Universitat Ulm
Institut fiir Theoretische Informatik
Leiter: Prof. Dr. Uwe Schoning

Engineering Stochastic Local Search for

the Satisfiability Problem

DISSERTATION

zur Erlangung des Doktorgrades Dr. rer. nat.

der Fakultat fiir Ingenieurwissenschaften und Informatik der
Universitat Ulm

vorgelegt von
Adrian Balint
aus Temeschburg

2013

Amtierende Dekanin:

Gutachter:

Tag der Promotion:

Prof. Dr. Tina Seufert
Prof. Dr. Uwe Schoéning
Prof. Dr. Jacobo Toran
Prof. Dr. Armin Biere

19.12.2013

Summary

This thesis describes new algorithms for the Propositional Satisfiability Problem (SAT),
a fundamental problem in theoretical and practical computer science. Given a formula
in propositional logic (also called Boolean formula) over a set of Boolean variables, the
SAT problem consists of answering the question whether an assignment to the vari-
ables exists, so that the formula evaluates to true. Besides the theoretical relevance
of the SAT problem, many practical applications ranging from circuit verification to
planning and scheduling corroborate the importance of the SAT problem.

There are several well established solving approaches for the SAT problem. Stocha-
stic Local Search (SLS) is one of the most simple and elegant ones. Within this thesis,
we provide different improvements for SLS solvers, and also propose new SLS solving
techniques for the SAT problem. By means of empirical evaluations, we compare our
solving methods with available state-of-the-art methods and show the superiority of
the former. The results of our solvers within different SAT competitions further confirm
their state-of-the-art performance.

First, we propose a new technique to analyze the search behavior of an SLS solver,
which examines parts of the search trajectory of the SLS solver to detect missed
solution. We show that this approach can be used to construct hybrid solvers using
an arbitrary SLS solver as the main solver and a complete solver (e.g., CDCL solver)
as a sub-solver. The novel hybrid approach is implemented in three different solvers:
hybridGM, hybridGP and hybridPP, which we analyze on different types of SAT
problems and show their predominance over their SLS component.

We present a new type of heuristic for SLS solvers based on the concept of probabil-
ity distributions. The new heuristic entails several desirable properties for SLS search
heuristics. By replacing the Novelty+ heuristic in the solver gNovelty+ with our new
heuristic, we create the solver Sparrow, which reaches state-of-the-art performance on
a wide range of randomly generated SAT problems.

To improve the applicability of SLS solvers on structured problems, we analyze

iii

different preprocessing techniques in combination with the solver Sparrow. We are
able to show that the performance of SLS solvers can be significantly improved on
structured problems, when using appropriate preprocessing techniques.

Within our final study, we propose and analyze a solver based solely on probability
distributions, which is the result of a dismantling process of the Sparrow solver. Our
new solver, named probSAT, allows a detailed analysis of the role of make and break
for SLS solvers. Within comprehensive evaluations, we analyze probSAT on different
SAT problems, and show that it establishes new state-of-the-art standards.

Finally we present an advanced framework for the empirical evaluation of algo-
rithms, named EDACC, which provides a plethora of functionalities for the design,
execution and analysis of experiments with all kind of algorithms.

iv

Zusammenfassung

Diese Arbeit beschreibt neue Algorithmen fiir das Erfiillbarkeitsproblem der Aussagen-
logik (SAT), welches ein fundamentales Problem der theoretischen und angewandten
Informatik ist. Gegeben sei eine Formel der Aussagenlogik (auch Boolesche Formel
genannt) iiber eine Menge von Booleschen Variablen. Das SAT Problem besteht darin,
zu beantworten, ob es eine Belegung fiir die Variablen gibt, sodass die Formel wahr
ist. Neben seiner theoretischen Bedeutung hat das SAT Problem viele praktische An-
wendungen, die von der Verifikation von digitalen Schaltkreisen bis in die Bereiche der
Planung reichen.

Es gibt einige bewéhrte Losungsansétze fiir das SAT Problem. Die auf Stochastis-
cher Lokaler Suche (SLS) basierenden Methoden gehoren zu den einfachsten und ele-
gantesten. Innerhalb dieser Arbeit werden sowohl Verbesserungsansétze fiir bereits
bekannte SLS Algorithmen als auch neu entwickelte SLS Algorithmen vorgestellt.
Mithilfe von empirischen Evaluierungen werden diese Methoden und Algorithmen mit
den aktuell besten verglichen und dabei wird gezeigt, dass die hier vorgestellten bessere
Ergebnisse erziehlen. Die Uberlegenheit wird auch durch die Ergebnisse in verschiede-
nen Wettbewerben (SAT Competitions) weiter untermauert.

Zunéachst wird eine neue Methode vorgestellt, mit der die Qualitdt der Suche von
SLS Algorithmen analysiert werden kann. Dieser Ansatz wird anschlieBend verwendet,
um neue hybride Algorithmen zu entwickeln, die aus einem SLS Algorithmus und einem
vollstdndigen Algorithmus (z.B. CDCL Algorithmus) bestehen. Drei neue auf diesem
Ansatz basierende hybride Algorithmen: hybridGM, hybridGP und hybridPP werden
auf verschiedenen SAT Problemen getestet. Dabei kann gezeigt werden, dass die hy-
briden Versionen in den meisten Fallen der SLS-Komponente alleine weit tiberlegen
sind.

Des weiteren wird eine neue Heuristik fiir SLS Algorithmen vorgestellt, die auf
Wahrscheinlichkeitsverteilungen basiert und einige Vorteile besitzt. Die neue Heuris-
tik wird im Algorithmus Sparrow eingesetzt, der auf dem gNovelty+ Algorithmus

basiert. Durch empirische Evaluierungen wird gezeigt, dass die neue Heuristik fiir
zufillig erzeugte SAT Probleme herausragende Performanz besitzt.

Um die Anwendbarkeit von Sparrow auch auf strukturierten SAT Problemen zu
verbessern, werden als néachstes verschiedene Praprozessortechniken untersucht. Es
kann gezeigt werden, dass die Anwendung von geeigneten Praprozessormethoden und
ihre Parametrisierungen die Performanz von SLS Algorithmen auf strukturierten Prob-
lemen signifikant verbessert.

Motiviert von den guten Ergebnissen von Sparrow wird eine neue Klasse von SLS
Algorithmen namens probSAT entwickelt und vorgestellt, die nur auf Wahrschein-
lichkeitsverteilungen basiert. Mit Hilfe von probSAT kann auch die Rolle von make
und break in SLS Algorithmen detailliert untersucht werden. Mit Hilfe von empirischen
Evaluierungen kann gezeigt werden, dass probSAT auf zuféllig erzeugten SAT Prob-
lemen neue Performanzmafstébe setzt.

Im letzten Teil dieser Arbeit wird EDACC vorgestellt, ein System fiir die em-
pirische Evaluierung von Algorithmen. EDACC bietet eine Vielzahl von Funktion-
alitdten fiir den Entwurf, die Ausfiihrung und die Analyse von Experimenten mit
Algorithmen.

vi

Table of Contents

Summary ili
Zusammenfassung v
Table of Contents vii
Acknowledgments xi
1 Preface 1
1.1 Motivation e 1
1.2 Goals and Contributions of this Thesis 1
1.3 Statement of Collaborations 3

2 Background 5
2.1 The Satisfiability Problem 0. 5
2.1.1 Definitions and Notations 6

2.2 Types of SAT Instances 8
2.2.1 Application Problems 9

2.2.2 Hard Combinatorial Problems 11

2.2.3 Randomly Generated Problems 12

2.3 SAT Solving Techniques 18
2.3.1 Complete Methods 20

2.3.2 Incomplete Methods 21

3 Stochastic Local Search 23
3.1 General Framework 23
3.2 Uniform and Focused Random Walk 25

vii

TABLE OF CONTENTS

viii

3.3 The WalkSAT Architecture
3.4 The GSAT Architecture
3.5 The DLS Architecture
3.6 gNovelty+ o

A Novel Approach to combine an SLS and a DPLL Solver for SAT

4.1 Introduction Lo
4.2 Search Analysis

4.2.1 Search Space Partitions

4.2.2 Construction and Use of Search Space Partitions
4.3 hybridGM e
4.4 Empirical Evaluation
4.5 Extended Analysis Lo
4.6 Related Work oo
4.7 Conclusion and Future Work

Improving SLS for SAT with a New Probability Distribution
5.1 Introduction

5.2 SParrow e
5.3 Empirical Evaluationo oo
5.3.1 SC09 Random 3-SAT
5.3.2 SC11 Random SAT
5.3.3 SC12 Random SAT
5.4 Related Work e
5.5 Conclusion and Future Work

Analyzing the Utility of Preprocessing for SLS Solvers

6.1 Introduction L L
6.2 Preprocessing Utilityo oo
6.3 Modern Preprocessing Techniques
6.4 Preprocessing Techniques Analysis for SLS Solvers
6.4.1 Single PPT Analysis
6.4.2 Combined PPTs Analysis
6.4.3 Extended Single PPT Analysis
6.4.4 Applicability to other SLS Solvers
6.5 CP34Sparrow Lo
6.6 SparrowToRiss
6.7 Related Work
6.8 Conclusion and Future Work

31
31
32
33
34
35
37
39
45
47

49
49
50
52
54
56
58
59
60

TABLE OF CONTENTS

7 Choosing Probability Distributions for SLS Solvers 77
7.1 Introduction. 77
7.2 The New Algorithm Paradigm 79

7.2.1 An Exponential Function 80
7.2.2 A Polynomial Function 82
7.2.3 Comparison of the functions 83
7.3 Experimental Analysis of the Functions 84
7.4 Empirical Evaluation 000 o 86
7.4.1 Random SAT 89
7.4.2 SC11 Random SAT 90
7.4.3 SCI11 Crafted SAT 91
7.4.4 SC12 Random SAT 92
7.4.5 SC13 Random SAT, 92
7.5 Comparison with WalkSAT 95
7.6 Implementation Variations 97
7.7 Conclusion and Future Work 99

8 EDACC 101
8.1 Introduction 101
8.2 EDACC - Overview of the Components 103
83 JobServer 105
8.4 Parallel Automated Algorithm Configuration 106

8.4.1 The Algorithm Configuration Problem 106
8.4.2 Parameter Graph 107
8.4.3 EDACCAPI 107
8.4.4 EDACC Configurator Framework 108
85 Web Frontend oo 109
8.5.1 Analysis and Statistical Tools 109
8.5.2 Competition Mode 112
8.6 Implementation Details 115
8.7 Related Work 116
8.8 Conclusion L 116

9 Conclusion and Future Work 119

Technical Specification of the Execution Environment 123

Acronyms 125

Bibliography 127

ix

Acknowledgments

I am very grateful to Prof. Dr. Uwe Schoning, for awaking my interest in the satisfi-
ability problem already during my Diploma courses and for supporting my projects.
Special thanks goes also to Prof. Dr. Armin Biere, for sharing his deep knowledge
about SAT solving with me and giving me hints on how to write more efficient SAT
solvers.

I thank my collaborators for sharing with me their interest in the SAT problem and in
the experimental evaluation and analysis of algorithms. Thanks goes also to my former
students. Without their coding skills and engagement, the EDACC system would still
be a bunch of framework sketches in my note pad.

This work was partially supported through grants to Prof. Dr. Uwe Schoning by
the German Research Foundation (DFG grant Scho302/9-1). I thank the Baden-
Wiirttemberg Grid (bwGRiD) project for providing the computational resources for
performing the experiments within this thesis. Here I would like to specially thank the
local coordinator in Ulm of the bwGRiD project, Christian Mosch, for his help.

I am very grateful to my parents, especially my father for awaking in me the interests
in computer science and mathematics. Without our first 286 based computer, which he
had built from spare parts, I would probably never be interested in computer science.

I would like to express my endless gratitude to my wife Elisabeth for being so patient
during my Ph.D. time, taking care of the kids when I was working towards the next
paper deadline, and for encouraging and supporting me whenever possible. Last but
not least, I thank my three boys: Johannes, Christian and Jakob for prolongating my
Ph.D. time; it was a good time.

xi

1 Preface

1.1 Motivation

The Propositional Satisfiability Problem (SAT) aroused my interest during a course
on Boolean functions held by Uwe Schéning. The simple formulation of the problem
and at the same time its complexity is probably its most fascinating factor. The SAT
problem has many practical and theoretical applications in the fields of computer sci-
ence and electronics, making the problem even more interesting to solve. Advancing
solving methods for the SAT problem also yields improvements for solving other re-
lated problems. Nowadays, it is often the case that researchers do not directly solve a
combinatorial problem by writing a dedicated solver, but encode it to a SAT problem
and then solve it with modern SAT solvers.

Stochastic Local Search (SLS) solvers, the key topic of this thesis, are probably
the most lightweight and elegant solvers for the SAT problem. Their simple structure
allows even a rigorous analysis of their run time, which was performed first in [Sch99].
Even though the complexity of SLS solvers can increase with the addition of different
heuristics, overall they are all based on the very simple principle of local search. SLS
solvers are the best known solving method for several classes of SAT problems like
the uniform random class and several hard combinatorial problem classes like the
computation of Van der Waerden numbers.

1.2 Goals and Contributions of this Thesis

The major goal of this thesis is to find better (practical) ways to solve different types
of SAT problems by designing new state-of-the-art local search solvers. A deeper un-
derstanding of the inner working of SLS solvers and the development of new analysis
methods is also an objective of this thesis. Equipped with a better comprehension of

1 Preface

the solving techniques we hope to be also able to design more simple and efficient SLS
solvers, being able to better understand the way SLS solvers work. Furthermore we
want to advance the applicability of SLS solvers on structured problems, which is still
a challenging task today, as it was ten years before [KS03, Challenge 6].

We have gradually reached our goals by starting with the analysis of an existing
state-of-the-art SLS solver and modifying it step by step according to our needs. In
more detail the contributions of this thesis are as follows:

1.

Starting with the state-of-the-art solver gNovelty+, we have developed a new
analysis method for the intensification of the search of local search solvers. By
constructing partial assignments from the search trajectory of the SLS solver,
we are able to check with a complete solver whether the SLS solver has missed
near solutions during search. Our analysis approach can be easily transformed
into an incomplete hybrid solver that is built on top of an SLS solver and uses a
complete solver to verify the partial assignments. We can show that such hybrid
solvers are in most cases faster than their single SLS component (Chapter 4).

By replacing the Novelty heuristic in the gNovelty+ solver with a probability
based decision heuristic, a new SLS solver named Sparrow was developed, which
reached state-of-the-art performance on uniform randomly generated problems
(Chapter 5).

By analyzing a wide range of preprocessing techniques in combination with SLS
solvers, we were able to boost the performance of the Sparrow solver and of SLS
solvers in general, on satisfiable hard combinatorial problems. We were also able
to show that appropriate preprocessing techniques for SLS solvers are different
from the ones used for complete solvers (Chapter 6).

Starting with the original Sparrow solver, we have gradually dismantled it by
removing heuristics that were not strictly necessary to reach good performance.
The outcome of this process is a very simple solver named probSAT that is based
solely on probability distributions. probSAT sets new state-of-the-art standards
for solving uniform random problems. With the help of automatic configuration
methods and the probSAT solver we were able to show for the first time the
different roles of the make and break values within SLS heuristics (Chapter 7).

. As all our work is based on experimental analysis, we have also developed an

advanced experimentation framework named EDACC that can accelerate the ex-
ecution of experiments by using parallel systems like clusters or grids. EDACC
was extended with a multitude of analysis tools that were used throughout this
thesis and leveraged our findings. Supporting also the organization of compe-
titions, EDACC was used for the SAT competitive events in 2012 and 2013
(Chapter 8).

1.3 Statement of Collaborations

All developed solvers within this thesis have been submitted to the SAT compe-
titions where they reached state-of-the-art performance, always being placed among
the best three top solvers within their category.

1.3 Statement of Collaborations

Most of the work presented in this dissertation is the result of collaboration with
outstanding researchers or students that I have supervised in practical courses or in
bachelor and master thesis. Many of the results presented in this work would probably
not exist without their contributions for which I am very grateful.

The work presented in Chapter 4 is mainly based on work published in [BHG09]
which was a collaboration with Oliver Gableske and Michael Henn. Oliver who was
at that time supervised by me studied the construction of search space partitions
and their possible usage in hybrid solvers in his Diploma thesis. He analyzed differ-
ent construction methods and their usage. The construction described in Chapter 4
and published in [BHGO09] is my main contribution and was partially implemented
by Michael Henn in a practical course that he was doing in our department. The
hybridGM solver was the result of further adaptation and tuning. The new solvers
hybridGP and hybridPP are completely reimplemented from scratch.

Chapter 5 is mainly based on work published in [BF10] and is the result of joint
work with Andreas Frohlich who at that time analyzed local search solvers for his
Diploma thesis under my supervision. Enhancing the flip heuristic of the solver gNov-
elty+ with a probability based decision heuristic was proposed by Andreas after a
series of intense discussion about the inner workings of SLS solvers in general. The op-
timization of Sparrow’s parameters was performed in collaboration with Holger Hoos
and Dave Tompkins. The obtained parameter settings were published in [TBH11] and
in [BFTH11] and are the basis of the results presented in Sections 5.3.2 and 5.3.3.

Chapter 6 is based on work published in [BM13a] which was done in collabora-
tion with Norbert Manthey. Norbert implemented the preprocessor and described the
techniques, while I designed and performed the experiments.

Chapter 7 is based on joint work with Uwe Schéning published in [BS12] and in
[BS13].

The work presented in Chapter 8 is the result of a series of collaborations with
Daniel Diepold, Simon Gerber, Daniel Gall, Robert Retz and Gregor Kapler. While
I designed the main parts of Experiment Design and Administration for Computer
Cluster (EDACC), most of the implementations of EDACC was part of their practical
courses, their bachelor or master theses.

The work published in [TBH11] is joint work with Dave Tompkins and Holger Hoos.
This work is not directly included in this thesis. Still, many insights gained within this
work were used to transform the Sparrow solver into the much more simple probSAT.

1 Preface

Several other SAT competition related publications [BBD*12, BBHJ13] which
are partially included in this thesis have been published in collaboration with Matti
Jarvisalo, Anton Belov, Marijn Heule and Carsten Sinz.

2 Background

In this chapter we will briefly introduce the SAT problem. After presenting a brief
history of the problem, we will describe the most common sources of SAT instances
used for the evaluation of so called “SAT solvers”. Randomly generated problems will
be described in more detail. A brief overview of the most common solving techniques
used in modern SAT solvers ends this chapter.

2.1 The Satisfiability Problem

Given a formula in propositional logic (also called Boolean formula) over a set of
Boolean variables, the SAT problem consists in answering the question whether an
assignment to the variables exists, such that the formula evaluates to true. This for-
mulation of the problem is also known as the decision version because the possible
answers are only “yes” or “no”. The model finding formulation additionally requires
to provide an assignment to the variables in case the formula is satisfiable. Within this
thesis we concentrate on the model finding formulation.

The SAT problem was the first problem that was shown to be NP-complete by
Steven Cook in 1971 [Coo71]. This means that a solution can be verified very quickly
(in polynomial time) and that every other problem from the class NP is reducible to
SAT in polynomial time.

As long as P # NP, we do not expect to find polynomial bounded algorithms to
solve the SAT problem (though there are special cases of the SAT problem that can
be solved in polynomial time [AGRY09]). The N'P-completeness property entails that
every problem from the complexity class NP can be efficiently (polynomially) trans-
formed into a SAT problem. This property was often used in the field of computational
complexity theory to prove that other problems like the vertex cover problem or the
traveling salesman problem are also N'P-complete. As a consequence there are many
known transformations from and to SAT.

2 Background

Even if the SAT problem is a hard problem, and it might look hopeless to try to
solve it, the algorithms to solve the SAT problem, also called “SAT solvers”, underwent
a huge progress in the last decades. Formulas that where thought unreachable ten years
ago, can now be solved within seconds by modern SAT solvers. A major driving force
of this progress can be accounted to the International SAT Competition (SC) !, which
is organized biennially since 2002. The SAT Competition has a strong engineering
effect on the SAT community: ideas that are presented at conferences or in journals
(mostly in a more theoretical manner) are implemented in a SAT solver. If the ideas
have practical relevance (i.e. they improve the performance of a SAT solver), then
they are probably going to be also integrated in other solvers. As a result modern SAT
solvers can be seen as a clever community engineered collection of solving techniques
that together result in a powerful piece of software able to tackle down even hard SAT
problems with millions of variables.

The N'P-completeness property is based on a worst case analysis, meaning that we
do not know how hard the problem is to solve in a general case, but only in the worst
case. It might be even possible that most of the problems are easy to solve, except for
some special cases. This seems to be the case for the randomly generated colorability
problems [Tur88|.

Besides the theoretical importance, the SAT problem occurs in many practical
applications like hardware and software verification, and also in fields like planning
and scheduling. Even in the field of cryptanalysis, it was shown [EPV08] that some
stream ciphers can be broken with the help of SAT solvers. The powerfulness of SAT
solvers together with the possibility to encode many types of problems as SAT problems
led to the usage of SAT solvers in many domains where hard combinatorial problems
have to be solved.

2.1.1 Definitions and Notations

Formally, we denote Boolean formulas with F,G, H. Variables are represented with
T1,T2,...,Ty, where n denotes the number of variables of a formula F'. The domain of
the variables is the set of Boolean values: {false, true} which we can also represent by
the binary values {0,1}. The family of SAT problems has no restriction on the type
of logical operators that are used. A certain Boolean formula is also called instance
(because it is an instantiation of the SAT problem). An example of a SAT formula is:

F = (1'1 V $2) A (.lel — (xg A $4)) A (1‘2 — (Tg/\ﬂ)) (2.1)

Without loss of generality we can restrict the SAT problem to a special form,
the so called Conjunctive Normal Form (CNF), which is the most common format
used by SAT solvers and for benchmarks problems. From now on, when we refer to

Laww. satcompetition.org

www.satcompetition.org

2.1 The Satisfiability Problem

SAT, we actually mean CNF-SAT. A CNF formula is represented as a conjunction of
disjunctions (i.e. AND of ORs). An example for a CNF formula is:

G = (x1Vw2\/x3)/\(x1Vac2 \/E)/\(ﬂ\/m\/m)/\(ml \/Tg\/wg) (2.2)

Within a CNF formula, the conjunctive elements are called clauses and are de-
noted with A, B,C. An element of a clause is called a literal and is a variable or its
complement. A clause that contains only one single literal is called unit clause. If the
length of all clauses within a formula is bounded by some number k, then the formula
is called a k-CNF formula or k-SAT within this thesis.

A CNF formula F' can also be represented as a set of clauses and a clause as a set
of literals. The formula G from 2.2 has the following set representation:

G = {{z1, 72,23}, {x1, 22, T3}, {771, 22, ¥3}, {21, T2, 23} } (2.3)

The mathematical definition of a set does not allow duplicate elements within a set.
This property is also valid in the set representation of a CNF formula, as duplicate
literals can be eliminated from a clause, and duplicate clauses can be eliminated from
a formula without changing the satisfiability property of the formula. The size of a
problem can be measured in terms of variables, which is denoted by |F|, = n, or in
terms of clauses, which is denoted as |F|. = m.

When a SAT solver tries to solve a problem, it works with partial or complete as-
signments. Assignments are denoted with «, 8. A complete assignment « for a formula
F assigns to every variable from F' the values 0 or 1. A partial assignment, in turn,
can assign values only to a subset of the variables from F'. An example of a complete
assignment for the formula G from 2.3 is: @ = {1 = 1,29 = 1,23 = 0}, which would
also satisfy the formula. A partial assignment is § = {x; = 0,29 = 1}.

There are also other ways to represent assignments. One possibility is to specify
the set of literals that have to be true (i.e. set to 1). The assignment «, mentioned
before, can be represented as: o = {x1,x9,73}. If we assume that the ordering of
the variables is well defined, then we can also represent a complete assignment as a
binary vector. Assignment a from above is represented then by o = 110. In case of
partial assignments, we can introduce a special character %, which denotes variables
not set to 0 or 1. Assignment (3 is represented by the vector 8 = 01x. The application
of an assignment « on a formula F' is denoted with F'|o. When applying a complete
assignment to a formula, the result is 1 or 0, depending if the assignment satisfies F' or
not. On the other side, the application of a partial assignment results in a simplified
formula, i.e. Fla = F’. Of course there can be partial assignments that already render
a formula to be 0 or 1. The application of an (unsatisfying) assignment « to the formula
F splits the set of clauses into two sets: the set of unsatisfied clauses and the set of
satisfied clauses.

2 Background

The application of an assignment on a formula follows the rules of Boolean logic.
If we set a literal within a clause to be true (i.e. 1), then the clause is satisfied and can
be removed from the formula. If the formula is empty (i.e. no more clauses to satisfy),
then the formula is satisfied. If the literal is set to false, then we can remove the literal
from the clause. If, as a result, the clause is empty, then the clause can no longer be
satisfied any more and the simplified formula is unsatisfiable.

Another important concept related to the structure of SAT problems is the neigh-
borhood of a variable z;, which is denoted by N(z;), and is defined as the set of
variables that occur together with x; in at least one clause.

Though all solvers presented in this thesis do not make direct use of the resolution
calculus, several extensions and simplifications make use of it. Given two clauses A
and B, where we have [€ A and -l € B the resolution step notated with A ® B
produces a resolvent clause C' = (A\ {l}) U (B \ ={l}).

The resolution operator can be overloaded by allowing a resolution between two
sets of clauses S7 and S, where all clauses from the former contain a literal [and all
clauses from the latter contain I. In this case, the set of resolvents S is defined as:

S:S1®52:{A®B‘A651,BESQ}

2.2 Types of SAT Instances

Since SAT solving is a practical domain, we need instances of the SAT problem to test
different algorithmic approaches. SAT instances have a standardized format, which is
also referred as the The Center for Discrete Mathematics and Theoretical Computer
Science (DIMACS) format, which was first introduced in [DIM93]. SAT instances come
from very different application domains and can have different generation methods.
They can be loosely categorized in three main categories: Application, Hard Combina-
torial and Random. This categorization was established by the organizers of the SAT
Competition over the years, but there are controversies whether some instances should
belong to one class or to the other. The categorization depends also on the encoding of
the problem from its original specification language to CNF. Problems also tend to be
categorized by the type of solvers by which they are solved best (i.e. if a solver which is
strong for application problems can solve the problem better than a solver for crafted
problems, most probably the problem is categorized as an application problem).

Instance Properties There is a huge amount of properties (also called features in the
AT community) that can be defined and computed for SAT problems. SAT features
are essential in the classification of SAT problems and in the prediction of the run
time of SAT solvers on these. To our knowledge the most recent and extended list of
SAT properties can be found in [HXHLB12, p. 19]. We are listing and explaining only

2.2 Types of SAT Instances

a few of them that are simple to understand and will be often referred in this thesis.
1. n - number of variables

2. m - number of clauses

3. 7 - clause to variable ratio r = 2 (also called density?)
4. |F|; - number of clauses of length [(e.g., |F|2 denotes the number of binary
clauses, |F'|3 denotes the number of ternary clauses)

SAT lInstance Visualization The combinatorial properties of SAT problems can
sometimes be better understood by visualizing the problem or even visualizing the
solving process of the solver on the problem as shown in [SD05].

The two best known visualization types are the graph representation of the variable
graph and the clause graph. In the clause graph, the nodes of a graph are represented
by the clauses. Two vertices ¢; and ¢; are connected by an edge if they contain the
same variable (or literal). In the variable graph representation, every variable x is
represented by a vertex x. Two vertices x; and x; are connected by an edge, if the
corresponding variables occur together in at least one clause. Since the number of
clauses is in most cases considerably higher than the number of variables, the variable
graph representation yields more compact visualizations. The neighborhood N(z;) of
a variable x; in the variable graph refers to the set of adjacent vertices of x;.

2.2.1 Application Problems

Application instances normally come from fields where SAT solvers are “applied” to
solve different combinatorial problems that are transformed to SAT problems. Two
predominant classes of instances come from the field of hardware and software veri-
fication. Another class of problems comes from the domain of crypt-analysis, where
different types of stream- and block-ciphers breaking problems are encoded as SAT
problems. Additionally, the application domain also contains instances coming from
bio-informatics, strip packing and diagnosis of systems. For an overview of a classifi-
cation of problems the reader may refer to [BBD"12, p. 70].

Compared to other classes of instances, the application problems are generally very
large in terms of the number of variables and the number of clauses. For example, the
largest instance? used in one of the latest competitive events, the SC12%, had over
13 million variables and more than 53 million clauses. The uncompressed size of the

2In the graph representation of SAT problems, the clause to variable ratio is highly correlated with
the density of the variable graph

3Name of instance: esawn_uw3.debugged.cnf. Details can be found at http://edacc2.informatik.
uni-ulm.de/SATChallenge2012/instance/4833

4http: //baldur.iti.kit.edu/SAT-Challenge-2012/index.html

http://edacc2.informatik.uni-ulm.de/SATChallenge2012/instance/4833
http://edacc2.informatik.uni-ulm.de/SATChallenge2012/instance/4833
http://baldur.iti.kit.edu/SAT-Challenge-2012/index.html

2 Background

Figure 2.1: The variable graph representation of an application instance with 596 vari-
ables and 2780 clauses, which encodes a small scale variant of the block
cipher AES. Nodes represent the variables. Two variables are connected by
an edge if they occur in the same clause. The color of the nodes encodes
the degree of the node (blue=low degree to red=high degree).

instances was 1.4 Gigabyte. Regardless of the size of the instance, almost half of the
solvers participating at the competition solved the problem in less than 900 seconds.
The application problems are known to be combinatorially very sparse, meaning that
the number of decisions that a solver needs to solve the problem is relatively small
when compared to the combinatorial search space that the problem could span. The
number of binary clauses (clauses with only two literals) and the number of variables
having few occurrences within an instance is relatively large.

Figure 2.1 shows a variable graph® for a small application instance® coming from

the crypt-analysis domain [BBDT12, p. 74]. The color of the nodes and the edges rep-
resents the degree of the node and the degree of connected nodes, respectively (varying
from blue to red). As we can see from the graph, the instance exhibits symmetrical
structures and different patterns can be recognized.

®The visualizations have been created with Graphinsight http://www.graphinsight.com/.
5Name of the instance: aes_64_1_keyfind_2.cnf. Details can be found at: http://edacc2.informatik.
uni-ulm.de/SATChallenge2012/instance/4352

10

http://www.graphinsight.com/
http://edacc2.informatik.uni-ulm.de/SATChallenge2012/instance/4352
http://edacc2.informatik.uni-ulm.de/SATChallenge2012/instance/4352

2.2 Types of SAT Instances

Figure 2.2: The variable graph representation of a hard combinatorial instance used in
SC12 with 744 variables and 2464 clauses. See Figure 2.1 for interpretation
help.

2.2.2 Hard Combinatorial Problems

The hard combinatorial problems are also called crafted, because they were “crafted”
to be very difficult for certain types of solvers. Which of the names matches better is
difficult to decide; probably both of them have their justification.

This class can be divided into two major sets. The first one contains the SAT
encoded problems of different combinatorial games like Sudoku, Hidoku, parity games
and pebbling games. The second set contains hard combinatorial mathematical prob-
lems like factorization, quasigroup, Ramsey cube, pigeon hole principle or the compu-
tation of Van der Waerden numbers. Problems that are thought to be extremely hard
to solve, not because of their size but due to their combinatorial properties, are also
classified within this class. A remarkable example is an instance’ with only 95 variables
that was not solved by any solver in the SC12. This instance was generated in 2003,
and could be solved only recently by the parallel SAT solver treengeling [BBHJ13, p.
51]. This type of instance can be seen as a gentle reminder that we are dealing with
a hard N'P-complete problem. Figure 2.2 shows the variable graph representation of
a hard combinatorial problem® that encodes the question whether there exists a ma-
trix multiplication involving only six multiplicative terms [LJPJ02]. This instance also
exhibits obvious structural properties.

"Name of instance: SGI_30_70-19_80_8-log.shuffled-as.sat03-143.cnf. Details can be found at http:
//edacc2.informatik.uni-ulm.de/SATChallenge2012/instance/279

8Name of the instance: contest02-Mat26.sat05-457.reshuffled-07.cnf. Details can be found at: http:
//edacc2.informatik.uni-ulm.de/SATChallenge2012/instance/1621

11

http://edacc2.informatik.uni-ulm.de/SATChallenge2012/instance/279
http://edacc2.informatik.uni-ulm.de/SATChallenge2012/instance/279
http://edacc2.informatik.uni-ulm.de/SATChallenge2012/instance/1621
http://edacc2.informatik.uni-ulm.de/SATChallenge2012/instance/1621

2 Background

2.2.3 Randomly Generated Problems

From a historical point of view, this class of problems is probably the oldest one. At the
beginning of the SAT solving area it was very difficult to find appropriate benchmarks
to test a SAT solver, forcing researchers to work with randomly generated problems
tha follow different generation schemes. Since the collection of benchmarks like the
ones in the before mentioned two classes was so successful in the last decade, the class
of randomly generated problems lost importance. Nevertheless, it is one of the most
challenging set of problems.

We are going to describe the class of randomly generated problems in more detail,
as it is the class of problems that are solved best by the solving techniques presented
in this thesis. The most prominent and also most studied class of randomly generated
problems are the uniform randomly generated ones. The algorithm that generates this
type of problems is listed in Algorithm 1.

Algorithm 1: Uniform Random k-SAT Generator
Input : n=number of variables, m=number of clauses, k=clause length
Output: uniform random k-SAT instance

1 F=0;

2 1=0;

3 while ¢ <m do

4 C;=0;

5 j=0;

6 while j < k£ do

7 v = variable index chosen uniformly at random from {1...n};
8 [= literal chosen uniformly at random from {v,v};
9 if (1¢ C;))AND(l ¢ C;) then
10 Ci=C; Vi
11 Lj—H—;
12 if (C; ¢ F) then
13 F=FACj
14 1+t

15 return F

The input of the generator is the number of variables n, the number of clauses
m and the clause length k. Note that the generator is only able to generate uniform
k-CNF problems (i.e. all clauses have the same length k). In the main loop starting
at line 3, clauses are being iteratively generated by selecting uniformly at random k
distinct literals (this is guaranteed by the condition in line 9). To assure that exactly

12

2.2 Types of SAT Instances

Figure 2.3: The variable graph representation of a randomly generated satisfiable
3SAT problem with 250 variables and 1065 clauses. See Figure 2.1 for
interpretation help.

m distinct clauses are generated, the newly generated clause is added only if it is not
part of the formula F yet (line 12). When generating instances of low density, a further
test whether all variables have been used should be performed?.

Figure 2.3 shows the variable graph of a uniform randomly generated SAT instance
from the SATLIB benchmark set'®. As can be seen from the visualization, no clear
structure is recognizable.

Phase Transition Phenomenon

The class of random uniform fixed clause length mentioned before was studied heavily
also because its hardness and satisfiability status are characterized by only one sin-
gle parameter: the clause-to-variable ratio r [MSL92]. The probability of a random
problem to be satisfiable is directly correlated with the clause-to-variable ratio of the
problem. Below a critical value of 7, which depends on k, almost all generated prob-
lems are satisfiable and above almost all problems are unsatisfiable. The sharpness of
the threshold increases with the number of variables. The latest results analyzing this
phenomenon and providing the most accurate values for the threshold values can be
found in [MMZ06], and are listed in Table 2.1. These values are only valid when n is

9We thank Oliver Gableske for pointing out this problem.
OName of instance: uf250-0100.cnf available at http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/
SAT/RND3SAT/uf250-1065.tar.gz

13

http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/RND3SAT/uf250-1065.tar.gz
http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/RND3SAT/uf250-1065.tar.gz

2 Background

k| 3 | 4 | 5 | 6 | 7
i, | 4.267 [9.931 | 21.117 | 43.37 | 87.79

Table 2.1: Threshold values 1y, for different values of & when n is large, computed with
methods from statistical physics in [MMZ06].

