Universtätsklinikum Ulm - Klinik für Dermatologie und Allergologie Ärztliche Direktorin Frau Prof. Dr. Karin Scharffetter-Kochanek

Die Rolle der Mastzelle im murinen Sepsismodell Cecal Ligation and Puncture (CLP) anhand der Carboxypeptidase A

Dissertation zur Erlangung des Doktorgrades der Medizin der Medizinischen Fakultät der Universität Ulm

> Fabienne Schochter aus Offenbach a. Main

> > 2012

Amtierender Dekan: Prof. Dr. rer. nat. Thomas Wirth
1. Berichterstatter: PD Dr. med. Lars Schneider
2. Berichterstatter: Prof. Dr. med. Markus Huber-Lang
Tag der Promotion: 26.April 2013

Für meine Großeltern

Inhaltsverzeichnis

Abkürzungsverzeichnis

1	Einl	eitung	1
	1.1	Sepsis	1
		1.1.1 Zytokine während der Sepsis	2
		1.1.2 Experimentelle Sepsismodelle	4
	1.2	Mastzellen	5
		1.2.1 Mastzell-defiziente Mausstämme	6
		1.2.2 Mastzellen und die Abwehr bakterieller Infektionen	8
	1.3	Carboxypeptidase A und Endothelin-1	10
		1.3.1 Carboxypeptidase A	10
		1.3.2 Endothelin-1 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	10
	1.4	Ziele der Arbeit	13
2	Mat	erial und Methoden	14
	2.1	Versuchstiere	14
	2.2	Verwendete Materialien	15
	2.3	Genotypisierung der Mausstämme	16
	2.4	Induktion einer septischen Peritonitis durch Cecal Ligation and Puncture	17
	2.5	Messung der Zytokin-Konzentrationen im Serum nach CLP \ldots	19
	2.6	Statistische Analysen	21
3	Erg	ebnisse	22
	3.1	Etablierung des Modells der Cecal Ligation and Puncture in B6 Wildtyp-	
		und WBB6F ₁ $Kit^{W/Wv}$ -Mäusen	22
	3.2	Experimentelle Sepsis in Mc - $cpa^{cre/+}$ -Mäusen	24
		3.2.1 Vergleich der Überlebensrate zwischen B 6 $Mc\text{-}cpa^{\mathrm{cre}/+}$ -Mäusen	
		und WBB6F ₁ $Kit^{W/Wv}$ -Mäusen	24

Ш

Inhaltsverzeichnis

		3.2.2	Produktion von Zytokinen bei B6 Mc-cpa ^{cre/+} -Tieren	26	
		3.2.3	Überleben und Zytokinkonzentrationen nach CLP bei		
			WBB6F ₁ Mc - cpa ^{cre/+} -Mäusen	30	
	3.3	Exper	imentelle Sepsis in B6 Mc - $cpa^{-/-}$ -Mäusen	33	
		3.3.1	Überleben nach CLP	33	
		3.3.2	Zytokin produktion in B6 $Mc\text{-}cpa^{-/-}\text{-}\text{Tieren}$ nach CLP $\ldots\ldots\ldots$	34	
4	Disk	cussion		38	
	4.1	Die A	uswirkungen der Mastzelldefizienz	38	
	4.2	Die W	irkung der Carboxypeptidase A	42	
	4.3 Grenzen der Methodik			44	
				45	
		4.4.1	Weiteres Vorgehen	45	
		4.4.2	Klinische Relevanz	46	
5	Zus	ammer	Ifassung	47	
6	b Literaturverzeichnis				
Ał	Abbildungsverzeichnis				
Та	abellenverzeichnis 56				

Abkürzungsverzeichnis

CLP	Cecal Ligation and Puncture (operatives Sepsismodell)
cm	Zentimeter = 10^{-2} Meter
$\rm CO_2$	Kohlenstoffdioxid
ET-1	Endothelin-1
FACS	Fluorescence Activated Cell Sorting
G	Gauge (Nadelstärke)
h	hours (Stunden)
IL-6	Interleukin 6
IL-10	Interleukin 10
IL-12p70	eine Untereinheit des Interleukin-12
$\text{INF-}\gamma$	Interferon-Gamma
Mc-cpa	Mastzell-Carboxypeptidase A
MCP-1	Monocyte-Chemoattractant-Protein-1
ml	Milliliter = 10^{-3} Liter
mm Hg	Millimeter Quecksilbersäule (Einheit für Druckangaben)
μ l	Mikroliter = 10^{-6} Liter
PCR	Polymerase Chain Reaktion (Typisierungsverfahren)
PE	Phycoerythrin; Fluoreszenzfarbstoff messbar bei 585 nm
pg	Picogramm = 10^{-12} Gramm
SCF	stem cell Faktor (Wachtumsfaktor)
TNF- α	Tumornekrosefaktor-Alpha
W/Wv-Mäuse	$WBB6F_1 Kit^W/Kit^{Wv}$ -Mäuse

1.1 Sepsis

Die Sepsis ist landläufig eher als "Blutvergiftung" bekannt. Die Erkrankung des "faulen Blutes" wurde schon von Hippokrates und Ibn Sina beschrieben und war bis in die Neuzeit wegen der hohen Sterblichkeit von Ärzten gefürchtet. Die Entwicklung antiseptischer Methoden und der Einsatz von Antibiotika erhöhten die Überlebensrate, dennoch stellt die Behandlung der Sepsis bis heute eine große Herausforderung dar.

In Deutschland starben 2004 laut Todesursachenbericht des Statistischen Bundesamtes 6029 Patienten an einer Sepsis. Daten einer vom Bundesministerium für Bildung und Forschung geförderten Multicenterstudie gehen sogar davon aus, dass die Todesrate vier- bis zehnmal höher liegt. Das Risiko pro Jahr an einer schweren Sepsis zu erkranken, liegt bei 76-110 auf 100 000 Einwohner [6, 17]. Etwa 20-50% der Patienten (abhängig von der Kollektivauswahl) mit schwerer Sepsis versterben innerhalb von 90 Tagen. Ähnliche Daten liegen aus den USA vor. Somit ist die Sepsis die häufigste Todesursache auf nicht-kardiologischen Intensivstationen [3].

Es handelt sich bei der Sepsis um ein multifaktorielles Krankheitsbild, bei dem es ausgehend von einem Infektionsherd zu einer systemischen Ausbreitung der Erreger kommt, was zu einer starken, generalisierten Immunantwort führt. Diese Immunantwort wird als SIRS (Systemic Inflammatory Response Syndrome) bezeichnet und liegt dann vor, wenn zwei der folgenden Kriterien zutreffen: Körpertemperatur unter 36 °C oder über 38 °C, Atemfrequenz größer 20/min (Tachypnoe) oder CO₂-Partialdruck kleiner 32 mm Hg (Hyperventilation), Herzfrequenz größer als 120/min (Tachykardie) und weiße Blutkörperchen größer 12.000/mm³ (Leukozytose) oder kleiner 4.000/mm³(Leukopenie). Im Verlauf dieser Reaktion kommt es zu oft lebensbedrohlichen Einschränkungen der Vitalfunktionen. Besonders hervorzuheben ist dabei der Blutdruckabfall mit mittleren arteriellen Werten unter 65 mm Hg ("septischer Schock"). Es kommt zur Minder-

perfusion lebenswichtiger Organe und als Folge davon zu Organversagen. Dies ist die schwerwiegendste Komplikation der Sepsis, die oft zum Tode führt. Häufig betroffen sind Lunge, Leber, Nieren und Gehirn.

Trotz vielfältiger Forschung sind die genauen pathophysiologischen Mechanismen der Sepsis noch nicht ausreichend geklärt. Es ist jedoch bekannt, dass es zu einer überschießenden, also fehlerhaft regulierten Immunantwort des Körpers kommt. Pro- und antiinflammatorische Zytokine sind hierbei bedeutende Mediatoren und gehören auch zu den besten Markern, um den Schweregrad einer Sepsis einzuschätzen [22].

1.1.1 Zytokine während der Sepsis

Zytokine spielen bei der Infektabwehr eine große Rolle. Es sind kleine Proteine, die von verschiedenen Zellen des Immunsystems gebildet und nach deren Aktivierung ausgeschüttet werden. Man unterscheidet zwischen pro- und antiinflammatorischen Zytokinen.

Proinflammatorische Zytokine aktivieren das Immunsystem, vor allem die angeborenen Abwehrmechanismen und sind für eine effektive Abwehr von Bakterieren notwendig. Sie fördern die Einwanderung von Makrophagen und neutrophilen Granulozyten aus den Gefäßen in das infizierte Gewebe, zum Beispiel die Bauchhöhle. Neben ihrer lokalen Wirkung wie Steigerung der Gefäßpermeabilität und Lymphozytenaktivierung haben sie auch systemische Effekte. Sie induzieren die Bildung von Akute-Phase-Proteinen in der Leber, erhöhen die Körpertemperatur und können Schocksymptome auslösen. Zudem fördern sie die Differenzierung von naiven T-Zellen zu T_H1-Zellen, die die Zellen des angeborenen Immunsystems, zum Beispiel Makrophagen, aktivieren. Zu den wichtigsten proinflammatorischen Zytokinen gehören der Tumornekrosefaktor-Alpha (TNF- α), Interleukin 6 (IL-6) und auch das Monocyte-Chemoattractant-Protein-1 (MCP-1).

TNF- α ist schon seit langem als Zytokin der lokalen Immunabwehr bekannt. Es wird hauptsächlich von Makrophagen gebildet und fördert die Einwanderung von neutrophilen Granulozyten in das entzündete Gewebe [28]. Es erhöht die Temperatur, aktiviert das Komplementsystem und die Blutgerinnung. Dies ist zur lokalen Infektabwehr sinnvoll, da durch den Verschluss kleiner Gefäße eine hämatogene Ausbreitung der Infektion verhindert wird. Systemisches TNF- α ruft aber durch die gleichen Mechanismen die Schocksymptomatik bei Sepsispatienten hervor [14, 24]. Die erweiterten Gefäße

und die Steigerung der Permeabilität führen zu einem Druck- und Volumenverlust im Gefäßsystem, der sich in einem Blutdruckabfall äußert. So wird die Organdurchblutung vermindert. Dazuhin kann die Aktivierung des Gerinnungssystems zu Verschlüssen von zuführenden Gefäßen und somit zur nicht gewollten Minderperfusion führen und das Krankheitsbild verschlimmern [26, 44]. So ist es auch zu erklären, dass Mäuse, die einen TNF- α -Antikörper gespritzt bekommen, im experimentellen Sepsismodell keinen septischen Schock erleiden, da kein TNF- α vorhanden ist, welches diese Symptome induziert. Auf der anderen Seite können diese Tiere eine bakterielle Infektion aber nicht effizient genug abwehren und versterben im Gegensatz zu den Wildtyptieren im Verlauf des Experiments [27].

Für IL-6 und MCP-1 ist ähnliches nachgewiesen. Sie sind wichtig bei der Immunantwort, doch sind hohe Spiegel mit einem schlechten Überleben bei der Sepsis vergesellschaftet [4, 11]. MCP-1 wird unter anderem auch von Mastzellen gebildet und sorgt als sog. Chemokin für die Einwanderung von Makrophagen und dendritischen Zellen ins entzündete Gewebe. Dies geschieht durch eine Konformationsänderung der Gefäßoberflächenproteine, so dass Makrophagen anhaften und anschließend einwandern. IL-6 wird von neutrophilen Granulozyten gebildet und ist wichtig bei der Aktivierung der adaptiven Immunantwort: durch das gebildete IL-6 werden Lymphozyten in das befallene Gewebe gelockt. Hier begünstigt IL-6 die Differenzierung, die Proliferation und die Immunglobulin G-Sekrektion der Lymphozyten [25]. Auch unterstützt Interleukin 6 die Differenzierung von Monozyten in gewebsständige Makrophagen. Bei einer systemischen Infektion kommt es zu sehr starken Serumkonzentrationsanstiegen, weshalb IL-6 (neben CRP, Procalcitonin) klinisch bei der Diagnosestellung septischer Erkrankungen genutzt wird.

Die systemische Entzündungsreaktion wird im Rahmen der Sepsis nicht nur von proinflammatorischen Zytokinen, sondern auch von ihren Gegenspielern, den antiinflammatorischen Zytokinen moderiert. Diese dienen der Regulation einer Immunantwort. Interleukin 10 (IL-10) zum Beispiel wird von T_H 2-Zellen produziert und hemmt die Aktivierung von Makrophagen. Die Serumspiegel von IL-10 sind im Verlauf der Sepsis ebenfalls erhöht. Erhöhte Blutspiegel von IL-10 zeigen eine starke Immunsuppression an, sehr geringe Spiegel eine unzureichende Regulation der Entzündungsreaktion. Beides korreliert mit einem schlechten Verlauf der Sepsis [29, 34].

Für alle aufgeführten pro- und antiinflammatorischen Zytokine wurde schon gezeigt, dass sehr hohe Konzentrationen während einer Sepsis ein schlechtes prognostisches Zeichen sind [7,38]. Sie eignen sich daher gut, um den Schweregrad der Sepsis zu beurteilen und werden auch häufig als Marker verwendet [20]. Die Arbeitsgruppe um Osuschowski konnte 2006 zeigen, dass Tiere, die nach Induktion einer septischen Peritonitis im experimentellen Sepsismodell CLP (siehe Kapitel 1.1.2) innerhalb der ersten 5 Tagen sterben, signifikant erhöhte Konzentrationen der proinflammorischen Zytokine IL-6, TNF- α und MCP-1 sowie des antiinflammatorischen IL-10 im 24h-postoperativen Serum aufweisen [36]. Aufgrund dieser Untersuchungen haben wir uns entschlossen, diese Zytokine im Rahmen der durchgeführten Experimente genauer zu untersuchen.

1.1.2 Experimentelle Sepsismodelle

Die Sepsis ist, wie oben beschrieben, ein sehr komplexer immunologischer Prozess. Diesen und seine Einflussfaktoren zu untersuchen ist daher experimentell eine Herausforderung. In-vitro-Versuche erlauben hier nur Einzeleffekte auf Zellebene zu erkennen. Erst in-vivo-Experimente (das heißt Tierversuche) ermöglichen das komplexe Zusammenwirken im Organismus zu erforschen. Um einzelne Einflussfaktoren in vivo zu untersuchen, wurden verschiedene Sepsismodelle in der Maus entwickelt [46]. Mit molekularbiologischen Methoden gezielt hergestellte Knock-out-Mäuse, die einen einzelnen möglichen Einflussfaktor genetisch eliminiert haben, ermöglichen in diesen experimentellen Sepsismodellen den Einfluss des Faktors auf die Erkrankung zu studieren. Zur In-vivo-Untersuchung der Sepsis in Experimenten stehen verschiedene technische Modelle zur Verfügung. Dazu gehören die Injektion von Lipopolysachariden (LPS) oder Bakterien in die Bauchhöhle ebenso wie die Cecal Ligation and Puncture (CLP).

Lipopolysacharide sind Bestandteile der bakteriellen Zellmembran und werden von Monozyten erkannt. Bei Injektionen einer definierten Konzentration von LPS wird eine Immunantwort mit Zytokinproduktion erzeugt, die Aufschlüsse über die beteiligten Zellen gibt. Da nur Antigene, aber keine vitalen Bakterien injiziert werden, ist nur die Untersuchung des toxininduzierten Schocks möglich. Für die Untersuchung der komplexen Abläufe im Abwehrkampf des Immunsystems gegen sich ausbreitende bakterielle Erreger ist z.B. die Injektion lebender Bakterien geeignet. Diese Methode zeichnet sich durch eine hohe Standardisierung aus, da eine genau definierte Anzahl an Bakterien

verwendet werden kann. Die Kultur der hierfür benutzten pathogenen Bakterien (häufig Klebsiellen, Yersinien, etc.) erfordert jedoch hohe Sicherheitsmaßnahmen (mindestens Labor der Sicherheitsstufe 2).

