

Abstract

Physical Unclonable Functions (PUFs) present a promising concept for cryptographic hard-
ware. PUFs provide a challenge-response scheme, where the response is not calculated but
determined by a kind of randomness available in the device. Every PUF behaves different,
even equally manufactured ones. The Arbiter PUF makes use of race conditions between
equally designed delay paths. Although the basic principle is proven to work, it suffers
from predictability attacks and a not negligible quantity of unreproducible response bits.
This thesis deals with the simulation and enhancement of Arbiter PUFs in CMOS tech-
nology. A novel simulation approach is introduced, which allows a reliable prediction of
the Arbiter PUF’s reproducibility behavior without a transistor level simulation of the
whole system. Only the components need to be characterized by circuit simulations using
industrial manufacturer models. The resulting PUF can be modeled on a higher level
and simulated very fast using statistical distributions. Furthermore the influence of some
design parameters on each component’s characteristic is investigated. An enhanced pa-
rameter set is determined and evaluated using the new simulation approach. Finally the
results are verified by transient transistor level simulations for the reference and the en-
hanced Arbiter PUF. The bit error rate could be reduced by 61 % just by design parameter
modifications of specific transistors.

III

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Properties and Quality Measures . 2
1.3. Applications . 4
1.4. Basic PUF Principles . 5
1.5. Arbiter PUF Construction and Principle . 5
1.6. Arbiter PUF State Of The Art . 6
1.7. MOS FET Basics . 7
1.8. Sources of Variance in Integrated Circuits 10
1.9. Outline . 10

2. Simulation Approach 13
2.1. Transient Simulation on Transistor Level . 13
2.2. Mismatch Simulation . 13
2.3. Noise Simulation . 14
2.4. Script Control of the Simulator . 14
2.5. Reducing the Overall Simulation Time . 15

3. Elementary Circuits 17
3.1. Inverter . 17

3.1.1. Circuit (Logical) . 17
3.1.2. Circuit (Transistor Level) . 18
3.1.3. Inverter’s Typical Slew Rate . 19
3.1.4. Inverter’s Delay . 20

3.2. Transmission Gate . 21
3.3. Transmission Gate Switch . 22

3.3.1. Circuit (Logical) . 22
3.3.2. Circuit (Implementation) . 22
3.3.3. Switch’s Delay . 23

3.4. SR NAND Latch . 26
3.4.1. Circuit (Logical) . 26
3.4.2. Circuit (Transistor Level) . 27
3.4.3. Input Sensitivity (Influence of Noise) 28
3.4.4. Input Bias (Influence of Mismatch) 32

V

VI Contents

4. Enhanced Arbiter PUF Components 35
4.1. Inverter . 35

4.1.1. Influence of Width W on Delay . 36
4.1.2. Influence of Width Wn on Delay . 38
4.1.3. Influence of Width W and Cload on Slew Rate 41
4.1.4. Delay Elements in Series . 42

4.2. Switch . 42
4.3. Latch . 43

5. Arbiter PUF Simulation and Modelling 45
5.1. Composition and Operation . 45
5.2. Simulation (Transistor Level) . 47
5.3. Quality . 47
5.4. Simulation (Component Level) . 48

5.4.1. Modeling Delay Elements . 48
5.4.2. Modeling Switch Elements . 49
5.4.3. Combining Delay and Switch Element Models 49
5.4.4. Modeling Noise in Delay and Switch Elements 50
5.4.5. Modeling Arbiter . 50
5.4.6. Model-based Arbiter PUF Simulation 51
5.4.7. Component Level Simulation Results 51
5.4.8. Advantages of Component Level Simulation 52

5.5. Proposal of an Arbiter PUF based on Enhanced Components 53
5.6. Evaluation of the Proposed Enhanced Arbiter PUF 54

6. Conclusion and Outlook 57

A. Additional Simulation Results 61
A.1. Inverter Parameter Influence . 61
A.2. Switch Parameter Influence . 61
A.3. Latch Parameter Influence . 61

B. Simulations 65

Abbreviations 67

Selbstständigkeitserklärung 69

Bibliography 70

Chapter 1

Introduction

1.1. Motivation

Modern cryptographic protocols rely on the secrecy of keys. The algorithms are public.
This partitioning is state of the art and it is known as Kerckhoffs’s Principle in cryptogra-
phy. An advantage: Publicly known protocols can be analyzed by everyone, which makes
sensible mistakes improbable. What remains is the challenge to keep keys secret. Keys
are usually bit strings. Copying is possible, easy, and in general unprovable.

Physical Unclonable Functions (PUFs) introduce a functionality which may be utilized
for future cryptographic protocols. A PUF is a piece of hardware which transforms an
input to an output in a particular way. Usually input and output are bit strings. The
mapping from the input to the output depends on some kind of randomness, but the same
input should always lead to the same output. The evaluation must be easy while the
prediction must be hard, even if complete knowledge of the architecture is available. Thus
a PUF provides secret information in a challenge-response procedure, which is illustrated
in Figure 1.1. The mapping from a challenge to a response is not done by a mathematical
function, where parameters (→keys) are necessary to achieve different mappings, but by
some randomness without an external key.

PUF
responsechallenge

randomness

Figure 1.1.: Challenge Response Procedure with PUFs. PUFs generate
responses with aid of internal randomness and the external challenge.

1

2 1 Introduction

What distinguishes a PUF from a key is its unclonability. Applications are conceivable
where PUFs could replace secret keys. Again, the protocols and even the hardware design
of the PUF can be public. But this time, no key exists which could be shared. All
information is random and physically bound to a device.

Building and using a PUF are challenging tasks. Up to date both sufficiently reliable
constructions and suitable protocols are missing and have to be developed. This thesis
deals with the construction of enhanced PUFs in CMOS technology.

1.2. Properties and Quality Measures

This section deals with properties which are characteristic or desirable for a PUF. Due
to the variety of possible constructions and applications this is a complex but important
task. Only a short introduction will be given here. Detailed discussions are available in
literature, e.g. in [1]. The following paragraph and enumeration is taken from there.

To simplify the property description, we start from a very basic classification
for a PUF as a physical challenge-response procedure. Note that already this
implicitly assigns two properties to PUFs, i.e. an instantiation of a PUF cannot
merely be an abstract concept but it is always (embedded in) a physical entity,
and a PUF is a procedure (not strictly a function) with some input-output
functionality. [...] For brevity, we use the notation Π : X → Y : Π(x) = y
to denote the challenge-response functionality of a PUF Π. [...] The informal
parts of the property descriptions are clearly marked in sans serif font.

1. Evaluable: given Π and x, it is easy to evaluate y = Π(x).

2. Unique: y = Π(x) contains some information about the identity of the physical
entity embedding Π.

3. Reproducible: y = Π(x) is reproducible up to a small error.

4. Unclonable: given Π, it is hard to construct a procedure Γ 6= Π such that ∀x ∈ X :
Γ(x) ≈ Π(x) up to a small error.

5. Unpredictable: given only a set Q = {(xi, yi = Π(xi))}, it is hard to predict
yc ≈ Π(xc) up to a small error, for xc a random challenge such that (xc, ·) /∈ Q.

6. One-way: given only y and Π, it is hard to find x such that Π(x) = y.

7. Tamper evident: altering the physical entity embedding Π transforms Π → Π′
such that with high probability ∃x ∈ X : Π(x) 6= Π′(x), not even up to a small error.

Figure 1.2 (taken from [2]) shows some PUF properties including the previously men-
tioned ones and their relations. Some of them are immediately clear, e.g. that the PUF

4 1 Introduction

Reproducible means, that the same challenge on the same PUF instance should always
result in the same response. Otherwise said, the response should not depend on noise
or environmental conditions. This property can be illustrated by comparing multiple
readouts of the same PUF and same challenge. Again, the Hamming Distance can be
used to compare the responses and a histogram may look like Figure 1.3 (left). What is
shown there is a binomial distribution B(k|p = 0.05, n = 32), which corresponds to a bit
error rate of 5 %. Ideally all responses differ by 0.

Although this work has a focus on improving these two aims, other properties are not
less important. For example, the common Arbiter PUF which will be introduced in sec-
tion 1.5 is known to be prone to machine learning attacks [4], which violates the aim for
unpredictability.

1.3. Applications

Maes et al. [1] make a distinction between three types of application: identification, key
generation, and hardware-entangled cryptography. They are briefly introduced below.

It was said that PUF responses depend on the challenge, but the mapping is random.
Furthermore it is hard to copy a PUF in a way it exposes the same mapping. Thus a PUF
can be used to identify a circuit by comparing responses to known responses recorded in
advance. Having sufficient challenge-response pairs this method can even authenticate a
circuit, this is known as challenge response authentication. For both purposes a small bit
error rate can be allowed.

No errors are allowed for cryptographic keys, e.g. used for encryption. A PUF can be
used to determine a secret cryptographic key, which is used for cryptographic operations.
The key can be generated on demand. No permanent storage is needed, from which the
key could be leaked. No key programming is necessary, because the key is determined
intrinsically. Error correction methods can be applied to allow certain bit error rates in
PUF responses and generate correct keys anyhow.

Further applications are summarized as hardware-entangled cryptography. An ideal PUF
could be modeled as random oracle. A random oracle is a theoretical replacement for a
cryptographic hash function. Shortly said, a hash function maps a bit string to a bit string
of constant length in a determined way. A cryptographic hash function is a hash function
which provides additional properties, e.g. it must be infeasible to generate an input string
resulting in a given output string (one way function). Ideal PUFs offer a similar behavior
and could thus be applied in cryptographic protocols currently using keyed (parametrized)
cryptographic hash functions, e.g. Message Authentication Codes (MAC).

It is also possible that PUFs evolve into a new cryptographic primitive, similar to hash
functions, which allows the construction of new cryptographic protocols. However, to
comply with the requirements such a primitive must provide some challenging properties,
e.g. very reliable responses in terms of bit errors, environmental conditions and tamper

1.4 Basic PUF Principles 5

resilience. A lot of research will be necessary to develop sufficiently good PUFs and PUF-
optimized applications. To give an outlook: Gassend et al. propose code, that runs only
on a specific processor in 2002 [5]. Research on this is is also in progress at the Institute
of Distributed Systems at Ulm University.

1.4. Basic PUF Principles

There are various ways of implementing a PUF. In literature, mainly two principles are
exploited: bi-stability and timing differences. Further constructions and classifications
are possible. Constructions are not necessarily electrical. An overview is available in
literature, e.g. in [6] or [2], and not given here in detail.

An example exploiting bi-stability is the SRAM PUF. It was proposed by Guajardo
et al. [7] and Holcomb et al. [8] in 2007. An SRAM cell is a simple transistor circuit
capable of storing one bit of data. However, after power up the state is undefined. If the
power up states of various bits differ, the pattern can be characteristic for a specific device
and differ for different devices of the same kind.

An example exploiting time differences is the ring oscillator PUF. It is based on delay lines
which are connected to act as oscillators. The frequencies of oscillators can be compared
to each other. The information which of both oscillators runs faster can be evaluated to a
response bit. For different configurations of the oscillators (→challenge) the relation can
differ. Due to the equally designed oscillators the responses depend on the specific device
and can differ for different devices of the same kind. This idea was already proposed by
Gassend et al. [5] in 2002.

This thesis will deal with the Arbiter PUF, which is another kind of delay based PUF. It
was introduced by Lee et al. [9] in 2004. Its idea is to introduce a race condition between
two equally designed delay paths and decide for the faster one. The construction concept
is explained in the next section.

1.5. Arbiter PUF Construction and Principle

Lim, Lee, et al. [4] introduced the Arbiter PUF as following:

An arbiter-based PUF is composed of delay paths and an arbiter located at the
end of the delay paths. [Figure 1.4] depicts an arbiter-based PUF circuit. In
this scheme, we excite two delay paths simultaneously and make the transitions
race against each other. The arbiter determines which rising edge arrives first
and sets its output to 0 or 1 depending on the winner. The circuit takes 64
challenge bits (bi) as an input to configure the delay paths and generate a 1-bit
response as an output.

6 1 Introduction

Figure 1.4.: Structure of an arbiter-based PUF (basic arbiter scheme).
From [4].

The actual implementation of each component will be discussed in chapter 3, an evaluation
is given in chapter 5.

