ′

det (F) fT(χ(ξ, t)) ·
(

∇xv(x, t)
∣∣
x=χ(ξ,t)

)T
· F−T dA′(ξ)

= −
ˆ

Σ(t)

fT(x) · (∇v(x, t))T · dA(x)
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1.1. Transport theorems

Inserting the results of the three auxiliary calculations in eq. (1.80) leads to

d
dt

ˆ

Σ(t)

fT(x) · dA(x) =
ˆ

Σ

(∇f · v + (div v) f −∇v · f)T · dA(x) (1.88)

eq. (A.26)=
ˆ

Σ

(Div (f ⊗ v)−∇v · f − (div f) v + (div f) v)T · dA(x) (1.89)

eq. (A.36)=
ˆ

Σ

(curl (f × v) + (div f) v)T · dA(x) (1.90)

=
ˆ

Σ

(div f) vT · dA(x) +
˛

∂Σ

(f × v)T · ds(x), (1.91)

where the last equality was obtained by the Kelvin–Stokes theorem, and thus proofs the
following theorem.

Theorem 4 (Leibniz integral rule for second kind surface integrals).
Let Σ(t) be a regular surface obtained from a (regular) initial surface Σ′ by the diffeomor-
phism T : Σ′ × I → Σ(t)× I with

(ξ, t) 7→ (χ(ξ, t), t), (1.92)

i.e. T (I,Σ′) = (I,Σ(t)). Further, let the motion χ ∈ C∞(R3) and the velocity v(x, t), x ∈
Σ(t) satisfy

∂ χ(ξ, t)
∂ t

= v′(ξ, t) ≡ v(χ(ξ, t), t) = v(x, t). (1.93)

Then the second kind surface integral of (sufficient) smooth vector field f(x) over a para-
metric domain satisfies

d
dt

ˆ

Σ(t)

f(x) · dA(x) (1.94)

=
ˆ

Σ

(Div (f(x)⊗ v(x, t))−∇v(x, t) · f(x))T · dA(x) (1.95)

=
ˆ

Σ

(div f(x)) v(x, t)T · dA(x) +
˛

∂Σ

(f(x, t)× v(x, t))T · ds(x) (1.96)

Even though the surface integral of the first and second kind look quite similar, they
can be inherently different since a surface scalar field f

s
is not necessarily continuously

extendable into the surrounding domain. Thus, surface differential operators are required,
which are in detail explained in the appendix A.2.

Theorem 5 (Leibniz integral rule for first kind surface integrals).
Let the conditions be similar to theorem 4 and f

s
be a surface field. Then the Leibniz rule
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1. Mathematical basics, transport theorems and balance equations

for first kind surface integrals states the following relations,

d
dt

ˆ

Σ(t)

f
s
(x) dA(x) =

ˆ

Σ(t)

df
s
(x)

dt + f
s
div v− f

s
〈n,∇v · n〉 dA(x) (1.97)

=
ˆ

Σ(t)

div
s

(
f
s

v
)
dA(x) (1.98)

=
ˆ

Σ(t)

(∇
s
f
s
(x))T · v

s
+ f

s
div
s

v
s

+ f
s
vn κ dA(x) (1.99)

The definitions and derivations of the surface divergence div
s

, surface gradient ∇
s
, the mean

curvature κ and the decomposition v = 〈v,n〉n + v
s

= vn n + v
s
are given in A.2.

Proof. Let Σ′ be the initial surface and Σ(t) be obtained from the diffeomorphism T :
(I,Σ′) → (I,Σ(t)) = (I,χ(Σ′, t)). According to the transformation law for first kind
surface integrals (eq. 1.24)

d
dt

ˆ

Σ(t)

f
s
(x, t) dA = d

dt

ˆ

Σ′

f
s
(χ(ξ, t)) · | det (F(ξ, t)) | ·

∣∣∣∣∣∣F−T(ξ, t) · n′(ξ)
∣∣∣∣∣∣ dA′(ξ) (1.100)

with F = ∇χ(ξ, t). Note that n′ is independent of t, since the initial surface Σ′ is assumed
to be independent of the parameter (This case will be covered in a following corollary).
Some auxiliary calculations are required.

Auxiliary calculation 1.6:
Since f

s
(x) is a surface field, the product rule for surface proper-

ties (c.f. definition 16 ff.) states

df
s
(χ(ξ, t))

dt = (∇
s
f
s
(x))T · v(x, t) x ∈ Σ(t)

and ∇
s
f
s
(x) ∈ Tx(Σ(t)). With the tangential-normal decomposi-

tion v = v
s

+ vnn it holds(∇
s
f)T · v = (∇

s
f)T · v

s
.

Auxiliary calculation 1.7:

d
dt

∣∣∣∣∣∣
∣∣∣∣∣∣F−T · n′︸ ︷︷ ︸

=:ν

∣∣∣∣∣∣
∣∣∣∣∣∣ =

〈
ν, d F−T

d t · n′
〉

||F−T · n′|| = −
〈
ν, (G · F−1)T · FT · n′

〉
||ν||

= −
〈

ν

||ν||
, (G · F−1)T · ν

||ν||

〉
· ||ν||

= −
〈

n,∇v
∣∣
x=χ(ξ,t) · n

〉
·
∣∣∣∣F−T · n′

∣∣∣∣
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1.1. Transport theorems

Hence

d
dt

ˆ

Σ′

f
s
(χ(ξ, t)) · | det (F(ξ, t)) | ·

∣∣∣∣∣∣F−T(ξ, t) · n′(ξ)
∣∣∣∣∣∣ dA′(ξ) (1.101)

=
ˆ

Σ′

df
s
(χ(ξ, t))

dt | det (F(ξ, t)) | ·
∣∣∣∣∣∣F−T(ξ, t) · n′(ξ)

∣∣∣∣∣∣ dA′(ξ) (1.102)

+
ˆ

Σ′

f
s
(χ(ξ, t)) · divx v(x, t)

∣∣
x=χ(ξ,t)|det (F(ξ, t)) | ·

∣∣∣∣∣∣F−T(ξ, t) · n′(ξ)
∣∣∣∣∣∣ dA′(ξ)

−
ˆ

Σ′

f
s
(χ(ξ, t)) ·

〈
n,∇v

∣∣
x=χ(ξ,t) · n

〉
· | det (F(ξ, t)) | ·

∣∣∣∣∣∣F−T(ξ, t) · n′(ξ)
∣∣∣∣∣∣ dA′(ξ)

=
ˆ

Σ(t)

(∇
s
f
s
(x))T · v + f

s
(x) div v(x, t)− f

s
(x) 〈n,∇v(x, t) · n〉 dA(x). (1.103)

According to the definitions of the surface divergence

div v− 〈n,∇v · n〉 = div
s

v, (1.104)

the expression could be further rewritten as

d
dt

ˆ

Σ(t)

f
s
(x) dA =

ˆ

Σ(t)

(∇
s
f)T · v + f

s
div
s

v dA (1.105)

=
ˆ

Σ(t)

div
s

(f
s
v) dA. (1.106)

Splitting the velocity field in its tangential v
s
and normal component vn one obtains finally

d
dt

ˆ

Σ(t)

f
s
(x) dA =

ˆ

Σ(t)

(
div
s

(f
s
v
s
) + f

s
vn κ

)
dA, (1.107)

with the curvature κ = div
s

n.

Auxiliary calculation 1.8:
Since ∇

s
(f

s
vn) ∈ T (Σ) it holds

〈
∇
s

(f
s
vn),n

〉
= 0

and thus

div
s

(f
s
v) = div

s
(f

s
v
s
) + div

s
(f

s
vnn)

= div
s

(f
s
v
s
) +

〈
∇
s

(f
s
vn),n

〉
+ f

s
vn divs n

= div
s

(f
s
v
s
) + f

s
vnκ
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1. Mathematical basics, transport theorems and balance equations

Remark 2 (Material velocity).
A velocity field which satisfies v′(ξ, t) ≡ v(χ(ξ, t), t) = v(x, t) is calledmaterial velocity.
This is essentially deduced from a space-time transformation T : Σ′ × I ⊂ R → Σ(t) × I
with (ξ, t) 7→ T (ξ, t) = (χ(ξ, t), t) and is investigated in detail in section 1.3.
In general a surface could move with an arbitrary velocity w, which would be determined
by the surface momentum balance. In the further work, however, all singular surfaces
Σ are assumed to move with the material velocity and are thus material surfaces,
which is sufficient for the sake of this work.

Volume integrals

Clearly, not only time dependent surfaces occur in the derivation of the local balance
equations, but mainly time dependent domains Ω(t) ⊂ R3. The Leibniz rule will again be
derived by a pullback operation of the transient domain Ω(t) to some known domain Ω′ by
a diffeomorphism (ξ, t) → (χ(ξ, t), t). Applying theorem 2 and the auxiliary calculations
1.3 and 1.4 leads to

d
dt

ˆ

Ω(t)

f(x) dV (x) = d
dt

ˆ

Ω′

f(χ(ξ, t))det (F(ξ, t)) dV ′(ξ) (1.108)

=
ˆ

Ω′

〈∇xf(x),v(x, t)〉
∣∣
x=χ(ξ,t) det (F(ξ, t)) dV ′(ξ)

+
ˆ

Ω′

(divx v)
∣∣
x=χ(ξ,t) · f(χ(ξ, t)) det (F(ξ, t)) dV ′(ξ) (1.109)

=
ˆ

Ω(t)

〈∇f(x),v(x, t)〉+ (div v(x, t)) f(x) dV (x) (1.110)

=
ˆ

Ω(t)

div (f · v) dV (x) (1.111)

Applying the divergence theorem proofs the Leibniz rule for volume integrals.

Theorem 6 (Leibniz rule for volume integrals).
Consider a parametric domain Ω(t) ⊂ R3 with a regular, closed surface ∂Ω(t) ∈ R3 and a
diffeomorphism T : Ω′×I ⊂ R→ Ω(t)×I with (ξ, t) 7→ (χ(ξ, t), t) and T (Ω′, I) = (Ω(t), I).
Further, let the motion χ ∈ C∞(R3) and the velocity v(x, t), x ∈ Σ(t) satisfy

∂ χ(ξ, t)
∂ t

= v′(ξ, t) ≡ v(χ(ξ, t)) = v(x, t). (1.112)

Then, the exchange order of differentiation with respect to the parameter t and integration
with respect to space coordinates x ∈ Ω is computed via

d
dt

ˆ

Ω(t)

f(x) dV (x) =
ˆ

Ω(t)

div (f · v) dV (x) (1.113)

=
˛

∂Ω(t)

(f · v)T · dA(x). (1.114)
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Line integrals

A similar rule for derivatives of parametric line integrals exist, which is stated in the
following corollary.

Corollary 2 (Leibniz rule for line integrals of the second kind).
Consider a parametric curve Ψ(t) ∈ R3, which is piecewise smooth, and the boundary
∂Ψ(t) ∈ R3 being the two points x1

Ψ and x1
Ψ. A diffeomorphism T : Ψ′× I ⊂ R→ Ψ(t)× I

maps an initial space curve Ψ′ onto Ψ(t), with (ξ, t) 7→ (χ(ξ, t), t) and T (Ω′, I) = (Ω(t), I).
Further, let the motion χ ∈ C∞(R3) and the velocity v(x, t), x ∈ Σ(t) satisfy

∂ χ(ξ, t)
∂ t

= v′(ξ, t) ≡ v(χ(ξ, t)) = v(x, t). (1.115)

Then, the exchange order of differentiation with respect to the parameter t and integration
with respect to space coordinates x ∈ Ω is computed via

d
dt

ˆ

Ψ(t)

fT(x) ds(x) =
ˆ

Ψ(t)

(
∇f(x) · v(x, t) + (∇v(x, t))T · f(x)

)T
· ds(x) (1.116)

Proof. The proof is straight forward obtained from the theorem 3.

Since first kind surface integrals do not arise in the further derivation, it will be not be
discussed.

1.1.3 Reynolds transport theorems

Reynolds transport theorems are essentially generalizations of the Leibniz integral rules
for explicit time dependent functions, i.e. f(x)→ f(x, t), f(x)→ f(x, t).

Reynold for surfaces

Theorem 7 (Reynolds transport theorem for surfaces).
Let Σ(t) be a regular surface obtained from a (regular) initial surface Σ′ by the diffeomor-
phism T : Σ′ × I → Σ(t)× I with

(ξ, t) 7→ T (ξ, t) = (χ(ξ, t), t), (1.117)

i.e. T (Σ′, I) = (Σ(t), I). Further, let the motion χ ∈ C∞(R3) and the velocity v(x, t), x ∈
Σ(t) satisfy

∂ χ(ξ, t)
∂ t

= v′(ξ, t) ≡ v(χ(ξ, t)) = v(x, t). (1.118)
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1. Mathematical basics, transport theorems and balance equations

Then the second kind surface integral of a (sufficient) smooth vector field f(x, t) ∈ C∞(R3)
over a parametric domain satisfies

d
dt

ˆ

Σ(t)

f(x, t) · dA(x) (1.119)

=
ˆ

Σ(t)

(
∂ f(x, t)
∂ t

+ Div (f(x, t)⊗ v(x, t))−∇v(x, t) · f(x, t)
)T
· dA(x) (1.120)

=
ˆ

Σ(t)

(
∂f(x, t)
∂t

+ (div f(x)) v(x, t)
)T
· dA(x) +

˛

∂Σ(t)

(f(x)× v(x, t))T · ds(x). (1.121)

For a surface field f
s
(x) the first kind integral satisfies

d
dt

ˆ

Σ(t)

f
s
(x, t) dA(x) =

ˆ

Σ(t)

D
s
f
s
(x, t)

D
s
t

+ f
s
div v− f

s
〈n,∇v · n〉 dA(x) (1.122)

=
ˆ

Σ(t)

∂ f
s
(x, t)

∂ t
+ div

s
(f
s
v) dA (1.123)

=
ˆ

Σ(t)

∂ f
s
(x, t)

∂ t
+ div

s
(f
s
v
s
) + κ · f

s
vn dA(x). (1.124)

Proof. The proof is straightforward for the transition f(x)→ f(x, t) an the Leibniz integral
rule for surface integrals of the second kind (theorem 4) and of the first kind (theorem 5).
The operator

D
s
D
s
t

:= ∂

∂ t
+ vT · ∇

s
(1.125)

denotes the total (or material) surface derivative.

Reynold for volumes

The central transport theorem of continuum mechanics is surely Reynolds transport the-
orem for volume integrals. Since macroscopic extensive physical properties (e.g. mass,
charge, energy) are defined as volume integral over some respective density, the transport
theorem describes the transient evolution of such properties. However, in this section I
remain on the mathematical derivation this central theorem of continuum mechanics.

In principle, it follows directly from the Leibniz rule (theorem 6) and the transition
f(x)→ f(x, t). Thus, the scalar field f is said to be implicit and explicit time dependent
and the exchange rules of temporal and spatial integration are covered in the following
theorem.

Theorem 8 (Reynolds transport theorem for volume integrals).
Let Ω(t) ⊂ R3 be a parametric domain which is obtained from the diffeomorphism (ξ, t)→
(χ(ξ, t), t), i.e. Ω(t) = χ(Ω, t) with a regular, closed surface ∂Ω(t) ∈ R3, and let f be
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1.1. Transport theorems

a sufficient smooth scalar field f(x, t) x ∈ Ω(t), t ∈ I. If a material velocity v(x, t) ∈
C∞(R3) exits, obeying

v(x, t) = v(χ(ξ, t)) ≡ v′(ξ, t) := ∂ χ(ξ, t)
∂ t

, (1.126)

then the following relation holds, and is called Reynolds transport theorem (for volume
integrals),

d
dt

ˆ

Ω(t)

f(x, t) dV (x) =
ˆ

Ω(t)

(Df(x, t)
Dt + f(x, t) · div v(x, t)

)
dV (x) (1.127)

=
ˆ

Ω(t)

(
∂ f(x, t)
∂ t

+ div (f(x, t) · v(x, t))
)
dV (x) (1.128)

=
ˆ

Ω(t)

∂ f(x, t)
∂ t

dV (x) +
˛

∂Ω(t)

(f(x, t) · v(x, t))T dA(x). (1.129)

Proof. Again, the proof is straightforward obtained from the Leibniz rule of parametric
volume integrals (theorem 6). The operator

D
Dt = ∂

∂ t
+ vT · ∇ (1.130)

is called total or material derivative.

Reynold for lines

Finally, a version of Reynolds transport theorem for line integrals of the second kind also
exists, and will be given as the following corollary.

Corollary 3 (Reynolds transport theorem for line integrals).
Consider a parametric curve Ψ(t) ∈ R3, which is piecewise smooth and a diffeomorphism
T : Ψ′ × I ⊂ R → Ψ(t) × I mapping an initial space curve Ψ′ onto Ψ(t), with (ξ, t) 7→
(χ(ξ, t), t) and T (Ω′, I) = (Ω(t), I). Further, let the velocity v(x, t) be material, i.e.

∂ χ(ξ, t)
∂ t

= v′(ξ, t) ≡ v(χ(ξ, t)) = v(x, t). (1.131)

Then, the exchange order of differentiation with respect to the parameter t and integration
with respect to space coordinates x ∈ Ω is computed via

d
dt

ˆ

Ψ(t)

fT(x) ds(x) (1.132)

=
ˆ

Ψ(t)

(
∂ f(x, t)
∂ t

+ ∇f(x, t) · v(x, t) + (∇v(x, t))T · f(x, t)
)T
· ds(x). (1.133)
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Tensor valued transport theorems

Central for the later on derived momentum equation is a volume integral of a vector field
f(x, t) over a time dependent domain. The following theorems are straight forward derived
from the column wise definitions of volume, surface and vector integrals.

Corollary 4 (Reynolds transport theorem of vector fields for volume integrals).
Let Ω(t) ⊂ R3 be a parametric domain which is obtained from the diffeomorphism (ξ, t)→
(χ(ξ, t), t), i.e. Ω(t) = χ(Ω, t) with a regular, closed surface ∂Ω(t) ∈ R3, and let f be a
sufficient smooth vector field f(x, t) x ∈ Ω(t), t ∈ I. If a material velocity v(x, t) ∈
C∞(R3) exits, obeying

v(x, t) = v(χ(x, t), t) ≡ v′(ξ, t) := ∂ χ(ξ, t)
∂ t

, (1.134)

then the following relation holds, and is called Reynolds transport theorem of vector fields
for volume integrals,

d
dt

ˆ

Ω(t)

f(x, t) dV (x) =
ˆ

Ω(t)

(
∂ f(x, t)
∂ t

+ Div (f(x, t)⊗ v(x, t))
)
dV (x) (1.135)

=
ˆ

Ω(t)

∂ f(x, t)
∂ t

dV (x) +
˛

∂Ω(t)

(f(x, t)⊗ v(x, t))T dA(x). (1.136)

Since in the later derivation of the momentum equation only time derivatives of vector
valued volume integrals occur, Reynolds theorem for surface integrals of vector or tensor
functions will not be stated. Note, however, that it is the basis for the momentum balance
on surfaces.

1.2 Equations of balance

Each (extensive) scalar physical property A(t) with units [U ] may be written as

A(t) = AΩ(t) +AΣ(t) (1.137)

=
ˆ

Ω

a(x, t) dV (x) +
ˆ

Σ

a
s
(x, t) dA(x), (1.138)

where AΩ is called the volume value and AΣ the (singular) surface value of A(t). The
respective local fields are the volume density a(x, t) and the surface density a

s
(x, t). The

distinction becomes necessary, for example, if a reactive species is present in gas or liquid
phase and as an adsorbed species on a surface. Note that the surface density a

s
could be

derived from the pillbox principle and the limit of an infinitesimal small volume integral
(c.f. eqn. (1.57) ff). If, however, no singular surface is present A(t) = AΩ(t).
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Figure 1.5.: Sketch of the domain Ω containing the (singular) surface Σ with volumetric
sources ra and fluxes as well as surface sources and fluxes.

In this chapter, the mathematical structure of integral equations is investigated, where
the macroscopic property A(t) is assumed to change in time due to

• JA(t), a flux of the property through the boundary of Ω,

• J
sA

(t), a flux through the boundary of the singular surface Σ,

• RA(t), volumetric sources or sinks,

• and R
s A

(t), sources or sinks on the singular surface.

Hence

dA(t)
dt = dAΩ(t) +AΣ(t)

d = JA(t) + J
sA

(t) +RA(t) +R
s A

(t), (1.139)

and this equation is called global equation of balance. Assuming further that flux and
source could be described locally, i.e.

• the volumetric flux ja(x, t)
[

U
m2 s

]
into Ω with

JA(t) =
˛

∂Ω

jTa · dA,

• the (tangential) surface flux j
s
a(x, t)

[
U
ms

]
into Σ with

J
sA

(t)(t) =
˛

∂Σ

j
s
T
a · ds,
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1. Mathematical basics, transport theorems and balance equations

• the net volumetric production rate ra
[

U
m3 s

]
with

RA(t) =
ˆ

Ω

ra dV,

• and the net surface production r
sa
[

U
m2 s

]
with

R
s A

(t) =
ˆ

Ω

r
sa
dA.

This assumption is rigorously stated in section 2.1.2 (assumption 2, balance equation
representation). The global equation of balance can hence be written as

d
dt

ˆ
Ω

a(x, t) dV +
ˆ

Σ

a
s
(x, t) dA(x)

 = −
ˆ

∂Ω

ja(x, t)T · dA(x)−
ˆ

∂Σ

j
s
a(x, t)T · ds(x)

+
ˆ

Ω

ra(x, t) dV (x) +
ˆ

Σ

r
sa

(x, t) dA(x). (1.140)

The sign of ja(x, t) is chosen such that at ∂Ω the flux points into the domain Ω. Note
further that the flux ja(x, t) is the net flux of the density a relative to the (possibly)
moving domain Ω, and similar j

s
a the surface flux with respect to the moving surface Σ.

Of course, a similar global equation of balance holds for a vectorial property ~B, and the
extension is just straight forward according to the definitions of vectorial integral trans-
formations.

Despite volumetric rate equations, another class of global balance equations arise in the
formulation of thermo-electroynamics. Consider a singular surface Σ containing a curve
Ψ. Now a (flux) property C(t) is considered with its corresponding flux density c(x, t),
i.e.

~C(t) =
ˆ

Σ

cT(x, t) · dA. (1.141)

This global flux property is assumed to change in time due to

• a flow ~JC(t) through the boundary of Σ with flow density jc(x, t) and

~JC(t) = −
˛

∂Σ

jc(x, t)T · ds,

• a production ~RC(t) on Σ with density rc(x, t) and

~RC(t) =
ˆ

Σ

rc(x, t) dA
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1.2. Equations of balance

• a production ~R
s C

(t) on Σ with density r
sc(x, t) with

~R
s C

(t) =
ˆ

∂Σ

r
sc(x, t) ds

The flux property itself has no corresponding value on the singular line, leading to the
global flux balance equation

dC(t)
dt = ~JC(t) + ~RC(t) + ~R

s C
(t) (1.142)

d
dt

ˆ

Σ

cT(x, t) · dA = −
ˆ

∂Σ

jTc (x, t) · ds +
ˆ

Σ

rTc (x, t) · dA +
ˆ

Ψ

r
s
T
c (x, t) · ds. (1.143)

1.2.1 Volume balance equations
For domains Ω which contain no singular surface Reynolds transport theorem (8) and the
volume divergence theorem 11 are applied to deduce the global volume equation of
balance, i.e.

d
dt

ˆ

Ω

a(x, t) dV =
ˆ

Ω

∂ a(x, t)
∂ t

+ div (a(x, t) · v(x, t)) dV (1.144)

= −
ˆ

Ω

div ja(x, t)− ra(x, t) dV. (1.145)

This is yet a global balance equation as the integration is still performed over the whole
material domain Ω. Since no operations on the integral itself are performed anymore, one
assumes1 that this relation holds for every ω ⊂ Ω, i.e.

ˆ

ω

∂ a(x, t)
∂ t

+ div
(
a(x, t) · v(x, t) + ja(x, t)

)
− ra(x, t) dV = 0 ∀ω ⊂ Ω, (1.146)

which finally leads to the local volume equation of balance

∂ a(x, t)
∂ t

= −div
(
a(x, t) · v(x, t) + ja(x, t)

)
+ ra(x, t) ∀x ∈ Ω. (1.147)

The term a(x, t) · v(x, t) + ja(x, t) is sometimes abbreviated as total flux ia(x, t).

1This is raised to the definition of the continuum hypothesis in section 2.1.

37



1. Mathematical basics, transport theorems and balance equations

⌦+

⌦�

⌃(t)

n
v

⌃�

⌃+

h

⇧
x0

�+

��
�

�h

!� !+

Figure 1.6.: Sketch of a volume element Ω which is divided into Ω+ and Ω− by the singular
surface Σ. The pillbox ω+ ∪ ω− shrinks to the surface element σ as h→ 0.

1.2.2 Surface balance equations

Quite similar to volume properties the local equation of balance for singular surfaces is
obtained from a global balance equation and Reynolds theorem for surfaces. The global
equation of balance for singular surfaces reads

d
dt

ˆ

Σ

a
s
(x, t) dA =

ˆ

Σ

∂ a
s
(x, t)
∂ t

+ div
s

(a
s

v
s
) + κ a

s
(x, t)vn dA (1.148)

= −
ˆ

Σ

div
s

j
s
a(x, t)− rsa(x, t) dA (1.149)

and is obtained from the Reynold theorem for surfaces (7) an the surface Gaussian theorem
13. Using again the condition that this equation holds for all legal subsurfaces σ ∈ Σ one
obtains the local equation of balance for singular surfaces

∂ a
s
(x, t)
∂ t

= −div
s

(a
s
(x, t)v

s
+ j

s
a)− κ as(x, t) vn + r

sa
(x, t) ∀x ∈ Σ. (1.150)

1.2.3 Volume balance equations containing singular surfaces

Next, consider a volume Ω = Ω+ ∪ Ω− with Ω+ ∩ Ω− = Σ and ∂ Ω+ = Σ+ ∪ Σ, ∂Ω− =
Σ− ∪ Σ.
For any subvolume ω which is either completely in Ω+ or Ω−, the local balance equation

(1.147) holds. Subvolumes which intersect Σ obey at the interface some jump conditions
which will now be derived. It is convenient to introduce the jump brackets J·K for a
property a(x, t), x ∈ Σ where n denotes the outward normal of Σ (here, pointing into
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1.2. Equations of balance

Ω+),

Ja(x, t)K :=a+(x, t)− a−(x, t) x ∈ Σ (1.151)

a+(x, t) := lim
h→0

a(x + h · n, t) x + h · n ∈ Ω+ (1.152)

a−(x, t) := lim
h→0

a(x− h · n, t) x− h · n ∈ Ω−. (1.153)

Quite similar to the alternative definition of a surface property via a shrinking volume
element (c.f. page 21) the jump conditions will be derived with a pillbox argument[5].
Consider a volume element ω = ω+ ∪ ω−, ω+ ∈ Ω+, ω− ∈ Ω− which is an orthogonal
extension of a surface element σ ∈ Σ into Ω+ and Ω−, namely the pillbox

p(u, v, w) = pA(u, v) + h · wn (u, v) ∈ S,w ∈ [−1, 1] (1.154)

with pA(S) = σ and p(S × [−1, 1]) = ω. According to the definition of the pillbox, the
boundary ∂ω could further decomposed into the parallel components σ± := σ ± hn and
the skin surface σh := ∂σ + [−h, h]n with

lim
h→0

σ± = σ (1.155)

lim
h→0

σh = ∂σ. (1.156)

Note that for pC(L) = ∂σ the skin surface is parametrized via

p(v, w) = pL(v) + h · wn v ∈ L,w ∈ [−1, 1]. (1.157)

The (global) balance equation for the volume element ω is hence

d
dt

ˆ

ω

a(x, t) dV + d
dt

ˆ

σ

a
s
(x, t) dA(x) =

ˆ

ω

ra(x, t) dV −
˛

∂ω

jTa · dA(x)

+
ˆ

σ

r
sa

(x, t)− div
s

j
s
a dA(x). (1.158)

Next, the limit h→ 0 is carried out. For the first part of the left hand side one deduces

lim
h→0

d
dt

ˆ

ω

a(x, t) dV = lim
h→0

 ˆ
ω

∂ a

∂ t
dV +

˛

∂ω

avT · dA

 (1.159)

=
ˆ

σ

Ja(x, t)vT(x, t)K · n dA (1.160)

according to the auxiliary calculations 1.9 and 1.10. Similar calculations show

lim
h→0

 ˆ
ω

ra(x, t) dV −
˛

∂ω

jTa · dA(x)

 = −
ˆ

σ

JjTa K · n dA (1.161)
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1. Mathematical basics, transport theorems and balance equations

and thus finally
ˆ

σ

(
∂ a

s
∂ t

+ div
s

(a
s

v
s

+ j
s
a) + κ a

s
vn + JavT + jTa K · n− r

sa

)
dA = 0. (1.162)

Again, this equation is supposed to hold for every σ ∈ Σ and thus the local surface
balance with jump conditions is obtained,

∂ a
s

∂ t
= −div

s
(a
s

v
s

+ j
s
a)− κ asvn + r

sa
− JavT + jTa K · n ∀x ∈ Σ. (1.163)

Auxiliary calculation 1.9:

lim
h→0

ˆ

ω

∂ a(x, t)
∂ t

dV

= lim
h→0

1
ˆ

−1

¨

S

∂ a(p(u, v, w), t)
∂ t

∣∣∣∣〈 ∂ p
∂ w

,

(
∂ p
∂ u
× ∂ p
∂ v

)〉∣∣∣∣ d(u, v, w)

=
1
ˆ

−1

¨

S

lim
h→0

h


∂ a(p

s
+ h · wn, t)

∂ t︸ ︷︷ ︸
<∞

∣∣∣∣∣∣
〈

n,

∂ p
s

∂ u
×
∂ p

s
∂ v

〉∣∣∣∣∣∣︸ ︷︷ ︸
<∞

 d(u, v, w) = 0

Auxiliary calculation 1.10:

lim
h→0

˛

∂ω

a(x, t)v(x, t) · dA

= lim
h→0

 ˆ
σ+

a(x, t)v(x, t) · dA−
ˆ

σ−

a(x, t)v(x, t) · dA +
ˆ

σh

a(x, t)v(x, t) · dA


= lim
h→0

¨

S

a(p
s

+ h · n, t)vT(p
s

+ h · n, t) ·

∂ p
s

∂ u
×
∂ p

s
∂ v

 d(u, v)

− lim
h→0

¨

S

a(p
s
− h · n, t)vT(p

s
− h · n, t) ·

∂ p
s

∂ u
×
∂ p

s
∂ v

 d(u, v)

+ lim
h→0

h ·


1
ˆ

−1

ˆ

L

a(pb(v) + hwn, t)vT(pb(v) + hwn, t)
(
∂ pb
∂ v
× n

)
d(v, w)

︸ ︷︷ ︸
<∞


=
ˆ

σ

a+(x, t)v+(x, t)− a−(x, t)v−(x, t) dA =
ˆ

σ

JavK · n dA

Note the minus sign in front of
´

σ− avT dA due to the orientation of σ−.
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1.2. Equations of balance

Flux Balance equations

Reynolds transport theorem for second kind surface integrals states

d
dt

ˆ

Σ

cT(x, t) · dA =
ˆ

Σ

(
∂ c(x, t)
∂ t

+ (div c) · v(x, t)
)T
· dA(x) (1.164)

+
˛

∂Σ

(c(x, t)× v(x, t))T · ds(x). (1.165)

Hence, the global equation of balance for flux density c reads
ˆ

Σ

∂ cT(x, t)
∂ t

· dA = −
ˆ

Σ

((div c(x, t)) · v(x, t)− rc(x, t))T · dA

−
ˆ

∂Σ

(jc(x, t) + c(x, t)× v(x, t))T · ds. (1.166)

Applying the Kelvin–Stokes theorem leads to the local balance equation of flux prop-
erties

∂ c(x, t)
∂ t

= −curl (jc(x, t) + c(x, t)× v(x, t))− (div c) · v(x, t) + rc(x, t). (1.167)

If this equation is supposed to hold for every arbitrary ω ∈ Ω it is the resulting local
balance equation.

Flux balance equations containing singular lines

If the surface Σ = pA(S) is divided into two parts Σ+ and Σ− by a line2 Ψ = pC(L),
similar to the pillbox in the volume a pipe of width h around a curve ψ ⊂ Ψ could be
built. For a given point x0 ∈ ψ there exist (u0, v0) ∈ S and w0 ∈ L with

x0 = pC(w0) = pA(u0, v0) (1.168)

t = ∂ pC(w)
∂ w

∣∣
w=w0

∈ Tx0(Σ) (1.169)

n =
∂ pA(u,v)

∂ u × ∂ pA(u,v)
∂ v∣∣∣∣∣∣∂ pA(u,v)

∂ u × ∂ pA(u,v)
∂ v

∣∣∣∣∣∣
∣∣∣∣
(u,v)=(u0,v0)

∈ Nx0 (1.170)

b := t× n
||t× n|| (1.171)

Tx0 = span {t,b} (1.172)

Consider small domain σ = σ+ ∪ σ− ∈ Σ such that3

p(u, v) = pL(u) + h · v t× n (u, v) ∈ S′ (1.173)
p(S′) = σ (1.174)

2in general this line is obtained by intersecting two surfaces.
3The domain is chosen small enough to ensure n = const. and t = const.
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Figure 1.7.: Sketch of a 2-D pillbox σ = σ+ ∪ σ− on a surface Σ. At a fixed point x0
the tupel (n, t,b) is the Frenet–Serret frame with the normal vector n, the
tangent vector t and the binormal vector b. The surface curve Ψ is obtained
from intersecting Σ with another surface Σ′.

and with boundary components ∂σ = ψ+ ∪ ψ− ∪ ψh such that

lim
h→0

ψ± = ψ (1.175)

lim
h→0

ψh = ∂ψ. (1.176)

The jump bracket on the surface is defined analogous, but instead of n as pointer the
binormal vector b is used, i.e.

Jc(x, t)K :=c+(x, t)− c−(x, t) x ∈ Ψ (1.177)

c+(x, t) := lim
h→0

c(x + h · b, t) x + h · b ∈ Σ+ (1.178)

c−(x, t) := lim
h→0

c(x− h · b, t) x− h · b ∈ Σ−. (1.179)

Again, the local balance equation for points on the curve Ψ are obtained from the global
balance equation for σ = σ+ ∪ σ−, ψ = σ+ ∪ σ− and h→ 0, i.e.

lim
h→0

ˆ

σ

∂ cT(x, t)
∂ t

· dA = − lim
h→0

ˆ

σ

((div c(x, t)) · v(x, t)− rc(x, t))T · dA

− lim
h→0

ˆ

∂σ

(jc(x, t) + c(x, t)× v(x, t))T · ds

+
ˆ

ψ

r
s
T
c (x, t) · ds. (1.180)

Similar to the pillbox limit in the volume, all contributions from surface properties
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1.2. Equations of balance

vanish, i.e.

lim
h→0

ˆ

σ

∂ cT(x, t)
∂ t

· dA = 0 (1.181)

lim
h→0

ˆ

σ

((div c(x, t)) · v(x, t)− rc(x, t))T · dA = 0. (1.182)

Together with the auxiliary calculation 1.11 and the assumption that equation (1.180)
holds for every ψ ⊂ Ψ the jump conditions for vector fields on singular points

Jjc(x, t) + c(x, t)× v(x, t)K = r
sc(x, t) ∀x ∈ Ψ (1.183)

are obtained.