Ein weiteres, sehr komplexes Tiermodell ist die CLP. Hier wird eine bakterielle Infektion der Bauchhöhle durch die mauseigene Darmflora induziert. Hierzu sind keine Sicherheitsmaßnahmen wie bei den erwähnten Kulturen notwendig. Bei der CLP wird der Blinddarm der narkotisierten Maus zunächst ligiert und danach punktiert. Anhand des Längenanteils des abgebundenen Appendix und des für die Punktion gewählten Kanülendurchmessers ist die Schwere der bakteriellen Infektion beeinflussbar [39]. Mit zunehmendem Durchmesser, kommt es zu einem fulminanteren Verlauf und höheren Sterberaten. Zusätzlich werden Kontroll-Operationen durchgeführt, um zu zeigen, dass die Tiere an den Folgen der bakteriellen Infektion sterben und nicht an der OP selbst. Bei den Kontrolloperationen wird nur die Bauchhöhle eröffnet und verschlossen, ohne den Darm zu punktieren. Die Letalität dieser so genannten "Schein- oder auch Shamoperationen" dient der Methodenkontrolle und sollte geringstmöglich sein. Man erhält so auch zusätzlich eine Kontrolle, mit der man zeigen kann, welcher Anteil der Zytokine spezifisch als Reaktion auf die bakterielle Infektion gebildet wird.

1.2 Mastzellen

Mastzellen wurden 1877 zum ersten Mal von Paul Ehrlich beschrieben und erhielten ihren Namen aufgrund ihres 'gemästeten' Aussehens [16]. Sie sind mit sekretorischen Granula angefüllte mononukleare Zelle, die sich aus einer hämatopoetischen Stammzelle im Knochenmark entwickeln. Vorläuferzellen zirkulieren im Blut und wandern dann in die Gewebe ein, wo sie ausdifferenzieren [10, 40]. Ausgereifte Mastzellen sind gewebsständig und oft in Geweben mit Kontakt zur Umwelt zu finden, zum Beispiel in der Haut, der Lunge oder im Darm. Während bisher vor allem ihre Rolle bei zahlreichen pathophysiologischen Vorgängen (Urtikartia, Asthma/Allergie, allergischer Schock,...) bekannt war, wurden in letzter Zeit immer mehr physiologische Aufgaben von Mastzellen entdeckt.

Als Teil des angeborenen Immunsystems sind Mastzellen mitverantwortlich für die Abwehr bakterieller und parasitärer Infektionen [15, 31]. Sie bilden eine Vielzahl an Mediatoren und Enzymen, die in Granula gespeichert und nach Aktivierung durch

Antigenkontakt innerhalb weniger Minuten freigesetzt werden. Zu den freigesetzten Stoffen gehören Histamin, Heparin, Proteasen (z.B. Mastcell-Carboxypeptidase A) und Zytokine (unter anderem TNF- α , IL-6 und IL-8). Durch diese werden verschiedene Teile des Immunsystems aktiviert und eine Beseitigung der Infektion ermöglicht. Die Rolle der von Mastzellen produzierten Enzyme ist bisher nur rudimentär bekannt. Eine erst kürzlich beschriebene Aufgabe ist die Inaktivierung bestimmter Peptide (wie Endothelin-1) und Toxine durch Mastzellproteasen, wie die Carboxypeptidase A [2, 42]. Aber Mastzellen bewirken auch IL-10-vermittelte immunsuppressive beziehungsweise immunmodulatorische Effekte, wie anhand von Anopheles-Mücken-Stichen gezeigt werden konnte [13], so dass man sie auch als regulatorische Zellen betrachten kann.

1.2.1 Mastzell-defiziente Mausstämme

Um die Funktion von Mastzellen zu untersuchen, stehen verschiedene mastzelllose Mausstämme zu Verfügung. Bei den bisher verwendeten Mäusen beruht die Mastzelllosigkeit auf natürlich aufgetretenen Mutationen im Kit-Rezeptor. Dieser Rezeptor ist eine Rezeptor-Tyrosin-Kinase, ihr Ligand ist der Stem Cell Factor. Die Signaltransduktion über diesen Rezeptor ist unter anderem bei verschiedenen Stadien der Hämatopoese wichtig. Keine andere ausgereifte hämatopoetische Zelle außer den Mastzellen exprimiert den Kit-Rezeptor. Durch Mutation im Kit-Rezeptor ist die Aktivierung durch den Stem Cell Factor (SCF) nicht möglich und eine Differenzierung von Vorläuferzellen in Mastzellen sowie deren Überleben ist eingeschränkt. Außerhalb des hämatopoetischen Systems ist Kit auch noch in Melanozyten, Cajal-Zellen des Darms und in den Keimzellen der Gonaden ein essentieller Wachstumsfaktorrezeptor.

$WBB6F_1 \ Kit^W / Kit^{Wv}$ -Mäuse

Die häufig und auch in dieser Arbeit verwendeten WBB6F₁Kit^W/Kit^{Wv}-Mäuse sind praktisch mastzelldefizient. Sie besitzen weniger als 1% der Anzahl an Mastzellen in der Haut wie ihre Wildtypgeschwister und keine Mastzellen in Bauchhöhle und Peritoneum [19]. Allerdings zeigen diese Mäuse auch noch weitere mastzellunabhängige Abnormailtäten. So fehlen Melanozyten, was zur weißen Fellfarbe führt. Die Bildung von Erythrozyten und neutrophilen Granulozyten ist eingeschränkt, so dass die Mäuse eine makrozytäre Anämie und eine Neutropenie aufweisen. Zudem haben sie nur eingeschränkt Schrittmacherzellen im Darm und sind steril. WBB6F₁ Kit^{W/Wv}-Mäuse werden durch Kreuzung von B6 Kit^{W/+} und WB Kit^{Wv/+} gezüchtet. Sie sind leicht durch ihre

weiße Hautfarbe von den heterozygoten und den Wildtyp Geschwistern zu unterscheiden. Dieses Kreuzungsschema ist nötig, da WBB6F₁ $Kit^{W/Wv}$ -Mäuse steril sind, und bringt sie Besonderheit mit sich, dass WBB6F₁ $Kit^{W/Wv}$ -Mäuse nur als F₁- Generation aus oben genannter Kreuzung zur Verfügung stehen. Zur Wildtypkontrolle eignen sich die bei der Kreuzung ebenfalls entstehenden WBB6F₁ Kit^+/Kit^+ -Geschwistertiere.

B6 $\textit{Kit}^{W-sh}/\textit{Kit}^{W-sh}$ -Mäuse

Bei verwendeten, der den hier nicht Vollständigkeit aber angeführten B6 Kit^{W-sh}/Kit^{W-sh} -Mäusen handelt es sich um eine spontan aufgetretene Kit-Mutation, welche schon vor fast 30 Jahren beschrieben wurde [30]. In diesen Mäusen besteht der Kit-Defekt nicht in einer Deletion oder Punktmutation, wie bei der WBB6F₁ Kit^{W/Wv}-Maus, sondern vielmehr handelt es sich um eine genetische Inversion von mehreren Megabasen. Diese Inversion sorgt für eine Fehlexpression von Kit. Kürzlich gezeigt wurde, dass dies eine Neutrophilie, eine Megakaryozytosis und eine Thromboszytose in den B6 Kit^{W-sh/W-sh}-Tieren zur Folge hat. [35] Außerdem weisen diese Mäuse auch einen Mangel an Melanozyten und eine eingeschränkte Darmmotorik auf. [21]. Da die Inversion neber der Promoterregion von Kit noch weitere 27 Gene umfasst ist möglicherweise auch die Regulation benachbarte Gene beeinträchtigt. Diese Mäuse sind aufgrund ihrer fehlenden Anämie und Sterilität in den letzten Jahren als interessantes mastzelloses Mausmodell vermehrt zum Einsatz gekommen. Dennoch stellt sich auch bei diesem Stamm die Frage, inwieweit zusätzliche stammbezogenen phänotypische Besonderheiten die experimentellen Effekte überlagen.

Mc-cpa^{cre/+}-Mäuse

Der Arbeitsgruppe von Prof. Dr. H. R. Rodewald ist es durch Gentargeting gelungen einen neuen mastzelllosen Mausstamm herzustellen [18]. Durch Einfügen der Sequenz für die CRE-Rekombinase in die Promoterregion des Mc-cpa-Genlokus kommt es zu einer mastzellspezifischen Cre-Expression. Unphysiologisch hohe Konzentrationen der Rekombinase könnten DNA-Schäden verursachen und zu Apoptose führen. [41] Dies könnte die Ursache für die aufgetretene Mastzelllosigkeit der $Mc-cpa^{cre/+}$ -Mäuse sein. Die oben beschriebenen Probleme der Kit-mutierten Mäuse findet man in diesem Stamm nicht. Somit sind $Mc-cpa^{cre/+}$ -Mäuse ein interessantes Modell, um spezifisch die Mastzellfunktionen zu untersuchen, ohne die zusätzlichen Anomalien in Kauf nehmen zu müssen, wie sie in den Kit-mutanten mastzelllosen Mäusen auftreten. Wie De Maio et al in seinen

Untersuchungen zeigen konnte hat der genetische Hintergrund aber durchaus Einfluss auf die zu untersuchende Immunreaktion [12]. So reagieren zum Beispiel B6-Stämme eher mit einer TH1-lastigen Immunanwort, während zum Beispiel bei Balb/c-Mäusen die TH2-Reaktion überwiegt. Dies ist ein weiterer wichtiger Aspekt, der eine Rolle beim Überleben einer septischen Peritonitis spielt und in den Experimenten beachtet werden soll. Für einen Stammhintergrund-unabhängigen Vergleich der Mc- $cpa^{cre/+}$ -Mäusen mit den WBB6F₁ $Kit^{W/Wv}$ -Mäusen wurden B6 Mc- $cpa^{cre/+}$ Tiere mit WB $Kit^{+/+}$ -Tieren gekreuzt. Die Nachkommen dieser Zucht sind dann wie WBB6F₁ $Kit^{W/Wv}$ -Mäuse ein F₁aus WB und B6. Ein Vergleich zwischen WBB6F₁ Mc- $cpa^{+/+}$ und WBB6F₁ $Kit^{W/Wv}$ -Mäusen ermöglicht eine Unterscheidung des experimentellen Beitrags des Mastzelllosigkeit und der übrigen Kit-Defekte unabhängig von Stammhintergrund.

1.2.2 Mastzellen und die Abwehr bakterieller Infektionen

Eine wichtige Aufgabe der Mastzellen, die Abwehr von bakteriellen Infektionen, konnte 1996 von Echtenacher et al im experimentellen Sepsismodell CLP (Cecal Ligation and Puncture) gezeigt werden [15]. Dabei überleben die mastzelllosen WBB6F₁ $Kit^{W/Wv}$ -Tiere die induzierte Sepsis deutlich schlechter als die mastzellkompetenten Geschwistertiere (WBB6F₁ $Kit^{+/+}$).

Eine entscheidende Rolle für diese Beobachtung wird dem von Mastzellen-produzierten TNF- α zugeschrieben. Es wird in einem sehr frühen Stadium des Infektionsverlaufes von Mastzellen freigesetzt und regt neutrophile Granulozyten zur Einwanderung an. Dadurch wird früh eine effektive Abwehr der Bakterien induziert [14]. Dieser Hypothese zur Folge fehlt bei Tieren ohne Mastzellen dieses frühes TNF- α . Als Folge wandern die neutrophilen Granulozyten erst später ein und die Erreger können sich bis dahin ungehindert ausbreiten (Abbildung 1).

Ein weiterer Hinweis auf die Beteiligung von Mastzellen bei der Abwehr von Bakterien ergab sich aus Versuchen von Maurer et al, in denen Mäuse, die vor CLP mit dem Wachstumsfaktor für Mastzellen SCF (stem cell faktor), behandelt wurden, besser überlebten [32].

Abbildung 1: Wirkung der Mastzellen auf die Bakterienabwehr nach dem Sepsismodell von Echtenacher; Die bei der Peritonitis freigesetzten Bakterien führen in Wildtypmäusen zur Degranulation der intraperitonealen Mastzellen. Die freigesetzten Botenstoffe führen zur Einwanderung von Neutrophilen Granulozyten und somit zur Eindämmung der Infektion. In mastzelllosen Mäusen fehlt die durch Mastzellen ausgelöste Neutrophileneinwanderung. Dadurch können sich die Bakterien weiter ausbreiten.

1.3 Carboxypeptidase A und Endothelin-1

Neben den oben beschriebenen Auswirkungen den die Mastzellen auf die Abwehr der sepsisauslösenden Infektion haben, gibt es Hinweise für eine weitere wichtige Funktion der Mastzellen im komplexen System des septischen Krankheitsgeschehens. Ein Hauptproblem während des Verlaufes ist die Kreislaufinstabilität, die mitverantwortlich für das folgenschwere Organversagen ist [26]. Es gibt Hinweise auf einen Zusammenhang zwischen Mastzellen und der Menge an zirkulierenden vasoaktiven Substanzen, die auf die Kreislaufregulation Einfluß nehmen.

1.3.1 Carboxypeptidase A

Die Mastzell-Carboxypeptidase A (Mc-cpa) ist eine Metalloprotease, die in Mastzellen und in deren Vorläuferzellen exprimiert wird [40]. Sie wird in den Mastzellgranula gespeichert und entfaltet nach Freisetzung durch Degranulation der Mastzellen ihre katalytische Wirkung. Physiologische Substrate waren lange Zeit unbekannt. Anhand von Injektionsversuchen von Endothelin-1 (ET-1) in *Mc-cpa*-Knockoutmäusen konnte dann gezeigt werden, dass Mc-cpa eine wichtiger Rolle bei der Inaktivierung von Endothelin-1 spielen kann, siehe dazu auch Kapitel 1.3.2. [42]

Mc-cpa^{-/-}-Tiere

Die Auswirkungen eines Mastzell-Carboxypeptidase A -Mangels im experimentellen Sepsismodell kann anhand von spezifischen Knock-out-Mäusen untersucht werden. In diesen Tieren ist ein Gen Knockout des Mc-cpa-Gens erzeugt worden. Die Knock-out Maus $Mc-cpa^{-/-}$ hat normale Mastzellzahlen, diese sind jedoch defizient für die Protease Mccpa. Die Tiere wurden schon in Experimente mit Endothelininjektion verwendet und reagieren dabei sehr empfindlich auf die Erhöhung des Endothelinspiegels [42]. Es stellt sich die Frage, ob durch den beschriebenen verminderten Abbau von ET-1, die $Mc-cpa^{-/-}$ -Tiere sich im experimetellen Sepsismodell CLP anders verhalten als Wildtyptiere.

1.3.2 Endothelin-1

Endothelin-1 (ET-1) ist ein vasoaktives Polypeptid, dessen aktive Form aus 21 Aminosäuren besteht. Es wird in den Gefäßendothelzellen gebildet und trägt unter physiologischen Bedingungen zur Blutdruckregulation bei. Es wirkt auf die Gefäßmuskelzellen und ist der potenteste körpereigene Vasokonstriktor [23]. Während einer Sepsis wird durch

proinflammatorische Mediatoren die Produktion von ET-1 stimuliert, so dass erhöhte ET-1-Serumspiegel vorliegen [45]. Alle hämodynamischen Auswirkungen des Endothelins sind bei einer Sepsis primär als Schutzmechanismus zur Aufrechterhaltung des Kreislaufs anzusehen. Zu stark erhöhte ET-1-Konzentationen im Blut beeinflussen jedoch die Kontraktionsfähigkeit des Herzens, den Herzrhythmus sowie die Durchblutung der Nieren. Brauner et al. konnten in einer retrospektiven Studie zeigen, dass ein zuviel an ET-1 eher schädlich und mit einer erhöhten Mortalität verbunden ist [5]. Im Tiermodell konnten durch den Einsatz von ET-1-Rezeptorantagonisten, die zu einer abgeschwächten Wirkung von ET-1 führen, hämodynamische Auswirkungen jedoch positiv reguliert werden [43].

Abbildung 2: Arbeitshypothese zum Mechanismus der Mastzell-Carboxypeptidase während des septischen Schocks; die Freisetzung von Mastzell-Carboxypeptidase A (Mc-cpa) aus den Mastzellen bewirkt, dass Endothelin-1 (ET-1) abgebaut wird und eine systemische Vasokonstriktion verhindert wird. So wird für die nötige Organperfusion gesorgt und die Letalität verringert. Wenn keine Mc-cpa vorhanden ist, kann anfallendes Endothelin nicht so schnell abgebaut werden. Es kommt zur Vasokonstriktion und verminderter Organdurchblutung. Somit ist das Risiko für ein Organversagen erhöht und die Letalität steigt.