1.6. Arbiter PUF State Of The Art

To the best of the author’s knowledge no currently known PUF construction is able to
provide all desired properties in an acceptable extent for versatile applications. However
there are numerous enhancements on each PUF construction improving a certain property.
The following overview is limited to Arbiter PUFs, which are examined in this work
exclusively.

The Arbiter PUF proposed in [9] is prone to violating some of the desired PUF properties.
The most severe problems affect reproducibility and unpredictability. The bit error rate is
not neglectable, e.g. 3 % for a 64 bit Arbiter PUF in TSMC 65nm technology [2]. Machine
learning algorithms can predict responses with small error rates, e.g. 5 % prediction error
after only 500 training samples for a 64 bit Arbiter PUF [2]. However, these values differ
a lot in literature and the absolute numbers have to be regarded with care.

Various countermeasures against predictability were proposed. Lee et al. proposed feed
forward paths leading to non-linearities in the delay paths [9]. Majzoobi et al. pro-
posed input and output networks to hide the real PUF behaviour [10]. Rührmair et al.
demonstrated attacks on PUFs with and without these protections. It was shown that
despite attacks are still possible, the effort in model building and training data increases
significantly [11].

8 1 Introduction

is isolated from the rest by a gate oxide (gray), a channel is invoked between source S
and drain D. The channel allows current to flow if a voltage UDS > 0 is applied. In the
following the source S is fixed to the lowest potential, US = 0 V. Figure 1.5 (b) displays
the corresponding circuit symbol to the bird’s view.

in

out

(a)

0

0

1

1

(b)

0

1

0

1

(c)

Figure 1.6.: (a) nMOS inverter circuit. (b)(c) Illustration of the digital
inverter functionality.

For digital circuits the function can be simplified to a voltage controlled switch, see Fig-
ure 1.5 (c). At a low gate voltage the switch is off, for sufficiently high voltages the switch
is closed. Exploiting this functionality allows building digital circuits like an inverter, see
Figure 1.6 (a). The output is high if the input is low (b), the output is pulled low if the
input is high (c).

0 1.20

50

Uth

UDS = 1.2 V

UGS [V]

I D
[µ
A
]

(a) Input Characteristic

0 1.20

50

UGS = 1.2 V

linear saturation

UDS [V]

I D
[µ
A
]

(b) Output Characteristic

Figure 1.7.: Exemplary transistor input characteristic and output
characteristic. The drain current as a function of the gate voltage

(→input) and drain voltage (→output).

For analog circuits the equivalent model can be expanded to a voltage controlled current
source, see Figure 1.5 (d). This is illustrated by the input characteristics, see Figure 1.7 (a).
When the gate voltage UG = UGS exceeds the threshold voltage Uth, current starts flowing.
The higher UG, the higher ID. However, the current ID does not only depend on UGS,
but also on UDS, the voltage over the „current source“, see the output characteristic in
Figure 1.7 (b). Only for higher voltages, within the so called saturation region, the current
ID is almost independent from UDS and the assumption of a current source is a good one.
A circuit exploiting the characteristics is a simple inverting common source amplifier,

1.7 MOS FET Basics 9

see Figure 1.8 (a). The conversion of the input voltage to a current is illustrated in
Figure 1.8 (b). The resistor transforms the current to the output voltage. In Figure 1.8 (c)
an exemplary waveform is given which demonstrates the inverting voltage amplification.
The amplification of the transistor can be expressed with aid of the transconductance
gm = ∆ID

∆UG
. It puts the output current in relation to the input voltage.

in out

(a)

in out

(b)

0 1 2

0.4

0.7

time [ms]

vo
lta

ge
[V

]

in
out

(c)

Figure 1.8.: (a) nMOS common source amplifier circuit. Illustration of the
(b) current source functionality and (c) the inverting amplifier.

Each transistor offers at least two design parameters: its width W and length L, see bird’s
view in Figure 1.5 (a). Not only the pin voltages but also these parameters influence
the characteristics, e.g. a larger width W results in higher currents. Good and not too
complex approximations determining the current ID in the linear region and saturation
region (indicated in Figure 1.7 (b)) are given in Equation 1.1 and 1.2. They are taken
from [14] and do not regard any second order effects.

ID ≈ β0n
W
L

(
UGS −Uth −

UDS
2

)
UDS UGS > Uth, UDS < UGS −Uth (1.1)

ID ≈
β0n
2

W
L (UGS −Uth)2 UGS > Uth, UDS > UGS −Uth (1.2)

The constant β0n is proportional to the charge carrier mobility. In both regions the current
is proportional to W: ID ∼ W

L . The independence of ID from UDS in saturation region is
expressed by the fact that UDS does not appear in Equation 1.2.

The size of a transistor also changes its gate capacitance, approximately CG ∼W ·L. This
is relevant because a transistor gate acts as load on a potential previous stage.

The behavior of a pMOS is basically similar to the nMOS, but signs (and constants) are
changing, see Figure 1.9. A pMOS requires a negative gate voltage UGS and a negative
drain voltage UDS to operate. Only these two transistor types are used in this work.

10 1 Introduction

D

G

S

UGS ≥ 0

UDS ≥ 0
(a) nMOS

S

G

D

UGS ≤ 0

UDS ≤ 0
(b) pMOS

Figure 1.9.: Circuit symbol and voltages of (a) nMOS transistor and
(b) pMOS transistor.

1.8. Sources of Variance in Integrated Circuits

Manufacturing integrated circuits (ICs) in nanometer scale is a process at technology lim-
its. Structures are only as small as the technology to build them is sufficiently controllable.
There are various factors introducing inaccuracies, leading to the fact that every device
(transistor or a complete circuit) is a little different from the specification. This is usually
unwanted, but indispensable for PUFs. Note that this thesis solely uses standard CMOS
technology; materials and processes are not touched.

Variance can be explained physically, like uneven thickness of the oxide or uneven doping
in the channel. Variance can also be described by consequences, like varying threshold
voltage Uth or varying constants like β0n which includes charge carrier mobility. None of
these is further explained here. But a categorization is made and necessary for the next
chapters. One has to distinguish between manufacturing variances affecting all devices in
the proximity equally (global mismatch, named process variation in the following), and
inter device variation even in close proximity (local mismatch, simply named mismatch
in the following). The latter is particularly important for our purpose.

Even after manufacturing, the behavior of an IC may differ. It can depend on environ-
mental conditions like temperature or supply voltage. Also chip aging was observed [15],
making the IC a time variant system. Furthermore, noise is present in each circuit and pre-
vents exploiting too tiny mismatches. All these are unwanted sources of variance and must
be kept in mind when building and applying a PUF. There is only a single environmental
influence which is allowed to change the PUF behavior: tampering attempts.

1.9. Outline

This work deals with enhancements of Arbiter PUFs in order to improve their reliability
in terms of reproducibility. Therefore the concept of the Arbiter PUF and all its compo-
nents are investigated and a profound understanding of its functionality is obtained. All
examinations are based on applicable simulations. The thesis is segmented as follows.

1.9 Outline 11

A suitable simulation approach is presented in chapter 2. It will be outlined how estab-
lished simulation tools can be operated to analyze Arbiter PUFs, why this can be effortful,
and how time can be saved. This knowledge is absolutely necessary for all following ex-
aminations.

The components used for Arbiter PUF proposals in literature are analyzed in chapter 3.
Implementations known from literature are characterized. It is shown how delay elements
and switch elements can be characterized by the distribution of their propagation delay.
It is also shown how the arbiter works and which signal and design parameters influence
its reliability.

The components are improved in chapter 4, by simple measures. The previous chapter de-
livered valuable knowledge and a reference case to quantify improvements. More deviation
is introduced in delay and switch elements, the arbiter is made less noise-sensitive.

The components are combined to a complete Arbiter PUF in chapter 5 and measures
for the quality are evaluated. The newly designed components are also combined to a
PUF and the results are compared. Finally chapter 6 summarizes the achievements and
provides ideas for future work.

Chapter 2

Simulation Approach

Manufacturing every integrated circuit analyzed in this work is unfeasible due to its cost,
alone in terms of time. Simulations are necessary to predict the behavior of a circuit
without manufacturing. This chapter introduces the simulation approach used throughout
this work.

2.1. Transient Simulation on Transistor Level

Simulating a PUF is not trivial. An analogue circuit simulator is required to perform
transient simulations on a transistor level design. Standard CMOS technology is used,
for which simulation models and simulators are available. The simulator requires good
transistor models which depict the manufactured devices well, especially the mismatch and
process variation, and even if devices are used in an uncommon way. The arbiter PUF
relies on (small) timing effects and thus requires a simulation of the temporal behavior.
This is addressed with a transient simulation.

Our simulations make use to the Cadence Virtuoso SPECTRE Circuit Simulator and
industrial manufacturer models of TSMC’s 90nm technology.

2.2. Mismatch Simulation

Mismatch is extremely important for PUFs. It is the reason why PUFs work at all.
Thus the transistor models need to provide mismatch information. Unlike some other
applications, not only the worst case (corner) is relevant, but a realistic distribution is
required.

13

14 2 Simulation Approach

Monte Carlo (MC) Simulations address this issue. The circuit is not simulated once,
but several times. Each time realistic parameters are used for every transistor. The
parameters are randomly chosen from a distribution deposited in the models. Thus every
transistor, even equally designed ones in the same circuit and same simulation run, has
its own behavior. The behavior has to be realistic and as random as after manufacturing.
Using a sufficiently high number of MC simulations this allows more general predictions
than a single simulation with the nominal parameters. For PUFs a nominal run is senseless
anyway, because responses would rely on the simulator accuracy rather than PUF behavior.

Various sources of variation were introduced in section 1.8. The simulation environment
differentiates between process variation and device mismatch, which can be enabled sepa-
rately or together. For realistic simulation results of a whole system, it is recommendable
to turn both on. However, most of the simulations in this work will not represent a whole
system but one of its components. Numerous instances of the simulated component are
later combined to a system. In this case process variation should be excluded, because
process variation represents global mismatch on the system and may not be regarded for
each component separately.

2.3. Noise Simulation

Noise is very important to evaluate the PUFs reliability. It is always present in reality
and has to be included in the simulations, too. This again adds requirements on the used
simulation environment.

The chosen simulation environment offers the inclusion of transient noise. However, sim-
ulating noise is costly. The computation time for a simulation depends strongly on the
noise bandwidth, but a higher noise bandwidth promises more realistic results. This issue
will be addressed later in subsection 3.4.3.

2.4. Script Control of the Simulator

Uniqueness and Reproducibility are two important PUF properties which were introduced
in section 1.2. Analysis of uniqueness requires multiple MC runs. Analysis of reproducibil-
ity requires multiple noise runs. These evaluations must take place after every change in
the design, even after a single parameter change. And the evaluation may take hours. An
environment is required which allows an automation of tasks. It should be flexible enough
to allow parameter sweeps and the like.

To achieve this aim the genuine simulation can be controlled by a scripting language. The
simulations are prepared in the simulation environment, but executed from the script.
Parameters can be changed in advance by the script, the evaluation can take place auto-
matically. A very detailed and practice-oriented explanation is present in appendix B.

2.5 Reducing the Overall Simulation Time 15

2.5. Reducing the Overall Simulation Time

The speed of simulations is a limiting factor. Multiple simulations are required for one
PUF evaluation, each simulation is costly, mainly due to noise. Running n = 200 MC runs
and m = 200 noise runs already results in a total of n · m = 40000 runs per evaluation.
Temperature or parameter sweeps contribute additional factors.

In the following a distinction is made between simulated time and simulation time. The
evaluation of a PUF response takes some time, even on a manufactured PUF in reality.
This evaluation time defines a lower limit for the simulated time. Simulating the same
time interval in a circuit simulator takes much longer. This is named simulation time.

The simulation time for a certain simulated time interval is necessary and cannot be
reduced easily. However, many independent simulations of the same circuit are required.
Thus parallelization is possible. Nevertheless it became evident that each simulation
produces a huge overhead and most of the time elapses for it. Several actions were taken
to reduce the overhead and thus reduce the overall computation time per evaluation.

Time for parameter sweeps on MC simulations can be saved if the simulator input (netlist
etc.) is reused. The input is equal anyway except for the sweep parameter, and changing
the simulation parameter directly before re-triggering the simulator is much faster than
generating its complete input again for every run.

Time for multiple noise runs can be saved if all runs are done within a single simula-
tion. Instead of starting n simulations of length t with different noise seeds, starting one
simulation of length n·t avoids the overhead of n-1 runs.

