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Summary

Astrophysical observations show that planets, stars, galaxies, and galaxy
clusters have magnetic fields of various strength and spatial scales. Yet the
origin of those magnetic fields and how they affect the development of form-
ing structures such as protostars, protoplanetary disks, and protogalaxies is
still not clear. Indeed, magnetic fields tend to decay because of magnetic
diffusion, but the observations show that many magnetic field structures are
much older than the typical diffusion time scale of the host astrophysical
object. Therefore another mechanism must take place in order to avoid the
decay of the magnetic field. In geo- and astrophysical environments the “dy-
namo” instability is often invoked in order to explain the creation (or the
stability) of the observed large-scale cosmic magnetic fields, and in this case
the effect is known as geophysical or astrophysical dynamo mechanism. This
mechanism consists in the transformation of the kinetic energy of a fluid
into magnetic energy. When the geometry of the system obeys some par-
ticular constraints, this mechanism can lead to a runaway effect, where the
magnetic field is unstable until some saturation mechanism takes over. The
origin of astrophysical magnetic fields is not the only unanswered question
in this field of research: The interaction of preexistent magnetic fields with
forming structures is still object of investigation. Indeed, under certain cir-
cumstances, the sole presence of a magnetic field (regardless of its strength)
can strongly affect the behavior of particular astrophysical structures (i.e.,
rotating disks of conducting fluid), by making those systems dynamically
unstable to the so-called magnetorotational instability.

In order to understand and isolate these two instabilities, laboratory
experiments using liquid metals as working fluid have been designed and
realized during the last decades. This task has turned out to be difficult
since an unexpected behavior of the experiments occurred. In laboratory
dynamos, for instance, the presence of turbulence can hinder the process,
whereas in laboratory experiments aiming to study the magnetorotational
instability, other concurrent and unforeseen instabilities can make the de-
tection of this effect very difficult.

In this dissertation, a numerical approach is taken in order to address
these problems in flows that are important for laboratory, and hence astro-
physical, purposes. The equations of incompressible magnetohydrodynamics



are solved numerically by using mainly two codes, each one with different
features. The core of the thesis resides in the post-processing analysis of
the simulated data, where a powerful statistical analysis has been used in
order to extract information which would be difficult to characterize with
conventional spectral methods.
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Chapter 1

Introduction

“In astrophysics, the larger is
our ignorance, the stronger is
the magnetic field.”

Lodewijk Woltjer, Nordwijk
Symposium, 1966

1.1 The interplay between magnetic fields and flows
in astrophysical objects

Magnetic fields permeate the Universe. Observations show that planets,
stars and galaxies have magnetic fields of various strength and spatial scales.
Consequently, it is not a surprise that scientific research has been trying
to understand the origin of those magnetic fields and how they affect the
development of forming structures (e.g., protostars, protoplanetary disks,
and protogalaxies). The argument that the collapsing matter increases the
amplitude of a preexistent magnetic field (because of an effect known as
“conservation of the magnetic flux in ideal conditions”) only partially ex-
plains the observations. Indeed, magnetic fields tend to decay because of
magnetic diffusion, yet we observe that many magnetic field structures are
much older than the typical diffusion time scale of the magnetized structure.
Therefore another explanation is needed. The origin of astrophysical mag-
netic fields is not the only unanswered question in this field of research: The
interaction of preexistent magnetic fields with forming structures is still ob-
ject of investigations. Indeed, under certain circumstances, the presence of a
magnetic field (regardless of its strength) can strongly affect the behavior of
particular astrophysical structures (i.e., rotating disks of conducting fluid),
by making those systems dynamically unstable. In the following, the two
topics discussed above will be analyzed: The generation of magnetic fields
in conducting fluids and the runaway effect that magnetic fields can foster in



rotating conducting fluids. The first effect is known as “dynamo” mechanism
(or effect, or instability, or action), the second one as “magnetorotational
instability” (MRI).

The dynamo effect is considered the most reasonable candidate to
explain this ubiquitous presence of strong, non-decaying, and spatially well-
behaved magnetic fields in most astrophysical fluid objects (e.g., planetary
cores, stars, galaxies, and galaxy clusters). The name of the effect comes
from those devices — known as dynamos — that are able to convert kinetic en-
ergy into electromagnetic energy. The first 19th-century current-generating
machines consisted of a set of rotating coils in the field of permanent steel
magnets. In 1866, the German industrialist and engineer Werner Siemens
proposed to install electromagnets instead of using permanent magnets. In
this way, the generated current itself could be twisted around the electro-
magnets in such a way that the magnetic field produced by the electromag-
nets would be amplified, and this — in turn — would amplify the generated
current. The growth of the magnetic field eventually saturates for energetic
reasons (the torque needed to run the machine becomes higher and higher
and energy is conserved), but in the initial linear phase the growth is expo-
nential, hence creating an unstable runaway effect. More precisely, this kind
of & la Siemens devices are commonly known as dynamo-electric machines
(in order to distinguish them from the magneto-electric devices that exploits
permanent magnets). The mechanism of these dynamo machines depends
of course on a suitable arrangement of multiply connected regions (usually
wires) of high electrical conductivity within an insulating space and where
solid materials are commonly used. In geo- and astrophysical environments,
a magnetic instability is often invoked in order to explain the creation (or
the stability) of the observed large-scale cosmic magnetic fields, and in this
case the effect is known as geophysical or astrophysical dynamo mechanism.
In these contexts, though, the scenario is quite different from the technical
one: Astrophysical objects where the dynamo instability occurs are usually
fluid, with a uniform and finite conductivity. Last, but not least, the topol-
ogy of the astrophysical dynamos is simply connected (no planetary wires
or electromagnets have been observed until now).

In 1919, Larmor [1] first proposed that the dynamo process might be
able to explain the origin of magnetic fields in sunspots, but doubts were
raised about the plausibility of this explanation. Mathematicians and geo-
physicists have been focusing on the conditions under which dynamo action
occurs, but they usually ended up with proving anti-dynamo theorems, i.e.,
theorems that state under which conditions dynamos do not work. The first
(and most famous) theorem has been proved by Cowling [2], who showed
that axisymmetric or two-dimensional magnetic fields cannot be dynamo-
generated. This raised even more doubts about whether the dynamo mech-
anism could occur in the core of the Earth, since the Earth’s magnetic field
is nearly axisymmetric. In 1958, Backus [3] and Herzenberg [4] were able



to show that non-axisymmetric fields could be generated by the dynamo
mechanism.

The second topic we mentioned above is the so-called magnetorota-
tional instability (MRI). This instability occurs in certain astrophysical
plasmas and can be formally addressed — as for dynamo theory — in the
framework of magnetohydrodynamics (MHD). This effect is considered the
major candidate to explain the age-old problem (see below) of the unknown
mechanism responsible for the transport of angular momentum from the
inner regions toward the outer ones of rotating disks. Since such systems
(differentially rotating fluids immersed in magnetic fields) are not rare at all
in the observed universe, it becomes clear that this instability plays a very
important role. FExamples of such systems are: thin disks of gas around
forming stars or in binary star systems, or — at larger scales — disks of inter-
stellar medium rotating in the centre of galaxies. Those systems, known as
accretion disks, can become extremely luminous sometimes: a gaseous disk
surrounding a very massive black hole can give origin to quasars.

In a rotating disk, indeed, if matter falls inwards, it must lose angular
momentum. On the other hand the total angular momentum of the disc
must be conserved, therefore the mass far from the center of the disk must
gain angular momentum somehow: An outward transport mechanism of the
angular momentum must take place for matter to accrete. When first mod-
els of accretion disks appeared (late ’40s, see [5]), an angular momentum
transport mechanism had to be invoked — although not known in detail — in
order to match the astrophysical observations. Since accretion disks are al-
most inviscid, ordinary molecular viscosity cannot explain the high efficient
transport mechanism. Vigorous hydrodynamical turbulence — that can in
fact give rise to an enhanced outward angular momentum transport — rep-
resents another possible explanation, yet its origin in those systems is still
unclear. Hot disks of electrically conducting plasma can indeed become tur-
bulent because of the linear magnetorotational instability [6]. On the other
hand, cool disks (e.g., the planet-forming disks of protostars) may be too
poorly ionized for the magnetorotational instability to occur, hence they are
unmagnetized and linearly stable. Nevertheless, nonlinear hydrodynamic in-
stability can occur also in linearly stable flows if their fluid Reynolds number
is large, where the fluid Reynolds number is the ratio of inertia to viscous
forces in the flow. Protoplanetary disks have in fact very high Reynolds
numbers, but their Keplerian motion makes them hydrodynamically sta-
ble. The latter considerations (which can be found — e.g. — in [6]) have
motivated the construction of laboratory experiments, and one of them [6]
demonstrates that non-magnetic quasi-Keplerian flows at Reynolds numbers
up to ~ 10% are steady. When this result is scaled to accretion disks, rates
of angular momentum transport lie far below astrophysical requirements, so
purely hydrodynamic turbulence is probably a poor candidate for explaining
the high efficiency of outward transport of angular momentum.



The magnetorotational instability hence has become more and more pop-
ular as an explanation for the source of the turbulence in accretion disks: It
makes the fluid unstable, it is a source of outward transport of angular mo-
mentum, it likely causes turbulence even in cool disks. In fact, the motion
of conducting fluids (gases or liquids containing mobile charge carriers) can
be influenced by magnetic fields: pressure, gravity, Coriolis, or other bulk
forces are important as well as the Lorentz force. Moreover, if a conducting
fluid is differentially rotating around a fixed point with an angular veloc-
ity decreasing with radial distance, the influence of the Lorentz force can
be particularly destabilizing. Astonishingly, this effect works regardless of
the magnitude of the magnetic field. The instability can be summarized
in the following way: Those fluid parcels that — for any reason — undergo
a small displacement from their original circular orbit, experience a force
whose magnitude is proportional to the displacement, making the system
unstable. This runaway effect is known as MRI.

The MRI was originally studied by Velikhov [7] and Chandrasekhar [8].
Although some other works followed [9-11], the MRI revival started from a
work of Balbus and Hawley [12], who rediscovered and reformulated it in a
more enlightening way. As already mentioned, the MRI importance in the
astrophysical community is very well acknowledged, and the instability is
extensively studied via numerics, theory, and — recently — also experiments.
Those experiments have usually a size of the order of the meter and use — as
a working fluid — liquid metals (such as liquid sodium or liquid gallium). In
the following section we will briefly introduce two of such liquid-metal ex-
periments, one concerning the dynamo mechanism, the other one concerning
the magnetorotational instability.

1.2 Liquid metal experiments

Liquid metals are media that are commonly used at laboratory scales in
order to study problems of astrophysical interest, since they share two im-
portant features with the media found in many astrophysical systems: They
are fluid and conducting. Needless to say that, at the laboratory scales,
it is impossible to reach the same physical parameters as the astrophysi-
cal objects that have inspired the design of those devices, but experiments
are important to isolate and study on the Earth the physical principles be-
hind the complex astrophysical phenomena under investigation. Similarly,
it is still not possible — with modern computational resources — to have
simulations running with the same physical parameters as the experiments.
Nevertheless, by means of numerical simulations, a lot of interesting aspects
can be analyzed and — as this dissertation hopefully shows — a lot can be
learnt.

The best way of formally describing the dynamics of those conducting
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fluids (i.e., fluids that can easily interact with magnetic fields) is by making
use of magnetohydrodynamics, as mentioned above. It can be shown that
this formalism can be derived from first principles, i.e., by approximating
the exact kinetic equations (i.e., the equations describing the medium as
a set of pointlike particles). The approximated version of the system of
equations has a more restricted range of validity, since part of the informa-
tion on the dynamics is lost in the approximation process. In particular,
when the kinetic equations are reduced to the MHD equations, the most
important approximations are: the closure of the infinite chain of equations
describing the momenta of the governing kinetic equation, the use of a sim-
plified version of Ohm’s law, and the omission of relativistic effects (i.e.,
effects of finite light speed are ignored). By doing so, MHD is appropriate
to describe fluid systems with low frequency dynamics (compared to light
waves), where a static Ampere’s law can be used (displacement currents are
unimportant), where pressure forces are smaller than electric forces, where
electrical currents as relative drifts are smaller than the fluid velocity, and
where a single total pressure and a single velocity can be used to describe
a globally neutral flow (there is no distinction between the dynamics of the
different charge carrier species; moreover, the fluid carries approximately no
charge). Liquid metals usually fall into this category of fluids and can be
successfully described by MHD.