Mastzellen selber besitzen einen Endothelinrezeptor. Durch Aktivierung dieses Rezeptors degranulieren Mastzellen und setzten dabei die gespeicherten Enzyme (z.B. Mc-cpa) frei. Maurer et al. konnten anhand Mastzell-rekonstituierter WBB6F₁ *Kit*^{W/Wv}-Mäuse zeigen, dass Mastzellen mit funktionierendem Endothelin-Rezeptor die Sterblichkeit im experimentellen Sepsismodell im Vergleich zu einer Rekonstitution mit ET-1-Rezeptordefizienten Mastzellen senken [33]. Diese autoregulatorische Funktion weist darauf hin, dass die Mastzellen eine wichtige Rolle bei der Kontrolle der Endothelinspiegel im Verlauf der Sepsis innehaben.

Die Inaktivierung von ET-1 scheint von großer Bedeutung, um eine induzierte Sepsis zu überleben. Es wird vermutet, dass die Mastzellen so einen sehr effektiven Mechanismus zur Beseitigung vasoaktiver Substanzen bereitstellen, indem sie mit Mc-cpa einen körpereigenen Regulator gegen zu hohe Endothelinspiegel produzieren und diesen dann bei Bedarf freisetzen. Es liegt die Schlussfolgerung nahe, dass Mäuse, die ET-1 nicht inaktivieren können, z.B. *Mc-cpa^{-/-}*-Mäuse, bei einer experimentellen Sepsis stärker systemische Symptome zeigen und früher sterben als Wildtyptiere mit intakter Mc-cpa. Abbildung 2 fasst die aktuelle Arbeitshypothese zu Endothelin 1 und seinem Abbau bei verschiedenen Mäusen im Rahmen der Sepsis zusammen.

Eine Übersicht über die in der Arbeit verwendeten Mausstämme soll die untenstehende Tabelle bieten.

	C57BL/6-	m C57BL/6	C57BL/6	$WBB6F_1$	$WBB6F_1$	$WBB6F_1$
	'Wildtyp'	Mc-cpa ^{-/-}	Mc- cpa ^{cre/+}	$Kit^{W/Wv}$	$Kit^{+/+}$	Mc - $cpa^{cre/+}$
					'Wildtyp'	
Mastzellen	ja	ja	nein	nein	ja	nein
Mc-cpa	ja	nein	nein	nein	ja	nein
Fertilität	ja	ja	ja	nein	ja	ja
Farbe	schwarz	schwarz	schwarz	weiß	schwarz	$\operatorname{schwarz}$
Anämie	nein	nein	nein	ja	nein	nein
Darmmotorik	normal	normal	normal	gestört	normal	normal

 Tabelle 1: Übersicht der in dieser Arbeit verwendeten Mc-cpa- mutierten und Kit-mutierten Mausstämme mit Eigenschaften

1.4 Ziele der Arbeit

 Die von Echtenacher et all postulierte Rolle der Mastzellen wurde anhand von WBB6F₁ Kit^{W/Wv}-Tieren gezeigt. Diese Tiere haben wie oben dargestellt weitere körperliche Anomalitäten. In dieser Arbeit wollen wir deshalb die Rolle der Mastzellen während einer experimentell induzierten Sepsis in dem neuen mastzelllosen Mausmodell B6*Mc-cpa*^{cre/+} untersuchen. Der Vergleich von diesen Mäusen mit B6-Wildtyptieren dient der Untersuchung der Rolle von Mastzellen unabhängig von Kit-Mutationen.

Gleichzeitig soll der Vergleich von WBB6F₁Mc- $cpa^{+/+}$ - mit WBB6F₁Mc- $cpa^{cre/+}$ und WBB6F₁ $Kit^{W/Wv}$ -Tieren zeigen, in welchem Umfang andere Kit-Defekte eine Rolle bei der experimentellen Sepsis spielen.

2. Ferner soll die zentrale Rolle der Mastzellcarboxypeptidase A für den Endothelinstoffwechsel im Rahmen der Sepsis untersucht werden. Mc-cpa gilt als möglicher zentraler Faktor, mit dessen Hilfe Mastzellen den Verlauf der experimentellinduzierte Sepsis positiv beeinflussen können. Die Auswirkungen eines Carboxypeptidase A-Mangels auf den Sepsisverlauf wird deshalb anhand von B6 Mc-cpa^{-/-}-Mäuse untersucht.

2.1 Versuchstiere

Im Rahmen der Arbeit werden Mäuse im Alter von 70 bis 80 Tagen und mit einem Gewicht von 20 bis 30 g benutzt. Die Haltung erfolgte in IVC-Käfigen, in denen Wasser und Futter ad libitum zur Verfügung standen. In den Versuchstierställen herrschen konstante klimatische Bedingungen bei 24 °C und 50-70 %-iger Luftfeuchtigkeit. Es wird ein 12 Stunden Tag-Nacht Zyklus vorgegeben.

Die tierexperimentellen Arbeiten wurden zuvor vom Regierungspräsidium Tübingen genehmigt. Zur Durchführung der Versuche liegt eine Ausnahmegenehmigung nach § 9 Abs. 1 Satz 4 Tierschutzgesetz vor. Die Tiere wurden in den Experimenten innerhalb zu vergleichender Versuchsgruppen bezüglich Alter und Geschlecht gemischt. Wenn es möglich war, wurde während der Experimente eine "Verblindung" der Mäusestämme für den Experimentator mittels Extranummerierung der Käfige durchgeführt.

Es wurden die folgenden Mausstämme benutzt:

- C57BL/6 Wildtyp (weiterhin als B6 Wildtyp bezeichnet)
- C57BL/6 *Mc-cpa*^{cre/+} (weiterhin als B6 *Mc-cpa*^{cre/+} bezeichnet)
- C57BL/6 *Mc-cpa^{-/-}* (weiterhin als B6 *Mc-cpa^{-/-}* bezeichnet)
- WBB6F₁ Kit^W/Kit^{Wv} (weiterhin als WBB6F₁ $Kit^{W/Wv}$ bezeichnet)
- WBB6F₁ Kit^{+/+} Mc-cpa^{+/+} (weiterhin als WBB6F₁ Kit^{+/+} oder WBB6F₁- Wildtyp bezeichnet)
- WBB6F₁ $Kit^{+/+}$ Mc- $cpa^{cre/+}$ (weiterhin als WBB6 Mc- $cpa^{cre/+}$ bezeichnet)

2.2 Verwendete Materialien

In der Arbeit wurden zur Herstellung der verschiedenen Puffer und Lösungen die folgende Substanzen verwendet.

Stoff	Hersteller / bezogen von	Produkt-/CAS-Nummer
Proteinase K	Sigma Aldrich	CAS: 39450-01-6
Tris Pulver	AppliChem GmbH	CAS: 77-86-1
HCl	AppliChem GmbH	CAS: 7647-01-0
NaCl Pulver	AppliChem GmbH	CAS:7647-14-5
EDTA	AppliChem GmbH	CAS: 150-38-9
SDS	AppliChem GmbH	CAS: 151-21-3
PBS	AppliChem GmbH	Artnr: 0965
dNTPs	GE Healthcare	Artnr: 28-4065-51
Taq-Polymerase	invitrogen Corporation	Cat No. 10342-178
Rediload	invitrogen Corporation	Cat No.750026
Ketamin 5%	Sigma Aldrich	CAS: 1867-66-9
Xylazin 2 $\%$	Sigma Aldrich	CAS: 7361-61-7
destilliertes Wasser	Apotheke Uniklinik Ulm	CAS: 7732-18-5
Ethanol 70 $\%$	Apotheke Uniklinik Ulm	CAS: 64-17-5
0,9%Natrium chloridlösung	B.Braun Melsungen AG	PZN: 1957154
4-0 Ethilon-Faden	Johnson & Johnson	EH7795H
21G Kanüle (0,8mm Durchmesser)	B.Braun Melsungen AG	PZN: 2050806
22G Kanüle $(0,7mm Durchmesser)$	B.Braun Melsungen AG	PZN: 2050812
25G Kanüle (0,5mm Durchmesser)	B.Braun Melsungen AG	PZN: 2057990
9 mm Klammern Typ Autoclip	Becton Dickinson	REF: 427631
Microtainer-Röhrchen	Becton Dickinson	REF: 365951
Mouse Inflammation Kit	Becton Dickinson	Cat No. 552364

Primersequenzen

B6 Mc - $cpa^{-/-}$	5'-CTGACAGTGGCCAACTGTAAG-3'
	5'-CTCAATGCTTTGGGTCAAGTTC-3'
B6 Mc - cpa ^{cre/+}	5'-GGACTGTTCATCCCCAGGAACC-3'
	5'-CTGGCGTGCTTTTCATTCTGG-'3
	5'-GTCCGGACAGCGTGAACTTG-'3

Pufferlösungen:

Lysispuffer	$100~\mathrm{mM}$ Tris-Cl-Lösung mit pH 8,5
	5 mM EDTA
	$0,2\%~{ m SDS}$
	200 mM NaCl

TE-Puffer 10 mM Tris-Cl mit pH 8,5 1 mM EDTA

2.3 Genotypisierung der Mausstämme

Kit-mutante Mäuse wurden per Fellfarbe typisiert. WBB6F₁ $Kit^{W/+}$ und WBB6F₁ $Kit^{Wv/+}$ sind schwarz mit einem weißen Bauchfleck. WBB6F₁ $Kit^{W/Wv-}$ Mäuse besitzen ein komplett weißes Fell. Die $Mc-cpa^{-/-}$ -Tiere lagen in einer F12-Rückkreuzung vor, welche sporadisch genotypisiert wurde. $Mc-cpa^{cre/+-}$ und $Mc-cpa^{+/+-}$ Tiere wurden mittels der Polymerasekettenreaktion(PCR) unterschieden. Hierfür wurde die genomische DNA aus einer Schwanzspitzen-Biopsie gewonnen. Das gewonnene Gewebe wurde zunächst in 500 μl Lysispuffer und 2,5 μl Proteinase K für 2,5 Stunden bei 55°C inkubiert. Unverdauliche Haare und Gewebsreste wurden für 10 Minuten bei 12000 rpm abzentrifugiert und die DNA aus 300 μl des Überstandes durch Zugabe von 300 μl Isopropanol gefällt. Die ausgefällte DNA wurde mit einer sterilen Pipettenspitze gewonnen und in TE-Puffer gelöst. Die Lagerung bis zur weiteren Verwendung erfolgte bei 4 °C

Abbildung 3: Ergebniss einer Typisierung; Hier beispielhaft dargestellt das Ergebnis einer Polymerasekettenreaktion zur Typisierung von WBB6F₁ Mc-cpa^{cre/+}-Tieren mit den Kontrollbanden Wasser (H₂O), cre/cre, cre/+ und +/+ (Wildtyp).

Zur Durchführung der PCR wurden die jeweiligen Primer mit dem Nukleotid-Mix, der Taq-Polymerase und dem PCR-Puffer inklusive Rediload gemischt und anschließend in die jeweiligen PCR-wells gefüllt. Die Denaturierung erfolgt bei 94 °C, das Annealing bei 62 °C und die Elongation bei 72 °C. Diese Temperatursequenz wird 35-mal zyklisch durchlaufen, bevor die so amplifizierten DNA-Fragmente mittels Gelelektrophorese getrennt werden. Die Zugabe von Ethidiumbromid in das Agarosegel erlaubt das Sichtbarmachen der einzelnen DNA-Fragmente unter UV-Licht. Die Abbildung 3 zeigt exemplarisch ein typische PCR-Ergebnis.

2.4 Induktion einer septischen Peritonitis durch Cecal Ligation and Puncture

Zur Durchführung der Cecal Ligation and Puncture (CLP) wurde die Maus zunächst gewogen und dann mit einer Kombination aus Ketamin (75 mg pro kg Körpergewicht) und Xylazin (16 mg pro kg Körpergewicht) durch intraperitoneale Injektion narkotisiert. [1]

Abbildung 4: Durchführung der Cecal Ligation and Puncture Schritt 1: Narkotisierung der Tiere mittels Ketamin-Xylazin-Gemisches. Schritt 2: Eröffnen der Bauchdecke über einen 2cm langen Schnitt. Schritt 3: Präparation des Appendix. Schritt 4: Ligation auf der Hälfte der Länge. Schritt 5: Punktion des abgebundenen Teils mit einer Kanüle. Schritt 6: Verschluss der Bauchdecke mittels Klammernaht

Analog dem Protokoll von Rittirsch et all [46] beschrieben, wurde nach der Desinfektion mit 70%-igem Ethanol bei der Maus durch einen etwa 2 cm langen medialen Bauchschnitt der Zugang zur Bauchhöhle geschaffen. Nach Öffnung des Peritoneums wurden 40-50% des Blinddarms mit 4-0 Ethilon-Faden abgebunden. Der abgebundene Teil wurde einmal mit einer Kanüle punktiert. Zudem wurde ein wenig Kot extrahiert, um einen mechanischen Verschluss des Lochs zu verhindern. Der Blinddarm wurde reponiert und das Peritoneum und die Haut mit 9 mm Klammern verschlossen. Postoperativ wurde den Mäusen zur Flüssigkeitssubstitution 1 ml 0,9% Natriumchloridlösung subkutan in die Nackenfalte injiziert.

Verwendet wurden Kanülen mit den Stärken 21G, 22G und 25G. Bei sogenannten Schein-Operationen wurde die Bauchhöhle eröffnet, der Appendix aber weder ligiert

noch punktiert. Ansonsten erhielten die Mäuse eine identische Behandlung mit Narkose und Nackenfalteninjektion.

Zur Erstellung der Überlebenskurven wurden die Mäuse über 14 Tage im Abstand von mehreren Stunden beobachtet. Eindeutig moribunde Mäuse wurden durch Kohlenstoffdioxidinhalation getötet.

2.5 Messung der Zytokin-Konzentrationen im Serum nach CLP

Um den Verlauf der Entzündungsreaktion besser einschätzen zu können, wurden pround antiinflammatorische Zytokine im Serum der Versuchstiere untersucht. Bestimmt wurden die Konzentrationen von IL-6, IL-10, IL-12, INF- γ , MCP-1 und TNF- α .

Hierbei wurde zunächst eine CLP mit einer 22G-Kanüle durchgeführt. Dann wurden die Mäuse zu definierten Zeitpunkten (8, 24 oder 48 Stunden nach der CLP) mit Kohlenstoffdioxid getötet. Durch Herzpunktion mit einer 21G Kanüle wurde jeder Maus etwa 1 ml Blut entnommen. Mit Hilfe von Microtainer-Röhrchen wurde daraus durch Zentrifugation bei 2300 x g Serum gewonnen.

Die so gewonnenen Proben wurden in 150-200 μ l aliquotiert, bei -70°C gelagert und innerhalb der nächsten 7 Tage analysiert.

Die Zytokin-Konzentration der Proben wurde mithilfe des Mouse Inflammation Kit nach Protokoll des Herstellers BD Biosciences ermittelt. Die Abbildung 5 illusiert dieses Vorgehen. Der Kit arbeitet prinzipiell ähnlich wie ein Sandwich-ELISA. Die Antikörper für die Zytokine sind aber nicht auf einer Platte, sondern auf verschiedenen fluoreszierenden Kügelchen (Beads) fixiert, d.h. für jedes zu analysierende Zytokin gibt es eine Fraktion von beads mit ganz spezifischer Fluoreszenz. Bei Inkubation mit der 50μ l der Serumprobe werden die Zytokine an die Beads gebunden. Die gebundenen Zytokine werden mit einem Phycoerythrin(PE)-Antikörper markiert. Somit werden die gekoppelten Zytokine und damit auch die Beads konzentrationsabhängig mit dem Fluoreszensfarbstoff PE markiert.

Die Beads, die für die sechs Zytokine jeweils spezifische Eigenfärbungen aufweisen, können mithilfe des Fluorescence Activated Cell Sorters (FACS Canto) sortiert und

Abbildung 5: Abfolge Zytokin-Assay Schritt 1: Mischen des Bead-Mixes mit dem Serum und denen darin befindlichen Zytokinen. Schritt 2: Inkubation mit PE-Antikörper, die sich an die Zytokine binden welche an Beads gekoppelt sind. Schritt 3: Analyse mittels Fluorescence Activated Cell Sorters(FACS); hierbei wird nach Eigenfärbung der Beads (y-Achse) und Phycoerythrin(PE)-fluoreszenz(x-Achse) unterschieden. Die untersuchten Zytokine sind Interleukin-6 (IL-6), Interleukin-10 (IL-10), Monocyte-Chemoattractant-Protein-1 (MCP-1), Interferon-gamma (IFN-g), Tumornekrosefaktor-alpha (TNF-a) und Interleukin-12 (IL-12).

analysiert werden. Ein Fluorezenzkanal ist indikativ für die zu messenden Zytokine, der andere Fluorezenzkanal zeigt durch Beladung mit PE-Antikörpern an, in welcher Menge die Zytokine in der gemessenen Probe vorlagen. Die gewonnenen Daten werden am Computer mithilfe des Programms FCAP Array Software mit den erhobenen Standardkurven (maximale Konzentration der Standardprobe: 5000 pg/ml; minimale Konzentration: 10 pg/ml) verglichen und so die Zytokinkonzentration in der Probe ermittelt. Einen Überblick zum Vorgehen bei der Messung der Zytokinkonzentration bietet die Abbildung 5.