Auxiliary calculation 1.11:

lim
h→0

ˆ

∂σ

(jc(x, t) + c(x, t)× v(x, t))T · ds

= lim
h→0

ˆ

ψ

(jc(x + hn, t) + c(x + hn, t)× v(x + hn, t))T · ds

− lim
h→0

ˆ

ψ

(jc(x− hb, t) + c(x− hb, t)× v(x− hb, t))T · ds

+ lim
h→0

ˆ

ψh

(jc(x, t) + c(x, t)× v(x, t))T · ds

=
ˆ

σ

Jjc(x, t) + c(x, t)× v(x, t)KT · ds

1.2.4 Summary balance equations
In the proceeding chapter local balance equations were derived via transport theorems
and global balance equations. Volume elements containing a singular surface obey some
jump conditions which were derived from a pillbox argument. Of course, a tensorial
extension of the derived local balance equations is possible, and also necessary for the
momentum balance. It is again a straight forward extension according to the definitions
in section 1.1.1. In the next section coordinate transformations are carried out to derive
the equivalent balance equations in various frames of reference.
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1.3 Coordinate transformations

For the description of a physical object a variety of useful frames of references exist.
Nevertheless, inertial frames of reference are desired since Newton’s law of inertia holds
in its simplest form, or in other words, no fictitious forces are present. Two inertial (or
Galilean) frames of reference are related by a Galilei-transformation T 0

G : Ω0×I → Ωx(t) ⊂
R3 × I with

(ξ, τ) 7→
(
A · ξ + v′ · τ, τ

)
= (x, τ). (1.184)

It describes the coordinate transformation due to translation (with respect to some con-
stant velocity field v) and some rotation (with rotational matrix A) of ξ to x. The Galilei
transformation could be generalized for a velocity field, i.e. a space dependent property
v(ξ), which leads to TG : Ω0 × I → Ωx(t)× I with

(ξ, t) 7→
(
A · ξ + v′(ξ) · t, t

)
= (x, t) (1.185)

This is still a Galilei transformation as the velocity field is assumed to be constant with
respect to time; nevertheless the v is a field.
Of course, when electrodynamics comes into play or when the velocity v is close to speed
of light c0 the group of Galilei-transformations is not anymore the one which transforms
inertial systems onto each other. However, the Lorentz-transformation T 0

L : Ω0 × I →
Ωx(t) ⊂ R3 × I with

(ξ, τ) 7→
(
A · ξ + γ v′ · τ + (γ − 1)〈ξ,v

′〉
||v||2

· v′, γ τ + 1− γ2

γ

〈ξ,v′〉
||v||2

)
= (x, t) (1.186)

takes this function and thus substitutes the Galilei-transformation. Clearly, for γ → 1 the
Lorentz-transformation is approaching the Galilei-transformation. For the sake of simplic-
ity I rely on Galilei-transformations, while knowing that the actual Maxwell’s equations
are only invariant under Lorentz-transformations. Whenever relativistic effects are crucial
it will be discussed at that position.

After a brief introduction on Eulerian and Lagrangian coordinates a derivation of the
transformation laws[6] between Lagrangian and Eulerian as well as between two Eulerian
coordinate systems will given in this section.

1.3.1 Transformation between Eulerian and Lagrangian coordinates

Consider the initial domain Ω0 ∈ R3 with space coordinates ξ ∈ Ω0 and consider an
arbitrary velocity field v̂x(ξ), describing the motion of observers4, or simply, a fluid.
The corresponding Galilei-transformation is thus TG : Ω0 × I → Ωx(t) ⊂ R3 × I with
(ξ, t) 7→

(
ξ + v̂x(ξ) · t, t

)
= (x, t). However, a general coordinate transformation for a

4The term observer is used here to emphasises that one knows the actual velocity field without interacting
with the field itself.
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Lagrangian coordinates
Eulerian coordinates

x 2 ⌦x(t)

y 2 ⌦y(t)

�x(⇠, t)

�y(⇠, t)

⇠ 2 ⌦0

��1
x (x, t)

v̂x(⇠, t)

v̂y(⇠, t)

Lagrangian coordinates

vx(x, t)

vy(x, t)

vx(y, t)

vy(y, t)

v1 = vx(x, t)

v2 = vy(y, t)

vD = v1 � v2

Velocity fields

⌘(y, t) (= �x � ��1
y )

⌘�1
�
= �y � ��1

x

�

��1
y (y, t)

Figure 1.8.: Description of Lagrangian and Eulerian coordinates with two different mate-
rial velocities vx and vy (and their corresponding coordinates x and y).

given, transient velocity field v̂x(ξ, t) is hence a map5

T : Ω0 × I → Ωx(t) ⊂ R3 × I (1.187)

(ξ, t) 7→ T (ξ, t) =
(

ξ +
ˆ t

t0

v̂x(ξ, τ)dτ︸ ︷︷ ︸
=χx(ξ,t;t0)

, t
)

= (x, t) (1.188)

and χx(ξ, t; t0) is called motion. Since t0 is always chosen as reference or initial time,
t0 = 0, the motion will be abbreviated as χx(ξ, t). The pair (ξ, t) are called Lagrangian
coordinates (often in literature also material coordinate). Clearly the velocity field v̂x
coincides with the temporal derivative of the motion, i.e.

∂ χx(ξ, t)
∂ t

= v̂(ξ, t). (1.189)

The velocity field of the observer is yet undetermined. A variety of useful velocity fields
for an observer are imaginable, e.g.

• the barycentric velocity vM , obtained from a mass flux

• the electric drift velocity vC , obtained from the electric current

• or just an arbitrary velocity field.

Let exemplarily v1 be an arbitrary observer velocity field. If v1 could be expressed in

5Of course, even more general transformations are considerable, e.g.

(ξ, t) 7→ T (ξ, t) = (A · ξ +
ˆ t

t0

v̂x(ξ, τ)dτ, t),

but within this work the simplified transformation (1.187) is satisfactory.
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1. Mathematical basics, transport theorems and balance equations

terms of the Lagrangian coordinates as

v1 = v̂x(ξ, t) (1.190)

it serves thus for the general coordinate transformation (1.187).

Possibly an explicit expression (or relationship to other physical properties) of the ve-
locity field v̂x(ξ, t) in the Lagrangian coordinates (ξ, t) is not elementarily accessible.
However, if a coordinate system x ∈ Ωx(t) is chosen such that an explicit expression of v1

is possible,

v1 = vx(x, t), (1.191)

it is termed Eulerian coordinate system. One could also say that the Eulerian coordi-
nate system is implicitly defined via the explicit representation of v1 in (x, t). Similar to
the diffeomorphism T : Ω0 × I → Ωx(t) × I an inverse coordinate transformation is thus
declared due to

T−1 : Ωx(t)× I → Ω0 ⊂ ×I (1.192)

(x, t) 7→ T−1
x (x, t) =

(
x−
ˆ t

t0

vx(x, τ)dτ︸ ︷︷ ︸
=χ−1

x (x,t;t0)

, t
)

= (ξ, t), (1.193)

if Ω0 and Ωx(t) coincide at t0 = 0. Since the velocity is independent of the actual descrip-
tion in any coordinate system

v1 = v̂x(ξ, t) = vx(x, t), (1.194)

and with with eq. (1.187) one concludes

v̂x(ξ, t) = vx(χx(ξ, t), t). (1.195)

It is thus shown that vx is actually a material velocity.

Extensive properties in Eulerian and Lagrangian coordinates

Let A(t) be global extensive properties with its corresponding field a(x, t), i.e.

A(t) =
ˆ

Ωx(t)

a(x, t) dV (x) (1.196)

The density property a(x, t) is called Eulerian density of the macroscopic properties
A(t)6. According to the volume integral transformation the macroscopic properties can
also be expressed in Lagrangian coordinates,

A(t) =
ˆ

Ωx(t)

a(x, t) dV (x) =
ˆ

Ω0

a(χx(ξ, t), t) det (F(ξ, t)) dV̂ (ξ) (1.197)

=
ˆ

Ω0

â(ξ, t) dV̂ (ξ) (1.198)

6A similar derivation holds for vector valued properties ~B(t).
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1.3. Coordinate transformations

and

â(ξ, t) := J(ξ, t) · a(χx(ξ, t), t) (1.199)
J(ξ, t) := det (F(ξ, t)) (1.200)

is called Lagrangian density of A. The matrix F(ξ, t), called deformation gradient, is
the jacobian of the transformation χx between the Eulerian and Lagrangian coordinates,
i.e. F(ξ, t) = ∇χx(ξ, t). Note, however, that it is in general difficult to obtain the explicit
representation of χx.

Fluxes in Eulerian and Lagrangian coordinates

Let Φa(t) be the (global) fluxes of some flux densities ja(x, t), i.e.

Φa =
ˆ

∂Ωx(t)

ja(x, t)T · dA(x). (1.201)

Then ja(x, t) is similarly called Eulerian flux density. Naturally the surface integral
transformation (c.f. theorem 1) is used to deduce

Φa =
ˆ

∂Ωx(t)

ja(x, t)T · dA(x) (1.202)

=
ˆ

∂Ω0

J · jTa · F−T · dÂ(ξ) (1.203)

and thus the Lagrangian flux

ĵa(ξ, t) := J(ξ, t)F−1(ξ, t) · ja(χx(ξ, t), t). (1.204)

However, applying the divergence theorem on eq. 1.202 and 1.203 leads to the divergence
transformation

J · divx ja = divξ

(
J · F−1ja

)
= divξ ĵa. (1.205)

Time derivative of extensive properties

Next, the evolution of global extensive properties, expressed in either Eulerian or La-
grangian coordinates is investigated and a relationship between the local evolution equa-
tions derived. Consider again the extensive properties A(t) and ~B(t) with their respective
Eulerian densities a(x, t) and b(x, t). Then, according to Reynolds transport theorem for
volume integrals,

dA(t)
dt = d

dt

ˆ

Ωx(t)

a(x, t) dV (x) (1.206)

=
ˆ

Ωx(t)

∂ a(x, t)
∂ t

+ div (a(x, t) · v(x, t)) dV (x) (1.207)

=
ˆ

Ω0

∂ â(ξ, t)
∂ t

dV̂ (ξ), (1.208)

47
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leading to the (local) time derivative transformation

J ·
(
∂ a(x, t)
∂ t

+ div (a(x, t) · v(x, t)) dV (x)
)

= ∂ â(ξ, t)
∂ t

. (1.209)

Transformation of local balance equations

With the above transformation laws for densities and fluxes the equivalent local balance
law in Lagrangian coordinates is derived. Assume a local balance law according to equation
1.147, i.e.

∂ a(x, t)
∂ t

= −divx (a · v + ja) + ra x ∈ Ωx(t). (1.210)

The corresponding local balance equation in Lagrangian coordinates[7] is hence

∂ â(ξ, t)
∂ t

= −divξ ĵa(ξ, t) + r̂(ξ, t) (1.211)

with ξ = χ−1
x (x, t) and since J 6= 0 ∀(ξ, t). The eulerian description is certainly useful

when J ≡ 1 (incompressibility) or when the the mapping χ−1
x (x, t) is explicitly known,

e.g. for the description of solids.

1.3.2 Transformation between different Eulerian coordinates

Similar transformations as between the Eulerian and the Lagrangian coordinate system
can be performed between two Eulerian descriptions, e.g. with respect to Ωx(t) and Ωy(t).
Consider the two observers moving with v1 and v2, respectively, and the corresponding

velocity fields expressed in Eulerian coordinate system (x, t) ∈ Ωx(t)× I, i.e.

Ωx(t) = χx(Ω0, t) (1.212)

v1 = vx(x, t) = ∂ χx
∂ t

(1.213)

v2 = vy(x, t) (1.214)

The velocity v2, however, also defines an Eulerian coordinate system via

Ωy(t) = χy(Ω0, t) (1.215)

v2 = vy(y, t) =
∂ χy
∂ t

(1.216)

v1 = vx(y, t), (1.217)

and the transformation between Ωx(t) and Ωy(t) is desired. Note that the respective
velocity fields can also be expressed in Lagrangian coordinates ξ ∈ Ω0, i.e. v1 = v̂x(ξ, t)
and v2 = v̂y(ξ, t). Consider now the relative motion in Ωy(t), i.e.

v∆(y, t) := vx(y, t)− vy(y, t) y ∈ Ωy(t) (1.218)

and the coordinate transformation Tη : Ωy(t)× I → Ωx(t)× I with

(y, t) 7→ Tη(y, t) = (y +
ˆ t

t0

v∆(y, τ)dτ, t) =: (η(y, t), t). (1.219)
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1.3. Coordinate transformations

This transformation obeys η(Ωy(t)) = Ωx(t), which is shown in the following auxiliary
calculation.

Auxiliary calculation 1.12:

η(y, t) =y +
ˆ t

t0

v∆(y, τ)dτ

=y−
ˆ t

t0

vy(y, τ)dτ +
ˆ t

t0

vx(y, τ)dτ

eq.(1.192)=χ−1
y (y, t) +

ˆ t

t0

vx(y, τ)dτ

=ξ +
ˆ t

t0

vx(y, τ)dτ = ξ +
ˆ t

t0

v̂x(ξ, τ)dτ = χx(ξ, t) = x

The diffeomorphism η(y, t) is thus the spatial coordinate transformation obeying

∂ η(y, t)
∂ t

= v∆(y, t). (1.220)

Similar to above, an inverse transformation T−1
η is declared as

T−1
η : Ωx(t)× I → Ωy(t)× I (1.221)

(x, t) 7→ (x−
ˆ t

t0

v∆(x, τ)dτ, t) = (η−1(x, t), t). (1.222)

The velocity difference vD expressed in the respective coordinates is thus

vD = v̂∆(ξ, t) = v∆(x, t) = v∆(y, t). (1.223)

Using the parametrization χx and χy, i.e. the diffeomorphism of the respective Eulerian
coordinate system to the common Lagrangian description (c.f. figure 1.8), and their
respective inverses, the motion η could be written as a composition

η(y, t) =
(
χx ◦ χ−1

y

)
(y, t) (1.224)

η−1(x, t) =
(
χy ◦ χ−1

x

)
(x, t). (1.225)

Note that χ−1
y (y, t) = χ−1

x (x, t) = ξ at time a fixed time t, but χ−1
y 6≡ χ−1

x in general.
Of course the velocity field v1 and v2 can be represented in their respective other space

coordinates according to the useful relationships

v1 = vx(x, t) = vx(η(y, t), t)︸ ︷︷ ︸
=:vx(y,t)

= vx(χx(ξ, t), t)︸ ︷︷ ︸
=v̂x(ξ,t)

(1.226)

v2 = vy(y, t) = vy(η−1(x, t), t)︸ ︷︷ ︸
=vy(x,t)

= vy(χy(ξ, t), t)︸ ︷︷ ︸
=v̂y(ξ,t)

. (1.227)

Similar to above the transformation laws for densities and fluxes in the two considered
coordinate systems are now derived, finally leading to the transformation law of some
balance equation.
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Extensive properties in various Eulerian coordinates

Let A(t) be some global (extensive) property7 with its corresponding density a(x, t) in
Eulerian coordinates x ∈ Ωx(t). The volume integral transformation

A(t) =
ˆ

Ωy(t)

a(η(y, t), t) det (Fη(y, t)) dV (y) =
ˆ

Ωy(t)

a(y, t) dV (y), (1.228)

with the Eulerian deformation gradient

Fη(y, t) = ∇η(y, t) (1.229)
Jη(y, t) = det (Fη(y, t)) , (1.230)

leads to an alternative Eulerian density

a(y, t) := Jη · a(η(y, t), t). (1.231)

Fluxes in various Eulerian coordinates

Similar to above, the fluxes are also transformed due to coordinate change from one Eu-
lerian coordinate system to another one.

Let again ΦA(t) be the (global) fluxes of some flux Eulerian densities ja(x, t). Again
from the surface integral transformation one deduces

ΦA =
ˆ

∂Ωx(t)

jTa dA(x) =
ˆ

Σy(t)

det (Fη) jTa · F−Tη · dA(y) (1.232)

and thus the respective alternative Eulerian fluxes

ja(y, t) := Jη · F−1
η (y, t) · ja(η(y, t), t). (1.233)

Time derivative of extensive properties

The conversion of the local time derivatives is again obtained via Reynolds transport the-
orem for volume integrals and quite similar to the derivation above. The rate of transient
change of a global property A(t) is expressed in the densities a(x, t), x ∈ Ωx(t) and
a(y, t), y ∈ Ωy(t),

dA(t)
dt =

ˆ

Ωx(t)

∂ a(x, t)
∂ t

+ divx (a(x, t)vx(x, t)) dV (x) (1.234)

=
ˆ

Ωy(t)

Jη ·
(
∂ a(η(y, t), t)

∂ t
+ divx (a(x, t)vx(x, t))

)∣∣
x=η(y,t) dV (y) (1.235)

=
ˆ

Ωy(t)

∂ a(y, t)
∂ t

+ divy (a(y, t)vy(y, t)) dV (y). (1.236)

7Of course an equivalent derivation for a vector valued property ~B with the corresponding density b(x, t)
holds
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1.3. Coordinate transformations

Thus, for x = η(y, t), one obtains

Jη ·
(
∂ a(x, t)
∂ t

+ divx (a(x, t)vx(x, t))
)

= ∂ a(y, t)
∂ t

+ divy (a(y, t)vy(y, t)) . (1.237)

Transformation of balance equations

With the above definitions and derivations the balance law

∂ a(x, t)
∂ t

= −divx (a · vx + ja) + ra x ∈ Ωx(t) (1.238)

is transformed as

∂ a(y, t)
∂ t

= −divy
(
a · vy + ja

)
+ ra y ∈ Ωx(t) (1.239)

for the variable transformation

Tη = (η(y, t), t) (1.240)
∂ η(y, t)
∂ t

= v∆(y, t), (1.241)

with

ra(y, t) := Jη · ra(η(y, t), t). (1.242)

Summary on coordinate transformations

In theoretical descriptions of physical objects some perspectives are more useful than
others, in the sense that the resulting equations are simpler or more intuitive. This
question arises for example when one considers the flow of a liquid electrolyte. Since
the liquid itself moves, one could sit in the liquid and describe the physics around it
relative to the motion of the liquid. On the other hand, the electrolyte may carry an
electric current, which does not necessarily coincide with the flow of mass. It is thus
also interesting to describe the field equations of the liquid with respect to the electric
current. The description of x and y is just arbitrary, however useful to distinguish between
different perspectives. The coordinate transformation are then used to transform the final
balance equations (i.e. of mass, momentum, entropy) to a desired or appropriate frame
of reference.
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2
Coupled Thermo- and Electrodynamics

In this chapter a field theory of coupled thermo- and electrodynamics is developed. Based
on classical physical principles, such as conservation of

• mass,

• momentum,

• and energy,

respective balance equations are be derived. With the introduction of an entropy function,
relating the independent physical properties, thermodynamics arises in the framework. In
that sense a local version of the second law of thermodynamics is introduced, stating that
the entropy production is strictly non-negative. This leads to some conditions on the
material and heat flux as well as on polarization and magnetization. A set of PDEs (a
model) is said to be thermodynamic consistent if it fulfills this condition.
Variable exchange and transformations are further described, allowing for an exchange of
dependent properties (e.g. internal energy and temperature) which lead to the Helmholtz
free energy and the Gibbs free energy.
After the derivation of this general framework, some explicit material functions are stated,
modeling for example an incompressible liquid electrolyte or a solid with some mobile,
charged species.

2.1 Introduction
A field theoretical formulation of thermo- and electrodynamics requires a continuum hy-
pothesis. Even though the term is frequently used, various definitions or alternative ap-
pellations are found in literature. Ross[8], for example, mentions in his work “On the
Problem of Defining Local Thermodynamic Equilibrium”

There are two statements which may come to your mind when reading the
title of this paper: “Everybody knows what local thermodynamic equilibrium
means”, and: “Nobody has ever given a a really satisfactory definition of local
thermodynamic equilibrium (LTE)”.
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2. Coupled Thermo- and Electrodynamics

A possible definition given by him is: “A system is in local thermodynamic equilibrium at
a given time if there is a well-defined temperature T (x) at any macroscopic point x” [8].
This coincides with sustaining local Maxwell–Boltzmann-distributions due to small and
slow changes of thermodynamic properties. However, LTE could also serve as the very
basis to allow for a local formulation of thermodynamics in terms of continuous space and
time dependent properties. Nevertheless I will not use the term local thermodynamic equi-
librium, however, in some sense it corresponds to my definition of continuum hypothesis.

Definition 7 (Continuum hypothesis).
Consider a scalar physical (extensive) property A(t) with its corresponding densities a(x, t)
in Ω(t) and a

s
(x, t) on the surface Σ, satisfying the global balance equation

d
dt

ˆ
Ω

a(x, t) dV +
ˆ

Σ

a
s
(x, t) dA(x)

 = −
ˆ

∂Ω

ja(x, t)T · dA(x)−
ˆ

∂Σ

j
s
a(x, t)T · ds(x)

+
ˆ

Ω

ra(x, t) dV (x) +
ˆ

Σ

r
sa

(x, t) dA(x). (2.1)

In the proceeding chapter it has been shown that the local equations of balance

∂ a(x, t)
∂ t

= −div
(
a(x, t) · v(x, t) + ja(x, t)

)
+ ra(x, t) ∀x ∈ Ω (2.2)

∂ a
s

∂ t
= −div

s
(a
s

v
s

+ j
s
a)− κ asvn + r

sa
− JavT + jTa K · n ∀x ∈ Σ. (2.3)

are obtained if the global equations hold for every ω ∈ Ω and σ ∈ Σ. This is raised to
the definition of the continuum hypothesis, stating the local balance equations are
valid throughout the whole domain of interest.

Of course, many situations in physics and chemistry arise where this definition may
fail, e.g. the description of a large molecule in terms of atom densities. On the atomic
scale the explicit representation of each atom and some interaction potential between these
atoms is much more appropriate. Nevertheless, the density formulation of particles (in
particular electrons) is (again) a very precise method of approximation[9] on the atomic
scale. However, the explicit material functions to describe a specific molecule or ensemble
are far more complex and often unknown.

2.1.1 Conservation of mass and charge

Within a domain Ω, which covers some singular surface Σ ⊂ Ω, mass Mα of α = 1, . . . ,n
species may somehow be distributed in space.

Assumption 1 (Continuous mass density).
It is assumed that the distribution of an overall mass Mα may be (uniquely) written as

Mα =
ˆ

Ω

ρα dV +
ˆ

Σ

ρ
s
α dA (2.4)
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with mass densities ρα in Ω and ρ
s
α in Σ.1 Further, Mα is assumed to fulfill the continuum

hypothesis.

Note that not each species is necessarily present in Ω and Σ, e.g. intermediates in
surface reactions or uncharged, adsorbed species, which simply entails ρα ≡ 0 or ρ

s
α ≡ 0,

respectively. However, the index set N = {1, . . . ,n} covers all species which are present
in the physical object. With the specific mass mα per atom of the species α one obtains
the respective number densities

nα = ρα
mα

α = 1, . . . ,n (2.5)

n
sα

=
ρ
s
α

mα
α = 1, . . . ,n, (2.6)

and straight forward the total amount Nα of a species. The mass fraction wα is

wα = ρα
ρ

α = 1, . . . ,n (2.7)

and the mole fraction cα (sometimes also called concentration)

cα = nα
n

α = 1, . . . ,n. (2.8)

Each species may carry a charge e0zα with which the charge densities

nFα = e0zαnα = e0zα
mα

ρα α = 1, . . . ,n (2.9)

n
s
F
α = e0zαnsα

= e0zα
mα

ρ
s
α α = 1, . . . ,n (2.10)

arise. The superscript F already denotes free charge, in contrast to polarization charge,
which is introduced later in this chapter. The overall mass, charge and species densities
are then simply

ρ =
n∑

α=1
ρα, nF =

n∑
α=1

nFα and n =
n∑

α=1
nα.

2.1.2 Balance equation
While in chapter (1.2) the structure of global and local balance equation were investigated,
their origin was not rigorously stated. This circumstance meets the following assumption.

Assumption 2 (Balance equation representation).
It is assumed that the mass density of each species may vary in time only due to

• a volume flux Jα with mass flux density jα(x, t)
[

kg
sm2

]
and

Jα = −
˛

∂Ω

jTα · dA,

1If the boundary of Ω additionally carries some surface mass density ρ
s
the definition is just extended an

analogy.
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• a volumetric production rate Rα with mass production rα(x, t)
[

kg
sm3

]
Rα =

ˆ

Ω

rα dV,

• a Surface flux J
s α

with a tangential flux density j
s
α(x, t)

[
kg
sm

]
and

J
s α

= −
˛

∂Σ

j
s
T
α · dA,

• and a surface production R
s α

with local rate r
sα

(x, t)
[

kg
sm2

]
and

R
s α

=
ˆ

Σ

r
sα
dV.

Further, a continuum hypothesis for the flux and source densities is assumed, leading to
the local balance equations

∂ ρα(x, t)
∂ t

= −div
(
ρα(x, t) · v(x, t) + jα(x, t)

)
+ rα(x, t) ∀x ∈ Ω (2.11)

∂ ρ
s
α(x, t)

∂ t
= −div

s
(ρ
s
α v

s
+ j

s
α)− κ ρ

s
αvn + r

sα
− JραvT + jTαK · n ∀x ∈ Σ. (2.12)

Here, v(x, t)
[ m

s
]
is some arbitrary2 Eulerian velocity field, with normal component vn

and tangential component v
s
. The curvature of the material surface 3 Σ is denoted by κ.

The conservation of the overall mass density

ρ =
n∑

α=1
ρα, (2.13)

which is deduced rigorously in the next subsection, requires

∂ ρ

∂ t
= −div (ρv + j) (2.14)

!= −div
(
ρv +

n∑
α=1

jα
)
, (2.15)

where j is the (diffusive) mass flux and

i := ρv + j (2.16)

2The actual physical balance equation is of course independent of the coordinate system. However, an
appropriate choice of coordinate system simplifies the formulation of some physical properties, e.g.
Newtons second law. Such an explicit choice is stated in remark 4 as standard coordinate system.

3Even though the velocity field v is yet undetermined, only singular surfaces which move with v (material
surfaces) are considered.
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the total mass flux . Yet, this restriction should be read as
n∑

α=1
jα != j, (2.17)

which states that (diffusive) mass flux is not independent and called mass flux con-
straint. Similar, the conservation of free charge

nF = e0

n∑
α=1

zα
mα

ρα (2.18)

requires

∂ nF

∂ t
=− div

(
nFv + jF

)
(2.19)

!=− div
(
nFv + e0

n∑
α=1

zα
mα

jα
)

(2.20)

and thus

e0

n∑
α=1

zα
mα

jα != jF. (2.21)

Accordingly, the flux jF is called diffusional (free charge) electric current and

iF := nFv + jF (2.22)

is called total (free charge) current.

Remark 3 (Flux constraint).
For a mixture, consisting of n species, the conservation of mass implies

ρ =
n∑

α=1
ρα ∀(x, t) ∈ Ω× I (2.23)

and j =
n∑

α=1
jα ∀(x, t) ∈ Ω× I, (2.24)

independent of the frame of reference (c.f. the concept of observer velocities in section
1.3.2). An explicit choice of coordinate system fixes in addition one of the remaining fluxes
(j1, . . . , jn), resulting in n− 1 independent material fluxes.

Yet, the set of balance equations are rather general, in the sense that the actual Eulerian
coordinate system (x,v), x ∈ Ω is still arbitrary. Of course, various useful frames of
reference exist, and one is free to choose an appropriate (inertial) frame of reference. An
exclusive frame of reference (x,v) is, however, the one which is chosen such that

j(x, t) = 0 ∀(x, t) ∈ Ω× I, (2.25)
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and thus

∂ ρ(x, t)
∂ t

= −div (ρ(x, t) v(x, t)) (2.26)
n∑

α=1
jα(x, t) = 0. (2.27)

In this case, the velocity field v(x, t) is called barycentric velocity and the coordinate
system (x,v), x ∈ Ω with

(x, t) = (χ(ξ, t), t) x ∈ Ω, ξ ∈ Ω0 (2.28)
∂ χx(ξ, t)

∂ t
= v̂(ξ, t) = v(x, t) (2.29)

is classically calledmaterial description of the mixture (or standard Eulerian coordinate
system). Many authors [5, 10, 11] begin their derivation already with the unique coordi-
nate system, satisfying j = 0. This somehow hides the existence of j, which in another
coordinate system does not necessarily vanish. Consider for example a frame of reference
(ξ, v̂), ξ ∈ Ω which is chosen such that

ĵn(ξ, t) = 0 (2.30)

and

∂ ρn(ξ, t)
∂ t

= −divξ (ρn(ξ, t) v̂(ξ, t)). (2.31)

In this case, the mass flux constraint eq. (2.17) implies

n−1∑
α=1

ĵα(ξ, t) = ĵ(ξ, t) 6= 0. (2.32)

A more precise discussion on coordinate (or flux) transformations is given in section 1.3.
Remark 4 (Standard coordinate system).
The standard coordinate system, if not explicitly noted otherwise, will be (x,v), x ∈ Ω
such that

j(x, t) = 0 (2.33)
∂ ρ(x, t)
∂ t

= −div (ρv(x, t)) (2.34)

with the barycentric velocity v.

58



2.1. Introduction

2.1.3 Chemical reactions

Let Xα denote the actual chemical molecule, e.g. Li+, PF–
6 or DMC (Dimethylcarbonate

OC(OCH3)2). The system might be subject to nr chemical reactions of the type

ν ′1,kX1 + · · ·+ ν ′n,kXn −−⇀↽−− ν ′′1,kX1 + · · ·+ ν ′′n,kXn k = 1, . . . ,nr (2.35)

with να,k := ν ′′α,k − ν ′α,k being the net stochiometric coefficient .

Assumption 3 (Detailed balance).
It is assumed that the mass production (or annihilation) for each species is

rα(x, t) =
nr∑
k=1

να,kmα · qk(x, t) (2.36)

and qk the production (or annihilation) rate of particles in each reaction. I will call
equation (2.36) detailed balance [12].

An explicit function qk (reaction model) will be derived in section 2.7 and extended in
section 3.5 to derive the mass action law.

Assumption 4 (Conservation of mass and charge in chemical reactions).
It will be assumed that in each reaction (thus also on surface reactions) k ∈ {1, . . . ,nr}
mass and charge is conserved, i.e.

n∑
α=1

να,k ·mα = 0, k = 1, . . . ,nr (2.37)

n∑
k=1

να,k · zk = 0, k = 1, . . . ,nr. (2.38)

This coefficient constraints imply the conservation of mass and charge densities.

Corollary 5 (Conservation of mass and charge).
Summing all mass balance equations (2.11), the balance equation of ρ (in the standard
coordinate system) is

∂ ρ

∂ t
= −div (ρv) +

n∑
α=1

rα. (2.39)

Since
n∑

α=1
rα =

n∑
α=1

nr∑
k=1

να,k ·mαqk =
nr∑
k=1

qk

n∑
α=1

να,k ·mα = 0, (2.40)

the source of mass vanishes and mass is conserved. Similar, the balance of free charge
is

∂ nF

∂ t
= −div

(
nFv +

n∑
α=1

e0zα
mα

jα
)

+
n∑

α=1

e0zα
mα

rα (2.41)
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2. Coupled Thermo- and Electrodynamics

and the source of charge vanishes due to
n∑

α=1

e0zα
mα

rα = e0

nr∑
k=1

qk

n∑
α=1

να,k · zα = 0. (2.42)

Hence, the balance equation of charge is a conservation equation and the free charge is
conserved.

On the singular surface Σ, let Yα denote surface (or adsorbed) molecules, e.g. Li(ad),
OH−(ad) or e

–
(ad) (an electron at the surface of an electrode), which undergo surface reac-

tions

ν
s
′
1,kY1 + · · ·+ ν

s
′
n,kYn

f−⇀↽−
b
ν
s
′′
1,kY1 + · · ·+ ν

s
′′
n,kYn k = 1, . . . ,n

s r
. (2.43)

Like above, a detailed balance condition is assumed for surface reactions, leading to the
mass production rate

r
sα

=
n∑

α=1
ν
sα,k

mα · q
s
k α = 1, . . . ,n (2.44)

with the net surface stochiometric coefficient

ν
sα,k

:= ν
s
′′
α,k − νs

′
α,k (2.45)

and the reaction rate q
s
k, k = 1, . . .n

s r
. Clearly, charge and mass is also conserved in surface

reactions, which imply the constraints
n∑

α=1
ν
sα,k
·mα = 0, k = 1, . . . ,n

s r
(2.46)

n∑
k=1

ν
sα,k
· zk = 0, k = 1, . . . ,n

s r
. (2.47)

Again, similar to volumetric conservation of mass and free charge density, these constraints
lead to conservation of surface mass and charge density.

2.2 Electrodynamics of continuous media
Of course the modern form of Maxwells equations are well know in theoretical physics and
mathematics for more than a century. However, in the context of electrochemistry a con-
sistent usage of a thermo-electrodynamic framework is yet at its very beginning. A realistic
and thermodynamic consistent description of a metal/electrolyte interface, for example, re-
quires more knowledge than a stoic application of the Poisson–Boltzmann-equation. Many
electrochemical phenomena are still not (well) understood[13], and classical a priori as-
sumptions made in the past are doubtable. For an in-depth understanding of the complex
interplay between (surface) chemistry and electrodynamics a consistent derivation of the
field equations is very illustrative.
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2.2. Electrodynamics of continuous media

2.2.1 Derivation of Maxwells equations

An interesting derivation of the set of Maxwell equations in terms of balance equations
was considered by I. Müller [5]. Consider the global balance equations of a conserved
scalar property A with its respective and densities and fluxes, i.e.

d
dt

ˆ
Ω

a(x, t) dV +
ˆ

Σ

a
s
(x, t) dA

 = −
˛

∂Ω

jTa (x, t) · dA−
˛

∂Σ

j
s
T
a · ds (2.48)

Now, consider the following Ansatz, where the vector fields b and c are chosen such that
˛

∂Ω

bT(x, t) · dA =
ˆ

Ω

a(x, t) dV +
ˆ

Σ

a
s
(x, t) dA (2.49)

˛

∂Ω

cT(x, t) · dA = 0. (2.50)

Their corresponding balance equations are

d
dt

ˆ

σ

bT · dA = −
˛

∂σ

jTb · ds +
ˆ

σ

rTb · dA +
ˆ

ψ

r
s
T
b · ds (2.51)

d
dt

ˆ

σ

cT · dA = −
˛

∂σ

jTc · s (2.52)

for any σ ∈ Ω and ψ = σ ∩ Σ. The fluxes jb and jc are chosen as

b = −ε0 (jc + c× v) (2.53)
c = µ0 (jb + b× v) (2.54)

with some constants ε0 and µ0, which couples the set of equations. Hence the equation
system is coupled and one obtains the (formal) solution of eq. (2.48) as

−
˛

∂Ω

jTa (x, t) · dA−
˛

∂Σ

j
s
T
a · ds =

ˆ

∂Ω

rTb · dA +
ˆ

∂Σ

r
s
T
b · ds (2.55)

if σ → ∂Ω and thus ψ → ∂Σ. Hence the currents ja and j
s
a correspond to the source terms

of b, i.e.

rb = −ja (2.56)
r
sb = −j

s
a (2.57)

and the source terms of c vanish, i.e.

rc = 0 (2.58)
r
sc = 0. (2.59)

Next, equations (2.49) and (2.50) are again assumed to hold for every ω ∈ Ω (continuum
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2. Coupled Thermo- and Electrodynamics

hypothesis), leading to

∇ · b = a x ∈ Ω JbTK · n = a
s

x ∈ Σ (2.60)

∇ · c = 0 x ∈ Ω JcTK · n = 0 x ∈ Σ. (2.61)

Comparing eq. (2.51) and (2.52) to the local flux balance equations (c.f. section 1.2.3)

∂ b(x, t)
∂ t

= −curl
(
(jb(x, t) + b(x, t)× v(x, t)

)
− (div b) · v(x, t) + rb(x, t) (2.62)

r
sb(x, t) = Jjb(x, t) + b(x, t)× v(x, t)K (2.63)

(and similar for c) finally leads to

∂ b
∂ t

= −curl
(
jb + b× v

)
− a · v− ja = 1

µ0
curl (c)− a · v− ja (2.64)

−j
s
a = Jjb + b× vK = − 1

µ0
JcK (2.65)

and

∂ c
∂ t

= −curl
(
jc + c× v

)
= − 1

ε0
curl (b) (2.66)

0 = Jjc + c× vK = JbK. (2.67)

Note that the results are obtained from surface integral balance equations by considering
a surface element σ which is completely in Ω and intersects the singular surface Σ with the
line element ψ. A variation of all σ ∈ Ω finally leads to the local flux balance equations.
The jump conditions through a singular line, which were derived in 1.2.3 (c.f. eq. (1.183)
and fig. 1.7), denote the jump in binormal direction b of σ. However, with the construction
of σ and ψ = σ∩Σ, the binormal b of ψ is actually the normal of Σ and the jump brackets
in eqs. (2.85) and (2.85) really denote the flux jump in normal direction across Σ.