Two liquid metal laboratory experiments, relevant for astrophysical pur-
poses, have been studied via numerical simulations: the Madison Dynamo
Experiment (University of Madison-Wisconsin) and the Magnetorotational
Instability Experiment (Princeton Plasma Physics Laboratory). The first
experiment has been designed and built in order to study the generation of
magnetic fields via dynamo action. By modeling the experiment, simulations
can predict — for instance — how to modify the device in order to amplify the
dynamo effect; moreover, simulations can have access to data in each point
of the device (whereas — for technological reasons — this is not alway possible
in laboratories). Furthermore, since hydrodynamic turbulence turned out
to play a relevant role in this experiment (acting as a negative effect for the
generation of the magnetic field in the device), many efforts — described in
this thesis — have been made in order to understand the main features of the
motion of the fluid in the device. The second experiment aims to study at
laboratory scales the MRI. The main target of this second part of this PhD
project has been the modeling of the experiment using a code written to
study general problems with axisymmetric geometry in MHD. The feasibil-
ity of using this code has been carried out by benchmarking it with another
code and with recent experimental results.
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1.3 Contents of this dissertation

The outline of this dissertation is as follows: In Chapter 2| a brief general
background is given, emphasizing three main aspects that are relevant for
this dissertation: dynamo theory, the MRI, and turbulence. Chapter [3|deals
with the liquid-metal apparatuses that have been working so far on the two
instabilities, whereas in Chapter [ the codes used to model and simulate
the two systems have been described in detail. Chapter [5| describes the
part of the project dedicated to the MRI simulations. In Chapter [6] first
analyses of turbulence in the Madison Dynamo Experiment are shown, with
particular emphasis on the study of the type of turbulence occurring in
the experimental setup. Chapter [7] deals with our first attempts to reduce
the influence of turbulence on the dynamo process, before we started using
the Singular Value Decomposition technique, as described in Chapter
Conclusions and outlook of this work are outlined in Chapter [0
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Chapter 2

Theoretical fundamentals

“An expert is one who knows
more and more about less and
less”

William J. Mayo

The aim of this chapter is to provide the reader with the theoretical
background that is needed to understand the main topics of this thesis. For
further readings about dynamo theory, the tetxbook [13] is a comprehen-
sive introduction to the generation of magnetic fields in conducting media.
Concerning the Magnetorotational Instability, a complete overview can be
found in [14]. Concerning general electromagnetism and the induction equa-
tion, we follow classical textbooks as [15] or [16]. For the derivation of the
hydrodynamical equations, we follow textbooks like [17-21]. The material
presented in this chapter is a combination of descriptions that can be found
in the above-mentioned references.

As already stated in the introduction to this dissertation, the work we
carried out is threefold, since three main topics have been explored in ge-
ometries that are relevant for experimental purposes: dynamo theory, the
Magnetorotational Instability and turbulence in (magneto)hydrodynamics.
The theoretical backgrounds of those three topics overlap, since magneto-
hydrodynamics (MHD) represents the common factor of these topics. MHD
is the branch of plasma physics that studies the dynamics of conducting
fluids (such as plasma, liquid metals, even sea water), therefore it repre-
sents the natural environment that has to be used in order to model the
liquid sodium and liquid gallium experiments (i.e., the Madison Dynamo
and the Magnetorotational Instability experiments, respectively) this dis-
sertation deals with. The system of MHD equations is a combination of
the Navier-Stokes equations for the hydrodynamic part (where the Lorenz
force plays a role as a source of momentum) and the Maxwell equations for
the description of the electromagnetic phenomena. All these equations are
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indissolubly bound and should be solved simultaneously, a task that usually
requires the help of numerical techniques. It is important to point out that
MHD cannot model kinetic phenomena, i.e., it treats conducting media as
continuous ones, hence neglecting the effect do to the fact that particles
are discrete and that are — under certain circumstances — non-thermal .
Nevertheless, the MHD system can be rigorously derived from the kinetic
equations (as very didactically shown in [16]) and can be seen as an approx-
imation of the kinetic approach when collisions among particles occur very
frequently and when the macroscopic velocities are way smaller than the
speed of light.

Contents

2.1 Governing equations: Hydrodynamics| . . . . . . 14
2.1.1 Lagrangian and FEulerian frames ot reference in |

| fluid dynamics| . . . . .. ..o 14
2.1.2  The continuity equation| . . . . . . ... ... ... 15

2.1.3  The momentum equation| . . ... ... ...... 16

2.2 The induction equation| . . . . . ... ... .... 19
2.3  Putting all together: the system of governing |

| equations| . . . . .. i it e e e e e e e e e e 20
2.4  Waves, instabilities, and turbulence| . . . . . .. 21
2.4.1 Magnetorotational Instability| . . . . . .. ... .. 21

2.4.2  The weak spring picture| . . . . . . ... ... ... 22

2.4.3  Dynamo theory|. . . . . ... ... ... 25

2.4.4  Kolmogorov’s theory of small scale turbulence]. . . 31

2.1 Governing equations: Hydrodynamics

In this section, we will review the derivation of the equations governing the
dynamics of fluids. We will start by describing the two frames of reference
traditionally used to describe fluid dynamics and then derive the physical
equations.

2.1.1 Lagrangian and Eulerian frames of reference in fluid
dynamics

In the Eulerian specification of the flow field, the flow quantities are de-
scribed as a function of position r and time ¢t. E.g., the velocity field of the
flow is described by a vector field u(r,t), where the position r is a variable
independent of .

In the Lagrangian specification of the fluid motion, individual fluid parcels
are followed through time. Each fluid parcel is labelled with a time-independent
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vector X, which represents the position of the parcel at ¢ = 0. Each fluid
parcel will have, at time ¢, position x(X,t). In other words, the function
x(X, t) describes the trajectory (or “pathline”) of the parcel at position X
at t = 0. The two description are linked by the equation

0
t = —x(X,t 2.1
u(r, ) r=x(X,t) 6tx( ’ )’ ( )
since both sides describe the velocity the parcel labeled will have at time t.
Within a chosen coordinate system, X and r are called — respectively — the

Lagrangian coordinates and the Eulerian coordinates of the flow.

2.1.2 The continuity equation

The continuity equation expresses conservation of mass in mathematical
form. Within a geometrical volume V', fixed in space and time, the rate of
change of mass is equal to the mass flux crossing the surface 0V of the volume
V, since no source or sink of mass is present in the volume. Mathematically:

d
— pdV+/ pu-ndS, (2.2)
de Jy ov

where v is the velocity of the fluid, p its density, n the unit vector normal
to the surface and pointing outwards. The surface integral can be replaced
by a volume integral via the Gauss theorem, and we have

J

This integral equation holds for any arbitrary volume, therefore the inte-
grand must locally vanish, yielding to the so-called continuity equation:

ap

5 TV (pu)

dv = 0. (2.3)

dp

—+ V- (pu) =0. 2.4
LV (pu) (24)
This equation is readily written also in the Lagrangian frame of reference,
ie.,

il 2.
oD 0, (2.5)

where the operator D/Dt = d/dt + u - V is the Lagrangian (or material
or substantial) derivative, which describes the rate of change of a quantity
along the trajectory of the flow, and the term D = V - u is called dilatation.
In incompressible conditions (flows of constant density) we have — both for
steady and unsteady flows — that

V-u=0. (2.6)
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This condition is enforced in both the codes used throughout this thesis.

2.1.3 The momentum equation

According to Newton’s second law of dynamics, the temporal rate of change
of linear momentum of a mass is equal to the sum of the forces Fy, acting on
the mass. In our case, the mass is represented by a fluid parcel, treated as
a closed system (denoted by “cs” in the following), i.e., no fluid flows across
its boundaries. In this case, Newton’s law becomes

d
T pudV, s = %:Fk (2.7)

If the control volume V is fixed in space and time with flow allowed to cross
its boundaries, the following equation holds

4 pudV,s = / g(pu)dV +/ pu(u-n)ds. (2.8)
dt v ot oV

This equation accounts for possible changes of the linear momentum per
unit mass pu due to internal change (first term on the right hand side) or
due to transport of momentum across the boundaries of V (second term).
Using again Gauss theorem, we find

d 0

— dVes = — : dv, 2.9

5 mave= [ ( o (pu) + ¥ <puu>> (2.9)
which becomes, using the continuity equation,

d Du
S pudvi, = [ p2lav. 2.1
ai | PrVes = | P dV (2.10)

Surface forces (acting on the boundaries) and body forces (acting on the
bulk of the fluid) contribute to the sum of the forces ), F;. The nature of
the surface forces depends on whether we consider viscous or inviscid flows.
In the ideal case when viscosity can be neglected, the only surface force is
the force due to the pressure p, acting orthogonally to the surface of the
parcel; hence we have

ZFk:/pde— pnds, (2.11)
L Vv oV

where f is a generic volume force per unit mass. Using Gauss’ theorem,

SR = /V (ot — Vp)aV, (2.12)
k
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and we finally retrieve the so-called Fuler’s equation, which holds in inviscid
conditions:

p— = pf — Vp. (2.13)

For viscous fluids, in Eq. one should consider that the surface
stress can produce a net stress in any direction. A tensor should then be
introduced, whose ¢j-th component is denoted by o0;;. The average of the
normal stress is set equal to the negative of the pressure, whereas the re-
maining terms describe the effects of the viscous nature of the flow. Putting
all together, contributions of the viscous stress forces and the pressure are
described by the viscous or deviatoric stress tensor 7, whose ¢j-th component
reads 7;; = pd;; + 0;;. We hence have

Du

"Dt

This last equation turns out to be usable if one can relate the viscous stresses

to the rate of strain, namely the velocity gradients. In order to write those

relationships, assumptions on the fluid under consideration are required. It

can be experimentally verified by shearing a fluid layer between parallel
plates that a large number of fluids satisfies the relation

—pf—Vp+V-T. (2.14)

F=p— (2.15)

where 7 is the shear stress exerted on a fluid parcel and the velocity gra-
dient is perpendicular to the direction of the shear [23]. The constant of
proportionality p is the dynamic viscosity and fluids that satisfy equation
are called Newtonian fluids. In three dimensions, the viscous stress
tensor for a Newtonian fluid becomes, analogously,

_ M(@ﬂi n Ou; 25 3uk> I 5ijﬂ%7 (2.16)

Ox;  Ox; 3”’87% oz,

where i is the so-called second coefficient of viscosity. If the viscosity co-
efficients are constant, by taking the divergence of the stress tensor, the
equation of motion for the fluid parcel becomes

Ju o1
p(é)t + (u- V)u) = —Vp+pVia+ <u + 3,u> V(V-u)+pf, (2.17)
namely the so-called Nawier-Stokes equation. The third term vanishes if
the flow can be considered to be incompressible (since Dp/Dt = 0). Liquid
metals, such the ones used in the experiments modeled and described in this
thesis, can be considered incompressible with a high order of accuracy. The
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term proportional to f describes the body forces, as already stated. For the
purposes of modeling laboratory systems where a conducting flow is stirred
and immersed in a background magnetic fields B, Lorentz force plays an
important role. Its expression, per unit volume, is given by

f, =jx B, (2.18)

where j is the current density, which is related to the magnetic field via
Ampere’s law. Neglecting the displacement current, Eq. (2.18) becomes

1
fr = —(V xB) xB. (2.19)
Ho
Therefore, the conservation of momentum in an electrically conducting in-
compressible fluid streaming at non-relativistic velocities is expressed by the
so-called extended Navier-Stokes equation, which can be written as
ou 9 .
a—i—(u-V)u:—VP—i—l/V u+jx B, (2.20)
where the P = p/p is the reduced pressure and v = p/p is the kinematic
viscosity.
In the incompressible case and neglecting body forces, the pressure field
can be obtained from a known velocity field by taking the divergence of the
Navier-Stokes equation. In this way, a Poisson equation is obtained, namely

82uiuj
pal’jaiﬁi '

Vip = (2.21)
On the other hand, the pressure gradient force can be eliminated from the
Navier-Stokes equation by taking the curl of the equation itself, hence ob-
taining the so-called vorticity transport equation, i.e.,

%‘; =V x (uxw)+rViw (2.22)

where w = V X u is the wvorticity field. If incompressibility holds, last
equation can be transformed into

%—UZ +(u-V)w = (w-V)u+rViw. (2.23)

The vorticity equation [2.23] states that vorticity is advected by the ve-
locity flow (as the left hand side shows), it is stretched and tilted by velocity
gradients and diffused away by viscosity. This equation can be solved if the
pressure is not needed explicitly, since in the incompressible case w retains
the whole information on the velocity field. The DYNAMO code — as described
in Chapter [4 - uses this method.
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2.2 The induction equation

Electric and magnetic fields are governed by Maxwell’s equations [15]. In SI
units these equations read

V-B=0, (2.24)
V-E = p./eo, (2.25)
V xB=pug (j + ean), (2.26)
ot
0B
VxB=-"70 (2.27)

where p. is the electric charge density, €g the permittivity of free space, and
o the permeability of free space. The second term on the right hand side of
equation is the displacement current. It ensures the invariance of the
equations under the Lorentz transformation and is the a fundamental term
since it gives to the solution of the equations wavelike properties. In the
context of dynamo theory any fluid motion is usually assumed to be slower
by orders of magnitude than the speed of light. In other words, sources are
steady or quasi-steady (slowly varying), and the displacement current can
be neglected, leading to the so-called pre-Maxwell set of equations.

The system is not closed if we do not indicate a relation between the
current density and the fields. Ohm’s law relates these quantities. In a
frame at rest relative to a homogeneous and isotropic electrically conducting
fluid, the relation is

j =oF, (2.28)

where o is a the scalar electric conductivity (a tensor, for inhomogeneous
and anisotropic materials). The electric field is not invariant and is subject
to the transformation law E’ = E + u x B. Therefore, in the laboratory
frame relatively to which the electrically conducting fluid is streaming at
the velocity u Ohm’s law takes the form

j=oc(E+uxB). (2.29)
Dividing Eq. (2.29) by o, taking the curl, and eliminating the electric
field via Eq. (2.27]), we obtain

V x (J) :—%—]?—FVX (ux B). (2.30)

The current density can in turn be eliminated by inserting the pre-
Maxwell form of Eq. (2.26). If the conductivity is constant over space,
we have
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%]? =V x (ux B)+7V’B, (2.31)

i.e., the so-called magnetic induction equation. This equation plays a fun-
damental role in dynamo theory, since it is the main governing equation for
the generation of magnetic fields in electrically conducting media. The first
term on the right hand side represents the generation of magnetic field due
to electrical currents that are induced when an electrical conductor moves
relative to a magnetic field. The second term describes dissipation of mag-
netic field due to Joule heating that electrical currents are subject to when
they flow in a conductor with non-zero resistivity. Since the magnetic field
is divergence-free, Eq. can be recast in the following way

0B

7+ V)B=(B- V)u +nV?B. (2.32)
In the left hand side we recognize the material derivative DB/Dt, i.e., the
rate of change of the magnetic field along the flow. This last equation shows
that this temporal change depends on the stretching of the magnetic field
due to the velocity field and on Joule dissipation.