Bei den durchgeführten Messungen zeigten sich für IL-12 und INF- γ zwar eine lineare Standardkurve, jedoch lagen in den meisten Fällen die Messwerte der Proben unterhalb des linearen Bereiches, so dass im folgenden nur die Werte der vier restlichen Zytokine ausgewertet wurden.

2.6 Statistische Analysen

Die Auswertung der Daten wurde mit dem Programm GraphPad Prism (GraphPad Software Inc.) vorgenommen.

Für die Darstellung der Überlebensraten der CLP wurden Kaplan-Meier-Kurven gewählt. Wenn möglich wurde die mittlere Überlebenszeit bestimmt. Da dies nur möglich ist, wenn mehr als 50 % der Tiere sterben, konnte nicht in allen Fällen die mittlere Überlebenszeit bestimmt werden. Der Vergleich der verschiedenen Gruppen geschah über den Logrank-Test, der das Standardverfahren bei Überlebenszeitanalysen ist.

Die Konzentrationen der Zytokine wurden in Dotplots dargestellt und wegen des geringen Stichprobenumfanges der Median ermittelt. Der Vergleich zweier Stämme erfolgte mithilfe eines zweiseitigen Mann-Whitney-U-Testes (entspricht dem Wilcoxen Rangsummentest), da die Konzentrationen ein stetig verteiltes Merkmal sind, aber ebenfalls wegen des eingeschränkten Sitchprobenumfangs keine Normalverteilung angenommen werden kann.

Als hoch signifikant (***) wurden p-Werte < 0,001, als sehr signifikant (**) Werte p < 0,01 und als signifikant Werte (*) p < 0,05 angesehen. Als nicht signifikant werden p-Werte größer als 0,05 betrachtet.

3.1 Etablierung des Modells der Cecal Ligation and Puncture in B6 Wildtyp- und WBB6F₁ *Kit*^{W/Wv}-Mäusen

In diesen ersten Experimenten sollte die Methode der Cecal Ligation and Puncture (CLP) als Sepsismodell im eigenen Labor etabliert werden. Hierzu wurden verschiedene Bedingungen (wie z.B. Kanülenstärke) getestet, um die in der Literatur beschriebenen Verläufe zu reproduzieren.

Abbildung 6: Vergleich der Überlebensrate zwischen unterschiedlichen Punktionsstärken und Schein-Operationen. Bei diesem Experiment wurden ausschließlich B6 Wildtyp-Tiere operiert. Die Daten stammen aus zwei vergleichbaren Einzelexperimenten. In jedem Experiment werden je vier Tiere mit 21Gauge (G) punktiert. Zur Kontrolle werden je zwei Tiere ohne Punktion scheinoperiert.

In dem dazu durchgeführten Versuch (Abbildung 6) überlebten alle scheinoperierten Tiere den 14 Tage dauernden Beobachtungszeitraum nach der Operation. Die Tiere, die mit der 21 G-Nadel punktierten wurden, hatten eine Überlebensrate von 37,5%. Das mittlere Überleben der mit 21G-punktierten Tiere betrug 3,5 Tage, während alle scheinoperierten Tiere den Beobachtungszeitraum überlebten. Die Ermittlung des mittleren Überlebnes liess sich somit für die scheinoperierten Tiere nicht durchführen. Der Logrank-Test für Tendenzen bestätigt die Unterschiede (p=0,046) in den Überlebensraten beider Gruppen. In unseren Händen war die CLP mit 21 G Punktion also eine schwere Sepsis mit nahezu 70 %iger Mortalität bei den Wildtyptieren.

Vor der Untersuchung des neuen mastzellosen Mausstammes Mc-cpa^{cre/+} in dem beschriebenen Sepsismodell sollten jetzt noch die bereits publizierten Ergebnisse von Echtennacher mit den mastzellosen WBB6F₁ $Kit^{W/Wv}$ -Mäusen in unserem Labor reproduziert werden. Daher wurden parallet B6-Wildtyptiere als Kontrolle und WBB6F₁ $Kit^{W/Wv}$ - Tiere operiert. Um etwas weniger traumatische Verhältnisse mit höherem Überlebensrate der Kontrolltiere zu schaffen, benutzten wir jetzt ein 25 G-Kanüle zur Punktion.

Die zwei zu diesem Zweck durchgeführten Versuche zusammengefasst, überlebten 80% der B6 Wildtyp-Mäuse diese milde CLP während des 14-tägigen Beobachtungszeit-

Abbildung 7: Vergleich der Überlebensrate zwischen B6-Wildtyp und WBB6F₁ Kit^{W/Wv} bei Cecal Ligation and Puncture mit 25 Gauge. Die Daten wurden in 2 Einzelexperimenten gewonnen, in denen bei insgesamt sechs B6-Wildtyp-Tieren (□) und vier WBB6F₁ Kit^{W/Wv}-Mäusen (▲) eine Sepsis induziert wurde. Der p-Wert ist 0.017.(*)

raums. Die WBB6F₁ Kit^{W/W_v} - Mäuse starben alle innerhalb von 11 Tagen (mittleres Überleben: 8,5 Tage). Somit zeigte sich in unserem Experiment eine signifikant unterschiedliche Überlebensrate (p=0,017) zwischen den Tierstämmen B6-Wildtyp und WBB6F₁ Kit^{W/W_v} bei 25G (Abbildung 7).

Zusammenfassend zeigte sich in unseren ersten Experimenten, dass durch die Blinddarmpunktion mit 21 G-Kanülen ein schweres Sepsismodell etabliert werden konnte, bei dem die Überlebensrate von B6-Wildtyptieren weniger als 50 % betrug. Bei der Blinddarmpunktion mit 25 G wurde eine dagegen vergleichsweise moderate Sepsis induziert, bei der innerhalb von 14 Tagen alle mastzelldefizienten WBB6F₁ Kit^{W/Wv}-Mäuse, aber nur 20 % der Kontrolltiere starben.

3.2 Experimentelle Sepsis in *Mc-cpa*^{cre/+}-Mäusen

3.2.1 Vergleich der Überlebensrate zwischen B6 Mc- $cpa^{cre/+}$ -Mäusen und WBB6F₁ $Kit^{W/Wv}$ -Mäusen

Innerhalb des zuvor etabilierten Rahmens einer moderaten und der schweren Sepsis wurde nun das Verhalten des neuen mastzelldefizienten Mausstammes B6 Mc- $cpa^{cre/+}$ bei CLP untersucht. Zum Vergleich dienten B6 Wildtyp und WBB6F₁ $Kit^{W/Wv}$ -Mäuse.

Zunächst wurden die genannten Mausstämme einer CLP mit 25 G unterzogen. Diese überlebten alle B6-Wildtyp- und alle B6 Mc- $cpa^{cre/+}$ -Tiere, während 75% der WBB6F₁ $Kit^{W/Wv}$ (mittleres Überleben: 3,5 Tage) starben (Abbildung 8). Beim Vergleich der Überlebensrate zwischen den B6 Wildtyp-Tieren und den mastzelldefizienten B6 Mc- $cpa^{cre/+}$ -Mäusen ergab sich kein signifikanter Unterschied (p=1). Der Überlebensunterschied zwischen den B6-Wildtyp und WBB6F₁ $Kit^{W/Wv}$ -Tieren, beziehungsweise zwischen B6 Mc- $cpa^{cre/+}$ und WBB6F₁ $Kit^{W/Wv}$ ist hoch signifikant (p<0,001). Der Überlebensanteil von 25% bei den WBB6F₁ $Kit^{W/Wv}$ -Tieren im Vergleich zu den Etablierungsversuchen zeigt die Varianz dieses Modells von Versuch zu Versuch bei gleichen äußerlichen Bedingungen.

Abbildung 8: Überlebenskurve von B6 Wildtyp, B6 Mc-cpa^{cre/+}, WBB6F₁ Kit^{W/Wv}-Mäusen nach Cecal Ligation and Puncture mit 25 Gauge; . Die Überlebensrate der drei Stämme B6-Wildtyp (□), B6 Mc-cpa^{cre/+} (○) und WBB6F₁ Kit^{W/Wv} (▲) wird verglichen. Die Anzahl der verwendeten Tiere ist in Klammern angegeben. Bei den Daten handelt es sich um eine Zusammenfügung aus drei Einzelexperimenten, bei denen jeweils 3-4 Tiere pro Stamm operiert wurden. Der errechnete p-Wert zwischen B6-Wildtyp (□) und WBB6F₁ Kit^{W/Wv} (▲) ist <0,001 (***), der zwischen B6 Mc-cpa^{cre/+} (○) und WBB6F₁ Kit^{W/Wv} (▲) ebenfalls <0,001 (***).</p>

Abbildung 9: Überlebenskurven von B6 Wildtyp-, B6 Mc-cpa^{cre/+}-, WBB6F₁ Kit^{W/Wv}-Tieren nach Cecal Ligation and Puncture mit 22 Gauge; bei der Graphik handelt es sich um eine Zusammenfassung der Daten aus vier vergleichbaren Einzelexperimenten, in denen jeweils bei Tieren aller drei Stämmen eine experimentelle Sepsis induziert wurde. Die Anzahl der verwendeten Tiere ist in Klammern angegeben. Der errechnete p-Wert für den Überlebensunterschied zwischen B6-Wildtyp (□) und WBB6F₁ Kit^{W/Wv} (▲) ist <0,001 (***), der zwischen B6 Mc-cpa^{cre/+} (○) und WBB6F₁ Kit^{W/Wv} (▲) ist ebenfalls <0,001 (***). Der Überlebensunterschied zwischen B6-Wildtyp (□) und B6 Mc-cpa^{cre/+} (○) hat einen p-Wert von 0,051.

Um zu untersuchen, ob der zuvor gezeigte Überlebensvorteil der mastzelllosen B6 Mc- $cpa^{cre/+}$ -Tiere gegenüber den WBB6F₁ $Kit^{W/Wv}$ -Tieren bei moderater Sepsis auch bei schwerer Sepsis noch vorhanden ist, wurde der Blinddarm bei CLP nun mit einer Kanülenstärke von 22G punktiert. Nach einem Beobachtungzeitraum von 14 Tagen lebten noch 76,5 % der B6-Wildtyptiere und 41,2 % der B6 Mc- $cpa^{cre/+}$ -Tiere (mittleres Überleben 6 Tage). Die WBB6F₁ $Kit^{W/Wv}$ -Tiere starben alle innerhalb von 9 Tagen (mittleres Überleben 2 Tage). Im Vergleich der einzelnen Mausstämme untereinander überlebten die B6-Wildtyptiere die CLP signifikant besser (p<0,001) als die WBB6F₁ $Kit^{W/Wv}$ -Tiere. Auch der Unterschied zwischen den beiden mastzelllosen Stämmen B6 Mc- $cpa^{cre/+}$ und WBB6F₁ $Kit^{W/Wv}$ war signifikant (p<0,001). Nicht signifikant hingegen stellte sich der Unterschied zwischen den beiden Stämmen B6-Wildtyp und B6 Mc- $cpa^{cre/+}$ dar.

In den dargestellten Versuchen mit schwerer und moderater Sepsis überlebten die mastzelllosen B6 Mc- $cpa^{cre/+}$ -Tiere die Sepsis besser als die WBB6F₁ $Kit^{W/Wv}$ -Tiere, die ebenfalls keine Mastzellen haben. Ein Überlebensvorteil durch Mastzellen konnte im Vergleich von Wildtyp- und mastzelllosen B6-Mäusen nicht signifikant nachgewiesen werden. Allerdings zeigte sich bei den mastzelllosen B6 Mc- $cpa^{cre/+}$ - Mäusen ein großer Unterschied im mittleren und im Gesamtüberleben beim Vergleich der moderaten mit der schweren Sepsis.

3.2.2 Produktion von Zytokinen bei B6 Mc-cpacre/+-Tieren

Da während einer Sepsis hohe Konzentrationen von pro- und antiinflammatorischen Zytokinen mit einem schlechten Überleben assoziiert sind, wurden in unseren CLP- Experimenten die Konzentrationen von IL-6, IL-10, MCP und TNF- α im Serum mithilfe eines Multiplex-Bead-ELISAs untersucht.

Bei der Untersuchung der Serumzytokinkonzentrationen 24 Stunden nach einer CLP mit 22G zeigten sich signifikante Unterschiede bei den proinflammatorischen Zytokinen zwischen den Stämmen B6-Wildtyp und WBB6F₁ $Kit^{W/Wv}$ sowie zwischen B6 Mc- $cpa^{cre/+}$ und WBB6F₁ $Kit^{W/Wv}$ gibt (Abbildung 10). Jedoch unterschieden sich die IL-6-Konzentrationen bei B6-Wildtyp mit einem Median von 570,8 pg/ml und B6 Mc- $cpa^{cre/+}$ -Tieren mit einem Median von 418,0 pg/ml nicht signifikant. Die Konzentration von IL-6 war in beiden Fällen weniger stark erhöht als die der WBB6F₁ $Kit^{W/Wv}$ -Tiere mit einem Median von 15594 pg/ml. Der Unterschied der WBB6F₁ $Kit^{W/Wv}$ -

Abbildung 10: Zytokinkonzentrationen im Serum von B6 Mc-cpa^{cre/+}- Mäusen im Vergleich zu B6 Wildtyp- und WBB6F₁ Kit^{W/Wv}- Tieren 24 Stunden nach Cecal Ligation and Puncture; dargestellt sind die Zytokinwerte für Interleukin-6 (IL-6), Interleukin-10 (IL-10), Monocyte-Chemoattractant-Protein-1 (MCP-1) und Tumornekrosefaktor-alpha (TNF-α) in einer logarithmischen Skala. Jeder Wert einer Maus ist als einzelner Punkt dargestellt. Zusätzlich wurde der Median eingetragen. Die Werte stammen aus 5 verschiedenen Experimenten mit Tieren aller drei Stämme B6-Wildtyp (□), B6 Mc-cpa^{cre/+} (○) und WBB6F₁ Kit^{W/Wv} (▲).

Tiere zu B6-Wildtyptieren fiel mit p=0,008 sehr signifikant und beim Vergleich der WBB6F₁ $Kit^{W/Wv}$ -Tiere zu den B6 Mc- $cpa^{cre/+}$ -Tieren und mit p<0,001 hoch signifikant aus.

Die gemessene TNF- α -Serumkonzentrationen war bei B6-Wildtyptieren mit einem Median von 29,6 pg/ml signifikant geringer (p=0,018) als die der WBB6F₁ Kit^{W/Wv}-Tiere mit einem Median von 474,8 pg/ml. Auch bei den ebenfalls mastzelllosen B6 Mc-cpa^{cre/+}-Tieren fanden wir mit medianen 31,3 pg/ml signifikant niedrigere Blutserumspiegel (p=0,002) als bei den WBB6F₁ Kit^{W/Wv}-Tieren.

Bei B6-Wildtypmäusen konnte keine signifikant unterschiedliche Konzentration von MCP-1 im Serum im Vergleich zu B6 Mc- $cpa^{cre/+}$ -Mäusen festgestellt werden. Im Vergleich mit den WBB6F₁ $Kit^{W/Wv}$ -Mäusen, die eine mediane Serumkonzentration von 10203 pg/ml haben, weisen beide Stämme eine 10-20fach geringere mediane Konzentrationen im Blut auf (B6-Wildtyp: 1191pg/ml; B6 Mc- $cpa^{cre/+}$: 619,7 pg/ml). Für IL-10-Serumkonzentration konnte kein signifikanter Unterschied zwischen den drei Stämmen nachgewiesen werden. Die Tabelle 2 fasst die p-Werte noch einmal zusammen.