Very detailed explanations are present in appendix B. Considering all mentioned simula-
tion enhancement techniques the computation time is reduced significantly without losing
accuracy. The importance is demonstrated by an illustration of the time saving in Fig-
ure 2.1. Base is a simulation of a demonstration circuit, so the relation of the times is
more relevant than the absolute values. Execution time is the time needed to perform
20 MC runs with 20 noise runs each. The reference run performs all 400 simulations
sequentially and every run produces overhead. The simulation environment can perform
multiple simulations at a time. Therefore only settings need to be adapted, so this is
referred to as quick enhancements. Further improvements were introduced in this section
which mainly reduce the overhead. Combining all measures is summarized as sophisticated
enhancements. For details see appendix B.

16 2 Simulation Approach

0 5 10 15 20 25 30 35 40

sophisticated enhancements

quick enhancements

reference run

execution time [min]

Figure 2.1.: Time savings using enhanced simulation techniques.

Chapter 3

Elementary Circuits

In this chapter some basic circuits that can be used in a PUF, in particular in an Arbiter
PUF, are presented. The Arbiter PUF consists of delay elements, multiplexers, and an
arbiter. There are various options for each of these components to be implemented. The
ones that will be examined here are:

• inverters as delay elements,

• transmission gate multiplexers for choosing a signal path,

• a latch for deciding on the faster of the two paths.

3.1. Inverter

The inverter is a very simple element. Nonetheless it is of great importance for many PUF
architectures like the arbiter PUF or the ring oscillator PUF. This is the reason why it is
important to understand its function.

Although it is a simple element, it already introduces a few design parameters that influ-
ence its behavior, namely the sizes of the two involved transistors. We will deal with that
later, for the moment we assume minimum size transistors.

3.1.1. Circuit (Logical)

The basic function of an inverter is to negate its input in terms of a HIGH (near VDD)
or LOW (near ground) voltage signal. In digital circuits these signal levels correspond to

17

18 3 Elementary Circuits

in out in 10
out 01

Figure 3.1.: Inverter symbol and truth table.

a logical 1 or 0. Due to the limited options the truth table indicating the static behavior
is very simple, see Figure 3.1.

3.1.2. Circuit (Transistor Level)

in out

VDD
pMOS

nMOS

(a)

in out
DUT

(b)

0.5 0.6 1 1.1
0

0.6

1.2

time [ns]

vo
lta

ge
[V

] in
out

(c)

Figure 3.2.: (a) CMOS inverter circuit, (b) test circuit, and
(c) transient signal.

The circuit of the CMOS inverter consists of a pMOS and an nMOS transistor, see Fig-
ure 3.2 (a). A low signal at the input causes the nMOS to be ’off’ and the pMOS to be
’on’ which pulls the output high, and vice versa. Assuming a capacitive load no current
is necessary to preserve a state.

For our application we are mainly interested in the transient behavior, which is of course
not ideal. Traversing a rising edge at the input the initially blocking nMOS starts con-
ducting more and more (ID) due to the rising UGS and the pMOS in contrast closes. The
output node discharges. Due to the transistor characteristics to be passed and the output
to be discharged, transitions take some time and edges are not infinitely steep. The path
in the test circuit, Figure 3.2 (b), starts with an inverter to get a realistic input for the
device under test (DUT) and adds another inverter at the output to simulate a realistic
load. Figure 3.2 (c) displays the result of a transient simulation of the test circuit. Note
that the regarded in- and output are relative to the single inverter in the middle. Thus
the value of the capacitor does not really matter in this setup. The following subsections
will establish some measures to characterize the transient behavior.

3.1 Inverter 19

0.2

0.8

trise

t̃rise t̃fall

vo
lta

ge
[V

D
D
]

Figure 3.3.: Definition of inverter’s fall time and rise time.

3.1.3. Inverter’s Typical Slew Rate

As previously mentioned the inverter changes its output voltage gradually. This subsection
first introduces a measure for the speed: t̃fall is defined as the time the signal needs to
fall from 80 % to 20 % of VDD. t̃rise is defined respectively, see Figure 3.3. Assuming a
linear progression this corresponds to the rise time trise or the reciprocal slew rate which
is usually defined as max(|dUdt |). As we will mostly deal with delays in our context, the
time measure is preferred in this paper.

in out
DUT

(a)

0 20
0

VDD

time [ps]

vo
lta

ge

(b)

0 1000
0

VDD

time [ps]

vo
lta

ge

(c)

Figure 3.4.: Examination circuit and exemplary waveforms.

Figure 3.4 (a) shows a test circuit to analyse t̃fall of an inverter. The input slew rate is
variable, the output node is self loaded which means another inverter is placed there. The
signal curves show examples for a fast and a slow rising input edge. Note the different
scaling of the time axis. These examples outline clearly that the inverter has a specific
transient behavior rather than a logical one. The output voltage at a specific time cannot
be calculated by the input voltage at that time. For the fast rising edge, Figure 3.4 (b),
the output starts falling below VDD not before the input fully reached VDD. The output
slew rate is slower than the input, t̃fall > t̃rise. For a slow rising edge, Figure 3.4 (c), the
output toggles at about VDD/2 at the input. In this case the output slew rate is faster
than the input, t̃fall < t̃rise. The transient behavior also makes clear why it was necessary
to introduce the artificial measures t̃fall and t̃rise.

Plotting t̃fall,out against t̃rise,in this behavior also becomes evident, see Figure 3.5 (a). For
short rise times the output slew rate is almost independent of the input slew rate. For
longer rise times it increases, but slowly. This means it makes sense to define a typical

20 3 Elementary Circuits

0 10 200
7

20

t̃rise,in [ps]

t̃ fa
ll,

ou
t
[p
s]

(a)

0 10 200

10
18

t̃fall,in [ps]

t̃ r
is

e,
ou

t
[p
s]

(b)

Figure 3.5.: Behavior of inverter’s fall time and rise time.

slew rate in an inverter chain (red circle). Within an inverter chain the slew rate where
t̃rise,in = t̃fall,out will prevail. In this case t̃fall,typical is 7.2 ps.

The same measure can be applied for a falling input edge resulting in a rising output
edge. This is shown in Figure 3.5 (b). It is remarkable that t̃rise,typical, which is 18 ps, is
a factor of 2.5 higher than t̃fall,typical. The typical rising edge is slower than the falling
edge. This results from a higher resistance of a same sized pMOS transistor due to the
lower charge carrier mobility. This is a reason why normal inverters are built with a larger
pMOS transistor in comparison to the nMOS.

The gained insight predestines the inverter to refresh edges to a defined slew rate if needed
for a subsequent stage. Note that the absolute slew rate is still dependent on the transistor
parameters and the load. This will be examined in chapter 4.

3.1.4. Inverter’s Delay

in out
DUT loadinput shaping

0 35 66 100
0

1.2

time [ps]

vo
lta

ge
[V

]

in
out

Figure 3.6.: Examination circuit and illustration of the typical delay of two
inverters in series.

This subsections deals with the delay, which is the probably most important property of
an inverter in the PUF context. A side effect of the previous subsection is the insight
that defining a delay of a single inverter might be difficult. The test circuit in Figure 3.6
addresses this problem by examining an inverter chain. The first inverters are used to
generate a realistic input signal, the last inverter serves as a realistic load. By evaluating

3.2 Transmission Gate 21

the delay between two inverters instead of one the input and output signal curve are very
similar, but delayed. The delay is defined as the time between the input crossing VDD/2
and the output crossing VDD/2. A typical delay value for minimum size transistors in
our technology is 32 ps.

24 28 32 36

σ = 0.17 ps

σ = 1.20 ps

∆t [ps]

di
st
rib

ut
io
n mismatch

noise

Figure 3.7.: Distribution of the inverter delays.

What is even more important than the delay is the deviation of delays. Equally designed
transistors will behave differently due to mismatch caused by manufacturing, even when
placed near each other in the layout. This issue is addressed by a monte carlo simulation.
Figure 3.7 displays the resulting distribution of delays in orange. It shows a standard
deviation of 1.2 ps, which is not neglectable in relation to the mean.

Another fact that results in varying delays is noise, which causes even a specific man-
ufactured inverter to exhibit slightly different delays every time. This is addressed by
simulating transient noise. The resulting distribution is also shown in Figure 3.7 in blue.
For our applications it will be important that the deviation introduced by noise is much
less than the deviation introduced by manufacturing. Note that the values depend on the
transistor parameters, which are minimum size here. Their influence will be examined in
chapter 4.

3.2. Transmission Gate

in out

S

S

SS

(a)

in out

S

S

(b)

in out
S

S

R

R
on
off

1
0

low
high

(c)

Figure 3.8.: Transmission Gate circuit, symbol, and resistance table.

22 3 Elementary Circuits

A transmission gate is another useful basic element. It acts like a switch and can be turned
on and off by an electric signal.

Figure 3.8 (a) displays the circuit. It consists of an nMOS and a pMOS transistor in
parallel. For operation two complementary signals S and S are needed. Assuming S is
logic high and S is logic low the transmission gate is conducting. The nMOS passes logic
lows well and the pMOS logic highs well. Rather than a digital gate the transmission
gate also allows to propagate analog signals. Although its resistance varies with the
input voltage, its behavior resembles more a resistor rather than a switch, illustrated in
Figure 3.8 (c). Its resistance can be either low or very high, but never zero. The symbol,
Figure 3.8 (b), resembles a buffer working in both directions. A detailed introduction and
applications can be found at [16, p. 375ff].

3.3. Transmission Gate Switch

An arbiter PUF relies on elements that modify the two signal paths. Each challenge
bit (C) stands for a path decision. For this purpose switch elements are needed.

3.3.1. Circuit (Logical)

inA outA

inB outB

C

(a)

inA outA

inB outB

C

C

C

C

(b)

Figure 3.9.: Switch element symbol and function.

A switch element symbol is displayed in Figure 3.9 (a). InA is either propagated to outA
or outB; inB to the other output. This behavior is illustrated in Figure 3.9 (b).

3.3.2. Circuit (Implementation)

The early PUF proposed by Lee et al. in 2004 [9] uses transmission gate multiplexers to
achieve this. This is illustrated in Figure 3.10 for one output, the same applies to the other

3.3 Transmission Gate Switch 23

inA outA

inB
C

C
C

C

conducting for C=1

high ohmic for C=1

Figure 3.10.: Transmission Gate Multiplexer circuit.

one (left out for clarity). Inverters at the input drive the transmission gates; inverters at
the output load the transmission gate and drive the output node.

Figure 3.11.: Switch element path illustrated for C=0 and C=1.

Figure 3.11 shows the two paths and illustrates which circuit elements are affected for
both options. It can be assumed that both paths are driven by an inverter of the previous
stage (gray) and the output has to drive an inverter of the following stage (gray). Inside,
each two corresponding transmission gates are switched on or off in the demonstrated way
(black or gray). Note that changing the path is equivalent to interchanging the outputs
as long as mismatch is not regarded.

3.3.3. Switch’s Delay

Figure 3.12 displays a test circuit to analyze the delay of the switch circuit. Therefore
examining one path is sufficient due to the symmetric structure. At the DUT input
two inverters have to be driven by a single inverter. The DUT output has to drive a
single inverter. Inside the DUT, one path is conducting and the other one is high ohmic.
Nevertheless the second path must not be neglected. In a complete switch element the
shown circuit exists twice, once per path. Thus a mismatch simulation on the DUT makes
sense.

A mismatch simulation based on the test circuit in Figure 3.12 will allow statements
on the difference of the delays of two paths that are active simultaneously. It is only an

24 3 Elementary Circuits

in out

0

1
1

0

off

DUT

Figure 3.12.: Switch element delay test circuit.

approximation for the comparison of two paths that feed the same output. In this case the
second inverter is shared by both paths and only the first inverters and the transmission
gates mismatch. Regarding the only two valid switching options illustrated in Figure 3.11
it becomes clear that this case can be neglected in our context, because these paths are
never compared directly to each other during operation.

52 54 56 58 60 62

σ = 0.26 ps
σ = 1.79 ps

∆t @ rising edge [ps]

di
st
rib

ut
io
n mismatch

noise

56 58 60 62 64 66

σ = 0.33 ps
σ = 2.68 ps

∆t @ falling edge [ps]

di
st
rib

ut
io
n mismatch

noise

Figure 3.13.: Distribution of the delays of the test circuit.