2.3 Putting all together: the system of governing
equations
The fundamental equations that govern the dynamics of liquid metals in

typical experimental apparatuses are the incompressible extended Navier-
Stokes equations coupled to the induction equation. The system reads

B
OB 1
5=V (u BV x B), (2.34)

where p is the density of the fluid, u its velocity, v its kinematic viscosity,
o its conductivity, B the magnetic field, and

1
j= - VxB (2.35)

the current (the displacement current is negligible for quasi-stationary sources).
The constraints on the incompressibility of the flow reads V-u = 0. In writ-
ing down the induction equation, we have assumed that Ohm’s law takes
the form [15]

j=o(E+uxB), (2.36)
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with j and the electric field E are measured in a local rest frame. Combining
Ohm’s law, Faraday’s law and Ampere’s law , the induction equation
follows. The constraint V-B = 0 (no magnetic monopoles) is assured
by Eq. if it is imposed as an initial condition.

In order to grasp the physical meaning of the phenomena studied for this
thesis, we briefly describe the exact Lagrangian solution to the induction
equation in the ideal case when the resistivity n = 1/(uop) is negligible [24]
and the fluid is compressible. Although this solution (the so-called “frozen
in” picture) holds only in the ideal case, becoming wrong in real fluids
where diffusion cannot be neglected and magnetic reconnection takes place,
it turns out to be pedagogical. As already stated, a compressible fluid obeys
the continuity equation

0 d
S V() =

= — ‘u= 2.
N T +pV-u=0, (2.37)
where the Lagrangian derivative is
d 0
— (= V). 2.
= (gt v) (239)

By expanding the induction equation (2.34)) and then combining it with the
continuity equation (2.37) in order to eliminate the term proportional to

V - u, we find
d (B B
—|—=]=(—-V]u 2.39

This evolution equation happens to be the same one obeyed by an infinites-
imal element dx(t) embedded in the fluid (i.e., connecting two close real
“particles” of the fluid or two close fluid “parcels”), which is

%dx =dx - Vu, (2.40)
as an elementary geometrical construction shows (see Appendix. We will
make explicit use of this result in the following sections where a description
of the dynamo effect and the MRI has been carried out. Moreover, in next
Section, we will give a general overview of turbulence and its role in the
dynamo systems.

2.4 Waves, instabilities, and turbulence

2.4.1 Magnetorotational Instability

The Magnetorotational Instability (MRI) is considered the main candidate
to explain the unexpected fast transport of angular momentum toward outer
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radii in accretion disks around stars and black holes. This instability has
been originally studied by Velikhov |7] and Chandrasekhar [8] and then re-
discovered by Balbus and Hawley [12], who showed that Keplerian disks, for
which the Rayleigh criterion predicts axisymmetric hydrodynamical stabil-
ity, can be destabilized is a weak magnetic field is present. In general, the
MRI occurs when a weak magnetic field is applied to a rotating electrically
conducting fluid whose angular velocity €2 decreases with the distance from
the rotation axis, i.e., 9Q(R)/OR < 0. Linear stability analysis shows that
the most unstable mode is axisymmetric and associated with a strong radial
outflow of angular momentum, which provides a simple explanation to the
problem of the angular momentum transport. Non-linear evolution of the
MRI is of primary importance, since saturation of the instability eventually
yields a magnetohydrodynamical turbulent state, enhancing the angular mo-
mentum transport [25]. Let us consider, in cylindrical geometry (R, z, ¢),
Eqgs. , and . Let the electrically conducting fluid have
the shape of a rotating disk (with differential rotation Q(r)) and let it be
in the presence of a large scale magnetic field with components (0, B., B¢)ﬂ
By perturbing quantities such as u, B, the pressure P, and the density p
with perturbations whose spatiotemporal form is exp i(kz —wt), a dispersion
relation can be extracted (i.e., a formula that gives the frequency w of a per-
turbation with wave number k). In the absence of rotation (2(R) = 0), this
dispersion relation has three solutions, i.e., it foresees three kind of modes:
the so-called Alfvén waves, the fast and the slow magnetosonic waves. The
first ones are compressionless disturbances that propagate along the mag-
netic field lines. The second (third) ones propagates with a faster (slower)
velocity. On the other hand, when the rotation of the disk is not neglected,
the dispersion relation shows that the slow mode becomes unstable (the
square of its frequency becomes negative leading to a growing/decaying am-
plitude of the wave-like perturbation). In the following section, the dis-
persion relation will be derived in a simplified — albeit didactic — scenario,
known as “weak-spring picture”.

2.4.2 The weak spring picture

The Magnetorotational Instability can be didactically described by the so-
called “weak-spring picture”. Let us consider a rotating conducting fluid
under conditions of ideal MHD and let us perturb the physical quantities of
interest. Then, a fluid parcel will be displaced from its circular orbit by an
amount & (with (R, z) = (&g, &4, 0) expikz), and the “frozen-in” induction
equation becomes

1The component Br does not play an important role in the analysis instability, it would
just cause a linear time dependence in Bg. Since the weak-field axisymmetric instability
carries on independently of By, it will not be considered for the sake of simplicity

22



5B = ikB¢, (2.41)

with 6Bz = 0. The magnetic tension force (= (-2- - V)B) becomes, under

Hop
the effect of the perturbing disturbances, ’
kB
PP5B = — (k- ua)%, (2.42)
fiop

where mathbfu, is the Alfvén velocity. The equations of motion of the
displacement & become

- . dn?
§r— 208y = — (dlnR + (k- uA)2> R, (2.43)
and ) ‘
o+ 20%R — (k- ua)’Ey. (2.44)

These equations describe the same dynamics of two orbiting masses con-
nected by a spring whose spring constant is (k - u4)?. This coincidence is
particularly enlightening. Let us consider those two mass points, initially
circulating on the same orbit, that are displaced to two new close orbits.
Mass m; orbits now at inner radius R;, whereas mass m, at outer radius
R,. In a Keplerian disk, particles at inner orbits rotate more rapidly, so
mass m; would increase its angular velocity, the contrary applies to m,. In
this scenario, the string connecting the two masses starts stretching and the
tension would decelerate m; and accelerate m,. In other words, mass m; lost
angular momentum in this process and it is hence forces to occupy an even
lower orbit, while mass m, acquires more angular momentum an occupies a
higher one. It is clear from this picture, that this mechanism explains the
transport of angular momentum from the inner radii to the outer radii. At
this point, the separation between the two masses is larger and the spring
tension gets higher and a runaway effect takes place.

For this instability to occur, the spring must be weak. If the spring
constant is too high, the oscillation frequency of the spring would be too
high compared to the orbital time and the runaway effect would not work.
This last consideration can be understood by looking at the right-hand side
of Eq. . If the magnetic field amplitude is high enough, such that

d0?

. >_ "
(k-ua) > =

(2.45)
then the restoring force is too high and the system is stable. In other words,
MRI will not occur unless both the rotation period and the Alfvén crossing
time are shorter than the timescale for magnetic diffusion. The dimension-
less quantity that measures the ratio of the resistive diffusion timescale 7, to
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the Alfvén wave crossing timescale 74 is called Lundquist number, usually
indicated with S. Indicating with L the characteristic length scale of the
system and with By the background field, we have that

L2 UA BO
Ty = 0—1;2:77 TA = — = 2.46
1o L = Lyiop (2.46)
Thus, in SI units, the Lundquist number S = Tp /T4 reads
ByoL
§ =2 (2.47)

nv/Hop

The Lundquist number becomes very large for highly conducting plasmas;
for laboratory plasmas S is typically on the order of 102-10® (whereas in
the simulations described in the next Chapters, S is less than 10, hence it is
low, indicating a resistive flow). The condition described above (i.e., that the
MRI will not occur unless both the rotation period and the Alfvén crossing
time are shorter than the timescale for magnetic diffusion) is translated into
the conditions Rm > 1 and

BL
v/ Hop

It can happen, however, that the geometry of the system allows distur-
bances whose wavenumber k is small enough such that they do not fulfill the
stability criterion , and in this case all the perturbations with a higher
wavelength would grow exponentially in the linear regime. In other words,
in this ideal case, the magnetic field is never too small to be dynamically
ignored. This last eventuality happens, for instance, if one considers infinite
systems. On the other hand, if

S

> 1. (2.48)

d0?
dln R

> 0, (2.49)

the stability is assured, regardless of the wavelength of the disturbances.
It is worth noticing that, due to the gravitational potential and, hence,
the typical functional form of Q(R) in astrophysical disks, this condition is
usually not satisfied. In the most realistic case where the disk has a finite
vertical height, it goes without saying that there would be a restriction on the
maximum wavelength permitted by the disturbances, which cannot exceed
the vertical thickness of the disk. From Egs. and , assuming for
¢ a temporal functional form of exp(—iwt), the following dispersion relation
can be easily obtained,
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W = W[ 4 2(k - ua)] + (k- ua)? ((k-uA)2 + dﬁg;) —0,  (2550)

402 . . . . .
where x? = %Rdg is usually known as epicyclic frequency. This equation

foresees a maximum unstable mode, whose growth rate is

1

‘wmax’ = §

dQ
din R

: (2.51)

This unstable mode develops if its wavenumber satisfies the relation

1 K2 dn?
. 2 — — — N -
(k-ua)r o <4 + 1692> LR (2.52)

For instance, in a system rotating with a Keplerian profile, we would have

‘wma$| = 297 (253)
and
1
(k-us)? . = TQ. (2.54)

Until now, we have briefly reviewed a simplified mechanism that under-
lies the magnetorotational instability. Magnetohydrodynamics is the most
suitable theoretical framework for the modeling of such an instability. Anal-
ogously, dynamo theory is based on magnetohydrodynamics. As for the
magnetorotational instability, the coupling of the magnetic field with the
fluid motion creates an unstable situation, leading to the growth of the mag-
netic field if particular conditions are satisfied. In next Section, a general
overview of dynamo theory will be given.

2.4.3 Dynamo theory

The dynamo effect is the main candidate for explaining the origin of the
magnetic field in astrophysical environments, such as planets, stars, galax-
ies. The idea is the following: Since the continuum, conducting fluid (e.g.,
a plasma, a mixture of liquid metals, the interstellar medium) is in motion,
a magnetic field already present would have a time-varying flux across a
certain surface, hence inducing currents in the fluid. If the configuration
(the geometry of the motion, the topology of the magnetic field, etc.) is
right, then these induced currents reinforce the original source currents that
created the initial magnetic field. In other words, this process converts the
kinetic energy of the fluid into magnetic energy. Finding the favorable condi-
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tions to dynamo action is one of the goal of dynamo theory, both theoretical
and experimental. In his seminal textbook “Magnetic Field Generation in
Electrically Conducting Fluids”, Moffatt [13] gives a formal definition of a
dynamo: the velocity field of an isolated, magnetized, resistive fluid acts as
a dynamo if

Jim Ep(t) # 0, (2.55)
where Ep is defined as
1
Est) = — [ [Bx,0). (2.56)
Mo Jva,

Classical examples of dynamos are: the Sun and the Earth. These two
systems have a magnetic field that does not decay in time in spite of the
fact that the magnetic diffusion time is way shorter than their age. In 1919,
Larmor published a paper with the self-explanatory title “How could a ro-
tating body such as the Sun become a magnet?” [1]. On the other hand, the
magnetic field of the Earth was not considered a dynamo because it was still
believed that the magnetic field of our planet was caused by permanent mag-
netization of its interior. Nowadays, the temperature of the Earth’s interior
is known to be above the critical Curie temperature at which ferromagnetic
materials lose their permanent magnetization. Recent experimental inves-
tigations have determined the temperature near the Earth’s centre to be
6230 + 500 K [26], i.e., 1000 degrees hotter than in a previous experiment
run 20 years ago [27]. Furthermore, seismological observations tell us that
the Earth’s interior (at least a large fraction of it) is in liquid state, so a
dynamo mechanism is a good candidate to justify the non-decaying behavior
of the magnetic field of the Earth.

Astrophysical or the laboratory systems where dynamo action takes place
are generally turbulent, making the mathematical treatment of the effect
difficult. Nevertheless, dynamo action in turbulent media can be described
very elegantly by the so-called Mean Field Theory (MFT). This theory was
formulated by Steenbeck, Krause, and Radler [28], who took into account the
effect of turbulence on MHD systems, treating the problem in a relatively
simple analytical way. The starting point of MFT is the splitting of the
velocity and magnetic fields into mean fields and fluctuating fields. This is
motivated by the usual picture that in a turbulent field it is often possible
to distinguish a large-scale (almost stationary and smooth) mean field and
small-scale turbulent fluctuations whose amplitude is much smaller than the
amplitude of the mean fields:

B=B+B, u=u+u, (2.57)

where the overbar denotes an appropriate averaging process (e.g. time av-
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erage or ensemble average). It is assumed that, given a generic fluctuating
field F, the splitting is such that 7 = F and F’ = 0. It is worth noticing
that the hypothesis which leads to Equations is not trivial: the scale
separation between the small-scale turbulence and the system-scale fields is
not always satisfied, especially in systems where large scales carry the most
turbulent energyﬂ If this scale separation hypothesis is valid, the averaging
procedure can be applied to the induction equation , and after some
simple manipulations we find the equations that govern the evolution of the
mean magnetic field and its fluctuating component, i.e.,

0B

EzVX(ﬁXE—I—u’XB’—nVXﬁ), (2.58)
B’ _
%ZVX<u’xB+ﬁxB’+G—anB’>, (2.59)
where
G=uxB —u xB. (2.60)

In the derivation of these two equations, it has been taken into account that
terms like u’ x B have zero average, while the second order term u’ x B’ is,
in principle, non-zero due to possible correlations between the fluctuating

fields. By comparing Eqs. (2.58) and (2.59)), we see that the mean field
obeys an induction-like equation, but with an additional source term, i.e.,

E=u xB, (2.61)
called turbulent electromotive force (emf).