Tabelle 2: p-WerteZytokinkonzentrationenbeiB6 Mc- $cpa^{cre/+}$ imVergleichzuB6 WildtypundWBB6F1 $Kit^{W/Wv}$ 24StundennachCecalLigationandPuncture mit22G

	B6-Wildtyp vs.	B6 Mc - cpa ^{cre/+} vs.	B6-Wildtyp vs.
	B6 Mc - cpa ^{cre/+}	WBB6F ₁ $Kit^{W/Wv}$	WBB6F ₁ $Kit^{W/Wv}$
IL-6	0,254	<0,001(***)	0,008(**)
TNF- α	1,00	0,002(**)	0,018(*)
MCP-1	0,085	0,002(**)	$0,016^{(*)}$
IL-10	0,550	0,166	0,310

Zusätzlich zu der Zytokinmessung 24 Stunden nach CLP wurden Messungen der Zytokinserumkonzentrationen 8 und 48 Stunden nach der CLP durchgeführt. Die Ergebnisse dieser Versuche sind in Abbildung 11 dargestellt. Zum ersten Zeitpunkt der Messung im Serum 8 Stunden nach CLP-Induktion einer Sepsis wurden hohe Konzentrationen bei allen Zytokinwerten gemessen. Danach zeigte sich bei B6-Wildtyp und B6 Mc- $cpa^{cre/+}$ ein Abfall der Serumkonzentration der Zytokine. Bei den WBB6F₁ $Kit^{W/Wv}$ stiegen aber die Zytokinkonzentrationen in zeitlichen Verlauf noch weiter an. Die größten Unterschiede

zwischen den Mausgruppen zeigten sich bei den 24 Stunden-Werten. Danach fielen die Serumkonzentrationen auch bei den WBB6F₁ $Kit^{W/Wv}$ -Tieren wieder auf B6-Wildtypvergleichbare Werte ab.

Auch die scheinopererten Tiere zeigten bei der 8-Stunden-Messung hohe Konzentrationen von proinflammatorischen Zytokinen, welche sich im weiteren Verlauf normalisierte. Wir gingen hier von einer situations-/operationsbedingten Erhöhung aus.

Abbildung 11: Zeitlicher Verlauf der Zytokinkonzentrationen im Serum nach Cecal Ligation and Puncture mit 22G bei B6-Wildtyp, B6 Mc- $cpa^{cre/+}$ und WBB6F₁ $Kit^{W/Wv}$; In den Abbildungen wurde jeweils der Median der gemessenen Zytokine Interleukin-6 (IL-6), Monocyte-Chemoattractant-Protein-1 (MCP-1) und Tumornekrosefaktor-alpha (TNF- α) eingetragen. Die Daten für den 24-Stunden-Wert stammen aus fünf Experimenten, die für 8-Stunden-Wert aus zwei und der 48-Stunden-Wert aus einem Experiment. Die Anzahl der verwendeten Tiere ist in Klammern (8h/24h/48h) angegeben.

Zusammenfassend konnte gezeigt werden, dass die mastzelllosen B6 Mc- $cpa^{cre/+}$ -Tiere nicht nur besser überlebten als die WBB6F₁ $Kit^{W/Wv}$ -Tiere, sie hatten im Verlauf der Sepsis auch geringere Serumspiegel an allen untersuchen Sepsis-relevanten proinflammatorischen Zytokinen.

3.2.3 Überleben und Zytokinkonzentrationen nach CLP bei WBB6F₁ *Mc-cpa*^{cre/+} -Mäusen

Im Weiteren wurden Untersuchungen an Geschwistertieren des WBB6F₁-Stammes durchgeführt, um einen stammbezogenen Hintergrund als Ursache für die signifikant höhere Überlebensrate der B6 Mc- $cpa^{cre/+}$ auszuschließen. Hierzu wurden die B6 Mc- $cpa^{cre/+}$ -Tiere mit WB-Wildtyptieren gekreuzt. Die so gezüchteten Nachkommen sind alle ein F₁ aus WB- und B6- Tieren genau wie die WBB6F₁ $Kit^{W/Wv}$ -Tiere. Somit konnten im folgenden Experiment Wildtyptiere (WBB6F₁ $Kit^{+/+}$) und mastzelllose Mäuse mit (WBB6F₁ $Kit^{W/Wv}$) und ohne (WBB6F₁Mc- $cpa^{cre/+}$) Kit-Mutation miteinander verglichen werden. Als weitere Kontrolle wurden die bislang verwendeten B6 Mc- $cpa^{cre/+}$ -Tiere auf B6-Hintergrund mitgeführt.

Bei den durchgeführten CLPs mit 25G entwickelten die mastzelllosen wie aus den vorherigen Experienten bekannt (Abbildung 8) eine lebensbedrohliche Sepsis mit geringer Überlebensrate. Nur 18,2 % von ihnen überlebten die 14 Tage nach der Operation (mittleres Überleben 3 Tage). Die übrigen Stämme waren durch die CLP nur wenig betroffen und zeigten eine hohe Überlebensrate unabhängig von Stammhintergrund oder dem Vorhandensein von Mastzellen. Bei den mastzelllosen Stämmen B6 Mc- $cpa^{cre/+}$ und

Abbildung 12: Cecal Ligation and Puncture mit 25 Gauge bei WBB6F₁ Mc-cpa^{cre/+}-Tieren; bei hier gezeigten Daten handelt es sich um fünf Einzelexperimente. Die Anzahl der Tiere ist in Klammern angegeben. Die p-Werte der WBB6F₁ Kit^{W/Wv}-Tiere(▲) im Vergleich zu den drei anderen Stämmen B6 Mc-cpa^{cre/+}(○), WBB6F₁ Mc-cpa^{cre/+}(●) und WBB6F₁ Kit^{+/+}(■) sind in allen drei Fällen <0,001(***).</p>

WBB6F₁ Mc- $cpa^{cre/+}$ Tiere überlebten 70,8 % bzw. 73 % der operierten Tiere. Sie hatten damit eine ähnlich hohe Überlebensrate wie die WBB6F₁ $Kit^{+/+}$ -(Wildtyp-) Tiere mit 63,6 % Überlebenden. Zwischen den Wildtyptieren und den beiden mastzelllosen Mc- $cpa^{cre/+}$ -Tieren gab es keine signifikanten Unterschiede. Einzig WBB6F₁ $Kit^{W/Wv}$ -Mäuse zeigten eine signifikant höhere Sterblichkeit im Vergleich mit jedem anderen Stamm (p<0,001).

Zusätzlich zu den Überlebenskurven wurden auch die Zytokinkonzentrationen im Serum 24 Stunden nach CLP bei allen drei mastzelllosen Stämmen untersucht. Die Ergebnisse sind in der Abbildung 13 zusammengefasst. Für IL-10 gab es in den durchgeführten Experiment keine auswertbaren Daten, da die gemessenen Werte unterhalb des linearen Bereichs der Standardkurve lagen. Die Serumkonzentration der untersuchten Zytokine IL-6, TNF- α und MCP-1 in WBB6F₁ Mc-cpa^{cre/+}-Mäusen war vergleichbar mit denen der B6 Mc-cpa^{cre/+}-Tiere (Abbildung 13, Spalte 1 und 3). Es zeigten sich somit keine signifikanten Unterschiede aufgrund des Stammhintergrundes.

Im Vergleich zu den WBB6F₁ $Kit^{W/Wv}$ -Tieren war bei den WBB6F₁ Mc- $cpa^{cre/+}$ -Mäusen sowohl IL-6-Konzentration mit als auch die MCP-1-Konzentration weniger stark erhöht. Die mediane IL-6-Serumkonzentration betrug bei den Mc- $cpa^{cre/+}$ -Tieren 571,6 pg/ml (p=0,004), die MCP-1-Konzentration hatte einen Median von 798,4 pg/ml (p=0,018). Im Vergleich zu den B6 Mc- $cpa^{cre/+}$ -Mäusen zeigten sich keine signifikanten Unterschiede. Für TNF- α ergab sich bei den WBB6F₁ Mc- $cpa^{cre/+}$ -Mäusen eine mittlere Serumkonzentration von 47,61 pg/ml. Dies war ein Fünftel der Konzentration der WBB6F₁ $Kit^{W/Wv}$ -Tiere (255,6 pg/ml) im gleichen Versuch. Die statistischen Analysen ergaben bei der TNF- α -Konzentration jedoch dieses Mal bei geringer Stichprobe von vier WBB6F₁ Mc- $cpa^{cre/+}$ -Tieren keine signifikanten Unterschiede der WBB6F₁ Mc- $cpa^{cre/+}$ -Tieren k

Durch unsere Untersuchungen des Verhaltens der WBB6F₁ Mc- $cpa^{cre/+}$ -Tiere konnte damit gezeigt werden, dass der in Kapitel 3.2.1 gezeigte Überlebensvorteil der B6 Mc- $cpa^{cre/+}$ -Tiere gegenüber den WBB6F₁ $Kit^{W/Wv}$ unabhängig vom unterschiedlichen Stammhintergrund ist. Auch bei den gemessenen Serumzytokinkonzentrationen zeigen sich keine Unterschiede zwischen WBB6F₁ Mc- $cpa^{cre/+}$ - und B6 Mc- $cpa^{cre/+}$ -Tieren. Die untersuchen kit-Mutierten WBB6F₁ $Kit^{W/Wv}$ -Mäuse zeichnten sich auch in diesem Vergleich mit den WBB6F₁ Mc- $cpa^{cre/+}$ durch eine erhöhte Sterblichkeit und erhöhte Serumzytokinkonzentratinen von IL-6 und MCP-1 aus. Der von uns gemessene Unterschied der TNF- α -Konzenration war statistisch nicht signifikant.

Abbildung 13: Zytokinkonzentrationen bei WBB6F₁ $Mc-cpa^{cre/+}$ im Vergleich zu B6 $Mc-cpa^{cre/+}$ und WBB6F₁ $Kit^{W/Wv}$ 24 Stunden nach Cecal Ligation and Puncture; die hier gezeigten Daten der stammen aus einem Experiment, bei dem WBB6F₁ $Mc-cpa^{cre/+}$ -Tiere(\bullet) zusammen mit B6 $Mc-cpa^{cre/+}(\circ)$ und WBB6F₁ $Kit^{W/Wv}(\blacktriangle)$ untersucht wurden. Die untersuchten Zytokine sind Interleukin-6 (IL-6), Monocyte-Chemoattractant-Protein-1 (MCP-1) und Tumornekrosefaktor-alpha (TNF- α).

3.3 Experimentelle Sepsis in B6 Mc-cpa^{-/-} -Mäusen

Wie oben dargestellt und von Schneider et all beschrieben, inaktiviert die Mastzell-Carboxypeptidase A Endothelin-1. Im Verlauf der Sepsis sind die Spiegel von ET-1 erhöht und werden mit einer negativen Prognose assoziert. Mit den folgenden Versuchen sollte daher die Rolle der Mc-cpa auf den Verlauf der CLP-indutierten Sepsis weiter untersucht werden.

3.3.1 Überleben nach CLP

Da zuvor gezeigt werden konnte, dass ein Überlebensunterschied der mastzelllosen B6 Mc- $cpa^{cre/+}$ -Tiere gegenüber den B6 Wildtyptieren-Tieren vor allem bei schwerer Sepsis auftritt, sollte zum Vergleich der Überlebensrate von B6 Wildtyp- und "nur" Mccpa-defizienten Tieren (B6 Mc- $cpa^{-/-}$) eine schwere Sepsis induziert werden. Dazu wurde der Blindarm analog zu den Vorversuchen mittels einer 21 G Kanüle punktiert. In den durchgeführten Experimenten wurden keine WBB6F₁ $Kit^{W/Wv}$ -Tiere beobachtet, da für diesen Stamm bereits eine hohe Sterblichkeit beschrieben wurde. Eine Fokussierung auf die beiden zu untersuchenden Gruppen und die Induktion einer schweren Sepsis sollte dabei helfen eventuelle Unterschiede deutlicher aufzuzeigen. Als Nebeneffekt wurde die

Abbildung 14: Vergleich der Überlebensrate von B6-Wildtyptieren und B6 Mc-cpa^{-/-}-Tieren nach Cecal Ligation and Puncture mit 21 Gauge. Die Daten wurden in sechs Einzelexperimenten gewonnen, in denen jeweils gleichwertig B6 Wildtyptiere (□) und B6 Mc-cpa^{-/-}-Tiere (◊) operiert wurden. Die Anzahl der verwendeten Tiere ist in Klammern angegeben.

Gesamtsterblichkeit erhöht. Abbildung 14 zeigt die Ergebnisse an.

Die experimentell induzierte Sepsis überlebten 50 % der B6-Wildtyptiere (mittleres Überleben 12,5 Tage). Die B6 Mc- $cpa^{-/-}$ -Mäuse überlebten zu 35,5 % bei einem mittleren Überleben von 3 Tagen.

In der statistischen Auswertungen ergab sich ein Wahrscheinlichkeit von 16,9% dafür, dass der hier gezeigte Unterschied zufällig entstand. Ein signifikanter Überlebensvorteil der B6 Wildtypmaus gegenüber der B6 Mc- $cpa^{-/-}$ -Maus konnte somit im Versuch mit 21G nicht nachgewiesen werden.

Damit scheint die Fähigkeit der Mastzellen Mc-cpa zu produzieren und damit ET-1 abzubauen, keinen wirklichen Einfluss auf das Überleben bei der induzierten Sepsis zu haben.

3.3.2 Zytokinproduktion in B6 Mc-cpa^{-/-}-Tieren nach CLP

Auch bei den B6 Mc- $cpa^{-/-}$ -Tieren wurden Serumproben auf die Konzentration wichtiger Zytokine nach CLP mit 22G in zwei Experimenten untersucht. Die Ergebnisse zeigt Abbildung 15. Es zeigten sich signifikante Unterschiede zwischen B6 Mc- $cpa^{-/-}$ -Tieren und vor allem den WBB6F₁ $Kit^{W/Wv}$ -Tieren. Lediglich die Konzentration von MCP-1 unterscheidet sich signifikant zwischen den Tieren mit Enzymdefekt und den B6-Wildtyptieren. Die als Kontrollen zusätzlich untersuchtenWBB6F₁ $Kit^{W/Wv}$ hatten bei allen untersuchen Zytokinen signifikant höhere Serumspiegel. Tabelle 3 zeigt den statistischen Vergleich der Zytokinkonzentrationen zwischen den Mausgruppen.

Die IL-6-Konzentration im Serum war bei den B6-Wildtyp- (Median:570,8 pg/ml) und den B6 Mc- $cpa^{-/-}$ -Tieren (Median: 398,0 pg/ml) vergleichbar. Ein signifikanter Unterschied zeigte sich nur im Vergleich zu der Konzentration der WBB6F₁ $Kit^{W/Wv}$ -Tiere (Median: 15594 pg/ml) (B6 vs WBB6F₁ $Kit^{W/Wv}$: p=0,029; B6 Mc- $cpa^{-/-}$ vs

Tabelle 3: p-Werte Zytokinkonzentrationen bei B6 $Mc-cpa^{-/-}$ im Vergleich zu B6Wildtypund WBB6F1 $Kit^{W/W_{v}}$ 24Stunden nach Cecal Ligation and Puncture mit 22G;

	B6-Wildtyp vs.	B6 Mc - $cpa^{-/-}$ vs.	B6-Wildtyp vs.
	B6 Mc-cpa ^{-/-}	WBB6F ₁ $Kit^{W/Wv}$	WBB6F ₁ $Kit^{W/Wv}$
IL-6	0,730	0,016(*)	0,029(*)
$\mathrm{TNF}\text{-}\alpha$	0,191	$0,016^{(*)}$	0,029(*)
MCP-1	0,016(*)	$0,016^{(*)}$	0,029(*)
IL-10	0,393	$0,032^{(*)}$	0,114

Abbildung 15: Zytokinkonzentration der B6Mc-cpa^{-/-}-Tiere im Vergleich mit B6 Wildtyp und WBB6F₁ Kit^{W/Wv} 24 Stunden nach Cecal Ligation and Puncture; dargestellt sind die Zytokinwerte für Interleukin-6 (IL-6), Interleukin-10 (IL-10), Monocyte-Chemoattractant-Protein-1 (MCP-1) und Tumornekrosefaktor-alpha (TNF-α) in logarithmischer Skala. Jeder Wert einer Maus ist als einzelner dot dargestellt. Die Werte der B6 Mc-cpa^{-/-}-Mäuse (◊) stammen aus zwei Experimenten, bei denen alle drei Stämme (B6 Mc-cpa^{-/-}- (◊), B6 Wildtyp- (□) und WBB6F₁ Kit^{W/Wv}- (▲) Tiere) operiert wurden.