2.2.2 Electromagnetic field and flux densities

Assumption 5 (Electric and magnetic flux densities).
It is assumed that the electromagnetic field is described with the

• Electric flux density D
[

C
m2

]
,

• Magnetic flux density B [T ] ,

• Electric field E
[
V
m

]
,

• and Magnetic field4 H
[
A
m

]
,

4I will follow the notation given by I. Müller [5] in contrast to classical syntax conventions of electrody-
namics, where D is usually denotes the displacement field. However, I will avoid at all the definition
of the displacement field. Nevertheless, a distinction between the electric flux density D and E is very
illustrative.
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2.2. Electrodynamics of continuous media

and that these vector fields fulfill the balance equations (2.64) - (2.67) with the choice

a = nF a
s

=n
s
F (2.68)

ja = jF j
s
a =j

s
F (2.69)

b = D c =B (2.70)
jb = H jc =−E. (2.71)

The coupling (2.53) claims

b = −ε0 · (jc + c× v) (2.72)
c = µ0 · (jb + b× v) (2.73)

which are the general Maxwell–Lorentz relations

D = ε0(E + v×B) (2.74)
B = µ0(H + D× v) (2.75)

in an arbitrary frame of reference. It is more common to write the last equation as

H = 1
µ0

B−D× v = 1
µ0

B− ε0(E + v×B)× v (2.76)

= 1
µ0

B− ε0E× v + 1
c0

0
v× (v× 1

µ0
B). (2.77)

With the Graßmann identity (A.28) this could be rewritten as

H = 1
µ0

B− ε0E× v + 1
c0

0
(v⊗ v− 〈v,v〉 · Id) · 1

µ0
B (2.78)

= 1
µ0

((
1− 〈v,v〉

c2
0

)
Id + 1

c2
0
v⊗ v

)
·B− ε0E× v (2.79)

and expresses the Lorentz-invariance of H (c.f. [5, p. 323]). However, for ||v|| � c0 one
has the well known approximation

D = ε0E + ε0v×B (2.80)

H = 1
µ0

B + ε0v×E. (2.81)

The first set of Maxwell equations are then obtained from equations (2.60) and (2.61)
with above definitions,

∇ ·D = nF x ∈ Ω, JDTK · n = n
s
F x ∈ Σ, (2.82)

∇ ·B = 0 x ∈ Ω, JBTK · n = 0 x ∈ Σ. (2.83)

Clearly, the second set of Maxwell equations are obtained from equations (2.64), (2.65),
(2.66) and (2.67),

∂D
∂ t

= 1
µ0

curl (B)− nF · v− jF x ∈ Ω (2.84)

j
s
F = 1

µ0
JBK x ∈ Σ (2.85)
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and

∂B
∂ t

= − 1
ε0

curl (D) x ∈ Ω (2.86)

0 = 1
ε0

JDK x ∈ Σ. (2.87)

It is worth noting, that these apparently simple relationships are still coupled to E and
H through the complicated Maxwell–Lorentz relation. Nevertheless, one could use the
Ansatz

1
ε0

D = −∇Φ− ∂A
∂t

(2.88)

B = curl A (2.89)

in moving geometries to actually solve the equation system for a given charge and current
density. Note, however, that Φ is the (electric) potential of 1

ε0
D and not necessarily of

E. In the electrostatic limit, i.e. A ≈ 0, one obtains from equation (2.82) the Poisson
equation

ε0div∇Φ = nF (2.90)

if no polarization effects are present.

2.2.3 Polarization and magnetization
Beside free charge densities nF, which are (linearly) related to the mass densities ρα,
polarization or bounded charge arises. Briefly speaking, this covers all charge effects
below the continuum mechanical point approximation, e.g. the dipole of water, which are
not explicitly resolved in this framework. Since the bounded dipole charge arises from a
microscopic dipole moment p one introduces the polarization (density) P as

P = np, (2.91)

where n is the number density of dipoles. In a mixture, however, on would introduce the
species specific polarization Pα, arising from the (different) microscopic dipole moments
pα and thus

Pα = nαpα (2.92)

P :=
n∑

α=1
nαpα =

n∑
α=1

cαPα. (2.93)

If such a microscopic dipole is cut by a singular surface, (bounded) charge on either side
of the surface arises, which is stated by the following assumption.

Assumption 6 (Polarization and bounded charge).
The polarization (of each species) is assumed to be the origin of bounded charge in the
sense that there exist (unique) densities nB(x, t) and n

s
B(x, t)5 such that

−
ˆ

∂Ω

PT
α · dA =

ˆ

Ω

nB dV +
ˆ

Σ

n
s
B dA, (2.94)

5On a singular surface Σ surface dipoles may occur [14], e.g. due to the adsorption of H2O.
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2.2. Electrodynamics of continuous media

and for which the continuum hypothesis hold. The local relationships between polarization
and bound charge are thus

−div P = nB and − JPK · n = n
s
B. (2.95)

With this, the overall amount of charge in domain Ω containing a singular surface Σ is

Q =
ˆ

Ω

nF + nB dV +
ˆ

Σ

n
s
F + n

s
B dA (2.96)

=
ˆ

Ω

nF dV +
ˆ

Σ

n
s
F dA−

˛

∂Ω

PT · dA−
ˆ

Σ

JPK · dA. (2.97)

The bound charge may thus also produce an electric current jB (polarization current),
according to

d
dt

ˆ

Ω

nB dV = −
˛

∂Ω

jB ·A (2.98)

and

d
dt

ˆ

Ω

n
s
B dA = −

˛

∂Σ

j
s
B ·A. (2.99)

Due to the continuum hypothesis one deduces the explicit relationships

jB = ∂P
∂ t

+ curl (P× v) + (div P) · v (2.100)

j
s
B = JP× vK (2.101)

from the local flux balance equation (1.167). If the domain is at rest (v = 0), the origin
of a polarization current is a transient polarization field (i.e. P = P(t)).

Quite similar to polarization, the magnetization M is introduced. I will not derive mag-
netization in detail and refer to the classical textbooks on electrodynamics, e.g. Classical
Electrodynamics by J. D. Jackson [15]. It is introduced here as the vector flux of some cur-
rent jM, called magnetization current. For an arbitrary surface σ ∈ Ω the magnetization
obeys

ˆ

σ

〈
jM, dA

〉
=
ˆ

∂σ

MT · dA (2.102)

and thus in local form

jM = curl M. (2.103)

Identifying the overall charge nQ (and n
s
Q ) and current jQ (and j

s
Q) as

nQ := nF + nB n
s
Q := n

s
F + n

s
B (2.104)

jQ := jF + jB + jM j
s
Q := j

s
F + j

s
B (2.105)

65



2. Coupled Thermo- and Electrodynamics

one could reconsider the coupled balance equation system (2.60)-(2.67). With the intro-
duction of polarization and magnetization, the choice

a = nQ a
s

=nQ (2.106)

ja = jQ j
s
a =j

s
Q (2.107)

b = D c =B (2.108)
jb = H jc =−E (2.109)

explains D as potential of any (electric) charge and H as potential of any current, which
are still subject to the Maxwell–Lorentz relation. One obtains thus the set of equations

∇ ·D = nQ JDTK · n = n
s
Q (2.110)

∇ ·B = 0 JBTK · n = 0 (2.111)
∂D
∂ t

= 1
µ0

curl B− nQ · v− jQ 1
µ0

JBK = j
s
Q (2.112)

∂B
∂ t

= − 1
ε0

curl D JDK = 0 (2.113)

which are called microscopic Maxwell equations6. However, with the knowledge

nB = −div P (2.114)

jB = ∂P
∂ t

+ curl (P× v) + (div P) · v (2.115)

jM = curl M (2.116)

one could rewrite the set of equations as

∇ · (D + P) = nF JD + PK · nT = n
s
F (2.117)

∇ ·B = 0 JBK · nT = 0 (2.118)
∂ (D + P)

∂ t
= curl

( 1
µ0

B−M−P× v
)
− nF · v− jF,

J
1
µ0

B−M−P× vK = j
s
F (2.119)

∂B
∂ t

= − 1
ε0

curl D JDK = 0 (2.120)

which are the final macroscopic Maxwell equations.

Remark 5 (Electric- and magnetic susceptibility).
A common assumption for simple, isotropic materials is a linear proportionality of polar-
ization and magnetization to the electric and magnetic flux density, respectively, i.e.

P = χP D = ε0χ
PE (2.121)

M = χM H = 1
µ0
χMB, (2.122)

where χP and χM are called electric- and magnetic susceptibility. For a mixture (c.f. eq.

6Note that the term microscopic does not mean here an actual resolution of the charge densities.

66



2.2. Electrodynamics of continuous media

2.93), however, one would accordingly choose

Pα = ε0χ
P
α E (2.123)

and thus

P = ε0

( n∑
α=1

cα(x, t)χPα

)
E. (2.124)

Note, however, that an explicit relationship between P and E (and similar for M and B)
such as (2.121) and (2.124) are already material specific phenomenological relationships
and thus not general. Such relationships are stated in the material modeling section 2.9.2
and necessary conditions derived via the entropy principle. In general P and M are yet
unknown, arbitrary vector fields.

Next, the momentum and energy of the electromagnetic field will be discussed in order
to formulate local conservation laws of total momentum and energy.

2.2.4 Momentum of the electromagnetic field

The electromagnetic momentum pEM of a domain Ω is [15]

~pEM =
ˆ

Ω

D×B dV (2.125)

and

D×B =: pEM (2.126)

is called momentum density of the electromagnetic field. This is Abraham’s definition of
the electromagnetic momentum[16]. In many other textbooks Abraham’s momentum is
written as E ×H, which is, however, only true for a system at rest due to the Maxwell–
Lorentz relations.

With the set of Maxwell equations (2.110) - (2.113) it is possible to derive an explicit
representations of

∂ pEM
∂ t

= −Div τEM + rpEM , (2.127)

i.e. to cast the electromagnetic momentum variation into a balance equation, with the
Maxwell stress tensor τEM and the source of electromagnetic momentum rpEM .

With the auxiliary calculations below one obtains

∂D×B
∂t

=Div
( 1
ε0

D⊗D + 1
µ0

B⊗B− 1
2

(〈 1
ε0

D,D
〉

+
〈 1
µ0

B,B
〉)
· Id

)
− nQ · ( 1

ε0
D + v×B)− jQ ×B. (2.128)
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Auxiliary calculation 2.13:
Multiplication of eq. (2.113) with D leads to

∂B
∂t
×D = −curl

(
1
ε0

D
)
×D

eq. (A.39)= −Div
(

1
ε0

D⊗D− 1
2

〈
1
ε0

D,D
〉
· Id

)
+ (div D) · 1

ε0
D

=−Div
(

1
ε0

D⊗D− 1
2

〈
1
ε0

D,D
〉
· Id

)
+ nQ 1

ε0
D

Multiplication of eq. (2.112) with B obeys

∂D
∂ t
×B = curl

(
1
µ0

B
)
×B− nQ v×B− jQ ×B

= Div
( 1
µ0

B⊗B− 1
2

〈
1
µ0

B,B
〉
· Id

)
+ nQ B× v− jQ ×B

A comparison to eq. (2.127) leads to the explicit representations of the EM-stress tensor
and the EM-momentum source as

τEM = −
( 1
ε0

D⊗D + 1
µ0

B⊗B)− 1
2(
〈
ε−1

0 D,D
〉

+
〈
µ−1

0 B,B
〉

) · Id
)

(2.129)

rpEM = −nQ( 1
ε0

D + v×B)− jQ ×B (2.130)

Since the flux and source of momentum are now derived, the jump conditions of surface
balance equation (c.f. 1.183) is used straight forward to derive the electromagnetic
momentum jump condition

JτEMK · n = n
s
QJEK + j

s
Q × JBK. (2.131)

Note that in the momentum balance eq. (2.127) the overall charge density nQ and current
density jQ are present. Exploiting again the special relationships (eqs. (2.114), (2.115) and
(2.116)) of the polarization P and magnetization M one could rewrite the EM momentum
source rpEM as

rpEM =− nF( 1
ε0

D + v×B)− jF ×B

+ Div
( 1
ε0

D⊗P−B⊗M− 1
2

(〈 1
ε0

D,P
〉
− 〈B,M〉

)
Id
)

− 1
2

( 1
ε0

∇D ·P− 1
ε0

∇P ·D
)
− 1

2 ((∇B) ·M− (∇M) ·B)

−
(
∂P
∂ t

+ curl (P× v)
)
×B. (2.132)
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Auxiliary calculation 2.14:

(curl M)×B = Div (B⊗M− 〈B,M〉) + (∇B) ·M

= Div (B⊗M− 1
2 〈B,M〉 Id) + 1

2 ((∇B) ·M−∇M ·B)

Auxiliary calculation 2.15:

nB( 1
ε0

D + v×B) + jB ×B = nB 1
ε0

D +
(
∂P
∂ t

+ curl (P× v)
)
×B

=−Div ( 1
ε0

D⊗P) + 1
ε0

(∇D) ·P +
(
∂P
∂ t

+ curl (P× v)
)
×B

=−Div
(

1
ε0

D⊗P− 1
2

〈
1
ε0

D,P
〉
Id
)

+ 1
2

(
1
ε0

∇D ·P− 1
ε0

∇P ·D
)

+
(
∂P
∂ t

+ curl (P× v)
)
×B

One could thus reconsider the partition of eq. (2.128) in a balance equation. Shifting
the second term of (2.132) to the EM-stress tensor leads to an (equal) alternative balance
equation

∂D×B
∂ t

= −Div τPM + rpPM , (2.133)

with

τ ∆ := 1
ε0

D⊗P−B⊗M− 1
2

(〈 1
ε0

D,P
〉
− 〈B,M〉

)
Id (2.134)

τPM := τEM + τ ∆ (2.135)

= 1
ε0

D⊗ (D+P) + B⊗ ( 1
µ0

B−M)− 1
2

(〈 1
ε0

D,D+P
〉

+
〈

B, 1
µ0

B−M
〉)

Id

rpPM = −nF( 1
ε0

D + v×B)− jF ×B−
(
∂P
∂ t

+ curl (P× v)
)
×B

− 1
2
(
ε−1

0 ∇D ·P− ε−1
0 ∇P ·D + ∇B ·M−∇M ·B

)
︸ ︷︷ ︸

=:gPM

. (2.136)

The abbreviation gPM is quite useful as gPM vanishes in linear materials, i.e. if P = χPD
and M = χMB, with constants χP and χM .
Central behind this derivation is the conversion

nB ·D + jM ×B = −Div τ ∆ + gPM. (2.137)

This alternative representation of the electromagnetic momentum balance lead to a
quite outstanding confusion, which is briefly discussed in the following remark.
Remark 6 (Abraham–Minkowski dilemma).
One might ask if the definition of the electromagnetic momentum in polarized media is
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2. Coupled Thermo- and Electrodynamics

satisfactory. From the viewpoint of the macroscopic Maxwell equations, one could imagine
also (D + P)×B as momentum definition. This question arose already at the beginning
of 20th century where Abraham [16] defined (in my notation),

D×B (2.138)

as electromagnetic momentum and Hermann Minkowski (1910) [17] chose the definition

(D + P)×B. (2.139)

This controversy was of course quite often discussed (see e.g. [18–20]) and is still ongo-
ing, as the recent publication “Resolution of the Abraham-Minkowski Dilemma” (S. M.
Barnett, Phys. Rev. Lett., 2010, [21]) suggests. However, there is still doubt on the exact
definition and, surprisingly, and experimental verification is not as simple as one might
think.

Nevertheless, I will also briefly discuss this dilemma in my notation. The following two
auxiliary calculations are quite useful.

Auxiliary calculation 2.16:
Multiplication of eq. (2.113) with D leads to

∂B
∂t
× (D+P) =− curl

(
1
ε0

D
)
× (D + P)

eq. (A.39)= −Div
(

1
ε0

D⊗ (D + P)− 1
2

〈
1
ε0

D, (D + P)
〉
· Id

)
+ div (D+P) · 1

ε0
D− 1

2
1
ε0

(∇(D + P) ·D−∇D · (D + P))

=−Div
(

1
ε0

D⊗ (D + P)− 1
2

〈
1
ε0

D, (D + P)
〉
· Id

)
+ nF · 1

ε0
D− 1

2
1
ε0

(∇P ·D−∇D ·P)

Auxiliary calculation 2.17:
Multiplication of eq. (2.112) with B obeys

∂D + P
∂ t

×B =
(
curl (µ−1

0 B−M)
)
×B− nF v×B− jF ×B

= Div
(
B⊗ (µ−1

0 B−M)− 1
2
〈
B, (µ−1

0 B−M)
〉
· Id

)
+ nF B× v− jF ×B

+ 1
2
(
∇B · (µ−1

0 B−M)−∇(µ−1
0 B−M) ·B

)
= Div

(
B⊗ (µ−1

0 B−M)− 1
2
〈
B, (µ−1

0 B−M)
〉
· Id

)
+ nF B× v− jF ×B− 1

2
(
∇B ·M−∇M ·B

)
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Considering now (D + P)×B one concludes

∂ (D + P)×B
∂ t

= Div
( 1
ε0

D⊗ (D + P) + 1
µ0

B⊗ (µ−1
0 B−M) (2.140)

− 1
2

(〈 1
ε0

D, (D + P)
〉

+
〈
B, (µ−1

0 B−M)
〉)
· Id

)
(2.141)

− nF · ( 1
ε0

D + v×B) + 1
2

1
ε0

(∇P ·D−∇D ·P) (2.142)

+ 1
2
(
∇B ·M−∇M ·B

)
(2.143)

= −Div τPM + rpPM +
(
∂P
∂ t

+ curl (P× v)
)
×B. (2.144)

This is remarkably, as the balance equation of D × B is quite similar to the one of
(D+P)×B, and also explains why a measurement is so difficult, since the actual difference
between the two momentum definitions is(

∂P
∂ t

+ curl (P× v)
)
×B. (2.145)

However, I will avoid the dilemma with the following assumption.

Assumption 7 (Constant polarization current-magnetic force).
Throughout the further work it is assumed that(

∂P
∂ t

+ curl (P× v)
)
×B ≡ 0, (2.146)

which is also motivated by ||v|| � c0. This resolves in my work the Abraham–Minkowski
dilemma, and the two electromagnetic momentum definitions coincide.

2.2.5 Field energy
Similar to the EM-momentum I refer to the work of Jackson[15], de Groot[10] and Müller[5]
to an in-depth investigation of the field energy.

The electromagnetic field energy (or simply EM energy) is defined as

eEM = 1
2
(
ε0D ·DT + µ0B ·BT

)
. (2.147)

With auxiliary calculations 2.18 one obtains the balance of electromagnetic field
energy

∂eEM
∂t

= −div (S)− ε−1
0 (nQ v + jQ) ·DT (2.148)

where

S = c2
0D×B (2.149)

is called flux of the electromagnetic field or Poynting vector and

−ε−1
0 (nQ v + jQ) ·DT = −ε−1

0 iQ ·DT (2.150)
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2. Coupled Thermo- and Electrodynamics

the sink (or source) of the field energy. Note again that the charge and flux densities are
the overall ones, covering the contributions due to polarization and magnetization.

Auxiliary calculation 2.18:

div (D×B) eq.(A.41)= (curl D) ·BT − (curl B) ·DT

eqs.(2.112)&(2.113)= − ε0

(
∂B
∂ t

)
·BT − µ0

(
∂D
∂ t

+ nQ v + jQ
)
·DT

= − 1
c20

(
µ0
∂B
∂t
·BT + ε0

∂D
∂ t

DT
)
− µ0 (nQ v + jQ) ·DT

This balance equation could again be rewritten in an alternative form, using the follow-
ing auxiliary calculations.

Auxiliary calculation 2.19:

ε−1
0 jM ·DT = ε−1

0 (curlM) ·DT = −c20div (D× µ0M) + (curl ε−1
0 D) ·MT

= −c20div (D× µ0M)− ∂B
∂ t
·MT

Auxiliary calculation 2.20:

ε−1
0 (nB v + jB) ·DT = ε−1

0

(
∂P
∂ t

+ curl (P× v)
)
·DT

= ε−1
0

∂P
∂ t
·DT − 1

c20
div (D× (µ0P× v))− ∂B

∂ t
· (P× v)T

= −∂ ε
−1
0 D ·P
∂ t

·DT + ∂ ε−1
0 D
∂ t

·P

− 1
c20

div (D× (µ0P× v))− ∂B
∂ t
· (P× v)T

Quite similar to the alternative balance equation of the electromagnetic momentum (eq.
(2.133)), an alternative field energy balance equation is obtained,

∂(eEM + P ·D)
∂t

= −c2
0 div (D× (B− µ0(M + P× v)))− iF · ε−1

0 DT

+∂D
∂ t
·PT + ∂B

∂ t
· (M + P× v). (2.151)

The term

ePM := eEM + P ·D (2.152)

is interpreted as the electromagnetic field energy in polarizable media and

SPM := c2
0 D× (B− µ0(M + P× v)) (2.153)

is called energy flux in polarize- and magnetizeable media.
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2.3. Conservation of total momentum

2.3 Conservation of total momentum

The global definition of momentum, i.e.

~pM = M · ~v, (2.154)

where M is the total mass of the body and ~v the velocity of its centre of mass, motivates
the momentum density pM with

~pM =
ˆ

Ω

pM(x, t) dx. (2.155)

Independent of the frame of reference, the momentum density is equal to the total mass
flux, i.e.

pM = ρv + j. (2.156)

Here it can again be seen why the standard coordinate system, implying j(x, t) = 0, is
convenient, since it implies

pM(x, t) = ρ(x, t) v(x, t). (2.157)

If another Eulerian coordinate system (y,v)) is chosen such that, e.g. ∑n
α=1mα ·

jα(y, t) = 0 and j(y, t) 6= 0, the mass flux constraint 2.17 is used for the representation

pM(y, t) = ρn(y, t)v(y, t) +
n∑

α=1
jα(y, t). (2.158)

In an inertial frame of reference, Newtons second law classically states

~̇p = ~F , (2.159)

where ~F is the force acting on the object. The continuum mechanical version is stated in
the following assumption.

Assumption 8 (Newtons second law).
In a continuum mechanical or field description the force acting on the body is supposed
to consist of a flux and a source part, i.e.

~F = ~JF + ~RF (2.160)

~JF = −
˛

∂Ω

σT
M dA (2.161)

~RF =
ˆ

Ω

f dx, (2.162)

where σ is called stress tensor and f the overall force density acting on body. Together
with Reynolds transport theorem for vector fields, one obtains thus the local version of
Newtons second law in the standard coordinate system

∂ρv
∂t

= −Div (ρv⊗ v + σM) + f . (2.163)
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2. Coupled Thermo- and Electrodynamics

Note, however, that the overall force density f is not yet specified, but derived from the
following postulation.

Assumption 9 (Conservation of total momentum).
The total momentum (in absence of gravitational effects) of a polarize- and magnetizeable
media

~p = ~pM + ~pEM (2.164)

is supposed to obey a global conservation equation, i.e.

d
dt

ˆ
Ω

pM + pEM dx

 != −
˛

Ω

JT
p · dA (2.165)

with the total momentum flux Jp, and the continuum hypothesis.

Summing the local balance equations of electromagnetic momentum and material (eqs.
2.133 and (2.163)) leads to

∂(pM + pEM)
∂t

= −Div (ρv⊗ v + σM − τEM) + f + rpEM . (2.166)

In comparison to the local momentum conservation

∂p
∂t

= −Div (p⊗ v + Jp) , (2.167)

one thus deduces

f = −rpEM . (2.168)

At this point a discussion of the resulting relationships is quite interesting. The total
momentum flux consists of the difference between the stress tensor of the material and
the electromagnetic stress tensor. If the momentum flux is supposed to vanish (Jp = 0)
then material stress is balanced by the field stress.
Further, the equation dictates the shape of the force density acting on (or within) the
material. Expectably, the force density f is the local version of the Lorentz force (i.e.
f = nF E + jF × B) in addition to forces arising due to polarization and magnetization
(ponderomotive force). The momentum balance of material (or Newtons second law eq.
2.163) is thus

∂ρv
∂t

=−Div (ρv⊗ v + σ) + ε−1
0 nF D + jF ×B + gPM, (2.169)

where the effective stress tensor σ of material and polarization/magnetization

σ = σM −
1
ε0

D⊗P + B⊗M + 1
2

(〈 1
ε0

D,P
〉
− 〈B,M〉

)
Id = σM − τ ∆ (2.170)

is introduced, and further simply called momentum balance.

Definition 8 (Mechanical equilibrium).
Following the terminology given in [10] a physical object is in mechanical equilibrium
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2.3. Conservation of total momentum

iff

∂ρv
∂t

+ Div (ρv⊗ v) = 0. (2.171)

From the viewpoint of global balance equations, this corresponds to

d~pM
dt = 0, (2.172)

i.e. the system is not accelerated. Since this holds for many stationary or quasi-
stationary systems it is a reasonable assumption for many situations. In accordance, the
remaining momentum balance

Div σ = ε−1
0 nF D + jF ×B + gPM (2.173)

is called stationary momentum balance equation.

Definition 9 (Pressure).
Material or elastic pressure is p defined as

p := 1
3tr(σM) (2.174)

and thus the decomposition

σ = (p+ 1
2ε
−1
0 D ·PT − 1

2B ·MT)Id + π − 1
ε0

D⊗P + B⊗M (2.175)

holds, where πM is called viscous stress tensor of the material and

π := πM −
1
ε0

D⊗P + B⊗M (2.176)

total viscous stress tensor. Reconsidering the definition of the material force flux through
∂Ω, i.e.

~JF = −
˛

∂Ω

σT
M · dA = −

˛

∂Ω

p · n dA

︸ ︷︷ ︸
=: ~JF,p

−
˛

∂Ω

πT · dA

︸ ︷︷ ︸
=: ~JF,π

, (2.177)

leads to the conclusion that pressure generates only a force in normal direction of ∂Ω.
Note, however, that the pressure p is (yet) undetermined.
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2. Coupled Thermo- and Electrodynamics

2.4 Conservation of energy

Quite similar to the local version of Newtons second law, a first law of thermodynamics
will be assumed, stating that the total energy obeys a conservation equation. However,
before this assumption is stated, some preliminary discussion on energy density is required.

The kinetic energy of the whole system is (quite similar to the momentum)

Ekin = 1
2M~v2 (2.178)

where M is again the total mass and ~v the center of mass velocity. This gives rise to a
kinetic energy density

eM = 1
2ρv · vT. (2.179)

The corresponding balance equation is obtained by multiplying the momentum balance
eq. (2.169) with vT and some vector calculus transformations (c.f. auxiliary calculation
2.21).

Auxiliary calculation 2.21: Kinetic energy density

∂ 1
2ρv · vT

∂ t
= 1

2

(
∂ ρv
∂ t
· vT + ∂ v

∂ t
ρvT

)
= ∂ ρv

∂ t
· vT − 1

2
ρ

t
vvT.

Inserting the momentum and mass balance leads to

∂ ρv
∂ t
· vT − 1

2
∂ ρ

∂ t
vvT = −Div (ρv⊗ v + σM) vT + nQ E · vT

+ (jQ ×B) · vT + 1
2div (ρv) · vvT.

With relation (A.27) one deduces

−Div (ρv⊗ v+σM) vT = −div (ρ(v⊗ v) · vT+σM · vT)+(ρv⊗ v+σM) •∇v

and according to (A.31)

1
2div (ρv) v · vT = div

(1
2(ρv⊗ v) · vT)− 1

2ρv · ∇(v · vT).

Further, exploiting (A.25) and (A.32) one could rewrite

1
2ρv · ∇(v · vT) = (ρv⊗ v) •∇v

and thus

(ρv⊗ v) •∇v + 1
2div (ρv) · vvT = div

(1
2(ρv⊗ v) · vT).

Putting the intermediate steps finally together results in

∂ 1
2ρv · vT

∂ t
= −div

(
1
2ρ(v · vT) v+σM · v

)
+σM •∇v− rpEM · vT.
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2.4. Conservation of energy

The balance equation of kinetic energy is thus

∂ eM
∂ t

= −div
(
eMv + j̃eM

)
+ r̃eM (2.180)

with the (diffusional) kinetic energy flux

j̃eM = σM · v (2.181)

and the kinetic energy density source

r̃eM = σM •∇v + ε−1
0 nQv ·DT + jQ · (B× v)T. (2.182)

However, in accordance to the decomposition (2.137) and the following auxiliary calcula-
tion, one could rewrite the balance equation as

∂ eM
∂ t

= −div (eMv + jeM) + reM (2.183)

with

jeM = σ · vT = (σM − τ ∆) · vT (2.184)
reM = σ •∇v + ε−1

0 nFv ·DT + jF · (B× v)T + gPM · vT. (2.185)

Auxiliary calculation 2.22:

−rpEM · vT = nF ε−1
0 D · vT + jF · (B× v)T − (Div τ ∆) · vT + gPM · vT

=div (τ ∆ · vT) + nFε−1
0 D · vT + jF · (B× v)T + τ ∆ •∇v + gPM · vT

Obviously, kinetic energy is not in general conserved, and the question arises what energy
(density) is actually conserved. Summing the balance equations of kinetic (eq. 2.180) and
EM-field (eq. 2.151) energy leads to

∂ (eM + eEM + ε−1
0 D ·P)

∂ t
= −div (eMv + jeM + SPM))

+ σ •∇v− jF · (ε−1
0 D + B× v)T + gPM · vT

+
(
∂D
∂ t

+ ∂B
∂ t
× v

)
·PT + ∂B

∂ t
·MT, (2.186)

which is also not a conservation equation. However, this is expectably, since everyone
knows from experience that an electric current generates heat, or in other words, internal
energy. This concept is stated rigorously in the following assumption.

Assumption 10 (First law of thermodynamics - conservation of energy).
It is assumed that a unique energy density eI, called internal energy, exists such that
the total energy density

e = eI + eM + ePM (2.187)
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is conserved, i.e.
ˆ

ω

∂ e

∂ t
+ div

(
(e− ePM)v + je

)
dV = 0 ∀ω ∈ Ω.7 (2.188)

In vacuum the internal energy is supposed to vanish, i.e.

eI|ρ=0 = 0. (2.190)

Thus the decomposition

eI = ρ u, (2.191)

is motivated, and u is called internal energy density.

Next, the derivation of the internal energy balance is desired. From the implicit defini-
tion of the internal energy (ρ u = e−eM−ePM) it is clear that ρ u obeys a general balance
equation

∂ ρ u

∂ t
= −div (ρ u+ ju) + ru. (2.192)

Similar to the force density f which arose in the derivation of the momentum balance,
the explicit representation of the internal energy flux and source are now calculated. Sub-
tracting eq. (2.186) from the total energy balance (2.188) leads to

∂ ρ u

∂ t
= −div (ρ uv + je − jeM − SPM)

− σ •∇v + jF ·ET − gPM · vT

−
(
∂D
∂ t
− ∂B

∂ t
× v

)
·PT − ∂B

∂ t
·MT, (2.193)

which identifies the (diffusional) flux of the internal energy density (sometimes also called
heat flux),

ju = je − jeM − SPM (2.194)

and the source of internal energy

ru = −σ •∇v + jF · (ε−1
0 D + B× v)T

− gPM · vT −
(
∂D
∂ t
− ∂B

∂ t
× v

)
·PT − ∂B

∂ t
·MT.

Corollary 6 (Internal energy balance on singular surfaces).
The singular surface Σ ∈ Ω may also cover some internal energy, e.g. due to surface
currents or reactions. Let thus u

s
be the surface internal energy density (implicitly defined

7This decomposition might look somewhat arbitrary, however, it can be seen from the following Gedanken-
experiment. In vacuum all mass densities vanish (ρα = 0, α = 1, . . . , n) and thus also the free charge
density nF and the free current jF. The total energy reduces to EM-field energy (e = ePM) and thus

∂ e

∂ t
= −div (ev + SPM − ePM) = −div SPM = ∂ ePM

∂ t
. (2.189)
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via a corresponding total energy) which fulfills some jump balance equation

∂ u
s

∂ t
= −div

s
(u
s
v + j

s
u) + κu

s
vn + r

su
+ Jρuv + juK · nT x ∈ Σ. (2.195)

Without further derivation, I will state an internal energy source on the surface

r
su

= −p
s

∇
s

v
s

+ ε−1
0 j

s
F ·E

s
T, (2.196)

where

• p
s
is the surface tension (and thus no viscous contributions are considered),

• j
s
F is a current due to free charges on the surface

• and E
s
the tangential component of E on Σ.

Of course, this could rigorously be derived from the jump conditions for momentum and
total energy.

2.5 Summary on conservation of mass, momentum and energy

At this point, a brief summary on the above derivation is quite illustrative.

The continuum hypothesis was used to introduce mass densities ρα from some global
mass Mα. With the introduction of (diffusional) mass fluxes jα and reaction rates rα, the
balance equations for each mass density where obtained,

∂ ρα
∂ t

= −div (ρα v + jα) + rα α = 1, . . . ,n. (2.197)

Conservation of mass (and charge) was then deduced by assumption 4 (conservation of
mass and charge in chemical reactions) as

∂ ρ

∂ t
= −div (ρv + j) (2.198)

j =
n∑

α=1
jα. (2.199)

If the coordinate system is chosen such that j = 0, then the Eulerian description is called
standard coordinate system and the velocity field v is called barycentric velocity.

Based on general balance equations the electromagnetic field theory was then derived.
The free charge density and current are related to mass densities and fluxes via

nF = e0

n∑
α=1

zα
mα

ρα (2.200)

jF = e0

n∑
α=1

zα
mα

jα, (2.201)
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which arise in the (macroscopic) Maxwell equations

∇ · (D + P) = nF (2.202)
∇ ·B = 0 (2.203)

∂ (D + P)
∂ t

= curl
( 1
µ0

B−M−P× v
)
− iF (2.204)

∂B
∂ t

= −curl
(
ε−1

0 D
)
. (2.205)

These where then exploited to derive a momentum and energy balance of the electromag-
netic field, including polarization and magnetization. It was shown that neither momentum
nor the energy of the EM-field is conserved, if free charges and currents are present.

Next, the momentum and (kinetic) energy balance of matter was derived, based on the
continuum hypothesis of the corresponding macroscopic properties. Conservation of the
total momentum led to the conclusion that the force density acting within the material
is the Lorentz force, in addition to forces arising from polarization and magnetization.
Newtons second (local) law was thus derived as

∂ρv
∂t

= −Div (ρv⊗ v + σM) + nQ ε−1
0 D− jQ ×B (2.206)

and rewritten as

∂ρv
∂t

= −Div (ρv⊗ v + σ) + nF ε−1
0 D− jF ×B + gPM. (2.207)

Essentially, in linear materials (P = χPE, M = µ−1
0 χMB) gPM will vanish. However,

the momentum balance is the central equation to determine the velocity field v (general
Navier–Stokes-equation). In mechanical equilibrium, however, it is the necessary restric-
tion between mechanical stress σ (or later on pressure) and the electromagnetic force f .

Based on a first law of thermodynamics, an internal energy density ρ u was introduced,
which covers all energy contributions that are neither due to kinetic energy nor due to
EM-field energy. It was shown that the internal energy obeys the balance equation

∂ ρu

∂ t
= −div (ρ u+ ju)− σ •∇v + jF ·E + gPM · vT

−
(
∂D
∂ t
− ∂B

∂ t
× v

)
·PT − ∂B

∂ t
·MT. (2.208)

Any medium or physical object will thus be described with the following (n + 4) (inde-
pendent) variables and the corresponding (n + 4) balance equations, i.e.

• the n mass densities ρα(x, t) obeying their respective mass balance (2.197)

• the barycentric8 velocity v which is computed via the momentum balance (2.207)

• the electric field E and magnetic flux density B with respect to equations (2.202) -
(2.205)

• and the internal energy density ρ u, computed with energy balance equation (2.208).
8Of course, any other material velocity could also be chosen. However, it was shown above that the
momentum equation has the simple shape (2.207 )only if the coordinate system is chosen such that v
is the barycentric velocity.
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However, the balance equations are yet underdetermined since
• the mass fluxes jα, α = 1, . . . , n− 1,

• the (material) stress tensor σ,

• polarization P and magnetization M,

• and the internal energy flux ju
are not known.

To close the system of equations, constitutive relationships or material functions
are required, e.g.

jα ∝ ∇µα(ρ1, . . . , ρn,v,E,B). (2.209)

This access is now given with the introduction of an entropy density.

2.6 Entropy and the local second law
Entropy is the central concept in thermodynamics to couple mass or particles and internal
energy. I will not derive the concept of entropy from statistical mechanics, but rather
assume that there exits a function (or functional) which is called entropy and relates the
extensive properties.