Kinematic dynamo theory and the a effect

Eq. suggests that the fluctuating, turbulent component of the mag-
netic field is generated by induction due to the coupling of the fluctuating,
turbulent component of the velocity, i.e., u’, and the local mean magnetic
field B. If the magnetic field is weak, the action of the Lorentz force on the
fluid is negligible (see Eq. ) In this regime, i.e., if u’ does not depend
on B,Eq. becomes linear in B, hence it makes sense to infer that the
emf & is a linear functional of B. This conjecture is the key assumption in
MFT and in this regime dynamo theory is referred to as kinematic dynamo
theory. The above-mentioned linear expansion reads

u x B; = OzijEj + ,szk% + ... (2.62)

oxy,

20One of the motivations of the work described in this Ph.D. thesis was the investigation
of whether large scale turbulence or rather small scale turbulence had the most detrimental
effect in the Madison Dynamo Experiment, hence whether the system really fulfills the
MFT hypotheses. This problem will be described in Chapter
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where the pseudo-tensors a;; and ;5 in general depend on both components
of the flow, u’ and U, and are determined by the statistical properties of
the turbulence. The « term plays a fundamental role in kinematic dynamo
theory. In order to understand its effect, let us consider a simplified scenario,
where the mean velocity and the magnetic diffusivity are negligible, and
where turbulence is isotropic, i.e.,

Oéz‘ij = Oé?i. (263)
The induction equation becomes

%—? =V x (aB). (2.64)
Solution to this equation based on force-free configurations (V x B « B)
grow exponentially in time, remaining force-free. In Appendix [B]it is shown
which property of the fluid goes into determining a.

The dynamo problem can be simplified by considering the reduced ap-
proach, called kinematic dynamo problem. In this case, growing solutions of
the magnetic field are calculated, but without considering the back reaction
of the magnetic field on the flow due to the Lorentz force. This problem
turns out to be linear in B, since in the magnetic induction equation the ve-
locity field u does not depend on B, since it evolves independently. Stability
analysis is used, by searching solution in the form

B = By(x)e", (2.65)

where |Bg| — 0 as |x| — oco. In general, there is an infinite set of eigenmodes
By satisfying the induction equation, each eigenmode with an associated
complex eigenvalue p =+ + iw, where /' is the growth rate of the magnetic
mode, and w its frequency. If there are one (or more) modes with a nonzero
growth rate, the flow triggers a dynamo. If w is nonzero, the magnetic field
propagates in the form of a dynamo wave. In the following, the variable
~ will denote the growth rate of the magnetic energy (which is more easily
obtained from the data of our numerical simulations), where v = 24/, If the
flow is periodic, the induction equation is a linear equation with periodic
coefficients, whose solutions have the form of periodic functions multiplied
by an exponential time dependence (Floquet solutions).

In dynamo theory, a fundamental quantity is the magnetic Reynolds
number Rm (see Appendix . This dimensionless number quantifies the
importance of induction effects when compared to dissipation effects and it
is defined — analogously to the fluid Reynolds number — as LU /7, where 7
is the magnetic diffusivity. For a given flow geometry that does not vio-
late any anti-dynamo theorem (see below), the value of Rm discriminates
whether dynamo action takes place or not. It can be shown that the mag-
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netic Reynolds number needs to be larger than 7 in any case [29], a condition
that is easily satisfied in laboratory dynamos. In natural or experimental
dynamos, the kinematic growth of an initially infinitesimal magnetic field
saturates when the Lorentz force becomes non negligible, hence affecting the
flow in such a way that it no longer supports field growth (e.g., by reducing
the magnitude of the velocity). In the following subsection, we will describe
the role that the S term has in Eq. . We will show that this term acts
against dynamo action, hence being one of the negative effects turbulence
can have on the dynamo process.

[ effect

In expanding the emf as a function of the mean magnetic field, a term
proportional to the first derivative of B has been considered as well, i.e.,
ﬁijkﬁgj /Oxy. In the simplest situation, in which the turbulent velocity field
is isotropic, B;; is in consequence also isotropic, and so

Bijk = Beijks (2.66)

where 3 is a pure scalar. The expression of the emf hence takes hence the
form

£ =aB - BV x B.

These assumptions lead to a new version of the mean-field Ohm’s law. In
order to easily recognize the effect of the introduction of 8, we assume that
the medium has no mean motion; the mean field Ohm’s law hence becomes

j=0(E+aB - BV x B), (2.67)
and since V x B = j0j, Equation || becomes

j =or (E + Oéﬁ),
where the turbulent conductivity is defined as

g

o = ———.
T 1+ oo

It is possible to show that, under certain circumstances and in the high
conductivity limit (for the details of the calculation, see [30]), one obtains

the estimate 1

B ~ §U27—COT7
where U is the root-mean-square velocity of the fluctuating field (i.e., vV u'’2)
and T, is the correlation time of the fluctuation of the velocity field. This

calculation shows also that the turbulent conductivity is smaller that the
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molecular one (vice versa, for the turbulent resistivity ny we have that
nr = n(l + %,uoU 2reor/m)). As previously mentioned, a strong assump-
tion has been made on the properties of the large scale fields in order to find
the previous estimate of 5. This assumption — whose consequences will be
discussed below — says that the characteristic time and length scales of the
fluctuations are small compared with those of the mean fields. This hypoth-
esis limits, in principle, the range of validity of the previous result for [,
especially within the framework of studies of the impact of large scale fluc-
tuations on the dynamo action. In conclusion, MFT predicts that — under
certain circumstances — the effective magnetic Reynolds number is reduced
by a factor of op/o (as can be seen from the definition of Rm), creating a
detrimental effect on the growth of the dynamo instability. A close exami-
nation of the detrimental effect of turbulence on dynamo action and the role
of the 8 effect in the Madison Dynamo Experiment are ones of the main
goal of the investigation described in this thesis.

Anti-dynamo theorems

Dynamo action cannot occur under particular circumstances, and this even-
tualities are proved by the so-called anti-dynamo theorems. We will not
provide the proof of these theorems (which can be found in [29]) but we will
just enunciate them here.

Theorem 1. [t is impossible to sustain a two-dimensional magnetic field
by dynamo action. In Cartesian coordinates, a field independent of z that
vanishes at infinity must ultimately decay.

Theorem 2. A planar velocity field u = (uy(x,t), uy(x,t),0) cannot sustain
dynamo action [31).

Theorem 3: Cowling Theorem. An arisymmetric magnetic field that
vanishes at infinity cannot be maintained by dynamo action [2].

Theorem 4. A purely toroidal flow, i.e., a flow lacking radial motion in
spherical coordinates, is not a dynamo [32].

Cowling’s theorem states that axisymmetric magnetic fields cannot be
generated by flows that are symmetric about the same axis. Dynamo based
on axisymmetric flows must hence generate a non-axisymmetric magnetic
field, as the Dudley and James s2t2 flow, thoroughly studied in this thesis.
As can be noticed by this set of theorems, it is important that the degree of
symmetry of the system is not too high in order that the dynamo instability
can occur.

Anty-dynamo configurations are not the only obstacles to the dynamo
process. Although the fluid topology and motion are dynamo-favorable, it
can happen that turbulent motions of the fluid act against dynamo action.
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The [ effect (see above) is one of this negative mechanisms: The real mag-
netic Reynolds number is lower than the one calculated using the standard
magnetic diffusivity of the material. Mechanisms of this kind can constitute
a problem in designing a dynamo experiment, where the role of turbulence is
not completely known a priori and simulations at high fluid Reynolds num-
bers are expensive. One of the goals of this work was to better understand
whether and how those negative effects coming from turbulence have played
a role in the Madison Dynamo Experiment. For this reason, next Subsection
will deal with a general overview of turbulence, particularly focusing on one
of the most important quantitative descriptions of turbulence: Kolmogorov
theory.

2.4.4 Kolmogorov’s theory of small scale turbulence

There is no rigorous mathematical definition of a turbulent flow. A turbulent
motion of a fluid can be qualitatively described as an irregular and chaotic
motion of the fluid, in opposition to a laminar state of the motion, which
is deterministic and ordered. A crucial quantity in turbulence is the fluid
Reynolds number Re, i.e., the ratio of inertia to viscous forces occurring in
the fluid. This number can be equivalently defined as LU /v, where L is the
characteristic length of the system, U the amplitude of the characteristic
velocity and v the viscosity. It is an experimental fact that Re marks the
transition from a laminar state to a turbulent state: High Re configurations
are associated with high turbulent motions.

The reason why turbulence plays a fundamental role in liquid metal dy-
namo experiments is the following. The magnetic Prandtl number Pm (i.e.,
the ratio of the kinematic viscosity to the magnetic diffusivity, or Rm/Re)
associated with liquid sodium (the most common liquid used in such experi-
ments) is of the order of 107°. Since the goal of the experiments is to sustain
a dynamo, the threshold of the dynamo instability should be overcome, i.e.,
the magnetic Reynolds number should be larger than a critical value Rm..
In turn, Rm, is typically of the order of 102, hence Re = Rm/Pm is of the
order of 107 for liquid sodium. Such a huge number testifies that is impossi-
ble to avoid the development of turbulence in the flow. Hence, characterizing
the intermittent properties is a crucial ingredient in the understanding of
dynamo action and eventually take measures in the laboratory that can
facilitate the onset of the dynamo instability.

When turbulence comes into play, it is a good idea — in order to de-
velop some physical intuition — to start from what can be now considered
a milestone: the theory developed by Kolmogorov in 1941. The reason of
the importance of this study is that this analysis provides some of the few
theoretical results in this difficult field. A fundamental feature of this theory
is universality: The analysis is very general and is based on the hypothesis
of homogeneity, isotropy and scale invariance of the turbulence. From these
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hypotheses, universal laws can be found that — according to this theory —
should apply for every kind of flow (wake, jet, grid turbulence, boundary
layer, etc.) and independent of the manner in which the turbulence is gen-
erated and maintained [33].

In 1941, A. N. Kolmogorov introduced a fluid turbulent theory in two
seminal papers (see [34,[35]). The basis assumptions of this theory are: (i)
when Re — oo, the energy dissipation rate e remains constant; (ii) the
energy flows from large scales (where the turbulence is produced via some
large-scale forcing term) to small scales and this energy transfer mechanism
is scale independent; when Re — oo, scale invariance is restored at least in
statistical sense. Let us return to the second assumption. This description
of the energy transfer mechanism from large to small scales is commonly
called energy cascade in Fourier space. This concept is based on the pic-
ture of Lewis F. Richardson [36], who described turbulence as a hierarchy
of interacting scales, where large scale vortices (created by some external
forcing) decay due to nonlinear effects into smaller and smaller vortices and
are finally dissipated by viscosity (Figure .
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Figure 2.1: Richardson’s picture of vortices disruption and energy transfer
from large to small scales. Picture adapted form reference [33].

For Re > 1, an inertial range of spatial scales exists in which energy
is transferred conservatively without being subjected to dissipation effects.
This inertial range lays between the integral scale of motion L (i.e., the scale
at which the energy is injected into the system) and the dissipation scale n
(see next sections). In a quasi-stationary state, the rates at which energy is
injected into the system, transferred towards smaller scales, and dissipated
are (on average) identical. Under the assumption that the wavenumber k and
the energy dissipation rate per unit mass € are the only relevant dimensional
quantities in the inertial range, the energy spectrum E(k) of a turbulent flow
field can be derived by using simple dimensional analysis, leading to

BE(k) o« /3513,
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The spectrum has the form of a power law which reflects the assumed self-
similarity of the scale-dependent distribution of energy in the inertial range.
Below the dissipation scale 7, viscous dissipation dominates by converting
kinetic energy of the eddies into molecular heat.

Another important result, which is strictly connected to Equation ,
regards the so called third-order longitudinal structure function of the flow,
defined as

r

(60)) = (| (utx 1) —ui) -2, (2.68)

r
where u represents the velocity field, x + r and x are the positions of the
two considered points (therefore r represents their separation), and (-) de-
notes some suitable averaging process (ensemble average, time average, etc).
Kolmogorov predicts that

(b)) = —%TE (2.69)

in the inertial range, i.e., at scales where self-similarity is not broken by
boundary conditions or forcing mechanism (large scales) or molecular dissi-
pation (small scales). This result is known as the /5 law. This is one of
the few exact analytical results in 3D fluid turbulence.

The first argument against the validity of the self-similarity hypothesis
of turbulence (therefore concerning the presence of intermittency) was given
by Landau. He stated that the quantity e, crucial in Kolmogorov’s analy-
sis, could be a random function of position and time. In other words, the
value of € is not constant in time but rather it is the energy dissipation at
the considered temporal instant and it is not uniform in space, i.e., it is
the averaged value over the small region of size r in which the functions
Sp(x,1) = <‘ <u(x +r) — u(x)) . f’p> — as in Eq. — are evaluated
(see discussion in [33]). This assumptions lead to different result and Kol-
mogorov’s predictions become inaccurate: the functions Sp(x,r), also known
as structure functions of the velocity field — show a different scaling behavior.
Although Landau accepted that the functional dependence of a structure
function on 7 and € can be universal, the quantity ¢ can however depend on
the type of flow considered, especially on the large-scale motion of the par-
ticular flow. This idea is supported by the observation (G.I. Taylor in 1917
and Landau in 1941) that the spatial distribution of the vorticity w = V x u
(thus, of the dissipation rate, since the two quantities are correlated) can
be very spotty, leading to the phenomenon known as intermittency, i.e., a
strong spatial inhomogeneity of the energy transfer mechanism from large to
small scale eddies (see Figure and compare it with the non-intermittent
case in Figure . In other words, intermittency is caused by the vortex
stretching and thinning mechanism, which leads in turn to the formation of
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coherent structures of vortex filaments of high vorticity and low dissipation.