WBB6F₁ $Kit^{W/Wv}$:p=0,016).

Auch die Konzentration von TNF- α zeigte bei den B6 Mc- $cpa^{-/-}$ -Tieren (Median: 45,8 pg/ml) keinen signifikaten Unterschied im Vergleich zur Serumkonzentration der B6-Wildtyp-Tiere mit einem Median von 29,6 pg/ml. Die mediane Konzentration, die bei den WBB6F₁ $Kit^{W/Wv}$ -Tieren gemessen wurde betrug 225,6 pg/ml und lag somit signifikant höher als die der beiden anderen Stämme (B6 vs WBB6F₁ $Kit^{W/Wv}$: p=0,029; B6 Mc- $cpa^{-/-}$ vs. WBB6F₁ $Kit^{W/Wv}$:p=0,016).

Die mediane MCP1-Serumkonzentration der B6 Mc- $cpa^{-/-}$ -Tiere lag bei 2346 pg/ml und stellte sich im Vergleich zu B6-Wildtyp-Tieren (Median: 1191pg/ml) signifikant erhöht dar (p=0,016). Wie bei den anderen proinflammatorischen Zytokinen zeigten die MCP1-Serumkonzentrationen der WBB6F₁ $Kit^{W/Wv}$ -Tiere eine signifikante Erhöhung

im Vergleich zu denen der beiden anderen Stämmen.

Die B6-Wildtypstämme wiesen eine mediane IL-10-Konzentration von 21,47 pg/ml auf. Es zeigte sich allerdings kein signifikanter Unterschied zu den beiden anderen Stämmen. Bei den B6 Mc- $cpa^{-/-}$ -Tieren (Median: 50pg/ml) ließ sich ein signifikanter Unterschied zu den WBB6F₁ $Kit^{W/Wv}$ -Tieren (Median 161,8 pg/ml) nachweisen.

Die Analyse der zeitlichen Zytokinverläufe nach CLP zeigt Abbildung 16. Sie ergab, wie zuvor bei den Versuchen mit den mastzelllosen B6 Mc- $cpa^{cre/+}$ -Tieren, relativ hohe Zytokinwerte acht Stunden nach CLP. Die Serumkonzentrationen der scheinoperierten Tiere fielen als erstes und am stärksten ab. Nach 24 Stunden sah man die größten Unterschiede zwischen den verschiedenen Stämmen . Die Serumkonzentrationen der WBB6F₁ $Kit^{W/Wv}$ -Tiere fiel erst nach 48 Stunden wieder auf ein ähnliches Niveau wie die der B6-Wildtyptiere und B6 Mc- $cpa^{-/-}$ -Tiere ab.

Abbildung 16: Verlauf der Zytokinkonzentrationen nach Cecal Ligation and Puncture bei B6-Wildtyp, B6 Mc-cpa^{-/-} und WBB6F₁ Kit^{W/Wv}; in den Abbildungen wurde jeweils der Median eingetragen. Die Daten für den 24-Stunden-Wert stammen aus jeweils zwei Experimenten. Die Anzahl der operierten Tiere ist in Klammern (8h/24h/48h) angegeben.Die untersuchen Zytokine sind Interleukin-6 (IL-6), Monocyte-Chemoattractant-Protein-1 (MCP-1) und Tumornekrosefaktor-alpha (TNF-α)

Zusammenfassend zeigten sich nur geringe, nicht signifikante Unterschiede zwischen den Carboxypeptidase A-Knock-out-Mäusen und den B6-Wildtyptieren. Das Überleben der B6 *Mc-cpa^{-/-}*-Mäuse nach CLP-induzierter schwere Sepsis ist nicht signifikant verändert. Ebenso zeigten die meisten Zytokine keine signifikanten Unterschiede, lediglich die Konzentration von MCP-1 war 24 Stunden nach der Operation klar erhöht.

4.1 Die Auswirkungen der Mastzelldefizienz

Um die Rolle der Mastzellen auf den Verlauf der septischen Peritonitis einschätzen zu können, werden nun die Ergebnisse der Experimente mit mastzelllosen Mc- $cpa^{cre/+}$ -Tieren näher betrachtet. Dieser neue Mausstamm ist von besonderem Interesse, weil er eine selektive Mastzelldefizienz aufweist. Die bisher bekannten Mausstämme (in dieser Arbeit wurden die WBB6F₁ $Kit^{W/Wv}$ -Tiere verwendet) weisen neben ihrer Mastzelllosigkeit weitere mit der Kit-Mutation-assoziierte Probleme auf, unter anderem Anämie, Neutropenie und eingeschränkte Darmmotorik.

Mastzelllosigkeit als möglicher Überlebensvorteil

Es konnte experimentell gezeigt werden, dass verglichen mit B6-Wildtyptieren vermehrt die mastzelllosen WBB6F₁ Kit^{W/Wv}-Tiere sterben. Somit konnte der von Echtenacher gezeigte Überlebensunterschied bestätigt werden [15]. Der neue mastzelllose Mausstamm Mc- $cpa^{cre/+}$ weist bei schwerer Sepsis eine geringere Überlebensrate auf als der Wildtypstamm (Abbildung 9). Dies unterstreicht die Annahme, dass Mastzellen, als erste Linie der Immunantwort, eine wichtige Funktion bei der Bekämpfung einer bakteriellen Peritonitis innehaben. Der hier festgestellte Unterschied in der Überlebensrate zwischen Wildtyptieren mit und den Mc-cpa^{cre/+}-Tieren ohne Mastzellen ist allerdings nicht signifikant. Bei moderaten Bedingungen im Experiment (Punktion mit einer 25 G Kanüle) ist zudem kein Unterschied zwischen den neuen mastzelllosen $Mc\text{-}cpa^{\mathrm{cre}/\mathrm{+}}\text{-}\mathrm{Tieren}$ und den Wildtyptieren nachweisbar. Die Mastzellen scheinen das Überleben der Mäuse also in gewissem Umgang, aber nicht so stark zu beeinflussen, wie zuvor angenommen. Die ursprünglich von Echtenacher durchgeführten Experimente scheinen unseren Daten zu widersprechen. In seinen Versuchen wurde aber eine schwere Sepsis induziert, bei der $33\,\%$ der Wildtyptiere starben, und er hatte als mastzelllose Maus nur die WBB6F₁ $Kit^{W/Wv}$ -Tiere verwendet. Somit kann vermutet werden, dass

die Effekte der mastzellvermittelten Abwehr vor allem bei schweren Infektionen zum Tragen kommen, während bei leichten Infektionen andere Mechanismen eingesetzt werden, die ausreichen die Infektion effektiv zu bekämpfen. Diese Vermutung wird durch unsere Versuchsergebnisse durchaus gestützt, die bei schwerer Sepsis durchgeführt wurden. Analog zu Echtenacher überlebten bei uns etwas mehr als 65 % der Wildtyptiere, und keine WBB6F₁ Kit^{W/Wv}-Tiere, aber dagegen nur 40 % der mastzelllosen Mc- $cpa^{cre/+}$ -Tiere, welche Echtenacher nicht zur Verfügung standen. Somit scheint die Anwesenheit von Mastzellen bei schwerer Sepsis tendentiell günstig zu sein, aber sie ist nicht alleinentscheidend für Leben und Tod im Rahmen des Sepsismodells CLP wie auf Basis der bisherigen Daten angenommen.

In den Versuchen von Echtenacher, in denen mastzelllose Mäuse durch übertragene Mastzellen von Wildtypmäusen vor den letalen Folgen der Sepsis bewahrt werden konnten, wurden keine Wildtiere vergleichend operiert. Gezeigt werden konnte dort, dass Mastzellen das Überleben der WBB6F₁ $Kit^{W/Wv}$ -Tiere verbessern. Gezeigt wurde aber nicht, ob es Unterschiede im Überleben zwischen den Mastzell-rekonstituierten Tieren und den Wildtyptieren gibt. Dies wäre der Versuchsteil gewesen, der mit unserem Experiment mit den Mc- $cpa^{cre/+}$ -Tieren am besten vergleichbare Ergebnisse gebracht hätte. So kann unsere Ergebnisse zugrundelegend, nur gemutmaßt werden, dass die Wildtyptiere besser überleben würden als die Mastzellrekonstituierten WBB6F₁ $Kit^{W/Wv}$ -Mäuse und diese wiederum besser als die mastzelllosen WBB6F₁ $Kit^{W/Wv}$ -Tiere.

Piliponsky et al. haben diese experimentelle Hürde 2010 geschlossen, in dem sie zeigen konnten, dass rekonstiuierte WBB6F₁Kit^{W/Wv}-Tiere eine schwere Sepsis nicht so gut überleben, wie die WBB6F₁Kit^{+/+}-Tiere [37]. Auf Basis dieser Ergebnisse stellten sie die von Echtennacher angenommene entscheidende Rolle der Mastzellen bei der Abwehr bakterieller Infektionen ebenso wie wir in Frage. Mithilfe des ebenfalls mastzelllosen Mausstamms WBB6F₁Kit^{W-sh}-Tiere zeigten sie ferner, dass Mastzellen eine Rolle bei der experimentell induzierten Sepsis mit 22G-Kanüle haben. Bei ebenfalls schweren Bedingungen im Experiment sterben - im Widerspruch zur bisherigen Meinung - signifikant weniger mastzelllose Tiere. Dies spricht paradoxerweise für eine eher negative Rolle der Mastzellen bei sehr schwerer Sepsis, die wir so in unseren Experimenten nicht sehen konnten.

Als Fazit der vielen unterschiedlichen Ergebnisse der CLP-Experimente ist eine komplexe immunregulative Funktion der Mastzellen bei der Abwehr einer bakteriellen

Sepsis zu postulieren, die sehr von den unterschiedlichen gewählten Bedingungen abhängt. Dafür spricht auch, dass wir im Bezug auf die Kontrollen eine Varianz von 20% der Letalität verzeichneten.

Sowohl bei der starken Sepsis, als auch bei moderaten Bedingungen, zeigt der neue mastzelllose Mausstamm Mc- $cpa^{cre/+}$ in unseren Versuchen ein besseres Überleben als die WBB6F₁ Kit^{W/W_v} -Tiere (Abbildung 8). Dieser Überlebensvorteil des neuen mastzelllosen Mausstammes lässt darauf schließen, dass sich die Einflüsse auf das Überleben der CLP in Experimenten, die WBB6F₁ Kit^{W/W_v} und B6 $Kit^{W-sh/W-sh}$ als mastzelllose Mäuse verwenden, nicht nur mit der Abwesenheit von Mastzellen erklären lassen. Alle diese Kit-mutierten Mäuse haben weitere phänotypische Auffälligkeiten, die den gemessenen Effekt im Experiment beeinflussen. So wäre eine plausible Erklärung, dass es hier durch die defekten Schrittmacherzellen des Darms zu einer stärkeren Infektionsausbreitung kommt. Hierbei könnte die mangelnde Peristaltik eine Durchwanderung der Darmwandschichten durch die im Darmlumen befindlichen Bakterien fördern. Eine anderere Erklärung ist die vorbeschiebene Anämie bei WBB6F₁ $Kit^{W/Wv}$ -Tieren. Bei verminderter Organdurchblutung während des septischen Schocks kann eine Anämie die Ischämie der Organe bei der Sepsis zusätzlich verstärken. Ein Versagen lebenswichtiger Organe ist daher bei Anämie viel schneller zu erwarten.

Wie von de Maio et al. beschrieben [12], hat der genetische Stammhintergrund Einfluss auf die Immunantwort. Um auszuschließen, dass das bessere Überleben des neuen mastzelllosen Mausstamms B6 Mc- $cpa^{cre/+}$ im Vergleich zu WBB6F₁ $Kit^{W/Wv}$ -Tieren eine Folge dieses Effektes ist, wurde dieser Stamm auf den WBB6F₁-Stammhintergrund gekreuzt. Auch hier zeigte sich eine schlechtere Überlebensrate der WBB6F₁ $Kit^{W/Wv}$ -Tieren gegenüber den neuen mastzelllosen Mc- $cpa^{cre/+}$ -Tieren (Abbildung 12). Es zeigten sich keine Unterschiede im Überleben zwischen den Mc- $cpa^{cre/+}$ -Tieren des B6 und des WBB6F₁-Stammes. Somit können die Effekte auf das Überleben nicht von der Zugehörigkeit der Versuchstiere zum B6-Stamm abhängig sein.

Die von Echtenacher beschriebene zentrale Funktion der Mastzellen bei Abwehr einer bakteriell induzierten Sepsis [15] ließ sich zusammenfassend durch unsere Daten mit den neuen Mc- $cpa^{cre/+}$ -Tieren nicht bestätigen. Die mastzelllosen Tiere des Mc- $cpa^{cre/+}$ -Stammes überlebten besser als die bisher bekannten WBB6F₁ $Kit^{W/Wv}$ -Tiere. Es liegt daher nahe, dass weitere Einflussfaktoren, außer die Anwesenheit von

Mastzellen, eine Rolle bei der Abwehr einer bakteriellen Peritonitis spielen. Bei schweren Infektionen sind Mastzellen nach unseren Daten am Ausgang der Sepsis beteiligt, aber wie genau bleibt noch unklar. Wahrscheinlich erhielten wir hier aufgrund der kleinen Gruppen keine signifikanten Ergebnisse.

Zytokinveränderungen

Die Konzentrationen entzündlicher Zytokine wie IL-6 und TNF- α im Serum der Versuchstiere korrelieren gut mit deren Überleben und eignen sich als Marker für die Schwere der Sepsis [20]. Auch wir haben die Verläufe von IL-6, TNF- α und MCP-1, sowie IL-10 bei unseren Versuchen gemessen. Alle gemessene Zytokine haben bekannterweise Bezug zur Sepsis [4, 11, 24, 44]. Auch wir finden bei unseren Betrachtungen, dass IL-6 und TNF- α gut mit dem Überleben korrelierte.

Bei der vergleichenden Betrachtung der Zytokinverläufe (Abbildung 11) fallen zunächst die hohen Werte acht Stunden nach CLP auf. Diese werden mit hoher Wahrscheinlichkeit durch das Operationstrauma induziert, weil sie auch bei den scheinoperierten Tieren vergleichbar hoch sind. Die schnell von Mastzellen produzierten Zytokine, welche die Immunantwort induzieren, ließen sich im Serum nicht nachweisen. Sie entfalten vor allem lokale Wirkung in der Bauchhöhle und werden im Blut von den durch das Trauma ausgeschütteten Zytokinen überlagert.

Die größten Konzentrationsunterschiede im Serum sind 24 Stunden nach CLP zu beobachten. Dies ist der Zeitpunkt, zu dem die Tiere der untersuchten Stämme zu sterben beginnen. Bei den mastzellosen WBB6F₁ Kit^{W/Wv}-Tieren wurden bei allen Zytokinen die höchsten Konzentrationen gemessen. Dies sind die Tiere mit der geringsten Überlebensrate. In Zusammenschau der Zytokinkonzentration mit der Überlebensdauer lässt sich schließen, dass besonders hohe Konzentrationen mit einer hohen Letalität einhergehen. Ähnliches konnte auch schon Osuchowski et al zeigen. In den beschriebenen Versuchen weisen jene Tiere, die in den ersten fünf Tagen starben, signifikant erhöhte Konzentrationen von IL-6, TNF- α , MCP-1 und IL-10 gegenüber den überlebenden Tieren auf [36]. Man kann aber die hohen Zytokinkonzentrationen nicht auf die Mastzelllosigkeit zurückführen, da die ebenfalls mastzelllosen B6 Mc- $cpa^{cre/+}$ -Tiere einen den B6-Wildtyptieren vergleichbaren Zytokinspiegel haben. Analog zu den Beschreibungen der Überlebenszeitanalyse muss man auch hier von anderen Ursachen für die erhöhten Serumzytokinwerte ausgehen, die bisher noch nicht bekannt sind.