“large” (i.e. when small-world effects can be neglected). This values have been also
used in the latest Competitions from 2012 [BBD 12, p. 73] and 2013 [BBHJ13, p. 97].

Increasing the clause-to-variable ratio of a problem was shown to correlate with
the difficulty of the problem. This phenomenon is also known as the “easy-hard-easy”
pattern [MSL92], because for complete solving methods (that can prove satisfiability
and unsatisfiability), problems get harder as the ratio increases, but get easier as soon
as a given threshold value has been exceeded. For SLS methods, the problem are
hardest around the threshold ratio. For random problems, it can be stated that the
less constrained they are (i.e. the smaller the clause-to-variable ratio), the easier it is
to find a satisfying assignment. On the other side, the more constrained a problem is,
the simpler it is to show that it is unsatisfiable with complete methods [MSL92].

Categorizing Problems by their Satisfiability Status

A randomly generated problem around the phase transition has an unknown status,
which in some cases can be a drawback (e.g., when evaluating incomplete solving
techniques). Now let us suppose that we are interested in the satisfiable instances,
which are the target set of instances used throughout this thesis. There are several
possibilities to categorize the instances into the set of satisfiable and unsatisfiable ones.

1. Use complete solvers to rule out unsatisfiable ones.
2. Use incomplete solvers to find the satisfiable ones.

Generally both approaches are very costly in terms of time and computational re-
sources.

The first approach is strongly limiting the size of the generated problems, as com-
plete solvers can only prove the unsatisfiability of randomly generated problems with
a relatively small number of variables (e.g., in case of 3-SAT instances, an efficient
look-ahead solver needs several hours to solve a problem with 650 variables at a ratio
of r = 4.26).

The second approach results in a biased set of instances towards the solvers used
for filtering. If the generated problems are intended to be used within a competition
or a solver evaluation, special care should be taken on how the selection is performed
and which solvers are used for the filtering procedure.

14

2.2 Types of SAT Instances

To exemplify this problem in more detail let us assume that we generate a set I
of n instances, and we are going to filter the satisfiable ones with s solvers. Now let
us suppose that n/2 of the instances denoted by I can be solved by the s solvers and
will be selected for an evaluation or a competition. A new solver (probably based on
a different solving paradigm as our initial s solvers) that is able to solve the instances
from the set I\ Is but not the ones from Iy will never be categorized as an efficient
solver when evaluated on the filtered set I.

This scenario might look artificial, still this is possible in the random category
of the SAT Competition. Randomly generated instances are being filtered with SLS
solvers, while survey propagation solvers are not taken into consideration. The final
set will thus contain problems for which SLS solving approaches work well.

Planted Solution Problems

Generating only satisfiable instances can be achieved by planting (also called hiding in
the literature) one or even more predetermined solutions within the formula. Instances
without hidden assignments are called 0-hidden, while an instance with x hidden solu-
tions is called x-hidden. Algorithm 1 can be easily changed to plant a solution « or a
set of solutions A in the generation process. In line 12, we have to add the additional
condition: clause C} is going to be added to the formula only if it is not falsified under
a or one of the assignments in A (in case multiple assignments are to be hidden).

Hiding only one single assignment without any further restriction on the type of
added clauses gives rise to instances that are generally easier to solve than similar
0-hidden instances of the same size [AJMO04]. This can be easily explained by the fact
that the generated clauses point to the hidden solution [AJMO04]. In case of uniform
3-SAT problems, if a variable x; is set to x; = 0 in the hidden assignment, then % of
the occurrences of variable x; will occur as literal x; and % as literal x;. This property
can also be extended to the more general k-SAT problem accordingly. If the ratio of
the formula is high enough (i.e. the formula has a high density), then we can use this
bias to solve the problem by simply setting each variable to the value corresponding to
the literal with maximal occurrence (i.e. set x; = 0 if T; occurs more often than x; and
x; = 1 else). This type of algorithm is also called the democratic algorithm or majority
voting algorithm and was shown in [BSBG02] to always find a valid assignment when
the density of the formula (i.e. clause to variable ratio) equals r = Q(log(n)).

To generate satisfiable instances with planted solutions that yield hardness simi-
lar to that of 0-hidden instances several approaches have been proposed. Achlioptas
proposed in [AJMO04] to hide two assignments that are the opposite of each other (i.e.
hide some randomly generated o and @), which resulted in instances more similar
to the 0-hidden instances in terms of the hardness as well for SLS and for Conflict
Driven Clause Learning (CDCL) solvers. This approach was used in [SB08] to generate
satisfiable forced shape instances for non-clausal SLS solvers.

15

2 Background

Another approach proposed in [BHL101] is to hide only one single assignment,
and alter the probabilities for the type of clauses that will be accepted, such that the
number of occurrences of positive and negative literals of the same variable is balanced.
Without loss of generality we can restrict the analysis by hiding the solution a = 1"
and considering only the 3-SAT case for the moment. Clauses can be categorized by
the number of literals that are being satisfied under the planted solution. In case of 3-
SAT we have seven possible clauses that have one, two or three satisfied literals in the
planted solution. For each type of clause we assign the probabilities p; for 1-satisfied
and accordingly po and p3. Due to probability normalization we have the equation:

3p1+3p2+p3=1 (2.4)

For an arbitrary position in the clause we have to balance the probabilities of
negative and positive occurrence of a variable. Without loss of generality, we restrict
the discussion to the first position in the clause. The probability of a positive literal is
the sum of probabilities of the 1-satisfied, 2-satisfied and 3-satisfied cases where the first
position is positive (i.e. true). Within 1-satisfied clauses, only one single assignment
has the first literal set to true: 100. For a 2-satisfied clause, there are two cases: 110
and 101. For a 3-satisfied clause, there is obviously only one single case: 111. The
probability of a negative literal is also computed accordingly. The 1-satisfied clauses
have two cases, where the first literal is false: 010 and 001. The 2-satisfied clauses have
only one single case: 011. Setting the sum of these probabilities to be equal, we can
add the additional equation:

1+ 2p2 +p3 = 2p1 + p2 (2.5)

Solving the equation system containing 2.4 and 2.5, we get a parametrized probability
distribution in p3 of the form:

((1+2p3)/6, (1 — 4p3)/6,p3)

With methods coming from the field of statistical mechanics, Barthel et al. [BHL101]
showed that for the generation of high quality instances ps should lie in the following
interval:

0.077 < p3 < 0.25

Another way to define the probability distribution of the different types of clauses
was proposed in [JMS05]. Here a single parameter ¢ is defined and a randomly gen-
erated clause that has t satisfied literals in the planted solution is accepted with a
probability proportional to ¢*. The authors call this model the g-hidden model. To
generate balanced instances (positive and negative literal probability should be the
same) the authors show that ¢ should be set to ¢ = (v/5 — 1)/2 = 0.618, which is the

16

2.2 Types of SAT Instances

kSAT| 3 | 4 | 5 | 6 | 7
q | 0.6180 | 0.8392 | 0.9275 | 0.9659 | 0.9835

Table 2.2: The positive roots of Equation 2.8 for different values of k.

golden ratio. Adding to the Equations 2.4, 2.5 the additional equations:

p2/p1=Dp3/p2 = ¢ (2.6)

and then solving this equation system, we will get the same value for ¢ as mentioned
above.
The value of ¢, which depends on k, can be computed as the positive root of the
equation:
1-g)(l+g* "' =1=0 (2.7)

To compute the values of p; we can use the general form of the normalization Equation

2.4, which then results in:
t

q
T
Table 2.2 shows the values of ¢ for typical k-SAT. Smaller values for ¢ will result in
problems where local search algorithms are more likely to move away from the hidden
solution then being attracted by it. This type of problems is also called deceptive
formulas. A systematic construction of deceptive formulas that were shown to be very
hard for local search solvers are also presented in [Hir00].

(2.8)

We can change the uniform k-SAT generator presented in Algorithm 1 to generate
planted solution instances according to the g-hidden model by adding after line 12 an
additional condition that checks if the clause is to be accepted or should be dropped
depending on the planting model. After computing the number of true literals in
the clause, the clause will be accepted according to an acceptance probability, which
can be computed from the probability distribution (p1,...,px) by normalizing the p-
values with respect to p;. This will result in an acceptance probability distribution of
(1,4,4%,...,¢"1) where the value of ¢ can be found in Table 2.2.

Quality of planted solution problems

Planted solution problems were intended to be used in experiments where only sat-
isfiable problems are of interest. They should not be distinguishable from 0-hidden
problems of the same size and ratio. An intuitive quality measure for a planted solu-
tion model is to measure the difference in the run time distribution of solvers when
executed on the planted solution problems and on the 0-hidden problems. This concept

17

2 Background

is similar to the one used in the quality measure of random number generators, where
given two different sources of random numbers (where one of them is truly random),
it should not be possible to distinguish between the two sources in polynomial time.
In the field of cryptography this concept is called “computational indistinguishability”
and was first introduced by Yao in [Yao82].

Within a small experiment we have evaluated the methods mentioned before to
hide solutions for 3-SAT problems. We have generated 100 3-SAT problems with 10000
variables at a ratio of 4.2 (lower than the threshold) and a set of 100 problems with
1000 variables at a ratio of 4.267 (on threshold) according to the 0-hidden, 1-hidden,
2-hidden [AJMO04] and g-hidden [JMS05] model. We have run the SLS solver probSAT
(see Chapter 7 for details about this solver) ten times on each problem with a cutoff
of 300 seconds, resulting in a total of 1000 evaluation points.

Figure 2.4a shows the run time distribution of probSAT on the four different
instance sets. The 1-hidden set is by far the most simple one, and the run time of
probSAT is always below 0.1 seconds. The 2-hidden problems are indeed much harder,
though still significantly easier than the remaining two sets of 0-hidden and g-hidden
problems, which do not exhibit large difference in the run time distributions. At a ratio
of 4.2 and 10000 variables, these instances are expected to contain many solutions, so
that hiding a solution to guarantee the satisfiability of the problems does not make
much sense.

Instances generated at the phase transition where half of the instances are expected
to be unsatisfiable constitute a more appropriate evaluation scenario. Figure 2.4b shows
the run time distribution of probSAT on instances generated at the phase transition.
As in the previous scenario the 1-hidden set is the simplest one followed by the 2-
hidden set. This time there is a clear difference between the 0-hidden and the g-hidden
problems. Within the time limit of 300 seconds almost half of the runs were successful
(44.6%) in the 0-hidden model, while in the g-hidden model considerably more than
half of the instances were solved successfully (65.5%). The difference in the run time
distribution is expected to be proportional to the increase of the clause to variable
ratio. We have also evaluated another SLS solver on these sets: the solver WalkSAT
from the UBCSAT framework. The differences were consistent with the ones obtained
with probSAT.

2.3 SAT Solving Techniques

SAT solving techniques can be first categorized by the type of answers they are able
to provide. If a SAT-solver is able to find solutions and also to prove unsatisfiability,
then the solver is called complete. If it is able to find only a solution, or only prove
unsatisfiability, then it is called incomplete. Further we can also categorize SAT solvers
by the way they perform search into global and local search solvers. These terms can

18

2.3 SAT Solving Techniques

#4
100.00 — /7
—8— 0-hidden /[,
50.00 |) ’
@ g-hidden A
K —A— 2-hidden -
210_00 — —o— 1-hidden
o
& 5.00
G
Q
£
= 1.00
o)
o 050
O
0.10
0.05 eese—— iiinnd
I T T T
200 400 600 800 1000
number of solved instances
(a) 3-SAT with 10000 variables and r = 4.2
100.00
—8— 0-hidden
— g-hidden
n
:10_00 — —A— 2-hidden
= ~o— 1-hidden
Qo
o
o
% 1.00
Q
£
'_
o)
z 0.10
(@)
0.01

T T T T T
200 400 600 800 1000

number of solved instances

(b) 3-SAT with 1000 variables and r = 4.26

Figure 2.4: Run time distribution of the SLS solver probSAT on the four sets of 3-
SAT problems, randomly generated according to the 0-hidden, 1-hidden, 2-
hidden and ¢-hidden model. The x-axis represents the number of solved
problems, while the y-axis represents the run time of the solver measured
in seconds on a log scale.

19

2 Background

be confusing, as local search solvers use a global state (i.e. they work on complete
assignments), while global search algorithms like CDCL work with local states (i.e.
they work with partial assignments).

2.3.1 Complete Methods

The two most prominent categories of complete SAT solving methods are the Conflict
Driven Clause Learning (CDCL) solvers and the Look-Ahead solvers, which are both
backtracking algorithms for the SAT problem. They are both based on the Davis-
Putnam-Logemann-Loveland (DPLL) solving method presented in [DP60, DLL62].

The DPLL algorithm works on partial assignments. Starting with the empty as-
signment, the DPLL solver tries to extend its current consistent partial assignment to
a complete consistent assignment by choosing a free variable, giving it a truth value
and simplifying the formula. A (partial) assignment is consistent if it is not falsifying
any of the clauses of the formula. If within this process the simplified formula gets
unsatisfiable (an empty clause is detected), a backtracking step occurs, where the last
decision is being undone, and the search continues on the other search branch, or
backtracks further. If a backtracking to the root node occurs twice (i.e. both branches
of the root variable do not contain a solution), the problem is unsatisfiable. If all
clauses are satisfied by the current assignment, the solver returns this satisfying as-
signment. DPLL solvers are mainly depth-first search algorithms, though some solvers
can perform a limited number of breadth search steps between depth search steps.

The simplification rules used by the original DPLL algorithm [DLL62] are only the
propagation of unit clauses and the elimination of pure literals. Note that many degrees
of freedom are present in the DPLL algorithm. Which unassigned variable should be
picked next? Which value should be tried first? There has been a huge amount of
research in the last decades to answer these question, and different heuristics have
been proposed (see [BHVYMWO09, Chapter 4,5] for an overview).

Conflict Driven Clause Learning (CDCL)

This class of solvers is arguably the most important class of SAT solvers, since these
solvers are used in daily practice to solve SAT problems occurring in different appli-
cation domains. The main framework of CDCL solvers is based on the DPLL solver
presented in [DLL62] which was extended with non-chronological backtracking [BS97],
conflict-driven clause learning [MSS99] and heuristics for variable selection and phase
selection (the selection of the truth values for a variable). During the search of a
CDCL solver, the number of learned conflict-clauses can increase very fast, conse-
quently CDCL solvers use different heuristics to reduce their conflict-clause database.
Another major ingredient of modern CDCL solvers is the use of restarts. Instead of
trying to extend the current partial assignment to a complete one, after a certain
number of search steps, the solver will start from scratch with the empty assignment,

20

2.3 SAT Solving Techniques

while maintaining learned information (e.g., the conflict-clauses).

Besides these algorithmic approaches, CDCL solvers also make use of highly ef-
ficient data structures (like the lazy data structures of watched literals) to speed up
their search. Most of these data structures are designed such that unit propagation is
performed as efficiently as possible. Unit propagation is the key operation performed
by CDCL solvers. Another current major ingredient of CDCL solvers is the use of
preprocessing and inprocessing (i.e. the use of simplification rules before and during
search). The use of preprocessing can also boost other types of solvers too (see Chapter
6).

CDCL solvers are best suited to solve application problems, which is their main
playground. Hard Combinatorial problems can also be tackled with these solvers. Gen-
erally, instances that have many binary clauses and few variables with many occur-
rences can be solved by CDCL solvers.

Look-Ahead

Look-Ahead solvers are also based on the DPLL algorithm. The key components of
look-ahead solvers are the variable selection and value selection procedure. As their
name already suggests, before taking decisions within these two procedures they per-
form a look-ahead by computing the possible reductions when a free variable is set
to a certain Boolean value. The important part here is that when testing values of
variables, necessary assignments can be detected, which are called failed literals (i.e.
if setting [to true results in an unsatisfiable clause, then [is a failed literal and the
literal [can be added to the formula). A look-ahead solver measures the importance
of a variable x; with a decision heuristic and then measures which branch of x; to take
with the direction heuristic. The heuristics are based on the reduction values computed
during the look-ahead.

Besides these heuristics (which play the key role), other techniques like double
look-ahead, local learning, back-jumping or autarky reasoning have been added to
improve their performance. Look-ahead solvers are known to be efficient on unsatis-
fiable random problems and on small hard combinatorial problems. An overview of
techniques employed in look-ahead solvers can be found in [BHvMWO09, Chapter 5].

2.3.2 Incomplete Methods

The two major classes of incomplete methods are the local search solvers and the
message passing solvers. Both methods are not able to prove the unsatisfiability of a
problem. Though, there are some local search solvers designed to solve unsatisfiable
problems [PL06].

21

2 Background

Stochastic Local Search

As this type of algorithms is the major topic of this thesis, a thorough description of
this algorithmic approach is given in Chapter 3.

Message Passing

Message Passing methods are derived from the field of statistical physics of disordered
systems. These methods work on the factor graph representation [MZ02] of SAT for-
mulas where variables and clauses are represented by vertices in a graph. Variable
nodes are connected to all clauses where they appear, and clauses are connected to all
variables they contain. Each variable has a value between [—1, 1], which represents its
tendency to take a certain polarity (i.e. false or true).

Message passing algorithms are based on the same principle: passing messages
from variables to clauses, and from clauses to variables until messages converge (i.e.
there is no significant change in their values). Once this happens, a decimation process
starts to set the most polarized variables to their (converged) value and to simplify
the problem by removing these variables. Then, the message passing procedure starts
over again on the simplified formula until the formula is so simple that it can be easily
solved by other faster approaches (usually a local search solver is used here).

The messages sent by variables to clauses can be interpreted as “I can satisfy you
with probability ...”, while the messages sent from clauses to variables (also called
warnings) would mean “The probability that none of my variables will be satisfying
me is ...”. The major difference between the different algorithms forming this class is
the message update procedure. The work presented in [Gabl3] gives an overview on
the different message update procedures and possible interpolations of these.

The survey propagation solver of [BMZ02, BMZ05] is the best known and also the
most successful solver from this class. Survey propagation based solvers are able to
solve very large random problems up to millions of variables in acceptable time (see
Chapter 7 for an evaluation of the solver).

The underlying mathematics used in message passing algorithms have also been
used for empirically determining the values of the threshold ratio of random k-SAT
problems [MMZ06]. These values are still the best known values in the literature.

22

3 Stochastic Local Search

Compared to other search methods, Stochastic Local Search (SLS) is more closely
related to the search that we perform in life for the best way of living. Like local
search solvers, we are living in full state and try to improve our state of life by doing
small local changes. It is often the case that we have to endure suboptimal states (like
being a Ph.D. student) to reach a better state like earning a Ph.D. degree.

In this chapter, we will give an overview on the major SLS procedures proposed
for SAT. There are plenty of other methods and heuristics used in SLS solvers. An
overview of the older methods can be found in [HSO05].

SLS solvers operate on complete assignments and try to find a solution by flipping
variables (changing a variable x to). They can change only one variable per step or
multiple variables (multi-flip), even though the latter is rarely used.

An SLS solver can also be viewed as an optimization procedure that tries to opti-
mize an objective function. Since the SAT problem consists of finding an assignment
such that all clauses are being satisfied, the objective is defined as minimizing the
number of unsatisfied clauses or maximizing the number of satisfied clauses. From a
mathematical point of view, a SAT problem can be formulated as an Integer Linear
Program.

3.1 General Framework

The heuristics used by SLS solvers can differ considerably, however the main solving
framework and data structures are the same and can easily be generalized. This has
motivated the development of a unified SLS solver framework in which most known SLS
solvers are implemented. The platform is called UBCSAT! [THO05] and was developed
by Dave Tompkins at the University of British Columbia.

'http://ubcsat .dtompkins. com/

23

http://ubcsat.dtompkins.com/

3 Stochastic Local Search

Algorithm 2: Generic SLS solver
Input : Formula F', maxTries, maxFlips
Output: satisfying assignment a or UNKNOWN
1 for i =1 to maxTries do
2 a < randomly generated assignment
3 for j =1 to maxFlips do
4
5

if (« is model for F') then
L return o

6 var < pickVar()
7 flip(var)

8 return UNKNOWN;

Algorithm 2 presents the general solving procedure of SLS solvers. It has three
types of inputs: the SAT formula and two limits, which specify how many times to try
to solve the problem and how many flips to perform per try. The last two limits are
needed to implement the concept of restarts, which at least from a theoretical point
of view is very important. In practice, SLS solvers seldom use restarts. Almost all SLS
solvers start with the generation of a random assignment. Then, they evaluate the
assignment. If all clauses are satisfied, then the solution has been found. If not, one of
the variables from the problem is selected according to a variable selection heuristic,
which we further call pickVar. The value of this variable is flipped, the corresponding
data structures are updated and the process starts over again with the selection of a
new variable to flip.

To keep the description of the following SLS solvers as simple as possible, we will
omit issues related to implementation details, like data structures or the methods to
keep these updated. Nevertheless, we have to point out that these details are very
important when it comes to the practical application of the solvers or the empirical
evaluation and comparison (see Section 7.6 for discussion on this topic). Often, a solver
can be improved by a factor of two only by using clever data structures, implemen-
tation tricks and by compiling the code with efficient compiler optimizations. All the
SLS algorithms presented in the following differ only in the pickVar procedure that
implements the selection heuristic.

Local Information used by SLS Solvers

Local search based solvers use within their pickVar method different types of informa-
tion (also called properties or functions) or combinations of them, also called evaluation
functions to guide the search. We will present the most common types of information.
A more detailed list including some analysis can be found in [TBH11]. Given a for-

24

3.2 Uniform and Focused Random Walk

mula F, a full assignment o and a variable x, we define the make value of x denoted
with make(x, F,) as the number of clauses that will be additionally satisfied when
changing the value of x to Z. The break value break(z, F,«) is defined as the num-
ber of clauses that will get unsatisfied when flipping . The score value is defined as
score(x, F,a) = make(x, F,a) — break(z, F, o). Whenever the full assignment a and
the formula F' are obvious from the context, we will reduce the notation of the func-
tions to only make(z,), break(z,), score(x, «) or even make(x), break(z), score(x).
If before a flip of z; we have break(z;) = b;, make(x;) = m; and score(z;) = s;, then af-
ter flipping x; we will have break(z;) = m;, make(x;) = b; and score(x;) = —s;. These
types of properties are called greedy-properties or also intensification properties.

On the other side, properties related to the search history of a solver are called
diversification properties. The age property age(zx), one of the most studied of this
class, is defined as the number of flips since the last flip of . In case x has never been
flipped, then the age(r) is defined as the number of flips since the beginning of the
solving process.

The Probabilistically Approximate Complete Property

An important property of SLS solvers is the Probabilistically Approximate Complete
(PAC) property [Hoo99]. An SLS solver has the PAC property if and only if the
probability to reach a solution gets arbitrary close to one, when allowed to perform
sufficiently many steps. This property implies certain behavior of the solver, like that
the solver will not get trapped in cycles that do not contain the complete search space.
This is actually the usual way to show that a certain solver does not have the PAC
property: by providing a hopefully small example, where the solver gets trapped into
a short cycle. Some examples can be found in [Hoo99]. On the other side, if a solver
has a probability larger than zero in each step to perform a random step, then the
solver will have the PAC property.

3.2 Uniform and Focused Random Walk

The probably most simple SLS solver, also called Uniform Random Walk, selects within
the pickVar method one variable at random. A more elaborated version of this algo-
rithm, called Focused Random Walk [Pap91], selects uniformly at random one unsat-
isfied clause first and then selects randomly a variable from this clause. Papadimitriou
showed in [Pap91] that this algorithm can solve a satisfiable 2-CNF problem in O(n?)
steps. Generally, all SLS solvers that pick variables from unsatisfied clauses can be
considered focused SLS solvers, as they focus the search on the obvious trouble maker.
Schoning presented in [Sch99] a variant of this algorithm that uses restarts after every
3n steps (n is the number of variables in the problem). He showed that this algorithm

25

3 Stochastic Local Search

solves satisfiable 3-CNF problems in O(1.334™) steps, which is a remarkable theoretical
performance for such a simple algorithm.

From a practical point of view, Schoning’s algorithm has a relatively weak perfor-
mance. For the price of losing the theoretical guarantee, a slight modification of this
algorithm will yield state-of-the-art performance. The new algorithm called probSAT,
which was developed within this thesis will be presented and analyzed in more detail
in Chapter 7.

3.3 The WalkSAT Architecture

A further representative of the focused random walk algorithms is the WalkSAT solver
by Selman et al. [SKC94]. After randomly picking an unsatisfied clause, WalkSAT picks
randomly one of the variables from the clause that has break value of zero. In this
case, due to the focused search, the make value of these variables is always at least
one. If there is no variable with break(z) = 0, then with a probability of p a random
variable is picked, else with probability 1 — p the best variable with respect to the
break value is picked. The parameter p, also called noise, determines the ratio between
random steps and greedy steps. The performance of WalkSAT is known to be highly
dependent on this noise parameter [KSS10].

Another representative class of SLS solvers is the family of Novelty solvers [MSK97],
which use within their pickVar method the score and the age property of variables. If
the best variable is not the youngest (i.e. does not have minimal age), then this variable
is picked. If the best variable has minimal age, then with a probability p the second
best variable is selected, else with probability 1 — p the best variable is selected. Ties
are always broken by the age of variables. Hoos showed that the Novelty solver does
not have the PAC property, and introduced the solver Novelty+ [Hoo99], which adds
a random walk step to the Novelty solver. Different other improvements or extensions
have been proposed for the Novelty solver: [MSK97, Hoo99, LH05, LWZ07].

The performance of the Novelty solvers is also highly dependent on the parameter
p. Hoos proposed a self adapting scheme for the noise parameter in Novelty solvers
[Hoo02] which he implemented in the AdaptNovelty+ solver. The key observation of his
study, which we will also confirm in Chapter 7, is that noise should be approximated
starting with low values and should only be increased when a search stagnation is
detected. If the objective function does not improve over 6 - m steps, the noise is
increased with: p’ = p+ (1 — p) - ¢. The noise is decreased with p’ =p—p- % whenever
an improvement in the objective function is detected. The objective function is the
number of unsatisfied clauses. Hoos showed in experiments reported in [Hoo02] that
the values of 8, ¢ can be fixed to 8 = é and ¢ = % The AdaptNovelty+ solvers have
a stable performance on a wide range of problems, even if they can not reach the
performance of the Novelty+ solvers with optimal noise.

26

3.4 The GSAT Architecture

3.4 The GSAT Architecture

From a historical point of view, the GSAT architecture is probably the oldest class
of SLS solvers and was first presented by Selman in [SLM92]. The name GSAT is
motivated by the greedy approach the solver takes to solve a problem. The name
would also match “global”, which would also fit the description of these solvers, as
they take all variables into consideration within the pickVar method. GSAT computes
the score for all variables from the formula, and then selects from these the best one
to flip. If more than one variable has the best score, then one of them is selected
randomly. To keep the overhead of the score computation as low as possible, the score
value of all variables is computed from scratch only at the beginning of the solving
procedure. Afterwards, these values are only updated for variables where the score
changes. To be more precise: if the variable z; has been flipped by GSAT, then only
the score value of variables occurring in N(z;) have to be updated.

The different variants of the G2WSAT solvers, first presented by Li in [LH05] and
then extended in [LWZ07, WLZ08]|, belong also to the class of greedy SAT solvers.
These solvers are actually hybrids between GSAT and WalkSAT solvers because in a
first step they use a restrictive variant of greedy steps and after reaching a local mini-
mum WalkSAT-style steps are being used until the solver escapes from these. The key
idea behind the G2WSAT solvers is the variable property called promising decreasing
variable, or for short only promising. A variable z; is promising if score(x;) > 0 and
if this was not the result of flipping z; when score(x;) < 0 (which always renders the
score of the variable to become positive). Variable x; can get promising if during the
search trajectory of the solver its score drops below zero and then gets again above zero
as a consequence of flips of other variables, but not itself. The G? WSAT solvers work
as follows: as long as promising variables are present, the best one is picked (breaking
ties by the age of variables, i.e. pick the oldest variable). If there are no promising
variables, then G2WSAT behaves similar to the WalkSAT variants. The G2 WSAT
solvers actually differ only in the used WalkSAT variant, and their performance is
indeed very sensitive to these heuristics.

3.5 The DLS Architecture

Dynamic Local Search (DLS) solvers can also be categorized to the class of greedy
solvers, because they generally pick the best overall variable with respect to an al-
ternative score value. Clauses are additionally augmented with weights (also called
penalties in the literature), which can vary from clause to clause and are changing
during search. The evaluation function used in DLS solvers takes these clause weights
into account. If we define the weight of clause ¢; as clw(c;), then the weighted score

27

3 Stochastic Local Search

of a variable x; from a formula F' under assignment « can be defined as:

wscore(x;) = score(x;) + Z clw(Cy) — Z cw(Cj)
C;eCU(F,a) C;eCS(F,c)

Here CU(F, «) denotes the unsatisfied clauses of F' under assignment o and C'S(F, «)
the set of satisfied clauses respectively. The key idea behind DLS is to guide the search
dynamically by increasing (scaling) or decreasing (smoothing) the weights of clauses
continuously or periodically. This results in a guidance of the search into the direction
of the higher weights.

The main difference between the different DLS methods is the way weights are
being scaled, smoothed and used. The number of DLS methods proposed in the last
two decades is quite large. For the work developed in this thesis only two methods
are of interest: the Scaling and Probabilistic Smoothing method used in the SLS solver
SAPS [HTHO2| and the Pure Additive Weighting Scheme used in the solver PAWS
[Tho05].

For an overview and analysis of DLS methods, the reader is referred to the PhD
thesis of Dave Tompkins who studies in depth the field of Dynamic Local Search
(DLS) [Tom10]. The first DLS methods were proposed for the GSAT solver by Sel-
man and Kautz in [SKC94], followed by other methods proposed by Morris [Mor93],
Frank [Fra96, Fra97] and Mills [MT99]. DLS methods inspired by the Discrete La-
grangian Methods (coming from the operation research area) have been proposed in
[SW98, WW99, WW00, SS00]. The probably best representative and best performing
Lagrangian method is the ESG algorithm proposed by Schuurmans et al. in [SSHO1],
which then motivated the work of Hutter et al. on the DLS solver SAPS, which plays
an important role in this thesis.

SAPS

The core search procedure of SAPS is based on a variation of GSAT. The algorithm
starts by initializing all clause weights to one. In each search step, SAPS picks the
best variable according to the weighted score, if the score exceeds a certain threshold
€. Ties are broken randomly. If no such variables exist, then with probability wp €
[0...1] it performs a random flip, else it will perform the scaling and smoothing of
the clause weights. Scaling is performed only on the unsatisfied clauses according to
the following scheme: clw'(C}) = clw(C}) - a, where a > 1 is a parameter of the solver
(originally a was denoted «, but this conflicts with our notation). The smoothing step is
performed only with a probability of sp € [0...1] (also called smoothing probability).
A smoothing step is performed only for clauses that have weights greater than one
according to: clw'(C;) = clw(Cj) + (1 — p) - clw, where clw denotes the average clause
weight over all clause weights and p € [0. .. 1]. The performance of SAPS depends on its

28

3.6 gNovelty+

parameters a, sp and p. To overcome this sensitivity problem, Hutter et al. proposed
RSAPS [HTHO2](a reactive version of SAPS), which tries to automatically adapt
these parameters during search, similar to the adaptive methods in the AdaptNovelty
[Hoo02] solver.

SPAWS

Thornton analyzed in [Tho05] in more detail the SAPS solver and proposed a pure
additive clause weighting scheme called PAWS. The major difference between PAWS
and SAPS is that the scaling and smoothing steps are restricted to linear operations.
The weights of all false clauses are scaled up linearly with the update rule: clw(C;) =
clw(C;) + 1. Weighted clauses are smoothed after Max;,. steps (which renders this
operation to be deterministic) with the rule: clw(C;) = clw(Cj) —1. PAWS also differs
from SAPS in the way it picks a variable when no improving steps are possible. Instead
of the random walk step, PAWS probabilistically (with probability py.) performs a
flat move (a flip that does not change the number of unsatisfied clauses).

3.6 gNovelty+

The gNovelty+ solver was proposed by Pham in [PTGS07] and was one of the best SLS
solvers a couple of years ago when the studies for this thesis started. We will describe
this solver in more detail, as it is the basis of several solvers developed within this thesis.
Though there are several versions of gNovelty+, they all can be characterized as being
a hybrid SLS solver that combines the methods used in G2WSAT, AdaptNovelty,
SAPS and PAWS. The key idea is to combine the gradient steps of G2 WSAT with a
new clause weighting scheme similar to that of SAPS and PAWS.

Algorithm 3 contains the pseudo code of gNovelty+ in the version it was first
presented in [PTGS08]. The first decision taken by gNovelty+ is whether to select a
variable according to a pure focused random walk or not, which is done with probability
wp = 0.01 (line 7). If no random walk is performed, the solver tries to pick the best
promising variable (according to the definition of G2WSAT) breaking ties by the age
of the variables (line 10). In case no promising variables are available, it will pick a
variable according to the AdaptNovelty heuristic (line 12). In this case, the weights
of all unsatisfied clauses are scaled, and with probability sp smoothed with a linear
scheme, like in PAWS. The selected variable is being flipped, and then the noise and
the list of promising variables is updated.

All selection steps used in gNovelty+ use the weighted score of variables and not
the real score. Accordingly, variables can get promising if weights are being scaled or
they can loose this property if weights of clauses are being smoothed. As the authors of
the solvers also noted in [PTGS08], the smoothing probability sp is the key parameter

29

3 Stochastic Local Search

Algorithm 3: gNovelty+ solver

Input : Formula F, maxTries, maxFlips, wp = 0.01, sp
Output: satisfying assignment a or UNKNOWN

1 for i =1 to maxTries do

2 a < randomly generated assignment

3 for j =1 to maxFlips do
4

5

if (« is model for F') then
L return «
6 if (rand() < wp) then
7 var=randomly picked variable from one randomly selected
unsatisfied clause
else
if 3 promising variable then
10 var=Dbest promising variable (break ties by age)
11 else
12 var = pick variable like AdaptNovelty heuristic
13 update weights of all unsatisfied clauses (like PAWS)
14 if (rand()< sp) then
15 L smooth weights of all weighted clauses (like PAWS)
16 flip(var)
17 update noise p for AdaptNovelty
18 update the promising variable list of GZWSAT

19 return UNKNOWN;

of gNovelty+ having high influence on its performance. The setting of sp also depends
on the type of problem being solved.

For sp = 1, the clause weights are disabled and gNovelty+ behaves almost like
G?WSAT with an AdaptNovelty component. The authors determined empirically that
sp should be set to sp = 0.4 for random 3-SAT problems and to sp = 1.0 for 5-SAT and
7-SAT problems. With this setting gNovelty+ was able to win the random satisfiable
track of the SC07, which attracted the attention of several researches on this solver.

30

4 A Novel Approach to combine an SLS
and a DPLL Solver for SAT

Within this chapter, we will present a generic approach on how to analyze the search of
an SLS solvers and how to combine an SLS and a DPLL solver to create an incomplete
hybrid SAT solver. The SLS solver gets supported by a DPLL solver, which results in
a boost of its performance. We will first define the term of a Search Space Partition
(SSP), which is the key concept in our hybridization and provide some explanation
for its construction and use. We implement our hybridization approach in several
solvers, and show within empirical studies that the performance of the hybrid solvers
is exceeding the performance of the plain SLS solvers on most tested benchmarks.
The work presented in this chapter is partially based on work presented in [BHGO09].

4.1 Introduction

Motivated by the performance of modern SLS solvers, we started the analysis of SLS
solvers presented in Chapter 2. Our main goal was to analyze if the search of an SLS
solver (in our particular case that of gNovelty+) is thoroughly, or if there are some
ways to improve it.

Two issues play a crucial role here: intensification and diversification of the search.
There is no clear mathematical definition of these terms and researchers often mean
slightly different things. We characterize the search of a solver as being intensified
when the solver restricts its decision to a small set of variables and changes only these,
guiding its decision on information that will improve the overall objective function
(the number of satisfied clauses). Guiding the search based on greedy properties usu-
ally results in an intensified search. The search of a solver is diversified when the
solver is taking almost all variables into consideration for flipping, and when it tries

31

4 A Novel Approach to combine an SLS and a DPLL Solver for SAT

to avoid repeating previous steps by taking diversification properties like age or tabu
into consideration within the selection heuristic.