Classically in homogenous thermodynamics, the entropy function of the whole material
is

S = S(U, {Nα}α, V ), (2.210)

where U is the internal energy of the system, Nα the respective amount of species and V
the (total) volume. However, in a field theoretical sense the number of variables decreases
by one since the volume is implicitly incorporated in the density formulation of each
extensive property.
Assumption 11 (Entropy density and flux).
It is assumed that the entropy S of a physical object Ω∪Σ could uniquely be written as9

S =
ˆ

Ω

ρ(x, t) · s(x, t) dV +
ˆ

Σ

s
s
(x, t) dA (2.211)

with a volumetric entropy density ρs and

ρs = s(ρu, ρ1, . . . , ρn,P,M), (2.212)

and the surface entropy density s
s
10 with its representation

s
s

= s
s
(u
s
, ρ
s
1, . . . , ρ

s
n). (2.213)

9The decomposition in ρs is quite convenient and again motivation from the fact that the entropy of
vacuum vanishes. However, entropy contributions due to polarization are not necessarily bounded on
a mass density.

10The surface entropy is not neccessarily proportional to a surface mass density, e.g. on phase
boundaries[7].

81



2. Coupled Thermo- and Electrodynamics

The explicit representations s(ρu, ρ1, . . . , ρn,P,M) and s
s
(u
s
, ρ
s
1, . . . , ρ

s
n) are called (elemen-

tary)11 entropy functions.
Further, the entropy is supposed to obey the global balance equation

dS
dt = −

˛

∂Ω

jTs · dA +
ˆ

Ω

rs dV −
˛

∂Σ

j
s
T
s · ds +

ˆ

Σ

r
ss
dV (2.214)

and the continuum hypothesis.

Of course, the introduction of an entropy function s(ρu, ρ1, . . . , ρn,P,M) seems some-
how arbitrary, except the number of variables. However, it is possible to derive this de-
pendency via Lagrange multipliers, which was shown by J. Meixner, I. Müller and others
[5, 22–26]. In this context an entropy function is defined without any known dependency
on physical properties, and all balance equations (i.e. mass densities and internal energy)
are added to the entropy balance with some Lagrange multipliers. The method is construc-
tive, in the sense that it explains the (differential) relationship between entropy, internal
energy and mass density (known as temperature and chemical potential) in the context
of polarizable or magnetizable systems. However, I will not introduce thermodynamic
potentials via Lagrange multipliers, but define them in their classical sense, extended to
field properties.

Topic of the next sections is the derivation of the entropy balance equation

∂ ρs

∂ t
+∇ · (ρsv + js) = rs (2.215)

and the jump conditions on the singular surface Σ. A (local) second law of thermodynamics
is then assumed, stating rs ≥ 0 (as well as r

ss
≥ 0). The exploitation of this constraint is

called entropy principle and leads to several well know equations and restrictions, such as

• the Gibbs–Duhem equation

• the definition of the diffusional entropy flux

• the flux force relationships

• and the Onsager reciprocal principle.

For the sake of simplicity, I will first discuss the entropy principle for a non-polarize-
and non-magnetizeable system, i.e. P = 0, M = 0 and ρs = s(ρu, ρ1, . . . , ρn).

11The term “elementary” is used here, since later on variable changes and transformations will be applied
to derive entropy functions which depend on the variable set (T, ρ1, . . . , ρn) or (T, p, c1, . . . , cn−1)
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2.6. Entropy and the local second law

2.6.1 Volumetric entropy balance without polarization and magnetization

To derive the entropy balance, one exploits the explicit dependency of the entropy function,

∂ ρs

∂ t
= ∂ s(ρu, ρ1, . . . , ρn,E,B)

∂ t
= ∂ s

∂ ρu
· ∂ ρu
∂ t

+
n∑

α=1

∂ s

∂ ρα
· ∂ ρα
∂ t

(2.216)

The derivatives of the entropy with respect to the to (extensive) densities are[10]

• the Temperature T with

∂ s

∂ ρu
=: 1

T
(2.217)

• and the Chemical potential µα with

∂ s

∂ ρα
=: −µα

T
, (2.218)

which leads to the compact form

∂ ρs

∂ t
= 1
T
· ∂ ρu
∂ t
−

n∑
α=1

µα
T
· ∂ ρα
∂ t

. (2.219)

Note that T is actually a function (or functional), similar to s, i.e.

T = T (ρu, ρ1, . . . , ρn) (2.220)

and thus not an independent variable (similar for all other partial derivatives).

Insertion of the balance equations (2.208) and (2.197) for the time derivatives leads to

∂ s

∂ t
= − 1

T

(
div (ρ uv + ju)− jF ·ET + (pId + π) •∇v

)
(2.221)

+
n∑

α=1

µα
T

(div (ρα v + jα)− rα) (2.222)

where the decomposition σ = pId + π (c.f. definition 9) was used.
The following auxiliary calculations are helpful in the further derivation.

Auxiliary calculation 2.23:

1
T
div ju = div

(
1
T

ju
)
−∇ 1

T
· jT
u

µα
T

div jα = div
(µα
T

jα
)
−∇µα

T
· jT
α
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2. Coupled Thermo- and Electrodynamics

Auxiliary calculation 2.24:

div (ρuv) 1
T

= div ( 1
T
ρuv)− ρu

(
∇ 1
T

)
· v

div (ραv)µα
T

= div (µα
T
ραv)− ρα

(
∇µα
T

)
· v

1
T
pId •∇v = div ( 1

T
p Id · v)−Div ( 1

T
pId) · v = div ( p

T
v)−∇ p

T
· v

Auxiliary calculation 2.25:

∂ s

∂ t
= − 1

T

(
div (ρ uv + ju)− jF ·ET + (p Id + π) •∇v

)
+

n∑
α=1

µα
T

(div (ρα v + jα)− rα)

= −div
(

1
T

(ρu−
n∑

α=1
µαρα + p) v + 1

T
(ju −

n∑
α=1

µαjα)
)

+
(
ρu∇ 1

T
−

n∑
α=1

ρα∇
µα
T

+∇ p
T

)
· vT

+ jT
u · ∇

1
T
−

n∑
α=1

jT
α ·
(
∇µα
T
− e0

1
T

zα
mα

E
)
−

n∑
α=1

µα
T
rα −

1
T

π •∇v

Thus one obtains the explicit representation

∂ s

∂ t
= −div

(
1
T

(ρu−
n∑

α=1
µαρα + p) v + 1

T
(ju −

n∑
α=1

µαjα)
)

+
(
ρu∇ 1

T
−

n∑
α=1

ρα∇
µα
T

+∇ p
T

)
· v

+ jTu · ∇
1
T
−

n∑
α=1

jTα ·
(
∇µα
T
− e0

1
T

zα
mα

E
)
−

n∑
α=1

µα
T
rα −

1
T

π •∇v. (2.223)

Since it assumed that there exits balance representation of the entropy, i.e.

∂ ρs

∂ t
= −div (ρs+ js) + rs (2.224)

one concludes with a comparison principle between eq. (2.223) and eq. (2.224)

• the entropy density representation

1
T

(ρu−
n∑

α=1
µαρα + p) != ρs,

• the entropy flux representation

1
T

(ju −
n∑

α=1
µαjα) != js,
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2.6. Entropy and the local second law

• the necessary condition(
ρu∇ 1

T
−

n∑
α=1

ρα∇
µα
T

+∇ p
T

)
· v != 0 (2.225)

• and the entropy production

rs
!= jTu · ∇

1
T
−

n∑
α=1

jTα ·
(
∇µα
T
− e0zα
T mα

E
)
−

n∑
α=1

µα
T
rα − π •∇v. (2.226)

This concept is called entropy principle.
Remark 7 (Gibbs- and Gibbs–Duhem-equation).
The explicit entropy representation

1
T

(ρu−
n∑

α=1
µαρα + p) = ρs, (2.227)

which is independent of the choice of variables and the actual coordinate system, is called
Gibbs-equation12. Note that this equation determines the pressure p if the variables
(ρu, ρ1, . . . , ρn) are known. The condition (2.225) should hold for every v and thus

ρu∇ 1
T
−

n∑
α=1

ρα∇
µα
T

+∇ p
T

= 0 (2.228)

AC(2.26)⇔ ρs∇T +
n∑

α=1
ρα∇µα = ∇p, (2.229)

which is further called Gibbs–Duhem-equation.

Auxiliary calculation 2.26:

ρu∇ 1
T
−

n∑
α=1

ρα∇
µα
T

+∇ p
T

=(ρu−
n∑

α=1
µαρα + p)∇ 1

T
− 1
T

n∑
α=1

ρα∇µα + 1
T
∇p

=− 1
T

(
1
T

(ρu−
n∑

α=1
µαρα + p)∇T +

n∑
α=1

ρα∇µα −∇p

)

Thus, the explicit entropy balance equation (without polarization and magnetiza-
tion)

∂ ρs

∂ t
= −div (ρsv + ju) + rs (2.230)

is derived, and the second law of thermodynamics can be stated.

Assumption 12 (Second law of thermodynamics).
12In classical thermodynamics as well as in some theories of non-equilibrium thermodynamics the Gibbs–

Duhem equation is postulated, while here it is derived from general conservation equations.
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2. Coupled Thermo- and Electrodynamics

It is assumed that the entropy production

RS =
ˆ

Ω

rs dV ≥ 0 (2.231)

and that this relations holds for every ω ∈ Ω. Thus, the local second law of thermo-
dynamics

rs(x, t) ≥ 0 ∀(x, t) ∈ Ω× I (2.232)

is formulated.

2.6.2 Volumetric entropy principle with polarization and magnetization
The extension of the entropy principle to systems with polarization and magnetization is
not straight forward, in the sense that different strategies are found in literature. While
Liu and Müller [26, 27] again use Lagrange multiplies, the approach of de Groot, Jackson
and others [10, 11, 15] is an extension of the comparison principle (eq. (2.223) and eq.
(2.224)). I will somehow follow a compromise, using a comparison principle to deduce a
good candidate for the resulting expressions ∂ ρs

∂D and ∂ ρs
∂B , which is shown now.

From an entropy function s = s(ρu, ρ1, . . . , ρn,E,B) one obtains

∂ s

∂ t
= 1
T
· ∂ ρu
∂ t
−

n∑
α=1

µα
T
· ∂ ρα
∂ t

+ ∂ s

∂ ε−1
0 D

· ∂ ε
−1
0 DT

∂ t
+ ∂ s

∂B ·
∂B
∂ t

. (2.233)

Inserting again the balance equations (2.208) and (2.197), however, accounting for the
internal energy contributions due to polarization and magnetization, one obtains

∂ s

∂ t
= − 1

T
div (ρ uv + ju) + 1

T
jF ·ET

− 1
T

(
(p+ 1

2ε
−1
0 D ·PT −B ·MT)Id + π

)
•∇v

+ 1
T

P · ∂DT

∂ t
+ ∂ s

∂ ε−1
0 D

· ∂ ε
−1
0 DT

∂ t

+ 1
T

(M + P× v) · ∂B
∂ t

+ ∂ s

∂B ·
∂B
∂ t

+
n∑

α=1

µα
T

(div (ρα v + jα)− rα) + 1
T

gPM · vT. (2.234)

Applying again the entropy principle (c.f. page 85) one concludes

• the entropy density representation

1
T

(ρu−
n∑

α=1
µαρα + p+ 1

2ε
−1
0 D ·PT − 1

2B ·MT) != ρs,

• the entropy flux representation

1
T

(ju −
n∑

α=1
µαjα) != js, (2.235)
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2.6. Entropy and the local second law

• the necessary condition (for all v)(
ρu∇ 1

T
−

n∑
α=1

ρα∇
µα
T

+∇
(
p

T
+ 1

2ε
−1
0 D ·PT − 1

2B ·MT
)

+ 1
T

gPM

)
· vT != 0,

• polarization

∂ s

∂ ε−1
0 D

= −P
T
, (2.236)

• magnetization

∂ s

∂B = −M + P× v
T

, (2.237)

• and finally the entropy production

rs
!= ∇ 1

T
· jTu −

n∑
α=1

jα ·
(
∇µα
T
− e0zα
T mα

E
)
−

n∑
α=1

µα
T
rα − π •∇v.

It is convenient to decompose the entropy production as

rs = rs,π + rs, j + rs,r (2.238)

with

• the viscous entropy production

rs,π = −π •∇v, (2.239)

• the flux entropy production

rs, j = ∇ 1
T
· jTu −

n∑
α=1

jα ·
(
∇µα
T
− e0zα
T mα

E
)
, (2.240)

• and the reaction entropy production

rs,r = −
n∑

α=1

µα
T
rα. (2.241)

Of course this concept has to be applied with care since the conclusions

∂ ρs

∂E
!= − 1

T
P (2.242)

∂ ρs

∂B
!= − 1

T
(M + P× v) (2.243)

are only necessary conditions, in the sense that this choice does not violate the stated
assumptions (mainly the local second law). However, it is a constructive method and
sufficient for my purpose.

Lemma 3 (Gibbs and Gibbs–Duhem-equation for polarize- and magnetizeable material).
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2. Coupled Thermo- and Electrodynamics

The entropy representation

ρu−
n∑

α=1
µαρα + p+ 1

2ε
−1
0 D ·PT − 1

2B ·MT = Tρs (2.244)

is called Gibbs-equation for PM-media and the relation

ρu∇ 1
T
−

n∑
α=1

ρα∇
µα
T

+∇
(
p

T
+ 1

2ε
−1
0 D ·PT + 1

2B ·M
)

+ 1
T

gPM = 0 (2.245)

generalized Gibbs–Duhem equation.

2.6.3 Entropy balance on singular surfaces

Since the entropy ρs obeys a balance equation in Ω, there also hold some jump conditions
for a singular surface Σ ∈ Ω. However, the surface itself could have entropy contributions,
which was stated with the introduction of a surface entropy density s

s
. The corresponding

balance equation (or jump condition) is

∂ s
s

∂ t
= −div

s
(s
s
v + j

s
s)− κss · vn + r

ss
− Jρsv + jsK · nT, (2.246)

which is simply obtained from the global representation and the continuum hypothesis.

Again, the explicit representations of j
s
s and rss are desired. With the entropy function13

s
s
(u
s
, ρ
s
1, . . . , ρ

s
n) one obtains

∂ s
s

∂ t
=
∂ s

s
∂ u

s
·
∂ u

s
∂ t

+
n∑

α=1

∂ s
s

∂ ρ
s
α
·
∂ ρ

s
α

∂ t
. (2.247)

Analogous to the volume, the surface temperature T
s
and chemical potentials µ

s
α are

introduced as

1
T
s

=
∂ s

s
∂ u

s
(2.248)

−
µ
s
α

T
s

=
∂ s

s
∂ ρ

s
α

α = 1, . . . ,n. (2.249)

Inserting the balance equations (2.195), (2.196 ) and (2.12 ) leads to

∂ s
s

∂ t
= − 1

T
div
s

(
u
s
v + j

s
u

)
− κ 1

T
(u
s
−

n∑
α=1

µ
s
α · ρ

s
α) · vn +

n∑
α=1

µ
s
α

T
s
·
(
div
s

(ρ
s
αv
s

+ j
s
α)− r

sα

)

−
p
s
T
s

∇
s

v
s

+ 1
T
s
· ε0

j
s
F ·E

s
− 1
T
s
Jρuv + juK · nT +

n∑
α=1

µ
s
α

T
s

Jραv + jαK · nT. (2.250)

Corollary 7 (Continuity of temperature).
13For the sake of simplicity in the derivation, I neglect here polarization and magnetization.
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The temperature T is assumed to be continuous across a singular surface, with limit value
T
s
, i.e.

lim
h→0

T (x + h · n, t) = lim
h→0

T (x− h · n, t) = T
s
(x, t) x ∈ Σ (2.251)

The continuity of temperature and the auxiliary calculation 2.27 lead to

∂ s
s

∂ t
= −div

s

( 1
T
s

(u
s
−

n∑
α=1

µ
s
αρ
s
α + p

s
) + 1

T
s

(j
s
u −

n∑
α=1

µ
s
α j
s
α)
)

+

u
s ∇s

1
T
s
−

n∑
α=1

ρ
s
α∇s

µ
s
α

T
s

+∇
s

p
s
T
s

 · v
s

+ j
s
T
u · ∇s

1
T
s
−

n∑
α=1

j
s
T
α ·

∇
s

µ
s
α

T
s
− e0zα
T
s
mαε0

E
s

− n∑
α=1

µ
s
α

T
r
sα

− 1
T
s

(
κ(u

s
−

n∑
α=1

µ
s
α · ρ

s
α)− JpK

)
· vn

− Jρsv + jsK · nT − J
n∑

α=1

(
µα
T
−
µ
s
α

T

)
(ραv + jα)K · nT. (2.252)

Auxiliary calculation 2.27:
With the entropy density and flux representations

1
T

(ρu−
n∑

α=1
µαρα + p) = ρs

1
T

(ju −
n∑

α=1
µαjα) = js,

one obtains

− 1
T
s

Jρuv + juK +
n∑

α=1

µ
s
α

T
s

Jραv + jαK

=− Jρsv + jsK + 1
T
s

JpvK− J
n∑

α=1

µα
T

(ραv + jα)K + J
n∑

α=1

µ
s
α

T
(ραv + jα)K

=− Jρsv + jsK + 1
T
s

JpvK− J
n∑

α=1

(
µα
T
−
µ
s
α

T

)
(ραv + jα)K

Of course, similar relations like the Gibbs and the Gibbs–Duhem equation are desired
for the surface. A comparison of (2.252) with (2.246) leads to

• the surface Gibbs equation

T
s
s
s

= u
s
−

n∑
α=1

µ
s
αρ
s
α + p

s
, (2.253)
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• the surface Gibbs–Duhem equation

s
s∇s Ts +

n∑
α=1

ρ
s
α∇s Ts = ∇

s
p
s
, (2.254)

• and the surface entropy flux representation

1
T
s

(
j
s
u −

n∑
α=1

µ
s
α j
s
α

)
= j

s
s. (2.255)

Next, the curvature and jump terms are investigated, which require the following as-
sumption.

Assumption 13 (Young–Laplace equation).
I will assume that on the singular surface Σ the surface tension is simply related to the
pressure jump and the curvature via

−κ · p
s

= JpK. (2.256)

This relation is also called Young–Laplace equation. Further, this relation implies

−κ · p
s
vn = JpK vn = JpvK · nT (2.257)

since the jump occurs in normal direction of Σ, which itself is a material surface (c.f. page
1.1.2 f.f.)

With this derivations the curvature term in (2.252) is

κ(u
s
−

n∑
α=1

µ
s
α · ρ

s
α)− JpK = κ

1
T

(u
s
−

n∑
α=1

µ
s
α · ρ

s
α) + κ · p

s
= κT

s
s
s

(2.258)

and one thus one deduces (again by comparison to eq. (2.246)) the surface entropy pro-
duction

r
ss

= j
s
u · ∇s

1
T
s
−

n∑
α=1

j
s
α ·

∇
s

µ
s
α

T
s
− e0zα
T
s
mαε0

E
s


−

n∑
α=1

µ
s
α

T
r
sα
− J

n∑
α=1

(
µα
T
−
µ
s
α

T

)
(ραv + jα)K (2.259)

• with the surface reaction entropy production

r
ss,r

= −
n∑

α=1

µ
s
α

T
r
sα

(2.260)

• the surface flux entropy production

r
ss, j

= j
s
u · ∇s

1
T
s
−

n∑
α=1

j
s
α ·

∇
s

µ
s
α

T
s
− e0zα
T
s
mαε0

E
s

 . (2.261)
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• and the flux jump entropy production

r
ss, JjK

− J
n∑

α=1

(
µα
T
−
µ
s
α

T

)
(ραv + jα)K. (2.262)

Corollary 8 (Continuity of the chemical potential at singular surfaces).
Similar to the temperature T I assume throughout the rest of the work that the chemical
potential is continuos across singular surfaces, i.e.

lim
h→0

µα(x + hn) = lim
h→0

µα(x− hn) = µ
s
α(x, t) x ∈ Σ. (2.263)

In consequence, the flux jump entropy production r
ss, JjK

vanishes.

Equivalent to the volume a local second law of thermodynamics is now stated.

Assumption 14 (Second law of thermodynamics for surfaces).
It is assumed that the entropy production on the surface Σ

R
s S

=
ˆ

Σ

r
ss
dA ≥ 0 (2.264)

and that this relation hold for every σ ∈ Σ. This leads to

r
ss

(x, t) ≥ 0 ∀(x, t) ∈ Σ× I (2.265)

and is called local surface second law of thermodynamics.

2.7 Exploitation of the second law
The entropy principle led to explicit representations of the entropy balance equations,
and consequently, to the entropy production rate rs in Ω and r

ss
in Σ. The postulated

non-negativity is now exploited to introduce conditions on the reaction rates as well as on
flux.

It was shown that the entropy production could be written as a sum

rs = rs,π + rs, j + rs,r. (2.266)

This partition is not randomly since each source term has a unique underlying structure,
i.e.

• rs,π consist of tensor scalar products

• rs,j of vector scalar products

• and rs,r of simple products.

In the last century the question arose if this inherent structure ensures that each of the
terms itself obeys a non-negativity restriction [25, 28–31], which is sometimes called Curie
principle [10].
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Assumption 15 (Curie principle).
Throughout this work it is assumed that the entropy production rs decomposes into

rs = rs,π + rs, j + rs,r (2.267)

and that each production is non-negative, i.e.

rs,π ≥ 0, rs,j ≥ 0 and rs,r ≥ 0.

The same is assumed to hold true for the surface entropy production r
ss

= r
ss,r

+ r
ss,j

with

r
ss,r
≥ 0 and r

ss,j
≥ 0.

Curie’s principle allows thus for an exploitation of the entropy principle on each term.

2.7.1 Affinity conditions

First, reconsider the entropy production due to chemical reactions, i.e.

rs,r = −
n∑

α=1

1
T
µα · rα = −

nr∑
k=1

qk ·
(

1
T

n∑
α=1

να,kmαµα

)
︸ ︷︷ ︸

=:λk

. (2.268)

The abbreviation λk is called affinity of reaction k. Due to the conservation of mass
constraint one could also write (without loss of generality)

λk = 1
T

n−1∑
α=1

(να,kmαµα − νn,kmnµn). (2.269)

However, if νn,k = 0 for some k = 1, . . . ,nr, this conversion does not hold, and another
reference species has to be chosen. Accordingly, an affinity

λ
s k

= 1
T

n∑
α=1

ν
sα,k

mαµ
s
α (2.270)

for surface reactions is defined, and thus

r
ss,r

= −
n
s
r∑

k=1
q
s
k · λs k. (2.271)

The local second law (in combination with the Curie principle) now states

r
ss,r
≥ 0 ∀(x, t) ∈ Ω× I (2.272)
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and one could ask which thermodynamic ansatz (TD ansatz)14 for qk is sufficient to ensure
r
ss,r
≥ 0. The following abbreviations are useful for the further derivation,

q = (q1, . . . , qnr) (2.273)
λ = (λ1, . . . , λnr) (2.274)

with which one could write

rs,r =
〈
q, λ

〉
. (2.275)

The most simple approach to ensures the second law is

q = −` · λ (2.276)

with a positive definite matrix ` ∈ Rnr×nr . L. Onsager showed that the matrix ` is has
to be symmetric [30, 31], for which he received the Nobel price in chemistry 1968. This
Onsager reciprocity allows for a Cholesky decomposition

` = d · dT, (2.277)

with a lower triangle matrix d. The abbreviation

λ′ := d · λ (2.278)

represents a linear combination of affinities. Hence one is able to write the entropy pro-
duction as

rs,r =
〈
λ′, λ′

〉
=
∣∣∣∣λ′∣∣∣∣2 ≥ 0. (2.279)

Similar approaches are applied for the surface reaction rates (with equal definitions as
above), i.e.

q
s

= −`
s
· λ
s

(2.280)

with a symmetric, positive definite matrix `
s
and the decomposition `

s
= d

s
· d
s

T. With

λ
s
′ = d

s
· λ
s

(2.281)

one obtains

r
ss,r

=
∣∣∣∣∣∣∣∣λs ′

∣∣∣∣∣∣∣∣2 ≥ 0. (2.282)

14Explicit representations of qk = qk(λk) are called thermodynamic ansatz to clearly distinguish an actual
model, i.e. a representation µ = µ(T, ρ1, . . . , ρn).
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2.7.2 Flux conditions

Reconsider the flux constraint
n∑

α=1
jα = 0 (2.283)

which was a consequence from the conservation of mass. With this, one is able to rewrite
(without loss of generality) the flux entropy production as

rs, j = jTu · ∇
1
T
−

n∑
α=1

jTα ·
(
∇µα
T
− e0zα
T mα

E
)

(2.284)

= jTu · ∇
1
T
−

n−1∑
α=1

jTα ·
(
∇µα − µn

T
− e0
T

(
zα
mα
− zn
mn

)
E
)
. (2.285)

Of course, the reference to the nth species is arbitrary. However, it is not necessary to
exploit the constraint ∑n

α=1 jα = 0 at the very beginning of the flux derivation.

With K := R3 It is convenient to define

j =
(
− ju, j1, . . . , jn−1

)
∈ Kn (2.286)

γ =
(
∇ 1
T
,∇µ1 − µn

T
− e0
T

(
z1
m1
− zn
mn

)
E, . . . (2.287)

. . . ,∇µn−1 − µn
T

− e0
T

(
zn−1
mn−1

− zn
mn

)
E
)

∈ Kn (2.288)

one is able to write the flux entropy production in the compact form

rs, j = −j · γT. (2.289)

Note that j0 = −ju. Similar to above, an approach for j is desired which ensures rs, j ≥ 0,
and the most simple choice is clearly

j = −γ · L (2.290)

with a positive definite matrix L ∈ Kn×n.15 Like in the reaction ansatz, this linear16 re-
lationship between the fluxes j and the generalized thermodynamic forces λ is doubtably
for very high currents[32]. Nevertheless, throughout this work only linear relations of the
type eq. (2.290) are considered.

Of course, a similar reciprocity condition on L as the symmetry of ` is desired. It
is generally accepted that linear irreversible thermodynamics postulates [5, p. 203] this
symmetry, while modern extensions of thermodynamics derive this symmetry. In addition,
if magnetic contributions are present, the symmetry of the coefficients Lα,β breaks down
(in fact it becomes anti-symmetric [10, p. 73]). Since in my work the Onsager reciprocity
is not the main focus, the following assumption is stated.
15Note that the entries Lα,β of L are itself matrices, i.e. Lα,β ∈ R3×3. However, the positive definite

condition applies for the matrix of matrices.
16Linear means here a linear relationship between the fluxes j and the forces λ. The explicit Onsager

matrices Lα,β are not necessarily constant or linear in the variables (ρu, ρ1, . . . , ρn), but (to some
extend) arbitrary tensor valued functions.
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Assumption 16 (Onsager coefficient symmetry).
If no magnetic contributions are present, the elementary Onsager matrix Lα,β is assumed
to be symmetric and positive definite. It obeys the Cholesky decomposition

L = D ·DT, (2.291)

with a lower triangle matrix D.

With the Cholesky decomposition one could further introduce the force combinations

γ ′ = D · γ (2.292)

and write the flux entropy production as norm, i.e.

rs, j =
〈
γ ′,γ ′

〉
=
∣∣∣∣∣∣γ ′∣∣∣∣∣∣2 ≥ 0. (2.293)

Thus one has the explicit flux representation

ju = L0,0 · ∇
1
T

+
n−1∑
β=1

Lβ,0 · ∇
µβ − µn

T
− e0
T

(
zβ
mβ
− zn
mn

)
(2.294)

jα = −L0,α · ∇
1
T
−

n−1∑
β=1

Lα,β · ∇
µβ − µn

T
− e0
T

(
zβ
mβ
− zn
mn

)
(2.295)

and the symmetry condition states Lα,β = Lβ,α, α, β = 0, 1, . . . ,n− 1.

Surfaces fluxes of course obey a similar derivation, which is, however, not given here. I
will just postulate a symmetric and positive definite matrix L

s α,β
which relates the surface

fluxes to the forces, i.e.

j
s
α =

n∑
α=1

L
s α,β
·

∇
s

µ
s
α − µ

s
n

T
− e0
T
s
· ( zα
mα
− zn
mn

)E
s

 (2.296)

and ensures

r
ss, j
≥ 0 ∀(x, t) ∈ Σ× I. (2.297)

2.7.3 Equilibrium conditions
Before the equilibrium conditions are derived, thermodynamic states are introduced.
Definition 10 (Thermodynamic state).
A solution of the coupled equation system (2.197),(2.202)-(2.205),(2.207) and (2.208) with
respect to some boundary conditions is called thermodynamic state and abbreviated as

tZ := (ρZ(x, t)uZ(x, t), ρZ1 (x, t), . . . , ρZn (x, t),DZ(x, t),BZ(x, t)). (2.298)

The superscript Z should be understood as marker, e.g. Z = Eq for equilibrium or Z = 0
for the initial states at t = 0. Similar the surface state is defined as solution of the
respective surface balance equations and consequently abbreviated as

t
s
Z := (u

s
Z(x, t), ρ

s
Z
1 (x, t), . . . , ρ

s
Z
n (x, t)). (2.299)
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Note, however, that these thermodynamic states are yet formal solutions of the eq.
system (2.197),(2.202)-(2.205),(2.207) and 2.208) as the boundary conditions are not yet
specified. Recall that all thermodynamic potentials are functions of the independent fields,
e.g. µα = µα(ρu, ρ1, . . . , ρn,D,B). One could thus insert the formal solutions tZ to obtain
the corresponding thermodynamic potentials of the state, i.e.

T (tZ) =: TZ (2.300)
µα(tZ) =: µZα α = 1, . . . ,n (2.301)
P(tZ) =: PZ (2.302)

M(tZ) =: MZ (2.303)

and from the Gibbs equation

p(tZ) =: pZ . (2.304)

All of these thermodynamic potentials can be considered as functionals, i.e.

TZ = TZ [ρu, ρ1, . . . , ρn,D,B] (2.305)

One could thus speak of the temperature TZ of state Z or the chemical potential µZα of
state Z. The same methodology is applied for the surface properties. Further, one could
interpret the entropy production as functional

rs = rs[tZ ] = rs
(
TZ , µZ1 , . . . , µ

Z
n
)

(2.306)

and derive some general results on thermodynamic states. Specific boundary conditions
then determine the actual functions.

Of special interest are of course thermodynamic states in which the entropy produc-
tion vanishes. These are frequently called equilibrium states, however, the term is not
consistently used in literature and hence defined for the following work.

Definition 11 (Thermodynamic equilibrium states).
A thermodynamic state tEq is called global equilibrium state if the total entropy production
vanishes, i.e.

rs[tEq] = 0, (2.307)

and similar t
s
Eq is called global equilibrium state of the surface.

However, as not necessarily the overall entropy production has to vanish, one introduces
(partial) equilibrium states, i.e.

• reaction equilibrium states (t	, t
s
	) satisfying

rs,r[t	] = 0 and r
ss,r

[t
s
	] = 0, (2.308)

• and flux equilibrium states (t∗, t
s
∗) with

rs, j[t∗] = 0 and r
ss, j

[t
s
∗] = 0. (2.309)
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2.7. Exploitation of the second law

Reaction equilibrium

Consider now only the entropy production due to chemical reactions (either in the volume
or on the surface) and the corresponding equilibrium state t	. Equation (2.279) implies17

λ′	 = 0 (2.310)

and since λ′ = d ·λ, with a lower triangle matrix d, a Gaussian elimination procedure leads
(iteratively) to

λk = 0 for k = 1, . . . ,nr. (2.311)

This is the well known equilibrium condition for chemical reactions
n∑

α=1
να,kmαµ

	
α = 0 for k = 1, . . . ,nr, (2.312)

and similar for surfaces
n∑

α=1
ν
sα,k

mαµ
s
	
α = 0 for k = 1, . . . ,n

s r
. (2.313)

Flux equilibrium

The flux entropy production was also written as a norm of some linear combinations of
the flux driving forces, i.e.

rs, j =
∣∣∣∣∣∣γ ′∣∣∣∣∣∣ != 0 (2.314)

with

γ ′ = D · γ. (2.315)

Similar, the equilibrium condition requires

γ ′ = 0 (2.316)

and with a Gaussian elimination18 one deduces

∇ 1
T ∗

= 0 (2.317)

∇µ
∗
α − µ∗n
T ∗

− e0
T ∗

(
zα
mα
− zn
mn

)
E∗ = 0 for α = 1, . . . ,n. (2.318)

Note that the state t∗ is itself a solution of a PDE system, and thus space dependent. The
nabla operators in (2.317) hence operates on this (formal) solution.

17Note that more than one state could ensure a vanishing entropy production.
18Of course the Gaussian elimination requires the inevitability of each matrix Lα,β . However, Müller[5]

actually starts its derivation of the reciprocity condition with some matrix Mα,β , which turns out to
be a (linear combination) of L−1

α,β . I thus fairly assume here that all Onsager coefficients are invertible.
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2.8 Free energy
The intrinsic set of variables (ρ u, ρ1, . . . , ρn) is (most often) not convenient to describe a
thermodynamic system in laboratory situations. It is, however, possible to change this set
of variables to another set of (more convenient) variables via two methodologies, i.e.

• variable changes

• and variable transformations.

While variable changes directly exchange a state variable, e.g. ρn with ρ, variable transfor-
mations exchange an extensive field with its corresponding (or conjugate) thermodynamic
potential, e.g. ρn with µn. In this section I will briefly describe variable changes and vari-
able transformations and motive thereby the introduction of the Helmholtz free energy
and the Gibbs free energy.

Corollary 9 (Legendre transformation).
Consider some function f which depends on u and satisfies

∂ f(u)
∂ u

=: v (2.319)

for which a variable transformation u  v is desired. The independent variable u
becomes a function (i.e. u = u(v)) and v the independent variable. One is then seeking
the explicit representation

u = −∂ g(v)
∂ v

(2.320)

where g is to be determined. With f̃ := f(u(v)) the choice

g(v) = f̃(v)− u(v) v = f(u(v))− u(v) v (2.321)

leads to

∂
(
f(u(v))− u v

)
∂ v

= ∂ f(u)
∂ u︸ ︷︷ ︸
=v

·∂ u(v)
∂ v

− ∂ u(v)
∂ v

· v − u∂ v
∂ v

= −u (2.322)

The function g(v) is called Legendre transformation of f (with respect to (u, v)) and
v is termed conjugate variable of u.

2.8.1 Helmholtz free energy
Suppose now that the Temperature T should become an independent degree of freedom.
Temperature was introduced as

∂ ρs

∂ ρu
= 1
T

(2.323)

since ρs was supposed to be a function of ρu. However, due to the Gibbs equation (2.227)
one could also write

∂ ρu

∂ ρs
= T (2.324)
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and interpret the internal energy density as function of the entropy density, i.e.