Zusammenfassung Mastzelldefizienz

Die Rolle der Mastzellen als "Initiatoren" der Immunantwort in der Sepsis muss neu überdacht werden. Sie scheinen entgegen der bislang postulierten zentralen Rolle für das Überleben, nur eine untergeordnete Rolle bei der Abwehr einer bakteriellen Sepsis zu spielen. Es lässt sich vermuten, dass weitere Einflussfaktoren für den Verlauf einer bakteriell induzierten Sepsis bei WBB6F₁ $Kit^{W/Wv}$ -Mäusen hinzukommen. Denkbar sind eine eingeschränkte Darmfunktion durch fehlerhafte Schrittmacherzellen oder größere Schäden bei Minderperfusion durch die schon vorbestehende Anämie der Mäuse. Auch die Zytokinverläufe der mastzelllosen B6 Mc- $cpa^{cre/+}$ -Tiere bestätigen, dass die Mastzellen nicht wesentlich in den septischen Zytokinverlauf eingreifen.

4.2 Die Wirkung der Carboxypeptidase A

Im zweiten Teil der Arbeit wurden Mäuse ohne Mastzell-Carboxypetidase A betrachtet. In den aus der Literatur bekannten Experimenten [33,42] ließ sich ein verminderter Abbau von Endothelin-1 (ET-1) durch den Mc-cpa-Mangel nachweisen. Die Folge daraus wäre ein Überschuss dieses potenten Vasokonstriktors mit hämodynamischen Auswirkungen auf die Organperfusion [26]. Es ist dadurch ein früheres Organversagen und ein schlechteres Überleben [9] der B6 Mc- $cpa^{-/-}$ -Mäuse zu erwarten gewesen.

Überleben ohne Mc-cpa

In den durchführten Experimenten (Abbildung 14) wird eine schwere Sepsis mit einer Überlebensrate der Wildtyptiere von 50 % von den B6 Mc- $cpa^{-/-}$ -Tieren nicht signifikant schlechter als von den Wildtyptieren überlebt. Trotzdem sieht man einen gewissen Unterschied im Überleben von 14,5%.

Diese Versuche zeigten, dass der verminderte Abbau von Endothelin-1 in vivo weniger Effekte auf das Überleben im Sepsismodell zu haben scheint als angenommen. Dies ließe sich durch den Abbau von ET-1 mithilfe alternativer Proteasen, wie zum Beispiel Serum-Carboxypeptidase, erklären, die bei Mc-cpa defizienten Mäusen ebenfalls den Abbau von Endothelin bewirken könnten. Alternativ dazu wäre denkbar, dass ET-1-Serumspiegel während der Sepsis zwar erhöht sind, aber eine Senkung dieses Spiegels nicht wirklich Einfluss auf das Überleben hat. Dies ist aber ebenfalls noch nicht geklärt. Anzumerken bleibt, dass in unseren Versuchen keine Endothelinspiegel bestimmt wurden, was retrospektiv eine wichtige Information gewesen wäre, um das

Zusammenspiel zwischen Mastzellproteasen und Endothelin wirklich betrachten zu können.

Mögliche Hinweise liefert eine 2011 veröffentlichte Studie von Akaoshi und Ho Song. In ihrer Arbeit untersuchten sie die Wirkung Endothelin-ähnlicher Gifte an verschiedenen mastzellveränderten Mausstämmen. Hierbei zeigten Wildtyptiere und B6 *Mc-cpa^{-/-}*-Tiere zeigten keine signifikanten Unterschiede in Klinik und Überleben, während mastzelllose und Mastcell Protease 4 (MCPT4)-defiziente Mäuse ein deultich geringers Überleben aufwiesen [2]. Dies könnte eine neue Möglichkeit zur Beeinflussung des immunologischen Geschehens während einer Sepsis sein.

Vor dem Hintergrund der Ergebnisse mit den mastzelllosen B6 Mc- $cpa^{cre/+}$ -Tieren, deren Überleben nicht so stark vermindert war wie angenommen, muss der Effekt der Mc-cpa betrachtet werden. Der beobachtete, aber nicht signifikante Unterschied im mittleren Überleben der B6 Mc- $cpa^{-/-}$ -Tiere bei einer schwereren induzierten Sepsis von 9,5 Tagen und insgesamt 20 % weniger Gesamtüberleben als die Wildyptiere könnte durchaus mit ein Effekt des verminderten Endothelin-1- Abbaus sein. Die Tiere hätten durch das Endothelin eine erhöhte Kreislaufbelastung und verstürben im Verlauf an den Folgen. Da der Überlebensvorteil der Wildtyptiere aber insgesamt nicht signifikant war, kann der Effekt nur hypothetisch bleiben. Um die Rolle der Carboxypeptidase zum Endothelin-1-Abbau und damit zur Stabilisierung der Mäuse definitiv nachweisen zu können, müsste zunächt ein Experiment erfolgen, in welchem ein signifikanter Überlebenunterschied zwischen Wildtyp- und B6 Mc- $cpa^{-/-}$ -Tieren aufträte.

Zytokinkonzentrationen

Auch bei den Zytokinverläufen während der Sepsis verhalten sich die Mc- $cpa^{-/-}$ -Tiere fast analog zu den Wildtyptieren. Es besteht ein größerer Unterschied in den Serumzytokinspiegeln zu den WBB6F₁Kit^{W/Wv}-Tieren, wie er auch zuvor in den Versuchen mit den mastzelllosen B6 Mc- $cpa^{cre/+}$ -Tieren gesehen wurde. Die Zytokinkonzentrationen im Serum der Mc- $cpa^{-/-}$ -Tiere verhalten sich in weiten Bereichen vergleichbar zu denjenigen der Wildtyptiere. Lediglich bei MCP-1, dem Monozyten-Chemoattraktorprotein-1, ist die Konzentration 24 Stunden nach der CLP signifikant erhöht gegenüber den Wildtyptieren. Dies schient jedoch keinen Einfluss auf des Überleben der Tiere zu haben. MCP-1 wird normalerweise von der Matrix-Metallopeptidase-12 (MMP-12) gespalten [8]. Dies ist eine ähnliche Metalloprotease wie Mastzell-Carboxypeptidase A. Vielleicht kann Mc-

cpa ebenfalls unter gewissen Rahmenbedingungen MCP-1 spalten. So ließe sich erklären, warum nur dieses Zytokin bei den B6 Mc- $cpa^{-/-}$ -Tieren erhöht ist. Was dies physiologisch und pathophysiologisch bedeutet ist nicht klar. Dieser Aspekt bedarf weiterer Untersuchungen und könnte ein interessanter Ansatz sein, die Funktion der Mastzellprotease Mc-cpa besser zu verstehen.

4.3 Grenzen der Methodik

Stichprobenumfang

Bei manchen Versuchen liegt nahe, dass der gewählte Stichprobenumfang nicht ausreichend war. So erhält man bei der Messung der Serumzytokine zum Teil keine signifikanten Unterschiede, obwohl die Differenz der Mediane größer ist, als bei anderen gemessenen Werten mit größerer Anzahl. Um hier einen β -Fehler, also die Nichtbeachtung bei in Wirklichkeit bestehendem Unterschied, auszuschließen, wäre eine größere Stichprobe sinnvoll. Dies ist aber im Rahmen der Tierversuchsbestimmungen retrospektiv nur schwierig zu verändern.

CLP - Die "Cecal Ligation and Puncture"

Die Cecal Ligation and Puncture ist eine sehr variantenreiche Methode. Daher sind Vergleiche der CLP-Versuche untereinander auch nur eingeschränkt möglich. Die hier benutzte CLP-Methode zur Induktion einer bakteriellen Sepsis CLP zeigt besonders gut die Auswirkungen, die ein zu untersuchender Defekt im komplexen System Sepsis hat. In der vorliegenden Arbeit wurde die Mastzelllosigkeit und die Mc-cpa-Defizienz als Einflussgrößen auf dieses Tiermodell in vivo untersucht.

Bei der CLP wird nicht - wie bei der Bakterieninjektion eine definierte Anzahl von Erregern in die Bauchhöhle gespritzt. Unter anderem deshalb gilt die Methode als schwankungsanfällig [39,46]. Durch Standardisierung des Vorgehens bei der Operation, besonders des Ligationsanteils und der Punktionsstärke, ist dieses Verfahren heute aber der Goldstandard. Um Schwankungen zu vermeiden, wurden alle Experimente von derselben Person immer am Vormittag durchgeführt und die Tiere in gleichartige Versuchsgruppen geteilt. Auch wenn Tagesform und andere äußere Einflussfaktoren, zum Beispiel Stress der Mäuse, die Ergebnisse beeinflussen können, darf durch das stan-

dardisierte Vorgehen bei der CLP eine ähnliche Infektion bei jeder Maus angenommen werden. Trotzdem zeigen sich auch in dieser Arbeit von Experiment zu Experiment mit gleichen Bedingungen bis zu 20 % Variationen im Überleben der Wildtyptiere. Dies zeigt klar die Grenzen der Methode.

Zytokinkonzentrationen

Aus der Operationsmethode resultieren aber auch Nachteile bei der Untersuchung der Zytokine. Bedingt durch die Operation können die wichtigen frühen Zytokinkonzentrationen, die einen Mastzelldegranulationseffekt zeigen könnten, nicht beurteilt werden. Zu diesem Zeitpunkt finden sich auch bei den scheinoperierten Tieren ähnlich hohe Konzentrationen. Daher muss angenommen werden, dass diese Zytokinonzentrationen OP-traumabedingt überlagert werden. Ein Rückschluss auf die frühen Effekte der Mastzellen ist in diesen Untersuchungen nicht möglich.

Ebenso ist die Beurteilung der 48h-Stunden-Werte nur bedingt aussagekräftig. Sieht man sich die Überlebenskurven der einzelnen Stämme an, fällt auf, dass vor allem bei den WBB6F₁Kit^{W/Wv}- Tieren die meisten Tiere in den ersten 48 Stunden sterben. Die Tiere, die dann zur Bestimmung der 48h-Zytokinkonzentration herangezogen werden, haben wahrscheinlich die Operation besser verkraftet. Die so entstandene Selektion führt dann zu falsch niedrigen, wieder wildtyp-ähnlichen Serumzytokinkonzentrationen.

Am besten zu beurteilen sind deshalb die 24-Stunden-Werte, auf die auch der Fokus in der Diskussion gelegt wurde.

4.4 Ausblick

4.4.1 Weiteres Vorgehen

Im Anschluss gibt es noch viele wichtige Aspekte die geklärt werden müssen, um die hier gefundenen Ergebnisse zu untermauern. So könnte die Untersuchung der Zytokine in der Bauchhöhle weitere interessante Aspekte für den Verlauf des Krankheitsgeschehens bringen und die Rolle der Mastzellen noch näher beleuchten. Eventuell ist hierfür die Beobachtung in einem weniger invasiven Sepsismodell (wie dem der Bakterieninjektion) sinnvoller, um das Trauma und die so induzierten Zytokine möglichst gering zu halten. In diesem Modell könnten ebenfalls In-vivo-Überlebensstudien angefertigt werden, um so nochmals den Einfluss der Mastzellen auf die Abwehr bakterieller Infektionen

und somit das Überleben zu beobachten.

Um den Widerspruch zu den Ergebnissen von Echtenacher und Maurer - bei denen die Mastzellen und von Mastzellen gebildetes TNF- α eine zentrale Rolle bei der Induktion der bakteriellen Abwehr spielen - genauer zu untersuchen, wäre denkbar, eine Mastzellrekonstitution durchzuführen. Wie in den beiden Arbeiten [15,32], könnte man mastzelllosen Mäusen (in unserem Fall *Mc-cpa*^{cre/+}-Tieren) Mastzellen in die Bauchhöhle injizieren und danach die CLP durchführen. Ein Überlebensvorteil der so rekonstituierten Tiere würde die Rolle der Mastzellen als Initiator der bakteriellen Abwehr bestätigen.

Um die Rolle der Mastzellcarboxypeptidase A (Mc-cpa) besser beurteilen zu können, wären Spiegelmessungen von Endothelin-1 bei Mäusen nach induzierter Sepsis hilfreich. Sollte sich die hier angenommene Hypothese bestätigen, wäre Bosentan als Endothelinrezeptor-Antagonist eventuell als mögliches Therapeutikum in Erwägung zu ziehen.

4.4.2 Klinische Relevanz

Der augenblickliche Stand der Forschung dient vor allem dem Verständnis der pathophysiologischen Prozesse. Man sollte sich in diesem Fall vor Augen halten, dass die von Mastzellen induzierten Effekte auf die bakterielle Abwehr zu einem sehr frühen Zeitpunkt in den Verlauf der Sepsis eingreifen würden. Auf der anderen Seite bietet jedes Verständnis der komplexen Zusammenhänge die Chance für neue Therapien. Auch in der Diagnostik des Krankheitsverlaufes kann noch viel getan werden. So hält heute schon die Konzentrationbestimmung bestimmter Zytokine, wie z.B.s IL-6, Einzug in die klinische Praxis. Dies geschieht vor allem in Risikosituationen, so zum Besipiel auf Intensivstation und bei Neugeborenen mit Infektionsrisiko. Genaueres Wissen um diese Zytokine und deren Relevanz hilft die Krankheitsanzeichen früher einzuschätzen oder die unterstützenden Therapien weiterzuentwickeln.

5 Zusammenfassung

Die Sepsis ist eine große Herausforderung für die heutige Medizin. Ihre Ursache ist eine sich systemisch ausbreitende Infektion. Sie geht einher mit hohen pro- und antiinflammatorischen Zytokinkonzentrationen. Mastzellen sind wichtig zur Induktion der Abwehr von bakteriellen Infektionen. Sie setzen durch Degranulation entzündungsfördernde Mediatoren frei. Ihre Rolle im Verlauf einer Sepsis ist daher experimentell zu klären. Allerdings haben die momentanen Mastzellmodelle - basierend auf Kit-Mutationen - einige Nachteile, weil auch andere Organsysteme betroffen sind. Die Auswirkungen der Mastzelllosigkeit sollte anhand eines neuen Mausstamms, der einen selektiven Mastzellmangel hat, gezeigt werden. Im zweiten Teil der Arbeit ist auch die Rolle der Mastzell-Carboxypeptidase A (Mc-cpa) untersucht worden. Mc-cpa katalysiert den Abbau von Endothelin-1, einem starken Vasokonstriktor. Dieser ist in der Sepsis stark erhöht und fördert Komplikationen durch Minderperfusion. Ein Abbau von Endothelin-1 durch die Carboxypeptidase A könnte sich somit auf den Verlauf der experimentell induzierten Sepsis auswirken.

Als experimentelles Sepsismodell wird die Cecal Ligation and Puncture (CLP) gewählt. Die hierbei gewonnenen Überlebensdaten der verschiedenen Stämme werden miteinander verglichen. Zudem werden die Konzentrationen ausgewählter Zytokine im Serum mithife eines Bead-Assays bestimmt.

In den durchgeführten Versuchen überleben die neuen mastzelllosen Mc- $cpa^{cre/+}$ -Tiere eine induzierte Sepsis besser als die bisher bekannten mastzelllosen WBB6F₁ $Kit^{W/Wv}$ -Tiere. Die Konzentrationen der Zytokine Interleukin-6 (IL-6), Monocyte-Chemoattractant-Protein-1 (MCP-1) und Tumornekrosefaktor-alpha (TNF- α) sind bei den Mc- $cpa^{cre/+}$ -Tieren signifikant niedriger als bei den WBB6F₁ $Kit^{W/Wv}$. Im Vergleich zu den Wildtyptieren zeigen die Mc- $cpa^{cre/+}$ -Tiere ein ähnliches Verhalten bei Überleben und Zytokinkonzentrationen. Bei den Tieren ohne Carboxypeptidase A zeigen sich im Vergleich zu den B6-Wildtyptieren keine signifikanten Unterschiede im Überleben und bei den Zytokinkonzentrationen.

Seit 1996 wird den Mastzellen eine wichtige Rolle bei der Initierung der Abwehr einer

5 Zusammenfassung

bakteriell-induzierten Sepsis zugeschrieben. Experimente neuerer Arbeiten und auch die in dieser Arbeit erhaltenen Ergebnisse konnten dies nicht bestätigen. Ein Unterschied zu den früheren Arbeiten ist der dort verwendete Mausstamm WBB6F₁ $Kit^{W/Wv}$. Dieser weist neben der Mastzelllosigkeit noch weitere unphysiologische Merkmale auf. In der vorliegenden Arbeit wurde die Rolle der Mastzellen bei der induzierten Sepsis bei reiner Mastzelllosigkeit im Mc- $cpa^{cre/+}$ -Stamm mit den bekannten WBB6F₁ $Kit^{W/Wv}$ -Tieren verglichen. Das unterschiedliche Überleben dieser beiden Stämme stellt die zentrale Rolle der Mastzellen im Rahmen der Sepsis in Frage.