Figure 3.13 depicts the simulation results of the presented switch element test circuit. The
propagation of a rising and a falling edge are examined separately because the transmission
gates inside the DUT may influence the results differently. As usual we use minimum size
transistors.

In general the test circuit and the normal inverter chain, which was examined in section 3.1,
display similar behavior. Both provide a delay in the range of tens of picoseconds, a
mismatch standard deviation in the range of some picoseconds, and a noise standard
deviation in the sub picoseconds range. This demonstrates the importance of the switch
circuit for the PUF. The switch circuit cannot be neglected and must not be taken for
ideal.

In the following the switch behavior is analyzed in detail. It is remarkable that a falling
edge (Figure 3.13 right plot) progresses slower than a rising edge (Figure 3.13 left plot).
And it can be observed that the delay of the falling edge varies far more compared to the
rising edge, with a standard deviation of 2.7 ps instead of 1.8 ps, or otherwise expressed

3.3 Transmission Gate Switch 25

50 % more. It also turns out that the deviation caused by noise is a bit larger for the
falling edge but considering the much higher mismatch deviation it is still in the same
range than the corresponding one of the rising edge.

The transmission gate was introduced in section 3.2 as a kind of resistor. An investigation
is made to check whether the behavior of the transmission gate can be approximated by
a resistor to get a simplified model. A modified test circuit is given in Figure 3.14. The
closed transmission gate is replaced by a 100 GΩ resistor, the conducting transmission gate
is replaced by a 77 kΩ resistor. The latter value was chosen to match the mean propagation
delay of the unmodified circuit, which is 57 ps for the rising edge. The rising edge was
chosen to match, because a rising edge is propagated during the PUF operation.

in out

DUT

100G

77K

Figure 3.14.: Switch element delay test circuit with resistors instead of
transmission gates.

52 54 56 58 60 62

σ = 0.30 ps
σ = 1.92 ps

∆t @ rising edge [ps]

di
st
rib

ut
io
n mismatch

noise

46 48 50 52 54 56

σ = 0.29 ps
σ = 1.49 ps

∆t @ falling edge [ps]

di
st
rib

ut
io
n mismatch

noise

Figure 3.15.: Distribution of the delays of the test circuit. Transmission
Gates are replaced by resistors.

Simulation results for the modified test circuit are displayed in Figure 3.15. They have
to be compared to the results of the original test circuit in Figure 3.13. The mean delay
of the rising edge is equal by design. The deviation of the delay of the rising edge due
to mismatch is slightly more than for the original circuit, although the ideal resistor does
not introduce additional deviating elements in contrast to the transmission gate. The
behavior of the falling edges (right plots in Figure 3.15 and Figure 3.13) differ significantly
for both circuits. Neither the mean delay nor the deviation of the delays are similar. This
leads to the insight that a simple resistor is not sufficient to approximate the behavior of

26 3 Elementary Circuits

a transmission gate within the given circuit. Further investigation requires more complex
models where for example the voltage dependence of the transmission gate’s resistance is
regarded. This contradicts the aim for a simple model and is thus not further investigated.

3.4. SR NAND Latch

¬set

¬reset
S

R

Q

Q

value

¬value

Figure 3.16.: SR latch.

A latch is a circuit that has two stable states and can thus store 1 bit of information. A
latch is not clocked, in contrast to a flip-flop. Figure 3.16 shows the symbol of a set-reset
latch (SR latch) with active-low inputs (SR latch).

Due to the asynchronous operation the latch can also act as an arbiter. Therefore the
two inputs S and R are treated as equal competitors, the output Q indicates which input
arrived first. This ability was formerly used in clock synchronization circuits (according
to [16, p. 383]) and is very important for arbiter PUFs. The following subsections will deal
with the function and some properties of the SR NAND latch, a SR latch built of NAND
gates.

3.4.1. Circuit (Logical)

S

R

Q

Q

Q
S
1

R
1

Q Q

0 1
1 0
0 0

Q
1 0
0 1
1|? 1|?

keep state
set
reset
forbidden

Figure 3.17.: SR NAND latch and truth table.

The SR NAND latch consists of two cross-coupled NAND gates, see Figure 3.17. A NAND
gate implements the logic function Y = A ∧ B, where Y is the output and A and B are
the inputs. Consider the case when R is high and S is low. Forcing S low causes Q to go
high. Since R is high and Q is high, the Q output is low. Now consider the case when both
S and R are low. Under these circumstances, the latch’s outputs are both high. [16]. When
operating as storage, this combination is forbidden. It violates the trivial relation Q = ¬Q
and the state after releasing S and R simultaneously is not defined. When operating as
arbiter, this state is the starting point for a decision due to its instability. Assuming ideal

3.4 SR NAND Latch 27

gates, a short delay ∆t between the rising signals at S and R is sufficient to decide for the
corresponding stable state which can then be read out safely.

3.4.2. Circuit (Transistor Level)

Q

Q

RS

Q’Q’

M3

M1

M0

M2 M7

M5

M4

M6

Figure 3.18.: CMOS SR NAND Latch circuit with output buffers.

I II III IV

S
R

Q

time

Q

Figure 3.19.: Signal curves representing typical latch applications.

Figure 3.18 shows the transistor level circuit of the introduced latch. Its function is based
on the two equal NAND gates (M0-M3 and M4-M7). Additionally buffers are added to
the internal latch outputs (right). Although it could be neglected for simulation, every
subsequent circuit using the value of Q’ or Q’ loads the latch and may influence the latch’s
behavior. The given buffers add small loads, too, but they load Q’ and Q’ equally. Thus
no input is preferred. Unless noted otherwise all transistors are minimum size as usual.

Figure 3.19 shows some signal curves to demonstrate the behavior of a latch as arbiter.
Each section has a duration of 2 ns.

28 3 Elementary Circuits

I Pulling S low stores the value 1 in Q and 0 in Q. The visible delay results from the
settling time of the latch and the delay of the output buffer. Releasing S keeps the
values.

II Pulling R low stores the value 0 in Q and 1 in Q. Releasing R keeps the values.

III Pulling both S and R low and releasing them exactly at the same time results in an
undefined behavior (as long as mismatch is not regarded). Q can settle for 1 or 0
randomly (dotted lines).

IV When releasing S and R successively the behavior is again defined (at least as long
as mismatch and noise are not regarded): The input released last will dominate and
set or reset the value Q.

In Section IV the latch acts as arbiter deciding for the order of the input rising edges.
This behavior will be explained now in greater detail using the circuit from Figure 3.18.
Starting point is the unstable state where both S and R are low. M3 and M4 are on
(|UGS| � |Uth|), while M1 and M5 are off (|UGS| ≈ 0). The gates’ outputs Q’ and Q’
are high. Now assume S is rising first. At the left gate M0 is on and M2 is off because
Q’=1. Taking M0 as shorted and neglecting M2 leaves an inverter consisting of M1 and
M3. Rising its input lowers its output Q’. This affects the right gate where Q’ is an input.
Now M6 is on and M4 closes, which assures that the output Q’ remains high. This state
is now stable even when R is released, too.

To achieve reliable decisions for short time differences between the rising edge of S and R it
is important that the internal state flips before the second input also arises. Investigations
how this behavior can be improved are made in chapter 4.

3.4.3. Input Sensitivity (Influence of Noise)

S
R

Q
Q

(a)

RStrise

∆t

∆V

(b)

-2 -1 ∆t20 % 1 20
20

50

80
100

∆t [ps]

de
ci
sio

ns
Q
=
1
[%

]

(c)

Figure 3.20.: (a) Latch test circuit, (b) test input signals, and
(c) decision behavior.

A manufactured latch is not ideal and one reason for this is noise. This section will deal
with the influence of noise on the arbiter decisions. All predictions in this section are

3.4 SR NAND Latch 29

based on the Transient Noise Simulation of the SPECTRE Simulator using a Maximum
Noise Frequency of 100 GHz.

Figure 3.20 (a) shows the test circuit. The input of the latch can be defined arbitrarily.
Usually the inputs will resemble inverter edges. For the test the edges are approximated as
shown in Figure 3.20 (b). The signals rise linearly from 0 to VDD within a rise time trise.
The interval ∆t between the two inputs is expected to be the most important parameter.
∆V is introduced as the voltage difference between the two signals.

Figure 3.20 (c) displays the decision ability of the latch for a given rise time trise = 10 ps,
which is a reasonable. The ideal latch decision function is a kind of sign function. Every
∆t < 0 evaluates to 1, every ∆t > 0 evaluates to 0, ∆t = 0 is not decidable and should
result in a decision rate of 50 %. Unsurprisingly the probability for a correct response
decreases in the range around ∆t = 0. But the image also allows some quantitative
proposition. In this case (remember we made assumptions on the input signals and tran-
sistor sizes) that means: Avoiding the interval |∆t| < 1 ps makes decisions very reliable
against the influence of noise. The plot content can be summarized to a single number
which allows statements on the quality of the decisions. Therefore ∆t20 % is introduced.
It is defined as the ∆t where 20 % of the runs decide towards Q=1.

0 0.5 10

25

50

trise = 10 ps
trise = 1 ns

∆t [ps]

de
ci
sio

ns
Q
=
1
[%

]

(a)

0 1 20

25

50

trise = 10 ps
trise = 1 ns

∆V [mV]
(b)

10 30 50 70 900

25

50

∆t const
∆V const

trise [ps]
(c)

0 1 2 30

25

50

trise = 10 ps
trise = 1 ns

∆V∆t [fVs]
(d)

Figure 3.21.: Influence of test signal parameters on latch decisions.

The following investigation demonstrates that ∆t is not the only parameter the arbiter
decision is sensitive to. Figure 3.21 (a,b,c) plot the dependence on the three parameters
introduced in Figure 3.20 (b). The ideal value for decisions Q=1 is 0, the worst expectable
case is 50 %, which corresponds to a completely random response for Q=1 or Q=0. In
brief: the lower the better. 200 decisions per data point were evaluated, which is enough
for a qualitative statement even if the plots may appear noisy.

The blue curve in the ∆t plot Figure 3.21 (a) is exactly what was already shown in
Figure 3.20 (c), but only for ∆t > 0. Due to the symmetric structure of the arbiter it is
sufficient to regard one half. The green curve of the same plot reveals the same under the
assumption of a longer rise time trise. It is clearly visible that the decisions become less
reliable. For an arbiter this means the inputs would have to differ a lot more in ∆t to
achieve the same level of reliability. This is also what the trise plot Figure 3.20 (c) exposes.
The blue curve demonstrates that for an increasing trise and constant ∆t the rate of false

30 3 Elementary Circuits

responses increases. This is an important insight: The rise time of the input signals has a
big influence on the arbiter behavior.

This insight leads to the question what the input is sensitive to instead and if there are
better parameters than ∆t. One proposition is ∆V. As can be seen in Figure 3.20 (b) on
page 28, ∆V is another kind of distance between the two input signals. The second plot
Figure 3.21 (b) examines this proposition. Again the result depends much on trise. But
this time the other way, as the green curve in the third plot Figure 3.21 (c) outlines. For a
constant ∆V the false response rate decreases for increasing trise. This behavior can also
be explained regarding the circuit. The inputs always differ by the same voltage, but the
rise time corresponds to the time interval the arbiter is exposed to this difference. A longer
exposure time increases the chance for the signal to influence the decision in relation to
noise.

Finally a measure was found to indicate the response rate without direct dependence on
the rise time. Figure 3.21 (d) plots the response rate against ∆t ·∆V. It is plausible that
the two curves indicating different rise times (factor 100) show the same behavior. The
recorded data can easily be converted to this format using the relation 3.1

∆V
∆t = VDD

trise
(3.1)

0 0.5 1 1.5 20

25

50

∆t [ps]

de
ci
sio

ns
Q
=
1
[%

]

10 ps sim.
1 ns sim.
1 ns pred.

Figure 3.22.: Latch behavior prediction for a different input slew rate.

This insight is useful to predict the latch decision behavior in dependence of ∆t for a
given rise time, even if the original curve was recorded at another rise time. This saves
simulation time because realistic noise simulations are very costly and it was shown before
that the rise time influences the behavior significantly. Figure 3.22 extends Figure 3.21 (a)
by the prediction (red) of the behavior for trise = 1 ns based on the values simulated for
trise = 10 ps (blue). The prediction is very similar to the simulated values (green). This
underlines that the proposed relation is suitable. The calculation derived from equation
3.1 is developed below.