A solver has to find the optimal balance between intensification and diversification
to reach state-of-the-art performance. This balance can be controlled in the WalkSAT
style solvers with the noise parameter p. High noise leads to diversified search, while
low noise values intensify the search.

4.2 Search Analysis

The first observation looking at the results of SLS solvers in the random category of
the SCO7 was that the run time of an SLS solver on problems of the same size can
vary greatly. To analyze this effect we focused our attention on the winning SLS solver
of the SCO7 random satisfiable category, gNovelty+ [PTGSO08|.

Our assumption was that the search space structure of the hard problems contained
many attractive local minima that were visited by the SLS solver very often, which
means that the diversification in the solver is not sufficient. To verify this hypothesis
we tried to cluster all points from gNovelty+’s search trajectory. This can be done by
saving all assignments visited by the solver during its search. This approach, though,
was unsuccessful because no cluster algorithm could cope with the huge amount of
high dimensional (every variable represents one dimension) data we had. Note that
an SLS solver can visit up to one million assignments per second and it takes up to
several hundreds of seconds to solve a problem.

Another approach was to analyze only the points where the objective function had
very low values (i.e. local minima and their close neighborhood). Since the amount of
data was still too large, we did not directly save the assignments but used instead a
bloom filter.

A bloom filter is a probabilistic data structure [Blo70] which allows to efficiently
check whether an element is already part of a set or not. A bloom filter uses a binary
array (i.e. an array that can contain only 0 and 1) as a data structure and provides
two operations: adding and querying of elements. When initialized, the binary array
contains only zeros. The add operation takes an element as input and computes with
k different hash functions & positions in the array, which are then set to 1. The query
operation will also use the same k hash functions to compute the positions in the array.
If one of the computed positions in the array is 0, then the element is not part of the
set. If all positions are already 1, then there is a high probability that the element is
contained in the set, but this is no guaranteed, as the positions might have been set
to 1 by the add operation of other elements. The query operation thus can produce
false positives (i.e. return true even when the element is not part of the set).

With the help of the bloom filter we checked how many of the assignments visited
by gNovelty+ fell in the neighborhood of the saved local minima. The maximum found

32

4.2 Search Analysis

matching was lower than 2%. This indicates that the diversification of gNovelty+’s
search is sufficient for the analyzed problems.

The next thing to analyze was if the intensification of gNovelty+’s search around
these local minima was sufficient to assure with a high probability that there are no
solutions. One possibility to check this is to search the complete neighborhood of a local
minimum within a certain Hamming distance. This is possible for small problems, but
for instances having thousands of variables the neighborhood is by far too large to be
computed in foreseeable time. However, this research seemed promising, because Zhang
showed in [Zha04] that the Hamming distance between a qualitative local minimum
and the nearest solution is correlated with the quality of that local minimum.

The key contribution of this chapter is a method to check the intensification of SLS
solvers around local minima (in general around any arbitrary point in the search space
visited by the solver). The idea is to build a partial assignment around one complete
assignment from the search trajectory of the solver. This partial assignment is then
applied to the formula resulting a simpler and smaller formula that can be solved with
a complete solver (introducing the hybridization approach). If the complete solver finds
a solution for the simplified formula, the intensification was not sufficient. As a side
effect, the problem can be solved, resulting in a speed up of the hybrid solver over the
plain SLS solver.

4.2.1 Search Space Partitions

Search space partitions can be easily defined with the help of partial assignments and
the flip trajectory of an SLS solver. The necessary definitions and notations have been
partially presented in Section 2.1.1. Recall that the application of a partial assignment
§ on a formula F results in a simplified formula F’ (i.e. F|3 = F').

Definition 4.2.1 (Flip Trajectory). Given an SLS solver S with an input formula
F and a complete starting assignment «;, we define the flip trajectory of S(F,as) as
Ts = t1,...,tyw, where t; € {z1,...,2,} denotes the variables being flipped by the
SLS-algorithm S, and w is the total number of flips made starting with the formula
F and the initial assignment a.

The flip trajectory is a vector of variables recording the history of the search of an
SLS solver.

Definition 4.2.2 (Search Space Partition (SSP)). We define an SSP by construction:
Given a complete assignment «;, which was visited by S in the j’th flip on its flip
trajectory, we construct the SSP by starting with £ = 0 and 8 = ;. We repeat setting
Bltj+r] = * and B[tj_x] = *, where t;11, € T's and * denotes unassigned variables, and
increasing k by 1 until the number of unassigned variables in 5 exceeds ¢ - n, where ¢
is some fixed constant ¢ € (0,1) (to be determined later).

33

4 A Novel Approach to combine an SLS and a DPLL Solver for SAT

4 #unsatisfied clauses

»

« <> qp

Figure 4.1: An exemplary evolution of the objective function of an SLS solver during its
search. The z-axis denotes the step (flip) number and the y-axis the number
of unsatisfied clauses. a;; represents the start point of the construction of
several SSPs around these points.

An SSP defines a subspace of the complete search space that an SLS solvers has
traversed. It can be constructed from the flip trajectory of the SLS solver, and its
parameters are the start position and size. To exemplify the construction of an SSP
let a7 = 0011010111 be a complete assignment for a formula F' with 10 variables that
was visited by the solver after the 7th flip. Let the surrounding flip trajectory be:

TS = I2,%6,T1,T9,L1,T6, X1, L3, LY, L1, L1, L8, L3, - - -

If we set ¢ = 0.5 and start to construct an SSP from position j = 7 from Tg(F, ay),
then the first variable that is unassigned in § is x; (k = 0). In the next step, x3 and z¢
get unassigned (k = 1) according to Ts. This procedure is repeated until five variables
get unassigned. After five steps the process will stop with S = %0 % 10 * 0 * x1.

Figure 4.1 describes how SSPs are created around local minima «;, with exactly
one unsatisfied clause. Note that an SSP can entail more than one local minimum.

The notion of search space partitions was also used by Wu and Hsiao in [WHO06],
where they propose a simulation-based algorithm for checking the safety property of
digital systems. Although the notion is similar, the concepts and the construction are
quite different.

4.2.2 Construction and Use of Search Space Partitions

We are interested in the study of local minima and their neighborhood and whether
there are solutions in that part of the search space that have been missed by an SLS
solver. The a; mentioned in the definition of an SSP would ideally be a local minimum.
An SSP created as defined above overlaps with the Hamming neighborhood of o, but
is not identical.

A local minimum exists because several variables imply a complex conflict that

34

4.3 hybridGM

cannot be directly resolved by the SLS solver. It might be the case that conflicting
variable assignments are partially detected by the SLS solver, but the order and the
values used for these to change the current assignment will not lead to a solution.
Therefore, it might be worth to monitor the flips performed around local minima to
detect a set of possibly conflicting variables.

Using this knowledge, we can create a partial assignment by unassigning the flipped
variables around the local minimum. The result is an SSP. Given such an SSP, our
hybrid strategy consists in calling a DPLL style solver, which will try to resolve the
conflict by finding an assignment for the unassigned variables. In case the DPLL solver
finds an assignment that resolves the conflict using the unassigned variables, a solution
for the complete formula is found. If a satisfying assignment does not exist, the conflict
can not be resolved by using only the free variables in the SSP (i.e. the conflict variables
have not been unassigned in the SSP). In this case, the search of the SLS solver must
continue.

All in all, a generic algorithm implementing the above described idea will use an
SLS solver to localize qualitative local minima, build an SSP, apply the partial assign-
ment of the SSP on the formula, and try to find a solution for the simplified formula
with a DPLL solver. This process will be repeated until a solution is found or until
some stopping criteria is met. This solving approach can not prove the unsatisfiabil-
ity of the problem, however it could speed up the search process by finding solutions
sooner.

4.3 hybridGM

To check if our approach is promising we implemented a hybrid SAT solver called
hybridGM. The SLS solver used is gNovelty+. We conjecture that an SSP does not
contain a solution in the majority of cases, thus, we needed a solver that can prove
the unsatisfiability of a given (sub-)formula fast. The solver march_ks was the winner
of the UNSAT random category of the SC07, and therefore, we have chosen march_ks
for the DPLL component of hybridGM.

When implementing hybridGM, two questions arose. First, which local minima
should be used to create an SSP? Using every appearing local minimum in the objective
function leads to an overwhelming workload. Numerous local minima are discovered by
the SLS solver as we have noticed when analyzing the search trajectory of gNovelty+.
To reduce the workload, we confine ourselves to using only those assignments that
leave exactly one clause in the formula unsatisfied.

Second, how large should the SSP be? In other words how shall we set parameter ¢
when constructing the partial assignment 57 The more variables in 3 are unassigned,
the higher the probability to resolve all conflicts in the corresponding SSP. But on
the other hand, the less variables in § are unassigned, the faster the DPLL solver can

35

4 A Novel Approach to combine an SLS and a DPLL Solver for SAT

Algorithm 4: hybridGM solver
Input : Formula F, maxTries, maxFlips, barrier =1
Output: satisfying assignment a or UNKNOWN

1 for i =1 to maxTries do

2 a < randomly generated assignment

3 for j =1 to maxFlips do

4 if (a is model for F') then

5 L return «

6 var=pickVar()

7 flip(var)

8 update data structures

9 append (T, var)
10 if (|CU(F,«)| < barrier) then
11 B=construct SSP of size ¢ - n from Tg starting at position j
12 ~v=DPLL(F, 3)
13 if v is model for F then
14 L return -y
15 if DPLL did not perform search then
16 | c=c+0.05

17 return UNKNOWN;

solve the simplified problem. Therefore, we have to find a compromise between the
probability to resolve all conflicts and the run time of the DPLL solver.

Within preliminary experimental studies we started with an initial size of 0.5 - n,
which seems to be an appropriate size. In several cases the DPLL solver detected
conflicts without taking any decisions, which means that the pure application of 5 on
the formula F following the rules of Boolean logic already renders the formula as being
unsatisfiable. In such cases we gradually increase the SSP size by 5% of the number
of variables until the DPLL solver is performing search.

Algorithm 4 shows the pseudo-code of hybridGM. The solving concept is actually
not restricted to an particular SLS or DPLL solver. The main search paradigm is
that of an SLS solver with the only difference that when the objective function has
reached a certain barrier, the solver builds an SSP and calls the DPLL solver with the
constructed partial assignment and the formula. If the DPLL solver is able to solve the
problem, the algorithm terminates. Else, the SLS solver takes over again and continues
search while monitoring its search trajectory.

Within our concrete implementation of the framework we have used as SLS solver

36

4.4 Empirical Evaluation

gNovelty+ and as DPLL solver the look-ahead solver march_ks. Details about this
type of solvers can be found in more detail in Section 2.3.

4.4 Empirical Evaluation

For the implementation of hybridGM we used the gNovelty+ code in the version
submitted to the SC07, with a changed smoothing probability from 0.4 to 0.33. The
barrier was fixed to one, so that SSPs are built only when exactly one clause remains
unsatisfied. An adaptive scheme is subject of future research. In some cases when
calling march_ks and returning the result to gNovelty+, we observed that part of the
memory allocated by march_ks data structure is not released. This memory leak is
very small, however if the number of march_ks calls gets too large, we get an out of
memory exception. To avoid this case we limited the number of march_ks calls to 5000.

We also tested different settings for the size of the SSP (i.e. the number of variables
in an SSP). However, we found out that an initial value larger than 0.5-n just increases
the computation times of march_ks, without improving its success rate.

Soft- and Hardware The gNovelty+ and the adaptg2wsat0 code we used for the
comparison was the one submitted to the SC07.! The march_ks code we used was
a bug-fixed version of the SC07.2 The code of hybridGM was version 3 of the one
submitted to the SC09.2 The solvers were run on the bwGRiD (see page 123 for more
details).

The Benchmark Problems We used problems from two benchmark sets to compare
hybridGM with gNovelty+ and adaptg2wsat0: the SCO7 benchmark?, and the SATLIB
benchmark?®.

Concerning the SC07 benchmark, we randomly selected satisfiable randomly gen-
erated problems. Our set contains 2 + p problems of different sizes, small uniform
random k-SAT problems generated on the threshold and large-size k-SAT problems
that are underconstrained, being generated with a clause to variable ratio lower than
the threshold value. Concerning the SATLIB benchmark, we confined ourselves to only
crafted /industrial instances, because the provided random instances can be solved by
gNovelty+ and hybridGM in less than ten seconds.

"Mttp://www.satcompetition.org/2007/winners.tgz
’http://www.st.ewi.tudelft.nl/sat/Sources/sat2007/march_ks.zip
3http://www.cril.univ-artois.fr/SAT09/solvers/SAT2009sources. 7z
“http://satcompetition.org/2007/random.tar.bz2
Shttp://www.satlib.org

37

http://www.satcompetition.org/2007/winners.tgz
http://www.st.ewi.tudelft.nl/sat/Sources/sat2007/march_ks.zip
http://www.cril.univ-artois.fr/SAT09/solvers/SAT2009sources.7z
http://satcompetition.org/2007/random.tar.bz2
http://www.satlib.org

4 A Novel Approach to combine an SLS and a DPLL Solver for SAT

Results

Table 4.1 presents the results of our first empirical study, which reveals that
hybridGM dominated gNovelty+ on the 2 4+ p and the large 3-SAT problems. Both
types of problems seem to be underconstrained, containing many solutions. The in-
tensification of gNovelty+ is not sufficient to find the solutions in the area where the
search is performed. hybridGM can compensate this problem with its DPLL compo-
nent, which causes almost no overhead when called. The larger the number of times

march_ks finds the solution, the better is the speed up when compared to gNovelty—+.

Instance gNovelty+ adaptG2- hybridGM Gain
WSATO (gNov,March)

SAT 2007 Competition random
unif2p-p0.7-v3500-c9345-S1568322528-08 10% 2.91 | 1.63 9.63 | 7.82 (9,91) >1
unif2p-p0.7-v4500-c12015-S1973057201-08 25% 138.52 | 42.71 121.52 | 82.44 (23,77) >1
unif2p-p0.7-v5500-c14685-5915337037-05 95% 3.33 | 1.60 20.51 | 5.79 (24, 76) >1
unif2p-p0.7-v6500-c17355-S152598520-02 226.64 | 168.00 10.23 | 1.90 2.17 | 1.66 (27,73) 104.44
unif2p-p0.8-v1295-c4027-S1762612346-15 136.06 | 94.03 1.13 | 0.79 2.65 | 2.20 (9, 91) 51.34
unif2p-p0.8-v1665-c5178-S1404069132-16 265.54 | 196.49 5.70 | 3.10 23.56 | 17.24 (13,87) 11.27
unif2p-p0.8-v2035-c6328-5316347254-19 0.75] 0.48 0.18 | 0.14 0.23 | 0.17 (40, 60) 3.26
unif2p-p0.8-v2405-c7479-S183991542-09 33% 33.50 | 21.10 92% (5, 87) >1
unif2p-p0.9-v1170-c4235-S2131244303-19 52.26 | 31.82 1.45 | 1.21 2.80 | 2.07 (30, 70) 18.66
unif2p-p0.9-v630-c2280-S2099846342-04 0.35 | 0.27 0.14 | 0.10 0.33 | 0.23 (88, 12) 1.06
unif2p-p0.9-v810-c2932-S1274825698-06 0.27 | 0.21 0.06 | 0.05 0.15 | 0.10 (59,41) 1.80
unif2p-p0.9-v990-c3583-5461590508-14 0.28 | 0.21 0.10 | 0.08 0.23 | 0.18 (56, 44) 1.22
unif-k3-r4.261-v650-c2769-5S1089058690-02 0.25 | 0.16 0.17 | 0.10 0.38 | 0.28 (61, 39) 0.66
unif-k3-r4.261-v650-c2769-S1172355929-14 0.04 | 0.02 0.02 | 0.02 0.05 | 0.04 (79,21) 0.80
unif-k3-r4.2-v10000-c42000-S1173369833-06 73.87 | 50.01 11% 7.28 | 5.61 (23,77) 10.15
unif-k3-r4.2-v10000-c42000-S421554531-04 98.25 | 79.86 7% 11.66 | 9.52 (30, 70) 8.43
unif-k3-r4.2-v13000-c54600-51054448974-13 97% 0% 44.89 | 38.74 (36, 64) >1
unif-k3-r4.2-v13000-c54600-S161446644-14 55% 0% 99% (33, 66) >1
unif-k3-r4.2-v16000-c67200-51099746708-06 23% 0% 79% (24, 55) >1
unif-k3-r4.2-v16000-c67200-S1600965758-04 18% 0% 73% (18, 55) >1
unif-k3-r4.2-v19000-c79800-S1106616038-10 74% 0% 92.02 | 70.75 (39, 61) >1
unif-k3-r4.2-v19000-c79800-51299985238-16 2% 0% 60% (16, 44) >1
unif-k3-r4.2-v4000-c16800-S1178874381-13 8.11 | 6.02 184.52 | 110.63 4.99 | 4.00 (46, 54) 1.63
unif-k3-r4.2-v4000-c16800-S1588170820-15 94% 14% 11% (5, 6) <1
unif-k3-r4.2-v7000-c29400-S102550125-14 42.92 | 31.46 82% 6.85 | 5.70 (28,72) 6.27
unif-k3-r4.2-v7000-c29400-52051531193-03 45.65 | 27.33 56% 9.84 | 7.48 (30, 70) 4.64
unif-k5-r21.3-v100-c2130-S455021619-18 0.02 | 0.02 0.05 | 0.04 0.03 | 0.03 (100, 0) 0.67
unif-k5-r21.3-v100-c2130-S744612847-12 0.06 | 0.04 0.06 | 0.06 0.07 | 0.05 (100, 0) 0.86
unif-k5-r21.3-v110-¢2343-S1019153514-04 0.66 | 0.47 0.33 | 0.26 0.66 | 0.46 (100, 0) 1.00
unif-k5-r21.3-v110-¢2343-S1869272420-19 0.05 | 0.04 0.06 | 0.05 0.05 | 0.04 (100, 0) 1.00
unif-k5-r21.3-v120-c2556-S1191693850-19 0.14 | 0.11 0.12 | 0.08 0.15 | 0.11 (100, 0) 0.93
unif-k5-r21.3-v120-¢2556-S1615006153-07 0.48 | 0.32 0.40 | 0.26 0.48 | 0.33 (100, 0) 1.00
unif-k5-r21.3-v130-¢2769-S1109841921-18 0.50 | 0.40 0.39 | 0.28 0.51 | 0.41 (100, 0) 0.98
unif-k5-r21.3-v130-c2769-51284937235-05 0.33] 0.24 0.27 | 0.18 0.33 | 0.24 (100, 0) 1.00
unif-k7-r89-v70-c6230-S1106151685-15 0.64 | 0.38 1.43 | 1.26 0.64 | 0.38 (100, 0) 1.00
unif-k7-r89-v70-c6230-S1635684145-01 0.52 | 0.38 1.28 | 1.15 0.53 | 0.39 (100, 0) 0.98
unif-k7-r89-v75-c6675-5S1299158672-14 11.33 | 8.29 10.93 | 6.86 11.37 | 8.33 (100, 0) 1.00
unif-k7-r89-v75-c6675-5S1572638390-17 9.99 | 7.29 10.98 | 8.39 9.98 | 7.24 (100, 0) 1.00

SATLIB industrial

38

4.5 Extended Analysis

Instance gNovelty+ adaptG2- hybridGM Gain
WSATO (gNov,March)

bw_large.c 4.31 | 2.94 3.49 | 2.72 9.09 | 6.24 (100, 0) 0.47
bw_large.d 21.34 | 15.30 16.11 | 10.63 64.25 | 41.74 (100, 0) 0.33
g125.17 11.00 | 7.50 2.17 | 1.53 10.26 | 7.69 (100, 0) 1.07
g125.18 0.13 | 0.13 0.22 | 0.22 0.14 | 0.14 (100, 0) 0.93
2250.15 0.25 | 0.25 1.07 | 1.07 0.27 | 0.27 (100, 0) 0.93
£250.29 13.92 | 10.11 8.96 | 7.96 14.31 | 11.10 (100, 0) 0.97
qgl-08 202.40 | 166.45 4.53 | 4.31 88% (88,0) <1
qg2-08 43% 10.77 | 9.07 9% (9,0) <1
qgh-11 2% 64% 6% (6,0) >1
ag6-09 92% 2.95 | 1.64 99% (99, 0) >1
qg7-13 0% 18% 0% (0,0) <1
SATLIB crafted
parl6-1-c 4.49 | 2.96 12.20 | 8.56 70% (66,4) <1
par16-2-c 51.64 | 40.79 101.65 | 81.98 66% (52,14) <1
parl6-3-c 18.24 | 14.20 30.18 | 22.65 99% (96, 3) <1
parl6-d-c 19.77 | 11.30 24.91 | 17.13 97% (96, 1) <1
parl6-5-c 19.21 | 12.32 17.20 | 13.45 98% (95, 3) <1
par32-1-c 0% 0% 0% (0, 0) <1
par32-2-c 0% 0% 0% (0, 0) <1
par32-3-c 0% 0% 0% (0, 0) <1
par32-4-c 0% 0% 0% (0, 0) <1
par32-5-c 0% 0% 0% (0, 0) <1

Table 4.1: Each solver performed 100 runs per instance (gNovelty+ and hybridGM
were started with the same seed). Run times are given in seconds: mean |
median. If the solver was not able to succeed 100 times (each within 2000
seconds), we give the success rate for the instance in percent. The hybridGM
column also contains a percentage tuple that specifies how often the solution
was found by each component. The gain column represents the speed up
of hybridGM over gNovelty+ (> 1 indicates that hybridGM was faster or
had a better success rate and is typed bold).

On the small highly constrained k-SAT problems, hybridGM cannot take advan-
tage of its DPLL component that is not able to solve the problem in any of its calls.
The same holds also for most of the industrial and crafted problems.

hybridGM was submitted to the SC09 in the random satisfiable category where
it won the third place (bronze medal). Its performance on the large 3-SAT problems
exceeds that of all other competitors, being very often the only solver that was able
to solve a problem. On 5-SAT and on 7-SAT instances, its performance dropped sig-
nificantly loosing points against the competitors.

4.5 Extended Analysis

To show that the hybridization concept can be applied also to other solvers we have
implemented two other hybrid solvers, namely hybridGP respectively hybridPP. The

39

4 A Novel Approach to combine an SLS and a DPLL Solver for SAT

2000

1500

(sec)

1000 r

PAR10 runtime

500 r

0.30 0.35 0.40 0.45 0.50

sp

Figure 4.2: The performance of hybridGP solver with varying values for sp (x-axis)
measured as PAR10 of the run time in seconds (y-axis). The lower the
PARI10 value the better the performance of the solver.

former uses as an SLS component a reimplementation of gNovelty+ and as a DPLL
component the CDCL solver picosat [Bie08], which is memory efficient and has an
easy to use Application Programming Interface (API). hybridPP uses the state-of-
the-art SLS solver probSAT (see Chapter 7) and the CDCL solver picosat [Bie08].
In both solvers the SSP size is limited to exactly half of the number of variables of
the input formula. To limit the solving time of picosat we allow it to perform up to
5 - 10% decisions. This value seems to be sufficient for picosat to solve the constructed
sub-problem in almost all tested cases. One call of picosat needs on average only 0.05
seconds.

Optimal sp parameter for hybridGP As a first step we want to know what is the
optimal value of the smoothing probability parameter sp in the SLS component for
different types of k-SAT problems. We have randomly selected a set of 100 3-SAT
problems with 10* variables and a ratio of 4.2. These instances come from [TBH11]
and are also used in Chapter 7 for the optimization of the parameters of the probSAT
solver. We have evaluated hybridGP with different values of sp € [0.3...0.5] in steps of
0.005 on these instances with a cutoff time of 200 seconds. The performance is measured
as PAR10° value of the run time. Figure 4.2 shows the results of the evaluation.

A value of sp = 0.35 seems to be the best choice for this type of instances, and
not sp = 0.4 as mentioned in [PTGS07]. The shape of the performance curve is very
similar to the one of the probSAT solver studied in Chapter 7 (see Figure 7.1 right

SPARI10 (Penalized Average Run time) is the average run time of the solver, while runs that reached
the cutoff time are penalized with a factor of 10.

40

4.5 Extended Analysis

side). The performance degradation when moving away from the optimal value is
more pronounced on the left side (lower sp values) than on the right side (higher sp
values). We can thus conclude that the sp parameter indirectly controls the greediness
of the solver and can thus be compared to the noise parameter in the WalkSAT solver
[SKC94] and the cb parameter in the probSAT solver [BS12].

We have performed similar experiments to determine appropriate values of sp for
5-SAT (n = 500, » = 20) and 7-SAT (n = 90, » = 85) problems, also coming from
[TBH11]. Beneficial values for the sp parameter for our target problems are as follows:

k-SAT size ratio sp

3-SAT n=10* r=42 0.35
5-SAT n=>500 =20 0.90
7-SAT n=90 7r=85 0.90

Having the optimal sp parameter, we can measure the difference between hybrid GP
with and without the CDCL component. The same evaluation is also done for hybrid PP
to see if the hybridization can boost also a state-of-the-art solver. The parameters of
hybridPP are the default ones reported in [BS13] and are also presented in Chapter 7.
We start both pairs of solvers with the same seed, which means that both solvers have
the same flip trajectory in each run. The only difference is that the hybrid version will
stop on the flip trajectory once a solution has been found by picosat within an SSP,
while the version without hybridization (the plain SLS) will continue search. For the
evaluation, we used sets of 250 instances with size and ratio reported before with a
cutoff time of 900 seconds.

3-SAT Figure 4.3 (first row) shows the results of our evaluation for 3-SAT problems
as a scatter plot. Points lying on or near the diagonal are runs where the problem was
either solved by the SLS component or by the CDCL component just shortly before
the SLS component found the solution. As no points lie below the diagonal, we can
conclude that the overhead caused by the CDCL calls can be neglected. All points
laying clearly above the diagonal represent runs where picosat finds solutions within
a constructed SSP, which is often the case for hybridGM. In the case of hybridPP,
the boost of the hybridization is not that prominent but still present. See Table 4.2a
for detailed results. In terms of average run time, hybridPP can improve probSAT by
15%, reducing the average run time from 29.46 seconds to 25.59 seconds. From the
total of 250 runs, picosat was able to find a solution in 112 cases, while in the other
cases the SLS solver found the solution.

5-SAT The second row of Figure 4.3 shows the results of the evaluations on the 5-SAT

problems. The performance of gNovelty+ can be improved in several cases as can be
seen from Figure 4.3 (second row, left side) where several points lay above the diagonal

41

4 A Novel Approach to combine an SLS and a DPLL Solver for SAT

hybridGP CPU Time hybridPP CPU Time

500 | T
500
200

200
100
100
50
50

20
20

10
10

hybridGP (only SLS) CPU Time
hybridPP (only SLS) CPU Time

2 5 10 20 50 100 500 2 5 10 20 50 100 500
hybridGP CPU Time hybridPP CPU Time
500.0 200.0 A1
200.0 g 100.0 n ::;t °E’
100.0 = 50.0 | . %ﬁ + | E
> FE W o
50.0 o 200 } + o
o : + o
20.0 g 100 r eV il Q)
L]
10.0 > 50 + aﬁﬁ g >
5.0) 20 + f*i Lt s
o f a
2.0 g 10 t N 4 g
1.0 % 05 #&i T 2‘
0.5 |
LE L
0.5 2.0 10.0 50.0 200.0 02 10 50 20.0 100.0
hybridGP CPU Time hybridPP CPU Time
500.00
()
100.00 £ “é
50.00 E 100.00 =
2 50.00 2
10.00 % S
5.00 @ 10.00 ?,
> 5.00 -
1.00 § E’,
0.50 g 1.00 a
pe) 0.50 e
0.10 -% %
0.05 0.10
0.05
0.05 0.50 5.00 50.00 005 050 5.00 5000 50000

Figure 4.3: Comparison of the performance (CPU-time measured in seconds) on a log
scale between the hybrid solver hybridGP (left side) and hybridPP (right
side) represented on the x-axis and its SLS components represented on
the y-axis, when started on the same flip trajectory on 3-SAT (first row),
5-SAT (second row) and 7-SAT problems (third row).

42

4.5 Extended Analysis

and only few of them below. This improvement can be seen in the average run time
(see Table 4.2b) and also more pronounced in the median run time. The probSAT
solver can not profit from the hybridization, being rather hindered by the CDCL
component. Here we have to notice that probSAT reaches remarkable performance on
5-SAT problems when compared to other SLS solvers. Further, the number of calls of
picosat is relatively high, however no solution can be found in the constructed SSPs.

7-SAT The results of the 7-SAT evaluation can be seen in Figure 4.3 last row. Similar
to hybridGM no improvement can be achieved for this type of problems. The number
of constructed SSPs is relatively high, however none of them contains a solution. As a
result the run time of the solver is extended without benefit (see Table 4.2¢ for detailed
run times).

SC12 Hard combinatorial We have performed similar evaluations also for hard com-
binatorial problems. We have used the satisfiable instances used in SC12 Hard Com-
binatorial Track. The results of the evaluation can be seen in Figure 4.4. Besides some
cases where the CDCL component is able to find a solution (around 10%), in all other
cases the numerous calls of picosat increase the run time of the solver considerably,
both for hybridGP and hybridPP. As opposed to the k-SAT problems, on the hard
combinatorial problems picosat is sometimes not able to solve the sub-problem within
the 5% 10* decisions that it is allowed to perform”. In the other cases the SSP does not
contain a solution. This was also the case for 7-SAT problems. The similarity with re-
spect to the behavior of SLS solvers on large k-SAT problems and hard combinatorial
problems was also observed in [BS12] and will be discussed in Chapter 7. Since the
constructed SSPs do not contain a solution, though plenty of them can be constructed,
the instances contain many high quality local minima found by the SLS solver, where
it gets trapped.

Run time distribution of the SLS and CDCL components To show that the runtime
of the CDCL component is almost negligible, we have computed for the set of 3-SAT
instances the runtime of the SLS and CDCL components separately, and plotted them
as a cactus plot in Figure 4.5. The run time of picosat is two orders of magnitudes
lower than that of the gNovelty+ solver, being in most cases lower than 0.1 seconds.
Consequently, it might be worth increasing the size of the SSP and measure the gain
in terms of CPU time.

"An adaptive scheme which adapts the size of the SSPs would probably be more appropriate for
these types of problems.

43

4 A Novel Approach to combine an SLS and a DPLL Solver for SAT

hybridGP CPU Time hybridPP CPU Time

- %j - - A

500.0 | prd 500.0 | #
S ;f o
£ £ £
=+ | 2 + IS
1000 ﬁgf + |5 1000 t Fﬁi s
L A T 4 o L 4 o
50.0 + ;ﬂ g 50.0 f% 15
af = a1 =
. ﬁ 7 g 2
10.0 | ﬁffm +h 2 10.0 | ey 2
50 i i S 50 <
’@Etﬁﬁ*ﬁ o Yo+ 2
AR 5 £ g
10 b+ awt T <) 10 | LA T + g
A S Hat S
05 & > 05 | T 4F >
+ = . =

ELidn . + + + # T
s i
01 z L L L L 01 L L L L L
01 05 5.0 50.0 500.0 01 05 5.0 50.0 500.0

Figure 4.4: Comparison of the performance (CPU-time measured in seconds) on a log
scale between the hybrid solver hybridGP (left side) and hybridPP (right
side) represented on the x-axis and its SLS components represented on the
y-axis, when started on the same flip trajectory on the satisfiable hard
combinatorial problems from SC12.

—&— hybridGP SLS CPU time

100.00 /| —— hybridGP picosat CPU time
@
©10.00
=
'_
=) .
o 1.00
(@]

0.10 —

0.01 T T T T

50 100 150 200 250

number of solved instances

Figure 4.5: The run time of the CDCL component (picosat) and of the SLS component
(gNovelty+) within the hybridGP solver on the set of 3-SAT instances. The
y-axis is logarithmic scale.

44

4.6 Related Work

(a) 3-SAT
3ol number total average median
oer solved | CPUtime CPUtime CPUtime
1 | hybridPP 250 6398.271 25.593 8.023
2 | hybridPP (SLS) 250 7366.177 29.464 8.612
3 | hybridGP 239 24398.630 97.594 22.940
4 | hybridGP (SLS) 238 26662.139 106.648 28.294
(b) 5-SAT
3ol number total average median
oer solved | CPUtime CPUtime CPUtime
1 | hybridPP (SLS) 250 2768.550 11.074 4.454
2 | hybridPP 250 3727.495 14.910 5.987
3 | hybridGP 250 9382.189 37.528 12.635
4 | hybridGP (SLS) 250 10488.255 41.953 15.822
(c) 7-SAT
3ol number total average median
Oer solved | C'PUtime CPUtime CPUtime
1 | HybridGP (SLS) 250 4712.859 18.851 4.238
2 | hybridGP 250 5298.739 21.195 4.782
3 | hybridPP (SLS) 244 14412.445 57.649 8.714
4 | hybridPP 244 14874.343 59.497 9.147

Table 4.2: Ranking of the hybrid solvers and their SLS components on k-SAT problems
with a cutoff time of 900 seconds.

4.6 Related Work

Considerable effort has been undertaken to create hybrid SAT solvers for more than a
decade now. In general, three different approaches to create such hybrid SAT solvers
have emerged.

The first approach uses an SLS solver to support a DPLL solver [Cra96, MSG9S,
FF04, HD04, FHO7, Gab09]. Such a support can come in various ways. In [Cra96],
an SLS solver is used to derive weights for clauses, which are then used by a DPLL
solver to preferably branch on variables that occur more often in clauses with higher
weights. In [MSG98], an SLS solver is used to find local inconsistencies in a formula.
This knowledge then allows to narrow the search of a DPLL solver to the inconsistent
part of a formula. As a result, the global unsatisfiability of a formula can be shown in

45

4 A Novel Approach to combine an SLS and a DPLL Solver for SAT

less computational time. In [FF04], an SLS solver is used to determine an ordering of
the branching variables that a DPLL solver should follow. In [Gab09], an SLS solver
is used to identify areas of the search space that are more likely to contain a solution.
These areas are represented as partial assignments which are used to start a DPLL
solver. The solver SparrowToRiss [BM13b] submitted to the SC13 uses the SLS solver
Sparrow for 5 - 10® flips, and then passes the last assignment in chronological order
(i.e. the oldest flipped variable first) to the CDCL solver Riss, which initializes the
phase saving of the variables according to this information. More details on this solver
can be found in Section 6.6 of this thesis.

As a second approach, one is able to use information gathered by DPLL solvers
on a certain formula to support the search of an SLS solver [JL02, FR04, HLDV02].
In [FRO4], a DPLL solver is called whenever the SLS solver has moved into a local
minimum in the search space. The approach adds implied clauses (learned by the
DPLL solver) to modify the landscape of the search space of the SLS solver. This
learning process is repeated until the SLS solver is able to move out of the (former)
local minimum. In [HLDVO02], a DPLL solver will derive implications between vari-
ables when arriving in a certain node of its search tree. With these implications, a
reduced version of the currently investigated formula is created. When applying the
SLS solver on the reduced formula, it will consider the equivalence classes rather than
the original variables. This in turn helps the SLS solver to concentrate on actually
different variables, when making its choice which variable to flip next. The SLS solver
is then allowed to perform a maximum number of flips to search for a solution (under
the DPLL provided preconditions). If the SLS solver finds a solution during its search,
the algorithm terminates. If the SLS solver exceeds the number of allowed flips and
did not find a solution, the DPLL solver comes back into play and continues traveling
down its search tree.