Im experimentellen Teil der Arbeit konnte gezeigt werden, dass der Einfluss der Mastzellen auf den Verlauf einer durch Cecal Ligation and Puncture (CLP) induzierten Sepsis geringer ist als bisher angenommen. Unter Berücksichtigung der gewonnenen Ergebnisse und der Literatur scheint der bisher gezeigte Effekt der Mastzellen eher durch die Mutation des Kit-Gens und die daraus folgenden Begleitveränderungen erklärbar.

Für die Mastzell-Carboxypeptidase A als Abbauprotease des toxischen Endothelin-1 konnte aufgrund der interexperimentalen Varianz kein eindeutiger Effekt auf den Verlauf der Sepsis gezeigt werden.

- [1] Adamcak A, Otten B. Rodent therapeutics. The Veterinary Clinics of North America Exotic Animinal Practice, 3:221–37, 2000.
- [2] Akahoshi M, Ho Song C, Piliponsky AM, Metz M, Guzzetta A, Åbrink M, Schlenner SM, Feyerabend TB, Rodewald HR, Pejler G, Tsai M, and Galli SJ. Mast cell chymase reduces the toxicity of gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice. *The Journal of Clinical Investigation*, 121:4180–91, 2011.
- [3] Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis an the united states: analysis of incidence, outcome, and associated costs of care. *Critical Care Medicine*, 29:1303–10, 2001.
- [4] Bone-Larson CL, Hogaboam CM, Steinhauser ML, Oliveira SH, Lukacs NW, Strieter RM, Kunkel SL. Novel protective effects of stem cell factor in a murine model of acute septic peritonitis. dependence on mcp-1. *American Journal of Pathology*, 157:1177–86, 2000.
- [5] Brauner JS, Rohde LE, Clausell N. Circulating endothelin-1 and tumor necrosis factor-alpha: early predictors of mortality in patients with septic shock. *Intensive Care Medicine*, 26:305–13, 2000.
- [6] Brunkhorst FM. Epidemiologie, Ökonomie und praxis ergebnisse der deutschen prävalenzstudie des kompetenznetzwerkes sepsis (sepnet). Anästhesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie (AINS), 41:43–4, 2006.
- [7] Cavaillon JM, Adib-Conquy M, Fitting C, Adrie C, Payen D. Cytokine cascade in sepsis. Scandinavian Journal of Infectious Diseases, 35:535–44, 2003.
- [8] Charo IF, Myers SJ, Herman A, Franci C, Connolly AJ, Coughlin SR. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 re-

ceptors reveals alternative splicing of the carboxyl-terminal tails. *Proceedings of the National Academy of Sciences of the United States of America*, 91:2752–6, 1994.

- [9] Cohen J. The immunopathogenesis of sepsis. *Nature*, 420:885–91, 2002.
- [10] Czarnctzki BM, Grabbe J, Kolde G, Kriiger-Krasagakes S, Welker P, Zuberbier T. Mast cells in the cytokine network: the what, where from and what for. *Experimental Dermatology*, 4:221–6, 1995.
- [11] Damas P, Ledoux D, Nys M, Vrindts Y, De Groote D, Franchimont P, Lamy M. Cytokine serum level during severe sepsis in human il-6 as a marker of severity. *Annuals of Surgery*, 215:356–62, 1992.
- [12] De Maio A, Torres MB, Reeves RH. Genetic determinants influencing the response to injury, inflammation, and sepsis. *Shock*, 23:11–7, 2005.
- [13] Depinay N, Hacini F, Beghdadi W, Peronet R, Mécheri S. Mast cell-dependent down-regulation of antigen-specific immune responses by mosquito bites. *Journal* of *Immunology*, 176:4141–6, 2006.
- [14] Echtenacher B, Falk W, Männel DN, Krammer PH. Requirement of endogenous tumor necrosis factor/cachectin for recovery from experimental peritonitis. *Journal* of Immunology, 145:3762–6, 1990.
- [15] Echtenacher B, Männel DN, Hültner L. Critical protective role of mast cells in a model of acute septic peritonitis. *Nature*, 381:75–7, 1996.
- [16] Ehrlich P. Beiträge zur kenntnis der anilinfärbungen und ihrer verwendung in der mikroskopischen technik. Archiv für mikroskopische Anatomie, 13:263–77, 1877.
- [17] Engel C, Brunkhorst FM, Bone HG, Brunkhorst R, Gerlach H, Grond S, Gruendling M, Huhle G, Jaschinski U, John S, Mayer K, Oppert M, Olthoff D, Quintel M, Ragaller M, Rossaint R, Stuber F, Weiler N, Welte T, Bogatsch H, Hartog C, Loeffler M, Reinhart K. Epidemiology of sepsis in germany: results from a national prospective multicenter study. *Intensive Care Medicine*, 33:606–18, 2007.
- [18] Feyerabend TB, Weiser A, Tietz A, Stassen M, Harris N, Kopf M, Radermacher P, Möller P, Benoist C, Mathis D, Fehling HJ, Rodewald HR. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and t cell-mediated autoimmunity. *Immunity*, 35:832–44, 2011.

- [19] Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M. Mast cells as 'tunable' effector and immunoregulatory cells: Recent advances. *Annual Review of Immunology*, 23:749–86, 2005.
- [20] Gogos CA, Drosou E, Bassaris HP, Skoutelis A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. *Journal of Infectious Diseases*, 181:176–80, 2000.
- [21] Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ. Mast cell-deficient w-sash c-kit mutant kit w-sh/w-sh mice as a model for investigating mast cell biology in vivo. American Journal of Pathology, 167:835–48, 2005.
- [22] Hack CE, De Groot ER, Felt-Bersma RJ, Nuijens JH, Strack Van Schijndel RJ, Eerenberg-Belmer AJ, Thijs LG, Aarden LA. Increased plasma levels of interleukin-6 in sepsis. *Blood*, 74:1704–10, 1989.
- [23] Haynes WG, Webb DJ. Endothelin as a regulator of cardiovascular function in health and disease. *Journal of Hypertension*, 16:1081–98, 1998.
- [24] Hehlgans, T. und Pfeffer, K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. *Immunology*, 115:1–20, 2005.
- [25] Horn F, Henze C, Heidrich K. Interleukin-6 signal transduction and lymphocyte function. *Immunobiology*, 202:151–67, 2000.
- [26] Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. The New England Journal of Medicine, 348:138–50, 2003.
- [27] Hörner C, Bouchon A, Bierhaus A, Nawroth PP, Martin E, Bardenheuer HJ, Weigand MA. Bedeutung der angeborenen immunanteort in der sepsis. *Anaesthesist.*, 53:10–28, 2004.
- [28] Krishnaswamy G, Kelley J, Yerra L, Smith JK, Chi DS. Human endothelium as a source of multifunctional cytokines: molecular regulation and possible role in human disease. *Journal of Interferon and Cytokine Research*, 19:91–104, 1999.
- [29] Lehmann AK, Halstensen A, Sørnes S, Røkke O, Waage A. High levels of interleukin 10 in serum are associated with fatality in meningococcal disease. *Infection and Immunity*, 63:2109–12, 1995.

- [30] Lyon MF, Glenister PH. A new allele sash (wsh) at the w-locus and a spontaneous recessive lethal in mice. *Genetical Research*, 39:315–22, 1982.
- [31] Malaviya R, Ikeda T, Ross E, Abraham SN. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through tnf-alpha. *Nature*, 381:77– 80, 1996.
- [32] Maurer M, Echtenacher B, Hültner L, Kollias G, Männel DN, Langley KE, Galli SJ. The c-kit ligand, stem cell factor, can enhance innate immunity through effects on mast cells. *Journal of Experimetal Medicine*, 188:2343–8, 1998.
- [33] Maurer M, Wedemeyer J, Metz M, Piliponsky AM, Weller K, Chatterjea D, Clouthier DE, Yanagisawa MM, Tsai M, Galli SJ. Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. *Nature*, 432:512–6, 2003.
- [34] Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annual Review of Immunology, 19:683–765, 2001.
- [35] Nigrovic PA, Gray DH, Jones T, Hallgren J, Kuo FC, Chaletzky B, Gurish M, Mathis D, Benoist C, Lee DM. Genetic inversion in mast cell-deficient (wsh) mice interrupts corin and manifests as hematopoietic and cardiac aberrancy. *American Journal of Pathology*, 173:1693–701, 2008.
- [36] Osuchowski MF, Welch K, Siddiqui J, Remick DG. Circulating cytokine/inhibitor profiles reshape the understanding of the sirs/cars continuum in sepsis and predict mortality. *Journal of Immunology*, 177:1967–74, 2006.
- [37] Piliponsky AM, Chen CC, Grimbaldeston MA, Burns-Guydish SM, Hardy J, Kalesnikoff J, Contag CH, Tsai M, Galli SJ. Mast cell-derived tnf can exacerbate mortality during severe bacterial infections in c57bl/6-kitw-sh/w-sh mice. American Journal of Pathology, 176:926–38, 2010.
- [38] Rigato O, Ujvari S, Castelo A, Salomão R. Tumor necrosis factor alpha (tnf-alpha) and sepsis: evidence for a role in host defense. *Infection*, 24:314–8, 1996.
- [39] Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and punture. *Nature Protocols*, 4:31–6, 2008.
- [40] Rodewald HR, Dessing M, Dvorak AM, Galli SJ. Identification of a committed precursor for the mast cell lineage. *Science*, 271:818–22, 1996.

- [41] Schmidt-Supprian M, Rajewsky K. Vagaries of conditional gene targeting. Nature Immunology, 8:665–8, 2007.
- [42] Schneider LA, Schlenner SM, Feyerabend TB, Wunderlin M, Rodewald HR. Molecular mechanism of mast cell mediated innate defense against endothelin and snake venom sarafotoxin. *Journal of Experimental Medicine*, 204:2629–39, 2007.
- [43] Szalay L, Kaszaki J, Nagy S, Boros M. The role of endothelin-1 in circulatory changes during hypodynamic sepsis in the rat. *Shock*, 10:123–8, 1998.
- [44] Waage A, Halstensen A, Espevik T. Association between tumour necrosis factor in serum and fatal outcome in patients with meningococcal disease. *Lancet*, 1:355–7, 1987.
- [45] Wanecek M, Weitzberg E, Rudehill A, Oldner A. The endothelin system in septic and endotoxin shock. *European Journal of Pharmacology*, 407:1–15, 2000.
- [46] Wichterman KA, Baue AE, Chaudry IH. Sepsis and septic shock a review of laboratory models and a propsal. *Journal of Surgical Research*, 114:740–5, 1979.

Abbildungsverzeichnis

1	Wirkung der Mastzellen auf die Bakterienabwehr nach dem Sepsismodell	0
9	Arbeitshupethese zum Machanismus der Mastzell Carbeitmentides wöh	9
Ζ	rend des sepsischen Schocks	11
3	Ergebnisse eine Typisierung	17
4	Durchführung der Cecal Ligation and Puncture	18
5	Abfolge Zytokin-Assay	20
6	Vergleich zwischen unterschiedlichen Punktionsstärken und Schein-	
	Operationen	22
7	Vergleich der Überlebensratge zwischen B6 Wildtyp und	
	WBB6F ₁ Kit^{W/W_v} bei Cecal Ligation and Puncture mit 25 Gauge	23
8	Überlebenskurve von B6 Wildtyp, B6 $Mc\text{-}cpa^{\mathrm{cre}/\mathrm{+}},$ WBB6F 1 $Kit^{\mathrm{W/Wv}}\text{-}$	
	Mäusen nach Cecal Ligation and Puncture mit 25 Gauge	25
9	Überlebenskurven von B6 Wildtyp-, B6 Mc - $cpa^{cre/+}$ -, WBB6F ₁ $Kit^{W/Wv}$ -	
	Tieren nach Cecal Ligation and Puncture mit 22 Gauge	25
10	Zytokinkonzentrationen im Serumg von B 6 $Mc\mathchar`c\mbox{pa}\mbox{cre}/\mbox{+}\mbox{-}M$ äusen im Ver-	
	gleich zu B6 Wildtyp- und WBB6 F $_1~Kit^{\rm W/Wv}$ -Tieren 24 Stunden nach	
	Cecal Ligation and Puncture	27
11	Zeitlicher Verlauf der Zytokinkonzentrationen im Serum nach Cecal	
	Ligation and Puncture mit 22G bei B6-Wildtyp, B6 $Mc\text{-}cpa^{cre/+}$ und	
	$WBB6F_1 Kit^{W/W_V} \dots \dots$	29
12	Überlebensrate nach Cecal Ligation and Puncture mit 25 Gauge bei	
	WBB6F ₁ Mc - cpa ^{cre/+} -Tieren	30
13	Zytokinkonzentrationen bei WBB6F ₁ Mc - $cpa^{cre/+}$ im Vergleich zu	
	B6 Mc - $cpa^{cre/+}$ und WBB6F ₁ $Kit^{W/Wv}$ 24 Stunden nach Cecal Ligation	
	and Puncture	32

Abbildungsverzeichnis

14	Vergleich der Überlebensrate von B6-Wildtyptiere und B6 $Mc\text{-}cpa^{-/-}\text{-}$	
	Tiere nach Cecal Ligation and Puncture mit 21 Gauge	33
15	Zytokinkonzentration der B 6 $Mc\mathchar`cpa\mathchar`-Tiere im Vergleich mit$	
	B6 Wildtyp und WBB6 F_1 $\mathit{Kit^{W/Wv}}$ 24 Stunden nach Cecal Ligati-	
16	on and Puncture	35
	Verlauf der Zytokinkonzentrationen nach Cecal Ligation and Puncture	
	bei B6-Wildtyp, B6 Mc - $cpa^{-/-}$ und WBB6F ₁ $Kit^{W/Wv}$	36

Tabellenverzeichnis

Übersicht der in dieser Arbeit verwendeten Mc-cpa- mutierten und Kit-	
mutierten Mausstämme mit Eigenschaften	12
p-Werte Zytokinkonzentrationen bei B 6 $Mc\text{-}cpa^{\mathrm{cre}/\mathrm{+}}$ im Vergleich zu	
B6 Wildtyp und WBB6F1 $\it Kit^{W/Wv}$ 24 Stunden nach Cecal Ligation and	
Puncture mit 22G	28
p-Werte Zytokinkonzentrationen bei B 6 $Mc\mathchar`cpa\mathchar`/\mathchar` im Vergleich zu$	
B6 Wildtyp und WBB6F ₁ $Kit^{W/Wv}$ 24 Stunden nach Cecal Ligation and	
Puncture mit 22G	34
	Übersicht der in dieser Arbeit verwendeten Mc-cpa- mutierten und Kit- mutierten Mausstämme mit Eigenschaften

Danksagungen

Zum Schluss gilt mein Dank allen, die mich auf dem langen Weg bis zum Abschluss der Disseration begleitet haben.

Besonderer Dank gilt Prof. Dr. Hans-Reimer Rodewald, in dessen Labor ich die Versuche durchführen durfte, für die Anleitung, die Anregungen zum Verbesseren der Versuche, aber auch für die scheinbar unerschöpfliche Geduld mit der "Medizinerin". Desweiteren bedanken möchte ich mich bei Thorsten Feyerabend für die Betreuung während meiner Zeit im Labor und allen Mitarbeitern des Labors. Besonders wichtig war mit auch Annette Tietz, technische Assistentin, die scheinbar in jeder Situation eine Lösung wusste und immer ein offenes Ohr hatte.

Nicht zuletzt danke ich Herrn PD Dr. Lars Schneider, der mich in die Thematik eingeführt hat. Er stand mir während der gesamten Zeit als Ansprechpartner zu Verfügung und hat mir bei meiner medizinischen und wissenschaftlichen Ausbildung mit Rat und Tat geholfen.

Ich bedanke mich bei der Medizinischen Fakultät für die Aufnahme in das Promotionsprogramm, welches neben der finanziellen Unterstützung auch die Möglichkeit zum Austausch mit anderen Mitstreitern und Wissenschaftlern gab, und somit eine wunderbare Erfahrung war.

Zum Abschluss ein herzlicher Dank meiner Familie und meinen Freunden, die Korrekturlesen mussten und die die schwierige Aufgabe bewältigt haben, mich auch in schwierigen Phasen immmer wieder aufzumuntern und zu unterstützen.

Lebenslauf

Der Lebenslauf ist in der Online-Version aus Gründen des Datenschutzes nicht enthalten.

Lebenslauf