The following calculation converts a latch decision curve recorded at a given rise time to
another rise time. Therefore the time value ∆t of each value pair can be converted as
following. Knowing a recorded (simulated) value pair (∆trec and its decision rate) it was
shown that the product of ∆t and ∆V remains constant (equation 3.2) for varying trise,

3.4 SR NAND Latch 31

and ∆V can easily be calculated using expression 3.1. The final calculation is developed
in equations 3.3 below.

X = ∆t ·∆V = ∆trec ·∆Vrec (3.2)

∆t = X
∆V

∆t = X
1

trise
VDD ·∆t

∆t ·∆t = X · trise
VDD

∆t = ±

√
X · trise
VDD

(3.3)

The new value pair consists of the calculated ∆t using the final formula of 3.3 and the
unchanged decision rate. There trise is the rise time which the curve has to be adapted to.
The sign of ∆t is the same as the original ∆trec.

0 0.5 1 1.5 20

25

50

∆t [ps]

de
ci
sio

ns
Q
=
1
[%

]

100 GHz noise
1 GHz noise

(a)

10−1 100 101 102
0

25

50

max. sim. noise [GHz]

de
ci
sio

ns
Q
=
1
[%

]

∆t = 1 ps
∆t = 2 ps

(b)

Figure 3.23.: Influence of noise simulation parameters.

Some notes on the noise simulation parameters are attached in the following. The simula-
tion time grows a lot for high maximum noise frequencies to be simulated. Figure 3.23 (a)
shows the effect if noise is simulated at reduced maximum noise frequency to save simu-
lation time. At no delay (∆t = 0) there is almost no difference, both decision rates are
around 50 %, which is the ideal value. But at ∆t = 1 ps the decision rate has dropped
by half, at ∆t = 2 ps the error seems to have vanished while it is still significant in the
more realistic simulation. Figure 3.23 (b) illustrates the error rate in dependence of the
maximum noise frequency for the two mentioned ∆ts. It demonstrates that in general
using a lower maximum noise frequency results in a illusively lower error rate. But it
also demonstrates that the error rate does not change significantly in the range of 10 to
100 GHz. Unfortunately these values may not be valid in general and have to be proven
individually.

Up to this point the input signals were assumed to be linearly rising edges. Figure 3.24 (a)
introduces a more realistic scenario. The inputs are real inverter edges. As it was demon-
strated in section 3.1 inverter edges are a bit different, they look smoother and the slew

32 3 Elementary Circuits

S
R

Q
Q

(a)

−2 −1 0 1 20
25
50
75
100

∆t [ps]

de
ci
sio

ns
Q
=
1
[%

]

pred.
sim.

(b)

Figure 3.24.: (a) Realistic test circuit and (b) comparison to prediction.

rate is intrinsically set. It was outlined that t̃rise,typical (raise from 20 % to 80 % of VDD) is
18 ps in a minimum size inverter chain, which equivalents a rise time (from 0 to VDD) of
about 30 ps. The latch as a load can also be seen as an inverter in this case because every
input consists of an nMOS and a pMOS gate without any extra load. Figure 3.24 (b)
compares the predicted decision behavior assuming artificial rising edges at the typical
rise time (pred., black) with the decision behavior using realistic edges (sim., red). This
is the evidence that the artificial edges, which were introduced to simplify investigations,
are a very good model for realistic edges.

3.4.4. Input Bias (Influence of Mismatch)

−4 −2 0 2 4
no

yes

∆t [ps]

de
ci
sio

n
Q
=
1

(a)

−4 −2 0 2 4

σ = 1.45 ps

latch bias [ps]

di
st
rib

ut
io
n

(b)

Figure 3.25.: Decision behavior and distribution of the Bias.

The last subsection dealt with the influence of noise. Another artefact that makes decisions
unideal results from mismatch. Mismatch causes each transistor to behave slightly different
than its specification. Figure 3.25 (a) shows the decision curve for a few different monte
carlo runs. The simulation is done without noise. That implies that there is a hard
switching point where the arbiter decides for 1 below or for 0 above. It becomes evident
that there is a bias in the range of certain picoseconds for these examples and they differ
around 0. Figure 3.25 (b) shows a histogram and a fitted Gaussian distribution for 100
monte carlo runs.

3.4 SR NAND Latch 33

It turns out that the bias can be quite significant. For the test circuit a deviation σ of
1.45 ps was calculated. A bias at the arbiter can result in a bias in the PUF response,
but it remains unchanged for an arbiter instance at constant environmental conditions. It
depends on the application whether the bias has a disturbing effect.

Chapter 4

Enhanced Arbiter PUF Components

This chapter deals with enhancements of the standard Arbiter PUF. Therefore the outlined
characteristic properties of its components are taken into account.

Every transistor offers design parameters which can be modified at design time. Namely
the width W and the length L, which define the size of the transistor, are of interest. More
precisely, its deviations given by the manufacturer models and the influence of transient
noise are deciding. This leads to the obvious parameter tuning investigation that will be
performed in this chapter.

4.1. Inverter

The inverter and the inverter chain were introduced as very simple components in sec-
tion 3.1. Nonetheless every inverter offers a few parameters which can be modified indi-
vidually:

• Ln: length of the nMOS,

• Wn: width of the nMOS,

• Lp: length of the pMOS,

• Wp: width of the pMOS.

The supply voltage VDD is also variable.

If not noticed otherwise the device under test is an inverter chain consisting of 2 inverters
while the parameters refer to all inverters of the complete inverter chain equally, includ-

35

36 4 Enhanced Arbiter PUF Components

ing previous and following stages. Monte Carlo Variations and Transient Noise are only
applied to the devices under test. W without index addresses both Wn and Wp, the same
applies to L. Figure 4.1 (a) displays the test circuit already known from Figure 3.6.

The main characteristic property of an inverter chain is its delay. More precisely

• µ: the mean delay

• σmc: the standard deviation of the delay due to mismatch

• σnoise: the standard deviation of the delay due to noise

in out
DUT loadinput shaping

(a)

examined edge

Cload

(b)

Figure 4.1.: Inverter chain’s test circuits for (a) delay and
(b) edge examination.

Furthermore it was outlined that the slew rate is an important characteristic property. It
can be expressed by the values

• t̃rise: the rise time from 20 % to 80 % of VDD

• t̃fall: the fall time from 80 % to 20 % of VDD

For the determination of these values a constant load is assumed, see Figure 4.1 (b).

A matrix considering the influence of every parameter on every characteristic property was
created and is present in the appendix A.1. In the following some outstanding relations
are pointed out.

4.1.1. Influence of Width W on Delay

Figure 4.2 displays the influence of the transistor width. µ (left plot) remains more or less
constant. This results from the fact that the inverters are loaded by equally sized inverters.
This means the load grows equally to the driver strength of the transistors. Much more
interesting is the behavior of the deviation, which is illustrated by the standard deviation
σ (right plot). The deviation caused by mismatch drops to 48 % for 1µm devices in

4.1 Inverter 37

200 400 600 8000

30

60

Wn,Wp [nm]

de
la
y
[p
s]

µ

200 400 600 8000

1

2

Wn,Wp [nm]

σ
m

c
[p
s]

0

0.1

0.2

0.3

σ
no

is
e
[p
s]

Figure 4.2.: Influence of inverter size on delay and its deviation.

comparison to the minimum size device. At the first sight this is an unwanted effect. But
the deviation caused by noise drops to 33 %. This means the deviation due to noise drops
more than the deviation caused by mismatch. Exploiting this effect promises more reliable
responses by increasing the transistor size.

C

i

ini0

Figure 4.3.: Illustration circuit for inverter operation at a falling edge.

The deviation of mismatch behaves as expected. Matching becomes better for larger
devices. The behavior of the noise deviation requires further explanation. Therefore a
very simple model is used to model the charging procedure within an inverter chain. A
current source loads a capacitor, see Figure 4.3. This illustrates an inverter stage (current
source) driving another inverter stage (capacitor). The current source is modeled as an
ideal current source and a noise current source in parallel. The capacitor voltage is the
output signal and is determined by U(t) = 1

C
∫ t

0 i(t̄)dt̄, assuming Ct=0 = 0. Splitting the
equation to regard the two current sources results in Equation 4.1:

U(t) = 1
C · i0 · t + 1

C

t∫
0

in(t̄)dt̄

︸ ︷︷ ︸
noise

(4.1)

To determine the mean delay the noise term is ignored and the equation is reformed to
t = C

i0 ·U. For increased transistor sizes it can be assumed that C ∼W (gate capacitance
goes linearly with W) and i0 ∼ W (drain current goes linearly with W, see Equation 1.1
and 1.2 on page 9). This results in t ∼ W

W ∼ 1, which means the average time to reach a
certain voltage is independent from W.

To determine the deviation the noise term in Equation 4.1 has to be taken into account, too.
The noise current in is assumed to be Gaussian distributed. Then the integral expresses a

38 4 Enhanced Arbiter PUF Components

Wiener process. It is typical for a Wiener process that its variance goes linearly with time.
In our case this can be ignored because the time was already proven to remain constant
in the last paragraph. Also C still behaves like C ∼W. But in behaves different from i0:
in ∼ gm ∼

√
i0 ∼

√
W. The overall impact of W is given in Equation 4.2:

σnoise,voltage ∼
1
C · in ·

√
t ∼ 1

W ·
√
W · 1 ∼ 1√

W
(4.2)

This deviation refers to the voltage over the capacitor. It still has to be transformed to a
deviation in time. In this case this is trivial, because is was shown that the slope of the
output is independent from W. Thus it can be expressed with Equation 4.3:

σnoise ∼ σnoise,voltage ∼
1√
W

(4.3)

200 400 600 800
Wn,Wp [nm]

σ
no

is
e

simulation
theory

Figure 4.4.: Evaluation of the theory explaining the noise behavior.

The theory is evaluated in Figure 4.4. It can be observed that this result fits the simulation
results well, despite the simple model.

4.1.2. Influence of Width Wn on Delay

200 400 600 8000

30

60

90

120

Wn [nm]

de
la
y
[p
s]

µ

200 400 600 8000
1
2
3
4

Wn [nm]

σ
m

c
[p
s]

0

0.2

0.4

0.6

σ
no

is
e
[p
s]

Figure 4.5.: Influence of inverters’s nMOS width on delay and its deviation.

Figure 4.5 displays the influence of increasing Wn while leaving Wp at minimum size.
In this case the delay increases (left plot). Regarding the values at 120 nm and 1µm it

4.1 Inverter 39

increases by a factor of 2.4. The influence of mismatch and noise also increases. But
for the same parameter change σmc grows by a factor of 3.3 while σnoise only grows by
1.7. This means the influence of mismatch grows faster than the influence of noise, which
makes it desirable to use a larger Wn if the increased delay is acceptable. Note that this
is contrary to a usual digital inverter design where the pMOS is designed larger.

Cn

i

ini0
Cp

nMOS

Cn

i

ini0 Cp

pMOS

Figure 4.6.: Illustration circuit for asymmetric inverter stage.

To explain these observations the examination can be split. Rising and falling edge are
regarded separately. The model is extended to depict the fact that only one transistor is
increased. Figure 4.6 illustrates this. At first the increase of the delay is described. For
the falling edge the nMOS determines the current, see the left schematic. In this case
i0 = inMOS ∼ W and C = Cn + Cp ≈ Cn ∼ W. This is almost the same case as before.
Current and capacitance grow equally, the time for the falling edge remains approximately
constant, tfalling ∼ 1. For the rising edge the pMOS determines the current, see the right
schematic. The current remains constant while the load itself grows. It is immediately
clear that this results in a slower progress. More precisely, the time t to reach a certain
voltage goes linearly with C and thus approximately linear with Wn: trising ∼ Wn. Thus
also the overall delay of the inverter chain increases, although only one edge contributes
to that.