Intermittency in turbulent systems is often detected and characterized by
studying the statistical properties of the velocity increments u(x + r, t) — u(x,t)
(as in Eq. (2.68))) or of the two-point correlation function (u(x+r,t)u(x,t))
and then studying the scaling properties of those functions and their possible
departure from the predictions coming from the self-similarity hypothesis of
the energy cascade mechanism.

Indeed, at high Reynolds numbers, it can be shown — for instance — that
the function ((dvr)P), p € N (see Eq. [2.68)), have an 7% scaling [37,/38], and
the results of experiments and numerical simulations show that the scaling
exponents ((p) of the ptP-order structure function deviate from the scale-
invariant exponent predicted by Kolmogorov. This departure is commonly
referred to as anomalous scaling, and it is a consequence of the presence of
intermittency.

In other words, the analysis of the {(p) exponents can reveal how much
the spatial distribution of the energy dissipation is clumpy. The reason of
this last statement can be qualitatively grasped by the following picture. If
the decay of the vortices occurs in such a way that the vortices are teased out
into finer vortices, the vorticity field becomes spotty, as well as the enstrophy
scalar field, where the enstrophy is just defined as the squared modulus of the
vorticity. Since it can be shown that the energy dissipation is proportional to
the enstrophy (the proportionality factor being the viscosity of the medium),
then the spatial distribution of the energy dissipation € will have the same
degree of spottiness, and € will be concentrated only into regions where high
the vorticity is high (e.g., thin vortex tubes and surfaces). Since it can
be shown [33] that the exponents of the velocity increment functions are
correlated with the degree of spottiness of the small-scale structure of the
fluid, it is then easy to understand that those functions are a reasonable
choice for measuring spatially intermittent turbulent behaviors.

In MHD, the role of turbulence becomes even more complicated, since
the magnetic field is a source of local symmetry breaking and a source of mo-
mentum (via the Lorentz force) which is — in turn — coupled with the velocity
field. One of the first attempts to formulate a homogeneous and isotropic
turbulence theory a la Kolmogorov has been proposed by by Kraichnan [39)
and Iroshnikov [40], who used arguments similar to Kolmogorov’s ones but
considered the correction to the energy transfer due to the presence of a
mean magnetic field. With this analogous analysis, they predicted the fol-
lowing scaling law for the so-called Elséasser fields u 4+ \/%:

¢(p) =7 (2.70)

Many experiments and numerical studies have confirmed that these predic-
tions (both for fluid and MHD systems) should be slightly modified because
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of the effect of a strong intermittent behavior of the energy dissipation
(see [41-49]), giving rise to formulations of models for the ((p) function
(see |50H53]). The most important work that completes and and extends
all these results is the classical Goldreich-Sridhar theory [54}/55], where the
important role of anisotropy has been extensively studied. Pedagogical in-
troductions to MHD turbulence can be found, e.g., in [56] and [57].

So far, we briefly reviewed the theoretical background which concerns
the theory of homogeneous and isotropic turbulence. However, the reality
is more complicated. Real turbulent flows have nontrivial boundary condi-
tions and forcing mechanisms, so they have always a degree of inhomogeneity
and anisotropy. For these flows, analyzing the data can be very challenging
because the choice of the location where the measurements are taken can
be crucial, while — in the case of the homogeneous and isotropic system —
single point measurements (velocity increments, turbulence intensity, time
traces, fluctuation spectra) can quantitatively provide enough information
about the turbulence. In order to overcome the issues that inhomogeneous
and anisotropic systems introduce, different strategies have been used by
the scientific community in experiments or simulations. Simulations of in-
homogeneous and anisotropic turbulence have usually the possibility to ex-
plore the whole information about the system, and so they have usually
focused on global, averaged quantities (energy, helicity, enstrophy) over the
whole volume (a detailed discussion can be found in [58]). Another source
of anisotropy is the introduction of a large scale superimposed magnetic
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Figure 2.2: Richardson’s picture of vortices disruption and energy transfer
from large to small scales with strong spatially inhomogeneities: The cascade
is not space filling any more (compare Figure and the system shows
intermittent behaviors. Picture adapted form reference [33].
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field which is able to influence the flow (i.e., for flows with a non-negligible
conductivity, like liquid metals or plasmas): the magnetic field breaks the
isotropy even further and the MHD formalism should be taken into account
(when the system fulfill the right conditions in order to be described by
MHD).

On of the systems we studied numerically for this dissertation, namely
the Madison Dynamo Experiment, is neither homogeneous nor isotropic: It
is bounded, the forcing mechanism is localized and has an axis of symme-
try, a dipole magnetic field can be superimposed. In order to quantify the
turbulent character of this system, we make use of the structure functions
and their scaling laws, trying to find out whether the sources of anisotropy
and inhomogeneity have a non-negligible impact on the results. A long
term goal, for instance, could be whether our result can help to more easily
understand in future how (much) intermittency can affect the dynamo mech-
anism. We emphasize that this kind of investigation is very different from
what numerical investigations usually study, since they usually make use of
periodic boxes simulations and non-localized forcing mechanisms (typically
the forcing term acts in the spectral space at large scales). The realism
of the numerical system and the forcing mechanism is the strength of this
work.
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Chapter 3

Experiments

The aim of this chapter is to provide the reader with a description of the
two liquid metal experiments we numerically modeled for this dissertation.
As already mentioned in Chapter [2, the two experiments are: the Prince-
ton Plasma Physics Laboratory Magnetorotational Instability experiment, a
cylindrical apparatus filled with liquid gallium and forced by rotating walls
intended to create the Magnetorotational instability at laboratory scales,
and the Madison Dynamo Experiment, a spherical vessel filled with liquid
sodium and stirred by two counter-rotating propellors, designed in order to
observe dynamo action in a simple geometry and without using high perme-
ability materials.
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3.1 The Princeton Magnetorotational Instability
experiment

As pointed out in [59], although the existence and importance of the MRI
are now well accepted by most astrophysicists, clear experimental demon-
strations of this instability are still missing. The technical challenge in
designing a liquid metal MRI apparatus can be realized by calculating the
fluid and magnetic Reynolds numbers available in laboratories: Re ~ 107
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and Rm ~ 20. This last number is small and it can turn out to be not high
enough in order to trigger the instability, which occurs if the rotation period
and the Alfvén crossing time are shorter than the timescale of magnetic dif-
fusion [59]. As explained in section this last statement is translated
into the conditions Rm Z 1 and S ~ 4, where S is the Lundquist number.
The Princeton Plasma Physics Laboratory (PPPL) apparatus has been de-
signed in order to achieve the MRI in laboratory. It uses liquid gallium in
a cavity between two concentric and rotating cylinders, in order to create a
Taylor-Couette flow (see section . Internal velocity measurements are
performed with Ultrasound Doppler Velocimetry.

3.1.1 Hydrodynamics of the experiment

The Taylor-Couette apparatus of the Princeton Plasma Physics Laboratory
consists of a rotating fluid of height A = 27.86 cm is confined between
two concentric cylinders of radii Ry = 7.06 cm and Re = 20.30 c¢m, each
one rotating — respectively — with angular velocities ; and Qg [6]. Unlike
conventional Taylor-Couette experiments, this apparatus is characterized
by an important feature: The possibility of partially controlling secondary
circulation that appears in the fluid, caused by the finite size of the cylinder
(since — theoretically — a perfect Taylor-Couette flow can take place only in
infinitely long cylinders). This control is realized by dividing each endcap
into two independently driven rings, where opposing rings at top and bottom
are driven at the same adjustable angular velocities Q3 (inner rings) and
Q4 (outer rings). Secondary circulation is usually minimized by building
apparatuses with larger aspect ratios I' = h/(Ry — R1), but experimental
investigations [60,/61] at relatively high values of I" showed that end effects
are still significant if the endcaps co-rotated with one of the cylinders. If
Q3 and €24 are carefully chosen, secondary circulation is reduced and ideal
Couette profiles are well approximated. A schematic view of the apparatus
is shown in Fig. [3.2

The Taylor-Couette flow

The Taylor-Couette flow [62,/63] describes the flow of a fluid between two
concentric and differentially rotating cylinders. The resulting flow shows a
very rich dynamics, depending on the parameter range where it is run. Up to
26 different stable flow can be produced for a constant Reynolds number [64].
In particular, this flow is studied in the so-called narrow gap limit, i.e.,
when the aspect ratio of the cylinders is relatively high (or even infinite).
In this regime, the steady state laminar solution to the hydrodynamical
problem [62] is

(3.1)
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where A = (Qar3—QuR3)/(R3— R?), B = RIR3(Q —Q:R3)/(R3— RY), and
the subscripts 1 and 2 refer to the inner and outer cylinders, respectively.

The Princeton MRI experiment cannot be considered to be in the narrow
gap regime, since an aspect ratio of 2.11 is far from being close to infinity.
The boundary conditions, i.e., effects of the end caps play an important role
[65/66] and these secondary flows due to the finite size of the experiment have
been recently studied, and several possible solutions in order to minimize
those boundary effects have been proposed [66/-68].

The hydrodynamical stability of this flow has been studied in 1916 by
Rayleigh [69], who discovered an inviscid stability criterion for the Taylor-
Couette problem, which plays an important role for the stability of astro-
physical systems whose configuration is similar to a Taylor-Couette problem.
Rayleigh’s stability criterion states that an inviscid Couette flow is stable if
the specific angular momentum 72§ decreases outwards, i.e.,

9(r?Q)?

. 2
o >0 (3.2)

Taylor extended this result by considering also the viscous regime (see [17]
for a didactical introduction to the problem). According to this criterion,
the narrow gap Taylor-Couette profile is stable if (Q1R%)? < (Q2R3)?, i.e.,
AB >0 [59].

If the flow is electrically conducting and immersed in a magnetic field,
the scenario changes drastically, and the stability criterion has to be replaced
by the condition already discussed in section [2.4.2

The Ekman circulation

As stated above, secondary motions of the flow are important in systems
with realistic aspect ratios, since they can influence the bulk flow. The most
important effect of the end caps in Taylor-Couette flows is the so called
Ekman circulation. Depending on the rotation rate of the cylinders, this
circulation can result in a boundary layer poloidally inflowing or outflowing
in the bulk volume. In order to understand this mechanism, let us consider
an infinite cylinder. For translational symmetry reasons, the steady state
solution would have the same angular velocity profile (r) independently of
the vertical coordinate z (Taylor-Proudman theorem, see Appendix, and
the profile would assure that the pressure gradient compensates exactly the
centrifugal force in order to keep the flow stationary (and this would in turn
result in the Taylor-Couette flow profile).

In a finite cylinder, the no-slip boundary conditions on the end caps
change the scenario, since an infinitesimally thin fluid layer next to the solid
impermeable physical boundary stays attached to the boundary because of
attractive forces between the wall’s and the fluid’s molecules [19], hence the
boundaries approximately follow a rigid body rotation within the boundary
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Figure 3.1: Left: A car-
toon showing the Ekman
cell in the Princeton ge-
ometry. The source of
the poloidal circulation is
a consequence of the rigid
body rotation near the
boundaries and the imbal-
ance of the pressure gra-
dient. Picture taken from
[70], with kind permission
from Springer Science and
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layer, e.g. ug = 7€yqu, which results in a different angular velocity pro-
file. In other words, the effective pressure close to the boundaries cannot be
balanced by centrifugal forces and, in consequence, this uncompensated pres-
sure gradient induces a poloidal flow that recirculates into the bulk volume
and changes it. This motion is the Ekman circulation. This poloidal flow
follows the cylinder walls and eventually converge at the mid-plane where it
forms a radial outward or inward jet. This creates a large scale poloidal flow
cell which is called Ekman cell (see Figure [3.1). This Ekman circulation
distorts the analytical Couette profile, transporting angular momentum ef-
ficiently throughout the whole bulk volume, hence reducing the free energy
available to the Magnetorotational instability. Moreover, at high Reynolds
numbers (> 400), it introduces hydrodynamic fluctuations that complicates
the identification of MRI modes [66]. From these considerations, it becomes
clear that the Ekman circulation must be suppressed or at least minimized
in order to trigger and identify the MRI more easily.

Stewartson layers

Stewartson [71] studied theoretically the flow of a fluid contained in a rapidly
rotating cylinder whose endcaps were differentially rotating with respect to
the cylinder (as in the Princeton experiment). As the Taylor-Proudman the-
orem suggests (see Appendix , motions within the bulk fluid that are slow
with respect to timescale associated with €2 become independent of z, result
that also Stewartson found in this configuration: the velocity discontinuity
of the boundary due to the splitting of the endcaps propagated vertically
into the bulk flow, creating the so-called Stewartson layer. At large differ-
ential rotation the Stewartson layer becomes unstable to non-exisymmetric
Kelvin-Helmoltz-like instabilities [72], as shown numerically also in [25]. The
formation of Stewartson layers is considered to be detrimental for the onset
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of the Magnetorotational Instability, as shown in 73], since this propagating
discontinuity would influence the azimuthal velocity profiles in such a way
that the MRI is suppressed, becoming — moreover — more difficult to be
experimentally observed.