The third approach on creating hybrid SAT solvers is peer-like, where SLS and
DPLL solvers are supposed to benefit equally from each other as presented in [FHO7,
LMSO08]. The hbisat solver [FHO7]| and its successor hinotos [LMS08] both use an
SLS solver that first tries to solve the formula. When a certain criteria is met (e.g.,
only a certain number of unsatisfied clauses remain), a DPLL solver is called, which
is supposed to solve these clauses separately. When the DPLL solver finds a model
for this partial set of clauses, it will return the corresponding assignment to the SLS
solver, which will then use this assignment to continue its search. Eventually, the SLS
solver will be able to find a solution. If this is not the case, the set of clauses that
the DPLL solver investigates, grows over time. Eventually, the DPLL solver will be
provided with enough clauses to find a contradiction and deduce the unsatisfiability
of the formula or it can provide a solution for the complete formula.

46

4.7 Conclusion and Future Work

4.7 Conclusion and Future Work

We have presented a novel and simple approach to analyze and improve the search of
an SLS solver. Our approach is based on the construction and use of Search Space Par-
tition (SSP). We defined this new concept, explained how such SSPs are constructed
and how they are used. We implemented our novel approach in the hybrid SAT solver
hybridGM, utilizing gNovelty+ as the SLS component and march_ks as the DPLL
component. For an extended analysis we have implemented the solver hybridGP and
hybridPP, which use the SLS solver gNovelty+ respectively probSAT and the CDCL
solver picosat.

We performed an empirical study to test our approach against gNovelty+ and
adaptg2wsatl. Our study revealed that hybridGM outperforms gNovelty+ on 2 + p
and large size uniform random 3-SAT problems, without experiencing serious losses in
other formula categories. We also showed that using a DPLL component to solve the
SSPs yields no additional advantage on (the tested) crafted and industrial instances.
We have also shown that the performance of a state-of-the-art SLS solver like probSAT
can be improved on 3-SAT problems with the hybridization scheme.

Several findings of this study leave several questions unanswered. For example, on
uniform random 5- and 7-SAT instances, the DPLL component rarely finds a solution.
We hypothesize that this is due to the fact that the constructed SSP does not contain
all conflicting variables. Moreover, SLS solvers have difficulties to find qualitative local
minima for this type of problems.

The way the partial assignments (SSPs) are constructed plays a crucial role for
our hybrid solving approach. There are several other ways to construct an SSP, which
might also yield interesting results. The size of the SSP is also important and should
be further analyzed. Large SSPs can increase the chance to find a solution, but also
increase the complexity of the sub-formula and thus the solving time of the DPLL
component. The barrier at which an SSP is built can also influence the performance
of the solver. An adaptive scheme for the size of the SSP and the barrier might be a
promising approach.

Another interesting research direction would be the use of our hybridization con-
cept for survey propagation type solvers. The set of variables that converge during the
message passing procedure can be frozen to their polarity. The remaining variables
with low convergence or no convergence at all are left undefined. This partial assign-
ment represents the SSP that is passed to the CDCL solver, which is then called to
solve the sub-problem. In case of unsatisfiability, the SSP can be extended to other
variables.

Acknowledgments We thank the bwGRiD [bhgl0] project and especially the local
coordinator of the project Christian Mosch. We also thank Marijn Heule for providing
some major fixes to march_ks and Armin Biere for making available the picosat solver.

47

5 Improving SLS for SAT with a New
Probability Distribution

In this chapter, we introduce a new SLS solver for the SAT problem. Our solver
is based on gNovelty+, which uses an additive clause weighting scheme. When our
solver reaches a local minimum, in contrast to glNovelty+, it computes a probability
distribution for the variables from an unsatisfied clause. Then it flips a variable picked
according to this distribution. Compared with other state-of-the-art SLS solvers this
distribution needs neither noise nor a random walk to escape efficiently from cycles.
We compare our algorithm, which we called Sparrow to several state of the art solvers
on a broad range of SAT problems. Our results show that Sparrow is significantly
outperforming all of its competitors on the random k-SAT problem establishing new
state-of-the-art performance marks.

Further, we also show that by using appropriate preprocessing techniques the solver
is able to solve satisfiable hard combinatorial problems, thus yielding also on this type
of problems state-of-the-art performance

This Chapter is mainly based on work we have performed in [BF10], where the
solver was presented for the first time. In [BFTH11], we have further analyzed the
parameter space of the solver and optimized these for SC11. In [BM13a], Sparrow
was used with a configured preprocessor and was evaluated on hard combinatorial
problems.

5.1 Introduction

Most SLS solvers use different measures in their pick Var method. For example, Novelty
uses the score and the age of variables (the number of steps since the variable was
last flipped). The score of variable z; is defined as the number of clauses that x; will
satisfy minus the number of clauses that will become unsatisfied by flipping z; (see

49

5 Improving SLS for SAT with a New Probability Distribution

Chapter 3 for more details). To choose a variable, Novelty picks a random unsatisfied
clause, and then selects the best and the second best variable relative to their score.
If the best variable is not the one with the lowest age-value within that clause, then
this variable is always chosen. Otherwise, the best variable is chosen with probability
(1 —p) and the second best variable with probability p. With probability wp a random
walk is performed. Neither the difference between the scores nor the age-difference is
taken into account, which is a disadvantage in our opinion.

In this chapter, we address this weakness, and improve a state-of-the-art solver like
gNovelty+. We will replace the AdaptNovelty heuristic with a novel heuristic based
on a probability distribution that takes into account the difference between the score
and the age of variables. The resulting scheme is not dependent on noise settings and
does not need an explicit random walk step to escape from cycles. We implemented
these improvements in a solver called Sparrow'. To show its superior performance,
we compare Sparrow with the winners of the SAT competitions from 2009 and 2011
on a wide range of k-SAT formulas. We show that Sparrow is able to outperform all
winners of the SC09 and SC11 competitions.

5.2 Sparrow

The Sparrow SAT solver is based on the 2007 version (submitted to the SC07) of gNov-
elty+ which is described in more detail in Section 3.6. gNovelty+’s pickVar heuristic
works in four phases that all take into account the weights of the clauses. Phase zero
is a random walk step, which is performed with probability 0.01. In the first phase it
uses the gradient-walks until there are no more promising variables to flip. This state
characterizes a local minimum. To escape from this local minimum, a variable is chosen
according to the AdaptNovelty+ heuristic (see Section 3.3 for more details about this
heuristic). Whenever an AdaptNovelty+ step is performed, the weights of the clauses
are updated according to an additive weighting scheme. With probability (1 — sp) the
weights of the unsatisfied clauses are increased by one and with probability sp the
weights of the satisfied clauses are decreased by one. Note that the version submitted
to the SCO7 is slightly different to the version of the solver, as presented in [PTGS07].

The first two phases of gNovelty+ without weights are the core of the G2WSAT
algorithms. The performance of this kind of algorithm heavily relies on the AdaptNov-
elty+ component [LH05]. We suppose that by introducing a better differentiation the
performance of the solver might improve.

Defining a probability distribution One drawback of SLS algorithms using Adapt-
Novelty+-like heuristics to escape from local minima is the lack of differentiation

!The sparrow is the emblem of the city of Ulm

50

5.2 Sparrow

between the variables from an unsatisfied clause. While always selecting the best vari-
able in gradient-steps seems to work very well, a more advanced heuristic is needed
when a local minimum is reached. We therefore keep the gradient-walk as well as the
adaptive weighting scheme, but remove the AdaptNovelty+ component and replace it
with a new heuristic that is based on a probability distribution over the variables from
a random unsatisfied clause.

When defining this probability distribution we focus on two aspects: First, we
want to keep the features used by AdaptNovelty. Second, we want to allow a bet-
ter differentiation in the heuristic between the variables taken into consideration for

flipping.

Let {y1,...,yu} be the variables from a random unsatisfied clause C' of size u. We
now define the probability of choosing a variable y; as
fs(yi) * fa(yi)

P = S)+ fula) (65-1)

where fs(y;) is a function of score(y;) and f,(y;) is a function of age(y;). Recall that
the age of a variable is the number of flips since it last changed its value.

We now have the possibility to directly let the score and the age of a variable
influence its probability of getting flipped. This offers a better differentiation between
the individual variables than just by deciding whether they have the best score or the
lowest age in the clause. This type of function is similar to the Softmax activation
function used in reinforcement learning? [SB98].

In particular we chose the following functions for our implementation:

Foly) = e (5.2)
faly) = (“gigf’)) 1 (5.3)

This yields a probability distribution that grants higher values to variables with
higher score and age (like in AdaptNovelty+). As it can easily be seen from the
formula, small changes in score have a huge impact on the probability because of the
exponential shape of the function. On the other hand the age of a variable only slowly
starts to influence the probability, but is also able to have a great impact once an age of
c3 is exceeded. The degree of influence depends on cy. The parameter sp inherited from
gNovelty+ together with ¢, co, c3 represent the parameters of Sparrow. Appropriate
values for these parameters will be specified in our empirical study.

2Reinforcement learning, a sub-topic of machine learning, is a collection of methods concerned with
determining actions for agents that act in an environment, such that a given reward measure is
optimized.

o1

5 Improving SLS for SAT with a New Probability Distribution

The resulting distribution exhibits the two properties mentioned before. It behaves
similar to AdaptNovelty when it comes to preferring variables with best score and high
age. Additionally, it differentiates between how good the score and how old the variable
is compared to the other variables from the unsatisfied clause. Furthermore, we do not
need an explicit implementation of a random walk step since the probability of being
flipped is greater zero for all variables in the clause. If the solver would perform in each
step only probability based decisions, then the solver would have the PAC property,
but this is not the case, as the first type of decisions are those of the gradient heuristic
inherited from gNovelty+.

Algorithm 5 describes the pseudo-code of Sparrow. The major difference to the
gNovelty+ solver (described in Algorithm 3) is the removal of the random walk step
and of the AdaptNovelty heuristic. The probability based heuristic is described be-
tween the lines 9 and 19. First, we select randomly an unsatisfied clause C, and com-
pute the function values for each variable occurring in this clause. By selecting a
random position between 0 and the sum of the function values, and then finding the
interval where this random position lies, we emulate picking a variable according to
the constructed probability distribution. After determining the variable, the solver
updates the weights of the variables.

Implementation details In the first implementation of Sparrow [BF10|, we have
adapted the scores of variables with —10 > score(y,) > 0. Variables with a score
less than —10 are treated as having score(yr) = —10 and those with score larger than
zero as score(yi) = 0. Variables having score greater than zero would have already
been selected by the GZWSAT component if they would have been promising. If they
have a positive score but are not promising (i.e. the positive score is a result of their
own flip when they had a negative score), then their score is treated as zero (i.e. the
function value will be one). To avoid computation of the score function each time a
variable is picked we compute at the beginning a lookup table. The age function is
computed every time on the fly because the age values have a very wide range.

5.3 Empirical Evaluation

Sparrow was empirically analyzed in different publications and also in different compe-
titions. The first and preliminary evaluation was performed in [BF10], where Sparrow
was presented for the first time and was evaluated solely on 3-SAT problems from
the SC09. The second empirical evaluation was performed in [TBH11] and [BFTH11],
where parameters of Sparrow have been also optimized for 5- and 7-SAT problems.
This version of Sparrow, with optimized settings, was submitted to the SC11, where
Sparrow won two gold medals in the random category sequential and parallel track
(Sparrow is not a parallel solver, but its performance exceeded that of all other parallel

52

5.3 Empirical Evaluation

Algorithm 5: Sparrow solver

TU W N =

© 0w N o

10
11
12
13

14
15
16
17
18
19

20
21
22
23

24
25

26

Input : Formula F', mazxTries, maxFlips, sp, c1,ca,c3
Output: satisfying assignment « or UNKNOWN
for ¢ =1 to maxTries do
a < randomly generated assignment
for j =1 to maxFlips do
if (a is model for F') then
L return «

if 3 promising variable then
‘ var=Dbest promising variable (break ties by age)

else
C' = randomly selected unsatisfied clause
sum =0

for k =1 to size(C) do

L prob(ye) = fs(yr) - fa(yr)
sum~+ = prob(y)

pos = uniform random number in (0... sum)
for k = size(C) downto 1 do
sum— = prob(y)
if sum < pos then
var=variable at position k in clause C'
break

if (rand()< sp) then
reduce weights of all weighted clauses by 1
else
L increase weights of all unsatisfied clauses by 1

flip(var)
| update the promising variable list of G2WSAT

return UNKNOWN;

93

5 Improving SLS for SAT with a New Probability Distribution

solvers, thus also winning the parallel track). Further we have also submitted Sparrow
to SC12 as a reference solver. All these analysis were performed only on randomly
generated problems. The latest analysis of Sparrow was performed in [BM13a], where
the solver was slightly improved and augmented with the preprocessor CP3 to be able
to solve also hard combinatorial problems.

5.3.1 SC09 Random 3-SAT

To assess the performance of Sparrow on randomly generated 3-SAT problems we
compare Sparrow with the best performing solvers from SC09 random sat category,
TNM, gNovelty+ and hybridGM (see Chapter 4 for more details on this solver). The
solver TNM is using a two noise mechanism scheme within a G2ZWSAT solver. The
parameters of Sparrow have been determined manually, and only appropriate settings
for 3-SAT problems were found. For Sparrow we used the following parameter settings
for all runs: sp = 0.35, ¢1 = 2, ca = 4, c3 = 10°. All evaluations were performed on a
cluster of the bwGRiD. See page 123 for technical details.

The Benchmark Problems For our tests, we use two benchmark sets containing
randomly generated 3-SAT problems with a clause to variable ratio of » = 4.2. They
have been generated according to the uniform random generation model presented in
Section 2.2.3. The first set contains 64 instances from the random satisfiable large
set of SCO9 with a number of variables ranging between 2000 and 18000. The second
set contains all formulas of the additional benchmark from the same category with a
number of variables ranging between 20000 and 26000.

All solvers were run 100 times (50 for the additional benchmark set, due to resource
limitations) on each instance and the mean values for the running time and the number
of flips were calculated. The time limit was set to 1200 seconds and 2400 for the second
benchmark. On the instances on which one of the compared solvers did not finish all
100 (respectively 50) runs within the time limit we plot the number of successful runs.

Solver version For all solvers we have used the code submitted to the SC09. The
version of gNovelty+ submitted to SC09 uses a tabu scheme and we changed the name
of the solver in gNovelty+2T not to confuse it with the original solver submitted to
SCo7.

Results The results of our evaluation are represented as scatter plots in Figure 5.1.
TNM and hybridGM are compared to Sparrow on the regular benchmark first and
on the additional benchmark in the following row. We do not plot the results on the
additional benchmark for gNovelty+2T, because it has poor performance on these
instances.

54

5.3 Empirical Evaluation

Numbers of flips Time in seconds Success runs
=3] S g
_ o =]
© @, © ° -
? o %J (=3
g 1 % § — Oc ©
— o
| Ooo o _| ‘éo 7
S @8 o o < -
+ — —
& ™M \ e \ \ \ ° 4 \ \ \ \ \
=S o
S 0.0e+00 1.0e+08 0 50 100 150 0 20 40 60 80 100
— & % - B} 2
© | o 8: °]
2 4 o < o P
Jol - o
@ | o - 8
s |
— N o _| o
8 o <
T o - o -
K B B B . — T T T T T T T T T T T
0e+00 2e+08 4e+08 0 100 300 500 0 10 20 30 40 50
[eo]
o
g 132 8 8
8 e
R ™ § —] Og
+ © —
2 3 |% g o 3 8
o 2 a N o _
S o 3 o
3 g g |8 o g
c o - 8 &
o 2 °
e o — o —
S T T T T T 1 T T T T T T T T T T
o
0.0e+00 1.56+08 3.0e+08 0 100 200 300 0 20 40 60 80 100
[S] 3 [} ‘8_ —
N o
_ o
© N ° N °©
? o o o _| Q
o L 7 © °©
< & ° ® o
T %8’ e n
s | &2 8 & - o
o 7| o o
> g 7 T T T T T T T T T T T T T
(O] 0.0e+00 1.0e+08 0 50 100 150 200 250 0 20 40 60 80 100
©
= S S © 3
s - o T s
o 3 ° S ¢ B 8
T | 8 © o
8 oo > © 7
— <3S © — © o |
— OOO o %
o o _|
= - 8
> — o — o o
S 9 T T T T T T T T T T T T
o
0.0e+00 1.0e+08 0 100 200 300 400 0 10 20 30 40 50
Sparrow

Figure 5.1: Sparrow compared to TNM, gNovelty+2T and hybridGM on 104 ran-
domly selected large-size 3SAT-instances. The first column compares the
number of flips, the second one the run time measured in seconds. The third
column compares the success rate (i.e. the number of times the solver was
able to solve the problem within the timeout limit). The first two rows
compare Sparrow to TNM on the regular and then on the additional set.
The third row compares Sparrow with gNovelty+2T only on the regular
set. The last two rows compare Sparrow to hybridGM on both instance
sets.

95

5 Improving SLS for SAT with a New Probability Distribution

In the first two rows, we compare Sparrow to T'NM. The Sparrow solver is su-
perior to TNM (the winner of the Competition), considering the number of flips as
well as considering the run time on all instances. This difference becomes even more
pronounced on the additional set on which TINM is able to solve only four instances in
all 100 runs, whereas Sparrow is able to solve almost all instances within the timeout
limit.

The next row shows Sparrow compared to gNovelty+2T. Sparrow dominates
gNovelty+2T on our benchmark in terms of number of flips as well as in terms of
run time. The success rates show that many instances of our benchmark are indeed
very difficult to solve, even for a state-of-the-art solver.

In the last two rows, we compare Sparrow to hybridGM. hybridGM can compete
with Sparrow on several of the large instances, but looses ground with increasing
difficulty of the instances.

Altogether there are only four instances on which Sparrow did not finish all 100
runs within the time limit. Except in one of them the success rate is almost 100%.
This is also one of the most difficult instances for all solvers and their success rate was
far below the one of Sparrow.

By the time these experiments have been conducted, no satisfying parameter con-
figuration for 5- and 7-SAT instances was known, nor could easily be found. Conse-
quently, our first experiments did not contain any other type of instances than 3-SAT.

5.3.2 SC11 Random SAT

During the studies performed in [TBH11] where Sparrow was part of the empirical eval-
uation, parameter settings for (¢, co, 3, sp) could be found, such that Sparrow reaches
state-of-the-art performance also on 5- and 7-SAT problems. This motivated further
analysis of the parameters by means of automated parameter configuration. Sparrow
was first reimplemented in the UBCSAT [THO04] framework. This version was named
Sparrow2011 (not to be confused with the original implementation). Sparrow2011 is
based on a (preliminary) beta version of UBCSAT 1.2 (build 1.2b10). The UBCSAT
implementation is semantically equivalent to the original Sparrow solver, but is more
efficient with respect to CPU time, and provides better reports and statistics for em-
pirical analysis. To find appropriate configurations for the parameters (cy, 2, c3, sp),
we used the automated configurator ParamILS [HHLBS09, HHS07]. As a basis for
the automated configuration process we have generated 100 random 3-, 5- and 7-SAT
satisfiable instances with characteristics similar to those used in the SC09 (see Table
5.1). Note that these instances are generated at a clause to variable ratio lower than
the threshold values reported in Table 2.1.

For each training set, we performed 24 independent runs of ParamILS for four
(CPU) days each. The parameter configurations found by ParamlILS for each instance
set were all evaluated on subsets of the instances from SC09 to find the best configu-

56

5.3 Empirical Evaluation

k-SAT | number of variables | ratio r =
3-SAT 10000 4.2
5-SAT 600 20
7-SAT 100 85

Table 5.1: Characteristics of the training instances generated for the configuration of
Sparrow2011.

ration. For the evaluation we have used the EDACC framework [BGKR10, BDG'11].
For 3-SAT, the best configuration found by ParamlILS did not perform as well as
the manually tuned configuration mentioned previously, so we used the latter instead.
Starting from the best configuration for each set, we further hand-tuned the parameters
by increasing the granularity of the parameter values and by attempting to interpolate
the configurations from one class to the other. This manual tuning took approximately
ten hours and was performed using EDACC. For the evaluation of the parameter con-
figurations on the different instance classes, EDACC used between 300 and 400 CPUs
from the bwGRiD computing grid (see page 123 for further details about the cluster).

The parameter settings found by this configuration procedure are listed in Table
5.2. The parameter configuration to be used by Sparrow2011 on a given input instance
is selected based on the maximum clause length found in that instance. The 3-SAT
configuration is used when the maximum clause length is less than four, the 5-SAT
configuration is used when the maximum clause length is less than six, otherwise the
7-SAT configuration is used. The 5-SAT configuration has a smoothing probability of
sp = 1.0, which means that no clause weights are being used.

k-SAT | ¢1 | ¢ c3 sp
3-SAT | 2.15 | 4 10° 0.347
5-SAT [285 | 4 | 0.75-10° | 1.0
7-SAT | 6.5 | 4 10° 0.83

Table 5.2: Parameter settings of Sparrow2011 used in the SC11.

Results Sparrow2011 won the Random satisfiable track with respect to CPU time
and wall clock time. It was able to solve 362 instances within the time limit, while the
second best solver sattime2011 [LL12] solved 334 and the third placed solver EagleUp
[GH11] solved 328. Note that the EagleUp solver is a derivative of Sparrow with a
unit propagation mechanism. We have evaluated the solver on the SC11 benchmarks
on the bwGRiD cluster with the help of EDACC. The results are very similar (slightly
less solved instances) to those produced during the competition as the hardware was

o7

5 Improving SLS for SAT with a New Probability Distribution

5000 —

EagleUP
—A— sattime2011
4000 ~ —8— Sparrow2011

3000 —

CPU Time (s)

2000 —

1000 —

o

200 250 300 350

number of solved instances

Figure 5.2: Comparison of the SLS solver Sparrow2011, FEagleUp and sattime2011 on
the random satisfiable instances from SC11.

almost similar (slightly slower CPUs). The graphical representation of the results as
a cactus plot can be seen in Figure 5.2.

The run time distribution of the solver is not distinguishable for the first 200
instances, as these can be solved in less than one second. While the performance of
EagleUp is quite similar to that of Sparrow2011 on the first 300 runs, EagleUp is not
able to keep up with the other two solvers. We also have to notice that the difference
between the best and second best solver was not so pronounced in any of the other
tracks organized during the SC11.

5.3.3 SC12 Random SAT

As the author of this thesis was also a co-organizer of SC12 (which did not allow a
participation of organizers’ solvers), Sparrow2011 (and also probSAT) was submitted
to the SC12 Random satisfiable category only as a reference solver without further
changes to the code or to the algorithm.

Figure 5.3 shows the run time distribution of the three best performing solvers
from SC11 and SC12 on the SC12 random satisfiable benchmark set. Compared to the
previous competitions, the SC12 random satisfiable benchmarks (generated according
to the scheme presented in [BBJS12]) contained also 4-SAT and 6-SAT instances, for
which Sparrow2011 uses the parameter settings corresponding to 5-SAT respectively
7-SAT. Sparrow2011 is able to outperform its competitors from SC11 corroborating
again its superior performance. The new solvers submitted to SC12, probSAT [BS12]
and CCASat [CS12], have been mainly developed to beat Sparrow and they indeed
succeed on this benchmark set. The solver probSAT, a pure probability distribution

o8

5.4 Related Work

sattime2011
EagleUP
Sparrow2011
SATzilla2012
probSAT
CCASat

800 —

600 —

Fetd

CPU Time (s)

400

200

T T
0 100 200 300 400

number of solved instances

Figure 5.3: Comparison of the top three SLS solvers from the SC11 (Sparrow, sat-
time2011, EagleUp) and SC12 (CCASat, probSAT, SATZilla) on the SC12
random satisfiable set.

based solver, is described in detail in Chapter 7. It was submitted to the competition
also only as a reference solver. The solver CCASat is very similar to Sparrow, because it
is also using clause weights, but instead of using the gradient steps, CCASat is using
a new technique called configuration checking to avoid flipping the same variables
over and over again. Interestingly, the portfolio solver SATZilla is using Sparrow and
EagleUp for almost all of its runs and thus takes advantage of the performance of
Sparrow on lower k-SAT and that of EagleUp on higher k-SAT.

5.4 Related Work

There were many attempts to modify the Novelty heuristic to increase its performance
on different benchmarks. The first time the difference between the score of the variables
was taken into account was in the solver R-Novelty by McAllester et al. in [MSK97].
However, the variables taken into consideration were still only the first and the second
best one. The third variable had always probability zero (when considering a 3-SAT
problem). The Novelty++ heuristic by Li [LHO5] introduced an additional parameter
dp (diversification probability) to the Novelty+ heuristic to enable choosing the least
flipped variable from a clause. This permits the heuristic to choose the third variable
from a clause, but there is no differentiation between the score nor between the age of
the variables. The solver TNM by Wei uses two noise mechanisms and switches between
them whenever the weights of variables meet a given criteria. We are not aware of a
heuristic that assigns probabilities to all variables depending on the difference between

99

5 Improving SLS for SAT with a New Probability Distribution

the score and between the age of variables.

5.5 Conclusion and Future Work

We presented in this chapter a probability distribution that is a function of the score
and the age of all variables from a random unsatisfied clause and which takes into
consideration the difference between these values. An advantage of such a heuristic is
that it needs no noise nor a random walk, which are incorporated by definition. We
have conducted several empirical studies on different k-SAT problems from different
competitions and showed that our approach exhibits remarkable performance. The
Sparrow solver was able to significantly exceed the performance of all major state-of-
the-art solvers.

It has not been analyzed whether other probability distributions like polynomial or
logistic would also be appropriate for use in the computation of the decision heuristic,
and how the parameters of these functions should be set to achieve stable perfor-
mance. Another solver, based on the analysis of Sparrow that also uses probability
distributions is presented in Chapter 7.

Further, there is also the possibility to create a hybrid solver, like the ones described
in Chapter 4, with Sparrow as an SLS component.

60

6 Analyzing the Utility of Preprocessing
for SLS Solvers

This Chapter is based on the work presented in [BM13a] where Preprocessing Tech-
niques (PPTs) have been analyzed in combination with SLS and CDCL solvers on hard
combinatorial problems or on application problems respectively. Within this chapter,
we will present only the work done for SLS solvers on hard combinatorial problems
along with the results obtained in the International SAT Competition 2013 (SC13).

6.1 Introduction

As mentioned in Chapter 2, the area of pragmatic SAT solving is dominated by two
types of solving techniques: Conflict Driven Clause Learning (CDCL) solvers and Sto-
chastic Local Search (SLS). Each technique has its strength on different types of prob-
lems. While CDCL solvers are best suited for structured problems and unsatisfiable
crafted problems, SLS solvers exhibit their strength on random and satisfiable crafted
problems.

Besides solving techniques, Preprocessing Techniques (PPTs) (meanwhile also used
during search and known as inprocessing) are crucial for SAT solvers and enable them
to further increase performance. PPTs can be seen as transformation rules that take a
formula as input and produce a transformed problem, which is satisfiability equivalent
to the original one (i.e. the original problem is satisfiable if and only if the transformed
problem is satisfiable).

Since the introduction of the SatELite [EB05] Preprocessor (PP), which is still one
of the most used preprocessors in state-of-the-art SAT solvers, many new techniques for
preprocessing have been proposed and implemented (e.g. [JBH10, MHB12, HJB10a,
HJB10b, HIB11]). Although most of these new PPTs have found their way into SAT
solvers, the preprocessor Coprocessor2 [MHB12, Man12] was the first PPT framework

61

6 Analyzing the Utility of Preprocessing for SLS Solvers

like SatELite that provided all new techniques as a stand-alone tool. Within this work
we use the latest version Coprocessor3 (CP3).

Most of the new PPTs are developed only for CDCL solvers or at least with CDCL
solvers in mind, a reason why the parameters of these techniques are predetermined
to work well in collaboration with CDCL solvers. This raises up the question whether
these techniques (maybe with different parameters) can also be useful to SLS solvers.
Some PPTs have been analyzed in combination with SLS solvers [Gab12], still no im-
provement was detected for these. There is though evidence that some PPTs can help
SLS solvers on crafted problems: the SLS solver sattime2012 [LL12] (which uses failed
literal probing and unit propagation as preprocessing) showed remarkable performance
on the crafted problems during the latest SAT competitions.

6.2 Preprocessing Utility

In this work we are interested in analyzing the utility of PPTs for SLS solvers as
opposed to the main stream where utility is analyzed only with respect to CDCL
solvers.

Definition 6.2.1 (PPT utility). A PPT P is considered to be useful (or utile) for a
solver S on a set of instances I if the performance of S on I denoted by perf(S(I)) can
be improved by first executing the preprocessor P on the instances and then running
the solver S on the simplified problems P(I), i.e. if perf(S(P(I)) > perf(S(I)), where
perf is the statistical measure of interest (e.g., the number of solved instances).

The same run time limitations are imposed to S(I) and S(P([)) (i.e. preprocessing
time is considered as solving time). Note that the usefulness of a PPT highly depends
on the solver S and on the instances I used in the analysis. We are not directly
interested in the size of the reduction nor in the structural changes of PPTs, but more
in the speed up preprocessing gives for the SAT solver. Therefore, we address the
following questions related to the utility of PPTs.

1. How useful is each PPT on its own?

2. Which combination and parametrization of PPTs yields the best improvement?
3. How far can the best PPT be improved with appropriate parametrization?

4. How sensitive is the performance gain when exchanging solvers?

To answer these questions, we will use a modern preprocessor that entails all
currently available simplification techniques, namely the preprocessor Coprocessor3?.

'http://tools.computational-logic.org

62

http://tools.computational-logic.org

6.3 Modern Preprocessing Techniques

Coprocessor3 as a PPT framework in combination with the state-of-the-art SLS solver
Sparrow represents the experimental basis for our analysis. For the evaluation we use
the hard combinatorial instances from SC122. Question 1 is answered by evaluating
each PPT individually in combination with the solver. To answer question 2 and 3,
we use an automated algorithm configuration tool which searches for optimal combi-
nations and parameterizations of PPTs such that the number of solved instances by
Sparrow when prepended with the preprocessor is maximized. The results obtained
are validated with another SLS solver, providing an answer to question 4.

6.3 Modern Preprocessing Techniques

Most modern SAT solvers still use the preprocessor SatELite based on work published
in 2005 [EBO5]. SatELite includes the PPTs Unit Propagation (also called Boolean
Constraint Propagation), Subsumption, Strengthening (also called self subsuming res-
olution) and bounded variable elimination. Since 2005, many other new PPTs have
been proposed [JBH10, MHB12, HJB10a, HJB10b, HJB11]. The implementation de-
tails or possible variations (parameterizations) of these PPTs are presented in these
publications only briefly. Furthermore, the variations of each technique has not been
analyzed in detail. In the following we provide a short description, along with possible
parameterizations of the PPTs considered in this work. Let F' be the input formula to
a technique, and F” its output.

Unit Propagation (UP): If there is a unit clause in the formula of the form C' =
{l} € F, then this literal will be set to true and the formula will be simplified by
removing all occurrences of [from all clauses and removing all clauses that contain I
(which are now satisfied).

Subsumption (SUB): [Rob65] If there is a clause C' € F that is a subset of another
clause D € F', then D is removed.

Strengthening (STR): [EBO05| Let D and E be a disjunction of literals. If there exist
two (non-tautological) clauses C; = {l, D} and Cy = {I, D, E'}, then the clause C can
be replaced by the resolvent C; ® Cy = {D, E'} which subsumes Cy, thus resulting in
the elimination of one literal. STR is also known as self-subsumption in the literature.
Within resolution steps, clause Cs could produce several other resolvents that would
also subsume C5 or would be used elsewhere, however to the best of the author’s
knowledge, (5 is replaced immediately by the resolvent. Coprocessor3 has the option
to keep Cy during strengthening, which is enabled by the parameter allStrength. This

thtp: //baldur.iti.kit.edu/SAT-Challenge-2012/index.html

63

http://baldur.iti.kit.edu/SAT-Challenge-2012/index.html

6 Analyzing the Utility of Preprocessing for SLS Solvers

extension, though, is only active when the length of the clause is smaller than a certain
limit (we have used three in our experiments), because large clauses can produce many
resolvents [Bie05].

Bounded Variable Elimination (BVE): [DP60, SP05, EB05] Let S, be the set of
clauses that contain x, and Sz the set of clauses that contains . The set of all pairwise
resolvents denoted with S'is S = S5, ® Sz = {A® B | A € S;, B € Sz}. Variable z can
be eliminated from the formula F' by removing all clauses from S, and Sz and adding
S to F. The simplified formula F’ has the form F' = (F'\ (S, U Sz)) U S.

Since the size of S can be very large when compared to the size of the sets S,
and Sz, a limitation has to be imposed to this elimination process in form of a bound.
Usually, the number of clauses can be used as a bound: if | S| < |S,|+|Sz|, the sets are
replaced. Other limits are possible as well: for example the total number of literals in S
has to be smaller than the total number of literals in S, and Sz. The related parameter
in Coprocessor3 is called boundLits. Since it is very unlikely that |S| < |S.| + |57,
if both |S;| and |Sz| are large, a cutoff can be imposed that does not apply BVE to
a variable x if each of the sets has at least ten clauses, or if one set has at least five
clauses and the other set contains more than 15 clauses.

Blocked Clause Elimination (BCE): [JBH10] During the computation of BVE, for
each clause in S, and Sz the number of resolvents is counted. This is needed for the
computation of the bound. If a clause does not produce any resolvent, this clause
is called blocked and can be removed, even if no variable elimination is performed
[JBH10]. This technique can be disabled with the parameter noBce.

Bounded Variable Addition (BVA): [MHB12| Let x be a new variable that does not
occur in F'. Let S € F be a set of clauses, such that there exist two sets of clauses S,
and Sz, and S, ® Sz = S. Opposite to BVE, BVA replaces the set of clauses S with
Sy U Sz, if |S| > | S| + |Sz|- The current implementation in Coprocessor3 is only able
to find simple patterns, where the clauses in S have the form {l, D;},{l’, D;}, where
D; is a conjunction of literals and ¢ > 2, so that the final set of clauses contains less
clauses. The new variable will be added within the clause x — [Al’. If a set S is found
and i > 4, another clause [A I’ — z is added, and further, all clauses C with I,I’ € C
are replaced with (C'\ {I,I'}) U {z}.

Failed Literal Detection (PROBE): [LA97b, Fre95, Ber01, LMS03] Contrary to the
depth first search of CDCL solvers, probing (a.k.a. failed literal detection) performs a
breadth first search to check whether certain literal [assignments leads to a conflict
by unit propagation. If a conflict is found, the clause {I} can be added to the for-
mula and propagated. Furthermore, conflict analysis with the first Unique Implication

64

6.3 Modern Preprocessing Techniques

Point (UIP) scheme as in the CDCL algorithms could be applied [MMZ"01]. Since
probing searches on the top level, also all UIPs could be collected and added to the
formula. Furthermore, double look-ahead can be used [HvMO09]. With the immediate
implications of [and [, equivalent literals and necessary assignments can be detected

[Ber01, HvMO09].

Covered Clause Elimination (CCE): [HJB10b] There exist several techniques that
allow the addition of literals to a clause. CCE in Coprocessor3 allows hidden lit-
eral addition [HIB10a|, asymmetric literal addition [HIB10a] and covered literal addi-
tion [HIJB10b], which are described in the literature. During the computation of hidden
literal addition, or asymmetric literal addition, the procedure can also find failed lit-
erals. The final clause C’ can either be a tautological clause, or C’ can be blocked
resulting in a removal of the clause from F' according to BCE. Since the computation
of €’ is very expensive, CCE is only applied to clauses that have a length at least 40 %
of the maximum clause length encountered in the formula.

Hidden Tautology Elimination (HTE): [HJB10a] When restricting the computation
of the hidden literal addition to binary clauses only, a clause C can still become a
tautology. These clauses are removed by HTE.

Equivalent Literal Substitution (ELS): [Gel05] A set of literals that contains equiv-
alent literals can be computed based on the binary implication graph of the binary
clauses in the formula [Gel05]. All literals in such a set are replaced with one repre-
sentative literal of that class.

Unhiding (Unhide): [HJB11] HTE and STR can be approximated based on sampling
the binary implication graph of the formula [HJB11]. During sampling the graph,
failed literals can be detected. To improve the quality of the approximation, multiple
randomized samplings (iterations) can be generated. Furthermore, one can choose

whether HTE (UHTE) or STR (UHLE) should be applied based on the sampling.