To explain the noise deviation both edges are regarded separately again. It was outlined
in the last paragraph that the falling edge behaves like before, where all transistor sizes
were modified. σnoise,falling ∼ 1. The noise deviation at the rising edge will be examined
now. This case is illustrated on Figure 4.6 (right). An explanation similar to Equation 4.2,
which was derived before, is displayed in Equation 4.4:

σnoise,rising,voltage ∼
1
C · in ·

√
t ∼ 1

Wn
· 1 ·

√
Wn ∼

1√
Wn

(4.4)

Despite different factors, the result is equivalent to Equation 4.2. Again the result has
to be transformed to a deviation in time. This time, the slope varies. It was shown that
trising ∼Wn. Regarding this, the deviation in time is expressed in Equation 4.5:

σnoise,rising ∼ trising · σnoise,rising,voltage ∼Wn ·
1√
Wn
∼
√
Wn (4.5)

Finally the falling and rising edge have to be combined. As known, variances of indepen-
dent random variables can be added. The resulting relation is given in Equation 4.6:

σnoise =
√
σ2

noise,falling + σ2
noise,rising ∼

√
Wn + 1

Wn
(4.6)

40 4 Enhanced Arbiter PUF Components

200 400 600 800
Wn [nm]

σ
no

is
e

simulation
theory

Figure 4.7.: Evaluation of the theory explaining the noise behavior.

The predicted behaviour is compared to the simulation in Figure 4.7. Therefore Wn from
Equation 4.6 is regarded as relative width normalized to Wn = 180 nm =̂ 1.

What is still missing is an explanation why the standard deviation due to mismatch
increases in the way it does. Therefore rising and falling edge are regarded separately
again, see Figure 4.8. It was explained in the beginning of the section that the mean of
the falling edge will not change significantly and only the rising edge contributes to its
increase. This is proven on the left plot. Nevertheless the standard deviation of the delay
of the falling edge increases.

200 400 600 8000

30

60

90

120

Wn [nm]

µ
[p
s]

complete µ
rising edge
falling edge

200 400 600 8000
1
2
3
4

Wn [nm]

σ
m

c
[p
s]

complete σ
rising edge
falling edge

Figure 4.8.: Influence of inverters’s nMOS width on delay and its deviation.
Plotted for rising and falling edge separately.

To explain the behavior of the deviation the simple circuit from Figure 4.3 on page 37 is
regarded again. There the equation 4.1 for the capacitor voltage was given and solved for
t, see equation 4.7:

t = C
i0
·U (4.7)

Both C and i0 are random variables of a certain distribution. As usual they are assumed
Gaussian distributed. For increasing W the distributions will change, in particular the
mean of i0 increases with increasing W of the driver transistor and the mean of C increases
with increasing W of the load transistor. While linear operations like addition are easy
to perform on such random variables, building a quotient is not. In this case, mean

4.1 Inverter 41

and variance cannot be regarded separately any more. Thus both distributions and their
behavior for increasing W have to be known completely. Even then the calculations are
challenging. As a simplification C is regarded as a constant in the following and only i0
is assumed a Gaussian distributed random variable. As it appears in the denominator,
investigating the influence on t analytically is still not trivial. Even the kind of distribution
changes. An illustration is given in Figure 4.9. The figure displays the density function of
a Gaussian distributed random variable X and 1

X . It is obvious that the density function
of 1

X is not symmetric anymore and assuming a Gaussian Distribution for the result is
only an approximation.

7 10 13
x

f X
(x
)

0.08 0.10 0.12
y

f 1
/X

(y
)

Figure 4.9.: Illustration of a non-linear operation on the density function of a
Gaussian distributed random variable.

It was shown that further investigation requires a statistical characterization of i0 and
C and non-linear stochastics to obtain a suitable theoretically well-founded explanation.
This effort is not made here. The simulation results provide sufficient information anyhow
for the following investigations in this thesis.

4.1.3. Influence of Width W and Cload on Slew Rate

200 400 600 8000

25

50

Wn,Wp [nm]

tim
e
[p
s]

t̃rise
t̃fall

0.1 10

25

50

Cload [fF]

tim
e
[p
s]

t̃rise
t̃fall

Figure 4.10.: Influence of inverter size and load on slew rate.

Figure 4.10 shows the main contributors to fast edges. As expected, the transition times
decrease with increasing transistor sizes at constant load (left plot), and the transition
times increase with increasing capacitive load at constant transistor sizes (right plot).
Note that the transition time decreases very slowly for larger transistors while the load
affects the transition time almost linearly.

42 4 Enhanced Arbiter PUF Components

4.1.4. Delay Elements in Series

Up to that point a delay element consists of two inverters. The statistical delay behavior
for this case was explored. Using the gained delay model allows an easy way to derive the
behavior of an inverter chain consisting of 2n (n ∈ N) inverters. Assuming independent
random variables the overall delay and the standard deviation can be determined by the
following equations:

µ2n = n · µ (4.8)
σ2n =

√
n · σ (4.9)

1 2 n

1 2 3 4
1

4

n

µ
2n

[µ
]

1 2 3 4
1
2

n

σ
2n

[σ
]

Figure 4.11.: Influence of multiple inverter delay elements in row.

This behavior is illustrated in Figure 4.11. It shows that spending more inverters in a
delay chain increases the standard deviation, which is a wanted effect (right plot). But
the overall standard deviation grows much slower than the mean (left plot). That means
increasing the standard deviation by this measure is very costly in terms of speed and size.

4.2. Switch

200 400 600 8000

60

120

180

Wn,inv [nm]

de
la
y
[p
s]

µ

200 400 600 8000

2

4

6

Wn,inv [nm]

σ
m

c
[p
s]

0
0.2
0.4
0.6
0.8

σ
no

is
e
[p
s]

Figure 4.12.: Influence of inverter size on delay of the switch element and its
deviation.

The switch circuit is analyzed analogously to the delay circuit. All parameter sweeps are
available in appendix A.2. Figure 4.12 displays the effect of Wn,inv on the delay and its
standard deviation. Wn,inv is the width of the nMOS transistors of the inverters involved
in the switch circuit. Transmission gates and pMOS sizes remain minimum. The circuit
is displayed in Figure 3.12, page 24.

4.3 Latch 43

The delay of the switch element behaves similar to the delay of the delay element. The
mean delay increases, but the standard deviation due to mismatch increases far more while
the standard deviation due to noise hardly changes.

4.3. Latch

In subsection 3.4.3 the measure ∆t20 % was introduced which expresses the quality of noise
resistance for a latch. It was illustrated in Figure 3.20 on page 28. The less this measure
the better is the latch in terms of noise sensitivity.

Another important quality measure is the bias of the latch. It was described in subsec-
tion 3.4.4. It results from manufacturing variations and is expressed as the ∆t where the
response flips. The measure that will be monitored is the standard deviation σmc of this
bias for several Monte Carlo runs. The ideal value is 0 and stands for an unbiased latch.

200 400 600 8000

0.1

0.2

Wn [nm]

∆
t 2

0
%

[p
s]

200 400 600 8000

1

2

Wn [nm]

σ
m

c
[p
s]

Figure 4.13.: Influence of latch’s nMOS width on noise sensitivity and bias.

Both measures were monitored over several parameter sweeps. All plots can be found in
the appendix A.3. The most outstanding plot is shown in Figure 4.13. It demonstrates
that increasing the width of all nMOS transistors of the latch decreases both measures
significantly. This is a simple but effective method to improve the latch behavior.

During the parameter sweep all other parameters were not modified. All other transistors
are minimum size. The inputs are ideal edges (see Figure 3.20) with a rise time set to 10 ps.
As it was shown before the input rise time is very important for the latch response. Thus
the plotted values should not be regarded as absolute values but as a trend. Note that
increasing Wn also increases the input capacitance which might decrease the input rise
time in a real circuit. This effect might worsen the latch behavior and was not regarded
in this scenario, where ideal inputs were used.

The positive effect of an increasing Wn can be explained with regard to the circuit and its
function which was introduced in section 3.4. The nMOS transistors have to unload an
internal node and their strength in terms of current increases with the width. Thus the
internal node can be discharged faster which means the stable state is reached earlier and
thus a smaller ∆t is sufficient for a reliable decision.

Chapter 5

Arbiter PUF Simulation and Modelling

This chapter deals with a complete arbiter PUF which consists of the components intro-
duced in chapter 3. The general idea was already explained in section 1.4. The PUF will
be simulated on transistor level and measures for uniqueness and reproducibility will be
evaluated.

Furthermore a new model-based simulation approach is suggested to reduce computation
time significantly. Enhancements based on chapter 4 are applied and evaluated using the
new method. The results are verified by a transistor level simulation of the newly proposed
circuit.

5.1. Composition and Operation

Figure 5.1 displays an arbiter PUF with an 8 bit challenge and an 8 bit response. This
construction will be examined in this chapter. Each of the 8 rows consists of

• a source providing a rising edge,

• 8 unit cells, each consisting of a switch element and buffers,

• an arbiter deciding for the earlier edge.

The arbiter was examined in section 3.4. For the unit cells the switch element introduced
in section 3.3 is followed by two inverters introduced in section 3.1. Each unit cell offers
2 ways of forwarding the input signals, which equivalents a 1 bit challenge. To allow 8
challenge bits 8 unit cells are interconnected in series. Each row generates a 1 bit response.
To generate 8 response bits 8 rows are used in parallel. An Arbiter PUF can easily be
expanded to longer challenges or responses in the same way.

45

46 5 Arbiter PUF Simulation and Modelling

C1 C2 C3 C4 C5 C7C6 C8

R8

C1 C2 C3 C4 C5 C7C6 C8

R7

C1 C2 C3 C4 C5 C7C6 C8

R6

C1 C2 C3 C4 C5 C7C6 C8

R5

C1 C2 C3 C4 C5 C7C6 C8

R4

C1 C2 C3 C4 C5 C7C6 C8

R3

C1 C2 C3 C4 C5 C7C6 C8

R2

C1 C2 C3 C4 C5 C7C6 C8

R1

Figure 5.1.: Arbiter PUF with 8 bit challenge and 8 bit response.

The Arbiter PUF is a delay-based PUF. Each response bit is generated by the comparison
of delays. The operation procedure is described in the following. First the challenge bits
C1. . . 8 are applied and left constant during the evaluation. Thus two signal paths per
row are established, leading from the source to the arbiter. The configuration of the paths
depends on the challenge bits. The signal from the source is pulled low and the low signal
is propagated to the arbiter. Both signals low prepares the arbiter for the decision. Then
the source changes to a high signal. A rising edge is propagated through the configured
path to the arbiter. The arbiter decides which of the two paths propagated the rising edge
faster, the result is stored and can be read out afterwards. As long as the source is high,
the arbiter result is stable.

5.2 Simulation (Transistor Level) 47

5.2. Simulation (Transistor Level)

The quality of this simple Arbiter PUF will now be evaluated. The minimum size com-
ponents from chapter 3 are combined to the PUF in Figure 5.1. The determined quality
will afterwards be the reference for enhancements.

The simulation effort on transistor level is enormous. As explained in chapter 2 every
simulation needs to be performed several times. Furthermore, not only the number of
devices increases in contrast to a single component, also a larger time interval (→simulated
time) must be simulated due to longer signal paths. The following numbers result from
the simulation of 50 MC runs, each with 50 noise runs, and each repeated for 25 random
challenges.

5.3. Quality

0 1 2 3 4 5 6 7 8
Hamming Distanceintra [bits]

oc
cu

rr
an

ce
s

0 1 2 3 4 5 6 7 8
Hamming Distanceinter [bits]

oc
cu

rr
an

ce
s

Figure 5.2.: Ideal Histograms. Left: All responses of the same PUF on the
same challenge are the same; the Hamming Distance is always 0. Right:

Responses of different PUFs differ by a mean of 50 % or 4 bit; the
Histogram of the Hamming Distances is binomial distributed.

Figure 5.2 displays the histograms which represent the quality measures reproducibility
and uniqueness. The plots display the ideal case of the measures introduced in section 1.2.
The aim is to approach these ideal distributions as far as possible.

The calculation of the histograms from recorded measurements is explained in [2, p. 20ff.]
and summarized in words in the following. For the intra-histogram, responses of the same
PUF on the same challenge are compared (→multiple readouts). Every possible pair of
responses is compared by calculating the Hamming Distance. Finally a histogram of all
comparison results, even for different PUFs and challenges, is plotted. The inter-histogram
is calculated accordingly. Responses of different PUFs are compared rather than different
readouts and the procedure is done for every challenge and readout.

Figure 5.3 displays the intra and inter histograms of the simulated reference PUF (tran-
sistor level simulation). Fractional µinter ≈ 50 % means uniqueness is perfect. This is
expected due to the symmetric structure; no potential unbalances except the latch bias
are regarded. Reproducibility leaves room for improvements. A fractional µintra = 6.57 %

48 5 Arbiter PUF Simulation and Modelling

0 1 2 3 4 5 6 7 8

µintra = 6.57 %

Hamming Distanceintra [bits]

oc
cu

rr
an

ce
s

0 1 2 3 4 5 6 7 8

µinter = 50.3 %

Hamming Distanceinter [bits]

oc
cu

rr
an

ce
s

Figure 5.3.: Histograms illustrating reproducibility and uniqueness of the
minimum size standard Arbiter PUF.

equivalents a bit error rate of 6.57 %, which is much higher than the ideal value of 0 and
far too high for most purposes.