ρu = u(ρs, ρ1, . . . , ρn). (2.325)

Performing a variable the transformation ρs  T and interpret ρs and T as conjugate
variables entails a Legendre transformation of ρu.
Following the above corollary, the explicit representation ρs = s(T, ρ1, . . . , ρn) is ob-

tained via

s = −∂ f(T, ρ1, . . . , ρn)
∂ T

= s(T, ρ1, . . . , ρn) (2.326)

where f is the Legendre transformation of ρu (with respect to (ρs, T )). Its explicit repre-
sentation is also obtained from the corollary and has the familiar shape

f = ρu− Tρs =: ρψ. (2.327)

This Legendre transformation is further called (Helmholtz) free energy and f material
function. Clearly, the representation of the internal energy u(T, ρ1, . . . , ρn) is obtained as

u = f− T ∂ f

∂ T
= u(T, ρ1, . . . , ρn). (2.328)

The investigation of the entropy balance now starts with

∂ f(T, ρ1, . . . , ρn)
∂ t

= ∂ f

∂ T
· ∂ T
∂ t

+
n∑

α=1

∂ f

∂ ρα
· ∂ ρα
∂ t

. (2.329)

Due to the representation

f = ρu− Tρs (2.330)

one also obtains

∂ f

∂ t
= ∂ ρu

∂ t
− T ∂ ρs

∂ t
− ρs∂ T

∂ t
= ∂ ρu

∂ t
− T ∂ ρs

∂ t
+ ∂ f

∂ T

∂ T

∂ t
(2.331)

and thus

T
∂ ρs

∂ t
= ∂ ρu

∂ t
−

n∑
α=1

∂ f

∂ ρα
· ∂ ρα
∂ t

. (2.332)

A comparison to the (elementary) entropy balance

∂ ρs

∂ t
= 1
T

∂ ρu

∂ t
−

n∑
α=1

µα
T
· ∂ ρα
∂ t

(2.333)

identifies the chemical potential µα as

∂ f

∂ ρα
= µα(T, ρ1, . . . , ρn). (2.334)

Note that the different sets of variables, here either (ρu, ρ1, . . . , ρn) or (T, ρ1, . . . , ρn),
determines the actual thermodynamic potential (either ρs or ρψ) as origin of a driving
force, i.e.
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• the chemical potential µα(ρu, ρ1, . . . , ρn) with

∂ s(ρu, ρ1, . . . , ρn)
∂ ρα

= µα(ρu, ρ1, . . . , ρn) (2.335)

• or the chemical potential µα(T, ρ1, . . . , ρn) with

∂ f(T, ρ1, . . . , ρn)
∂ ρα

= µα(T, ρ1, . . . , ρn). (2.336)

Another consequence of the variable transformation ρs T is the representation of the
energy balance. The Legendre transformation f = ρu− Tρs lead to

u(T, ρ1, . . . , ρn) = f(T, ρ1, . . . , ρn) + T
∂ f(T, ρ1, . . . , ρn)

∂ T
. (2.337)

Comparing hence

∂ ρu

∂ t
= ∂ u(T, ρ1, . . . , ρn)

∂ t
= ∂ (f− T s)

∂ t
!= −div (uv + ju) + ru (2.338)

and applying the auxiliary calculation 2.28 leads to the heat equation

CT ·
∂ T

∂ t
=− div

((
∂ f

∂ T
−

n∑
α=1

∂ µα
∂ T

ρα

)
· v + 1

T

(
ju −

n∑
α=1

(µα − T
∂ µα
∂ T

) jα
))

−
( n∑
α=1

ρα∇
∂ µα
∂ T

)
· vT −

n∑
α=1

(µα
T
− ∂ µα

∂ T
) · rk

+ jTu · ∇
1
T
−

n∑
α=1

jTα ·
(
∇µα
T
−∇∂ µα

∂ T
− e0zα
T mα

E
)

=− div (ρϑv + jϑ) + rϑ (2.339)

where

• CT = ∂2f
∂T is the specific heat capacity,

• sα = ∂2f
∂T∂ρα

= ∂ s
∂ ρα

= ∂ µα
∂ T the molar entropy,

• ϑ(T, ρ1, . . . , ρn) = ρ−1s−
∑n
α=1wαsα is called heat density with units

[
J
m3

]
,

• jϑ = 1
T

(
ju −

∑n
α=1(µα − T ∂ µα

∂ T ) jα
)
heat flux ,

• and

rϑ = −
( n∑
α=1

ρα∇
∂ µα
∂ T

)
· v−

n∑
α=1

(µα
T
− ∂ µα

∂ T
) · rk +∇ 1

T
· jTu

− jTα ·
(
∇µα
T
−∇∂ µα

∂ T
− e0zα
T mα

E
)

is termed heat source.
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Auxiliary calculation 2.28:

∂ ρu

∂ t
= ∂ u(T, ρ1, . . . , ρn)

∂ t
= ∂ (f(T, ρ1, . . . , ρn)− T s(T, ρ1, . . . , ρn))

∂ t

= ∂ f

∂ T
· ∂ T
∂ t

+
n∑

α=1

∂ f

∂ ρα
· ∂ ρα
∂ t
− ∂ T

∂ t
s− T ∂ s

∂ T

∂ T

∂ t
− T

n∑
α=1

∂ s

∂ ρα
· ∂ ρα
∂ t

=
n∑

α=1
µα ·

∂ ρα
∂ t

+ T
∂2f

∂2T︸︷︷︸
=:CT

·∂ T
∂ t
− T

n∑
α=1

∂ µα
∂ T︸ ︷︷ ︸
=:sα

·∂ ρα
∂ t

Dividing the whole equation by T leads to

CT ·
∂ T

∂ t
= 1
T

∂ ρu

∂ t
−

n∑
α=1

µα
T
· ∂ ρα
∂ t︸ ︷︷ ︸

=−div (ρsv+js)+rs

+
n∑

α=1

∂ µα
∂ T

· ∂ ρα
∂ t

=− div
(
∂ f

∂ T
· v + 1

T

(
ju −

n∑
α=1

µα jα

))
+ rs

−
n∑

α=1
sα · (div (ραv + jα)− rα)

eq.(2.226)= − div
((

∂ f

∂ T
−

n∑
α=1

sαρα

)
· v + 1

T

(
ju −

n∑
α=1

(µα − T sα) jα

))

−

( n∑
α=1

ρα∇sα

)
· v−

n∑
α=1

(µα
T
− sα) · rk

−
n∑

α=1
jα ·

(
∇µα
T
−∇sα −

e0zα
T mα

E
)

The heat equation obeys also the alternative balance representation

CT ·
∂ T

∂ t
= −div (ρϑ̃v + js) + r

ϑ̃
(2.340)

in which ϑ̃ = s = −ρ−1 ∂ f
∂ T is interpreted as the specific heat and

j
ϑ̃

= js (2.341)

r
ϑ̃

= rs −
n∑

α=1
(div (ραv + jα)− rα) · ∂ µα

∂ T
. (2.342)

Of course, both representations are equal and the appropriate one is chosen according to
the boundary conditions. If one could state from a physical point of view why, e.g.

˛

∂Ω

js · dA = 0, (2.343)

the second representation is more convenient.
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2.8.2 Gibbs free energy

Yet another Legendre transformation is obtained by choosing p as an independent degree
of freedom. First, note that

ρψ = f(T, ρ1, . . . , ρn) = f(T, ρ · w1, . . . , ρ · wn−1, ρ · (1−
n−1∑
α=1

wα)) (2.344)

and thus one could interpret the set (T, ρ, w1, . . . , wn−1) as independent variables. A
variable exchange (T, ρ1, . . . , ρn) → (T, ρ, w1, . . . , wn−1) which is not part of a Legendre
transformation is simply called variable change, in contrast to a variable transformation
(i.e. Legendre transformation). With v = ρ−1 one calculates (c.f. the following auxiliary
calculation)

∂ ψ

∂ v
= −p (2.345)

and consequently identifies −p as the conjugate variable of ρ−1.

Auxiliary calculation 2.29:

∂ ψ

∂ ρ
= ∂ (ρψ · ρ−1)

∂ ρ
= ∂ (f(T, ρ · w1, . . . , ρ · wn−1, ρ (1−

∑n−1
α=1 wα)) · ρ−1)

∂ ρ

=
n∑

α=1

∂ f

∂ ρα
· ∂ ρwα
∂ ρ

ρ−1 + f · ∂ ρ
−1

∂ ρ

= ρ−2 ·
( n∑

α=1
µαρα − ρψ︸ ︷︷ ︸

=−p (Gibbs eq. 2.227)

)

Thus, the variable transformation ρ−1  p implies the Legendre transformation

g = ψ + pρ−1 (2.346)

with

∂ g

∂ p
= ρ−1. (2.347)

Due to the Gibbs equation the Legendre transformation g (of ψ) satisfies

g = ψ + pv = u− T s+ p v =
n∑

α=1
µαwα (2.348)

and is further called Gibbs free energy density. The explicit representation

g = g(T, p, w1, . . . , wn−1) (2.349)

is called material function of g.

Note the crucial difference between g and ρψ and their respective material functions.
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While the material function of g has units
[

J
kg

]
(the mass density is factored out)19, the

material function of f of ρψ has units
[

J
m3

]
. The respective global energies are

G =
ˆ

Ω

ρg dV =
ˆ

Ω

ρg(T, p, w1, . . . , wn−1) dV (2.350)

F =
ˆ

Ω

ρψ dV =
ˆ

Ω

f(T, ρ1, . . . , ρn) dV (2.351)

if no surface contributions are considered. Hence, if a material function g∗ is given, satis-
fying

G =
ˆ

Ω

g∗ dV, (2.352)

the Gibbs free energy density is simply g = ρ−1g∗.

The entropy function s = s is obtained from

s = −∂ g(T, p, w1, . . . , wn−1)
∂ T

= s(T, p, w1, . . . , wn−1) (2.353)

and g is thus also a Legendre transformation of u with respect to s. The representation
of u = u is given by

u = g− T ∂ g
∂ T
− p∂ g

∂ p
= u(T, p, w1, . . . , wn−1). (2.354)

Again, the entropy balance is employed to derive the representation of the chemical
potential. Due to the representation g = u− T s+ p v and with the subsequent auxiliary
calculations one deduces

∂ ρg

∂ t
= ∂ ρu

∂ t
− ∂ (Tρs)

∂ t
+ ∂ p

∂ t
(2.355)

⇔ ∂ ρs

∂ t
= 1
T
· (∂ ρu

∂ t
+ ∂ ρg

∂ t
− ∂ p

∂ t
− ρs∂ T

∂ t
) (2.356)

= 1
T
· ∂ ρu
∂ t

+
n−1∑
α=1

1
T

(
∂ g

∂ wα
+ (g− ∂ g

∂ wα
) · wα

)
· ∂ ρα
∂ t

(2.357)

+
(n−1∑
α=1

1
T

(g− ∂ g

∂ wα
) · wα

)
· ∂ ρn
∂ t

. (2.358)

19Since ρ > 0 this could always be performed
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Auxiliary calculation 2.30:

∂ ρg

∂ t
= g

∂ ρ

∂ t
+ ρ

∂ g

∂ T
· ∂ T
∂ t

+ ρ
∂ g

∂ p

∂ p

∂ t
+ ρ

n−1∑
α=1

∂ g

∂ wα
· ∂ wα
∂ t

= ρs
∂ T

∂ t
+ ∂ p

∂ t
+

n−1∑
α=1

∂ g

∂ wα
· ∂ ρα
∂ t

+

g−
n−1∑
β=1

∂ g

∂ wβ
wβ

 · ∂ ρ
∂ t

= ρs
∂ T

∂ t
+ ∂ p

∂ t
+

n−1∑
α=1

 ∂ g

∂ wα
+

g−
n−1∑
β=1

∂ g

∂ wβ
wβ

 · ∂ ρα
∂ t

+

g−
n−1∑
β=1

∂ g

∂ wβ
wβ

 · ∂ ρn
∂ t

A comparison to the elementary entropy function

∂ρs

∂t
= 1
T

∂ρu

∂t
−

n∑
α=1

µα
T
· ∂ ρα
∂ t

(2.359)

leads to the representations

µα(T, p, w1, . . . , wn−1) =

 ∂ g

∂ wα
+

g− n−1∑
β=1

∂ g

∂ wβ
wβ

 α = 1, . . . ,n− 1 (2.360)

µn(T, p, w1, . . . , wn−1) =

g− n−1∑
β=1

∂ g

∂ wβ
wβ

 (2.361)

of the chemical potential. However, one could also write

µα = ∂ g

∂ wα
+ µn (2.362)

or simply

∂ g

∂ wα
= µα − µn α = 1, . . . ,n. (2.363)

This is quite remarkable if one reconsiders the driving force of a flux, i.e.

γα = ∇µα − µn
T

− e0
T
·
(
zα
mα
− zn
mn

)
E α = 1, . . . ,n− 1. (2.364)

Obviously, the (thermodynamic part) of the driving force is proportional to the gradient
of T−1 ∂ g

∂ wα
and the force may be written as

γα = ∇
( 1
T

∂g

∂wα

)
− e0
T
·
(
zα
mα
− zn
mn

)
E α = 1, . . . ,n− 1. (2.365)

This circumstance is sometimes used in literature to interpret

∂g

∂wα
= µ∗α (2.366)
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as chemical potential. Clearly, one could set up a thermodynamic theory where µ∗α is ac-
tually the chemical potential, as long as all other derived properties are defined accordingly.

In chemistry yet another set of variables is quite common, i.e. (T, p, c1, . . . , cn−1) with
the mole fraction

cα = nα∑n
β=1 nβ

α = 1, . . . ,n. (2.367)

Thus, consider the variable change (T, p, w1, . . . , wn−1)→ (T, p, c1, . . . , cn−1) with

cα(w1, . . . , wn−1) = m−1
α wα

m−1
n +∑n−1

γ=1(m−1
γ −m−1

n )wγ
(2.368)

n∑
γ=1

m−1
γ wγ = n

ρ
(2.369)

and

∂ cα
∂ wβ

= m−1
α

ρ

n
·
(
δα,β + wα

ρ

n
(m−1

n −m−1
β )
)
. (2.370)

Auxiliary calculation 2.31:

∂ cα
∂ wβ

= m−1
α wα∑n

γ=1m
−1
γ wγ

+ m−1
α wα

(
∑n
γ=1m

−1
γ wγ)2 ·

n−1∑
γ=1

(m−1
n −m−1

γ )∂ wγ
∂ wβ

= m−1
α

ρ

n
· δα,β +m−1

α wα
ρ2

n2 ·
n−1∑
γ=1

(m−1
n −m−1

γ )δγ,β

With AC 2.32 the chemical potentials µn and µα in the variables (T, p, c1, . . . , cn−1) are

µn = g−
n−1∑
β=1

∂ g

∂ wβ
wβ (2.371)

= g̃− ρ

n
m−1

n

n−1∑
β=1

∂ g̃

∂ cβ
cβ (2.372)

= µn(T, p, c1, . . . , cn−1) (2.373)

and

µα = 1
T

 ∂ g

∂ wα
−

n−1∑
β=1

∂ g

∂ wβ
wβ + g

 (2.374)

= 1
T

 ∂ g̃

∂ cα
m−1
α

ρ

n
−m−1

β

ρ

n

n−1∑
β=1

∂ g̃

∂ cβ
cβ + g̃

 (2.375)

= µα(T, p, c1, . . . , cn−1). (2.376)
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Auxiliary calculation 2.32:
n−1∑
β=1

∂ g

∂ wβ
wβ =

n−1∑
β=1

n−1∑
α=1

∂ g̃

∂ cα
· ∂ cα
∂ wβ

wβ =
n−1∑
α=1

∂ g̃

∂ cα

n−1∑
β=1

wβ
∂ cα
∂ wβ

=
n−1∑
α=1

∂ g̃

∂ cα
m−1
α

ρ

n

n−1∑
β=1

wβ ·
(
δα,β + wα

ρ

n
(m−1

n −m−1
β )
)

Side calculation:
n−1∑
β=1

wβwα
ρ

n
(m−1

n −m−1
β ) = wα

ρ

n
m−1

n

n−1∑
β=1

wβ − wα
ρ

n

n−1∑
β=1

wβm
−1
β

=wα
ρ

n
m−1

n (1− wn)− wα
ρ

n

n−1∑
β=1

wβm
−1
β = wα

ρ

n
m−1

n − wα
ρ

n

n∑
β=1

wβm
−1
β

=wα
ρ

n
m−1

n − wα
n∑

β=1
cβ = wα

ρ

n
m−1

n − wα

Insertion leads to
n−1∑
β=1

∂ g

∂ wβ
wβ =

n−1∑
α=1

∂ g̃

∂ cα
m−1
α

ρ

n

(
wα + wα

ρ

n
m−1

n − wα
)

= ρ

n
m−1

n

n−1∑
α=1

∂ g̃

∂ cα
cα

The Gibbs free energy density is then modeled per particle, and not per mass, i.e.

G =
ˆ

Ω

n · g dV =
ˆ

Ω

n · g(T, p, c1, . . . , cn−1) (2.377)

with a material function g = g(T, p, c1, . . . , cn−1). The density g is called species density
of the Gibbs energy. Hence, the density with respect to mass is simply

g = n

ρ
· g (2.378)

and the material function of g is

g̃(T, p, c1, . . . , cn−1) = n

ρ
· g(T, p, c1, . . . , cn−1). (2.379)

Since

ρ

n
=

n−1∑
α=1

(mα −mn)cα (2.380)

one obtains

∂ g

∂ cβ
=
∂ ( ρn · g̃)
∂ cβ

= ρ

n

∂ g̃

∂ cβ
+ g̃(mα −mn). (2.381)

Note further that for the Gibbs energy per particle g the (inverse) number density n−1 is
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the conjugate variable of p, i.e.

∂ g

∂ p
=
∂ g̃ · ρn
∂ p

= ρ

n

∂ g̃

∂ p
= ρ

n
v = n−1 =: v(T, p, c1, . . . , cn−1) (2.382)

as with eq. (2.380) the expression ρ
n is independent of p. v is called specific volume with

respect to the amount of particles. The material function representations of the entropy
s and the internal energy u are

s(T, p, c1, . . . , cn−1) = ∂ g

∂ T
= n

ρ
s (2.383)

u(T, p, c1, . . . , cn−1) = g− T ∂ g
∂ T
− p∂ g

∂ p
= n

ρ
u. (2.384)

Quite similar to above a compact expression for mαµα −mnµn is deduced, i.e.

mαµα −mnµn = ∂ g

∂ cα
(2.385)

and

µn(T, p, c1, . . . , cn−1) = 1
mn

(
g−

n−1∑
α=1

1
T

∂ g

∂ cα
· cα

)
(2.386)

µα(T, p, c1, . . . , cn−1) = 1
mα

 ∂ g

∂ cα
−

n−1∑
β=1

∂ g

∂ cβ
· cβ + g

 . (2.387)

Auxiliary calculation 2.33:

mαµα −mnµn =

 ρ

n

∂ g̃

∂ cα
− ρ

n

n−1∑
β=1

∂ g̃

∂ cβ
cβ +mαg̃

−
mng̃−

ρ

n

n−1∑
β=1

∂ g̃

∂ cβ
cβ


= ρ

n

∂ g̃

∂ cα
+ (mα −mn) · g̃ = ∂ g

∂ cα

Recalling the affinity

λk = 1
T

n∑
α=1

να,kmαµα (2.388)

and the equilibrium condition for chemical reactions
n∑

α=1
να,kµ

	
α = 0. (2.389)

If the number of particles is conserved in each reaction, i.e. ∑n
α=1 να,k = 0 the equilibrium
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condition is indeed
n−1∑
α=1

να,k(µ	α − µ	n ) = 0 (2.390)

n−1∑
α=1

να,k
∂ g	

∂ cα
= 0, (2.391)

which seems somehow reasonable as the pressure remains in such circumstances con-
stant. Interpreting the material function g(T, p, c1, . . . , cn−1) as as functional g[tZ ] shows
that the equilibrium state t	 is the minimum of g with respect to the directions νk =
(ν1,k, . . . , νn−1,k), i.e.

D(g)(νk) =
n−1∑
α=1

να,k
∂ g

∂ cα

!= 0 k = 1, . . . ,nr, (2.392)

where D(g)(νk) denotes the Frechet derivative. This could also be written as linear equa-
tion system

ν · µ = 0 ∈ Rnr (2.393)

with

ν =

 ν1,1 · · · νn−1,1

. . .
. . . . . .

ν1,nr · · · νn−1,nr

 ∈ Rnr×(n−1) (2.394)

µ =
(
µα − µn

)
α=1,...,n−1 =

( ∂ g
∂ cα

)
α=1,...,n−1 ∈ R(n−1). (2.395)

Clearly, since ν is not even quadratic matrix, there is not necessarily one unique solution,
if any. If there are more reactions than species present, nr ≥ n− 1, there exits, however,
at least an approximation state tLS satisfying∣∣∣∣∣∣ν · µLS∣∣∣∣∣∣ = min

µ∈Rn−1

∣∣∣∣∣∣ν · µ∣∣∣∣∣∣ . (2.396)

This least squares approximation is then called Gibbs energy minimizing state.

The chemical potentials per particle µα also arise in the flux conditions. Since the
entropy production (without polarization) is

∂ ρs

∂ t
= 1
T

∂ ρu

∂ t
−

n∑
α=1

∂ µα
∂ T

∂ ρα
∂ t

(2.397)

one could of course write ∂ ρα
∂ t = mα

∂ nα
∂ t and thus shift mα to the µα-term. Consequently,

the entropy balance is

∂ ρs

∂ t
= 1
T

∂ ρu

∂ t
−

n∑
α=1

∂ µα
∂ T

∂ nα
∂ t

(2.398)

with µα as thermodynamic driving force. While µα is the chemical potential of species α
per mass (i.e. units

[
J
kg

]
), µα denotes the chemical potential per mole (or per particle)
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with units
[

J
mol

]
(or [ J ]).

The difference µα−µn as driving force arose essentially due to the frame of reference in
which the balance equation of mass is a conservation equation, i.e.

∂ ρ

∂ t
= −div (ρv) (2.399)

n∑
α=1

jα = 0. (2.400)

Choosing now a coordinate system y ∈ Ω which satisfies

∂ n(y, t)
∂ t

= −div (n(y, t)v(y, t)) +
n∑

α=1
rα︸ ︷︷ ︸

:=r

(2.401)

n∑
α=1

mαjα = 0 (2.402)

leads to the particle flux

jα(y, t) = mα · jα(y, t) (2.403)

and the corresponding balance equation of the species density nα, i.e.

∂ nα(y, t)
∂ t

= −div (nv(y, t) + jα(y, t)) + rα(y, t) (2.404)

rα =
nr∑
k=1

να,k · qk(y, t) α = 1, . . . ,n. (2.405)

Since the total diffusive mass flux does not vanish in this frame of reference, it is

j(y, t) =
n∑

α=1
jα(y, t) =

n∑
α=1

mαjα(y, t) (2.406)

and the mass balance is

∂ ρ

∂ t
= −div (ρv + j) = −div (ρv +

n∑
α=1

mαjα). (2.407)

Note that the momentum of matter is now also represented as

pM(y, t) = ρ(y, t)v(y, t) + j = ρ(y, t)v(y, t) +
n∑

α=1
mαjα(y, t) (2.408)

and the balance equation has to be rewritten accordingly. However, since in the further
work only models are considered where the momentum balance decouples, I will only state
the internal energy balance in this frame of reference (since it is required to derive the
entropy balance)

∂ ρ(y, t)u(y, t)
∂ t

= −div (ρuv + ju) + ru (2.409)

ru = −σ •∇v + jF ·ET (2.410)
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without further derivation.

Inserting the balance equations, expressed in the coordinate system y ∈ Ω, in the
entropy balance (2.398), and applying the flux constraint

n∑
α=1

jα = 0 (2.411)

leads to

∂ ρs

∂ t
= ∂ 1
∂ T

ρu

t
−

n∑
α=1

µα
T

∂ ρα
∂ t

(2.412)

= −div (ρsv + js) (2.413)

+ jTu · ∇
1
T
−

n−1∑
α=1

jTα ·
(
µα − µn

T
− e0(zα − zn)

T
E
)
−

nr∑
k=1

λkqk (2.414)

where all variables (T, p, c1, . . . , cn−1) are functions of (y, t) ∈ Ω× I.

Auxiliary calculation 2.34:

∂ ρ s(y, t)
∂ u

= ∂ 1
∂ T

ρu(y, t)
t

−
n∑

α=1

mαµα
T

∂ nα(y, t)
∂ t

= −div (ρsv + js)

+∇ 1
T
· jT
u −

n∑
α=1

jα ·
(mαµα

T
− e0 zα

T
E
)
−

n∑
α=1

mαµα
T

rα

With the abbreviation

γ =
(
−∇ 1

T
,∇µ1 − µn

T
− e0 (z1 − zn)

T
E, . . . ,∇µn−1 − µn

T
− e0 (zn−1 − zn)

T
E
)

(2.415)

j =
(
ju, j1, . . . , jn−1

)
(2.416)

the flux entropy production is

rs, j = j · γT. (2.417)

Clearly, a similar thermodynamic approach as in eq. (2.290) is now chosen for j, i.e.

j = L · γ (2.418)

with a positive definite definite Matrix L, called Onsager matrix for the (y,v) coordinate
system.

Theorem 9 (Symmetry of alternative Onsager matrices).
Let

j = M · j (2.419)

with an invertible matrix M called flux transformation matrix. If the Onsager matrix L,
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with

j = L · γ (2.420)

is symmetric, then the Onsager Matrix L representing

j = L · γ (2.421)

in the (y,v) coordinate system is also symmetric and has the explicit representation

L = M−1 · L ·M−T (2.422)

Proof. The flux entropy production obeys

rs, j =
〈
j,γ

〉
=
〈
M · j,γ

〉
=
〈
j,MT · γ

〉
(2.423)

Since the entropy production is independent of the desired coordinate system, it holds〈
j,MT · γ

〉 !=
〈
j,γ

〉
(2.424)

and thus

γ = MT · γ. (2.425)

With

γT · L · γ = γ ·M · L ·MTγ
!= γT · L · γ (2.426)

one obtains the representation

L = M−1 · L ·M−T (2.427)

and

LT = (M−1 · L ·M−T)T = M−1 · LT ·M−T = M−1 · L ·M−T = L (2.428)

shows that L is indeed symmetric.

Expectably, the symmetry principle of the Onsager matrix is independent of the actual
frame of reference, and the equilibrium conditions are equal, which stated by the following
corollary.

Corollary 10 (Equivalent equilibrium conditions).
The equilibrium condition for the flux entropy production implies∣∣∣∣∣∣γ ′∣∣∣∣∣∣ = 0 (2.429)

and thus γ = 0. Since L is symmetric, there exits also a Cholesky decomposition L =
D ·DT for which a vanishing flux entropy production∣∣∣∣∣∣D · γ∣∣∣∣∣∣ = 0 (2.430)

entails D · γ = 0 and thus γ = 0 with a Gaussian elimination.
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Remark 8 (Equilibrium condition in various frames of reference).
Note that the two equivalent equilibrium conditions

∇x
µα − µn

T
− e0
T

( zα
mα
− zn
mn

)E(x, t) != 0 α = 1, . . . ,n− 1 (2.431)

∇y
µα − µn

T
− e0 (zα − zn)

T
E(y, t) != 0 α = 1, . . . ,n− 1 (2.432)

are to be understood in their respective coordinate system.

2.8.3 Pressure and heat equation

The balance equation for the concentration cα in the (y,v) coordinate system is simply

∂ cα
∂ t

= −div (cαv + n−1jα)− n−1(∇n) · jα + n−1 · (rα − cα · r). (2.433)

Quite similar to the heat equation, which was obtained from the internal energy balance
and the variable transformation ρs  T , a pressure equation is deduced from the total
species density balance. Since

n−1 = ∂ g

∂ p
= v(T, p, c1, . . . , cn−1) (2.434)

the total species density balance leads to the pressure equation

κp
∂ p

∂ t
= κT ·

∂ T

∂ t
+

n∑
α=1

κα
∂ nα
∂ t

(2.435)

with the material coefficients

• thermal expansion coefficient κT := n ∂ v∂ T = ∂2g
∂p∂T

• compressibility κp := −n∂ v∂ p = −∂2g
∂2p

• and specific species compressibility κα with

κα = n
∂2g

∂p∂cα
+ ∂ g

∂ p
−

n−1∑
β=1

n
∂2g

∂p∂cβ
cβ α = 1, . . . ,n− 1 (2.436)

κn = ∂ g

∂ p
−

n−1∑
β=1

n
∂2g

∂p∂cβ
cβ. (2.437)
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Auxiliary calculation 2.35:

∂ n

∂ t
= −n2 ∂ v

∂ t
= −n2 ·

(
∂ v

∂ T
· ∂ T
∂ t

+ ∂ v

∂ p

∂ p

∂ t
+

n−1∑
α=1

∂ v

∂ cα
· ∂ cα
∂ t

)

= −n ·

n · ∂2g

∂T∂p︸ ︷︷ ︸
=:κT

·∂ T
∂ t

+ n · ∂
2g

∂2p︸ ︷︷ ︸
=:−κp

·∂ p
∂ t

+
n−1∑
α=1

n · ∂2g

∂cα∂p
· ∂ cα
∂ t


Side calculation:

n−1 · ∂ n
∂ t

+ n

n∑
α=1

n
∂ v

∂ cα
·
(
∂ nα
∂ t
− cα

∂ n

∂ t

)

=

∂ g
∂ p

+
n−1∑
β=1

n
∂2g

∂p∂cβ
cβ

 ∂ n

∂ t
−

n−1∑
α=1

n
∂2g

∂p∂cα
· ∂ nα
∂ t

=

∂ g∂ p −
n−1∑
β=1

n
∂2g

∂p∂cβ
cβ︸ ︷︷ ︸

=:κn

 ∂ nn
∂ t

+
n−1∑
α=1

n ∂2g

∂p∂cα
+ ∂ g

∂ p
−

n−1∑
β=1

n
∂2g

∂p∂cβ
cβ︸ ︷︷ ︸

=:κα

 · ∂ nα∂ t

=κn ·
∂ nn
∂ t

+
n−1∑
α=1

κα ·
∂ nα
∂ t

=
n∑

α=1
κα ·

∂ nα
∂ t

Rearrangement of the above species density balance leads to the
pressure equation

κp
∂ p

∂ t
= κT ·

∂ T

∂ t
+

n∑
α=1

κα
∂ nα
∂ t

The heat and pressure balance are coupled as in both equations ∂ p
∂ t and ∂ T

∂ t terms
arise. The (lengthy) auxiliary calculation 2.36, however, decouples both equations and
one obtains the heat equation

−(CT + κ−1
p · κ2

T ) · ∂ T
∂ t

= −div (nϑv + jθ)−
n∑

α=1
(hα
T
− κT · κ−1

p · κα) · rα

+
n∑

α=1
jTα ·

(
∇
(
hα
T
− κT · κ−1

p · κα

)
− e0 zα

T
E
)

−
( n∑
α=1

nα∇(sα − κT · κ−1
p · κα)

)
· vT (2.438)

with

• the heat ϑ as

ϑ := s−
n∑

α=1
(sα − κT · κ−1

p · κα) · cα
)

= ϑ(T, p, c1, . . . , cn−1) (2.439)
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• the corresponding heat flux jϑ

jϑ :=
(
js −

n∑
α=1

(sα − κT · κ−1
p · κα) · jα

)
(2.440)

=
( 1
T

(
ju −

n∑
α=1

µαjα

)
−

n∑
α=1

(sα − κT · κ−1
p · κα) · jα

)
(2.441)

=
( 1
T

ju −
1
T

n∑
α=1

(hα − κT · κ−1
p · κα) · jα

)
(2.442)

• the specific enthalpy (see the derivation in auxiliary calculation 2.37)

hα = g−T ∂ g
∂ T
−

n−1∑
β=1

(
∂ g

∂ cβ
−T ∂g

∂T∂cβ

)
cβ + ∂ g

∂ cα
−T ∂g

∂T∂cα
α = 1, . . . ,n− 1

(2.443)

hn = g−T ∂ g
∂ T
−

n−1∑
β=1

(
∂ g

∂ cβ
−T ∂g

∂T∂cβ

)
cβ (2.444)

• and the heat capacity CT = ∂2g
∂2T .

Recall the definition of the specific entropy20, i.e. ∂ s(T,ρ1,...,ρn)
∂ ρα

. Here, the spec. entropy is

sα := ∂ s

∂ cα
= − ∂2g

∂T∂cα
= sα(T, p, c1, . . . , cn−1), (2.445)

which allows one to write

hα = µα + T sα. (2.446)

20The specific enthalpy was introduced for the variable setting (T, ρ1, . . . , ρn), however, its definition could
straight forward be adopted
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2.8. Free energy

Auxiliary calculation 2.36: (Derivation of the heat equation)

∂ ρu

∂ t
= (g− T ∂ g

∂ T
) · ∂ n

∂ t
+ n

n−1∑
α=1

( ∂ g
∂ cα

− T ∂2g

∂cα ∂T
) · ∂ cα

∂ t

− T ∂2g

∂2T︸︷︷︸
=:CT

·∂ T
∂ t
− T ∂2g

∂p ∂T︸ ︷︷ ︸
=κT

∂ p

∂ t

=
n∑

α=1
hα ·

∂ nα
∂ t
− TCT ·

∂ T

∂ t
− T · κT ·

∂ p

∂ t

Inserting the pressure balance

κp
∂ p

∂ t
= κT ·

∂ T

∂ t
+

n∑
α=1

κα
∂ nα
∂ t

in the internal energy balance leads to

∂ ρu

∂ t
= T

n∑
α=1

(hα
T
− κT · κ−1

p · κα)∂ nα
∂ t
− T (CT + κ−1

p · κ2
T ) · ∂ T

∂ t

and finally to the heat equation

−(CT + κ−1
p · κ2

T ) · ∂ T
∂ t

= 1
T

∂ ρu

∂ t
−

n∑
α=1

(hα
T
− κT · κ−1

p · κα)∂ nα
∂ t

= 1
T

∂ ρu

∂ t
−

n∑
α=1

µα
T

∂ nα
∂ t︸ ︷︷ ︸

=−div (ns+js)+rs

−
n∑

α=1
(sα − κT · κ−1

p · κα)∂ nα
∂ t

=− div (ns + js) +
n∑

α=1
jα ·

(
∇µα
T
− e0 zα

T
E
)

−
n∑

α=1

µα
T
· rα +

n∑
α=1

(sα − κT · κ−1
p · κα) · (div (nαv + jα)− rα)

= −div (nsv + js) +
n∑

α=1
jT
α ·
(
∇µα
T
− e0 zα

T
E
)

−
n∑

α=1
(hα
T
− κT · κ−1

p · κα) · rα +
n∑

α=1
(sα − κT · κ−1

p · κα) · div (nαv + jα)

= −div
(
n
(
s−

n∑
α=1

(sα − κT · κ−1
p · κα) · cα

)
v

+
(
js −

n∑
α=1

(sα − κT · κ−1
p · κα) · jα

))

+
n∑

α=1
jT
α ·
(
∇
(
hα
T
− κT · κ−1

p · κα
)
− e0 zα

T
E
)

−
n∑

α=1
(hα
T
− κT · κ−1

p · κα) · rα −
( n∑
α=1

nα∇(sα − κT · κ−1
p · κα)

)
· vT
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Auxiliary calculation 2.37: (Derivation of the specific enthalpy density)

(g− T ∂ g
∂ T

) · ∂ n
∂ t

+ n

n−1∑
α=1

(
∂ g

∂ cα
− T ∂g

∂T∂cα

)
· ∂ cα
∂ t

=(g− T ∂ g
∂ T

) · ∂ n
∂ t

+
n−1∑
α=1

(
∂ g

∂ cα
− T ∂g

∂T∂cα

)
·
(
∂ nα
∂ t
− cα

∂ n

∂ t

)

=

g−T ∂ g
∂ T
−

n−1∑
β=1

(
∂ g

∂ cβ
−T ∂g

∂T∂cβ

)
cβ

 · ∂ n
∂ t

+
n−1∑
α=1

(
∂ g

∂ cα
−T ∂g

∂T∂cα

)
· ∂ nα
∂ t

=

g−T ∂ g
∂ T
−

n−1∑
β=1

(
∂ g

∂ cβ
−T ∂g

∂T∂cβ

)
cβ


︸ ︷︷ ︸

=:hn

·∂ nn
∂ t

+
n−1∑
α=1

g−T ∂ g
∂ T
−

n−1∑
β=1

(
∂ g

∂ cβ
−T ∂g

∂T∂cβ

)
cβ + ∂ g

∂ cα
−T ∂g

∂T∂cα


︸ ︷︷ ︸

=:hα

·∂ nα
∂ t
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2.9. Material functions

2.9 Material functions

In this section the derivation of material functions f and g is sketched, followed by some
explicit representations of g for an incompressible liquid and f for solid electrolyte.
The derivation is essentially based on integrating the Pfaffian form for g, i.e.

t
ˆ

0

∂ g

∂ t
dt =

t
ˆ

0

s · ∂T
∂t
dt+

t
ˆ

0

v · ∂p
∂t
dt+

t
ˆ

0

gα ·
∂ cα
∂ t

dt (2.447)

=
T (t)
ˆ

T0

s(T, p, c1, . . . , cn−1)d T +
p(t)
ˆ

p0

v(T, p, c1, . . . , cn−1)d p (2.448)

+
n−1∑
α=1

cα(t)
ˆ

cα,0

gα(T, p, c1, . . . , cn−1)d cα. (2.449)

However, the material function is restricted by the integrability conditions

∂

∂ T

(
∂ g

∂ p

)
= ∂

∂ p

(
∂ g

∂ T

)
(2.450)

⇒∂ v(T, p, c1, . . . , cn−1)
∂ T

!= ∂ s(T, p, c1, . . . , cn−1)
∂ p

(2.451)

∂

∂ p

(
∂ g

∂ cα

)
= ∂

∂ cα

(
∂ g

∂ p

)
(2.452)

⇒∂ gα(T, p, c1, . . . , cn−1)
∂ p

!= ∂ v(T, p, c1, . . . , cn−1)
∂ cα

(2.453)

∂

∂ cα

(
∂ g

∂ T

)
= ∂

∂ T

(
∂ g

∂ cα

)
α = 1, . . . ,n− 1 (2.454)

⇒ ∂ s(T, p, c1, . . . , cn−1)
∂ cα

!= ∂ gα(T, p, c1, . . . , cn−1)
∂ T

(2.455)

∂

∂ cα

(
∂ g

∂ cβ

)
= ∂

∂ cβ

(
∂ g

∂ cα

)
α, β = 1, . . . ,n− 1 (2.456)

⇒∂ gα(T, p, c1, . . . , cn−1)
∂ cβ

= ∂ gβ(T, p, c1, . . . , cn−1)
∂ cα

. (2.457)

Quite similar, for the free energy ρψ = f one has the differential form

df = s(T, n1, . . . ,n)dT +
n∑

α=1
fα(T, n1, . . . ,n)dnα (2.458)

which imply the integrability conditions

∂ s

∂ nα

!= ∂ fα
∂ T

α = 1, . . . ,n (2.459)

∂ fα
∂ nβ

!= ∂ fβ
∂ nα

α = 1, . . . ,n. (2.460)

This approach dates back the work of C. Caratheodory [33, 34] at the beginning of the
20th century. I will only give a brief sketch of the derivation for the sake of a motivation
with quite restrictive assumptions. Detailed derivations of material functions for mixtures
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2. Coupled Thermo- and Electrodynamics

are given in [25, 27, 35].