Ternary Resolution (3RES): [BS92, LA97a, Bac02, BW03] Resolving two ternary or
binary clauses or combinations of these can result in another ternary clause, or even in
a binary clause. If this is the case, the clause is added to the formula. This technique
can be applied before search. The newly created clause can even subsume other clauses
in the formula, which can then be removed by SUB.

Add Binary Resolvents (ADD2): [WS02] For SLS solvers, it has been reported that

adding redundant binary clauses to the formula can speed up the search of SLS solver.
Thus, redundant binary clauses can be generated by performing probing on a literal

65

6 Analyzing the Utility of Preprocessing for SLS Solvers

[, and then a clause {I,I'} can be added, if this clause is not already present in the
formula, and the literal I’ is propagated after assuming /. Since the possible number
of these clauses can be very large, the number of added clauses is strongly restricted.

Dense: After performing several simplification techniques, the index of the variables
in the formula is not continuous any more. By removing the index gaps, solvers will be
able to have a more compact representation of the problem, which results in a more
cache friendly and thus faster execution.

Implementation details The standard preprocessor SatELite is not processing in-
stances with more than six million clauses. However, we think that applying PPTs on
these large instances could also yield speed ups for the solver. Therefore, instead of ap-
plying a clause limit for the whole preprocessor, CP3 provides limits for each technique
in terms of the number of considered clauses. In this way, the overall preprocessing
time can be controlled, and at the same time the process can be reproduced on any
computing system, because it is independent of time. CP3 also supports parallel BVE
that was not used in our experiments.

We think that this kind of limitation is more robust when it comes to the utility
to time ratio. In some cases in the SC12, solvers using SatELite as a PP timed out
because of the very long preprocessing time of SatELite.

6.4 Preprocessing Techniques Analysis for SLS Solvers

6.4.1 Single PPT Analysis

To answer our first question, we have measured the utility of each PPT individually,
keeping the parameters of each PPT close to the specifications widely used in the
literature. The number of steps each PPT is allowed to perform is bounded by a
constant, so that search steps can be also performed.

Figure 6.1 presents the result of the evaluation of each individual PPT as a cac-
tus plot. Along with the configuration with the individual PPTs, we also evaluated
Sparrow without a PP and prepended with SatELite. Most of the PPTs are not able
to boost the performance of Sparrow, performing similar or even worse than Spar-
row. BVE is the best performing PPT, decreasing the run time of Sparrow over the
complete set, and allowing it to solve 11 instances more (Sparrow solved 209). Inde-
pendent of the used PPT, the run time of CP3 was in most cases around five seconds
and seldom above ten.

When using SatELite, the run time distribution is completely different: up to 300
seconds, this configuration can solve less instances than any other configuration, but
later on, it solves 240 instances, while being able to solve challenging instances faster

66

6.4 Preprocessing Techniques Analysis for SLS Solvers

CP3+Sparrow BVA
CP3+Sparrow 3RES
CP3+Sparrow Probe
CP3+Sparrow SUB
CP3+Sparrow EE
CP3+Sparrow CCE
CP3+Sparrow ADD2
CP3+Sparrow UP
Sparrow
CP3+Sparrow HTE
CP3+Sparrow Unhide
CP3+Sparrow BVE
SATElite+Sparrow

t ot

i

800 —

b

600 —

CPU Time (s)

400 —

+9

200 —

100 150 200 250

number of solved instances

Figure 6.1: Number of solved instances (x-axis) by Sparrow alone and when prepended
with the different PPTs individually and with SatELite on the set of sat-
isfiable hard combinatorial instances from International SAT Challenge
2012 (SC12). The y-axis represents the run time of the solvers measured
in seconds.

than by using any other PPT. Compared to our single PPT configurations, SatELite
is performing a combination of PPTs until completion, which motivates the analysis
of combinations of PPTs.

6.4.2 Combined PPTs Analysis

To answer question 2, we have parametrized all PPTs, allowing to turn each technique
on and off. When turned on, also other PPT specific parameters can be configured.
The PPTs execution order is fixed? for all experiments: UP, 3RES, SUB, STR, ELS,
Unhide, HTE, PROBE, BVE, BVA, CCE, ADD2 and finally DENSE.

The parametrized version of CP3 appended with Sparrow (which had fixed pa-
rameters) was then optimized with a parallel model based automatic algorithm con-
figurator that is a parallel version of the SMAC configurator presented in [HHLB11].
The configurator is implemented in the EDACC framework [BDG*11]. We have per-
formed five configuration experiments with a configuration budget of 2 - 10® seconds
and a cutoff of 450 seconds per job optimizing the Penalized Average Run time (PAR)

3 Allowing the configurator to additionally alter the execution order of the PPT’s could have yielded
better results, but would have also resulted in a much larger configuration space.

67

6 Analyzing the Utility of Preprocessing for SLS Solvers

statistic with penalization factor ten (PAR10), which is the sum of the run time of all
solved instances plus the number of unsolved instances penalized with ten times the
timeout.

Optimizing the PAR10 statistic is almost equivalent to optimizing the number of
solved instances, because unsolved instances result in very high penalization. To select
the instances for the configuration process, we have first computed for each instance
the number of simplification steps performed by the PPTs in the single PPT analysis.
From the set of instances, with at least one performed simplification step, we have

randomly selected 150 instances.

When searching for the best PPT combination and parametrization, the configura-
tor used only around 100 instances on average before reaching its configuration budget.
The best performing configurations from our five configuration experiments were then
evaluated on the complete set of available instances. We report the results only for the
best combined configuration, though some other configurations performed also rela-
tively good and had similar settings. The best combination of PPTs and parameters
found by our configurator had the following settings:

e ELS
e BVA with a very limited step count of 60000
e BVE reducing the number of clauses

e CCE, using asymmetric literal addition only on clauses whose size is larger than 40 %
of the maximum clause in the formula, with a high limit (20000000)

e Using binary and ternary clauses for clause vivification? on clauses whose size is larger
than 40 % of the maximum clause in the formula with a small limit (40000)

e ADD2: When performing probing with binary clauses, per probing literal, add 10 % of
the propagation queue length as redundant binary clauses

e Unhide without UHTE and only a single iteration, which can be seen as failed literal
detection approximation

e Dense

From Figure 6.2 we can see that the best combined PPT technique denoted in the
plot wit CP3+Sparrow combined is able to significantly improve Sparrow, solving a
total of 250 instances from the set, more than the best single engine SLS solver from
the SC12.

6.4.3 Extended Single PPT Analysis

The results of the first two experiments raised up the third question, which we tried to
answer by further extending the parametrization of the best performing single PPT,

“The vivification process, described in [PHS08], is the removal of redundant clause (i.e. clauses that
can be inferred from the rest of the problem).

68

6.4 Preprocessing Techniques Analysis for SLS Solvers

—8— Sparrow

—e— CP3+Sparrow combined

800

600 —

400 —

CPU Time (s)

200

100 150 200 250

number of solved instances

Figure 6.2: Number of solved instances (x-axis) by Sparrow alone and when prepended
with the best combined PPT on the set of satisfiable hard combinatorial
instances from SC12.

namely BVE, and optimizing it in a separate experiment with an optimization budget
of 4 -10%seconds. BVE was extended and parametrized further than proposed in the
literature as described next. First, we loosened the limitation of BVE [S| < [S,| + |S%]
by replacing it with |S| + b; < |S;| + |Sz|, where b; is a local limit that has to be
met per step (default configuration b; = 0). By setting b; > 0 we allow each variable
elimination step to increase the number of clauses in the formula up to b; additional
clauses.

As the number of clauses can now increase within each BVE step, we introduce a
limit b,, for the total number of additional clauses. Once this limit has been exceeded,
BVE steps will be rejected if they entail an increase in the number of clauses. For
an unlimited increase of the number of clauses, this upper bound can be disabled
(b, is enabled by default). We also allow the elimination to take place when |S|; <
|Sz|i + |Sz|i, where | - |; measures the number of literals (parameter red_lits).

Finally, we have extended BVE with several new heuristics to control which vari-
able is chosen for the next elimination. The variables are stored in a heap that can
be sorted according to the number of occurrences and the ratio between positive and
negative occurrences, which we will shortly denote simply by polarity ratio:

0. minimum occurrences

1. maximum occurrences

69

6 Analyzing the Utility of Preprocessing for SLS Solvers

2. random order

3. smallest polarity ratio (in case of ties: sort according to 0)
4. smallest polarity ratio (in case of ties: sort according to 1)
5. largest polarity ratio (in case of ties: sort according to 0)
6. largest polarity ratio (in case of ties: sort according to 1)
7. sort according to 0 (in case of ties: smallest polarity ratio)
8. sort according to 1 (in case of ties: smallest polarity ratio)
9. sort according to 0 (in case of ties: largest polarity ratio)

10. sort according to 1 (in case of ties: largest polarity ratio)

The ratio between positive and negative occurrences has a high impact on the scor-
ing functions used by SLS solvers, and for this reason we have decided to add so many
orders that contain this polarity ratio. Suppose we have a formula F', which contains
a variable x with numOcc(z) >> numOcc(T) and that all satisfying assignments of
F' contains =, then an SLS solver will probably have a hard time to set the value of z
correctly because the scoring function of will point in the wrong direction.

After performing the optimization of this new extended BVE method, the results
were quite surprising;:

e no gate detection®

e use only SUB but no STR

e sort variables according to the maximum occurrence

e allow the formula to grow per step b; = 10

e allow a total growth of the formula up to b, = 1000 clauses

Consequently, the preprocessed formulas can get larger in terms of clauses, but
variables with large occurrences will be eliminated first. This type of BVE configuration
is almost contrary to the standard configuration used for CDCL solvers.

In Figure 6.3 we can see that this type of configuration denoted in the plot with
CP3+SPARROW EXT BVE is able to outperform the combined PPT configuration by
11 instances solving a total of 261 instances, which is far more than any single engine
solver that participated in SC12. Note that the combined PPT configuration used
BVE in a standard manner.

SFurther details about gate detection can be found in [EB05].

70

6.4 Preprocessing Techniques Analysis for SLS Solvers

—8— Sparrow

800 SATElite + Sparrow
—e— CP3+Sparrow combined

BVE extended + Sparrow

600 —

400 —

CPU Time (s)

200

100 150 200 250

number of solved instances

Figure 6.3: Number of solved instances (x-axis) by Sparrow alone and when prepended
with the best combined PPT, the best BVE configuration and when
prepended with SatELite, on the set of satisfiable hard combinatorial in-
stances from SC12.

The performance increase is due to two classes of instances present in our evaluation
set, the fsf and the prime instances, which Sparrow is barely able to solve without
preprocessing. When prepended with the BVE PPT configuration, Sparrow solves all
these instances quite easily, having run times lower than 300 seconds. None of these
instances is solved only by preprocessing.

6.4.4 Applicability to other SLS Solvers

Our fourth question is answered by prepending the best found CP3 configurations
from the previous experiments to another SLS solver and evaluate it on our scenario.
This gives us a clue how solver dependent the optimization process in the previous
experiments was.

We have combined the best performing CP3 configuration from our combined and
extended single analysis with another SLS solver, namely sattime2012 [LL12|, which
was the best performing single engine solver for the hard combinatorial SC12 instance
set. The solver sattime2012 already has an incorporated preprocessor, which performs
failed literal probing and unit propagation.

In Figure 6.4 we can see that the performance of sattime2012 can also be increased
by using the combined and the extended BVE configuration, as it was the case for
Sparrow. The gain in terms of number of solved instances is not as large as it is for
Sparrow, though is still significant, and decreases the run time of sattime2012 on a

71

6 Analyzing the Utility of Preprocessing for SLS Solvers

Sparrow

sattime2012
CP3+sattime2012 ext bve
CP3+sattime2012 combined
CP3+Sparrow combined

800 —

600 —

AEEEN

CP3+Sparrow ext bve

400 —

CPU Time (s)

200 —

100 150 200 250

number of solved instances

Figure 6.4: Number of solved instances (x-axis) by Sparrow and sattime2012 alone
and when prepended with the best combined PPT and the best BVE con-
figuration on the set of satisfiable hard combinatorial instances from SC12.

large set of instances considerably (more than 200 instances can be solved in less than
50 seconds). The difference is significant at a significance value of p = 0.05 when tested
with the non-parametric Kolmogorow-Smirnow two-sample test.

The solver sattime2012 can not benefit that much from the BVE configuration
because the preprocessing is not able to make those instances solvable which sat-
time2012 cannot solve alone, namely the VanDerWirden instances. Still, it is worth
using another preprocessor before running the internal preprocessor of sattime2012.

Software and Hardware. All experiments were performed on the bwGRiD clusters
(see page 123 for more details). Experiments were conducted with EDACC, a platform
that distributes solver execution on clusters [BDGT11]. The code of Sparrow is an
improved version of the code used in [BF10].

6.5 CP3+Sparrow

For the International SAT Competition 2013 (SC13), we have submitted the best BVE
configuration of CP3 prepended to Sparrow. The set of hard combinatorial problems
from SC13 contained 150 satisfiable instances. None of the SLS solvers can solve more
than 80 of these, which results in a success rate of around 50%. This is somehow surpris-
ing when compared to the success rate of SLS solvers in the SC12 where these solvers
solved around 80% of the satisfiable instances. From this, we can conclude that the

72

6.6 SparrowToRiss

100.00 —

BalancedZ
gNovelty+GCa 10

CPU Time (s)

Iy

o

s}
|

—*— gNovelty+GCwa

—— sattime2013
CCAnr 2013

—B8— CP3+Sparrow

T T T T
20 40 60 80

number of solved instances

Figure 6.5: Number of solved instances (x-axis) by Sparrow when prepended with
the best BVE configuration along with other SLS solvers on the set of
satisfiable hard combinatorial instances from SC13. The run time (y-axis)
is represented on a log-scale.

hard combinatorial problems used in SC13 are favoring CDCL solvers. Consequently,
we restrict the presentation of the results to SLS solvers.

The results of SLS solvers that have also participated in the competition can be
seen in Figure 6.5. CP3+Sparrow is the best performing SLS solver with overall good
run times. Note that the run time of SLS solvers is lower than 100 seconds on most
problems, which might motivate the analysis of restarts for this class of instances. The
diversity of results between the different SLS solvers is rather low, because the number
of solved instances by all SLS solvers is 82, which is only three instances more than
CP3+Sparrow solved. The set of used instances contains around 70% new instances,
which were not used in any previous competition, making this set of instances a reliable
validation set for our results.

6.6 SparrowToRiss

Several observations made during the evaluation of CP3 motivated the development
of a hybrid solver, which we named SparrowToRiss, as it is using Sparrow (as an SLS
solver) and Riss [BBHJ13, p. 72] (as a CDCL solver), which is a variant of glucose
[AS09]. The key observations are the following:

1. The run time of SLS solvers is relatively low (less than one thousand seconds)
and longer run time will not help to solve more problems.

73

6 Analyzing the Utility of Preprocessing for SLS Solvers

2. There are hard combinatorial instances (satisfiable and unsatisfiable ones) that
are not in reach of SLS solvers, though they can be easily solved by CDCL
solvers.

As a consequence of these observations we have developed a hybrid solver called
SparrowToRiss that has the following solving work flow that stops as soon the problem
is solved:

1. Preprocess the instance with CP3 configured with the extended BVE configura-
tion.

2. Run Sparrow for 5-108 flips; if problem not solved, pass the last used assignment
in chronological order to the CDCL solver (i.e. oldest variable first).

3. Preprocess the original instance with CP3 with a configuration optimized for
unsatisfiable hard combinatorial problems.

4. Run Riss on the preprocessed instances while initializing the phase savings ac-
cording to the information provided by the SLS.

We have also tried to pass the last assignment ordered according to the activity of
the variables (i.e. most often flipped variable first), and then initialize the activity of
variables in the CDCL solver, though this method is less effective.

We have evaluated SparrowToRiss on the hard combinatorial problems from SC12
with and without information flow. The results can be seen in Figure 6.6 where Spar-
row+Riss denotes the solver without information flow. There is no clear dominance
between the solvers. Passing the information can help to solve some instances within
timeout, but at the same time it can also hinder the solver to solve other problems
(see the scatter plot on the left side). The benefit of this information flow is marginal,
as only two more instances can be additionally solved (see cactus plot). However this
difference might be decisive in a competition.

Within the SC13 category Hard Combinatorial SAT+UNSAT, SparrowToRiss was
able to solve 191 instances and was ranked no. 12, solving 17 instances less than the
winner. In the category Hard Combinatorial SAT it was able to solve 124 of the 150
instances and ranked first. It is worth noting that the following three best performing
solvers followed a similar hybrid approach, though with other SLS and CDCL solvers
and other limitations.

6.7 Related Work

Preprocessing for SLS solvers In general, formula simplifications are analyzed when
new techniques are presented (e.g., [JBH10, MHB12, HJB10a, HJB10b, HJB11]). The
utility of each of these techniques on its own has not been compared yet, and also not

74

6.7 Related Work

SparrowToRiss CPU Time

5000 | 5000 —

—&— SparrowToRiss

Sparrow+Riss

4000 4000

3000 [3000

2000 | 2000 —

SparrowNToRiss CPU Time
CPU Time (s)

1000 | 1000

0 ;
1000 2000 3000 4000 5000 0 100 200 300 400

number of solved instances

Figure 6.6: Scatter plot (left side) and cactus plot (right side) between SparrowToRiss
and Sparrow—+Riss on the set of hard combinatorial problems from SC12
with a cutoff time of 5000 seconds. Points on the 5000 line represent un-
solved instances within the scatter plot.

thoroughly analyzed for SLS solvers. The utility of components of CDCL SAT solvers
has been analyzed in [KSMS11], though without the analysis of complex combina-
tions nor of PPTs. Furthermore, proposed PPTs are usually not well parametrized,
although their implementation can offer many degrees of freedom in form of heuristics
or limitations.

Formula simplifications have been combined with SLS solvers already in [WS02],
where redundant binary clauses are added to a formula to help an SLS solver simulate
unit propagation. Pham analyzed in 2005 in his Ph.D. thesis [Pha06] several preproces-
sors in combination with several SLS solvers on random and crafted instances coming
from the SATLIB benchmarks®. He uses the existing preprocessors as black boxes and
does not count the simplification time as solving time, neither does he analyze combi-
nations of different PPs. Every PP is used with the default setting (which is probably
rather optimal for DPLL solvers and not for SLS solvers).

In [LL12], the SLS solver sattime2012 is combined with unit propagation and
failed literal detection, to improve its performance on crafted instances. In [Gab12],
the effect of Covered Clause Elimination (CCE) [HJB10b] techniques with respect to
the performance of SLS solvers on crafted instances has been analyzed, showing that
this technique family does not improve the performance, which is in line with the
results we have obtained.

Syww.satlib. org

75

www.satlib.org

6 Analyzing the Utility of Preprocessing for SLS Solvers

Tuning of Preprocessors To the best of our knowledge, automated configuration of
PPTs has not been considered so far — however, the power of automated configuration
has been demonstrated on a wide range of optimization scenarios, including CDCL
and SLS SAT solvers [HBHH07, Hut09]. The parameters of Sparrow itself have been
optimized using this technique [BFTH11].

6.8 Conclusion and Future Work

In this chapter, we have analyzed the utility of Preprocessing Techniques (PPTs)
for SLS solvers on hard combinatorial problems by means of single and combined
PPT analysis using automatic algorithm configuration procedures. We showed that the
performance of SLS solvers can be drastically improved by using appropriate PPTs
(which in our case was BVE) and that the configuration of PPTs strongly differs
from configurations used in the literature for CDCL solvers. The best performing
PPT configuration for Sparrow can be seen as a totally nonstandard PPT for CDCL
solvers. The utility of the best found PPT configuration keeps its validity even when
exchanging the solver, allowing to increase also the performance of the sattime2012
solver. Overall PPT and solver combinations found in this work achieve new state-of-
the-art performance for SLS solvers on hard combinatorial problems.

We propose two different directions of research motivated by this work. The first
one is the improvement of the overall solving performance, by extending the parametri-
zation analysis to the solver parameters, execution order of PPTs and even including
the PPTs as inprocessing steps (which is the most challenging but also the most
promising area of research). This has been partially done within the Configurable
SAT Solver Competition 2013 (CSSC13) where several solvers had parameters that
allowed the configuration of the PPT and the solver.

The second direction would be to analyze the structural changes performed by the
PPTs on the instances and analyze why they have a positive effect on the solving time
of the solvers. In this way, new PPTs could be developed that try to further improve
these beneficial changes.

76

7 Choosing Probability Distributions for
Stochastic Local Search and the Role of
Make versus Break

Stochastic local search solvers for SAT made a large progress with the introduction
of probability distributions like the ones used by the SC11 winners Sparrow2011 and
FEagleUp. These solvers, though, used a relatively complex decision heuristic where
probability distributions played a marginal role.

In this chapter, we analyze a pure and simple probability distribution based solver
named probSAT, which is probably one of the simplest SLS solvers ever presented. We
analyze different functions for the probability distribution for selecting the next flip
variable with respect to the performance of the solver. Further we also analyze the role
of make and break within the definition of these probability distributions, and show
that the general definition of the score improvement by flipping a variable as make
minus break is questionable. By empirical evaluations, we show that the performance
of our new algorithm exceeds that of the SAT Competition winners by one order of
magnitude.

This chapter contains work published in [BS12, BS13], which was extended in
several directions.

7.1 Introduction

Stochastic Local Search (SLS) solvers operate on complete assignments and try to
find a solution by flipping variables according to a given heuristic. Most SLS solvers
are based on the following scheme: Initially, a random assignment is chosen. If the
formula is satisfied by the assignment, the solution is found. If not, a variable is cho-
sen according to a (possibly probabilistic) variable selection heuristic, which is called

7

7 Choosing Probability Distributions for SLS Solvers

pickVar. The heuristics mostly depend on some score, which is based on the number of
satisfied /unsatisfied clauses, as well as other aspects like the “age” of variables. It was
believed that capable flip heuristics should be designed in a very sophisticated way to
obtain a really efficient solver. We show in the following that it pays off to “come back
to the roots”, since a very elementary and (as we think) elegant design principle for
the pickVar heuristic just based on probability distributions performs extraordinary
well.

It is especially popular (and successful) to pick the flip variable from an unsatisfied
clause. This is called focused local search in [Pap91] (see Chapter 2 for more details).
In each round, the selected variable is flipped and the process starts over again until
a solution is eventually found.

Most important for the flip heuristic seems to be the score of an assignment, i.e.
the number of satisfied clauses. Considering the process of flipping one variable, we get
the relative score change produced by a candidate variable for flipping as: (score after
flipping minus score before flipping) which is equal to make minus break (see Chapter
2 for more details).

Most of the SLS solvers so far, if not all, follow the strategy that whenever the score
improves by flipping a certain variable from an unsatisfied clause, they will indeed flip
this variable without referring to probabilistic decisions. Only if no improvement is
possible, as it is the case in local minima or if there is a tie, a probabilistic strategy
is performed. The winner of the SC11 category random SAT, Sparrow, mainly follows
this strategy, though when it comes to a probabilistic strategy it uses a probability
distribution function [BF10] (see Chapter 5). The probability distribution in Sparrow
is defined as an exponential function over the score value. In this chapter, we analyze
several simple SLS solvers that use only probability distributions within their search.

Before describing our new algorithm, we provide a short description of its develop-
ment process. Starting with the solver Sparrow, we tried to understand the importance
of its components by disabling one component at a time, and performing a configu-
ration of the parameters of the remaining components’ parameters with automated
configuration tools. First we removed the clause weighting scheme from Sparrow. Af-
ter configuration, we obtained parameter settings with similar performance to the
original code. As a next step, we removed the gradient based steps. For this we had
to adapt the probability distribution, because in Sparrow only variables with negative
score were taken into consideration within the probability distribution step. Variables
with a positive score would have already been picked by the gradient step. We intro-
duced a new parameter for the positive score variables and then optimized the new
parameters. We were again able to find appropriate parameter settings for the solver
to match the performance of the old solver. By refining the definition of the probability
distribution, we ended up with the solver that will be presented next.

78

7.2 The New Algorithm Paradigm

7.2 The New Algorithm Paradigm

We propose a new class of solvers here, called probSAT, which base their probability
distributions for selecting the next flip variable solely on the make and break values,
though not necessarily on the value of the score = make — break, as it was the case in
Sparrow. Our experiments indicate that the influence of make should be kept rather
weak — it is even reasonable to ignore make completely, like in implementations of
WalkSAT'. The role of make and break in these SLS-type algorithms should be seen in
a new light. The new type of algorithm presented here can also be applied for general
constraint satisfaction problems and works as follows:

Algorithm 6: ProbSAT
Input : Formula F', maxTries, maxFlips
Output: satisfying assignment « or UNKNOWN

1 for i =1 to maxTries do

2 «a < randomly generated assignment

3 for j =1 to maxzFlips do

4 if (« is model for F') then

5 L return o

6 C, < randomly selected unsatisfiable clause

7 for x in C,, do

8 L compute f(z,)

. . e T,

9 var < random variable x according to probability %
10 flip(var)

11 return UNKNOWN;

The idea is that the function f should give a high value to variable z, if flipping
x seems to be advantageous, and a low value otherwise. Using f, the probability
distribution for the potential flip variables is calculated. The flip probability for z
is proportional to f(x,«a). Setting f as a constant function leads in the k-SAT case
to the probabilities (%, . %) morphing the probSAT algorithm to the random walk
algorithm that is theoretically analyzed in [Sch99]. In all our experiments with various
functions f we made f depend only on break(x, «) and possibly on make(x,), but no
other properties of x and «a. In the following, we analyze experimentally the effect of
several functions to be plugged in for f. The way probabilities are computed from the
f values is similar to the Softmax activation function used in reinforcement learning
(see page 51).

79

7 Choosing Probability Distributions for SLS Solvers

7.2.1 An Exponential Function

First, we considered an exponential decay 2-parameter function:

(Cm)make(x,a)
(cb)break(z‘,a)

f(xva) =

The parameters of the function are ¢, and ¢,,. The exponential functions used here
(think of ¢* = e%m) remind of the way the Metropolis Focused Search algorithm
presented in [SAOO05] selects a variable. We call this the exp-algorithm. The separation
into the two base constants ¢, and ¢, will allow us to find out whether there is a
different influence of the make and the break value — and there is one, indeed.

It seems reasonable to try to maximize make and to minimize break. Therefore,
we expect ¢, > 1 and ¢, > 1 to be suitable choices for these parameters. Actually, one
might expect that ¢, should be identical to ¢; such that the above formula simplifies
to ¢make—break — cscore fo1 an appropriate parameter c.

To get a picture on how the performance of the solver varies for different values
of ¢y, and ¢, we performed a uniform sampling of ¢, € [1.0,4.0] and of ¢, € [0.1,2.0]
for this exponential function and of ¢,, € [—1.0,1.0] for the polynomial function (see
below). Then we run the solver with the different parameter settings on a set of
randomly generated 3-SAT instances with 1000 variables at a clause to variable ratio
of 4.26. The cutoff limit was set to 10 seconds. As a performance measure we use
PAR10: penalized average run time, where a timeout of the solver is penalized with
10-(cutoff limit). A parameter setting where the solver is not able to solve anything
has a PAR10 value of 100 in our case.

In the case of 3-SAT, a good choice of the parameters is ¢, > 1 (as expected)
and ¢, < 1 (totally unexpected), for example, ¢, = 3.6 and ¢,, = 0.5 (see Figure 1
left upper diagram and the survey in Table 7.2) with small variation depending on
the considered set of benchmarks. In the interval ¢,, € [0.3, 1.8] the optimal choice
of parameters can be described by the hyperbola-like function (¢ — 1.3) - ¢, = 1.1.
Almost optimal results were also obtained if ¢, is set to 1 (and ¢ to 2.5), see Figure
1, both upper diagrams. In other words, the value of make is not taken into account
in this case.

As mentioned, it turns out that the influence of make is rather weak, therefore it
is reasonable and still leads to considerable algorithms if we ignore the make value
completely— also because the implementation is simpler and has less overhead — and
consider the one-parameter function:

f(a:,a) _ (Cb)—break(x,a)

We call this the break-only-exp-algorithm.

80

7.2 The New Algorithm Paradigm

cb

cb

35 4.0

3.0

1.5 2.0 25

1.0

15 20 25 30 35 40

1.0

PAR10 runtime against exp(cb,cm) PAR10 runtime against exp(cb)

o
_ “ 8
— ‘ L 8
80) ol
— o ..‘
60 = : Ry ‘;\‘_ 8o
- % Y it | £
L]
o . o
: & rs
L]
L}
| o
_ N
20
T T T 1 T T T T T e
0.0 0.5 1.0 15 2.0 10 15 20 25 30 35 40
cm cb
PAR10 runtime against poly(cb,cm) PAR10 runtime against poly(cb)
o
o
- 100 .E =
H
n 8o ° o'_ g
80 ¥ * %%
] ‘. % S.’
o
=} ‘; .:‘:" °r 8o
60 ¥ 3 :’;r >
< (] <
o R e L oo
= 40 [1 o
L S
_ (Y - &
20 V
T T T T T e
-1.0 0.5 0.0 0.5 1.0 10 15 20 25 30 35 40
cm cb

Figure 7.1: The left plots show the performance of different combinations of ¢; and

¢m for the exponential (upper left corner) and the polynomial (lower left
corner) functions. The darker the area the better the run time of the solver
with that particular parameter settings. The right plots show the perfor-
mance variation if we ignore the make values (corresponding to the cut in
the left plots), by setting ¢, = 1 for the exponential function, and ¢,, =0
for the polynomial function.

81

7 Choosing Probability Distributions for SLS Solvers

7.2.2 A Polynomial Function

Our experiments showed that the exponential decay in probability with growing break
value might be too strong in the case of 3-SAT. The above mentioned formulas have an
exponential decay in probability comparing different break values. The relative decay
is the same if we compare break = 0 with break = 1, and if we compare, say, break = 5
with break = 6. A “smoother” function for high values is a polynomial decay function.
This led us to consider the following 2-parameter function (¢ = 1 if not otherwise
mentioned):
(make(z, a))m
(€ + break(x, a))e

f(x,a) =

We call this the poly-algorithm. The best parameters in case of 3-SAT proved to be
¢m = —0.8 (notice the minus sign!) and ¢, = 3.1 (see Figure 7.1, lower part). In the
interval ¢, € [—1.0, 1.0], the optimal choice of parameters can be described by the
linear function ¢ + 0.9¢,;, = 2.3. Without harm one can set ¢,, = 0, and then take
cp = 2.3, and thus ignore the make value completely.

Ignoring the make value (i.e. setting ¢, = 0) results in the function

f(@,a) = (e + break(z,a)) ™

We call this the break-only-poly-algorithm.

Some Remarks As mentioned above, in both the exp- and the poly-algorithm, it was
possible to ignore the make value completely (by setting ¢,, = 1 in the exp-algorithm,
or by setting c¢,, = 0 in the poly-algorithm). This corresponds to the vertical lines in
the left diagrams of Figure 7.1.

If we use the make values within the functions, then the optimal choice is to set
¢m = 0.5 and ¢, = 3.6 for the exp-algorithm (and similarly for the poly-algorithm.)
We have % ~ 3.6~ (breaktmake/2) "Thig can be interpreted as follows: instead of

the usual score = make — break a better score measure is —(break + make/2).

The value of ¢, determines the greediness of the algorithm. We concentrate on
¢y in this discussion since it seems to be the more important parameter. The higher
the value of ¢, the more greedy is the algorithm. A low value of ¢, (in the extreme,
¢y, = 1 in the exp-algorithm) changes the algorithm to a random walk algorithm with
flip probabilities (%, ce %) like the one considered in [Sch99]. Examining Figure 7.3,
almost a phase-transition can be observed. If ¢, falls under some critical value, like 2.0,
the expected run time increases tremendously. Turning towards the other side of the
scale, increasing the value of ¢, (i.e. making the algorithm more greedy) also degrades
the performance, though not with such an abrupt rise of the run time as in the other
case. These observations have also been made in [KSS10] and in [Hoo02].

82

7.2 The New Algorithm Paradigm

o]

—

© —8— exponential S o | —8— exponential
7] o . o o | .
g —— polynomial e g —— polynomial
I < N
> o % _
s < z 8
£ 3 S

~N
£=3 N c -

o | S

° T S T T T T T T T T

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
break values break values

Figure 7.2: Comparison of the exponential function (2.5)~%¢% (%) and the polyno-

mial function (1 + break(z,a))~238 on a linear scale (left plot) and on a
logarithmic scale (right plot). The ¢, values are the ones determined to
be optimal for the 3satlk instance set. The dotted line in the right plot
represents the step function of the polynomial function.

7.2.3 Comparison of the functions

To visualize the difference between the polynomial and exponential functions in case of
the break-only algorithms, we have plotted the two functions in Figure 7.2 for optimal
¢p values (for the 3satlk instances) and typical break values, which occur in 3-SAT
problems (i.e. break(z,a) € [0...7]). On a linear scale (Figure 7.2 left side), the
difference between these two functions is notable only for break € {1,2,3}. For the
other break values the functions produce similar values.

The relative decay in function values for two consequent break values (e.g., break =
3 and break = 4) is constant in case of the exponential function (see right plot, which
has a logarithmic y-axis). In case of the polynomial function, the function decay is
getting smaller with increasing break values (see dotted step function in the right
lower part of the plot). Consequently the polynomial function looses its differentiation
potential with increasing break values.

For randomly generated k-SAT problems, we can compute the expected range
of the break values by approximating the number of occurrences of a literal within
the problem. A randomly generated k-SAT problem contains k - m literals, where the
number of clauses is m = r - n. There can be only 2 - n distinct literals in the formula.
Consequently, the average number of occurrences of a literal is:

k-m k-r-n k-r

2n 2n 2

The break value of a variable break(z,) is bounded by the number of occurrences of
the literals of x, which is on average % Table 7.1 shows the maximum expected break
values for different k values at ratios reported in Table 2.1. Note that these maximal
values can only occur when a literal [is the only satisfiable literal in b,,,, clauses.

83

7 Choosing Probability Distributions for SLS Solvers

k 3| 4 | 5 | 6 | 7
max. expected break bpas = k - 75/2 | 6.30 | 19.80 | 52.75 | 129.90 | 307.30

Table 7.1: Maximum expected break values for different k values.

However, this is very unlikely, because the average number of true literals within a
clause in a randomly generated k-SAT problem is k/2.

7.3 Experimental Analysis of the Functions

To determine the performance of our probability distribution based solver, we have
designed a wide variety of experiments. In the first part of our experiments we try to
determine appropriate settings for the parameters ¢, and ¢, by means of automatic
algorithm configuration procedures. In the second part we will compare our solver to
other state-of-the-art solvers.

The Benchmark Problems All random instances used in our settings are uniform
random k-SAT problems generated with different clause to variable ratios (see Chapter
2). The class of random 3-SAT problems is the best studied class of random problems
and for this reason we have four different sets of 3-SAT instances.

1. 3sat1k[TBH11]: 10? variables at r = 4.26 (500 instances)
2. 3sat10k[TBH11]: 10* variables at r = 4.2 (500 instances)

3. 3satComp': all large 3-SAT instances from the SAT Competition 2011 category
random with variables range 2 - 103...5-10* at 7 = 4.2 (100 instances)

4. 3satExtreme: 10°...5 - 10° variables at r = 4.2 (180 instances)

The 5-SAT and 7-SAT problems used in our experiments come from [TBH11]: 5sat500
(500 variables at r = 20) and 7sat90 (90 variables at r» = 85). The 3satlk, 3sat10k,
5satb00 and Tsat90 instance classes are randomly split into two equal sized classes
called train and test. The train set is used to determine parameters for ¢, and ¢,
and the test set is used to report the performance. Further, we also include the set of
satisfiable random and crafted instances from SC11.