5.4. Simulation (Component Level)

This section will introduce a novel simulation approach. In chapter 3 all elements of a
standard Arbiter PUF were examined in detail. The gained knowledge is used to build
stochastic models for every basic element. The main characteristic variable will be the
propagation delay, or more precisely its deviation. Finally these models will be combined
to simulate the whole PUF.

The propagation delay is the only value that is needed to characterize a delaying element’s
behavior for a specific path, assuming constant environmental conditions and neglecting
noise. The simulation has shown that the distribution of delays of the delaying elements
caused by mismatch can be modeled with a Gaussian distribution. Two values are sufficient
to characterize the random variable. These are the mean and the standard deviation.
Therefore we introduce a random variable Tµ,σ. Every delaying path will be associated
with an instance of Tµ,σ.

For simplification the following descriptions refer to a single row, the same procedure can
be applied for all rows separately. The absolute delays of the two paths per row are named
ta and tb. For the algorithmic processing the values are stored in a vector (ta, tb, 1)T. The
initial value is (0, 0, 1), it is updated at every delaying element and finally evaluated at
the arbiter.

5.4.1. Modeling Delay Elements

The simplest element is the delay element. For minimum size devices the values µdelay =
32 ps and σdelay,mc = 1.2 ps were determined. A delay block consists of two parallel de-
lay chains which are stochastically independent. They refer to two different mismatch
instances.

5.4 Simulation (Component Level) 49

The delay element is characterized by the propagation delays t+a = T(A) and t+b = T(B),
where A and B are the two paths. The values t+a and t+b remain constant for an instance.
This is similar to a monte carlo instance at transistor level simulation.

The update of the absolute propagation delay is mathematically described in Equation 5.1.
n stands for the current delaying element, n-1 for the result of the previous element or the
initial value for the first one.ta

tb
1

n

=

1 0 t+a
0 1 t+b
0 0 1

ta
tb
1

n−1

(5.1)

5.4.2. Modeling Switch Elements

It was shown in section 3.3 that the switch elements can be modeled similar to delay
elements. Realistic values for the delay distribution were determined to µdelay = 57 ps and
σdelay,mc = 1.8 ps. In contrast to the simple delay element a switch offers four different
paths. They are not necessarily all stochastically independent, but the ones that are active
simultaneously are. The behavior depends on the switch value C. Mathematically this is
described in Equation 5.2 and 5.3.ta

tb
1

n

=

1 0 t+aa
0 1 t+bb
0 0 1

ta
tb
1

n−1

if C=0 (5.2)

ta
tb
1

n

=

0 1 t+ba
1 0 t+ab
0 0 1

ta
tb
1

n−1

if C=1 (5.3)

There t+aa = T(inA→ outA) stands for the delay of the path from input A to output A. For
an illustration see Figure 3.9 on page 22. t+bb, t

+
ba and t+ab are defined respectively. Note that

the expressions also display the fact that either the paths inA → outA and inB → outB
or the paths inB → outA and inA → outB are active simultaneously, depending on the
switch input C.

5.4.3. Combining Delay and Switch Element Models

The following procedure models the propagation of the signal through the paths. Initially
the delay of both paths is set to 0, the initial delay vector is defined in Equation 5.4:ta

tb
1

0

=

0
0
1

 (5.4)

50 5 Arbiter PUF Simulation and Modelling

Then the propagation matrix of every switch and delay element is successively applied
on the propagation vector in the order illustrated in Figure 5.1. Each of these steps was
explained before. Finally the difference of both delays is calculated in Equation 5.5:

∆tmismatch = tb − ta (5.5)

5.4.4. Modeling Noise in Delay and Switch Elements

Not only mismatch influences the propagation delays, also noise can do. Noise will also be
transformed to an uncertainty in time. It is assumed Gaussian distributed and the stan-
dard deviation was also determined in the previous chapters in addition to the mismatch
deviation. For the delay element σnoise is 0.18 ps. For the switching element’s rising edge
σnoise was determined to 0.26 ps.

For noise, all elements are handled stochastically independent. Furthermore the influence
of noise is treated independently from the challenge bits C. This allows to summarize the
random variables for both paths and combine it to a new random variable whose standard
deviation can easily be calculated, see Equation 5.6 for n stages:

σnoise, path =
√
n · σ2

noise, delay + n · σ2
noise, switch (5.6)

Finally the two paths are combined. Again due to the independence this can be trans-
formed to a new random variable using Equation 5.7:

σ∆t, noise =
√

2 · σ2
noise, path (5.7)

The additional ∆tnoise = Tµ=0,σ∆t, noise(t) is added to ∆tmismatch resulting in the final delay
difference value ∆t, which is the arbiter input.

5.4.5. Modeling Arbiter

As shown before the absolute values are ignored, only the time difference between the two
paths is the deciding arbiter input. As shown in subsection 3.4.3, an arbiter is not only
prone to mismatch and noise, but its decision behavior also depends on the rise time of
the inputs.

The characteristic value caused by mismatch is the bias tbias. It was shown in subsec-
tion 3.4.4 that its value can be modeled by a random variable with an underlying Gaussian
distribution with µ = 0 and σ = 1.45 ps. The bias is constant per arbiter instance.

It was shown that the noise behavior can also be modeled with probabilities. Therefore the
probability of the decision Q=1 was determined in dependence of ∆t− tbias, see Figure 5.4
(black). It can be observed that this curve is similar to a cumulative distribution function

5.4 Simulation (Component Level) 51

−0.5 0 0.50
20

50

80
100

∆t [ps]
de

ci
sio

ns
Q
=
1
[%

]
Figure 5.4.: Latch noise decision behavior. Black: Simulation. Red dotted:

Approximation by CDF of Gaussion Distribution.

(CDF) of a Gaussian distribution (red dotted) which is parametrized by µ = 0 and a
certain σ. The right standard deviation σ can be determined numerically.

To determine the arbiter response, at first the bias is subtracted from the input ∆tmismatch.
Then the probability for a decision Q=1 is calculated using the relation from Figure 5.4.
Finally the response is chosen by a random variable with the determined probability for
Q=1.

5.4.6. Model-based Arbiter PUF Simulation

An Arbiter PUF is built by putting all these stochastic models together. The model can
arbitrarily be extended in terms of challenge bits, response bits, MC runs, noise runs, and
the number of evaluated challenges. Less computation time is required in contrast to the
complete transistor level simulation. The following subsection refers to the values of 50
MC runs, 50 noise runs, and 25 challenges, as for the transient transistor level simulation
before.

5.4.7. Component Level Simulation Results

Comparing the results from component level simulation, Figure 5.5, to the reference results
from transistor level simulation, Figure 5.3 on page 48, it can be observed that both
simulations match very well. This means the component level simulation is a suitable
approximation or even replacement of the transistor level simulation.

Table 5.1 displays the values which characterize the distributions of both simulation ap-
proaches. The most important values are µintra and µinter. It becomes obvious that both
kinds of simulation display similar results with an acceptable accuracy.

52 5 Arbiter PUF Simulation and Modelling

0 1 2 3 4 5 6 7 8

µintra = 6.31 %

Hamming Distanceintra [bits]

oc
cu

rr
an

ce
s

0 1 2 3 4 5 6 7 8

µinter = 50.2 %

Hamming Distanceinter [bits]

oc
cu

rr
an

ce
s

Figure 5.5.: Histograms illustrating reproducibility and uniqueness of the
minimum size standard Arbiter PUF. Results from the simulation on

Component Level.

simulation µintra [%] µintra [bit] σintra [bit] µinter [%] µinter [bit] σinter [bit]
ideal 0 0 0 50 4 1.41
component level 6.31 0.50 0.69 50.2 4.02 1.42
transistor level 6.57 0.53 0.71 50.3 4.02 1.42

Table 5.1.: Evaluation results of the minimum size Arbiter PUF. Both
simulation techniques display similar results.

5.4.8. Advantages of Component Level Simulation

It was outlined before that the component level simulation generates similar results to a
complete transistor level simulation. However, it requires additional effort in examining
separate components and model building. This is additional effort as well as a potential
error source. But there are several advantages which will be outlined in this subsection.

...

...

...

...

...

...

...

...

...

...

Figure 5.6.: Illustration of devices which need to be simulated on transistor
level (red). The component level approach (right) offers a significantly
reduced complexity of transistor level simulations compared to the

standard approach (left).

Figure 5.6 displays two times the same arbiter PUF. Each time the devices which have
to be simulated on transistor level are marked red. On the left is the standard approach.
The whole circuit is simulated on transistor level, which is slow. Evaluating 50 MC runs

5.5 Proposal of an Arbiter PUF based on Enhanced Components 53

times 50 noise runs for an 8x8 bit PUF such a simulation took about 8 hours per challenge,
even with advanced simulation techniques. Evaluating 25 challenges takes a week. The
component approach is faster. Each component must be analyzed separately, which takes
some time in advance, but the actual evaluation of the complete PUF using the models is
very fast. Evaluating 25 challenges only takes about 1 minute. The values are illustrated
in Figure 5.7. Note the logarithmic scaling: 10−2 h ≈ 30 s, 102 h ≈ 4 d. The component
approach (red) is divided into model-building and model-based simulation. The model-
building for the component level simulation is faster than a single challenge evaluation on
transistor level. The model-based simulation is almost negligible in terms of time effort.

10−2 10−1 100 101 102

model-based sim. of complete PUF
transistor-based component sim. for model-building

fully transistor-based sim. of complete PUF

time [h]

Figure 5.7.: Comparison of simulation times. 25 challenges are evaluated.
The component level simulation is faster than a complete transistor level

simulation by orders of magnitude.

The simulation on component level is not only faster. It also scales better. Adding addi-
tional challenge or response bits does not require additional transistor level simulations.
Even evaluating more MC runs, more noise runs, or more challenges does not require
further transistor level simulations. Thus the limiting factor simulation time is omitted,
because it was already outlined that the model-based simulation is very fast.

Another advantage is the simple interchangeability of components. Each component can
be simulated separately. In general, manipulating a component only requires simulating
the component again, not the whole system. However, if the input or output behavior of
a component changes, this should be regarded for the previous or following component.
To give an example: The arbiter was shown to be sensitive to the input slope. Changing
the delay element which drives the arbiter input may change the arbiter behavior, too.

5.5. Proposal of an Arbiter PUF based on Enhanced
Components

Improvements for every component of the Arbiter PUF were proposed in chapter 4. This
is the base for the enhanced PUF deduced in the following.

The minimum size values are the base for all enhancements. It was shown that a larger
Wn at the inverters has a positive effect on the delay element. Thus the new value is set

54 5 Arbiter PUF Simulation and Modelling

to Wn = 1µm. A similar effect was observed at the switch element. Also here, the new
inverter width is set to Wn,inv = 1µm (the transmission gate size is untouched). For the
latch, a positive effect of Wn was found, too. Also here the width is set to Wn = 1µm. In
sum almost every nMOS transistor was increased by about a factor of 8.

The behavior of the new delay and switch elements are already determined. Their behavior
was analysed as part of parameter sweeps in chapter 4. A prediction of the complete latch
behavior without further simulations is more complicated. For example, in subsection 3.4.3
the influence of the input slope was examined. To avoid prediction errors the latch was
simulated again with the new parameters and with respect to the modified inverters driving
the latch. The results are display in Figure 5.8. The mismatch bias increases slightly, but
the noise behavior which is relevant for the reliability is improved. The previous behavior
(std.) is plotted in dotted gray, the new behavior (enh.) is plotted in red. A comparison
of all characteristic values is given in Table 5.2.

−4 −2 0 2 4

σ = 1.93 ps

latch bias [ps]

di
st
rib

ut
io
n

−2 −1 0 1 20

25

50

75

100

∆t20 % =0.11 ps

∆t [ps]

de
ci
sio

ns
Q
=
1
[%

]

std.
enh.