Minimization of the Ekman circulation

In order to reduce the Ekman circulation, more than one method have been
proposed and analyzed in past studies . In the light of those results, a
Taylor-Couette device with two intermediate independently driven endcaps
has been designed , and it is illustrated in Figures and

With this approach the condition that the boundary layer rigidly rotates
is broken: instead of having ug = Queur for Ry < r < Rs, the no-slip
boundary condition would impose that uy = Q3r if By < r < Ry and
ug = Qur when Ry < v < Ro, where Ry is the radial location of the
split in the end caps. This approach does not guarantee that the Ekman
circulation is suppressed, but choosing two independent endcaps is a good
compromise between engineering difficulties and control on the flow profile
[59).

It has been experimentally shown that this splitting of the end caps is
effective, since a flow profile similar to the analytical Taylor-Couette solution
can be measured, namely reducing the Ekman circulation .
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Figure 3.3: Left:  Another
schematic view of the MRI Ex-
periment, showing in detail the
geometry. The radius of the in-
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der is 27.9 cm, hence the aspect

R ratio of the cavity of the experi-
l ment is h/(Ra—R1) = 2.11. The
wiI m V=S len  Totation speeds of the cylinders

I are indicated with € and s,

. . respectively, whereas the rota-

n v : tion speeds of the endcaps are

_ r) B I denoted — respectively — as Q3

' Ty - and Q4 for the inner and outer
endcap.

3.1.2 The effect of the superimposed magnetic field

As already explained in Chapter [2, the background magnetic field has to
have the right amplitude in order to trigger the MRI instability: too strong
or too weak fields lead the system in the stable regime, as Figure shows.
The results displayed in this picture show the stability and instability re-
gions of the relevant parameter space (magnetic Reynolds number Rm wvs
Lundquist number S) of the MRI experiment, which can operate only in
the portion of the parameter space in the dashed line box. The black curve
shows the marginal stability curve above which the MRI takes place when
only axisymmetric modes are taken into account. if non-axisymmetric sim-
ulations are performed, the marginal stability curve changes (red curve in
the picture). The results displayed in Fig. have been obtained using the
code Heracles [74].

Self-similarity of the azimuthal velocity profiles

Previous simulations [25] of the effect of the MRI modes to the velocity
fields suggest the MRI will cause a change in the azimuthal velocity of 2%.
The experiment is supposed to reveal the presence of the MRI by measuring
this distortion of the flow. This task is however far from being easy, since
a change of 2% is rather small and can be at the limit of what is currently
measurable with the Ultrasound Doppler Velocimetry diagnostic. More-
over, this small MRI amplitude is difficult to be disentangled from other
instabilities. In other words, since the MRI modes saturate at a rather
amplitude, slow drifts in the flow whose amplitude is comparable to the
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Figure 3.4: Stability and instability regions of the relevant parameter space
(magnetic Reynolds number Rm vs Lundquist number S) of the MRI ex-
periment. The black curve shows the marginal stability curve above which
the MRI takes place. The red curve is the marginal stability curve of non-
axisymmetric modes generated by Kelvin-Helmoltz instability of the Stew-
artson layer. The two curves have been obtained by interpolating results
from — respectively — 2D and 3D simulations. The dashed square box repre-
sents the portion of the parameter space that is accessible to the experiment.
Picture reprinted with permission from [90], Copyright 2012, AIP Publishing
LLC.
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expected effect of MRI make the identification of the MRI difficult. As
described in [75] , a new way to spot the presence of the MRI has been
proposed. As Fig. the azimuthal velocity drops constantly for a given
amplitude of B, and this drop is independent of the rotation rates of the
walls. If the same data are plotted after rescaling the coordinate axes, an
interesting self-similar behavior emerges. Fig. shows this rescaling: The
azimuthal velocity is rescaled by vy (the linear velocity of the inner cylin-
der, 21 Ry) and the magnetic field is transformed into its associated Alfvén
velocity and then rescaled by v;. By doing that, the data tend to collapse
onto a single curve. The hypothesis is that a strong MRI mode is strong
enough to modify this behavior and the departure from this collapse could
be a robust MRI signature. In order to prove this hypothesis, it is crucial
to study and understand the behavior of the system with and without the
MRI, i.e., if (and how) the systems change this self-similar behavior of the
curves ug/uy vs ug/up. In the legends of these two pictures, “MRI-Z” refers
to the setting {9, Q23,4 } = {0.55-21,0.1325 - ©21,0.1325 - Q; } used in the
experiment to produce the plotted data whereas the percentages refer to the
values (21 /Qnaz) X 100, where 4, is the maximum inner cylinder design
speed, i.e., 4000 rpm. In the experiment, Re is increased by changing the
speeds of the whole set of {2; proportionally.
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Figure 3.5: Azimuthal velocity drops constantly for a given amplitude of B,
independent of 2. In this (and the following picture), “MRI-Z” refers to the
setting {Qs, 23,2} = {0.55 - ©Q;,0.1325 - 24,0.1325 - Q1 }; the percentages
to the values (21/Qmaz) X 100, where 4, is the maximum inner cylinder
design speed, i.e., 4000 rpm. Picture from the PhD thesis [75].
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Open questions, need of simulations, future plans

According to the location of the linear instability region in the parameter
space, the experiment has reached the MRI, since the rotation rate of the
cylinders and the field strength are sufficiently high. Nevertheless, other
MHD instabilities are seen, but not yet the MRI, probably because the non-
linear saturated MRI amplitude is small, as already explained in the previous
section. Since an investigation of the effect of the magnetic field on the flow
in the absence of the MRI is needed, simulations can turn out to be the
right laboratory to perform this task. In particular, it would be important
to perform simulations with fixed Pm (since in the experiment the working
medium is always liquid gallium), varying Re (and Rm correspondingly)
and B. The first natural questions are: Can numerical simulations predict
the collapse of the data showed in Figs. Moreover, can they provide
a detailed description of the effect of the MRI? How does that effect differ
from flow modification by the magnetic field in the absence of the MRI? Fi-
nally, simulations can investigate, in the future, which kind of modifications
of the apparatus can lead to a higher saturated value of the MRI. In order
to increase the MRI amplitude and make it more distinct from the residual
Ekman circulation, some modifications of the experiment have been pro-
posed, such as different settings of the rotation speeds, or a j x B body force
to supplement viscous reinforcement of the sheared rotation profile since it
may drive the mean flow more efficiently than viscous torques, and could
result in a larger saturated amplitude of the MRI eigenmode, potentially
leading to a larger w, that may be measurable [75].

The PPPL MRI experiment is promisingly going to reveal details of
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Figure 3.6: Normalized velocity vg/v1 constant for normalized applied field
va/v1, where v4 is the Alfvén speed associated to the magnetic field B. See
also caption of Fig. [3.5| Picture from the PhD thesis [75].
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this powerful instability, yet it will not answer questions dealing with the
generation of the pre-existent magnetic field which triggers the instability:
We remind that for the MRI to occur, a background axial magnetic field
must be present. Concerning the generation of magnetic fields in conducting
fluids, dynamo theory comes into play. In the following, we describe one of
the first attempts to recreate this generation process in a simple-connected
geometry. Moreover, differently from other experiments, the geometry of
the system is spherical with an axisymmetric drive mechanism, and this
particular configuration is of more fundamental interest in astrophysics than
previously explored ones.

3.2 The Madison Dynamo Experiment

The Madison Dynamo Experiment (MDE) consists of a spherical vessel (ra-
dius of 0.533 m) of stainless steel containing liquid sodium, investigating
processes related to naturally occurring dynamos and addressing a funda-
mental tenet of turbulent dynamo theory. The flow is stirred by two counter-
rotating impellers of 30.5 cm diameter that enter the sphere through each
pole (a cutaway view of the experiment can be found — for instance — in [76]),
having a topology similar to the Von Karman Sodium experiment [77H79).
The impellers thrust fluid outwards to the poles. In each hemisphere, the
mean flow streams along the walls to the equatorial plane, where it rolls
back in towards the center of the sphere (Fig. , creating a so-called s2t2
flow, as studied by Dudley and James in [80]. In addition to this poloidal
circulation, the two flow cells counter-rotate in toroidal direction, as im-
posed by the sense of rotation of the propellers. Driving is provided by two
75 kW motors. The radial component of the magnetic field is measured by
an array of temperature-compensated Hall probes mounted to the sphere’s
surface. Magnetic fields within the sphere are measured by linear arrays of
Hall probes inserted into the sodium within stainless steel sheaths. Finally,
two external electromagnets, in a Helmoltz configuration coaxial with the
impellers, apply a nearly uniform magnetic field throughout the sphere, and
this magnetic field is used to help the onset of the instability. The Madison
dynamo experiment is directly inspired by the work of Dudley & James,
who performed numerical kinematic dynamo studies and found this partic-
ular two-cell flow geometry to be among the most efficient simple spherical
dynamos. They showed that this low minimizes the threshold Rm. of the
dynamo instability.

The experiment achieves a magnetic Reynolds number of Rm ~ 100
which implies a Reynolds number of Re = O(107) due to the fixed small
magnetic Prandtl number Pm = Rm/Re = O(107°) of liquid sodium. The
current experimental setup, however, does not reach the dynamo thresh-
old due to detrimental effects of turbulence, its critical magnetic Reynolds
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number Rm, being larger than ~ 100 by some unknown factor.

-10-6 -2 2 6 10

Figure 3.7 A cutaway view of
the MDE. The impellers, external
field coils, surface, and internal Hall

probes are shown. Figure courtesy of
K. Rahbarnia.

Figure 3.8: An example of the mean
flow of the MDE (cross section, yz-
plane) computed using FLUENT®,
The hollow black boxes represent the
impellers. The internal probe array
is indicated by the black and purple
crosses. “Reprinted figure with per-

mission from .

The MDE has not achieved self-excitation of dynamo action. The reason
why dynamo does not take place probably lies in the fact that turbulence has
a detrimental effect on the dynamo process and this influence were underesti-
mated during the design process of the device, since preliminary calculations
were restricted to linear studies of stationary axisymmetric flows, yielding
a critical magnetic Reynolds number of Rm, ~ 50 . The MDE has nev-
ertheless measured and quantified interesting features, summarized in the
following. The omega effect (i.e., the conversion of poloidal to toroidal field
due to differential rotation) has been observed experimentally . More-
over, an induced magnetic dipole moment parallel to the axis of symmetry
was measured. This dipole, according to Cowling’s antidynamo theorem,
could not be generated by the axisymmetric mean flow and its presence is
very likely due to the effect of a turbulent electromotive force (see next sub-
section, . The magnetic field generated by these fluctuation driven
currents was found to be oriented opposite to the dominant poloidal and
toroidal magnetic fields in the experiment. Therefore, the effect was termed
turbulent diamagnetism . Furthermore, an intermittently growing trans-
verse magnetic field was measured . Further details on the experimental
results, the numerical simulations and its modelization can be found in three

PhD theses [87H9].
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3.2.1 First comparisons between simulations and experiments

In this Section, we briefly describe the comparisons between the simulations
and the Madison experiment.

Spectra

Figures and show a comparison between experimental and simu-
lated spectra, in order to emphasize the potentialities of the DYNAMO code
in predicting experimental data. The spectra in these figures are frequency
spectra obtained by Fourier transforming the time traces of the velocity and
the magnetic field components at a specific point. In the case in point, we
are dealing with measurements taken at r = 0.4 m, 0 = 121°, ¢ = 0. The
applied dipole has a magnitude of 53 Gauss, and the magnetic Reynolds
number — according to the definition used for the MDE — is about 160. The
simulated data are taken at the same coordinates from run 6 (Rm = 40).
It is worth noticing that — for practical purposes — the Reynolds numbers
(both fluid and magnetic) mentioned by the experimentalists are defined
using the speed of the tip of the impeller blades as an estimation of the
typical velocity amplitude U. The resulting Reynolds numbers are expected
to be larger than the ones obtained with the convention we are using, i.e.,
taking the root-mean-square velocity as U. It should not surprise, hence,
that the Reynolds numbers do not correspond exactly in the comparison.

Run 6 has an applied field whose dimensionless amplitude is Bey: = \/gc ,
where C = 0.07. In order to convert the dimensionless amplitude in physical
meaning units, one can use the procedure explained in Appendix [A] Taking
into account the root-mean-square velocity U of run 6, the value of C, and
the velocity of the impeller tips needed to have a magnetic Reynolds number
of about 20, the estimation of B.,; turns out to be about 20 G. We report
that the experimental data were obtained by making use of both the equa-
torial baffle and of “rotational” baffles (out of the equatorial plane). The
latter were recently introduced in order to control the ratio of the poloidal
to the toroidal component of the velocity field.

This spectra comparison show that, although the simulated system and
the experimental one have still different fluid Reynolds number, the statistics
of the fluctuations of the magnetic field in particular are similar, result that
is also confirmed when the turbulent emf is measured, as explained in the
next paragraph.

Direct observation of the turbulent emf

A recent experimental results dealing with the effect of turbulence on the
MDE has been published in [84]. For the first time, a direct measurement
of the transport of a vector magnetic field by turbulence has been achieved.
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Figure 3.9: Comparison between the Figure 3.10: Comparison between

experimental and simulated veloc- the experimental and simulated ve-
ity spectrum. Figure courtesy of locity spectrum. Figure courtesy of
K. Rahbarnia (personal communica- K. Rahbarnia (personal communica-
tion). tion).