Parameter Setting The problem that every solver designer is confronted with is the
determination of appropriate parameters for its solver. We have avoided to accomplish
this task by manual tuning, but instead have used an automatic procedure.

"http://www.cril.univ-artois.fr/SAT11/bench/SAT11-Competition-SelectedBenchmarks.tar

84

http://www.cril.univ-artois.fr/SAT11/bench/SAT11-Competition-SelectedBenchmarks.tar

7.3 Experimental Analysis of the Functions

3satlk 3sat10k osatdo00 | Tsat90
exp(cp,cm) | 3.6 05 1397 03 |31 13|32 14
poly(cp,cm) | 3.1 -0.8 | 2.86 -0.81 - -
exp(cp) 2.50 2.33 3.6 44
poly(cp) 2.38 2.16 - -

Table 7.2: Each cell represents a setting for ¢; and ¢,,, dependent on the function used
by the solver and the type of the problems. Parameter values close to these
values have similar performance.

As our parameter search space is relatively small, we have opted to use a modified
version of the iterated F-Race [BYBS10] configurator, which we have implemented
in Java. The F-Race configurator starts with a set of randomly selected parameter
configurations that are initially evaluated on a small set of instances. To determine
if there is a significant difference of performance between the configurations, F-Race
performs a Friedman test? (see Test 25 in [She07] for more details about the test)
to check if there is a significant performance difference between the configurations. If
there is no significant difference, the solvers are further evaluated and the test is applied
again. The test is conducted every time the solvers have been run on an instance. If
the test is positive, poor configurations (determined with a post-hoc test) are dropped,
and only the remaining ones are further evaluated. The configurator ends when the
number of solvers left in the race is less than 2 times the number of parameters, or if
there are no more instances to evaluate on.

To determine appropriate values for ¢, and ¢, we run our modified version of
F-Race on the training sets 3satlk, 3sat10k, 5sat500 and 7sat90. The cutoff time for
the solvers were set to 10 seconds for 3satlk and to 100 seconds for the rest. The best
parameter values returned by this procedure are listed in Table 7.2. The polynomial
function had very poor performance in our preliminary tests and was not further
analyzed with the configurator. This could be probably due to the weak differentiation
potential of the polynomial function for increasing break values. The parameter settings
for the 3satlk problems were also included, because the preliminary analysis of the
parameter search space was done on this class. The best parameter of the break-only-
exp-algorithm for k-SAT can be roughly described by the formula ¢, = k%%, thus
f(x, a) — [—0.8break(z,a)

For the 3sat10k instance set, the parameter space performance plots in Figure 7.3
looks similar to that of 3satlk (Figure 7.1), though the area with good configurations
is more narrow, which can be explained by the short cutoff limit of 100 seconds used
for this class (SLS solvers from SC11 had an average run time of 180 seconds on this

2The Friedman test is a non-parametric test for complete block designs. It tests whether there is
a difference between different treatments (measurements) with respect to some given summary
statistics.

85

7 Choosing Probability Distributions for SLS Solvers

type of instances).

In case of 5satb00 and 7sat90, we have opted to analyze only the exponential
function, because the polynomial function, other than in the 3-SAT case, exhibited
poor performance on these sets. Figure 7.4 shows the parameter space performance
plot for the 5sat500 and 7sat90 sets. When comparing these plots with those for 3-SAT,
the area with good configurations is much larger. Or in other words, the performance
of the solver is not very sensitive with respect to the values of the parameters. For
the 7-SAT instances, the promising area seems to take almost half of the parameter
space. The performance curve of the break-exp-only algorithm is also wider than that
of 3-SAT, and in the case of 7-SAT no clear curve is recognizable.

7.4 Empirical Evaluation

In the second part of our experiments we compare the performance of our solvers
to that of the SC11 winners and also to WalkSAT. An additional comparison to
a survey propagation algorithm will show how successful our probSAT local search
solver can get. We have submitted different probSAT implementations to all major
SAT competitions, for which we will also present the results.

Soft- and Hardware The solver probSAT is implemented in C and is available on-
line3. The selection of a random number according to the generated probability distri-
bution has been described within the Sparrow solver (see Algorithm 5 on p. 53). This
procedure can be improved by binary search if the size of the clause is large, as could
be the case for structured problems.

Details about the used hardware and software can be found on page 123.

The competitors The WalkSAT solver is implemented within our own code basis.
We use our own implementation and not the original code (version 48) provided by
Henry Kautz?, because our implementation is approximately 1.35 times faster.’

We have used version 1.4 of the survey propagation solver provided by ZecchinaS,

which was changed to be DIMACS conform. For all other solvers we have used the
binaries from SC117.

3http://www.uni-ulm.de/in/theo/m /balint.html

“http://www.cs.rochester.edu/u/kautz/walksat/

5The latest version 50 of WalkSAT has been improved by 20%, but was not available at the time we
have performed the experiments

Shttp://users.ictp.it/~zecchina/SP/

"http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-static-binaries.tar.gz

86

http://www.cs.rochester.edu/u/kautz/walksat/
http://users.ictp.it/~zecchina/SP/
http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-static-binaries.tar.gz

7.4 Empirical Evaluation

cb

cb

15 20 25 30 35 40

1.0

15 20 25 30 35 40

1.0

PAR10 runtime against exp(cb,cm)

~ 800

~ 600

0.0 1.0

PAR10 runtime against poly(cb,cm)

0.0 0.5

cm

400

200

1000

800

600

200

r 1000

PAR10

PAR10

PAR10 runtime against exp(cb)

oo..‘ %

3.0 35

4.0

cb

400 600 800 1000

200

400 600 800 1000

200

PAR10

PAR10

Figure 7.3: The run time of the solver using different functions and varying ¢, and ¢,
on the 3sat10k instances set. The cut through the left plot represents the

plot on the right side (i.e. cm = 1).

87

7 Choosing Probability Distributions for SLS Solvers

cb

cb

Figure

88

35 4.0 45 5.0 55 6.0

3.0

35 4.0 45 5.0 55 6.0

3.0

PAR10 runtime against exp(cb,cm)

cm

PAR10 runtime against exp(cb,cm)

cm

500

400

300

PAR10

200

100

1000

800

PAR10

400

200

PAR10 runtime against exp(cb)

®
b
o ¢
N &
LY Y
: 2
‘Wx
T | T
3.0 3.5 4.0 45 5.0

L]
.
.®
e o
° . . .
. P . hd
T T T
3.0 35 4.0 4.5 5.0
cb

150 200
PAR10

100

50

150 200
PAR10

100

50

7.4: The run time of the exp-solvers with different functions and varying ¢, and
¢m on the 5satb00 instances at the top, and on the 7sat90 instances at the

bottom.

7.4 Empirical Evaluation

Parameter Settings of Competitors Sparrow is highly tuned on our target set of
instances and incorporates optimal settings for each set within its code. WalkSAT
has only one single parameter, the noise probability p (see Section 3.3). In case of
3-SAT, we took the optimal values for p = 0.567 which have been established in an
extensive analysis in [KSS10]. Since we did not find any settings for 5-SAT and 7-
SAT problems, we run our modified version of F-Race to find suitable settings. For
5sath00 the configurator reported p = 0.25, and for 7sat90 p = 0.1. This result is very
surprising. Such a low value for p means that WalkSAT will choose in almost all cases
the best variable from an unsatisfied clause, thus being much more greedy than in the
case of 3-SAT problems.

The survey propagation solver was evaluated with the default settings reported in
[BMZ05] (fixing 5% of the variables per step).

7.4.1 Random SAT

We have evaluated our solvers and the competitors on the test set of the instance
sets 3sat10k, 5satb00 and 7sat90 (note that the training set was used only for finding
optimal parameters for the solvers). The parameter settings for ¢; and ¢, are those
from Table 7.2 (in case of 3-SAT we always used the parameters for 3sat10k). The
results of the evaluations are listed in Table 7.3.

On the 3-SAT instances, the polynomial function yields the overall best perfor-
mance. On the 3-SAT competition set, all of our solver variants exhibited the most
stable performance, solving all problems within cutoff time. The survey propagation
solver has problems with the 3sat10k and the 3satComp problems (probably because
of the relatively small number of variables). The performance of the break-only-poly-
solver remains surprisingly high even on the 3satExtreme set where the number of
variables reaches 5-10° (ten times larger than that from the SAT Competition 2011).
From the class of SLS solvers, it exhibits the best performance on this set and is
only approximately two times slower than survey propagation. Note that a value of
¢y = 2.165 for the break-only-poly solver further improved the run time of the solver
by approximately 30% on the 3satExtreme set.

On the 5-SAT instances the exponential break-only-exp solver yields the best per-
formance, exceeding even the performance of Sparrow, which was the best solver for
5-SAT within the SC11. On the 7-SAT instances though, the performance of our solvers
is relatively poor. We observed a very strong variance of the run times on this set and
it was relatively hard for the configurator to cope with such high variances.

Overall the performance of our simple probability based solvers reaches state-
of-the-art performance, and can solve problems that where solved only by survey
propagation solvers.

89

7 Choosing Probability Distributions for SLS Solvers

3sat10k | 3satComp | 3satExtreme | 5sat500 | 7sat90
coplnen) | 166 93.84] 12.49 | 201.68
em) 1 (998) (500) (1000) | (974)
46.65 76.81
poly(ev, em) | ggq (500))))
cp(c) 53.02 126.59] 7.84 | 134.06
(997) (500) (1000) | (984)
22.80 | 54.37 1121.34
poly(cy) (1000) | (500) (180)) "
Sparrow 109.78 | 498.05 47419 0.52 | 14.94
(973) (498) (10) (1000) | (1000)
61.74 | 17221 1751.77 1471 | 69.34
WalkSAT 1 95y | (499) (178) | (1000) | (994)
o 14 3146.17 | 18515.79 599.01 5856 | 6000
' (116) (63) (180) (6) (0)

Table 7.3: Evaluation results: Each cell represents the PAR10 run time and the
number of successful runs for the solvers on the given instance set. Results
are highlighted if the solver succeeded in solving all instances within the
cutoff time, or if it has the best PAR10 run time. Missing results indicate
extremly low performance of the solver on the benchmark set. Cutoff times
are 600 seconds for 3satlk, 5sat500 and 7sat90, and 5000 seconds for the

rest.

Scaling Behavior Experiments show that the survey propagation algorithm scales
linearly with n on formulas generated near the threshold ratio. The same seems to hold
for WalkSAT with optimal noise, like the results in [KSS10] shows. The 3satExtreme
instance set contains very large instances with varying n € {10°...5-10}. To analyze
the scaling behavior of probSAT in the break-only-poly variant, we have computed for
each run the number of flips per variable performed by the solver until a solution was
found, which remains constant at about 2 - 10® independent of n. The same holds for
WalkSAT, though WalkSAT seems to have a slightly larger run time variance.

7.4.2 SC11 Random SAT

We compiled an adaptive version of probSAT and of WalkSAT, which first checks the
size of the clauses (i.e. k) and then sets the parameters accordingly (like Sparrow2011
does). We ran these solvers on the complete satisfiable instances set from the SC11
random category along with all other competition winning solvers from this category:
Sparrow2011, sattime2011 and EagleUp. Cutoff time was set to 5000 seconds. We
report only the results on the large set, because the medium set was completely solved

90

7.4 Empirical Evaluation

5000
EagleUP

4000 - sattime2011
@ —A— WalkSAT adapt
23000 { —= Sparrow2011
'5 —%— probSAT adapt
Q. 2000
(@]

1000 —

0 50 100 150

number of solved instances

Figure 7.5: Results on the “large” set of the SAT Competition 2011 random instances.

by all solvers and the solvers had a median run time under one second. As can be
seen from the results of the cactus plot in Figure 7.5, the adaptive version of probSAT
would have been able to win the competition. Interestingly, the adaptive version of
WalkSAT would have ranked third.

7.4.3 SC11 Crafted SAT

We also run the different solvers on the satisfiable instances from the crafted set of SC11
(with a cutoff time of 5000 seconds). The results are listed in Table 7.4. We included
the results of the best three complete solvers from the crafted category. probSAT
and WalkSAT were first evaluated with their different parameter configurations for
(3,5,7-SAT). The 7-SAT break-only configuration performed best for both solvers,
solving 81 in case of probSAT respectively 101 instances in case of WalkSAT. The
performance of WalkSAT could not be improved by varying the noise setting. probSAT
though exhibited better performance when increasing ¢, = 7 and by switching to the
polynomial break-only scheme, being then able to solve 93 instances. With such a high
¢p value (very greedy), the probability of getting stuck in local minima is very high.
By adding a static restart strategy after 2 - 10* flips per variable, probSAT was able
to solve 99 instances (as listed in the Table 7.4).

The high greediness level needed for WalkSAT and probSAT to solve the crafted
instances indicates that this instances might be more similar to the 7-SAT instances
(generally to higher k-SAT). A confirmation of this conjecture is that Sparrow with
fixed parameters for 7-SAT instances could solve 103 instances vs. 104 in the default

91

7 Choosing Probability Distributions for SLS Solvers

sattime | Sparrow | WalkSAT | probSAT | MPhaseSAT clasp
(complete) | (complete)
Crafted 107 104 101 99 93 81
Crafted pre. 86 97 101 95 98 80

Table 7.4: Each cell reports the number of solved instances within the cutoff time
(5000 seconds). The first line shows the results on the original instances
and the second one on the preprocessed instances.

setting (which adapts the parameters according to the maximum clause length found
in the problem). We suppose that improving SLS solvers for random instances with
large clause length would also yield improvements for non random instances.

To check whether the performance of SLS solvers can be improved by preprocessing
the instances first, we run the preprocessor of lingeling [Biell], which incorporates all
main preprocessing techniques, to simplify the instances. The results show the contrary
of what would have been expected (see Table 7.4). None of the SLS solvers could benefit
from the preprocessing step on these instances, solving equal or less instances. These
results motivated the analysis of preprocessing techniques in more detail, which was
performed in Chapter 6.

7.4.4 SC12 Random SAT

We have submitted the probSAT solver (the adaptive version) to the SC12 random
satisfiable category. The results of the best performing solvers are shown as a cactus
plot in Figure 7.6. The probSAT solver was the second best solver on these instances,
being outperformed only by CCASat.

While the difference between the two leading solvers CCASat and probSAT and
all the other competitors is remarkable, the difference between probSAT and CCASat
is not that large.

7.4.5 SC13 Random SAT

We have also submitted an improved version of probSAT to the SAT Competition 2013
to the Random Satisfiable category. The implementation of probSAT (the version
submitted to SC13) was improved with respect to parameters, data structures and
work flow. The parameters of probSAT have been set according to the values in Table
7.5 (where k is the size of the longest clause found in the problem during parsing).
Note that we decided to ignore the make value completely in this implementation.
These parameter values have been determined in different configuration experiments.

All array data structures where ended by a sentinel® (i.e. the last element in the
array is the stop value; in our case we have used 0). All for-loops have been changed into

8We thank Armin Biere for this suggestion.

92

7.4 Empirical Evaluation

pfolioUZK
sattime2011
ppfolio2012

SAT Solver Selector
sattime2012
WalkSAT

EagleUP
Sparrow2011
SATzilla2012 All
400 — SATzilla2012 Rand
probSAT

CCASat

800 —

600 —

SRR EEE R

CPU Time (s)

¢

200

0 100 200 300 400

number of solved instances

Figure 7.6: Results of the top solvers from SC12 random track.

k fet cb €
3 | poly | 2.06 | 0.9
4 exp | 2.85 | -
5 exp | 3.7 -
6 exp | 5.1 -
>7 | exp | b4 -

Table 7.5: Parameter settings for probSAT used at the SC13.

while-loops that have no counter but only a sentinel check. As most of the operations
performed by SLS solvers are loops over some small sized arrays, this optimization
turns out to improve the performance of the solver between 10%-25% (dependent on
the instances).

Compared to the original version of probSAT, the version submitted to the com-
petition is not selecting an unsatisfied clause randomly, but will approximately iterate
through the set of unsatisfied clauses with the flip counter (i.e. instead of clausein-
dex=rand() modulo numUnsatClauses we use clauseindex=flipCounter modulo nu-
mUnsatClauses). This small change seems to improve in some cases the stagnation

93

7 Choosing Probability Distributions for SLS Solvers

Solver total average median average
CPU time | CPU time | CPU time | speed up
1 | probSAT scl3 (nc) | 4356.0729 | 17.4243 7.886 2.01
2 | probSAT scl3 4696.9674 18.7879 8.499 1.86
3 | probSAT scl2(2) 7632.1326 | 30.5285 10.695 1.15
4 | probSAT scl12(1) 8781.8255 | 35.1273 12.489 -

Table 7.6: Performance comparison between the different version of probSAT. The
last column shows the average speed up when compared to the results of
line four, the basic version.

behavior of the solver giving it an additional boost.”

To measure the isolated effect of the different changes we have performed a small
experiment on the training set of 3sat10k instances. We start with the version that
was submitted to the SC12 with new parameters (sc12(1)), then we add the code
optimizations (sc12(2)) and finally we remove the random selection of a false clause
(sc13). A further version was added to this evaluation that does not cache the break
values, but recomputes them before selecting a variable (more details about this can
be found in Section 7.6). This version is denoted with (nc) and was analyzed after the
competition. The results of the evaluation are listed in Table 7.6.

The code optimizations yield an average speed up of 15%, while removal of random
clause selection is improving performance by around 70%. If the break values are
being computed from scratch for the variables taken into consideration for flipping
(also called non caching of break values), we achieve a twofold speed up compared to
the original version with new parameters. See Section 7.6 for more details about this
implementation.

The probSAT scl3 solver was submitted to SC13'°. The results of the best per-
forming solvers submitted to SC13 can be seen as a cactus plot in Figure 7.7. The
probSAT solver is able to outperform all its competitors. The instances used in SC13
contained randomly generated instances on the phase transition point for k = 3,...,7,
and also a small set of huge instances (in terms of number of variables). The last were
intended to test robustness of solvers. The probSAT solver turns out to be a very
robust solver, solving many of the huge instances (18 out of 36). From the set of phase
transition instances, probSAT solved 81 out of 109 that were solved by any other
solver. Altogether, this shows that the solving approach (and the parameter settings)
used by probSAT have an overall stable performance.

9This might also be the case for the WalkSAT solver.
The code was compiled with the Intel®Compiler 12.0 with the following parameters: -03 -zhost
-static -unroll-aggressive -opt-prefetch -fast

94

7.5 Comparison with WalkSAT

5000 —

vilipnum
BalancedZ
FrwCB2013
CCA2013
WalkSATIm2013
CScoreSAT2013
Ncca+
sattime2013
probSAT SC13

4000 —

x4

3000 —

CPU Time (s)

2000 —

BN

1000 —

0 20 40 60 80 100

number of solved instances

Figure 7.7: Results of the top solvers on the SC13 random satisfiable instances.

7.5 Comparison with WalkSAT

In principle, WalkSAT [MSK97] (see Section 3.3) also uses a specific pattern of proba-
bilities for flipping one of the variables within a non-satisfied clause. Nevertheless, the
probability distribution does not depend on a single continuous function f as in our
algorithms described above, but uses non-continuous if-then-else decisions as described
in [MSK97].

In Table 7.7 we compare the flipping probabilities in WalkSAT (using the noise
value p = 0.567, which is the optimal value for 3-SAT problems [KSS10]) with the
break-only-poly-algorithm (with ¢, = 2.06 and € = 0.9, the current parametrization
of probSAT for 3-SAT problems) using several examples of break value combinations
that can occur within a 3-CNF clause.

Within a run of probSAT on a randomly generated problem (n = 10000, r = 4.2),
we count how often each break combination occurs (first column). Interestingly, the
combinations containing a break value of one in combination with low values occur
very often, altogether in more than 85% of the steps.

The probabilities of WalkSAT and probSAT differ in many cases significantly,
though in the most often occurring case, namely break = 1 1 2, they are very similar.
While WalkSAT exhibits only five different probability patterns, probSAT is differen-
tiating between each individual combination, producing each time a unique probability
distribution.

Further, probSAT has the PAC property (see Chapter 3 for further details). In

95

7 Choosing Probability Distributions for SLS Solvers

Table 7.7: Comparison of the flip probabilities of WalkSAT (p = 0.567) and probSAT
(polynomial function ¢, = 2.06 ¢ = 0.9). The first column shows the per-
centage of steps where probSAT (when executed on a randomly generated
3-SAT problem with n = 10000, r = 4.2) encountered the break values
combinations from the next column (break). The next columns (WalkSAT
and probSAT) show the flipping probabilities for the variables if they have
the break values from the previous column. Probabilities that differ more
than 0.05% between the solvers are bold. Rows containing break combina-
tions that occur in more than 0.02% of the search steps are highlighted

96

% break WalkSAT probSAT
< 0.001 0o 0 O 0.333 0.333 0.333 0.333 0.333 0.333
0003 | 0 0 1 0.500 0.500 0.000 0.452 0.452 0.097
0.001 | O 0 2 0.500 0.500 0.000 0.479 0.479 0.043
<0.001 |0 O 3 0.500 0.500 0.000 0.488 0.488 0.024
<0.001 |0 0 4 0.500 0.500 0.000 0.492 0.492 0.015
<0.001 |0 O 5 0.500 0.500 0.000 0.495 0.495 0.010
0024 |0 1 1 1.000 0.000 0.000 | 0.700 0.150 0.150
0029 |0 1 2 1.000 0.000 0.000 | 0.767 0.164 0.069
0.017 | 0 1 3 | 1.000 0.000 0.000 0.792 0.170 0.039
0.007 | O 1 4 1.000 0.000 0.000 0.803 0.172 0.024
0.002 | 0O 1 5 | 1.000 0.000 0.000 0.810 0.174 0.017
0.006 | 0O 2 2 1.000 0.000 0.000 0.848 0.076 0.076
0.007 | O 2 3 1.000 0.000 0.000 0.878 0.079 0.043
0.003 | 0O 2 4 | 1.000 0.000 0.000 0.893 0.080 0.027
0.001 0o 2 5 1.000 0.000 0.000 0.900 0.081 0.019
0.002 | 0O 3 3 | 1.000 0.000 0.000 0.911 0.044 0.044
0.002 | 0O 3 4 1.000 0.000 0.000 0.927 0.045 0.028
<0.001 | 0O 3 5 | 1.000 0.000 0.000 0.935 0.046 0.019
<0.001 | 0O 4 4| 1.000 0.000 0.000 0.943 0.029 0.029
<0.001 |0 4 5 1.000 0.000 0.000 0.951 0.029 0.020
<0.001 |0 5 5 1.000 0.000 0.000 0.960 0.020 0.020
0129 |1 1 1 0.333 0.333 0.333 0.333 0.333 0.333
0222 |1 1 2 0.406 0.406 0.189 0.413 0.413 0.173
0.121 1 1 3 0.406 0.406 0.189 0.449 0.449 0.102
0.052 | 1 1 4 | 0.406 0.406 0.189 | 0.467 0.467 0.066
0.018 1 1 5 | 0.406 0.406 0.189 0.477 0.477 0.046
0.095 1 2 2| 0.622 0.189 0.189 0.544 0.228 0.228
009 |1 2 3 0.622 0.189 0.189 0.608 0.254 0.138
0.043 1 2 4 0.622 0.189 0.189 0.641 0.268 0.091
0.015 |1 2 5 0.622 0.189 0.189 0.660 0.276 0.064
0.026 1 3 3| 0.622 0.189 0.189 0.687 0.156 0.156
0.023 | 1 3 4 | 0.622 0.189 0.189 | 0.730 0.166 0.104
0.008 1 3 5| 0.622 0.189 0.189 0.755 0.172 0.073
0.005 1 4 4| 0.622 0.189 0.189 0.779 0.111 0.111
0.004 1 4 5| 0.622 0.189 0.189 0.807 0.115 0.078
< 0.001 1 5 5| 0.622 0.189 0.189 0.838 0.081 0.081
0.004 | 2 2 2 0.333 0.333 0.333 0.333 0.333 0.333
0.004 | 2 2 3 0.406 0.406 0.189 0.393 0.393 0.214
0.002 | 2 2 4 0.406 0.406 0.189 0.427 0.427 0.145
< 0.001 2 2 5 0.406 0.406 0.189 0.448 0.448 0.104
0.001 | 2 3 3| 0.622 0.189 0.189 | 0.479 0.260 0.260
< 0.001 2 3 4] 0.622 0.189 0.189 0.531 0.289 0.180
<0001 |2 3 5| 0.622 0.189 0.189 | 0.563 0.306 0.130

proportional to the occurrence value.

7.6 Implementation Variations

each step, every variable has a probability greater than zero to be picked for flipping.
This is though not the case for WalkSAT. A variable occurring in a clause where an-
other variable has a score of zero can not be chosen for flipping in WalkSAT. When
Donald Knuth analyzed the WalkSAT algorithm for his book ”"The Art of Computer
Programming” Volume 4 Section 7.2.2.2; he asked Brian Cohen, the author of Walk-
SAT, for an example where WalkSAT might loop forever. The example is provided in
the solution of exercise 185 of Section 7.2.2.211.

7.6 Implementation Variations

In previous sections, we have compared the solvers based on run time. As a conse-
quence, the efficiency of the implementation plays a crucial role and the best available
implementation should be taken for comparison. Another possible comparison mea-
sure is the number of flips the solver needs to perform to find a solution. From a
practical point of view this is not optimal. The number of flips per second (denoted
with flips/sec) is a key performance measure of SLS solvers when it comes to com-
pare algorithm implementations or two different similar algorithms. In this section,
we address this issue by comparing two different implementations of probSAT and
WalkSAT on a set of very large 3-SAT problems.

All efficient implementations of SLS solvers are computing scores of variables from
scratch only within the initialization phase. During search, the scores are updated
incrementally. This is possible because only the scores of variables that are in the
neighborhood of the flipped variable can change. This method is also known as caching
(the scores of the variables are being cached) in [HS05, p. 273] or incremental approach
in [Fuk04].

An alternative method would be to compute the score of variables on the fly before
taking them into consideration for flipping. This method is called non-caching or non-
incremental approach. In case of probSAT or WalkSAT, only the score of variables
from one single clause have to be computed as opposed to other solvers where all
variables from all unsatisfied clauses are taken into consideration for flipping.

We have implemented two different versions of probSAT and WalkSAT within the
same code basis (i.e. the solvers are identical with exception of the pickVar method),
one that uses caching and one that does not. We have evaluated the four different
solvers on a set of 100 randomly generated 3-SAT problems with 10° variables and a
ratio of 4.2. Results of these solvers along with the evaluation of the currently best
known WalkSAT implementation (within UBCSAT) are shown in Figure 7.8.

Within a time limit of 1.5 - 10* seconds only the variants without caching are able
to solve all problems. The implementation with caching solved only 72 (probSAT)

A draft of Section 7.2.2.2 is available online at: http://www-cs—faculty.stanford.edu/~uno/
fascba.ps.gz

97

http://www-cs-faculty.stanford.edu/~uno/fasc6a.ps.gz
http://www-cs-faculty.stanford.edu/~uno/fasc6a.ps.gz

7 Choosing Probability Distributions for SLS Solvers

15000 —

0000 - [

pABIOA

CPU Time (s)

WalkSAT caching
probSAT caching
WalkSAT non-caching
probSAT non-caching

—&— WalkSAT (UBCSAT)
0 T T T T T

0 20 40 60 80 100

a1

o

o

o
|

b+

number of solved instances

Figure 7.8: Comparison of the different implementation variants of probSAT and
WalkSAT (within the same code basis), with and without caching of the
break values. We also evaluate the best known WalkSAT implementation
(non-caching) from UBCSAT as a reference.

respectively 65 (WalkSAT) problems. Note that all solvers started with the same
seed (i.e. they perform search on exactly the same search trajectory). The difference
between the different implementations in terms of performance can be explained by
different numbers of flips/sec. While the version with caching performs around 1.4-10%
flips/sec, the version without caching is able to perform around 2.2 - 10° flips/sec.
Similar observations occur in [Tom10, p. 27] and in [Fuk04].

The advantage of non-caching decreases with increasing k (for randomly generated
k-SAT problems) and becomes even a disadvantage for 5-SAT problems and upwards.
As a consequence the latest version of probSAT uses non-caching for 3-SAT problems
and caching for other types of problems. The results obtained by the best known
implementation of WalkSAT (UBCSAT framework) is another example for how the
performance of an algorithm can be improved by clever implementation.

The currently best version of probSAT is the hybrid version described in Chapter
4.5, where we have used probSAT together with the picosat solver to construct the
hybridPP solver. By using the hybridization approach we could further improve the
performance of probSAT.

98

7.7 Conclusion and Future Work

7.7 Conclusion and Future Work

We introduced a simple algorithmic design principle for an SLS solver, which does its
job without complex heuristics and “tricks”. Our approach relies on the concept of
probability distribution and focused search, although being flexible enough to allow
plugging in various functions f that guide search. Using this concept, we were able to
discover an asymmetry regarding the influence of break and make values: the break
value is the more important one; one can even do without the make value completely.
We have systematically used an automatic configurator to find the best parameters
and to visualize the mutual dependency and impact of the parameters.

Within a wide range of empirical evaluations, we showed that probSAT reaches
state-of-the-art performance on randomly generated k-SAT problems, establishing new
performance marks for randomly generated problems. We also provided a detailed
description of several possibilities of improvement and a detailed comparison with the
WalkSAT solver.

The simplicity of probSAT allows the plugging of different functions and of different
variable properties, which in our opinion can be a fruitful direction of research and
should be further analyzed.

Finally, a theoretical analysis of the Markov chain convergence and speed of con-
vergence underlying this algorithm would be most desirable, extending the results in

[Sch99].

Acknowledgments We thank the BWGrid [bhgl0] project for providing the compu-
tational resources. This project was funded by the Deutsche Forschungsgemeinschaft
(DFG) under the number SCHO 302/9-1. We thank Daniel Diepold and Simon Gerber
for implementing the F-race configurator, and providing different analysis tools within
the EDACC framework. Thank goes also to Andreas Frohlich for fruitful discussions
on this topic and Armin Biere for helpful suggestions regarding code optimizations.

99

8 An advanced Platform for the
Experiment Design, Administration and
Analysis of Algorithms

After the author of this thesis worked on the hybridGM solver (presented in Chapter
4), and spent more time on the evaluation, collection and analysis of results than on
implementation of the solver, it became clear that it is worth to design a framework
that automates all these tedious tasks and especially allows the simple usage of dis-
tributed computers. The framework is called Experiment Design and Administration
for Computer Cluster (EDACC). The main motivation of EDACC was to design a
system that distributes jobs over arbitrary computing systems (like large clusters) and
is independent of the job queuing system of the computing system. After the initial
design sketches have been finalized, it was clear that the project is by far too large
to be implemented by a single person. Consequently, the project was split in small
sub-projects that were assigned to students interested in the topic of software de-
sign and distributed computing. After finalization of the sub-projects, different new
ideas and possible improvements gave rise to new sub-projects. In this way, EDACC
evolved over three years to a versatile system for the empirical evaluation and analysis
of algorithms.

The work presented in this chapter is mainly based on work published in [BGKR10)]
and [BDG'11].

8.1 Introduction

Many problems that come from practical applications or from theory are known to be
very hard to solve. The SAT problem is only one example. This means that the time
for solving these problems increases exponentially with the size of the input. The class

101

8 EDACC

__ [interesting (re)design satisfactory yes publish
idea algorithm no results results

evaluate analyze
algorithm results

(re)implement
algorithm

Figure 8.1: A typical work flow for the development, evaluation and analysis of empir-
ical algorithms

of N'P-complete problems is probably the most well known class of such problems.
Formerly, proving that a problem was A'P-complete meant that the design of a prac-
tical algorithm for this problem would be useless, because of the estimated exponential
time needed by the algorithm to solve the problem. The situation changed drastically
with the development of heuristics, meta-heuristics and approximation algorithms for
hard combinatorial problems. The size of the problems that can be solved by these
kinds of algorithms has increased continuously over the years. For example, the prob-
SAT solver from Chapter 7 is orders of magnitude faster than the hybridGM solver
presented in Chapter 4.

This progress can be seen as the result of a paradigm change from “algorithms are
fast if they have a theoretical good upper bound for their run time” to “algorithms are
fast if they are fast in practical experiments”. This does not mean that theoretical re-
sults are unimportant, but rather that the design of algorithms for hard combinatorial
problems has become oriented towards practical methodologies.

With this paradigm change, methodologies have also changed considerably. A the-
oretical analysis of heuristics is not possible in most cases, and has been replaced by an
empirical evaluation like the ones used in engineering. Most development of empirical
algorithms now follows an engineering scheme sketched out in Figure 8.1.

With the use of new methodologies, new problems arise. After the design and
implementation phase, the algorithm has to be tested and evaluated, which in most
cases is a very time consuming task. The first problem that an algorithm designer
encounters is the collection and selection of instances on which the solver will be
evaluated. Dependent on the set of instances chosen for the evaluation, a parameter
configuration for the algorithm has to be chosen. This problem can be solved often by
automated procedures like ParamILS [HHLBS09], SMAC [HHLB11] or GGA [AST09],
although preliminary tests are performed with manually configured parameters.

Having instances and parameters for evaluation, the user still has to choose a
computing system. A multi-core computer, a cluster, or even a grid can speed up com-

102

8.2 EDACC - Overview of the Components

putations considerably. However at the same time the problem of equally distributing
the work-load arises. In most cases it is solved by some home brewed scripts. After
finishing the computation, the results have to be gathered from the computing sys-
tems, and important information has to be extracted from the output by some parsing
procedures. To examine to what extent the results are satisfactory, statistical tests
have to be performed on the collected data. Comparing the performance of two or
more algorithms demands further elaborated statistics.

The processes of evaluation and analysis are seldom reproducible between dif-
ferent researchers, because of the complexity of the process and the lack of common
methods and of documentation. This is probably the reason why most of the communi-
ties working on empirical algorithms periodically organize international competitions,
where researches are encouraged to submit their latest algorithms. The purpose of
these competitions is to provide the same evaluation and analysis environment for all
algorithms. Unfortunately, the underlying evaluation system of competitions consists
of scripts and databases that are not freely available.

The EDACC system tries to overcome most of these problems. EDACC is capable
of managing solvers with their parameters, instances, creating experiments, running
them on arbitrary computing systems ranging from multi-core computers to large scale
grids, collecting the results and post-processing them. It also offers the possibility to
export and import experiments between different research groups. Advanced methods
for automatically extracting and archiving information from the results (or from the
instances) are also provided in EDACC. The extracted information can be analyzed
with a large variety of statistical tests and descriptive statistics, which are provided
by different components of EDACC. To make the organization and execution of com-
petitions as simple as possible, EDACC also provides a competition mode that follows
a widely accepted scheme in the field of computational logic.

8.2 EDACC - Overview of the Components

Notations Before describing the main components, some entities that will be used
through the rest of this chapter are defined. A solver is an implementation of an
algorithm that works on some input and has an output. The behavior of a solver is
controlled by some parameters. A solver together with a fixed set of parameters is called
a solver configuration. The input to a solver is called an instance. Any information that
can be computed from an instance is called an instance property. A computing system
is defined as a single computer, a computer cluster, or a grid on which the solvers are
executed. When running a solver on a computing system, computational limits can
be imposed (e.g., maximum computation time or maximum memory). If S is a set
of solver configurations, I a set of instances, then we can define an experiment noted

103

8 EDACC

GUI CCy

WF

AAC API cC,

Figure 8.2: The components of EDACC and their interactions. The dotted line between
client CCy and CC,, represents the presence of n clients. Dashed lines
represent optional communication between the components. The minimal
set of components is the GUI, DB and the computation clients (CC).

with E as:
EcC(SxI)

A single element of an experiment is called a job. The computation of a job produces a
result. Any information that is computed from a result is called a result property, while
any type of information computed from an instance is called an instance property (also
called feature in the Al community).

The main components of EDACC are the Database (DB), the Graphical User
Interface (GUI) and the computation client (CC), which is also called only client.
These are the top three components in Figure 8.2.