Figure 5.8.: Behavior of the enhanced latch. Left: Distribution of the
mismatch bias. Right: Decision behavior due to noise.

parameter delay element ∆t [ps] switch element ∆t [ps] arbiter [ps]
Wn [nm] µ σmc σnoise µ σmc σnoise σbias ∆t20 %
120 32 1.2 0.17 58 1.8 0.26 1.5 0.28
1000 77 3.9 0.30 103 6.0 0.37 1.9 0.11

Table 5.2.: Influence of the changed design parameter on the components’
characteristic.

5.6. Evaluation of the Proposed Enhanced Arbiter PUF

The previous section proposed an enhanced parametrization and outlined the improve-
ments on the components. What is missing is an evaluation of the PUF properties re-
garding the new values. There is no analytic way but it can easily and quickly be done
with the previously proposed component level simulation. No additional time consuming
transistor level simulation is required. The result is displayed in Figure 5.9. The reference
results determined before are displayed in light gray for comparison.

Chapter 6

Conclusion and Outlook

A new time saving simulation approach was proposed to analyze the reliability in terms
of reproducibility of Arbiter PUF constructions considering mismatch and transient noise.
It is based on statistical models of its components. The model parameters are gained
by transient transistor level simulations. It was shown that the new component level
simulation fits the transistor level simulation well. Unreproducible responses are one of
the most severe problems of arbiter PUFs. Quantizing the bit error rate for a given
construction is accelerated by orders of magnitude with the new approach, e.g. from 7
days to 1 hour for an 8 bit Arbiter PUF.

The components of the Arbiter PUF were investigated, suitable statistical models regard-
ing mismatch and noise for each of the components were found, and the influence of various
design parameters was evaluated. It was shown that simple parameter modifications in-
fluence the deviation of a components delay in various ways. An example is a larger width
of the nMOS of an inverter. In this case the deviation of the delay caused by mismatch
increases, even more than the mean delay, while the deviation of the delay due to noise
remains almost constant. Similar effects were found for the switch element. Further it was
shown that the SR NAND Latch as arbiter is not only sensitive to the time ∆t between the
input signals, but also much to their slope. The arbiter behavior could also be improved
alone by increasing the right transistors.

The improved components were combined to an enhanced proposal of an Arbiter PUF
in the same technology, which is TSMC 90nm. The bit error rate of the 8-bit PUF was
predicted to 2.98 % by the new approach and verified to be 2.59 % by a conventional simu-
lation. Compared to the reference Arbiter PUF which was build equally but of minimum
size devices the bit error rate dropped by 61 %.

Although the bit error rate could be decreased significantly, it still cannot be neglected.
The following incomplete itemization suggests some links for future work.

57

58 6 Conclusion and Outlook

• The Arbiter PUF was simulated in different ways. No attempt was made to verify
the results on a manufactured die.

• Influence of environmental conditions like temperature or supply voltage was not
evaluated.

• Alternative component implementations were not investigated, e.g. NAND logic mul-
tiplexers instead of transmission gates as used in [17], or Gated Inverters (described
as Inverters with Tri-State Outputs in [16, p. 351]).

• Propagating a falling edge instead of a rising edge was not investigated, although it
was demonstrated that the delay of the switch element provides a larger deviation
in this case.

• Designing inverters different depending on the edge they have to propagate was not
investigated, all inverters were designed equally.

• Several parameters were adjusted separately to analyze their influence on a compo-
nent property. A Genetic Algorithm could be applied to find even better parameter
sets for a component or the complete system.

• The reason why the inverter chains delay variation due to mismatch increases so
much for larger widths could not be explained completely yet.

• Edge conditioning right before the arbiter was not investigated, although it was
shown that the slope significantly determines the decision reliability.

• Security issues were not regarded, e.g. it could be better to introduce variability in
the switch paths instead of the delay paths.

• Currently an arbiter decision contains 1 bit of information, namely if ∆t > 0 or
∆t < 0. Alternative quantizations were suggested in [18] for ring oscillator PUFs.
It might be possible to build intentionally biased arbiters with a decision point
unequal 0. Combining different arbiters provides more information about ∆t. In [18]
this is used for error correction, but the usage is not limited to that.

• The readout of the latch could be done with a (clocked) readout circuit similar to
SRAM cells instead of loading the internal nodes with buffers.

The idea of novel keyless cryptographic systems using Physical Unclonable Functions is
promising. This thesis introduced a new viewpoint on Arbiter PUFs. The derived sim-
ulation techniques can also be applied to other delay-based PUFs like Ring Oscillator
PUFs to determine important quality measures with low effort. Thus the new insights can
serve as base for future investigations to make PUFs suitable for various hardware-based
cryptographic applications.

59

Appendix A

Additional Simulation Results

This chapter adds some simulation results which were not completely described in the
main text. For the sake of completeness they are added here and referenced from the text.

A.1. Inverter Parameter Influence

In section 4.1 some inverter chain properties and parameters were introduced. The matrix
is displayed in Table A.1. Note that the delay properties and the slew rate are examined
on different test circuits, see Figure 4.1.

A.2. Switch Parameter Influence

Modifications to the switch introduced in section 3.3 were proposed in section 4.2. The
test circuit from Figure 3.12 is used to perform the changes. The matrix is available in
Table A.2. The index tg refers to transistors of the transmission gate, the index inv refers
to transistors of the involved inverters.

A.3. Latch Parameter Influence

For the latch the width of various transistors is modified to investigate their influence. To
keep the circuit symmetric the corresponding transistors of both nand gates are always
changed equally. The gray transistor names in Table A.3 refer to the names in Figure 3.18.

61

62 A Additional Simulation Results

delay
µ [ps]

delay
σmc, σnoise [ps]

slew rate
t̃rise, t̃fall [ps]

Ln&Lp [nm]

200 4000
100

200 4000

4

200 4000
100

Wn [nm]

200 8000

100

200 8000

4

200 8000

100

Wp [nm]

200 8000

100

200 8000

4

200 8000

100

Wn&Wp [nm]

200 8000

100

200 8000

4

200 8000

100

VDD [V]

0.9 1.20

100

0.9 1.20

4

0.9 1.20

100

Cload [fF]

1 20

100

Table A.1.: Influence of design parameters on inverter behavior.

A.3 Latch Parameter Influence 63

rising edge
falling edge

delay
µ [ps]

delay
σmc [ps]

delay
σnoise [ps]

Wall [nm]

200 8000

100

200

200 8000

5

200 8000

0.5

Wn,tg [nm]

200 8000

100

200

200 8000

5

200 8000

0.5

Wp,tg [nm]

200 8000

100

200

200 8000

5

200 8000

0.5

Wn,inv [nm]

200 8000

100

200

200 8000

5

200 8000

0.5

Wp,inv [nm]

200 8000

100

200

200 8000

5

200 8000

0.5

Winv [nm]

200 8000

100

200

200 8000

5

200 8000

0.5

Wtg [nm]

200 8000

100

200

200 8000

5

200 8000

0.5

Ltg [nm]

200 5000

100

200

200 5000

5

200 5000

0.5

VDD [V]

0.9 1.20

100

200

0.9 1.20

5

0.9 1.20

0.5

Table A.2.: Influence of design parameters on switch behavior.

64 A Additional Simulation Results

noise influence
∆t20 % [ps]

mismatch bias
σmc [ps]

W [nm]
M0...M7

200 8000

0.4

200 8000

4

Wn [nm]
M0, M1, M4, M5

200 8000

0.4

200 8000

4

Wp [nm]
M2, M3, M6, M7

200 8000

0.4

200 8000

4

Wn,input [nm]
M1, M5

200 8000

0.4

200 8000

4

Wp,input [nm]
M3, M6

200 8000

0.4

200 8000

4

Wn,intern [nm]
M0, M4

200 8000

0.4

200 8000

4

Wp,intern [nm]
M2, M6

200 8000

0.4

200 8000

4

VDD [V] [nm]

0.9 1.20

0.4

0.9 1.20

4

Table A.3.: Influence of design parameters on latch behavior.

Appendix B

Simulations

EDIT: Chapter not included in online publication.

65

Abbreviations

CDF Cumulative Distribution Function

CMOS Complementary Metal Oxide Semiconductor

DUT Device Under Test

FET Field-Effect Transistor

HD Hamming Distance

IC Integrated Circuit

MC Monte Carlo

MOS Metal Oxide Semiconductor

NAND Not AND

PUF Physical Unclonable Function

SR Set-Reset

TG Transmission Gate

TSMC Taiwan Semiconductor Manufacturing Company

VDD Supply Voltage

67

Erklärung

Ich versichere hiermit, dass ich die vorliegende Masterarbeit selbstständig verfasst habe.
Stellen der Arbeit, die anderen Werken wörtlich oder dem Sinn nach entnommen sind,
habe ich kenntlich gemacht und mit einer Quellenangabe versehen.

Ulm, den 02.12.2013 Markus Schuster

69

Bibliography

[1] R. Maes and I. Verbauwhede, “Physically Unclonable Functions: A Study on the
State of the Art and Future Research Directions,” in Towards hardware-intrinsic
security, A.-R. Sadeghi and D. Naccache, Eds. Springer, 2010, pp. 3–37.

[2] R. Maes, “Physically Unclonable Functions: Constructions, Properties and Applica-
tions,” Ph.D. dissertation, 2012.

[3] C. Böhm and M. Hofer, “Testing and Specification of PUFs,” in Physical Unclonable
Functions in Theory and Practice. Springer New York, 2013, pp. 69–86.

[4] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas, “Extract-
ing secret keys from integrated circuits,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 13, no. 10, pp. 1200–1205, 2005.

[5] B. Gassend, D. Clarke, M. v. Dijk, and S. Devadas, “Silicon Physical Random Func-
tions,” in Proceedings of the Computer and Communication Security Conference.
ACM, 2002, pp. 148–160.

[6] A.-R. Sadeghi and D. Naccache, Eds., Towards hardware-intrinsic security: Founda-
tions and practice. Heidelberg and New York: Springer, 2010.

[7] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA Intrinsic PUFs and
Their Use for IP Protection,” in Cryptographic Hardware and Embedded Systems
(CHES), ser. Lecture Notes in Computer Science, P. Paillier and I. Verbauwhede,
Eds. Springer Berlin Heidelberg, 2007, vol. 4727, pp. 63–80.

[8] D. E. Holcomb, W. P. Burleson, and K. Fu, “Initial SRAM state as a fingerprint and
source of true random numbers for RFID tags,” in Proceedings of the Conference on
RFID Security, 2007.

[9] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas, “A tech-
nique to build a secret key in integrated circuits for identification and authentication
applications,” in Symposium on VLSI Circuits. Digest of Technical Papers., 2004, pp.
176–179.

71

72 B Bibliography

[10] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques for Design and Im-
plementation of Secure Reconfigurable PUFs,” ACM Trans. Reconfigurable Technol.
Syst., vol. 2, no. 1, pp. 1–33, 2009.

[11] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhuber, “Mod-
eling attacks on physical unclonable functions,” in Proceedings of the 17th ACM con-
ference on Computer and communications security. ACM, 2010, pp. 237–249.

[12] M.-D. Yu and S. Devadas, “Secure and Robust Error Correction for Physical Un-
clonable Functions,” Design & Test of Computers, IEEE, vol. 27, no. 1, pp. 48–65,
2010.

[13] R. Kumar, V. C. Patil, and S. Kundu, “Design of Unique and Reliable Physically
Unclonable Functions Based on Current Starved Inverter Chain,” in IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 2011, pp. 224–229.

[14] M. Ortmanns, “Analog CMOS Circuit Design: MOS Technology and Devices Re-
view,” Ulm University, 15.10.2012.

[15] A. Maiti, L. McDougall, and P. Schaumont, “The Impact of Aging on an FPGA-Based
Physical Unclonable Function,” in International Conference on: Field Programmable
Logic and Applications (FPL), 2011, pp. 151–156.

[16] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation, 3rd ed., ser. IEEE Press
Series on Microelectronic Systems. Wiley, 2010.

[17] L. Lin, D. Holcomb, D. K. Krishnappa, P. Shabadi, and W. Burleson, “Low-power
sub-threshold design of secure physical unclonable functions,” in ACM/IEEE In-
ternational Symposium on Low-Power Electronics and Design (ISLPED), 2010, pp.
43–48.

[18] A. Maiti, I. Kim, and P. Schaumont, “A Robust Physical Unclonable Function With
Enhanced Challenge-Response Set,” IEEE Transactions on Information Forensics
and Security, vol. 7, no. 1, pp. 333–345, 2012.