One central assumption is the incompressibility v = const. = n−1 for the material
function g and a constant (reference) number density nn for the free energy. The first
implies

∂ v

∂ p
= 0 ⇒ s = s(T, c1, . . . , cn−1) (2.461)

∂ v

∂ cα
= 0 ⇒ gα = gα(T, c1, . . . , cn−1) (2.462)

(2.463)

and
p(t)
ˆ

p0

vd p = (p(t)− p0) · n−1. (2.464)

If nn is assumed to be fixed, the differential form of ρψ is simply

df = s(T, n1, . . . , nn)dT +
n−1∑
α=1

fα(T, n1, . . . , nn)dnα (2.465)

i.e. the nth species does not contribute to the free energy change. Nevertheless, f is in
general a function of nn (or some variable transformations of nn).

Next, some common assumptions on the material functions s and gα (or fα) are given.
First, the entropy function s is assumed to be decomposed21 into a configurational contri-
bution sheat and a heat contribution sheat with

s(T, c1, . . . , cn−1) = sconf(c1, . . . , cn−1) + sheat(T ). (2.466)

A common approach for sheat(T ) is sheat(T ) = CT · T with a constant heat capacity
CT = const.
Second, the partial Gibbs energies gα are assumed to be decomposed as

gα = µRα − T · sα(c1, . . . , cn − 1) (2.467)

where R is some reference state. Note that the integrability condition imply

∂ sconf
∂ cα

!= ∂ T · sα(c1, . . . , cn − 1)
∂ T

= sα(c1, . . . , cn−1) (2.468)

in the variable setting (T, p, c1, . . . , cn−1).

21Note that such decompositions could also be derived via some partial integrations and multi-dimensional
integration constants.
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2.9. Material functions

2.9.1 Configurational entropy

The configurational entropy contribution to explicit material functions are in general de-
rived from statistical mechanics via the well known formula

S = kB ln (W ) (2.469)

where W is the amount of microstates a system could capture and kB Boltzmann’s con-
stant. Note that statical mechanics essentially derives the microstates as function of atom
positions and velocities. Its transition thermodynamic interpretation of states as config-
uration of atoms on a lattice is far more complex, and I refer to standard textbooks for
this derivation.

However, assuming that this transition is valid, one could interpret W as the amount
of particle configurations, which splits in two groups,

• the configuration of Boson like particles

• and the configuration of Fermion like particles.

The term like is used here as boson particles on a lattice, e.g. a solid electrolyte or
a surface with a finite amount of adsorption sites, behave somehow like fermions, even
though the actual atomic particle is a boson.

Configurational entropy of Bosons

Consider N particles, which decompose into a set of n different species, i.e.

N =
n∑

α=1
Nα, (2.470)

and are among themselves not distinguishable. Then the number of configurations is then

WB =
(

N

N1, . . . , Nn

)
(2.471)

where
( N
N1,...,Nn

)
denotes the multinomial coefficient(

N

N1, . . . , Nn

)
= N !∏n

α=1Nα! (2.472)

and for n = 2 simply the binomial coefficient(
N

N1

)
= N !
N1! · (N −N1)! = N !

N1 ·N2! . (2.473)

Hence, the entropy is simply

S = kB · ln
(

N

N1, . . . , Nn

)
= kB · ln (N !)−

n∑
α=1

ln (Nα!) . (2.474)

119



2. Coupled Thermo- and Electrodynamics

If the numbers Nα are quite large (statistical mechanics assumption), it is common to
approximate

ln (Nα!) = Nαln (Nα)−Nα +O(ln (Nα)) ≈ Nαln (Nα)−Nα (2.475)

with Sterlings formula. Hence the entropy is

S = kB · (N ln (N)−
n∑

α=1
Nαln (Nα)) = −kB

n∑
α=1

Nαln
(
Nα

N

)
. (2.476)

The transition to a local formulation of the configurational entropy is employed with a
continuum hypothesis, i.e. the assumption that the density formulation

nsconf = −kB

n∑
α=1

nαln
(
nα
n

)
(2.477)

= −nkB

n∑
α=1

cαln (cα) (2.478)

= −nkB

n−1∑
α=1

cαln
(

cα

1−∑n−1
β=1 cβ

)
+ ln

1−
n−1∑
β=1

cβ

 (2.479)

holds. The integrability condition (2.468) implies

sα(c1, . . . , cn−1) = kB · ln
(

cα
1−∑n

β=1 cβ

)
. (2.480)

Auxiliary calculation 2.38:
Using the relation cn = 1−

∑n−1
β=1 cβ leads to

∂ sconf
∂ cγ

=
n−1∑
α=1

(
δα,γ · ln

(
cα

1−
∑n−1
β=1 cβ

)
+ cα

cn
cα
· (δα,β

cn
− cα
cn

)
)
− 1
cn

= ln
(

cγ

1−
∑n−1
β=1 cβ

)
+

n−1∑
α=1

(δα,γ −
cα
cn

)− 1
cn

= ln
(
cγ
cn

)

Configurational entropy on latices

In the above derived configurational entropy it was essentially assumed that the each site
or allowed position in space is occupied by one of the particles. In contrast, distributing
the N1, . . . , Nn−1 particles on a lattice with N` sites leads to the amount of possible
configurations

W =
(

N`

N1, . . . , Nn−1, (N` −
∑n−1
α=1Nα)

)
. (2.481)

Introducing the number of vacancies as

Nv = N` −
n−1∑
α=1

Nα, (2.482)

120



2.9. Material functions

and applying the Sterlings formula leads to the configurational entropy function

S = kB · (N` · ln (N`)−N` −
n−1∑
α=1

Nα · ln (Nα) +
n−1∑
α=1

Nα)−Nv · ln (Nv) +Nv (2.483)

= −kB

(
Nv · ln

(
Nv

N`

)
+

n−1∑
α=1

Nα · ln
(
Nα

N`

))
. (2.484)

Note that only (n− 1) distinguishable species are are placed on the lattice, as the lattice
itself is built by the nth species (N` = N`(Nn)). The explicit dependency of N` is derived
below. Introducing the site density n` via

N` =
ˆ

Ω

n`(y, t) dV (2.485)

and consequently the vacancies density nv as

nv(y, t) := n`(y, t)−
n−1∑
α=1

(2.486)

Nv =
ˆ

Ω

nv(y, t) dV (2.487)

leads to the configurational entropy density

sconf = −kB · (nvln
(
nv
n`

)
+

n−1∑
α=1

nαln
(
nα
n`

)
). (2.488)

On a lattice it is thus quite convenient to introduce the coverage22 θα of species α as

θα := nα
n`

α = 1, . . . ,n− 1 (2.489)

θv := nv
n`

(2.490)

with
n−1∑
α=1

θα + θv = 1 (2.491)

Sometimes the coverage is then interpreted as concentration and the natural variables on
a lattice the are (T, n`, θ1, . . . , θn−1).

Due to the introduction of the lattice sites n` as independent degree of freedom, nn is a
derived property, i.e.

nn = nn(T, n`, θ1, . . . , θn−1), (2.492)

which of course has some major consequences. However, I will assume in the further work
a simple relationship

nn = κ` · n` (2.493)

22Note that coverage does not mean here coverage of a surface, but volumetric coverage.
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as more general relationships are subject current and further work.
Remark 9 (Chemical potential on a lattice).
The chemical potential per particle µα in the variable setting (T, n1, . . . , nn) is obtained
from the free energy density f(T, n1, . . . , nn) = ρψ as

µα = ∂ f

∂ nα
,

which follows directly from the definition of µα and µα. Performing the variable change
(n1, . . . , nn) → (n`, θ1, . . . , θn−1), i.e.

f = f(T, n` · θ1, . . . , n` · θn−1, κ` · n`) =: f̂(T, n`, θ1, . . . , θn−1) (2.494)

implies

µα = n−1
` ·

∂ f̂

∂ θα
= µα(T, n`, θ1, . . . , θn−1) α = 1, . . . ,n− 1 (2.495)

µn = κ−1
` ·

(
∂ f̂

∂ n`
− n−1

`

n−1∑
α=1

∂ f̂

∂ θα

)
= µn(T, n`, θ1, . . . , θn−1). (2.496)

The chemical potential µα of species α in the variable setting (T, n`, θ1, . . . , θn−1) is further
called chemical potential on a lattice.

Auxiliary calculation 2.39:

∂ f̂

∂ θα
= ∂ f

∂ nα
· n`

∂ f̂

∂ n`
=

n−1∑
α=1

∂ f

∂ nα
· θα + ∂ f

∂ nn
· κ` =

n−1∑
α=1

µαθα + κα · µn

Remark 10 (Frame of reference on a lattice structure).
Let n` be the total number density of lattice sites with

N` =
ˆ

Ω

n` dV (2.497)

and

dN`

dt =
ˆ

∂Ω

ĵ` · dA +
ˆ

Ω

r̂ dV (2.498)

where

• ĵ` is the diffusive flux of lattice sites

• and r̂ is the source or sink of lattice sites.

Choosing a frame of reference (ξ, v̂), ξ ∈ Ω such that

ĵ`(ξ, t) = 0 (2.499)
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leads to the balance equation

∂ n`
∂ t

= −div (n`v̂) + r̂`. (2.500)

A common assumption on the of lattice sites is clearly

n` = const. ∀(ξ, t) ∈ Ω× I (2.501)
r̂` = 0 (2.502)

which leads to

0 = −div (n`v̂) = −n`div v̂. (2.503)

If the whole domain Ω is assumed to remain fixed in time, i.e.

d
dt

ˆ

Ω

1 dV =
ˆ

∂Ω

v̂ · dA = 0 (2.504)

one obtains23

v̂(ξ, t) = 0. (2.506)

Hence, the species balance equations in the coordinate system (ξ, v̂ = 0) are

n`
∂ θα(ξ, t)

∂ t
= ∂ nα(ξ, t)

∂ t
= −div ĵα(ξ, t) + r̂α(ξ, t). (2.507)

The relation n` = κ` · nn, together with the assumption n` = const. and the coordinate
system choice (ξ, v̂ = 0) implies jn = 0 (which follows from a comparison of the balance
equations for n` and nn). Hence, the flux entropy production is simply24

r̂s, j = ĵTu · ∇
1
T︸︷︷︸

=:γ0

+
n−1∑
α=1

ĵTα ·
(
∇µα
T
− e0zα

T
E
)

︸ ︷︷ ︸
=:γ̂α

(2.509)

23This could have also been derived in the very beginning of the derivation, stating n` = const. and
Ω = const. which leads to

d
dt

ˆ

Ω

n` dV =
ˆ

Ω

∂ n`
∂ t

dV
!=
˛

∂Ω

ĵ` dA ⇒ ∂ n`
∂ t

= −div ĵ`.

Yet, the coordinate system is arbitrary and (ξ, v̂) is chosen such that ĵ`(ξ, t) = 0, which implies v̂ = 0.
Hence, the balance equation of n`,

∂ n`
∂ t︸︷︷︸
=0

= −div ĵ`︸︷︷︸
=0

, (2.505)

is trivially satisfied and, and the coordinate system (ξ, v̂ = 0) is chosen for the species balance equation.
24In the general case, with (x,v) as coordinate system, the flux constraint

∑n
α=1 jα = 0 implies

jα ∝ ∇
µα − µn

T
− e0

T
( zα
mα
− zn

mn
) α = 1, . . . , n− 1. (2.508)

Here, however, due to the constraint ĵn = 0, thermodynamic part of the driving force is only µα, and
not the difference µα − µn.
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and the entropy principle leads to the choice

ĵ = L̂ · γ̂ (2.510)

with a positive definite, symmetric matrix L̂. The symmetry of L̂ is again a consequence
of assumption 16 and theorem 9.

The representation of the configurational entropy on a lattice is

sconf(n`, θ1, . . . , θn−1) = −n`kB · (θV ln (θV ) +
n∑

α=1
θαln (θα)). (2.511)

Due to the variable change (T, n1, . . . , nn)→ (T, n`, θ1, . . . , θn−1), the integrability condi-
tion for the configuration sconf entropy and partial entropy sα reads

∂ sconf
∂ nα

= n−1
`

∂ sconf
∂ θα

!= sα(θ1, . . . , θn−1) α = 1, . . . ,n− 1 (2.512)

and thus

sα(θ1, . . . , θn−1) = −kB ln
(
θα
θV

)
. (2.513)

2.9.2 Polarization effects

Polarization and magnetization arises in the entropy function according to Gibbs equation

ρψ + p+ 1
2ε
−1
0 D ·PT − 1

2B ·MT =
n∑

α=1
µα · ρα. (2.514)

Throughout the rest of the work, magnetic contributions are neglected, as the whole elec-
trolytic theory including magnetic (and thus inductive) effects is current research work.

It is further assumed that Polarization is just simply related (c.f. remark 5) to the
electric flux density via[36]

P = χP D (2.515)

where χP = const. For a mixture (c.f. eq. 2.93), however, a polarization model

P = ε0

( n∑
α=1

cα(x, t)χPα

)
D (2.516)

is more appropriate, however, it is fairly assumed that

P = χPn D, (2.517)

where χPn is the permittivity of the solvent, is quite a good approximation.
If f is the free energy without polarization one uses thus

fP = f + χPn ε
−1
0 D ·DT (2.518)

as material function for the free energy. The transition to the Gibbs energy (per particles)
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including polarization effects is simply

gP = g + n−1 · χPn ε−1
0 D ·DT. (2.519)

2.9.3 Additional free energy contributions

A variety of additional contributions to either ρψ or g could arise, e.g. phase boundaries
within Ω, a non-ideal mixing behavior, or additional electrostatic like the Debye–Hückel
effect[37]. Contributions due to of a non-ideal mixing behavior are in general modeled via

• a regular solution model [29] or extensions[38],

• activity coefficients γi, [39–41],

• or any other excess contributions gexchem (e.g. phase boundaries[42, 43]).

Such activity coefficients could either be constant, γi ≡ const., space/time dependent,
γi = γi(x, t) or dependent on the actual species density, γi = γi(ni)[44]. However, a
consistent incorporation of Debye–Hückel theory as well as phase separation in electrolytic
materials is subject to recent research work.

2.10 Explicit material functions

2.10.1 Incompressible liquid electrolyte

An incompressible liquid electrolyte (i.e. with a constant total number density n) would
hence be modeled as a bosonic mixture of n species, where the (uncharged) solvent is
classically denoted as the nth species. Its Gibbs free energy material function is hence

g(T, p, c1, . . . , cn−1) =
n∑

α=1
µRα · cα + T 2 · CT + n−1 · p+ kBT

n∑
α=1

cαln (cα) + χPn ε
−1
0 D ·DT

(2.520)

leading to chemical potential

µα(T, p, cα) = µRα + n−1 · p+ kBT · ln (cα) (2.521)

Note that µα is only dependent on (T, p, cα). Mixtures of this type are called ideal
mixtures [5]. Further, even though the mixture is incompressible and liquid, the actual
pressure p(y, t) is present in the chemical potential. In an electrolyte mixture the pressure,
however, is not constant throughout the domain (i.e. in the space charge regions), and thus
the pressure indeed contributes to the flux equilibrium[36]. However, the flux equilibrium
in the isothermal case

∇(µα − µn)− e0zαE = 0 (2.522)
(2.523)

is independent of the actual pressure, and thus decouples from the momentum balance.
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If the chemical potentials differences µα − µn at a point xA in space are known (mea-
sured), i.e.

µα(xA)− µn(xA) = µRα − µRn + kBT ln
(
cRα
cRn

)
(2.524)

one could calculate the equilibrium concentrations cα at a point x in space via a path
integral of a curve Ψ with starting point xA and endpoint x. Since E is conservative with
potential Φ, at least in the quasi-electrostatic case, the electrostatic potential difference
between xA and x is

ˆ

Ψ

E ds = Φ(xA)− Φ(x) := UA(x), (2.525)

one obtains the compact relation

UA(x) = 1
e0zα

(µα(xA)− µα(x)− µn(xA) + µn(x)) (2.526)

⇔ cα(x) = cn
cRα
cRn
· e

e0zα
kBT

UA(x) (2.527)

for α = 1, . . . ,n− 1. With the condition

n−1∑
α=1

cα(x) = 1− cn (2.528)

one thus computes cn(x) as

cn(x) = 1

1 +∑n−1
β=1

cR
β

cR
n
· e

e0zβ
kBT

UA(x)
(2.529)

and obtains finally

cα(x) = cRα · e
e0zα
kBT

UA(x)

cRn +∑n−1
β=1 c

R
β · e

e0zβ
kBT

UA(x)
(2.530)

= cRα · e
e0zα
kBT

UA(x)

1−∑n−1
β=1 c

R
β · (1− e

e0zβ
kBT

UA(x) )
α = 1, . . . ,n− 1. (2.531)

Recall the free charge density

nF(x) = n ·
n∑

α=1
e0zαcα(x) (2.532)

and the Poisson equation for a simple polarizable material, i.e. P = χD, χ = const.

ε0(1 + χ) div∇Φ = nF. (2.533)
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Inserting the representation eq. (2.530) for cα (and zn = 0) leads to

ε0(1 + χ) div∇Φ = n · e0

∑n−1
α=1 zα · cRα · e

e0zα
kBT

UA(x)

1−∑n−1
β=1 c

R
β · (1− e

e0zβ
kBT

UA(x) )
. (2.534)

This equation is the Poisson–Boltzmann analogy of an incompressible electrolyte, and
the transient behavior is governed by a modified Poisson–Nernst–Planck equation system
(c.f. section 3.2 and [44]). Note there is a longstanding discussion in literature[36, 45–48]
of the actual shape of the general Poisson–Boltzmann25 in an incompressible electrolyte.
Quite a similar equation is derived for solid electrolyte, where the rigid lattice is the analogy
to the incompressibility. It is further to note that almost ever since in electrochemistry
the simplified Poisson–Boltzmann equation

ε0(1 + χPn )div∇Φ = n · e0

n−1∑
α=1

zα · cRα · e
e0zα
kBT

UA(x) (2.535)

is used to derive model conceptions, such as the Gouy–Chapman model and its extensions.
However, its full exploitation and application to basic electrochemical measurements is
subject to current research work [49].

2.10.2 Solid electrolyte

A solid electrolyte is described as a mixture of n− 1 species on a lattice with constant site
density n`. The configurational entropy is thus of fermionic type, and the corresponding
free energy density on a rigid lattice is

ρψ = f(T, θ1, . . . , θn−1) = n`

n−1∑
α=1

ψR
α θα + n`

n−1∑
α=1

kBT · θα · ln
(
θα
θV

)
+ n`T

2 · CT + χPn ε
−1
0 D ·DT (2.536)

leading to the chemical potential

µα(T, θ1, . . . , θn−1) = ψR
α + kBT ln

(
θα
θV

)
(2.537)

and

µn = ψn = const.. (2.538)

On page 123 it was shown that the actual driving force of a flux on a lattice

∇µα
T
− e0 zα

T
E. (2.539)

In flux equilibrium one could thus again integrate the condition

∇µα
T
− e0 zα

T
E != 0 (2.540)

25The term Boltzmann is historically used as the first type this equation was derived from statistical
mechanics with a Boltzmann distribution for the species densities.
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via a path integral of a curve Ψ ranging from xA to a point x in space. In the electrostatic
limit, E is again conservative with potential Φ, allowing thus a direct evaluation of

ˆ

Ψ

∇µα
T
− e0 zα

T
∇Φ ds = 0 (2.541)

and consequently

µα(x)− µα(xA) = e0zαUA(x). (2.542)

If the concentrations or coverages at xA are simply θRα , one obtains the representation

θα = θV ·
θRα
θRV
· e

e0 zα
kBT

UA(x) (2.543)

and with AC 2.40 finally

θα(x) = θRα · e
e0 zα
kBT

UA(x)

θRV +∑n−1
β=1 θ

R
β · e

e0 zβ
kBT

.UA(x)
(2.544)

Note that this representation of the coverage or concentration on a rigid volumetric lattice
is quite similar to the representation of the concentration in an incompressible liquid.

Auxiliary calculation 2.40:
n−1∑
α=1

θα =
n−1∑
α=1

θV ·
θR
α

θR
V

· e
e0 zα
kBT

UA(x) = 1− θV

⇒ θV = 1
1 +

∑n−1
α=1

θR
α

θR
V

· e
e0 zα
kBT

UA(x)

The representation of the free charge density within a solid electrolyte is

nF = e0

n∑
α=1

zαnα (2.545)

= n` · e0

n−1∑
α=1

zαθα + e0znκ` · n` (2.546)

and zn is general not zero26. Inserting eqs. (2.544) with (2.545) in the Poisson equation
(with a simple polarization model) one obtains the generalized Poisson–Boltzmann
equation for solid electrolytes [50]

ε0(1 + χPn )div∇Φ = n` e0 ·

 ∑n−1
α=1 zα θ

R
α · e

e0 zα
kBT

UA(x)

θRV +∑n−1
β=1 θ

R
β · e

e0 zβ
kBT

UA(x)
+ zn · κ`

 . (2.547)

26The species n or equivalent, the lattice, is itself charged as it represents the anionic background jelly or
charge density to establish electroneutrality in the bulk.
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3
Mathematical Modeling of Lithium Ion Batteries

This section covers some parts and figures of the published article

M. Landstorfer and T. Jacob, Mathematical modeling of intercalation batter-
ies at the cell level and beyond, Chem. Soc. Rev., 2013, 42, 3234–3252,
(http://pubs.rsc.org/en/content/articlelanding/2013/cs/c2cs35050e/)

- reproduced by permission of The Royal Society of Chemistry - which are explicitly
marked.

3.1 Introduction
Mathematical modeling of batteries attempts to describe the electrochemical system in
terms of balance equations covering some constitutive parameters, with the purpose of
predicting the system behavior. Necessity could arise because an experimental or metro-
logical access is only partly possible or even impossible, time consuming, or too expensive.
Classical questions in battery modeling are for example

• How and why does the cell potential vary during operation?

• How much heat is generated or dissipated during charging or discharging?

• Why and how do battery cells degrade and how to estimate the lifetime and cycling
stability?

For predictive purpose of mathematical modeling, a self consistent based derivation of the
balance equations based on coupled thermo- and electrodynamics is necessary in order to
account for the various effects which occur in this highly complex system

However, dependent on the application of a mathematical model, the level of accuracy,
and thus of complexity, has to be chosen appropriately. In electronic engineering the
question why an electrochemical reaction occurs is usually not the main focus, as long as
the equivalent circuit model of the battery is valid. Contrary, in computer aided search
and development of new materials this question is crucial. Hence a natural clustering
of the addressed issues in terms of time- and length scales is possible, but certainly not
unique. Growing computer power as well as sophisticated method developments led to an
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3. Mathematical Modeling of Lithium Ion Batteries

overlap between these clusters and smeared the boarders between physics, chemistry and
adjacent disciplines. This somehow motivates a careful reformulation of various questions
in battery modeling.[44] In that sense, this work has to be understood as a very basis of
consistent modeling approach, allowing for successive simplification due classical assump-
tions, asymptotic calculus or homogenization techniques.

3.1.1 Brief historic overview
Modeling of battery systems began around 1970 with the mathematical treatment of
porous electrodes and the derivation of averaged flux and reaction equations for such
materials [51–56]. Porous electrode theory and its application to intercalation cells (often
referred to as Newman’s model[57]) became a successful tool in industry [58] and science
to investigate whole batteries or battery cells. Predicting the temperature generation, cell
potential or degeneration allows for an estimation of cooling devices, autotimer electronics
or lifetime on an engineering scale. At the end of 1990 LiFePO4 as electrode material was
identified[59], and its phase separating behavior laid the foundation of using phase-field
methods in battery modeling. More and more sophisticated models, incorporating the
non-ideal solution behavior as well as phase boundary contributions[60], were derived and
became applicable due to growing computer power.
Similar enhancements of methods and models on the interface level[61–63] revealed the
structure of the space charge region with unprecedented precision, slowly bridging the
scale gap between the cell level and the interface level.
On the atomic level, developments in density functional theory[9] allow nowadays for the
computation of chemical reaction pathways[64] as well as for material characterization[65],
even in electrochemical systems.
Combining these methods, slowly an overall multi-scale theoretical approach to under-
stand and investigate electrochemical systems is built up to face the big issues in battery
development[66].[reprinted from 44]

3.1.2 Setup of a lithium ion battery
Before describing the actual modeling procedures, a brief overview of the setup of an in-
tercalation battery is given.

Usually a battery (device) consists of a set of single batteries, control electronics, cooling
devices and wiring which is called system level. Equivalent circuit models are used describe
the system level as a control problem, e.g. to optimize the charging and discharging in
hybrid electric cars.
A single battery is built out of a stack of cells, embedded in either a metallic shell (coin
or round cells) or a pouch of special foil (pouch cell), which is called stack level. Classical
questions, or optimization problems, arising on this scale are, e.g. the amount of the gen-
erated heat in operation, mechanical stability and aging effects. An overview of modeling
procedures and the addressed issues on the system and stack level can be found in [67–76].
Conventional cells of a lithium ion intercalation battery consist of a porous anode and
cathode, bathed in a liquid electrolyte and mixed with conductive filler and some bind-
ing material. The conductive filler ensures the electronic conductivity of the electrode
mixture, since the active materials are commonly semiconductors, whereas the binding
material glues the active particles and the conductivity enhancing particles together. An-
ode and cathode matrices are separated by a porous, electronic insulating membrane
(separator)[77, 78], which is soaked by the liquid electrolyte to provide ionic conductivity.
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Cell level
Electrolyte 
SeperatorAnode Cathode

Conductive f illerIntercalated Li

Stack level Body Def lector

Electrolyte
Anode Cathode

Figure 3.1.: (Left) Stack level of a lithium ion battery. The stack consists of several cells
and is embedded into a rigid body. (Right) On the cell level, anode and
cathode are porous materials mixed with a conductive filler and surrounded
by the liquid electrolyte. The separator is a polymeric sponge soaked with
liquid electrolyte. Reprinted from fig. 3 in [44].

The separator sponge also prevents convection of the liquid electrolyte and provides me-
chanical stability of the cell.[44]

A magnification of the actual interface between the surface of an electrode particle and
the surrounding (liquid) electrolyte reveals the double layer structure or space charge
region, generated by the mobile ions (see Fig. 3.2). The interface level covers this region
in a porous electrode, and the later introduced strong electroneutrality condition allows for
an implicit treatment of the interface level in the cell level. Electrochemical reactions on
the actual surface of the electrode particle occur on the atomic level and are treated in this
work with surface thermodynamics. The assumption of homogenous reactions throughout
electrode particle surface allows then the incorporation of the atomic level in the cell level
based volume averaging (or homogenization) methods.
Based on the derivation of the general thermo-electrodynamic equation framework of

section 2 a consistent model of a porous intercalation cell is given in this chapter. In
section 3.2 the electrolyte is modeled based on an incompressible mixture (c.f. section
2.9). The electrode is mathematically described in section 3.3 while in section 3.5 boundary
conditions are derived to describe intercalation reactions. A conclusion is given in section
3.6 of the overall model equations.

3.2 Electrolyte
Electrolytes are commonly described in continuum mechanics with either Poisson–Nernst–
Planck (PNP) equations, and its modifications[45, 46, 50, 61, 79–82], or generalizations
of Ohm’s law[51, 55]. Both of these descriptions can systematically be derived from non-
equilibrium thermodynamics[44].
The electrolyte is explicitly modeled as an incompressible mixture (n(y, t) = const.)

with n = 3 species, i.e.

• anions A with mass density ρA and concentration cA,

• cations C with mass density ρC and concentration cC ,
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Cation

Atomic level CationElectron
Reactions

Dif fusion
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Space charge 
region

Electron

Figure 3.2.: (Left) At the interface between a charged anode particle and a liquid
electrolyte a space charge region is formed due to the mobile cations in
the electrolyte. (Right) On the atomic level the electrochemical reaction
C+ + e– −−⇀↽−− C is treated as surface reaction. Reprint from fig. 4 in [44].

• and the solvent S with mass density ρS and concentration cS . Throughout the
further work cS will be used as abbreviation for 1− cA − cC = cS .1

In the variable setting ((T, p, cA, cC)), the Gibbs free energy density (c.f. section 2.9) is

g(T, p, c1, . . . , cn−1) =
n∑

α=1
µRα · cα + n−1 · p+ kBT

n∑
α=1

cαln (cα)

+ T 2 · CT + χPn ε
−1
0 D ·DT (3.1)

if polarization is taken into account. The chemical potential for each species is hence

µα = µRα + n−1 p+ kBT ln (cα) α = 1, 2, 3. (3.2)

Further, the electrolytic mixture is assumed to be non-reactive in the volume, i.e. chemical
reactions only occur at the surface. However, if decomposition of an electrolyte salt or
recombination of species is possible, this could be be modeled within a source term rα
[83]. The balance equations for the species densities are thus (c.f. 2.197)

∂ nα
∂ t

= −div (ρα v + jα) α = 1, . . . ,n (3.3)

n =
3∑

α=1
nα. (3.4)

For batteries, which operate at direct current, an electrostatic approximation of the electric
flux density is quite appropriate. The electric field is then simply E = −∇Φ where Φ the
electrostatic potential. Constant polarization contributions P = χPn ·D lead to the Poisson
equation

−ε0(1 + χP )div∇Φ = nF. (3.5)

Without any further assumptions, the full equation system would consist of
1Expressed as index set α = 1, . . . , n the anions correspond to α = 1, cations to α = 2 and the solvent to
α = 3.
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• four balance equations to determine the anion and cation density as well as the
pressure and temperature

• the momentum balance to determine the reference velocity field

• and the Poisson equation to determine the electrostatic potential.

To simplify the this coupled PDE system it is common to establish some material
assumptions on the electrolyte:

• Incompressibility ⇒ v ≡ const.

• No fluid convection ⇒ v = 0

• Strong electroneutrality: nF = 0⇒ cA = − zC
zA
cC

• Constant coefficients in the resulting equation system.

3.2.1 Fluid assumptions

The setup of a common lithium ion battery cell is given in figure 3.1. Even though the
electrolyte phase is liquid, in a real system the electrolyte domain is polymeric sponge,
soaked with liquid electrolyte. From a mechanical point of view, the sponge provides
mechanical stability. However, from a fluid dynamics point of view this implies that fluid
is stationary. Regarding an appropriate choice of coordinate system one thus uses ((y,v))
as reference coordinate system, which obeys2

∂ n

∂ t
= −div (nv) (3.6)

n∑
α=1

jα = 0. (3.7)

Due to the sponge, the convective part vanishes, i.e. v = 0, and the material model (3.1)
implies

κp = 0, (3.8)

i.e. incompressibility. Equation (3.6) is thus trivially satisfied, and due to v = 0 the
remaining balance equations for the species α

∂ nα
∂ t

= −div jα α = 1, 2, 3 (3.9)

decouple from the momentum balance (2.207). Since the specific enthalpy

hα = µα − T
∂ µα
∂ T

= µRα = const. (3.10)

for the assumed mixture, the heat equation (2.438) is simply

−CT ·
∂ T

∂ t
= −div jϑ + 1

T
jF · ∇Φ (3.11)

2Note that in general n = n(T, p), c.f. section 2.8.3 on the pressure equation.
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with the heat flux (c.f. eq. 2.440)

jϑ = 1
T

(
ju −

n∑
α=1

µαjα

)
(3.12)

and a constant heat capacity CT . The only heat source in the electrolyte region is thus
due to an electric current (electric heating), even though governed by ions, not by electrons.

A thermodynamic consistent choice of the fluxes ju, jA and jC , according to theorem 9,
is −ju

jA
jC

 = −

Lϑ,ϑ Lϑ,A Lϑ,C
Lϑ,A LA,A LA,C
Lϑ,C LC,A LC,C

 ·
 ∇ 1

T

∇µA−µS
T − e0 zA

T ∇Φ
∇µC−µS

T − e0 zC
T ∇Φ

 (3.13)

= −

Lϑ,ϑ Lϑ,A Lϑ,C
Lϑ,A LA,A LA,C
Lϑ,C LC,A LC,C

 ·


∇ 1
T

kB∇ln
(
cA
cS

)
− e0 zA

T ∇Φ
kB∇ln

(
cC
cS

)
− e0 zC

T ∇Φ

 (3.14)

with a symmetric, positive definite matrix L. Recall that each component Lα,β of L is
itself a matrix (Onsager coefficient) and assumed to be invertible. The flux of the solvent
species is simply obtained from the flux constraint (3.7) as

jS = −jA − jC . (3.15)

The representation 3.13 of the fluxes is the most general version of the Nernst–Planck
flux with LA,A, LA,C , and LC,C as independent Onsager coefficients for the material flux.
For vanishing cross-coefficients LA,C = 0 the Nernst–Planck-flux for the species A further
simplifies to

jA = −LA,θ∇
1
T
− kB LA,A ·

((
cS
cA
− 1
cS

)
∇cA −

1
cS
∇cC −

e0zA
kBT

∇Φ
)
, (3.16)

where the Onsager coefficient LA,A is called mobility, and similar relation of course holds
for the species C.

For the so called dilute limit[53], in which the species densities of nA and nC with respect
to the overall density n are tiny, the solvent concentration cS ≈ 1 and the ln

(
cα
cS

)
≈ ln (cα).

The dilute limit Nernst–Planck flux is hence

jdiluteα = −Lα,θ∇
1
T
− kB Lα,α ·

( 1
cα
∇cα −

e0zα
kBT

∇Φ
)

(3.17)

= −Lα,θ∇
1
T
−Ddilute ·

(
∇cA −

e0zα
kBT

cα · ∇Φ
)

(3.18)

where Ddilute is the dilute diffusion coefficient obtained from the Einstein–Smoluchowski
relationship [84, 85]. It is the common basis for modeling approaches with Poisson–Nernst–
Planck [50, 79, 80, 86–89] and Poisson–Boltzmann (PB) equations [45, 81, 90, 91] . Note,
however, that this simplification violates the incompressibility of the liquid electrolyte [36],
and is actually only valid for plasma.
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3.2.2 Strong electroneutrality assumption

The most common approach to simplify the whole equation system is the so called elec-
troneutrality condition[92]. It is assumed that charge separation between cations and
anions does not occur, even in the density formulation. I introduced the terminology
strong electroneutrality [44], i.e.

nF = n · (zAcA + zCcC) = 0 ∀ (y, t) ∈ Ω× I, (3.19)

in order to distinguish the assumption from general valid global (or weak) electroneutrality
ˆ

Ω

nF(x) dx = 0. (3.20)

This concept neglects the space charge region at the electrode/electrolyte interface[51, 55].
However, this problem or inaccuracy can be corrected, with some limitations, by treating
the space charge region and its influence implicitly with the introduction of an electrochem-
ical potential of charge (cf. eq. 3.32.). The assumption is crucial and still in discussion
[92–96] as it smears out any structural roughness, spikes or curvatures of the electrode/elec-
trolyte interface on the nm scale[88]. However, almost all approaches in battery modeling
relay on the strong electroneutrality assumption [3, 55, 56, 97–111].