The DB is the central component of EDACC, because it is used by all other compo-
nents for information retrieval and communication. The DB is responsible for storing
and archiving all the information about solvers, instances, experiments, computing
systems and their relations.

The GUI is the main control system of EDACC, and is split in two operation modes:
DB management and experiment management. The first mode provides all necessary
DB operations to create, remove, update and delete (CRUD) solvers, parameters,
instances and other necessary auxiliary programs. It also allows the computation of
instance properties (e.g., the number of variables in an instance). The experiment mode
provides the necessary procedures for the generation of experiments and their jobs.
At the same time, it also provides monitoring possibilities for the computation clients
and for the experiments. Within the experiment mode the user can post-process the
results by extracting result properties (e.g., number of flips performed by the solver),
which are then stored in the DB and can be used for statistical tests.

104

8.3 Job Server

The clients are responsible for the execution of the jobs that were created in the
experiment mode. One client manages one single machine with arbitrary many cores.
The client fetches jobs from the DB, starts them and monitors the resource usage
through an external watcher program. The client is configured to run with runsolver
[Roull]. After jobs finalized their execution, results are copied back to the DB and
new jobs are fetched for processing.

These three components are sufficient for most of the experiments performed for
the evaluation of solvers. Further details about these components and their features
are provided in [BGKR10, BDG'11].

8.3 Job Server

All jobs of EDACC are stored in the relational database from where they are fetched
by the clients and then marked as being processed. Every query for an unprocessed job
has to have as a result a unique job ID. Thus, within the execution of an experiment,
the DB represents a job queue for the client. Relational DB’s can emulate queues,
but with a relative low efficiency. The major reason for this is that the job table in
the database has to be locked for update operations, which occur every time a job is
marked as being processed (i.e. an element has been extracted from the queue). Here
we could use a non-SQL database, which is much more faster, but we would loose
many features of relational databases needed for EDACC.

As a performance measure for the queue, we use the number of elements it can
provide per second (i.e. jobs/second). By using the DB as queuing system, the lock-
ing mechanism of the DB is becoming the limiting factor, and rates higher than 20
jobs/second are not possible on a desktop computer. This means that if more than
20 jobs per second are requested, computational resources available to the clients will
start to idle. Note that if the average runtime of jobs is 100 seconds, EDACC can
manage around 2000 cores. The same problem was also addressed within the BOINC
project [AKWO05].

One of the key motivations of EDACC was to avoid idling of free available resources
as much as possible. This motivated the development of the job server (JS).

The job server implements fast queues in memory. The queue is periodically syn-
chronized with the DB by means of a single large SQL operation, which can be per-
formed very fast when compared to many small SQL operations (i.e. job requests).
As can be seen in Figure 8.2, the clients can connect to the job server for retriev-
ing a unique job, and then connect to the DB to retrieve the necessary information
about the job. In this way, the number of jobs per second that can be provided to
the clients increases, allowing up to 100 jobs/second, which is sufficient to execute
EDACC experiments on large scale grids with 10000 cores (when the average job run
time is 100 seconds). The task server of the BOINC project, which also implements

105

8 EDACC

a queue in memory, can also provide up to 100 jobs/second [AKWO05]. To further in-
crease the performance of the queuing system, the job server could use non-blocking
queues implementations.

8.4 Parallel Automated Algorithm Configuration

During the development of SLS solvers for the SAT problem, we observed that the
performance of all developed solvers is highly dependent on their parameter settings.
It is not sufficient to design a fancy solver and then hope that it will reach high
performance. Appropriate parameters have to be determined to make it a state-of-
the-art solver. This parameter dependency motivated the integration of Automated
Algorithm Configuration (AAC) tools into EDACC.

The problem of automated algorithm configuration has been described detailed in
two Ph.D. thesis, one by Birattari [Bir04], and one by Hutter [Hut09]. Several algorithm
configurators have been proposed in the last years: ParamILS [HHS07], GGA [AST09],
F-Race [BYBS10], SMAC [HHLB11] and dSMAC [HHLB12].

All the presented configurators except dSMAC are sequential or low parallel (can
use only the cores of one single machine in case of GGA). To be able to make use of
the high parallel execution ability of EDACC, we partially re-engineered several AAC
algorithms and developed parallel versions of these in a unified configurator framework.

To make this task as easy as possible, we first designed an API for configurators
that provides all necessary functionality, allowing developers to concentrate on the
configuration algorithm. Before describing the API and the algorithm configuration
framework provided by EDACC, we will first give a description and motivation of the
algorithm configuration problem.

8.4.1 The Algorithm Configuration Problem

After the development of an (parametrized) algorithm, we want to solve the following
problem: Given a set of instances I, we want to know how to set the parameters of
the algorithm such that its performance on I is maximized. An alternative (possibly
easier) problem is the question whether there exists a parameter setting such that a
given performance value (e.g., reached by competing algorithms) can be reached or
even exceeded.

To specify the algorithm configuration problem, we will use the following notations.
We define a solver S as the implementation of an algorithm A. A solver has param-
eters that control its behavior, which can be of different types like real, integer or
categorical. Parameters and their values can also be conditioned by other parameters
and their values. All valid combinations of parameter values for one solver S is called
the parameter search space P. One point p from this search space is called a parameter
configuration or solver configuration S,. A set of instances is noted with Z. Evaluating

106

8.4 Parallel Automated Algorithm Configuration

a solver configuration of a deterministic solver on one instance (a job) produces a result
that has a cost ¢, which can be the run time (in the case of decisions problems) or
some quality measure of the produced solution (in case of optimization problems). In
case of stochastic solvers, a job is additionally identified by a seed, therefore a job is
generally identified by an instance-seed pair.

Definition 8.4.1 (Algorithm Configuration Problem). Given a solver S, a specifica-
tion of its parameter search space P, a set of instances Z, a cost metric ¢ and a statistic
function v over ¢, the algorithm configuration problem consists in finding a parameter
configuration p from P that minimizes ~, i.e.:

Popt € argmin y(c(Sp([1)))

The AAC problem is very similar to black-box optimization!, where a function has
to be optimized without knowing its explicit form. The function can only be evaluated
at arbitrary points and the evaluation value is the only information available for the
optimization procedure.

While in black-box optimization the search domain is typically R”, in AAC the
search domain can have very complex structures with mixed types of variables (param-
eters) and with forbidden subspaces. To cope with all this type of complex parameter
search spaces, we have developed the parameter search space graph specification.

8.4.2 Parameter Graph

In [AST09] the configurator GGA used for the first time AND/OR trees to represent
the parameter search space. AND/OR trees have originally been proposed in [MDO05]
for the compact representations of constrained search spaces. We have extended the
concept of AND/OR trees to acyclic graphs. This allows an OR node to have multiple
incoming edges from AND nodes, which allows us to represent multiple conditioning
of parameters (e.g., parameter p; can only be active when p; = = and p, = y). More

details about the parameter graph representation can be found in the user guide of
EDACC.?

8.4.3 EDACC API

The API provides two major types of functionalities for the configurators, abstracting
from the database structures of EDACC. The first one is related to the management
of jobs, while the second one is related to querying the parameter graph.

!Black-box optimization is concerned with the optimization of a black-box functions (i.e. the semantic
of the function is not known and can not be used to guide the optimization process, as it is the
case for SAT problems; only evaluations of the function are possible).

’https://github.com/EDACC/edacc_user_guide/blob/master/user_guide.pdf

107

https://github.com/EDACC/edacc_user_guide/blob/master/user_guide.pdf

8 EDACC

Algorithm 7: EDACC AAC Main Workflow
Input : configuration experiment
Output: best found parameter configuration
initialize race and search procedure
while computation budget not exceeded do
expansion < racing.computeOptimalExpansion|()

P + search. generateNewConfigs(expansion)

1

2

3

4

5 racing.startEvaluation(P)

6 update information about jobs from DB
7

8

15} + set of complete evaluated parameter configurations

racing.notify(]sf)

9 return best found parameter configuration

The API provides all necessary procedures to manage solver configurations and
their jobs. The most important functionalities are:

e create/remove/update solver configurations

e check for user specified solver configurations

e add/remove/stop jobs of a given solver configuration with a given priority
e check status of jobs

The API provides procedures to query the parameter graph typically encountered
in local search and genetic configurator algorithms.

e retrieve random parameter configurations
e retrieve different types/sizes of neighborhoods of a given parameter configuration
e perform different types of crossovers of two parameter configurations

e perform mutations on a given parameter configuration

8.4.4 EDACC Configurator Framework

To make the configurator framework as general as possible, and to be able to incorpo-
rate all possible types of configurators into our framework, we have split our framework
into three parts: main procedure (loop), search procedure and racing procedure. The
main procedure is sketched out in Algorithm 7.

108

8.5 Web Frontend

The search procedure is responsible for generating new solver configurations (see
line 4 in Algorithm 7), thus performing the search in the search space spanned by
the parameter graph. The racing procedure determines how a solver configuration is
evaluated (line 5 i.e. how many jobs will be allocated to each solver configuration).
Containing the management of the jobs, the racing procedure is also responsible for the
management of available resources, which should be exploited as much as possible to
guarantee a good parallelization of the configurator. The main procedure is responsible
for maintaining the data synchronized with the database (line 6), and for performing
the communication between the search and racing procedures.

Almost all major configurators (e.g., ParamILS, SMAC, F-Race) and variations
of these have been reimplemented in our framework and used in different research
projects (see Chapter 5, 6, 7). The advantage of the separation of the search and racing
procedure is that new configurators can be designed by using existing search or racing
procedures or even by creating new combinations of these. The parallel version of the
configurators are able to reach performance similar to their sequential counterparts
and sometimes even exceed it (see [Diel2] for more details about some experimental
evaluations).

8.5 Web Frontend

The Web Frontend (WF) of EDACC was designed with the goal to leverage the pub-
lication of experiment results online, also enabling to share results with collaborators.
The WF also enables the analysis of the results by means of descriptive statistics and
statistical analysis. Since the WF provides most of the functionalities needed for the
organization of competitions, it was further extended to a full competition system.

8.5.1 Analysis and Statistical Tools

The information extraction mechanism provided in EDACC can supply a wide variety
of information about an experiment [BDG*11]. This information can be analyzed
with the WF by means of descriptive statistics and statistical tests. These tests can
be used to measure the performance of algorithms, to show correlations between some
properties of the results, or to simply provide a graphical representation of the results,
enabling the user to directly analyze the results without having to export the data
and post-process it with external tools.

The information that can be used for analysis is stored in the DB within instance
properties and result properties. We differentiate between two scenarios in which anal-
ysis is performed: analysis of a single solver or comparison of two or more solvers.
We also have to differentiate between single runs or multiple runs of a solver on the
same instance. If multiple runs are available, the information used for statistics can
be chosen by the user from median, mean, all runs or only a single specified run.

109

8 EDACC

TNM vs. Sparrow

Runtime Distributions)
TNM CPU Time

0.0 0.5 1.0 15 20 25 3.0

30 T T T T T H 3.0

7

20 + - 20

15 415

P(solve within x seconds)
Sparrow CPU Time

L J 00

0.0 05 10 15 20 25

CPU Time (s)

Figure 8.3: Comparison of the run time Figure 8.4: Scatter plot to compare the
distribution of two solvers. run time of two solvers.

A distribution plot (see Figure 8.3) and a nonparametric kernel density estimation
is provided for the analysis of the results of a single solver on an arbitrary instance
by means of an arbitrary result property. To analyze the results of a solver on all
instances (or a selection), the user can use scatter plots. The compared information
can be some instance property with a result property, like for example number of
variables vs. CPU time, or two result properties, like memory-usage vs CPU-time.
Beside scatter plots, we also compute the Spearman rank correlation coefficient and
the Pearson product-moment correlation coefficient.

A scatter plot (see fig. 8.4 for a run time comparison) together with the two
mentioned correlation tests is provided for the comparison of two solvers by means
of an arbitrary result property. EDACC also provides two non-parametric tests: the
Kolmogorow-Smirnow two-sample test and the Mann-Whitney-U test (Wilcoxon Rank
Sum test).

A well founded comparison of the performance of two solvers can also be done with
the help of a probabilistic domination test by means of an arbitrary result property
(e.g., CPU time, flips, number of branches). Within this test instances are split into
three categories. The first category contains the instances on which the first solver
probabilistically dominates the second one. The second one contains the instances on
which the second solver probabilistically dominates the first one and the third category
contains the instances on which no probabilistic domination can be found due to the
crossing of the distributions.

Analyzing one result property for one or more solvers can be done with a box plot

110

8.5 Web Frontend

sparrow2011-PCL

sattime2012

sattime2011 (SC11 Silver) (R

. EagleUP (SC11 Bronze) (R)

gNovelty+PCL

pploi02012

ploioUzK

ccAasat

ProbSAT (OFFTRACK)

Sparrow2011 (SC11 Gold) (R

SATZilla2012 Rand

SAT Solver Selector

BossLS

ssa

P
E
3

SAT.Solver.Selector
SATzilla2012.Rand
ProbSAT. OFFTRACK.
ccasat

plolioUzK
ppfolio2012
gNovelty.PCL
sattime2012
sparrow2011.PCL

parrow2011..SC11.Gold...R.
EagleUP..SC11.Bronze...R.
sattime2011..SC11.Silver...R.

Figure 8.5: A heat map plot of the clustered Spearman correlation matrix of the result
of the random satisfiable category from SC12. The darker the area, the
more correlated the solvers are with respect to their run time.

or with a cactus plot as in Figure 7.7 on page 95 (number of solved instances within a
given amount of result property). To analyze the similarities of the results of a set of
solvers, the WF can plot a clustered Spearman correlation matrix as shown in Figure
8.5.

The WF can also compute the minimal set of solvers needed to solve all problems
within an experiment. The minimum set of solvers problem is actually a minimum
hitting set problem, which is encoded as a MAX-SAT problem and solved with a
MAX-SAT solver.

Finally EDACC can export the generated plots in several file formats, including

vector graphics. To support third-party analysis tools, results can also be exported to
the widespread csv-format.

111

8 EDACC

8.5.2 Competition Mode

Solver competitions can be an incentive for researchers to implement new ideas, to
improve existing solvers, and spark interest in the field. Recurring competitions can
show the progress in the development of solvers by comparing new solvers with ref-
erence solvers from previous competitions. They can also help to identify challenging
instances for state-of-the-art solvers. The results of such a competition can be used by
researchers to identify the strengths and weaknesses of solvers and instances, and to
guide further research.

There are several competitions in the field of algorithms for logic problems, for
example the series of SAT Competition3 [BS04], the SMT-COMP* [BAMS05] or CASC
[Sut10].

Running such competitions is an organizational challenge, and brings the inevitable
need for tools to make it possible to run dozens of solvers on a large set of instances
in a multi-computer environment, and retrieve and process the results for competi-
tion purposes. The competitions mentioned above do have such internal tools and web
interfaces, but to our knowledge, they are not publicly available. To make the organi-
zation of competitions possible to everybody (who has the computational resources),
we extended EDACC to provide all required functionalities for the organization of
competitions.

We first started by analyzing the existing competition systems to find out their
commonalities, and to identify interesting or missing features.

From an abstract point of view most competitions have:

1. static web pages to provide information about rules and the course of events
2. user administration to control the access to the results
3. an execution system to run solvers and manage the results
4. dynamic web pages to present the results
As necessary, interesting or missing features we have identified:

1. plausibility and verifiability of the steps taken in all competition phases, by
providing participants real-time access to all relevant information

2. the results have to be reproducible, which means all required information (e.g.,
starting command, seeds, input files, output files) should be easily accessible
through a web interface

3. various forms of presentation of the results with cross linking and filtering

Swww . sat competition.org
. smtcomp.org

112

www.satcompetition.org
www.smtcomp.org

8.5 Web Frontend

Announce 1. Category 2. Registra- 3. Solver
—
competition definition tion/Submission testing

4. Solver 5. Competition 6. Release 7. Release re-
resubmission ’ = results sults to public

Figure 8.6: The typical phases of a competition in the field of logic computing.

4. different graphical presentations of the results, including interactive elements
such as clickable points in plots that lead to detailed information

5. all graphical presentations can be exported both as image and as numerical data
6. descriptive statistics and statistical tests for analysis of the results

7. clean encapsulation of the ranking system enabling easy implementation of new
ranking systems

We have extended the WF of EDACC to provide all these features. Further we
have added a phase system (see Figure 8.6) to specify the course of events during a
competition. Each phase also defines access control to the various information.

Next we are going to describe the organization of a competition with the EDACC
WEF by describing each phase and pointing out the interesting features that are pro-
vided. The access control to different kinds of information (e.g., individual results, all
results, statistics, etc.) can be configured by the organizers for each phase individu-
ally, according to their competition policies. Through the description of the phases an
exemplary access control is given.

Category definition In the first phase, the organizers of the competition define the
competition categories (which actually can be seen as sub-competitions). A category is
defined by the instances it will contain, and should give the competitors an orientation
where to submit their solvers. In EDACC, each category will be represented by an
experiment. In this phase, competitors have access only to general information, rules
and the schedule. The WF provides containers for these static web pages.

Registration and Submission In the second phase, competitors are requested to cre-
ate an account for the web interface. After login they can submit their solvers (i.e.
source code or binary), which are directly saved within the DB. They have to pro-
vide detailed information about their solvers, like the parameters and the competition

113

8 EDACC

category where the solver should participate. Instances can also be submitted, which
are then available to the organizers. During this phase, competitors have no access to
other competitors’ solvers nor instances.

Solver testing This phase is used to ensure that the submitted solvers are able to
run on the computing system of the competition. Within the EDACC GUI, organizers
create test experiments, corresponding to each of the competition categories. Each
solver will be tested in all categories it was submitted to. The experiments are then
executed on the competition computing system with the help of the client. Competitors
have the possibility to monitor their solvers through the web frontend (results of other
solvers are not visible) in real time. From this phase on, results are accessible in several
forms®:

1. by solver configuration: the results for all instances computed by a solver con-

figuration

2. by instance: the results of all solver configurations

3. by solver configuration and instance (if multiple runs are allowed): multiple jobs
of each solver configuration on an instance are accumulated and some descriptive
statistics like the minimum, maximum, median and mean run time displayed

4. single result: the result of a single job, including the output of solver, launcher,
watcher, verifier and also all result properties that were computed for this result

Solver resubmission During this phase, competitors have the opportunity to submit
solver updates if bugs or compatibility issues with the computing system occurred.
Automated scripts will rerun the tests.

Competition Similar to the testing phase, in the competition phase organizers create
experiments based on the competition categories and choose the solvers and instances
for each experiment. This task is accomplished easily with the help of the GUIL. The
experiments are run on the computing system and competitors have the possibility to
monitor the results of their own solvers online (and of others if configured so by the
organizers).

Results release In the release phase, competitors gain access to the results of all
competing solvers. Before making the results available to the public, a ranking has to be
calculated. The ranking can either be calculated dynamically by the web application or

5 An example for the results of a competition can be found at http://edacc4.informatik.uni-ulm.
de/

114

http://edacc4.informatik.uni-ulm.de/
http://edacc4.informatik.uni-ulm.de/

8.6 Implementation Details

simply displayed after a manual calculation. We have implemented a simple, exemplary
ranking using the number of correct results and breaking ties by the accumulated CPU
time. Other rankings like the careful ranking [VG11] or rankings based on the PAR10
measure are also implemented.

Also available in this phase is the complete spectrum of descriptive statistics and
statistical tests described in Section 8.5.1. For pointing out interesting results or cor-
relations, the organizers have the possibility to extract instance or result properties
within the GUI, and make them available within the web frontend.

Final release In a last phase, instances, results and possibly solver source codes and
binaries are made publicly available on the web interface without requiring registration.

8.6 Implementation Details

The EDACC DB requires a user-account on a MySQL 5.1 database with read and
write access. The location of the DB has no importance, but to reach high perfor-
mance it should be on the same computer as the WF. The GUI, API and configurator
framework of EDACC is written in Java and is independent of the operating system
of the computer. It needs only the Java virtual machine version 6. For the statistical
evaluation, the R programming language should also be installed on the computer.

The compute client consists of three sub programs: the launcher, the watcher and
the verifier. The launcher builds a DB-connection and is responsible for fetching the
jobs and all necessary files, providing them to the watcher. The launcher is written in C
and was tested on unix-like systems. The watcher, a replaceable component in EDACC,
is the runsolver tool of Olivier Roussel [Roull]. The verifier is problem dependent and
has to be provided by the user. If the results of the solver can be trusted (e.g., the
solver contains a verifier procedure) the verifier can be omitted. The job server is
implemented in C++.

The web interface for the competition mode is implemented as a Python WSGI
(Web Server Gateway Interface) application. The application uses a web framework
and several open source libraries, which are available on most platforms. All competi-
tion specific data like user accounts, instance types and the phase of the competition
are stored in the central DB. To generate plots and calculate statistics it uses an
interface library to the statistical computing language R.

The code of EDACC components is open source and is released under the MIT
License (except the watcher, which has a GPLv3 license). The code is available at
the project site: http://sourceforge.net/projects/edacc/ or at https://github.
com/EDACC.

Shttp://www.r-project.org/

115

http://sourceforge.net/projects/edacc/
https://github.com/EDACC
https://github.com/EDACC
http://www.r-project.org/

8 EDACC

8.7 Related Work

We are not aware of the existence of an experimentation system for empirical algo-
rithms that provides all the functionalities of EDACC within the same platform and
is freely available. Though, parts of EDACC’s functionalities are provided by different
systems or tools.

The EDACC system is highly inspired by the SatEx system that was first presented
in [SCO1] and further developed and used for one decade for the execution of the SAT
competitions. The SatEx system is mainly a web based platform for the presentation of
SAT solver results. The web client of EDACC provides similar functionalities as SatEx,
extending them with statistical tools for analysis and visualization of the results.

GridTPT [BCDF12] supports the testing of SMT solvers and their distribution
on computer clusters, having a master/slave architecture. The system is also able to
parse information from the output and present some statistics as scatter plots.

The SMT Competition [BAMSO05] systems have several tools similar to our WF,
however they lack the possibility to perform advanced analysis of the results and are
not freely available nor portable to other computing systems.

The distributed system implemented in EDACC is similar to that of the BOINC
project [And04], which is also based on a central MySQL database and computation
clients. Our implementation, though, is much more lightweight but not as versatile.

The high throughput computing system Condor [TTLO05] is also providing a general
purpose distributed queuing and execution system similar to that of EDACC.

8.8 Conclusion

In this work we have introduced EDACC, a platform for the design, administration
and analysis of experiments on empirical algorithms. EDACC consists of three major
components, the database, a graphical user interface and a compute client. Other
auxiliary components are the web frontend, the job server, the API and the automated
algorithm configurator.

We succeed to create a system that can scale up to large scale grids, allowing
researchers to tremendously speed up the empirical evaluations of algorithms of any
kind. This has been achieved by using the job server, which implements a queuing
system in memory.

The EDACC system provides a parallel algorithm configuration framework that al-
lows the optimization of parameters and also the easy design of new parallel algorithm
configurators.

With the help of the web frontend, the organization of competitions becomes an
easier task (at least from a technical point of view). The plethora of tools provided by
the web frontend gives the participants of the competition the possibility to thoroughly

116

8.8 Conclusion

analyze the results. The EDACC competition system was successfully used to perform
the SAT Competitions in 20127 and 20138.

We think that researchers studying empirical algorithms can drastically speed up
their experimental and analysis work by using EDACC as their experimental platform.

Acknowledgments We thank the bwGrid [bhgl0] project for providing the test en-
vironment, and Borislav Junk and Raffael Bild for the first version of the execution
client.

"edacc2.informatik.uni-ulm.de
8edacc4.informatik.uni-ulm.de

117

edacc2.informatik.uni-ulm.de
edacc4.informatik.uni-ulm.de

9 Conclusion and Future Work

Within this chapter, we provide a synthesis of the main ideas presented in this thesis
and give several directions of future research inspired by our findings.

The satisfiability problem, one of the most prominent problems in computer sci-
ence, occurs in a wide range of theoretical and especially practical applications. Any
progress on the field of SAT solving is influencing the progress in other fields, like hard-
ware and software verification, cryptography or the solving of mathematical problems.
In the last two decades, much research was devoted to the improvement of SAT solv-
ing techniques based on the principle of Stochastic Local Search (SLS). Nevertheless,
the inner working of SLS solvers is poorly understood and new analysis methods are
required. Furthermore, SLS solving techniques still have a high improvement potential
in general, but especially on structured SAT problems. The work presented in this
thesis addresses these problems.

Our major goal was to find new ways to solve different types of SAT problems more
efficiently, and to gain new insights about the inner working of modern SAT solvers.
We reached our goals in several steps: by providing new analysis methods of the search
behavior of SLS solvers, by designing new state-of-the-art SLS solvers, by analyzing
preprocessing techniques suited for SLS solvers, by studying the essentials of SLS
solvers and finally by providing a parallel experimentation framework for algorithms.

In Chapter 4 we started our work with the analysis of intensification and diversifi-
cation of the search of the state-of-the-art SLS solver gNovelty+. While the latter was
sufficient according to our analysis methods, the former indicated improvement poten-
tial. We analyzed the intensification of the search by constructing partial assignments
(called also SSP) around local minima, and then analyzing the simplified formula with
a complete SAT solver, which either finds a solution or proves unsatisfiability. This
analysis approach entails a hybridization scheme for SLS and complete solvers, which

119

9 Conclusion and Future Work

we originally implemented in the hybrid solver hybridGM. We were able to show that
hybridGM is outperforming its SLS component (gNovelty+) on randomly generated
SAT problems.

Further, we also showed that the hybridization scheme can be successfully applied
(improving the performance over the SLS component) to arbitrary SLS and complete
solvers by implementing the hybridGP and hybridPP solvers that are based on modern
state-of-the-art solvers. This demonstrates that our analysis and hybridization method
can be applied to any new type of SLS solver that will be presented in the future,
possibly yielding a further improvement of those methods.

We think that our hybridization scheme has improvement potential in several
directions, especially considering the way SSPs are constructed and how they are sized.
Another direction of research is the extension of the information exchange between the
SLS and CDCL solver. The CDCL solver could compute the set of core variables (the
set of variables that are needed to prove the unsatisfiability of the problem) and pass
them to the SLS solver, which could use this set to further guide its flipping heuristic.
In case of clause weighting solvers, this can be easily achieved by increasing the weights
of the core variables.

As a next step we studied new heuristics that improve the intensification of the
search directly within the SLS solver. In Chapter 5 we proposed a new heuristic for
SLS solvers, which we have embedded in the gNovelty+ solver, creating the solver
Sparrow. The main idea of this heuristic is to compute a probability distribution
for variables (taken in consideration for flipping) based on different properties of the
variables and on parameters that control their influence. Sparrow selects the variables
for flipping according to this probability distribution. By using appropriate values
for these parameters, we show that Sparrow reaches state-of-the-art performance on
randomly generated SAT problems, strongly outperforming all its competitors. The
Sparrow solver was submitted to the SAT Competition 2011 where it was ranked first
in random category satisfiable sequential and parallel, exceeding also the performance
of the best parallel SLS solvers.

Motivated by the remarkable performance of Sparrow on randomly generated prob-
lems, several research directions regarding Sparrow have been further analyzed within
this thesis. To understand which solving component of Sparrow is the most impor-
tant one, the solver has been dismantled and reduced to a minimum, yielding the
new SAT solver probSAT, which is described in Chapter 7. The second direction is
the improvement of the Sparrow solver for hard combinatorial problems by means of
preprocessing.

In Chapter 6 we performed an extended analysis of preprocessing methods with the
goal to improve the performance of Sparrow in particular and of SLS solvers in general

120

on hard combinatorial problems. We have analyzed the utility of all major available
Preprocessing Techniques (PPTs) individually and also of combinations of these. To
find the most appropriate PPT for SLS solvers, we have parametrized all PPTs (also
allowing each technique to be turned on or off) and then used an automated algorithm
configuration procedure to find the best combination and the best parametrization.
Our results showed that it is possible to significantly improve the performance of
the SLS solver Sparrow and of another SLS solver on hard combinatorial problems
with appropriate parametrized PPTs. The performance mark reached by Sparrow
on our benchmark sets significantly exceeded the performance of any other type of
solvers, especially that of CDCL and look-ahead solvers. We think that our findings
will motivate researchers to rethink the applicability of SLS solvers in combination
with appropriate PPTs.

Our analysis has many degrees of freedom that have not been analyzed yet. In
our opinion the most promising path is to optimize the parameters of the solver in
combination with the parameters of the preprocessor or to incorporate inprocessing
techniques within SLS solvers, while the latter is by far more complex.

With the aim of producing an effective and simple SLS solver, we have dismantled
the Sparrow solver and reduced it to its essential heuristic, which turned out to be the
probability based decision heuristic. Based on this finding, we proposed and analyzed in
Chapter 7 a new solver named probSAT, which uses only the make and break values
of variables to compute a probability distribution. With our simple solver design,
we were also able to analyze the importance of these two properties, showing that
the make property can be ignored, being inessential for reaching good performance.
Within thoroughly experimental evaluations, we have shown that probSAT reaches
state-of-the-art performance on a wide range of randomly generated problems.

The probSAT solver is probably the most simple and one of the best SLS solvers
currently available. Despite its simplicity, it offers many degrees of freedom, namely
exchanging the probability function or incorporating new types of information. We
also think that the simplicity of probSAT will leverage the design of more efficient
SLS implementations.

Within the last part of this thesis, we presented EDACC, a parallel framework
for the design, execution and analysis of experiments with empirical algorithms. We
presented a brief overview of the main components and their interactions, emphasizing
the automated algorithm configuration framework, which is described in more detail,
as it has been often used within our solver studies. We also presented the major
functionalities of the web frontend, which provides a large variety of statistical analysis
tools and enables the organization of competitions.

The plethora of tools provided by EDACC makes research on empirical algorithms

121

9 Conclusion and Future Work

a simpler task, allowing researchers to concentrate on their algorithms. The paral-
lel automated algorithm configuration framework, one of the most powerful tools in
EDACC, can be generally used for any type of black box optimization. Currently,
several other research groups are actively using the system to analyze and optimize
their algorithms. The EDACC system was successfully used to organize two major SAT
Competitions in 2012 and in 2013, and is currently tested for an oncoming competition
in the field of computational logic.

With our work we contributed in several ways to a deeper understanding and
improvement of SLS solving techniques, enabling new promising directions for future
research.

122

Technical Specification of the Execution
Environment

All the empirical evaluations performed within this thesis were conducted on the
clusters from the bwGRiD, which is a distributed grid located at different universi-
ties within the state of Baden-Wiirttemberg (southern Germany). The resources used
within the bwGRiD have a homogeneous hardware and software configuration allowing
a distributed execution of experiments, without having to take into account differences
between the clusters.

Hardware Specification The bwGRiD clusters nodes have two sockets with Intel
Harpertown quad-core CPUs with 2.83 GHz and 16 GByte RAM. Each of these CPUs
contains two dual-core dies. The exact topology (cores, cache levels and sizes and
memory) of the CPUs is represented in Figure 9.1

If not mentioned otherwise all cores of a node have been used for performing the
experiments. Since two adjacent cores share the L2-cache, an increased number of
cache misses can occur, resulting in a higher runtime (than when running only one
solver per CPU). This slowdown affects all evaluated solvers approximately in the
same manner, thus still allowing a fair comparison. Using less cores of a node to avoid
cache sharing would result in a lower number of available resources and thus in a less
significant comparison.

Software Specification The operating system of bwGRiD is Scientific Linux. The
compilers used in this thesis are mainly gcc and intel in the versions that were avail-
able by the time the experiments have been performed. Solvers compared within one

!The CPU and cache topology of a machine can be displayed with the Istopo command provided
within the hwloc package. See http://www.open-mpi.de/projects/hwloc/ for more details.

123

http://www.open-mpi.de/projects/hwloc/

9 Conclusion and Future Work

Machine (16GB)
Socket P#0
L2 (6144KB) L2 (6144KB)
L1 (32KB) L1 (32KB) L1 (32KB) L1 (32KB)
Core P#0 Core P#1 Core P#2 Core P#3
PU P#0 PU P#2 PU P#3 PU P#4
Socket P#1
L2 (6144KB) L2 (6144KB)
L1 (32KB) L1 (32KB) L1 (32KB) L1 (32KB)
Core P#0 Core P#1 Core P#2 Core P#3
PU P#1 PU P#5 PU P#6 PU P#7

Figure 9.1: The CPU, cache and memory architecture of the computing nodes of the
bwGRIiD cluster used in all experiments performed in this thesis.

experiment have been compiled with the same compiler version, or a static binary has
been used. If not mentioned otherwise, the experimental evaluations within this thesis
has been performed with the EDACC system.

124

Acronyms

3RES
AAC
ADD2
API
BCE
BVA
BVE
bwGRiD
CCE
CDCL
CNF
CSSC13
DB
DIMACS

DLS
DPLL

Ternary Resolution

Automated Algorithm Configuration
Add Binary Resolvents

Application Programming Interface
Blocked Clause Elimination
Bounded Variable Addition
Bounded Variable Elimination
Baden-Wiirttemberg Grid

Covered Clause Elimination

Conflict Driven Clause Learning
Conjunctive Normal Form
Configurable SAT Solver Competition 2013
Database

The Center for Discrete Mathematics and Theoretical Computer
Science

Dynamic Local Search

Davis-Putnam-Logemann-Loveland

125

9 Conclusion and Future Work

ELS
EDACC
GUI
HTE
PAC
PAR
PP
PPT
PROBE
SAT
SC07
SC09
SC11
SC12
SC13
SLS
SSP
STR
SUB
UIP
UP
WF

126

Equivalent Literal Substitution
Experiment Design and Administration for Computer Cluster
Graphical User Interface

Hidden Tautology Elimination
Probabilistically Approximate Complete
Penalized Average Run time
Preprocessor

Preprocessing Technique

Failed Literal Detection
Propositional Satisfiability Problem
International SAT Competition 2007
International SAT Competition 2009
International SAT Competition 2011
International SAT Challenge 2012
International SAT Competition 2013
Stochastic Local Search

Search Space Partition
Strengthening

Subsumption

Unique Implication Point

Unit Propagation

Web Frontend

Bibliography

[AGRY09)

[AIMOA4]

[AKWO5]

[And04]

[AS09]

Stefan Andrei, Gheorghe Grigoras, Martin C. Rinard, and Roland H. C.
Yap. A hierarchy of tractable subclasses for sat and counting sat prob-
lems. In Stephen M. Watt, Viorel Negru, Tetsuo Ida, Tudor Jebelean,
Dana Petcu, and Daniela Zaharie, editors, SYNASC, pages 61-68. IEEE
Computer Society, 2009.

Referenced in text: page(s) 5

Dimitris Achlioptas, Haixia Jia, and Cristopher Moore. Hiding satisfying
assignments: two are better than one. In Proceedings of AAAIO, pages
131-136, 2004.

Referenced in text: page(s) 15, 18

David P. Anderson, Eric Korpela, and Rom Walton. High-performance
task distribution for volunteer computing. In Proceedings of the First In-
ternational Conference on e-Science and Grid Computing, E-SCIENCE
'05, pages 196203, Washington, DC, USA, 2005. IEEE Computer Soci-
ety.

Referenced in text: page(s) 105, 106

David P. Anderson. Boinc: A system for public-resource computing and
storage. In Proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing, GRID ’04, pages 4-10, Washington, DC, USA, 2004.
IEEE Computer Society.

Referenced in text: page(s) 116

Gilles Audemard and Laurent Simon. Predicting learnt clauses quality
in modern SAT solvers. In Proceedings of the Twenty-First International
Joint Conference on Artificial Intelligence (IJCAI-09), pages 399-404,

127

BIBLIOGRAPHY

[AST09]

[Bac02]

[BBD*12]

[BBHJ13]

[BBJS12]

[BCDF12]

[BDG*11]

128

2009.
Referenced in text: page(s) 73

Carlos Ansétegui, Meinolf Sellmann, and Kevin Tierney. A gender-based
genetic algorithm for the automatic configuration of algorithms. In Pro-
ceedings of the Fifteenth International Conference on Principles and
Practice of Constraint Programming (CP-09), volume 5732 of Lecture
Notes in Computer Science, pages 142-157, 2009.