In a direct analogy with direct measurements of the turbulent Reynolds
stress (turbulent viscosity) that governs momentum transport, a non-zero
turbulent electromotive force (i.e., the force generated by the coherent in-
teraction between fluctuations of u and B, see definition, Eq. ) has
been directly measured by simultaneously registering the three components
of velocity and magnetic fields, and computed the correlations that lead to
mean-field current generation. Furthermore, this turbulent EMF tends to
oppose and cancel out the local current, acting to increase the effective re-
sistivity of the medium, which is equivalent to the effect produced by an
enhanced eddy diffusivity for magnetic flux. The same experimental re-
sults can be found by the simulations we carried out, considering that the
fluid Reynolds number of the simulations (Re ~ 2000) is several orders of
magnitude lower compared to the MDE’s one (Re ~ 107). In other words,
measurement and numerical simulation clearly show an anti-alignment of the
turbulent emf with the local current, i.e., the turbulent emf is dominated by
the 3 effect term in the kinematic regime considered (see Eq. and

Figure [3.11]).

3.3 Summary

In this Chapter, we briefly described the most important features of the two
liquid-metal experiments with which our work deals. The Princeton Plasma
Physics Laboratory experiment was designed for creating a quasi-Keplerian
rotation in a liquid Gallium (whose Prandtl number is ~ 10~%) cylindrical
device, stirred by a viscous boundary force. Aim of this experiment is the
first demonstration of the magnetorotational instability in such a configura-
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Figure 3.11: Three-
dimensional view of
(B) the unit vectors &
(red), J (black), B
(blue), and the re-

0.5- sults of a fully turbu-
lent numerical simu-

) | J) lation & The emf
04 sim vector tends to can-

& cel out the mean cur-

& ~ rent density, making
the magnetic field

-0.54
: : i
\ /1 generation more dif:
0\/‘/0 ficult. Reprinted fig-
0 r ure with permission

=1 from [84].

tion. The second experiment, the Madison Dynamo, consists of a spherical
vessel in which liquid sodium (Prandtl number ~ 107°) is stirred by two
counterrotating impellers. Goal of the device is the generation of a mag-
netic field (or the amplification of the pre-existing background applied one)
by exciting the so-called dynamo instability. Both experiments have not yet
reached the target. In the MRI experiment it is hard to prove that the in-
stability is occurring with the current set-up, since the MRI causes changes
in the fluid motion whose amplitude is comparable with the experimental
uncertainties. Moreover, other (magneto)hydrodynamical instabilities with
the same effect on the fluid appear and make the MRI less distinguish-
able. In the dynamo experiment, it turned out that it is hard to overcome
the instability threshold because of the detrimental effects of turbulence on
the dynamo process, which were underestimated during the design process,
since time-dependent MHD simulations of the turbulent flow had not been
performed at that time.

All these difficulties urge the use of numerical simulations, and the follow-
ing Chapters will deal with the numerical modeling of the two experiments
and the results of this investigation.
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Chapter 4

Numerical approach

“Any given program, when
running, is obsolete”.

Edward A. Murphy

As pointed out in the previous Chapter, time-dependent numerical sim-
ulations of the two instabilities may constitute a valuable tool in support
of the experimental efforts. For this purpose, two MHD codes have been
used in order to tackle the difficulties encountered in the experiments (de-
scribed in Chapter . SFEMaNS has been developed in order to solve the
MHD equations in axisymmetric geometry. Since it can handle magnetic
field boundary conditions and heterogeneous domains in a realistic way, it
has been chosen for modeling the Princeton MRI experiment. Concerning
the Madison Dynamo Experiment, another code has been used in this work,
the DYNAMO code, which has been exactly tailored to the Madison set-up. It
has to be mentioned that another code has been used in support of SFEMaNS,
namely the Heracles code, a finite volume code already used for modeling
the Princeton experiment. This code exploits a high order Godunov scheme
and can support adaptive mesh refinement, and it has been originally de-
veloped for problems in astrophysical magnetohydrodynamics and radiative
transport. In this Chapter, however, we will focus our attention on the first
two codes, since they constitute the two tools used by the author of this
dissertation. An introduction to Heracles can be found in [74] and a de-
scription of how it has been used to model the Princeton MRI experiment
can be found in [90,91].
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4.1 The SFEMaNS code

SFEMaNS (Spectral/Finite Element code for Maxwell and Navier-Stokes
equation) is an F90 code developed since 2002 by J.-L. Guermond, C. Nore,
J. Léorat, R. Laguerre, A. Ribeiro and F. Ludden. It solves the MHD equa-
tions (or only the Navier-Stokes or the Maxwell equations) in systems with
cylindrical geometry, exploiting a Fourier decomposition via FFTW in the
azimuthal direction and a Lagrange Finite Element solver in the meridional
plane. There are two levels of parallelization: (i) The Fourier decomposition
is calculated in parallel and (ii) the meridional plane undergoes a domain
decomposition via METIS (Serial Graph Partitioning and Fill-reducing Ma-
trix Ordering, [92]). The strength of this code lies in the fact that the MHD
system can be solved in heterogeneous domains (e.g., jumps in the perme-
ability of the materials are allowed) and that realistic boundary conditions
on the magnetic field can be imposed. Moreover, the code enable to use local
mesh refinements that can be useful in resolving strong gradients, especially
close to the boundaries, where discontinuities in the viscous forcing take
place. Technical details about the implementation, the notation, the time
integration, the computation of nonlinear terms and the weak formulation
that cannot be found in this chapter are well thoroughly described in [93].

4.1.1 Solving the MHD system in heterogeneous domains

In the following, 2. will indicate the region of space where the conductivity
is non zero, whereas (2, the non-conducting one. ). is further partitioned
into a fluid region w.s and a solid region €2.s; the interface between the con-
ducting region and the non-conducting region is denoted by ¥ = 9. [ 9.
SFEMaNs solves the Navier-Stokes equations in the fluid region 2.y and/or
the Maxwell equations in = Q.JQ,, i.e.,

(gt+u-v>u—1/1V2u+;Vp—[1)(V><H) x pH 4+ £ in Qp,

(4.1)
V-u=0 in ch,

ulsq,, = d,

where d represents the boundary conditions on the velocity field, and
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e (4.2)
V-E=0 in Q,,
EXH’aQ:a
\fF%E.n:() 1< <,

where T, represents each of the connected components of 99, that contains
O 0Ny; js is the source current; n is the outward normal of 9€; ¥ is an
extension of u on €, i.e., v is equal to u on €. and is prescribed in Q.s. As
usual in heterogenous domains, the magnetic field H is used instead of B for
reason of simplicity in the boundary conditions, and the permeability p does
not commute with any derivative (such as Vx). By introducing the scalar
potential ¢ : H = V¢ in Q, (if this is simply connected), the transmission
conditions are

Hxn°+ Vg xn’"=0 on X 43

wH - n+ pu?Veo-n" =0 on X, (4:3)

where the superscript ¢ represents quantities referring to the conducting
region. Therefore, SFEMaNS solves the problem in its weak formulation, using
— in the meridional plane — iso-parametric triangular Py finite elements for
the velocity field and the scalar potential, triangular P; finite elements for
the pressure, either triangular IP; or iso-parametric Py finite elements for the
magnetic field.

4.1.2 Nondimensionalization of the equations

The governing equations are then de-dimensionalized (see Appendix. The
fundamental assumption is that the characteristic velocity U < ¢, where ¢
is the speed of light. The reference time scale is the eddy-turnover time
7 = L/U, where L is the characteristic length of the conducting region Q..
The fluid density p is constant and the reference pressure scale is set equal
to pU?. The reference magnetic permeability and electric conductivity are
— respectively — ug and og. The magnetic field reference scale is chosen in
such a way that the Alfvén speed associated to it is equal to one, i.e., H =
U+/p/o. The reference scale for the electric field £ is set to be & = poHU,
the source current j* and the data ug, d, Hy, a are de-dimensionalized by
using — respectively — H/L, U, U, H and H. With this rescaling of the
physical variable, the system — in its dimensionless form — becomes
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) (4.4)
V-u=0 in Qf,

ulsq,, =d,

where d represents the boundary conditions on the velocity field, and

pgH=-V x E in Q,
VXH_{Rde+GxMﬂ+L in Q.
in Q,,
. (4.5)
V-E=0 in ,,
EXn’ag:a
[E-n=0 1<i<J,

where in this case the symbols ¢ and u represent — respectively — the relative
conductivity and permeability.

4.1.3 Boundary conditions on the magnetic field

In order to impose realistic boundary conditions on the conducting region
., SFEMaNS adopts the following solution: The vacuum region around the
conducting region is taken into account and the boundary conditions on
the conducting region become transmission (or continuity) conditions be-
tween the magnetic field in 2. and the gradient of the scalar potential in
Q. Usually, finite volume codes that limit their calculations only in the
conducting region impose boundary conditions on the magnetic field that
are in principle less realistic. For instance, the so-called pseudo-vacuum
boundary conditions are usually applied, where the magnetic field is forced
to be perpendicular to the boundary surface. With the solution adopted in
SFEMaNS, a relatively small part of the computation is used for the vacuum
region, but this pays off in terms of accuracy. Moreover, solving the Maxwell
equation also in €2, gives to the user the possibility to give predictions on
the magnetic field in a region that is more accessible — for practical reasons
— to the experimentalists, who cannot measure up to now the magnetic field
inside the cylinder.

The vacuum region where the Maxwell equations are solved is — of course
— spatially limited and this unavoidable truncation represents a source of
inaccuracy, although negligible if the size of 2, is big enough (i.e., if points
on 02, are far enough from (2., such that the boundary conditions on ¢ do
not have a strong effect on 9.). Typically, the vacuum region is bounded

54



by a sphere or cylinder with a radius 10 times larger than the reference
length scale (i.e., the size of the conducting region). It has been verified
that truncating the vacuum domain in this way is sufficient to guarantee
less than one per cent accuracy due to truncation.
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Figure 4.1: An example of how SFEMaNS handles the boundary condition on
the magnetic field, as described in Section[4.1.3} (a) mesh of the conducting
region (2., where the MHD system is solved; (b) mesh of the vacuum region,
where the Maxwell system is solved with boundary condition on the scalar
potential imposed on the exterior circular boundary; (c¢) the combination of
the two meshes. Transmission/continuity conditions between the magnetic
field in the conducting region and the gradient of the scalar potential are
imposed on the interface between the two meshes. Reprinted from , with
permission from Elsevier.

After reviewing the most important features of SFEMaNS (further reading
can be found in the references cited above), in the following Section we
will give an overview of the most important characteristics of the DYNAMO
code. Although SFEMaNS could be able to simulate the Madison Dynamo
Experiment (since the forcing mechanism is axisymmetric), the DYNAMO code
was chosen because it was written exactly to mimic the Madison device.

Moreover, past numerical investigations of this experiment have been already
carried out with the DYNAMO code (see 97]).
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4.2 The DYNAMO code

The DYNAMO code [98] solves — in spherical geometry — the nonlinear equa-
tions of incompressible MHD, i.e., the magnetic induction equation cou-
pled with the Navier-Stokes equation, by computing three-dimensional time-
dependent solutions for the velocity and magnetic fields. The simulated
system has been designed to model the MDE, having the same geometri-
cal and dynamical features. In particular, the code focuses on the so-called
s2t2 type of flow (see [80] for a definition), although it could in principle
study different forcing mechanisms (i.e., different flows). The code exploits
a pseudo-spectral method based on spherical harmonics decomposition, and
had originally been developed by R. A. Bayliss and C. B. Forest at the
University of Wisconsin-Madison [98,99], and afterwards extended and par-
allelized via MPI by K. Reuter [94]. The parallelization was performed by
dividing the sphere in spherical shells. Further details on the physical model,
the stirring force, the numerical setup and the parallelization of the code can
be found in [94]. The magnetic induction equation, in its nondimensional
form, reads

%]? = RmV x (u x B) + V*B, (4.6)

where Rm = ugo RU is the magnetic Reynolds number, R the characteristic
length associated with the system (the radius of the sphere), U the charac-
teristic velocity and o the conductivity of the medium. In order to correctly
de-dimensionalize this equation, time is scaled to the resistive diffusion time
T, = ppoL?. As stated above, in the case Rm > 1, the advection term
dominates and a dynamo mechanism takes place if the geometry of the flow
u can support it.

One of the previous key results obtained by the DYNAMO code was the dis-
covery of a hydrodynamic instability in the weakly turbulent regime, i.e., the
exponential growth of modes with m = 2 symmetry located in the shear layer
region between the forced regions and the walls of the sphere [95]. In the non-
linear saturation regime, these modes manifest themselves as hydrodynamic
waves propagating in the zonal direction, oppositely directed in each hemi-
sphere. Increasing the Reynolds number above the wave-dominated regime
causes new bifurcations, finally leading to inhomogeneous anisotropic turbu-
lence. Kinematic dynamo simulations using the time averaged flow or differ-
ent snapshots of the velocity field did not exhibit dynamo action, whereas
growing magnetic fields were found when considering the time-dependent
flow. This result is linked to the presence of perpetual non-normal growth
due to the mathematical property of the magnetic induction equation’s lin-
ear operator, being time dependent and non self-adjoint [100]. Finally, the
stability curve Rm.(Re) of this system, i.e., the dependence of the dynamo
threshold on the fluid Reynolds number, was also determined [96].
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4.2.1 Formulation of the problem in spherical geometry

The spherical symmetry naturally suggests the use of spherical coordinates.
Moreover, in order to eliminate the pressure term, the curl of the nondimen-
sional Navier-Stokes equation — i.e., the vorticity equation — is solved by the
code. The nondimensional vorticity transport equation reads,

g—“’ = RmV x G + PmV?w,, (4.7)
-

where
G=uxw+ (VxB)xB+f, (4.8)

and f is the counterrotating force. In the following, the Bullard-Gellman
decomposition (also called poloidal-toroidal or Mie decomposition) will be
extensively used, since it is particularly advantageous in spherical geometry.
The incompressible velocity field u(x, 7) is divergence-free, hence it can be
written as

u(x,7) =V x V x [s(x,7)x] + V x [t(x,7)x], (4.9)

where the scalars s(r) = s(r,6,¢) and t(r) = t(r,0,¢) are called — respec-
tively — the poloidal and toroidal stream functions. These functions can be
—in turn — expanded in terms of spherical harmonics, i.e.,

oo
5(r0,6) = 3 37 sV (6, ), (4.10)

tr,0,0)=> > tr)"V(0,e), (4.11)

where )" is the spherical harmonics with “angular momentum” and az-
imuthal wavenumbers [ and m. The azimuthal wavenumber is limited to
m > 0 since all vector fields are real-valued. Using the triangular trunca-
tion, the total number of relevant spectral modes is given by

(lmaz + 1) (Inas +2)/2 — 1, (4.12)

where ;4 is the maximum “angular momentum wavenumber”. The monopole
mode [ = 0 is not required due to the divergence free constraints. To ac-
count for dealiasing, the upper third of the spectrum is truncated by choos-
ing %Ng — 12> lnae and Ny = 2Nyperq, where Ny and Ny are the number of
latitudinal and longitudinal points used in the real space representations of
the vector fields [87,94].