To apply the assumption nF = 0 one performs first the variable transformation cC →
nF and hence choose (T, p, cA, nF) as independent properties. Reconsidering the initial
entropy function3 with the suggested variable change

n · s = s(n · u, nA, nC , nS) (3.22)

= s(n · u, nA,
1

e0 zC
·
(
nF − e0zA · nA

)
, nS) (3.23)

leads to the entropy balance

∂ n · s
∂ t

= − 1
T
· ∂ n · u

∂ t
− µC

T
· 1
e0 zC

·
(
∂ nF

∂ t
− e0zA ·

∂ nA
∂ t

)
− µA

T

∂ nA
∂ t
− µS

T

∂ nS
∂ t

(3.24)

= − 1
T
· ∂ n · u

∂ t
− µC
e0zC T

· ∂ n
F

∂ t
−

(µA − zA
zC
µC)

T

∂ nC
∂ t
− µS

T

∂ nS
∂ t

. (3.25)

In the frame of reference (y,v) one obtains, with the charge conservation equation

∂ nF

∂ t
= −div jF (3.26)

and the flux constraint

j = −jA − jC , (3.27)

3Note that throughout this section the entropy function is considered per particles, i.e.

S =
ˆ

Ω

n s dx. (3.21)
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the entropy balance

∂ n · s
∂ t

= −div js + jTu · ∇
1
T

+ jFT · ( 1
T
∇Φ−∇µC − µS

e0zC T
)

− jTA ·
(
∇µA − µS

T
− zA
e0zC

∇µC − µS
T

)
. (3.28)

Some rearrangement according to AC 3.41 and the introduction of the alternative internal
energy flux

j̃u := ju − jF · µC − µS
e0zC

(3.29)

leads to the entropy production

rs = j̃Tu · ∇
1
T

+ 1
T
· jFT · ∇

(
Φ− µC − µS

e0zC

)
− jTA ·

(
∇µA − µS

T
− zA
e0zC

∇µC − µS
T

)
.

(3.30)

Auxiliary calculation 3.41:

jT
u · ∇

1
T
− jFT · ∇µC − µS

e0zC T
=

jT
u − jF · µC − µS

e0zC︸ ︷︷ ︸
=:̃ju

 · ∇ 1
T
− 1
T

jFT · ∇µC − µS
e0zC

According to theorem 9 one could thus choose the fluxes as−j̃u
−jF

jA

 = −

L̃ϑ,ϑ L̃ϑ,F L̃ϑ,A
L̃ϑ,F L̃F,F L̃F,A
L̃ϑ,A L̃A,F L̃A,A

 ·


∇ 1
T

∇
(
Φ− µC−µS

e0zC

)
∇µA−µS

T −∇ zA
zC
· (µC−µST )

 (3.31)

with a symmetric, positive definite Onsager matrix (L̃α,β)α,β=ϑ,F,C to ensure the local
second law. This structure is quite remarkable, which is shown more clearly with the
following abbreviations. The conjugate variable of an electric current is obviously

Φ + µC − µS
e0zC

=: Φ̃, (3.32)

which covers all electrostatic effects in the electrolyte. One could thus carefully call Φ̃
electrochemical potential of charge (or potential of an electric current). In accor-
dance, the thermodynamic driving force for the anion flux is

µA − µS
T

− zA
zC
· (µC − µS

T
) =: µ̃, (3.33)

and µ̃ is called effective chemical potential of the anions. Similar µ̃ implicitly covers
also effects arising from the cations.
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Reconsidering the heat equation, one obtains in the new variables gives

−CT ·
∂ T

∂ t
= −div

( 1
T

j̃u
)

+ 1
T

jFT · ∇Φ̃− µC − µS
e0zC

· jFT · ∇ 1
T
−
(
µC − µS
e0zC T

)
· div jF

(3.34)

= −div 1
T

(
L̃ϑ,ϑ · ∇

1
T

+ L̃ϑ,F · ∇Φ̃ + L̃ϑ,A · ∇µ̃
)

+ rϑ. (3.35)

Auxiliary calculation 3.42:

−div
(

1
T

ju
)

+ 1
T

jF · ∇Φ = −div
(

1
T

(
j̃u + jF · µC − µS

e0zC

))
+ jFT · ∇Φ

= −div 1
T

j̃u + 1
T

jFT · ∇
(

Φ− µC − µS
e0zC

)
− µC − µS

e0zC
div 1

T
jF

= −div 1
T

j̃u + 1
T

jFT · ∇Φ̃− µC − µS
e0zC

jF · ∇ 1
T
−
(
µC − µS
e0zC T

)
div jF

Inserting the actual flux representations leads to the balance equation for nF and nA
(or cA) as

∂ nF

∂ t
= −div

(
L̃ϑ,F · ∇

1
T

+ L̃F,F · ∇Φ̃ + L̃F,A · ∇µ̃
)

(3.36)

∂ nA
∂ t

= div
(

L̃ϑ,A · ∇
1
T

+ L̃A,F · ∇Φ̃ + L̃A,A · ∇µ̃
)
. (3.37)

Note that in the whole coupled equation system the electrostatic potential Φ is not
explicitly present anymore. If the corresponding boundary conditions can also be formu-
lated without an explicit occurrence of Φ, but in terms of Φ̃, one has decoupled the flux
equations from the Poisson equation, in the sense that the Poisson equation is not
required anymore to compute an unknown variable of the equation system.

Next, strong electroneutrality nF = 0 is assumed, which implies

cA = − zC
zA︸︷︷︸
z

cC (3.38)

and

−div jF = 0. (3.39)

This could be further exploited to simplify the remaining equation system. Rearranging
the relation for the electric current

jF = L̃ϑ,F · ∇
1
T

+ L̃F,F · ∇Φ̃ + L̃F,A · ∇µ̃ (3.40)

as

∇Φ̃ = L̃−1
F,F · j

F − L̃−1
F,F · L̃ϑ,F · ∇

1
T
− L̃−1

F,F · L̃F,A · ∇µ̃ (3.41)
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leads to the representation of the balance equation system

−CT ·
∂ T

∂ t
= div 1

T

(
(L̃ϑ,ϑ − L̃−1

F,F · L̃2
ϑ,F ) · ∇ 1

T
+ (L̃ϑ,A − L̃ϑ,F · L̃−1

F,F · L̃F,A) · ∇µ̃
)

+ div (L̃−1
F,F · L̃ϑ,F · j

F) + rϑ (3.42)

0 = −div jF (3.43)
∂ nA
∂ t

= div
(

(L̃ϑ,A − L̃−1
F,F · L̃ϑ,F · L̃A,F ) · ∇ 1

T
+ (L̃A,A − L̃−1

F,F · L̃2
F,A) · ∇µ̃

)
+ div

(
L̃A,F · L̃−1

F,F · j
F)
. (3.44)

For the further derivation it is necessary to explicitly compute ∇µ̃.

Auxiliary calculation 3.43:

µ̃ = µA − µS
T

− zA
zC
· (µC − µS

T
) = kB

(
ln (cA)− (1− zA

zC
) ln (cS)− zA

zC
ln (cC)

)
= kB (ln (cA)− (1− z) ln (1− (1− z)cA) + zln (−zcA)) 4

Building hence the gradient of µ̃ leads to

∇µ̃ = kB

(
1
cA
∇cA + (1− z)2

1− (1− z)cA
∇cA + z∇cA

)
= ∂ µ̃(cA)

∂ cA
∇cA

It is quite convenient now to introduce abbreviations for the products of Onsager co-
efficients. Isotropy is now assumed throughout the electrolyte with which the Onsager
coefficients become scalars. Common abbreviations are [111]

• the heat conductivity κT = L̃ϑ,ϑ,

• the Seebeck coefficient κϑ = L̃ϑ,F ,

• the Soret coefficient γϑ = L̃ϑ,A,

• the transference number tA = e0 · L̃A,F · L̃−1
F,F with tA = 1− tC ,5

• the chemical diffusion coefficient of species A

DA = ∂ µ̃

∂ cA
·
(
L̃A,A − L̃−1

F,F · L̃2
F,A

)
, (3.45)

• and the (electrical) conductivity κF = L̃F,F .

Common assumption[53] on the material coefficients are now

κT = const. (3.46)
κϑ = const. (3.47)
tA = const. (3.48)

4Note that z < 0 and cA > 0 with which ln (−z) is well defined.
5Note that this follows directly from the strong electroneutrality condition.
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which essentially decouples the balance equation system. The main trick is surely to
exploit div jF = 0 (due to the constant parameters) in equation (3.42) and (3.44) which
results in the balance equations

−CT T ·
∂ T

∂ t
= −div

(
(κT + κ−1

F · κ
2
ϑ)∇ 1

T
+ (γϑ − tA · κϑ) · ∂ µ̃(cA)

∂ cA
· ∇cA

)
+ rϑ (3.49)

0 = −div
(
κϑ∇

1
T

+ κF∇Φ̃ + tA · κF
∂ µ̃(cA)
∂ cA

∇cA
)

(3.50)

∂ nA
∂ t

= div
(

(γϑ − tA · κϑ) · ∇ 1
T

+DA∇cA
)
, (3.51)

with the heat source (c.f. AC 3.44 )

rϑ = kBT

e0zC
ln
(
cS
cA

)
·
(
κϑ∇( 1

T
)2 + tA · κF

∂ µ̃(cA)
∂ cA

〈
∇cA,∇

1
T

〉)
(3.52)

+ 1
T
·
(
κF (∇Φ̃)2 + tA · κF

∂ µ̃(cA)
∂ cA

〈
∇Φ̃,∇cA

〉)
+
(
κϑ
T

+ kBT

e0zC
κF

)
·
〈
∇Φ̃,∇ 1

T

〉
.

Auxiliary calculation 3.44: Heat source

jFT · ∇Φ̃ = κϑ

〈
∇Φ̃,∇ 1

T

〉
+ κF (∇Φ̃)2 + tA · κF

∂ µ̃(cA)
∂ cA

〈
∇Φ̃,∇cA

〉
jFT · ∇ 1

T
= κϑ∇( 1

T
)2 + κF

〈
∇Φ̃,∇ 1

T

〉
+ tA · κF

∂ µ̃(cA)
∂ cA

〈
∇cA,∇

1
T

〉
With

−µC − µS
e0zC

= kBT

e0zC
ln
(
cS
cA

)
The overall heat source is thus

rϑ = 1
T

jFT · ∇Φ̃− µC − µS
e0zC

· jFT · ∇ 1
T

= 1
T
·
(
κϑ

〈
∇Φ̃,∇ 1

T

〉
+ κF (∇Φ̃)2 + tA · κF

∂ µ̃(cA)
∂ cA

〈
∇Φ̃,∇cA

〉)
+ kBT

e0zC
ln
(
cS
cA

)
·

(
κϑ

(
∇ 1
T

)2
+κF

〈
∇Φ̃,∇ 1

T

〉
+ tA ·κF

∂µ̃(cA)
∂ cA

〈
∇cA,∇

1
T

〉)

= kBT

e0zC
ln
(
cS
cA

)
·
(
κϑ∇( 1

T
)2 + tA · κF

∂ µ̃(cA)
∂ cA

〈
∇cA,∇

1
T

〉)
+ 1
T
·
(
κF (∇Φ̃)2 + tA · κF

∂ µ̃(cA)
∂ cA

〈
∇Φ̃,∇cC

〉)
+
(
κϑ
T

+ kBT

e0zC
κF

)
·
〈
∇Φ̃,∇ 1

T

〉

It is noteworthy that equation (3.51) is essentially a diffusion equation for species
A (or similar for the species C due to the strong electroneutrality condition) and thus
a linear PDE, in contrast to the fully non-linear Poisson–Nernst–Planck representation
(3.16). Equation (3.50) is called generalized Ohmic law, which determines the elec-
trochemical potential of charge Φ̃. It does not determine the electrostatic potential Φ.
There is a quite longstanding discussion in literature what Φ̃ actually is[53, 93–95]. Due
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3. Mathematical Modeling of Lithium Ion Batteries

to the electroneutrality condition one could simply think of Φ̃ as being the electrostatic
potential outside the space charge region. Other authors[3] interpret Φ̃ as the measured
potential with a (lithium) reference electrode in solution. Anyhow, the electroneutrality is,
like the incompressibility, a remarkable assumption with drastic implications and simpli-
fications. From a computational point of view the above strategy linearizes and decouples
a (in general) highly non-linear PDE system. In addition, one balance equation becomes
stationary, which allows for a recursive insertion of the solution in transient numerical
schemes.

As already mentioned, the strategy works if the reaction boundary conditions can ex-
clusively be described in the potentials Φ̃ and µ̃. In section 3.5 a derivation of reaction
boundary conditions based on surface reactions is given which indeed leads to a reaction
rate based on Φ̃ and µ̃, in addition to the potential in the electrode phase.

3.3 Electrode

Continuum mechanical modeling of intercalation electrodes separates into two branches,
electrode particle models and the porous electrode theory. While in the first branch each
electrode particle is considered and spatially resolved, the latter one treats the (porous)
electrode with volume averaging strategies and thus neglects the specific microstructure.
Historically the porous electrode model was developed to enable computational access
to the cell level with moderate computer power. By neglecting the actual microscopic
structure of a porous electrode, the model simplifies from 3-D to 1-D, reducing the compu-
tational time from O(N 9) to O(N 3), where N is the number of elements in one dimension.
Recent developments in material science, e.g. 3-D computer tomographic investigations[112]
or combined FIB/SEM methods[113–115] reveal the actual microstructure on the µm to
100 nm scale and allow for a reconstruction as finite element mesh[116]. This allows
for full 3-D simulations of the electrodes and the surrounding electrolyte to investigate
local ion flux and current densities, heat generation hotspots etc.[117]. Of course, the
computational cost for 3-D diffusion-migration simulations on highly porous geometries is
not negligible. Modern numerical methods such as adaptive finite element or finite volume
methods serve as a basis for a reasonable computational expenditure[81, 118]. Further, full
3-D simulations can serve as a benchmark for simplified volume averaged electrode models
to either quantify the simplification error or refine an averaged model appropriately.[44]

3.3.1 Electrode particle models

Diffusion of lithium in single electrode particles is classically modeled with simple diffusion
equations to describe the status of charge (SOC) of an electrode particle or the whole
electrode[53]. Recent experimental investigations of a wide class of electrode materials
revealed phase separation phenomena during charging and discharging[119], which cannot
be predicted by a simple diffusion equations. This also implies that open circuit potential,
which is introduced below, can not self-consistently be incorporated by such a class of
model. More general approaches based on phase field models[60, 120] are yet at the
very beginning to actually predict the open circuit potential, which is of course a central
property of a lithium ion battery cell[2].
An electrode material is modeled here with a free energy function containing a lattice

configurational entropy. The lattice is assumed to remain fixed (i.e. n` = const. and n`
thus arises only as parameter), and the remaining independent degrees of freedom are
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Figure 3.3.: (Left) Homogenous free energy density fideal + fRS as function of the interca-
lated (normalized) ion concentration θ for a regular solution model. For γ = 0
the hom. free energy has a minimum at θ = 0.5, which leads to a single phase
(lower right). In contrast, for γ = 3.5, the hom. free energy density has two
local minima, resulting in a phase separation (upper right). Reprint from fig.
3 in [44].

(T, θ), where

θ = nC
n`

(3.53)

refers to the amount or coverage of intercalated cations, i.e. lithium. Since lithiums ion
intercalate into an electrode via the reaction Li+ + e– −−⇀↽−− Li, the intercalated lithium is
uncharged. In the case of a phase separating material with two preferred phases, i.e. a
non-ideal mixing behavior, an energy contribution fRS for a regular solution is added[29].
Phase separation within a particle generates a phase boundary, which could either be
diffuse or sharp, and its interfacial free energy has to be explicitly taken into account
[60, 121] as additional free energy contribution fPB. The free energy density is then based
on a solid electrolyte (with uncharged species), and according to section 2.10.2

f = fideal + fRS + fPB (3.54)

where

fideal(T, n`, θ) = n` ·
(
ψR
I · θα + T 2 · CT + kBT θ · ln

(
θ

θV

))
(3.55)

fRS(T, n`, θ) = n`kBT γ · (θ · θV ). (3.56)

Free energy contributions due to a regular solution can also be translated into activity
coefficients γRSk = exp(−αθ). The free energy contribution due to the phase boundaries
are essentially proportional to the gradient of θ[42, 43] (interfacial free energy) and hence

gPB(T, n`,∇θ) = 1
2n` · γ

PB(∇θ)2. (3.57)

The term gPB is also sometimes called gradient penalty term[60] since the phase boundary
drains energy from the system, and the sum fideal + fRS is called homogenous free energy
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(c.f. figure 3.3). However, since the material function of the free energy is now also
dependent on ∇θ, the definition of the chemical potential has to be adopted. The overall
free energy

F =
ˆ

Ω

f(T, θ,∇θ) dV (3.58)

is actually a functional of θ, i.e. F = F [θ]. Building hence the functional derivative of
F [θ] with respect to θ leads to

δF

δnI
= n−1

`

∂ f

∂ cI
− n−1

` div ∂ f

∂∇cI
, (3.59)

which is then interpreted as the chemical potential (in the case of a constant n`), i.e.

µ(T, θ,∇θ) = n−1
` ·

∂ fideal(T, n`, θ) + fRS(T, n`, θ)
∂ θ

− div γPB∇θ (3.60)

= ψRLi + kBT ln
(

θ

1− θ

)
+ kBT γ · (1− 2 · θ)− div γPB∇θ. (3.61)

Note that elastic strain may also significantly contribute to the chemical potential[122].
In the isothermal case the remaining balance equation system is

n`
∂ θ

∂ t
= −div j (3.62)

j = L · ∇µ (3.63)

with a positive definite Onsager coefficient L. Relating the mobility L to a diffusion tensor
D via kBT L = θ ·D [123] leads to the Cahn–Hilliard equation

∂θ

∂t
= div D ·

(( 1
1− c − 2γ θ

)
∇θ − θ · ∇2

(
γPB∇θ

))
. (3.64)

Corresponding boundary conditions modeling the intercalation reaction with Cahn–Hilliard
type equations can be found in [121]. Numerical simulations of Cahn–Hilliard equations
are widely used to investigate the behavior of phase separating materials with respect to
their shape, size and velocity of charging[60, 65, 120, 124].

3.3.2 Open circuit potential

If a single electrode particle is in contact with a lithium reference electrode via an ex-
ternal wire, and internally connected through the electrolyte, an open circuit potential
is measured with a high-ohmic voltmeter (i.e. negligible current). Consider thus an an-
ode ΩA, an electrolyte phase ΩE and a cathode ΩC . The anode/electrolyte interface is
ΣA = ΩA∪ΩE and the electrolyte/cathode interface is ΣC = ΩC∪ΩE . At each electrode/-
electrolyte interface an electrochemical reaction C+ + e– −−⇀↽−− C occurs and is assumed to
be in equilibrium for the moment. Note that such an equilibrium is established if the
anode and the cathode are not connected via an external cable, i.e. if no current is
flowing, or with a high-ohmic resistor in between. Let µ

a
α denote the chemical potential

of species α on the singular surface ΣA and µ
c
α the surface chemical potential on ΣC . The
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Figure 3.4.: Sketch of an anode|electrolyte|cathode setup with interfaces ΣA and ΣC . The
actual potential difference U between the anode and the cathode could be mea-
sured with a very high ohmic voltmeter to ensure the equilibrium conditions.

equilibrium condition for surface reactions (2.313) is hence

µ
a
C+ + µ

a
e− = µ

a
C on ΣA (3.65)

µ
c
C+ + µ

c
e− = µ

c
C on ΣC . (3.66)

Further, let µα(x),x ∈ ΣA be denoted by µα
∣∣
A

and similar µα
∣∣
C

for the volumetric
chemical potential, evaluated at the respective boundary. The flux equilibrium condition
(c.f. section 2.10.1) states

(µC+ − µS)
∣∣
a

= (µC+ − µS)
∣∣
c

+ e0zC U, (3.67)

where U is the whole electrostatic potential difference in the electrolyte phase. If the
solvent does not adsorb on the electrode surface ΣA and ΣC

6, i.e. there is no surface
species density n

s S
, the surface chemical potentials vanish, i.e.

µ
a
S = 0 and µ

c
S = 0. (3.68)

The continuity condition of the chemical potential (c.f. corollary 7) thus implies

µS
∣∣
a

= 0 and µS
∣∣
c

= 0 (3.69)

and hence

µC+
∣∣
a

= µC+
∣∣
c

+ e0zC U. (3.70)

If the electrodes are ideal conductors, i.e. nF = 0 in ΩA and ΩC , one could employ

6An in-depth investigation of this assumption is part of my current research work.
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the flux equilibrium condition also on the electrons, i.e.

µ
a
e− = µe− |d (3.71)

µ
c
e− = µe− |e, (3.72)

where d denotes some bulk point the anode and e a bulk point in the cathode, and (fairly)
assume that the chemical potential of the electrons is constant in the bulk.
For the introduction of the open circuit potential it is further sufficient to assume that the
species C are homogeneously distributed in the (reference) electrode7 ΩC , which implies

µC
∣∣
c

= µC
∣∣
d

= const. (3.73)

Last but not least, the continuity condition of µ
a
C implies

µ
a
C = µC

∣∣
a

= µC(x), x ∈ ΣA (3.74)

Note, however, that for an intercalation electrode µC(x), x ∈ ΣA is actually a function of
the concentration θ, evaluated at the interface ΣA, i.e.

µC
∣∣
a

= µC(θ
∣∣
a
). (3.75)

Overall one thus obtains

U = 1
e0zC

·
(
µ
a
C − µC

∣∣
D
− µe−

∣∣
E

+ µe−
∣∣
D

)
. (3.76)

The constant expression µC
∣∣
D
− µe−

∣∣
E

+ µe−
∣∣
D

is quite often abbreviated as µRC , leading
to the simple expression

U = 1
e0zC

·
(
µC(θ

∣∣
a
)− µRC

)
, (3.77)

which corresponds to the general Nernst equation for intercalation reactions in the working
electrode.

Auxiliary calculation 3.45:

µ
a
C = µ

a
C+ + µ

a
e− = µC+

∣∣
C

+ e0zC · U + µ
a
e−

= µ
c
C − µe−

∣∣
D

+ U + µe−
∣∣
E

= µC
∣∣
D
− µe−

∣∣
D

+ U + µe−
∣∣
E

To measure the open circuit potential of an electrochemical cell, one would apply a very
high ohmic voltmeter between the anode and the cathode, to ensure the no-flux equilib-
rium condition.

7Consider a metallic lithium reference electrode, which is, of course, homogeneously made of metallic
lithium.
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Figure 3.5.: Cell potential obtained from the homogenization of chemical potential with a
Maxwell construction. The non-monotone chemical potential µhom(θ) (trans-
parent) is corrected to obtain the homogenized chemical potential µMaxwell(θ)
for different phase separation parameters γ. Reprinted from fig. 4 in [44]

However, from a theoretical point of view one desires an explicit relationship between
the cell potential and the concentration or amount of intercalated lithium, i.e. U = U(θ

∣∣
a
).

One has therefore to solve equation (3.64) for the constraints

1
vol{ΩA}

ˆ

ΩA
θ(x, t) dV = θ θ ∈ [0, 1], (3.78)

where θ is the prescribed amount of intercalated lithium. This is the full approach to
determine the cell potential of a phase separating single particle.

In a phase separating material, the chemical potential at the interface ΣA is not equal
to the chemical potential in the bulk. However, one could also ask for an approximated
relationship between the cell potential U and the averaged (or homogenized) concentration

θ = 1
vol{ΩA}

ˆ

ΩA

θ dV (3.79)

for which θ(x) = θ (i.e. independent of the position x) and thus θ
∣∣
a

= θ. To deduce such
a relationship, the homogenous part of the chemical potential

µhom(θ) = ψRLi + kBT ln
(

θ

1− θ

)
+ kBT γ · (1− 2 · θ) (3.80)

is corrected with the Maxwell construction[125]. This is done by connecting the two
minima in the free energy, if present, by a straight line and substitute the non-montonic
part of the free energy with it (cf. figure 3.3). The thereby obtained chemical potential
µMaxwell(θ) is then a homogenous equivalent to the actual 2-phase system µhom(θ) and
enables thus the definition of a cell potential

U(θ) = 1
zCe0

(µMaxwell(θ)− µRC). (3.81)
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3.3.3 Many particle electrode

Similar to above, the counter electrode (or cathode) is a homogenous, non-phase separat-
ing reference electrode. However the anode8 consists of N (N is typically in the order of
109 [2]) particles and the open circuit potential with respect to the reference electrode is
desired. It is clear that a full resolution of each particle is far to complicated to be ever
computable with a finite amount of computational time. Hence, homogenization strate-
gies are desired to derive some general expression of the open circuit potential of a many
particle electrode.

In the overall equilibrium situation, i.e. flux and reaction equilibrium, even the electrode
surface, one could again derive some general relationships on the open circuit potential.
9 Since all the anode particles are interconnected via the electrolyte, the equilibrium
condition requires that

µ
a
k
α[C] != µ

a
`
C k, ` = 1, . . . , N, (3.84)

where µ
a
k
α is the surface chemical potential of the cations on particle k. Due to the con-

tinuity of the chemical potential, and with equivalent material function for all particles,
one could also write

µC(θk
∣∣
a
) != µC(θ`

∣∣
a
) k, ` = 1, . . . , N (3.85)

where θk
∣∣
a
is now the concentration of intercalated ions in particle k, evaluated at the

respective interface. Choosing one particle as a reference, e.g.

µMany(θ
∣∣
a
) := µC(θ1

∣∣
a
), (3.86)

allows one to express the open circuit potential of a many particle electrode as

U = 1
e0zC

(
µMany(θ

∣∣
a
)− µR

)
. (3.87)

While for a single particle the assumption of a homogenous distribution of intercalated
Li in a phase separating material is not feasible or has to be corrected via the Maxwell
construction, assuming a homogenous distribution in a many particle system is, to some
extend, valid [120].

For an electrode which consist of two particles, let θ1 be the homogenous concentration
of intercalated lithium in particle 1 and θ2 in particle 2. A homogenous equilibrium state

8Note that terms anode and cathode are used here quite arbitrary as the they change whether one charges
or discharges a cell. It is just used to distinguish electrode ΩA and electrode ΩC .

9Note that the flux equilibrium state is actually independent of the geometry of the porous electrode.
Recall the flux equilibrium condition

∇µC+ − µS
T

− e0zC∇Φ = 0 (3.82)

which was integrated via some path integral over a curve Ψ. Here, the initial point of the path
integration is xC , xC ∈ ΣC and as long asany path Ψ could be found between a point xC and a point
xA on ΣA, one obtains the simple relationship

e0zCU = (µC+ − µS)
∣∣
A
− (µC+ − µS)

∣∣
C
. (3.83)
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Figure 3.6.: Sketch of the homogenous concentration θ1 in particle 1 and θ2 in particle 2 as
parametric curves u = (θ1(q), θ2(q)), i.e. solutions of equation 3.85 for N = 2.
For γ > 2 bifurcation points occurs at which equation (3.90) spontaneously
possesses new solutions u1,u2 and u3.

exits, if the condition (3.85) has solutions (θ1(q), θ2(q)) for a parameter q ∈ [0, 1] with

(θ1(0), θ2(0)) = (0, 0) (3.88)
(θ1(1), θ2(1)) = (1, 1). (3.89)

Condition (3.85) implies an implicit curve

ln
(

θ1
1− θ1

· 1− θ2
θ2

)
+ 2γ · (θ2 − θ1) != 0, (3.90)

which indeed has parametric solutions (curves) um(q) = (θ1(q), θ2(q))m ∈ R2 (m is the
solution index) and the parameter q is, similar to the single electrode, the status of charge.
For γ < 2, the equation system has one solution, θ1(q) = θ1(q) = 1/2·q, which corresponds
to an equal filling degree of the two particles. However, for γ > 2 bifurcation points occur
at which the equation system spontaneously has two additional solutions (cf. figure 3.6).
Note that for γ > 2 the symmetric solution θ1 = θ2 is not anymore a minimum of the free
energy, but a local maximum[126] since the Hessian is negative definite for this solution.
Hence, for γ > 2, the preferable distribution of intercalated ions, in the equilibrium situa-
tion, is not an equal filling of both particles but a subsequent filling of particle 1, followed
by particle 2 (or the other way round).
According to equation (3.87) the cell potential of such a two particle electrode is equal to

the chemical potential µ as function of θ1(q) (or θ2(q)). In figure 3.7 the chemical potential
(and thus the cell potential as µR = const.) for a two particle electrode is displayed.
In a many particle electrode the overall amount of intercalated ions (or macroscopic

filling degree, status of charge) q of a many particle electrode is

q = 1
N

N∑
k=1

1
Vol(Ωk)

ˆ

Ωk

θkdx local eq.= 1
N

NA∑
k=1

θk. (3.91)

Similar to the two particle system a set of solutions (θ1(q), . . . , cθ(q))m for a given value
of q exists, fulfilling the equation system (3.84) in addition to a positive definite Hessian
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Figure 3.7.: (Left) Cell potential of a two particle electrode as function of the status of
charge q. While for the non-phase separating solution c1

1 the classical single
particle potential is obtained, oscillations of the cell potential occur due to
the recursive filling of particle 1 and 2. (Right) For comparison reasons the
unphysical homogenous chemical potential of a single particle is displayed.

of G with respect to θk. Extended studies of this kind, incorporating statistical methods
to treat a huge amount of particles, have been performed by Dreyer et al.[2, 126, 127] in
which the inter-particle phase separation has been identified as the origin the cell potential
hysteresis in LiFePO4 electrodes.

Of course, a two particle system as well as a resolution of N particles explicitly is not
appropriate for larger scale applications of mathematical modeling. To investigate the
non-equilibrium behavior of a many particle electrode, and thus account for the kinetics
of the intercalation reaction, field averaging strategies are used to derive homogenized
(macroscopic) PDEs.

3.4 Porous electrode theory

Porous electrode theory, initially invented by Newman et. al. [51, 55], is frequently used
in modeling porous electrodes of either batteries or fuel cells. Its basic idea is to average
the microscopic field variables in a representative volume element (REV) and treat the
surface reactions as volumetric sink term[128]. In the electrolyte phase electroneutrality
is assumed, which thus allows for a homogenization of the porous medium. Since only
simple diffusion equations are mainly used for the intercalation material, an actual pre-
diction of the open circuit potential (as function of some global status of charge q) fails.
This circumstance is corrected with the introduction of a fit parameter Ufit(q) in order to
reproduce the open circuit potential of the desired cell[106, 129]. However, a self consistent
incorporation of the open circuit potential in porous electrode theory is at its very begging
[130] and this work is also step towards a more rigorous porous electrode theory.

Before actually deriving the homogenized equations, a brief introduction on averaging
field properties is given. The integral mean of a field variable Ψi with respect to its specific
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Figure 3.8.: (Middle) Representative volume element (REV) of the three phase system
electrode, electrolyte and conductivity additive. An idealized ball shaped
particle (left) determines the surface area in contact with another electrode
particle (AS), with electrolyte (AE) and with the additive AAdd. The volume
averaging procedure generates two superimposed continua, the macroscopic
electrolyte and electrode phase (right). Electrochemical reactions occurring
at the electrode/electrolyte interface are translated into volumetric sink terms.
Modified reprint from [44].

volume Element Ωi is

Ψi := 1
Vi

ˆ

Ωi

Ψ(x, t) dV = εi
V

ˆ

Ωi

Ψ(x, t) dV, (3.92)

where V is the volume of the REV Ω, Vi the volume and εi = Vi/V is the porosity of
phase i. If Ω is arbitrary one can shrink the volume element to its volumetric center r,
and use r as macroscopic space coordinate. The partial time derivate, assuming that the
geometry remains constant in time, is

∂Ψi

∂t
= εi

∂Ψi

∂t
. (3.93)

and the averaged gradient of a scalar field is

∇Ψi = ∇Ψi + 1
V

ˆ

∂Ωi

Ψ dA. (3.94)

To account for variations of the macroscopic field variables due to the microscopic flux
from one phase to another, e.g. electrochemical reactions, the flux equations are averaged.
For a general flux j, the averaged divergence is

∇ · j = ∇ · j + 1
V

ˆ

∂Ωi

j · dA. (3.95)

Note the additional flux term through the interface between the two phases.[44]
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3. Mathematical Modeling of Lithium Ion Batteries

3.4.1 Electrolyte phase
This averaging scheme is applied to the transport equations derived in section 3.2 and 3.3,
starting with the electrolyte phase. The flux (or electric current) through the surface ΣA

is essentially determined by the intercalation reactions C+ + e– −−⇀↽−− C (c.f. section 3.3.2).
It is assumed that only cations contribute to the electrochemical reaction, i.e. that there
is no oxidation of the anion10. If the cations are produced with a given source rate r

sC
and

the anions conserved, the fluxes through the interface are

1
V

ˆ

∂ΩE

jC · dA, = 1
V

ˆ

∂ΩE

r
sC

dA (3.96)

1
V

ˆ

Ωi

jA · n dA = 0. (3.97)

Since the additive material is assumed to be chemically non active, reactions only occur
along ∂ΩE with a surface area AE . Assuming that the reaction occurs homogenous along
∂ΩE one is able to write

1
V

ˆ

∂ΩE

n · jC = AE
V
· q
s
C := aE · rsC , (3.98)

where aE is the specific (or reactive) surface area between the electrode and the electrolyte
phase.

Next I assume a strong electroneutrality within the electrolyte and use the results from
section 3.2. For the overall current through the electrolyte, the averaged charge conserva-
tion equation is

0 = ∇ · jF = ∇ · jF + e0zCaE · rs
A
C+ , (3.99)

where the index A refers to the averaging in the domain ΩA. Insertion of equation (3.50)
leads to the generalized ohmic law for the electrolyte,

−div
(
κϑ∇

1
T

+ κF∇Φ̃ + tA · κF
∂ µ̃(cA)
∂ cA

∇cA
)

= e0zCaE · rs
A
C+ . (3.100)

Since the anions are non-reactive they obey an averaged conservation equation

∂cA
∂t

= ∇ · jA = ∇ · jA. (3.101)

With eq. (3.51) the averaged diffusion equation for the anions is obtained

∂ ∂cA
∂ t

= div
(

(γϑ − tA · κϑ) · ∇ 1
T

+DA∇cA
)
. (3.102)

The averaged diffusion coefficient DA is, however, difficult to obtain. An estimation of
averaged diffusion coefficients is a huge topic, and I refer to the literature for an in-depth
investigation, e.g. [55, 128, 131–134].

10However, with the framework of chapter 2 an incorporation of anion oxidation is of course possible.
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3.4. Porous electrode theory

3.4.2 Electrode phase
Intercalation in the porous electrode is now modeled with averaged transport equations
for the electrode regime. Exemplarily the derivation is performed for the porous anode
and the electrode index I is dropped. To treat the particle intercalation spatially resolved,
even on the micro scale, I assume that each electrode particle Ωk

A is a ball B with radius
rA and center xk. The particles are assumed to be in contact with other electrode particles
through the surface SAA and with the electrolyte through SAE = ∂ΩE . As in the previous
section, it is assumed that the electrode consists of N single particles, and one can write
the overall concentration field11

θ̂ = θ̂(x, r) =
N∑
k=1

θk(r, t) · χB(x− xk). (3.103)

In the limit of infinitely many particles, the summation becomes

θ̂(x, r) =
ˆ

R3

θ(x,y).δ(r− y) dV. (3.104)

The field variable θ̂ is dependent on the microscopic space coordinate r and the macro-
scopic coordinate x, and consequently called micro-macro concentration. Since both
scales are resolved, the concentration is a conserved quantity and thus obeys a conservation
equation

∂θ̂

∂t
= −divr · jMic − divx · jMac, (3.105)

where divr denotes the microscopic divergence12 and divx the macroscopic divergence.
The interpretation of this equation is the following:

• The scalar field θ̂ = θ̂(x, r) incorporates microscopic concentration gradients∇rθ̂(x, r)
within a particle and macroscopic variations between particles, ∇xθ̂(x, r).

• The Microscopic flux jMic corresponds to the flow within a particle.