Referenced in text: page(s) 102, 106, 107

Fahiem Bacchus. Enhancing davis putnam with extended binary clause
reasoning. In Fighteenth national conference on Artificial intelligence,
pages 613-619, Menlo Park, CA, USA, 2002. American Association for
Artificial Intelligence.

Referenced in text: page(s) 65

Adrian Balint, Anton Belov, Daniel Diepold, Simon Gerber, Matti
Jarvisalo, and Carsten Sinz, editors. Proceedings of SAT Challenge 2012:
Solver and Benchmark Descriptions, volume B-2012-2 of Department of
Computer Science Series of Publications B. University of Helsinki, 2012.
ISBN ISBN 978-952-10-8106-4.

Referenced in text: page(s) 4, 9, 10, 14

Adrian Balint, Anton Belov, Marijn Heuele, and Matti Jarvisalo, editors.
Proceedings of SAT Competition 2013: Solver and Benchmark Descrip-
tions, volume B-2013-1 of Department of Computer Science Series of
Publications B. University of Helsinki, 2013.

Referenced in text: page(s) 4, 11, 14, 73

Adrian Balint, Anton Belov, Matti Jarvisalo, and Carsten Sinz. Sat
challenge 2012 random SAT track: Description of benchmark generation.
Proceedings of SAT Challenge 2012; Solver and Benchmark Description,
page 72, 2012.

Referenced in text: page(s) 58

Thomas Bouton, Diego Caminha, David Déharbe, and Pascal Fontaine.
Gridtpt: a distributed platform for theorem prover testing. In Renate A.
Schmidt, Stephan Schulz, and Boris Konev, editors, PAAR-2010, vol-
ume 9 of EPiC Series, pages 33-39. EasyChair, 2012.

Referenced in text: page(s) 116

Adrian Balint, Daniel Diepold, Daniel Gall, Simon Gerber, Gregor
Kapler, and Robert Retz. Edacc - an advanced platform for the ex-
periment design, administration and analysis of empirical algorithms. In

BIBLIOGRAPHY

[BAMS05]

[Ber01]

[BF10]

[BFTH11]

[BGKR10]

[BHGOY]

[bhg10]

[BHL*01]

Learning and Intelligent Optimization, volume 6683 of Lecture Notes in
Computer Science, pages 586-599. Springer Berlin Heidelberg, 2011.
Referenced in text: page(s) 57, 67, 72, 101, 105, 109

Clark W. Barrett, Leonardo Mendonca de Moura, and Aaron Stump.
Smt-comp: Satisfiability modulo theories competition. In CAV, pages
20-23, 2005.

Referenced in text: page(s) 112, 116

Daniel Le Berre. Exploiting the real power of unit propagation looka-
head. FElectronic Notes in Discrete Mathematics, 9:59-80, 2001.
Referenced in text: page(s) 64, 65

Adrian Balint and Andreas Frohlich. Improving Stochastic Local Search
for SAT with a New Probability Distribution, volume 6175, pages 10-15.
Springer, 2010.

Referenced in text: page(s) 3, 49, 52, 72, 78

Adrian Balint, Andreas Frohlich, Dave A. D. Tompkins, and Holger H.
Hoos. Sparrow2011. Solver description booklet SAT Competition 2011,
2011.

Referenced in text: page(s) 3, 49, 52, 76

Adrian Balint, Daniel Gall, Gregor Kapler, and Robert Retz. Experiment
design and administration for computer clusters for sat-solvers (edacc).
JSAT, 7(2-3):77-82, 2010.

Referenced in text: page(s) 57, 101, 105

Adrian Balint, Michael Henn, and Oliver Gableske. A novel approach
to combine a SLS- and a DPLL-solver for the satisfiability problem. In
SAT, pages 284-297, 2009.

Referenced in text: page(s) 3, 31

bwGRiD (http://www.bw grid.de/). Member of the German D-Grid
initiative, funded by the Ministry of Education and Research (Bun-
desministerium fiir Bildung und Forschung) and the Ministry for Science,
Research and Arts Baden-Wiirttemberg (Ministerium fiir Wissenschaft,
Forschung und Kunst Baden-Wiirttemberg). Technical report, Univer-
sities of Baden-Wiirttemberg, 2007-2010.

Referenced in text: page(s) 47, 99, 117

Wolfgang Barthel, Alexander K. Hartmann, Michele Leone, Federico
Ricci-Tersenghi, Martin Weigt, and Riccardo Zecchina. Hiding solu-
tions in random satisfiability problems: A statistical mechanics approach.

129

BIBLIOGRAPHY

[BHVMWO9]

[BieO5]

[Bie08]

[Biell]

[Bir04]

[Blo70]

[BM13a)

[BM13b]

[BMZ02]

130

CoRR, cond-mat/0111153, 2001.
Referenced in text: page(s) 16

A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfi-
ability: Volume 185 Frontiers in Artificial Intelligence and Applications.
I0S Press, Amsterdam, The Netherlands, The Netherlands, 2009.
Referenced in text: page(s) 20, 21

Armin Biere. Resolve and expand. In Proceedings of the 7th International
Conference on Theory and Applications of Satisfiability Testing, SAT’04,
pages 59-70, Berlin, Heidelberg, 2005. Springer-Verlag.

Referenced in text: page(s) 64

Armin Biere. PicoSAT essentials. Journal on Satisfiability, Boolean
Modeling and Computation, 4:75-97, 2008.
Referenced in text: page(s) 40

Armin Biere. Lingeling and friends at the SAT competition 2011. Tech-
nical report, FMV Reports Series, Institute for Formal Models and Veri-
fication, Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Aus-
tria., 2011.

Referenced in text: page(s) 92

M. Birattari. The Problem of Tuning Metaheuristics as Seen from a
Machine Learning Perspective. PhD thesis, Université Libre de Bruxelles,
Brussels, Belgium, 2004.

Referenced in text: page(s) 106

Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422-426, July 1970.
Referenced in text: page(s) 32

Adrian Balint and Norbert Manthey. Boosting the performance of SLS
and CDCL solvers by preprocessor tuning. Proccedings of EasyChair,
07 2013.

Referenced in text: page(s) 3, 49, 54, 61

Adrian Balint and Norbert Manthey. Sparrow+cp3 and sparrowtoriss.
Proceeding of SAT Competition 2013: Solver and Benchmark Descrip-
tion, July 2013.

Referenced in text: page(s) 46

Alfredo Braunstein, Marc Mézard, and Riccardo Zecchina. Survey prop-
agation: an algorithm for satisfiability. CoRR, ¢s.CC/0212002, 2002.
Referenced in text: page(s) 22

BIBLIOGRAPHY

[BMZ05]

[BS92]

[BS97]

[BSO4]

[BS12]

[BS13]

[BSBGO2]

[BWO03]

[BYBS10]

A. Braunstein, M. Mézard, and R. Zecchina. Survey propagation: An
algorithm for satisfiability. Random Structures € Algorithms, 27(2):201—
226, 2005.

Referenced in text: page(s) 22, 89

A. Billionnet and A. Sutter. An efficient algorithm for the 3 satisfiability
problem. Operation Research Letters, 12:29-36, 1992.
Referenced in text: page(s) 65

Roberto J. Bayardo Jr. and Robert C. Schrag. Using csp look-back tech-
niques to solve real world SAT instances. In Proceedings of the Four-
teenth National Conference on Artificial Intelligence (AAAI-97), pages
203-208, 1997.

Referenced in text: page(s) 20

Daniel Berre and Laurent Simon. The essentials of the SAT 2003 com-
petition. In Enrico Giunchiglia and Armando Tacchella, editors, Theory
and Applications of Satisfiability Testing, volume 2919 of Lecture Notes
in Computer Science, pages 452—467. Springer Berlin Heidelberg, 2004.
Referenced in text: page(s) 112

Adrian Balint and Uwe Schoning. Choosing probability distributions for
stochastic local search and the role of make versus break. Proccedings of
SAT2012, 2012.

Referenced in text: page(s) 3, 41, 43, 58, 77

Adrian Balint and Uwe Schoning. probsat. Proceeding of SAT Compe-
tition 2013: Solver and Benchmark Description, July 2013.
Referenced in text: page(s) 3, 41, 77

Eli Ben-Sasson, Yonatan Bilu, and Danny Gutfreund. Finding a ran-
domly planted assignment in a random 3cnf. Technical report, In prepa-
ration, 2002.

Referenced in text: page(s) 15

Fahiem Bacchus and Jonathan Winter. Effective preprocessing with
hyper-resolution and equality reduction. In Proceedings of the Sizth
International Conference on Theory and Applications of Satisfiability
Testing (SAT-03), volume 2919 of Lecture Notes in Computer Science,
pages 341-355, 2003.

Referenced in text: page(s) 65

Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stiitzle.
F-Race and iterated F-Race: An overview. In Thomas Bartz-Beielstein,

131

BIBLIOGRAPHY

[CooT1]

[Cra96]

[CS12]

[Die12]

[DIM93]

[DLL62]

[DP60]

[EBO5]

[EPVOS]

132

Marco Chiarandini, Luis Paquete, and Mike Preuss, editors, Exzperimen-
tal Methods for the Analysis of Optimization Algorithms, pages 311-336.
Springer Berlin Heidelberg, 2010.

Referenced in text: page(s) 85, 106

Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of comput-
ing, STOC 71, pages 151-158, New York, NY, USA, 1971. ACM.
Referenced in text: page(s) 5

James M. Crawford. Solving satisfiability problems using a combination
of systematic and local search. In Rutgers University, 1996.
Referenced in text: page(s) 45

Shaowei Cai and Kaile Su. Configuration checking with aspiration in
local search for sat. In Proceedings of AAAI-12, 2012.
Referenced in text: page(s) 58

Daniel Diepold. Model-based parallel automated algorithm configura-
tion. Master’s thesis, Ulm University, 2012.
Referenced in text: page(s) 109

DIMACS. Satisfiability suggested format. Technical report, DIMACS,
1993.
Referenced in text: page(s) 8

Martin Davis, George Logemann, and Donald Loveland. A machine
program for theorem proving. Communications of the ACM, 5(7):394—
397, 1962.

Referenced in text: page(s) 20

Martin Davis and Hilary Putnam. A computing procedure for quantifi-
cation theory. Journal of the ACM, 7(3):201-215, 1960.
Referenced in text: page(s) 20, 64

Niklas Eén and Armin Biere. Effective preprocessing in SAT through
variable and clause elimination. In Proceedings of the Fighth Interna-
tional Conference on Theory and Applications of Satisfiability Testing
(SAT-05), volume 3569 of Lecture Notes in Computer Science, pages
61-75, 2005.

Referenced in text: page(s) 61, 63, 64, 70

Tobias Eibach, Enrico Pilz, and Gunnar Volkel. Attacking Bivium using
SAT solvers. In SAT, pages 63-76, 2008.
Referenced in text: page(s) 6

BIBLIOGRAPHY

[FF04]

[FHO7]

[FRO4]

[Fra96]

[Fra9d7]

[Fre95]

[Fuk04]

[Gab09]

[Gabl12]

B. Ferris and Jon Froehlich. Walksat as an informed heuristic to DPLL
in SAT solving. Department of Computer Science, University of Wash-
ington, Seattle, 2004 2004.

Referenced in text: page(s) 45, 46

Lei Fang and Michael S. Hsiao. A new hybrid solution to boost SAT
solver performance. In Proceedings of the conference on Design, au-
tomation and test in Europe, DATE 07, pages 1307-1313, San Jose,
CA, USA, 2007. EDA Consortium.
Referenced in text: page(s) 45, 46

Hai Fang and Wheeler Ruml. Complete local search for propositional
satisfiability. In Proceedings of the Ninteenth National Conference on
Artificial Intelligence (AAAI-04), pages 161-166, 2004.

Referenced in text: page(s) 46

Jeremy Frank. Weighting for Godot: Learning heuristics for GSAT. In
Proceedings of the Thirteenth National Conference on Artificial Intelli-
gence (AAAI-96), pages 338-343, 1996.

Referenced in text: page(s) 28

Jeremy Frank. Learning short-term clause weights for GSAT. In Pro-
ceedings of the Fifteenth International Joint Conference on Artificial In-
telligence (IJCAI-97), pages 384-389, 1997.

Referenced in text: page(s) 28

Jon William Freeman. Improvements To Propositional Satisfiability
Search Algorithms. PhD thesis, University of Pennsylvania Philadel-
phia, PA, USA, 1995.

Referenced in text: page(s) 64

Alex Fukunaga. Efficient implementations of SAT local search. In In
Seventh Int’l Conf. on Theory and Applications of Satisfiability Testing
(SAT2004), 2004 (this volume, pages 287-292, 2004.

Referenced in text: page(s) 97, 98

Oliver Gableske. Towards the development of a hybrid SAT solver. Mas-
ter’s thesis, Ulm University - Institute of Theoretical Computer Science,
20009.

Referenced in text: page(s) 45, 46

Oliver Gableske. The effect of clause elimination on SLS for SAT. In
Pragmatics of SAT(POS’12), 2012.
Referenced in text: page(s) 62, 75

133

BIBLIOGRAPHY

[Gab13]

[Gel05]

[GH11]

[HBHHO7]

[HDO4]

[HHLB11]

[HHLB12]

[HHLBS09)]

134

Oliver Gableske. On the interpolation between product-based message
passing heuristics for SAT. In SAT, pages 293-308, 2013.
Referenced in text: page(s) 22

Allen Van Gelder. Toward leaner binary-clause reasoning in a satisfia-
bility solver. Ann. Math. Artif. Intell., 43(1):239-253, 2005.
Referenced in text: page(s) 65

Oliver Gableske and Marijn J. H. Heule. Eagleup: solving random 3-sat
using SLS with unit propagation. In Proceedings of the 14th international
conference on Theory and application of satisfiability testing, SAT 11,
pages 367-368, Berlin, Heidelberg, 2011. Springer-Verlag.

Referenced in text: page(s) 57

Frank Hutter, Domagoj Babi¢, Holger H. Hoos, and Alan J. Hu. Boosting
verification by automatic tuning of decision procedures. In Proceedings of
the Seventh International Conference on Formal Methods in Computer-
Aided Design (FMCAD-07), pages 27-34, 2007.

Referenced in text: page(s) 76

William S. Havens and Bistra N. Dilkina. A hybrid schema for system-
atic local search. In Ahmed Y. Tawfik and Scott D. Goodwin, editors,
Advances in Artificial Intelligence, volume 3060 of Lecture Notes in Com-
puter Science, pages 248-260. Springer Berlin Heidelberg, 2004.
Referenced in text: page(s) 45

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential
model-based optimization for general algorithm configuration. In Pro-
ceedings of the 5th international conference on Learning and Intelli-
gent Optimization, LION’05, pages 507-523, Berlin, Heidelberg, 2011.
Springer-Verlag.

Referenced in text: page(s) 67, 102, 106

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Parallel algo-
rithm configuration. In LION, pages 55-70, 2012.
Referenced in text: page(s) 106

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas
Stiitzle. ParamILS: An automatic algorithm configuration framework.
Journal of Artificial Intelligence Research, 36:267-306, 2009.
Referenced in text: page(s) 56, 102

BIBLIOGRAPHY

[HHSO07]

[Hir00]

[HIB10a)

[HIB10b)]

[HIB11]

[HLDV02]

[Hoo99]

[Hoo02]

Frank Hutter, Holger H. Hoos, and Thomas Stiitzle. Automatic algo-
rithm configuration based on local search. In Proceedings of the Twenty-
Second National Conference on Artificial Intelligence (AAAI-07), pages
1152-1157, 2007.

Referenced in text: page(s) 56, 106

Edward A. Hirsch. SAT local search algorithms: Worst-case study. J.
Autom. Reasoning, 24(1/2):127-143, 2000.
Referenced in text: page(s) 17

Marijn Heule, Matti Jarvisalo, and Armin Biere. Clause elimination
procedures for CNF formulas. In Proceedings of the 17th international
conference on Logic for programming, artificial intelligence, and reason-
ing, pages 357-371. Springer-Verlag, 2010.
Referenced in text: page(s) 61, 63, 65, 74

Marijn Heule, Matti Jarvisalo, and Armin Biere. Covered clause elimi-
nation. CoRR, abs/1011.5202, 2010.
Referenced in text: page(s) 61, 63, 65, 74, 75

Marijn J. H. Heule, Matti Jarvisalo, and Armin Biere. Efficient cnf sim-
plification based on binary implication graphs. In Proceedings of the 14th
international conference on Theory and application of satisfiability test-
ing, SAT’11, pages 201-215, Berlin, Heidelberg, 2011. Springer-Verlag.
Referenced in text: page(s) 61, 63, 65, 74

Djamal Habet, Chu Min Li, Laure Devendeville, and Michel Vasquez.
A hybrid approach for SAT. In Proceedings of the 8th International
Conference on Principles and Practice of Constraint Programming, CP
'02, pages 172-184, London, UK, UK, 2002. Springer-Verlag.
Referenced in text: page(s) 46

Holger H. Hoos. On the run-time behaviour of stochastic local search
algorithms for SAT. In Proceedings of the Sixteenth National Conference
on Artificial Intelligence (AAAI-99), pages 661-666, 1999.

Referenced in text: page(s) 25, 26

Holger H. Hoos. An adaptive noise mechanism for WalkSAT. In Pro-
ceedings of the Eighteenth National Conference in Artificial Intelligence
(AAAI-02), pages 655-660, 2002.

Referenced in text: page(s) 26, 29, 82

135

BIBLIOGRAPHY

[HS05)

[HTH02]

[Hut09]

[HvMO9]

[HXHLB12]

[JBH10]

[JL02]

[JMS05]

136

Holger H. Hoos and Thomas Stiitzle. Stochastic Local Search: Founda-
tions and Applications. Morgan Kaufmann, 2005.
Referenced in text: page(s) 23, 97

Frank Hutter, Dave A. D. Tompkins, and Holger H. Hoos. Scaling and
probabilistic smoothing: Efficient dynamic local search for SAT. In Pro-
ceedings of the Eighth International Conference on Principles and Prac-
tice of Constraint Programming (CP-02), volume 2470 of Lecture Notes
in Computer Science, pages 233-248, 2002.

Referenced in text: page(s) 28, 29

Frank Hutter. Automated Configuration of Algorithms for Solving Hard
Computational Problems. PhD thesis, University of British Columbia,
20009.

Referenced in text: page(s) 76, 106

Marijn Heule and Hans van Maaren. Look-ahead based SAT solvers. In
Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh,
editors, Handbook of Satisfiability, pages 155-184. IOS Press, 2009.
Referenced in text: page(s) 65

Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Algo-
rithm runtime prediction: The state of the art. CoRR, abs/1211.0906,
2012.

Referenced in text: page(s) 8

Matti Jarvisalo, Armin Biere, and Marijn Heule. Blocked clause elimi-
nation. In Proceedings of the 16th international conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’10,
pages 129-144, Berlin, Heidelberg, 2010. Springer-Verlag.

Referenced in text: page(s) 61, 63, 64, 74

Narendra Jussien and Olivier Lhomme. Local search with constraint
propagation and conflict-based heuristics. Artif. Intell., 139(1):21-45,
July 2002.

Referenced in text: page(s) 46

Haixia Jia, Cristopher Moore, and Doug Strain. Generating hard sat-
isfiable formulas by hiding solutions deceptively. In In AAAI pages
384-389. AAAI Press, 2005.

Referenced in text: page(s) 16, 18

BIBLIOGRAPHY

[KS03]

[KSMS11]

[KSS10]

[LA97a]

[LA9T7D]

[LHO5]

[LJPJ02]

Henry Kautz and Bart Selman. Ten challenges redux: Recent progress in
propositional reasoning and search. In Proceedings of the Ninth Interna-
tional Conference on Principles and Practice of Constraint Programming
(CP-03), volume 2833 of Lecture Notes in Computer Science, pages 1—
18, 2003.

Referenced in text: page(s) 2

Hadi Katebi, Karem A. Sakallah, and Joao P. Marques-Silva. Empirical
study of the anatomy of modern SAT solvers. In Proc. 14th Int. Conf.
on Theory and Applications of Satisfiability Testing (SAT ’11), volume
6695 of LNCS, pages 343-356. Springer, 2011.

Referenced in text: page(s) 75

Lukas Kroc, Ashish Sabharwal, and Bart Selman. An empirical study of
optimal noise and runtime distributions in local search. In SAT, pages
346-351, 2010.

Referenced in text: page(s) 26, 82, 89, 90, 95

Chu Min Li and Anbulagan. Look-ahead versus look-back for satisfia-
bility problems. In Proceedings of the Third International Conference
on Principles and Practice of Constraint Programming (CP-97), volume
1330 of Lecture Notes in Computer Science, pages 341-355, 1997.
Referenced in text: page(s) 65

Chu Min Li and Anbulagan Anbulagan. Heuristics based on unit prop-
agation for satisfiability problems. In Proceedings of the 15th interna-
tional joint conference on Artifical intelligence - Volume 1, IJCAI’97,
pages 366—-371, San Francisco, CA, USA, 1997. Morgan Kaufmann Pub-
lishers Inc.

Referenced in text: page(s) 64

Chu Min Li and Wen Qi Huang. Diversification and determinism in
local search for satisfiability. In Proceedings of the Eighth International
Conference on Theory and Applications of Satisfiability Testing (SAT-
05), volume 3569 of Lecture Notes in Computer Science, pages 158-172,
2005.

Referenced in text: page(s) 26, 27, 50, 59

Chu Min Li, Bernard Jurkowiak, Paul W. Purdom, and Jr. Integrating
symmetry breaking into a dll procedure. In In Fifth International Sympo-
sium on the Theory and Applications of Satisfiability Testing (SAT2002,
pages 149-155, 2002.

Referenced in text: page(s) 11

137

BIBLIOGRAPHY

[LL12]

[LMS03]

[LMS08]

[LWZ07]

[Man12]

[MDO5]

[MHB12]

[MMZ*01]

138

Chu Min Li and Yu Li. Satisfying versus falsifying in local search for
satisfiability. In Alessandro Cimatti and Roberto Sebastiani, editors,
Theory and Applications of Satisfiability Testing — SAT 2012, volume
7317 of Lecture Notes in Computer Science, pages 477-478. Springer
Berlin Heidelberg, 2012.

Referenced in text: page(s) 57, 62, 71, 75

Inés Lynce and Joao Marques-Silva. Probing-based preprocessing tech-
niques for propositional satisfiability. In Proceedings of the 15th IEEFE
International Conference on Tools with Artificial Intelligence, ICTAI ’03,
pages 105-110. IEEE Computer Society, 2003.

Referenced in text: page(s) 64

Florian Letombe and Joao Marques-Silva. Improvements to hybrid in-
cremental SAT algorithms. In International Conference on Theory and
Applications of Satisfiability Testing. Springer LNCS, May 2008. Event
Dates: May 2008.

Referenced in text: page(s) 46

Chu Min Li, Wanxia Wei, and Harry Zhang. Combining adaptive noise
and look-ahead in local search for SAT. In Proceedings of the Tenth
International Conference on Theory and Applications of Satisfiability
Testing (SAT-07), volume 4501 of Lecture Notes in Computer Science,
pages 121-133, 2007.

Referenced in text: page(s) 26, 27

Norbert Manthey. Coprocessor 2.0 - a flexible CNF simplifier - (tool
presentation). In Alessandro Cimatti and Roberto Sebastiani, editors,
SAT, volume 7317 of Lecture Notes in Computer Science, pages 436—441.
Springer, 2012.

Referenced in text: page(s) 61

Radu Marinescu and Rina Dechter. And/or branch-and-bound for graph-
ical models. In IJCAI, pages 224-229, 2005.
Referenced in text: page(s) 107

Norbert Manthey, Marijn J. H. Heule, and Armin Biere. Automated
reencoding of boolean formulas. In Proceedings of Haifa Verification
Conference 2012, 2012.

Referenced in text: page(s) 61, 63, 64, 74

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient SAT solver. In Pro-
ceedings of the Thirty-Eighth Design Automation Conference (DAC-01),

BIBLIOGRAPHY

[MMZ06]

[Mor93]

[MSGO8g]

[MSK97]

[MSL92]

[MSS99)

[MT99]

[MZ02]

2001.
Referenced in text: page(s) 65

Stephan Mertens, Marc Mézard, and Riccardo Zecchina. Threshold val-
ues of random A-SAT from the cavity method. Random Struct. Algo-
rithms, 28(3):340-373, 2006.

Referenced in text: page(s) 13, 14, 22

Paul Morris. The breakout method for escaping from local minima. In
Proceedings of the Eleventh National Conference in Artificial Intelligence
(AAAI-93), pages 40-45, 1993.
Referenced in text: page(s) 28

Bertrand Mazure, Lakhdar Sais, and Eric Grégoire. Boosting complete
techniques thanks to local search methods. Annals of Mathematics and
Artificial Intelligence, 22(3-4):319-331, 1998.

Referenced in text: page(s) 45

David McAllester, Bart Selman, and Henry Kautz. Evidence for invari-
ants in local search. In Proceedings of the Fourteenth National Confer-
ence on Artificial Intelligence (AAAI-97), pages 321-326, 1997.
Referenced in text: page(s) 26, 59, 95

David Mitchell, Bart Selman, and Hector Levesque. Hard and easy dis-
tributions of SAT problems. In Proceeding of the Tenth National Con-
ference on Artificial Intelligence (AAAI-92), pages 459-465, 1992.
Referenced in text: page(s) 13, 14

Joao P. Marques-Silva and Karem A. Sakallah. GRASP: A search algo-
rithm for propositional satisfiability. IEEE Transactions on Computers,
48(5):506-521, 1999.

Referenced in text: page(s) 20

Patrick Mills and Edward Tsang. Guided local search applied to the
satisfiability (SAT) problem. In Proceedings of the Fifteenth National
Conference of the Australian Society for Operations Research (ASOR-
99), pages 872-883, 1999.

Referenced in text: page(s) 28

Marc Mézard and Riccardo Zecchina. Random K-satisfiability problem:
From an analytic solution to an efficient algorithm. Physical Review F,
66(056126), 2002.

Referenced in text: page(s) 22

139

BIBLIOGRAPHY

[Pap91]

[Pha06]

[PHSO8]

[PLO6]

[PTGS07]

[PTGS08]

[Rob65]

[Roull]

[SAO05]

140

Christos H. Papadimitriou. On selecting a satisfying truth assignment. In
Proceedings of the 32nd Annual Symposium on Foundations of Computer
Science (FOCS-91), pages 163-169, 1991.

Referenced in text: page(s) 25, 78

Duc Nghia Pham. Modelling and Exploiting Structures in Solving Propo-
sitional Satisfiability Problems. PhD thesis, Griffith University, Quenns-
land, Australia, 2006.

Referenced in text: page(s) 75

Cédric Piette, Youssef Hamadi, and Lakhdar Sais. Vivifying proposi-
tional clausal formulae. In Proceedings of the 2008 Conference on ECAI
2008: 18th FEuropean Conference on Artificial Intelligence, pages 525—
529, Amsterdam, The Netherlands, The Netherlands, 2008. IOS Press.
Referenced in text: page(s) 68

Steven Prestwich and Inés Lynce. Local search for unsatisfiability. In
Proceedings of the Ninth International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT-06), volume 4121 of Lecture Notes
in Computer Science, pages 283-296, 2006.

Referenced in text: page(s) 21

Duc Nghia Pham, John Thornton, Charles Gretton, and Abdul Sattar.
Advances in local search for satisfiability. In Proceedings of the Twentieth
Australian Joint Conference on Artificial Intelligence (AI-07), volume
4830 of Lecture Notes in Computer Science, pages 213-222, 2007.
Referenced in text: page(s) 29, 40, 50

Duc Nghia Pham, John Thornton, Charles Gretton, and Abdul Sattar.
Combining adaptive and dynamic local search for satisfiability. Journal
on Satisfiability, Boolean Modeling and Computation, 4:149-172, 2008.
Referenced in text: page(s) 29, 32

J. A. Robinson. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12(1):23-41, 1965.
Referenced in text: page(s) 63

Olivier Roussel. Controlling a solver execution with the runsolver tool.
JSAT, 7(4):139-144, 2011.
Referenced in text: page(s) 105, 115

Sakari Seitz, Mikko Alava, and Pekka Orponen. Focused local search for
random 3-satisfiability. CoRR, abs/cond-mat/0501707, 2005.
Referenced in text: page(s) 80

BIBLIOGRAPHY

[SBYS]

[SBOS]

[SCO1]

[Sch99]

[SDO5)

[She07]

[SKC94]

[SLMY2]

[SPOS]

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.
Referenced in text: page(s) 51

Zbigniew Stachniak and Anton Belov. Speeding-up non-clausal local
search for propositional satisfiability with clause learning. In Proceed-
ings of the 11th international conference on Theory and applications of
satisfiability testing, SAT’08, pages 257—270, Berlin, Heidelberg, 2008.
Springer-Verlag.

Referenced in text: page(s) 15

Laurent Simon and Philippe Chatalic. Satex: A web-based framework
for SAT experimentation. FElectronic Notes in Discrete Mathematics,
9:129-149, 2001.

Referenced in text: page(s) 116

Uwe Schoning. A probabilistic algorithm for k-SAT and constraint sat-
isfaction problems. In Proceedings of the Fourtieth Annual Symposium
on Foundations of Computer Science (FOCS-99), pages 410-414, 1999.
Referenced in text: page(s) 1, 25, 79, 82, 99

Carsten Sinz and Edda-Maria Dieringer. DPvis - a tool to visualize
structured SAT instances. In Proc. of the 8th Intl. Conf. on Theory
and Applicationsof Satisfiability Testing (SAT 2004), pages 257-268, St.
Andrews, Scotland, June 2005. Springer-Verlag.

Referenced in text: page(s) 9

David J. Sheskin. Handbook of Parametric and Nonparametric Statistical
Procedures. Chapman & Hall/CRC, 4 edition, 2007.
Referenced in text: page(s) 85

Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for
improving local search. In Proceedings of the Twelfth National Confer-
ence on Artificial Intelligence (AAAI-94), pages 337-343, 1994.
Referenced in text: page(s) 26, 28, 41

Bart Selman, Hector Levesque, and David Mitchell. A new method for
solving hard satisfiability problems. In Proceedings of the Tenth National
Conference on Artificial Intelligence (AAAI-92), pages 459-465, 1992.
Referenced in text: page(s) 27

Sathiamoorthy Subbarayan and Dhiraj K. Pradhan. NiVER: Non-
increasing variable elimination resolution for preprocessing SAT in-
stances. In Proceedings of the Seventh International Conference on The-

141

BIBLIOGRAPHY

[SS00]

[SSHO1]

[Sut10]

[SWOs]

[TBH11]

[THO4]

[THO5)

142

ory and Applications of Satisfiability Testing (SAT-04), volume 3542 of
Lecture Notes in Computer Science, pages 276-291, 2005.
Referenced in text: page(s) 64

Dale Schuurmans and Finnegan Southey. Local search characteristics of
incomplete SAT procedures. In Proceedings of the Seventeenth National
Conference in Artificial Intelligence (AAAI-00), pages 297-302, 2000.
Referenced in text: page(s) 28

Dale Schuurmans, Finnegan Southey, and Robert C. Holte. The expo-
nentiated subgradient algorithm for heuristic Boolean programming. In
Proceedings of the Seventeenth International Joint Conference on Arti-
ficial Intelligence (IJCAI-01), pages 334-341, 2001.

Referenced in text: page(s) 28

Geoft Sutcliffe. The CADE-22 automated theorem proving system com-
petition - CASC-22. AI Commun., 23(1):47-59, January 2010.
Referenced in text: page(s) 112

Yi Shang and Benjamin W. Wah. A discrete Lagrangian-based global-
search method for solving satisfiability problems. Journal of Global Op-
timization, 12(1):61-100, 1998.
Referenced in text: page(s) 28

Dave A.D. Tompkins, Adrian Balint, and Holger H. Hoos. Captain Jack:
New variable selection heuristics in local search for SAT. In KaremA.
Sakallah and Laurent Simon, editors, Theory and Applications of Satis-
fiability Testing - SAT 2011, volume 6695 of Lecture Notes in Computer
Science, pages 302-316. Springer Berlin Heidelberg, 2011.

Referenced in text: page(s) 3, 24, 40, 41, 52, 56, 84

Dave A. D. Tompkins and Holger H. Hoos. Ubcsat: An implementation
and experimentation environment for sls algorithms for SAT & max-sat.
In SAT, 2004.

Referenced in text: page(s) 56

Dave A. D. Tompkins and Holger H. Hoos. UBCSAT: An implementation
and experimentation environment for SLS algorithms for SAT and MAX-
SAT. In Revised Selected Papers of the Seventh International Conference
on Theory and Applications of Satisfiability Testing (SAT-04), volume
3542 of Lecture Notes in Computer Science, pages 306-320, 2005.
Referenced in text: page(s) 23

BIBLIOGRAPHY

[Tho05]

[Tom10]

[TTLOS]

[Tur88]

[VG11]

[WHOG]

[WLZ08]

[WS02]

[WW99]

John Thornton. Clause weighting local search for SAT. Journal of Au-
tomated Reasoning, 35(1-3):97-142, 2005.
Referenced in text: page(s) 28, 29

David Andrew Douglas Tompkins. Dynamic Local Search for SAT: De-
sign, Insights and Analysis. PhD thesis, University of British Columbia,
October 2010.

Referenced in text: page(s) 28, 98

Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed com-
puting in practice: the condor experience: Research articles. Concurr.
Comput. : Pract. Exper., 17(2-4):323-356, February 2005.

Referenced in text: page(s) 116

Jonathan S. Turner. Almost all k-colorable graphs are easy to color. J.
Algorithms, 9(1):63-82, 1988.
Referenced in text: page(s) 6

Allen Van Gelder. Careful ranking of multiple solvers with timeouts
and ties. In Proceedings of the 14th international conference on Theory
and application of satisfiability testing, SAT 11, pages 317-328, Berlin,
Heidelberg, 2011. Springer-Verlag.

Referenced in text: page(s) 115

Qingwei Wu and Michael S. Hsiao. A new simulation-based property
checking algorithm based on partitioned alternative search space traver-
sal. IEEE Trans. Comput., 55(11):1325-1334, November 2006.
Referenced in text: page(s) 34

Wanxia Wei, Chu Min Li, and Harry Zhang. A switching criterion for
intensification and diversification in local search for SAT. Journal on
Satisfiability, Boolean Modeling and Computation, 4:219-237, 2008.
Referenced in text: page(s) 27

W. Wei and B. Selman. Accelerating random walks. In Proceedings of
the Fighth International Conference on Principles and Practice of Con-
straint Programming (CP-02), volume 2470 of Lecture Notes in Com-
puter Science, pages 216-232., 2002.

Referenced in text: page(s) 65, 75

Zhe Wu and Benjamin W. Wah. Trap escaping strategies in discrete
Lagrangian methods for solving hard satisfiability and maximum satis-
fiability problems. In Proceedings of the Sizteenth National Conference

143

BIBLIOGRAPHY

[WWO0]

[Yao82]

[Zha04]

144

on Artificial Intelligence (AAAI-99), pages 673-678, 1999.
Referenced in text: page(s) 28

Zhe Wu and Benjamin W. Wah. An efficient global-search strategy in
discrete Lagrangian methods for solving hard satisfiability problems. In
Proceedings of the Seventeenth National Conference in Artificial Intelli-
gence (AAAI-00), pages 310-315, 2000.

Referenced in text: page(s) 28

Andrew C. Yao. Theory and application of trapdoor functions. In Pro-
ceedings of the 23rd Annual Symposium on Foundations of Computer
Science, SFCS ’82, pages 80-91, Washington, DC, USA, 1982. IEEE
Computer Society.

Referenced in text: page(s) 18

Weixiong Zhang. Configuration landscape analysis and backbone guided
local search.: Part i: Satisfiability and maximum satisfiability. Artificial
Intelligence, 158(1):1 — 26, 2004.

Referenced in text: page(s) 33