•
´

SAE
jI · dA quantifies the flux of ions into the electrode due to the intercalation

reaction and corresponds thus to the flux boundary condition of jMic at the particle
surface r = rA.

• Ion flux from one electrode particle to a (connected) neighbor is interpreted as macro-
scopic flux, i.e. ∇x · jMac =

´

SAA

jI · dA (Inter-diffusion).

It was already mentioned that the flux of lithium into the ball-shaped particles is as-
sumed to be homogenous along the particle surface. This allows one to write the flux- or
Neumann-boundary condition for the microscopic flux as

nr · jMic = aE · rs
I
C(θ̂, cA,ΦA,ΦE) on r = rA. (3.106)

11χB(r) is the indicator function:

χB(r) =
{

1, if ||r|| < rE

0, else
12Since the microscopic particle is assumed to be ball shaped, the operators divr and ∇r are to be

understood in spherical coordinates.
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3. Mathematical Modeling of Lithium Ion Batteries

The explicit representation of r
s
I
C(θ̂, cA,ΦA,ΦE) is given in section 3.5.

Regarding an inter-particle flux diffusion I just mention here that most modeling ap-
proaches neglected the interdiffusion on the macro scale. In numerical implementations is
is used as a stabilization mechanism [135], however, without any physical meaning. For a
comparison to a full 3-D electrode model this effect in porous electrode theory could be
crucial, since intercalated lithium could of course diffuse in the electrode network. A first
step is hence to assume a macroscopic interdiffusion of classical Fickian type, i.e.

jMac = −DInter∇xθ̂(x, r), (3.107)

where DInter is a measure how well the electrode particles are connected to each other.
Such a connection could either be direct13 or through some filler material14.

The microscopic diffusion ∇r · jMic could be described with the model derived in section
3.3.1, e.g. the Cahn–Hilliard-type equation (3.64). However, incorporation of phase sepa-
ration equations in porous electrode theory are at its very beginning, with a first publica-
tion of T. R. Ferguson and M. Z. Bazant in October 2012 [130]. In contrast, simple micro-
scopic diffusion jMic = DInner∇rθ̂ is assumed in most modeling approaches[3, 55, 97, 101–
103].

Applying thus the model derivations of section 3.3.1 leads to a general balance equation
for the micro-macro concentration θ̂(x, r, t). According to eq. 3.62 and eq. 3.105 one
obtains

∂θ̂(x, r, t)
∂t

= ∇r · L∇rµC(θ̂) +∇x ·DInter∇xθ̂ (3.108)

where µC is the material function of the microscopic electrode phase. Note that L is not
an averaged Onsager coefficient but the microscopic mobility in radial direction. For an
ideal mixture on a lattice one has the material function

µC(θ̂) = ψR + kBT ln
(

θ̂

1− θ̂

)
(3.109)

and consequently

∂θ̂(x, r, t)
∂t

= ∇r ·
(

LkBT
1− θ̂
θ̂
∇rθ̂(x, r, t)

)
+∇x ·DInter∇xθ̂(x, r, t). (3.110)

Applying the basic relationship for the mobility kBT L = Dθ · θ [123], where Dθ denotes a
constant diffusion coefficient, one obtains finally

∂θ̂(x, r, t)
∂t

= ∇r ·
(
Dθ · (1− θ)∇rθ̂(x, r, t)

)
+∇x ·DInter∇xθ̂(x, r, t). (3.111)

One could also interpret Dθ · (1 − θ) as the actual concentration dependent diffusion
coefficient.
Note here that almost all porous electrode models rely on the central work of T. Fuller, M.

13The assumption of ball shape particles is very restrictive in reality and one could fairly consider a bar-bell
shaped particle which would be treated as two particles in the theory. However, since the two particles
are actually connected via the bar-rod, an intercalated lithium diffusion could of course occur.

14Most commonly graphite is used as filler material to actually enhance the electron conductivity in the
matrix. However, graphite itself is also a lithium conductor and thus allows for an interdiffusion.
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Figure 3.9.: Relative error of the open circuit potential regarding the two mixture models
eq. (3.109) and eq. (3.109).

Doyle and J. Newman, “Simulation and Optimization of the Dual Lithium Ion Insertion
Cell”, J. Electrochem. Soc., 1994, 141, 1–9, which states (in my notation) the equation

∂θ̂(x, r, t)
∂t

= ∇r ·
(
Dθ∇rθ̂(x, r, t)

)
. (3.112)

This is in my opinion the origin of the inconsistent incorporation of the open circuit
potential in the Newman model. From a thermodynamic point of view, Newman used a
material function

µNewC = ψR + kBT ln (θ) , (3.113)

which in equilibrium conditions implies an open circuit potential

UNew(θ) ∝ ln (θ) . (3.114)

An ideal mixture on a lattice, however, leads to

U(θ) ∝ ln
(

θ

1− θ

)
. (3.115)

The simple error measure

εNew(θ) :=
∣∣∣∣∣UNew(θ)− U(θ)

UNew(θ)

∣∣∣∣∣ (3.116)

states a 100% error at θ = 0.5 (i.e. 50% status of charge).

In that sense, I carefully state here thermodynamic inconsistency of the Newman model
[3] regarding the open circuit potential. This error is corrected in [3] with the introduc-
tion of an additional degree of freedom Ufit(θ). The parametric representation of Ufit(θ)
is obtained from a successive fitting of the numerical simulations (i.e. solutions of eq.
3.112) to experimental data. Engineering scale approaches of battery modeling and well
established commercial software (e.g. Battery Design Studio[58], Comsol Multiphysics -
Chemical Engineering Toolbox[135]) relay all on the concept of an additional fit parameter
Ufit(θ), in order to reproduce the open circuit potential of a measured cell. A thermody-
namic consists model, however, is able to predict accurately the open circuit potential,
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3. Mathematical Modeling of Lithium Ion Batteries

however, based on a (sophisticated) material function g. I think, with the introduction
of phase separating materials in lithium ion technology (e.g. LiFePO4 [66]), an accurate
predictability of the open circuit potential in porous electrodes is highly desirable. In a
further work I will give a an in-depth investigation of various material functions in porous
electrode theory.

To close the set of equations one has to specify the macroscopic electric potential in
the electrode phase. Similar to the electrolyte phase (c.f. eq. (3.100)), the homogenized
electrode is described with an averaged excess electron density cIe− , I = A,C and the
averaged electrochemical potential of charge ΦI I = A,C (c.f. the definition 3.32). The
concept of a microscopic ion flux within an electrode particle and a macroscopic ion flux
between particle is now transferred to electrons. Quite similar to the electrolyte phase
(c.f. eq. (3.100)) an averaged electrochemical potential of charge ΦI I = A,C (c.f. the
definition 3.32) is introduced, for which an ohmic law is derived.
Let the excess electron density simply be the charge density nFI . An electroneutrality

assumption nFI = 015, which is at least in metals a quite good assumption, leads to balance
equation

−∇ ·
(
κI∇ΦI

)
= −e0aI · rs

I
e− I = A,C. (3.117)

In analogy to above, the volumetric reaction rate r
s
I
e− corresponds to the source or sink of

electrons due to the the averaged surface reaction Li+ + e– −−⇀↽−− Li in electrode I. κI∇ΦI

denotes the macroscopic averaged flux of electrons, i.e.

jIe−,Mac = − 1
e0
κI∇ΦI . (3.118)

Definition 12 (Porous intercalation cell).
A cell, consisting of a porous anode, an electrolyte and a cathode is a domain Ω =
ΩA ∪ ΩE ∪ ΩC , with ΩA ∈ R4, ΩE ∈ R3 and ΩC ∈ R4. In this four dimensional typeface
z ∈ ΩI and ΩI = ΩI × [0, rI ], I = A,C where the macroscopic variable x corresponds to
(z1, z2, z3)T and the microscopic variable r = z4.

The porous anode is described with the following physical properties:

• the averaged (electrochemical) potential ΦA(x)16 of electrons in the metal phase,
obeying a generalized ohmic law eq. (3.117)

• the amount of intercalated lithium θ̂A(x, r), described with the micro-macro concen-
tration field θ̂ obeying a balance eq. (3.105 )

• the averaged (electrochemical) potential of charge ΦE(x), satisfying eq. (3.100),

• and the anion concentration in the electrolyte phase cA(x), obeying the averaged
balance equation (3.102).

15Note that this implies that the excess charge is completely stored as surface charge, i.e. excess electrons.
16Note that in a completely four dimensional typeface ΦA = ΦA(z), the last component is simply rA,

which corresponds to the electrode/electrolyte interface on the microscale, i.e.

ΦA(x) = ΦA(z)
∣∣
z=(x,rA)

(3.119)
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Figure 3.10.: Sketch of a porous cell, consisting of a porous anode ΩA, an electrolyte
domain ΩE , and a porous cathode ΩC .

The porous cathode is described by the same properties, however, with ΩC = ΩC × [0, rC ]
and θ̂C(x, r) as amount of intercalated lithium as well as ΦC(x) for the averaged potential
in the cathode. The electrolyte domain is thus simply described with

• x ∈ ΩE ,

• the averaged (electrochemical) potential of charge ΦE(x)

• and the anion concentration cA(x). 3.102. The complete structure of the model is
summarized in figure 3.10

The incorporation of the heat equation in terms of averaged quantities is straight for-
ward. However, its explicit derivation is not given here and subject to a further publication.

3.5 Reaction models and boundary conditions

The central concept in electrochemical reaction models is the so called overpotential[53].
Consider an electron transfer reaction C+ + e– −−⇀↽−− C in equilibrium at some interface ΣA,
i.e.

µ
a
C+ + µ

a
e− = µ

a
C . (3.120)

With the definition of electrostatic potential of charge in the electrolyte phase one could
write

µC − µC
e0zC

∣∣
a

= Φ̃
∣∣
a
− Φ

∣∣
a

(3.121)
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and thus, since µC
∣∣
a

= 0

µ
a
C+ = e0 ·

(
Φ̃E

∣∣
a
− Φ

∣∣
a

)
. (3.122)

Quite similar one obtains for the electrons

µ
a
e− = −e0 ·

(
Φ̃A

∣∣
a
− Φ

∣∣
a

)
(3.123)

and thus

µ
a
C+ + µ

a
e− = e0 ·

(
Φ̃E

∣∣
a
− Φ̃A

∣∣
a

) != µ
a
C . (3.124)

In terms of the averaged quantity, this equation implies in the porous anode

e0 · (ΦE(x)− ΦA(x)) = µA(θ(x, rA)) x ∈ ΩA. (3.125)

This remarkable equation is the field theoretical extension of equilibrium condition in
a porous electrode. With a simple mixture model of intercalated ions on a lattice (c.f.
section 2.10.2) one obtains

θ(x, rA) = e
− e0
kBT

(
ψR
C
e0
−ΦE(x)−ΦA(x)

)

1 + e
− e0
kBT

(
ψR
C
e0
−ΦE(x)−ΦA(x)

) . (3.126)

This is the porous equilibrium condition in the sense of an equilibrium reaction rate
constant.

Auxiliary calculation 3.46:

µA(θ(x, rA)) = ψR
C + kBT ln

(
θ(x, rA)

1− θ(x, rA)

)
= 1
e0
· (ΦE(x)− ΦA(x))

θ(x, rA) = (1− θ(x, rA)) · e
− e0
kBT

(
ψR
C
e0
−ΦE(x)−ΦA(x)

)

⇒ θ(x, rA) = e
− e0
kBT

(
ψR
C
e0
−ΦE(x)−ΦA(x)

)
1 + e

− e0
kBT

(
ψR
C
e0
−ΦE(x)−ΦA(x)

)

According to the entropy principle for (surface) reactions, a thermodynamic consistent
reaction rate for the simple reaction C+ + e– −−⇀↽−− C is

q
s

= `
s
· (µ

a
C+ + µ

a
e− − µ

a
C) (3.127)

with a positive Onsager coefficient `
s
. The continuity of the chemical potentials, as well as

of electrostatic potential Φ, is a general relationship and holds also in the non-equilibrium
situation. One could thus rewrite the reaction rate as

q
s

= `
s
·
(
e0 ·

(
Φ̃E

∣∣
a
− Φ̃A

∣∣
a

)
− µC

∣∣
a

)
(3.128)
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and in terms of the averaged quantities

q
s

= `
s
·
(
e0 · (ΦE(x)− ΦA(x))− µC(θ(x, rA))

)
. (3.129)

Note that this equation corresponds to the Tafel equation[136].

Experience has, however, shown that an alternative reaction model is more appropriate
to describe chemical reactions close to the equilibrium concentrations.
Assume that only a single reaction occurs and recall the affinity λ of a reaction which
conserves the total amount of species (c.f. page 2.8.2 ff.), i.e.

n∑
α=1

να = 0. (3.130)

The affinity could be written as

λ =
n∑

α=1
ναµα =

n∑
α=1

να ·
(
µRα + n−1p+ kBT ln (cα)

)
(3.131)

=
n∑

α=1
να µ

R
α︸ ︷︷ ︸

=:ln(K	)

+
n∑

α=1
kBT ναln (cα) (3.132)

= ln
(
K	

)
+ kBT ln

( n∏
α=1

cναα

)
(3.133)

= kBT ln

K	 ·
n∏

α=1
cναα︸ ︷︷ ︸

>1

 > 0. (3.134)

Note that µRα > 0, which motivates the transformation. K	 is called equilibrium constant
of the chemical reaction. The actual proof of

K	 ·
n∏

α=1
cναα > 1, (3.135)

which is of course only valid in a neighborhood of the equilibrium conditions, is not given
here. However, the assumption is quite common in physical chemistry, since it leads to
the mass action law[137].

The entropy production due to a single chemical reaction is hence

rs,r = q · λ = kBT q · ln
(
K	 ·

n∏
α=1

cναα

)
(3.136)

and one could choose the reaction rate q proportional to the argument of the ln () term,
since

K	 ·
n∏

α=1
cναα > 1. (3.137)
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To ensure the non-negativity of rs,r it is thus sufficient to choose

q = ` ·
(
K	 ·

n∏
α=1

cναα

)
. (3.138)

Such an reaction model is called mass action law, with a single Onsager coefficient per
reaction.

One could now17 rewrite the chosen reaction rate in terms of chemical potentials, i.e.

q = ` ·
(
K	 ·

n∏
α=1

cναα

)
(3.139)

= ` · exp
{

1
kBT

·
n∑

α=1
ναµα

}
. (3.140)

The detour via the explicit resolution of the chemical potential was used for clarity reasons.
Of course, one could also assume in the very beginning of the reaction model derivation
the condition

n∑
α=1

ναµα > 0, (3.141)

in a surrounding of the equilibrium. Note however, that quite far away from equilibrium
this condition is not necessarily valid. Since the Onsager coefficient ` is non-negative it
could also be rewritten as

` = eαT . (3.142)

Using this approach to model the electrochemical surface reaction C+ + e– −−⇀↽−− C, the
explicit reaction rate

q
s

= e
α

kBT
·(µ

a
C++µ

a
e−−µ

a
C)

(3.143)

is obtained which in terms of the averaged quantities is

q
s

= `
s
· eαT

e0
kBT

·(ΦE(x)−ΦA(x))− αT
kBT

µA(θ̂(x,rA)) (3.144)

= e
αT

e0
kBT

·(ΦE(x)−ΦA(x)−
ψR
C
e0

)−αT ln
(

θ̂(x,rA)
1−θ̂(x,rA)

)
(3.145)

=
(

θ̂(x, rA)
1− θ̂(x, rA)

)αT
· eαT

e0
kBT

·(ΦE(x)−ΦA(x)−
ψR
C
e0

)
. (3.146)

The abbreviation

i0 = e
αT
kBT

ψR
C (3.147)

is called exchange current density[138] and is the equivalent of the equilibrium reaction
constant for electrochemical reactions. Note that the transference number αT is a phe-
nomenological constant, i.e. an Onsager coefficient, and not an equilibrium property.

17Note that due to the assumption K	 ·
∏n
α=1 c

να
α > 1 this not a vicious circle.
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3.6. Summary

The actual (averaged) source or sink of C+, e− and C is (with νC+ = 1, νe− = 1 and
νC = −1) hence

r
s
I
α(θ̂,ΦE ,ΦI) = να · i0

(
θ̂(x, rA)

1− θ̂(x, rA)

)αT
· eαT

e0
kBT

·(ΦE(x)−ΦA(x))
. (3.148)

It couples the averaged balance equations as source term for (ΦI ,ΦE) and as a flux bound-
ary condition for θ̂I , I = A,C. Contributions on the reaction rate due to variations of the
cation concentration in the electrolyte phase are implicitly covered in the electrochemical
potential Φ̃E . This equation is called general Butler–Volmer-equation, as it com-
pletely covers variations of the open circuit potential due to the amount of intercalated
lithium, in contrast to most classical modeling approaches[55, 97, 106].

I already mentioned above that most porous electrode theory models introduce an ad-
ditional parameter Ufit(θ) which is fitted to experimental measurements. This error enters
again in the porous media reaction rate model (i.e. the Butler–Volmer-equation) due
to the continuity of the surface chemical potential. The above results are therefore to be
understood a first step in the direction of a self consistent incorporation of the open circuit
potential in porous electrode theory, by providing a thermodynamic basis of the required
modeling framework.

3.6 Summary
I have reviewed the whole modeling process for a mathematical description of a lithium
ion intercalation battery based on non-equilibrium thermodynamics.
The transport equations for anions, cations and solvent molecules in the electrolyte

phase were derived in their most general form and gradually simplified due to reasonable
physical assumptions. As a consequence, two branches of model approaches for the elec-
trolyte phase were derived. General Poisson–Nernst–Planck type resolve the actual charge
region of an electrode/electrolyte interface and can be used to compute the capacity of
an electrochemical interface. The necessity of PNP equations arises essentially when the
assumption of a constant charge region looses validity. Strong electroneutrality, however,
assumes that no charge separation occurs on scales larger than the Debye length, or equiv-
alently, that space charge density nF = 0, and thus simplifies the whole equation system
(in fact, it also decouples the system).
The thermodynamics framework of chapter 2 was then used further used to model a

single electrode particle, which obeys a regular solution model. Incorporation of energy
contributions from the phase boundary, i.e. concentration gradients, to the overall free
energy led to Cahn–Hilliard-type (diffusion) equations for intercalated lithium in a single
electrode particle. On a two particle example it was shown that bifurcation points in the
thermodynamic equilibrium condition arise if the regular solution parameter γ excesses
some bound. To model realistic electrodes on the 100µm scale, porous electrode theory
was derived with some volume averaging techniques. This method led to homogenized
balance equations for the charge density nF in the electrode and the electrolyte phase
(generalized ohmic law) and to homogenized transport equations for anions in the elec-
trolyte and intercalated cations in the electrode phase. The equation system is closed
with a thermodynamic consistent reaction rate model, i.e. a Butler–Volmer equation for
a porous cell.
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A
Appendix

A.1 Basics tensor calculus
The following conventions for the typeface of scalars, vectors and matrices are made

• tensor of rank 0 are denoted by small latin letters, e.g. a

• tensor of rank 1 are denoted by bold small latin letters, e.g. a

• tensor of rank 2 are denoted by bold capital latin letters e.g. A or bold small greek
letters (e.g. σ).

Since the application of tensor calculus is restricted to the application of non-relativistic
physics, if not stated otherwise, the common space variable is x = (x1, x2, x3)T ∈ R3

and e1 = (1, 0, 0)T, e2 = (0, 1, 0)T and e3 = (0, 0, 1)T denotes the standard or canonical
basis, i.e. x = ∑3

k=1 xkek. Components of vectors and matrices are ak, (k = 1, 2, 3) and
aj,k, (k, j = 1, 2, 3), respectively.
The operator · denotes the matrix multiplication. For A ∈ Rn×m and B ∈ Rn×k the

operation · : Rn×m × Rn×k → Rk×m is defined as

A ·B =
(
ci,j

)
i=1,...,k
j=1,...,m

= C (A.1)

ci,j =
n∑
`=1

a`,i b`,j . (A.2)

Particularly, for vectors aT and b the scalar product is preserved,

aT · b =
3∑

k=1
akbk = 〈a,b〉 (A.3)

The operator × is the cross product, i.e. for a ∈ R3 and b ∈ R3 simply

a × b =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 = −b× a (A.4)

161



A. Appendix

and fulfills the Jacobi identity

a × (b× c) + c× (a × b) + b× (c× a) = 0. (A.5)

Further, for a matrix A ∈ R3×3

(Ab)× (Ac) = det (A) A−T · (b× c). (A.6)

With ⊗ : A × B → A ⊗ B the general tensor product is denoted. For vectors a ∈ R3

and b ∈ R3 it is the dyadic product ⊗ : R3 × R3 → R3×3

a ⊗ b = a · bT = (ajbk)j,k = (b1a, b2a, b3a) =

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 = (b⊗ a)T. (A.7)

The left tight operations for a dyadic and a vector are then

c · (a ⊗ b) = (c · a) b (A.8)
(a ⊗ b) · c = a (b · c). (A.9)

The analogy of a scalar product between two tensors is • : R3×3 × R3×3 → R, called
tensor scalar product, and

A •B =
3∑

k=1

3∑
j=1

ak,j bj,k. (A.10)

In the context of tensor calculus a variety of derivatives occur.

• For a scalar a the linear operator ∇ : C∞(R1)→ C∞(R3) is called gradient of a and

∇a =
(
∂a

∂x1
,
∂a

∂x2
,
∂a

∂x3

)T
=

3∑
k=1

∂ a

∂ xk
ek (A.11)

• For a tensor a of rank 1 the linear operator div : R3 → R is called divergence of a
and

div a =
3∑

k=1

∂ak
∂xk

=
3∑

k=1
〈∂eka, ek〉 , (A.12)

whereas the operator ∇ := ⊗∇ : C∞(R3)→ C∞(R3×3) is

(∇⊗ a)T = ∇a =
(
∂aj
∂xk

)
j,k

=


∂ a1
∂ x1

∂ a1
∂ x2

∂ a1
∂ x3

∂ a2
∂ x1

∂ a2
∂ x2

∂ a2
∂ x3

∂ a3
∂ x1

∂ a3
∂ x2

∂ a3
∂ x3

 = Ja (A.13)

and called gradient of rank 1 tensor, vector gradient or Jacobian. A bold ∇ will be
used to emphasize the tensorial character of the operation.
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A frequently used relationship is

〈∇a1,b〉
〈∇a2,b〉
〈∇a3,b〉

 =



3∑
k=1

∂ a1
∂ xk

bk

3∑
k=1

∂ a2
∂ xk

bk

3∑
k=1

∂ a3
∂ xk

bk


= ∇a · b (A.14)

= 〈a,∇〉b (A.15)

The typeface of equation (A.15) is somehow dangerous, since 〈a,∇〉 is obviously
an operator and thus does not necessarily commute. Nevertheless, this typeface is
sometimes useful.

• For a tensor a of rank 1 (here only a ∈ C∞(R3) is assumed), the linear operator
curl : C∞(R3)→ C∞(R3) is called curl and

curl a :=


∂a3
∂x2
− ∂a2

∂x3
∂a1
∂x2
− ∂a3

∂x1
∂a2
∂x1
− ∂a1

∂x2

 =
3∑

i,j,k=1
εi,j,k∂ejak ei. (A.16)

• For a tensor A of rank 2 the linear operator Div : C∞(R3×3) → C∞(R3) is called
tensor divergence of A = (a1,a2,a3) (i.e. ak are the column vectors of A) and

Div A :=



3∑
k=1

∂ak,1
∂xk

3∑
k=1

∂ak,2
∂xk

3∑
k=1

∂ak,2
∂xk


=

div a1
div a2
div a3

 =
( 3∑
k=1

∂ak,j
∂xk

)
j

. (A.17)

Note that the divergence operates on the columns’s of A. If A is a dyadic product,
this leads then to generalized product product rule for dyads, i.e.

Div (a ⊗ b) =

div (b1a)
div (b2a)
div (b3a)

 =

〈∇b1,a〉〈∇b2,a〉
〈∇b3,a〉

+ (div a) · b (A.18)

= ∇b · a + (div a) · b. (A.19)

Further 〈Div A,b〉 = div (AT · b) holds for arbitrary vector fields b.

Similar to above, the gradient of a second rank tensor∇⊗ : C∞(R3×3)→ C∞(R3×3×3)
is defined as

∇⊗A =
(
∂aj,k
∂x`

)
k,j,`

(A.20)

and a tensor of rank 3. If ever used, it will explicitly be called gradient of rank 2
tensor.

To fully exploit the compact typeface of tensor notations, a set of identities is listed,
without further proof.
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c · (a ⊗ b) = (c · a) b (A.21)
c× (a ⊗ b) = (c× a)⊗ b (A.22)
(a ⊗ b) · c = a (b · c) (A.23)

(a ⊗ b)× c = a ⊗ (b× c) (A.24)
a · (C · b) = (a ⊗ b) •C (A.25)

Div (a ⊗ b) = ∇b · a + (div a) · b (A.26)
div (B · a) = (Div B) · a + B •∇a (A.27)

a × (b× c) = 〈a, c〉b− 〈a,b〉 c =
(
(b⊗ a)− 〈a,b〉 Id

)
· c (A.28)

div ((a ⊗ b) · c) = div (a(b · c)) (A.29)
div ((a ⊗ b) · c) = (div (a ⊗ b)) · c + (a ⊗ b) •∇c (A.30)

div (a(b · c)) = a · ∇
(
b · cT

)
+ (b · c)div a (A.31)

∇(a · b) = ∇(〈a,b〉) = ∇a · b + ∇b · a (A.32)
Div (a · Id) = ∇a (A.33)
tr(a ⊗ b) = 〈a,b〉 (A.34)
tr(∇a) = div a (A.35)

curl (b× a) = Div (a ⊗ b− b⊗ a) (A.36)
= Div (a ⊗ b)−∇a · b− (div b) · a (A.37)
= ∇b · a + (div a) · b−∇a · b− (div b) · a (A.38)

(curl a)× b = Div (b⊗ a − 〈a,b〉 · Id)− a · div b + ∇b · a (A.39)

= Div (b⊗ a − 1
2 〈a,b〉 · Id)− a · div b + 1

2(∇b · a −∇a · b) (A.40)

div (a × b) = (curl a) · bT − (curl b) · aT (A.41)

Theorem 10 (Jacobi’s formula of matrix calculus).
For a differentiable second rank tensor field A = A(s) with A(s) 6= 0 ∀t the following
relationship holds,

d det (A(s))
dt = det (A) tr

(dA
ds A−1

)
. (A.42)

Proof. See [139, p.18]

Lemma 4 (Derivative of a parametrized, inverse Matrix).
For a parametrized Matrix A = A(s) ∈ C∞(Rn×n) with det (A) 6= 0 ∀s ∈ I

dA−1

ds = −A−1dA
ds A−1 (A.43)

Lemma 5 (Chain rule for vector gradients).
Let a :∈ C∞(R3), x ∈ Ω ⊂ R3 and (ξ, t) 7→ (χ(ξ, t), t) be a diffeomorphism. Then

∇ξa(χ(ξ, t)) = ∇xa(x) ·∇ξχ. (A.44)

Lemma 6 (Chain rule for parametrized scalar and vector fields).
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Let a ∈ C∞(R3), x ∈ Ω ⊂ R3 and b ∈ C∞(R3), x ∈ Ω ⊂ R3. Consider a diffeomorphism
(ξ, t) 7→ (χ(ξ, t), t) with

∂ χ(ξ, t)
∂ t

= v′(ξ, t). (A.45)

Then

da(χ(ξ, t))
dt =

〈
∇a,v′

〉
(A.46)

db(χ(ξ, t))
dt = ∇b · v′ (A.47)

A.2 Differential geometry basics
Definition 13 (Coordinate free divergence).
The divergence of an arbitrary vector field a at a fixed point x0 ∈ Ω is defined as

div a(x0) = lim
vol{Ω}→0

1
vol{Ω}

˛

∂Ω

aT(x) · dA(x). (A.48)

Since this definition is independent of a specific parametrization of the surface ∂Ω, it is
called coordinate free. For an identity a(x) = b(ξ) the coordinate free divergence states

divx a(x) = divξ b(ξ). (A.49)

Definition 14 (Coordinate free Curl).
The curl of an arbitrary vector field a at a fixed point x0 ∈ Σ is defined as

〈curl a(x0),nΣ(x0)〉 = lim
area{Σ}→0

1
area{Σ}

˛

∂Σ

aT(x) · ds(x), (A.50)

where nΣ(x0) is the normal vector of the surface in x0. Since this definition is independent
of a specific parametrization of the surface ∂Ω, it is called coordinate free. For an identity
a(x) = b(ξ) the coordinate free divergence states

curlx a(x) = curlξ b(ξ). (A.51)

Theorem 11 (Divergence theorem for rank 1 and 2 tensors).
Let Ω be a bounded domain in R3 and ∂Ω be its regular surface. Further, let a ∈ C∞(R3×1)
and B ∈ C∞(R3×3), then

ˆ

Ω

div a dV =
ˆ

∂Ω

aT · dA (A.52)

ˆ

Ω

Div B dV =
ˆ

∂Ω

BT · dA. (A.53)

Theorem 12 (Kelvin-Stokes theorem).
Let Σ ∈ R3 be a regular surface, bounded by the curve ∂Σ ∈ R3. Further, let f be a
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sufficient smooth vector field, then
ˆ

Σ

(curl f)T · dA =
˛

∂Σ

fT · ds (A.54)

Differential geometry of and vector calculus on Surfaces

Corollary 11 (Tangent space of regular surfaces).
Let Σ be a regular surface and p(u, v), (u, v) ∈ S = [0, 1]2 a (local) parametrization with
p(S) = Σ. The tangent space of Σ in a fixed position x0 = p(u0, v0) is given by

Tx0(Σ) := Jp(u0, v0)(R2) = span
{
∂ p
∂ u

∣∣∣∣
(u0,v0)

,
∂ p
∂ v

∣∣∣∣
(u0,v0)

}
. (A.55)

The set of all tangent spaces

T (Σ) := {(x, τ )|x ∈ Σ, τ ∈ Tx(Σ)} (A.56)

is called tangent bundle. Abbreviating

τ 1(x)
∣∣
x=p(u,v) = ∂ p

∂ u
(A.57)

τ 2(x)
∣∣
x=p(u,v) = ∂ p

∂ v
, (A.58)

τ 1(x) and τ 2(x) form a basis of Tx(Σ) and vector fields τ ∈ Tx(Σ) are called tangent
fields. A unit normal vector of Σ is deduced from

τ 1 × τ 2
||τ 1 × τ 2||

=: n (A.59)

and the space

Nx(Σ) := (Tx(Σ))⊥ = {n ∈ R3|n ⊥ τ for all τ ∈ Tx(Σ)} (A.60)

is called normal space of x on Σ. Elements ν of Nx(Σ) are called normal fields and

N(Σ) = {(x,ν)|x ∈ Σ,ν ∈ Nx(Σ)} (A.61)

is called normal bundle of Σ. The dual space of Tx(Σ) is called cotangent space T ∗x(Σ).

Remark 11 (Tangential and normal decomposition).
Every vector field b(x), x ∈ Σ may be decomposed according to

b = bn(x) n + b
s
(x) (A.62)

where b
s
∈ Tx(Σ) and bn n ∈ Nx(Σ). The field bn ∈ R is called normal component of b

and b
s
∈ R3 is called tangential component of b.

For a tangential field a
s
∈ Tx(Σ) clearly

〈
a
s
,b
〉

=
〈
a
s
,b
s

〉
. (A.63)
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Definition 15 (Differentiability on surfaces).
Let Σ be an embedded surface in R3 with an open subset ΣU ⊂ Σ, i.e. a neighborhood
on the surface, where for all x ∈ ΣU exists a neighborhood U ∈ R3 such that U ∪ Σ ⊂
ΣU . Then a function a : Σ → R (or a vector field b : Σ → R3) is called continuously
differentiable on the surface Σ, if for x ∈ ΣU and τ ∈ Tx(Σ) the directional derivative

Dxa(τ ) =: ∂τa(x) = lim
ε→0

a(x + ετ )− a(x)
ε

(A.64)

exists, and Dxa : Tx(Σ) → R is a linear operator. The surface differentiability of vector
fields on the surface is (equivalently) defined column wise.

Remark 12 (Orthogonal basis of Tx(Σ)).
In general τ 1 and τ 2 are not orthogonal. However, one could clearly deduce the orthonor-
mal basis

t1 = τ 1 (A.65)

t2 = τ 2 −
〈τ 1, τ 2〉
||τ 1||

· τ 1. (A.66)

Since the directional derivative is a linear operator on Tx(Σ) one obtains for a scalar field
a(x), x ∈ Σ

Dxa(τ 1) = Dxa(t1) (A.67)

Dxa(τ 2) = Dxa(t2) + 〈τ 1, τ 2〉
||τ 1||

Dxa(t1). (A.68)

The tupel (t1, t2,n) is then an orthonormal basis of
(
Tx(Σ)× (Tx(Σ))⊥

)
= R3.

Definition 16 (Surface differential operators).
Let Σ ∈ R3 be a (regular) surface and a : Σ → R be a scalar field (and b : Σ → R3 be
vector field) defined on Σ. For arbitrary γ ∈ C∞(R1) with γ(t) = x, t ∈ I ⊂ R, the chain
rules holds (for all curves). Since only the products (∇a)T · γ̇ and (∇b) · γ̇ appear, the
typeface

∇
s
a(x) (A.69)

∇
s

b(x) (A.70)

will be used to emphasize that ∇
s
a(x) and ∇

s
b(x) are indeed a surface properties. How-

ever, ∇
s
a(x) ∈ R⊗ TxΣ while (∇f)T · γ̇ ∈ Σ (and similar for b).

Corollary 12 (Surface differential operators of volumetric fields).
Let a(x) and b(x) be scalar and vector fields with domain x ∈ Ω which are smooth
up to some surface Σ ⊂ Ω. The surface differential operators obey then the following
relationships

• Surface gradient

∇
s
a(x) = ∇a(x)− 〈∇a,n〉 n (A.71)
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• Surface vector gradient (surface jacobian)

∇
s

b(x) = ∇b(x)− (∇b(x) · n)⊗ n (A.72)

• Surface divergence

div
s

b = tr
(
∇
s

b
)

= tr(∇b)− tr((∇b(x) · n)⊗ n) (A.73)

= div b− 〈∇b(x) · n,n〉 (A.74)
= div b− nT · (∇b)T · n (A.75)

• Surface tensor divergence
For C = (c1, c2, c3)

Div
s

C = Div C−
(
nT · (∇ck)T · n

)
k

(A.76)

• Surface curl
The surface curl is a somehow non-intuitive formulation[140] as it operates on scalar
and vector fields. However, it fulfills the properties one expects from a surface curl
(i.e. a surface Helmholtz theorem, a surface ).

curl
s

a = n×∇
s
a (A.77)

Curl
s

b = 〈n, curl b〉 (A.78)

Clearly, the surface gradients are tangential fields, i.e. they obey〈
∇
s
a,n

〉
= 0 (A.79)(

∇
s

b
)
· n = 0. (A.80)

Definition 17 (Mean curvature).
Let n ∈ Nx(Σ) be the normal field of Σ and N(Σ) the corresponding normal bundle. The
property

κ =: −div
s

n (A.81)

is called total or mean curvature of Σ.1

Remark 13 (Useful relationships of surface differential operators).

1While in continuum mechanics the definition κ =: −div
s

n is used, classical differential geometry defines

the mean curvature as κ =: − 1
2 div

s
n.
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A.2. Differential geometry basics

Curl
s

n = 0 (A.82)

div
s

b = (div
s

n)bn + div
s

b
s

= −κbn + div
s

b
s

(A.83)

Curl
s

b = Curl
s

b
s

(A.84)

Curl
s

(n× b) = div
s

b
s

(A.85)

div
s

(n× b) = −Curl
s

b
s

(A.86)

Theorem 13 (Surface Gaussian theorem).
Let a be a sufficient smooth vector field defined in Ω, and let Σ be a surface in Ω. Further,
let Σ be bounded by a curve ∂Σ. With the above definitions and relations of surface
gradients and the surface divergence

ˆ

Σ

div
s

a dA =
ˆ

Σ

(
div
s

a
s

+ anκ
)
dA =

˛

∂Σ

aT · ds. (A.87)

Note, for tangential surface fields a
s
the surface Gaussian theorem reduces to

ˆ

Σ

div
s

a
s
dA =

˛

∂Σ

a
s
T · ds. (A.88)
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