By making use of this decomposition, the vorticity becomes

W=V xVx[tx,7)x] + V x [(-=V?s(x,7))x]. (4.13)
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By applying the operators (x-) and (x - V) on the vorticity equation,
a separation into two equations which govern the temporal evolution of the
poloidal and toroidal stream functions is found (since the position vector
x and the toroidal component of the field are orthogonal. Expanding the
stream functions in terms of spherical harmonics as already anticipated, the
following evolution equations for the radial profiles s;*(r, 7) and ¢;"(r, 7) are
obtained,

9 m 2.m _ Rm m
87’Dl$l (r,7) — PmDjs]"(r,7) = R x-VxVxG]", (414)
—aTtl (r,7) — PmDyt]" (r,7) = 0+ 1) [x-V x G|, (4.15)
where

T or2 ' ror r2
is the Laplacian operator written in spherical coordinates and where the
eigenvalue relation

92 20 I(+1)
==+

D, (4.16)

16.98 1 02 m9 &) = 1l mg A
g 90 on @"‘m@ Y(0,0) =—11+1)Y"(0,¢) (417
has been used. The square brackets around the right hand side terms rep-
resent the respective radial profiles of the | — m coefficient of the toroidal
or poloidal scalar potentials of the vector quantities inside the brackets.
Smilarly, the magnetic induction equation can be subjected to the same de-
composition, and equations for the poloidal and toroidal magnetic stream
functions S(x,7) and T'(x,7) are found. These resulting equations are the
same as (4.14)) and , but there the u x B term plays the role the G
has in and .

By using the Bullard-Gellman and the spherical harmonics decompo-
sition, spectrally decoupled equations are found. The convolutions in the
square brackets on the right hand sides couple different modes with each
other and have to be evaluated separately. A pseudo-spectral method is used
to compute these convolutions, i.e., the curls are evaluated in spectral space
and the vector products in real space, paying off in terms of simplicity, speed
and accuracy [101]. The reason why pseudo-spectral methods are faster than
full-spectral methods comes from the fact that they avoid the complications
of the full-spectral methods which rely on term-by-term integrations of spec-
tral components. On the other hand, the pseudo-spectral method has the
disadvantage of introducing discretization error through aliasing. This error
is addressed by padding and truncating the spectrumpad.
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In order to evolve the MHD equations forward in time, an operator-
splitting approach is used: The pseudo-spectral convolution terms are inte-
grated using an explicit predictor-corrector scheme, whereas a semi-implicit
Crank-Nicolson method is used to integrate the diffusion terms, therefore
avoiding intractably small time steps. The Crank-Nicolson method implic-
itly averages the diffusive terms and computes a temporal derivative accu-
rate to second order. The fluid advection term has a hyperbolic character
due to the propagation of inertial waves, making it advantageous to use an
explicit advancement for nonlinear terms. An explicit second-order Adams-
Bashforth predictor-corrector scheme is used to advance the pseudo-spectral
nonlinear terms. Other details about the boundary conditions, the forcing
function f, the parallelization, the code optimization can be extensively
found in [87.|99].

4.2.2 Characteristic velocity and time-scales

The characteristic velocity U of each simulation is, used in the definition of
the Reynolds numbers Rm and Re = Rm/Pm, is determined a posteriori
from the results of each numerical simulation. Following an established

convention, the velocity normalization is defined by U = 4/(u?), where the
angle brackets denote averaging in space and the overline denotes averaging
in time which is performed during the quasi-stationary phase of the flow after
all initial transient phase. A unit sphere is assumed, i.e., the characteristic
length L = 1 which is justified by the fact that a poloidal circulation cell
of the s2t2 flow extends nearly over one full radius. The characteristic
timescale of the flow is defined by the turnover time of the largest eddies 7, =
L/U which is also the relevant timescale for magnetic induction resulting
from the large-scale flow. The magnetic diffusion time 7, = Rm7, = pgoL?
is the timescale relevant to resistive decay of a magnetic field.

4.3 Summary

In this Chapter, we have described the most important features that charac-
terize the SFEMaNS and the DYNAMO code, namely the codes used to simulate —
respectively — the MRI and the dynamo experiments. The first code solves
the incompressible MHD equations in axisymmetric systems, exploiting a
Fourier decomposition via FF'TW in the azimuthal direction and a Lagrange
Finite Element solver in the meridional plane. The code has two levels of
parallelization. Beside SFEMaNS, a finite volume code — called Heracles —
has been used in order to benchmark the SFEMaNS results and support this
investigation. Concerning dynamo theory, a pseudo-spectral code has been
used. This code solves the nonlinear equations of incompressible MHD in
spherical geometry and it is particularly suitable for modeling the Madison
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Dynamo experiment, as previous investigations have already shown. In the
next Chapters, we will describe the core of this dissertation, namely the
results obtained by means of this numerical tools.
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Chapter 5

Modeling the
Magnetorotational
Instability experiment

The experimental confirmation of the presence of the MRI is still missing
and several laboratory experiments — such as the Princeton MRI experiment
— are investigating this effect. The Princeton MRI Experiment has been de-
signed in order to catch the MRI instability in the lab. This apparatus
has been providing data whose physical interpretation is still under debate,
since the current setup has experienced difficulties in disentangling the MRI
effect from other instabilities (hydro- or magnetohydro-). Numerical simu-
lations are supposed to provide a better understanding of the experimental
behaviors, providing signatures and suggesting measurements to take in the
laboratory in order to distinguish the experimental runs where the MRI
mode is non-negligible from the ones where it is. In this Chapter, we report
MHD simulations carried out in order to model this device, and in order
to answer open questions concerning the experimental detectability of the
MRI. For the simulations, a two code approach has been carried out by
using Heracles (a finite volume code) and SFEMaNS (a spectral and finite
element code), the latter being used by the author of this dissertation (see
description in Chapter . After a period where the codes will be bench-
marked against themselves and the experiments, they could then describe
which physical processes lead to the experimental results, in particular fo-
cusing on the recent claim that the magnetized flow obeys a self-similar law
that can be modified by a strong MRI amplitude |75]. If this last statement
will be confirmed, a novel method would be provided that tells whether the
MRI is occurring or not. To perform this task, we adopted a new approach
that closely resembles the experimental methodology and improves the com-
parability of the simulated data to the experiment. We investigate a scaling
relation of the azimuthal velocity that has recently been found in the ex-
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periment and that could be a possible indicator for the MRI. We show that
for our simulations the experimentally observed scaling relation is nearly
obtained for simulations with small MRI amplitudes. Furthermore, we find
a strong correlation between the strength of the MRI and the deviation from
this scaling, both in terms of magnitude and shape. These results suggest
that this scaling relation is indeed an indicator for the MRI. The comparison
of these results with experimental data indicates that the MRI amplitude
in the experiment is too small to cause a measurable deviation from the
reported scaling of the azimuthal velocity. This estimation is supported by
the extrapolation of the MRI amplitude to the real Reynolds numbers of the
experiment.

The main objective of the MRI subproject — from a numerical point
of view — was to prove that the SFEMaNS was able to successfully model
the experiment, providing a first series of results. In this Chapter, we will
discuss the steps we took in order to perform this task.
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5.1 SFEMaNS: Geometry and mesh

One fundamental step to take when dealing with a Finite Element code
is the creation of a mesh that models the geometry of the system with
the appropriate resolution. Figure of reference [59] provides a detailed
sketch of the geometry in the meridional plane that we used as a reference
for the generation of our grid. The step size within the conducting region has
been chosen according to previous calculations [102]; correspondingly, the
temporal step has been set in order to abundantly fulfill the CFL inequality,
ie.,

u(r)dt

max

< 0.5,
I'EQCf

where u is the velocity magnitude, dt is the discrete time marching increment
and h is the mesh step size. The choice of dt is particularly crucial, since
the main MRI mode appears with a very high growth rate and the right dt¢
is needed in order to catch and resolve the MRI. Moreover, the strategy de-
scribed in Chapter [4 designed to realistically handle the magnetic boundary
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conditions has been exploited. Figures [5.1 show the meridional plane
mesh, with a particular emphasis on the non-homogeneity of the mesh.

Figure 5.1: Left: Mesh of the meridional plane rz of the whole computational
domain 2. A fine resolution of the frontier of the sphere is not required.
Right: Zoom-in of the left picture: The rectangular conducting domain €2,
is better resolved.

As already mentioned in Chapter 4] the meridional plane undergoes a
domain decomposition procedure (via the software METIS) in order to run the
simulations in parallel. Figure[5.3]shows a typical partition of the conducting
and vacuum domains, realized in order to assign each domain to a different
processor.

5.2 Benchmark of SFEMaNS and code validation

The feasibility of using SFEMaNS to address the MRI problem in this geom-
etry has been extensively studied by benchmarking the results against data
produced by Heracles, which has been already used to simulate the MRI
experiment |25]. Our benchmark has been also described in [91},103].

For instance, Figures show a series of comparisons of the flow in
the meridional plane for hydrodynamic runs with the same initial set-up and
the same temporal snapshot (i.e., at t = 0.14 s). The qualitative structure
of the flow is similar and distinctive patterns are easily recognizable in both
codes. The results agree more and more as the runtime goes on, since — at
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Figure 5.2: Further zoom-in of Figure The conducting fluid region Qs
in the bottom left corner has the same spatial resolution of the conducting,
rotating, solid wall (the vertical rectangle in the center), whereas the vacuum
region shows a coarser mesh.

Figure 5.3: Typical partition of the conducting (left) and vacuum (right)
domains obtained — by using METIS — in order to assign each portion of the
decomposed domain of the meridional plane to one processor.
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the beginning of the runs — waves and transient wave-like phenomena are
found with Heracles.

5.3 Axisymmetric runs

The simulations described here have been carried out in axisymmetry, as
there seems to be little nonaxisymmetric structure in this regime (true of
the experiment as well as the simulations, according to the experimentalists).
The magnetic boundary conditions do not seem to be decisive here: SFEMaNS
obtains very similar results with pseudo-vacuum and true-vacuum conditions
(whereas Heracles is capable only of pseudo-vacuum at present). For these
runs, the numerical Reynolds numbers are Rey = 5000 and Rmgy = 15.
In order to obtain the real Reynolds numbers, they should be multiplied
by the characteristic length L = 1.86(= Ry — R;) and — in principle —
by the characteristic velocity U(= Q1 R;) (which depends on the particu-
lar simulation set-up). By doing so, and considering that a run with 75%
of the maximum attainable rotation has U=0.75 (and so on...), we have
Re = {5000, 3750, 3000, 2500, 1250} and Rm = {15,11.25,9,7.5,3.75}. It is
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important noticing that the Prandtl number Pm is constant for each series
of data. Indeed, in the experiment Pm is constant (it depends only on the
choice of the conducting fluid), whereas the magnetic Reynolds number Rm
(and — correspondingly — the fluid Reynolds number Re) can be modified by
changing the rotation rates of the cylinders. In our simulations we fixed the
magnetic Prandtl number to 0.003 (a reasonable value our computational
resources could handle), keeping only the applied magnetic field and the ro-
tation rates as free parameters (as discussed also in [103]). Previous results
have been focused on other aspects of the simulations, but without keeping
Pm constant [25]. With this choice, we produce a database corresponding to
the same conducting fluid (although more viscous than liquid gallium), and
we expect that the simulated results can be compared to the experimental
ones more easily. Nevertheless, an extrapolation towards smaller values of
Pm is needed.

The dimensionless applied magnetic field By should be multiplied by
Q1 R1./mop, which corresponds to 2.62 Tesla for the 100% rotation case.
Cases with a very strong applied magnetic field have been simulated, in
order to benchmark the results against the high Lundquist number runs
of [25].

With this series of simulations, we checked whether the codes see the
same experimental observation described in Section [3.1} For a single po-
sition, r = 16 c¢m at the mid-plane, the normalized azimuthal velocity is
constant for normalized Alfvén speed associated to the applied field By [75],
where the two quantities are normalized via u; = 21 R;. As Figures [5.10
(data measured at r = 16 cm) and Figures (data measured
at r = 15 cm) show, the raw simulated data — once normalized — have a
similar profile, almost collapsing on the same curve. As explained in sec-
tion “MRI-Z" refers to the setting {Q9, 3,4} = {0.55 - €,0.1325 -
91,0.1325- Q1 } used in the experiment whereas the percentages refer to the
values (21 /Qnaz) X 100, where 4, is the maximum inner cylinder design
speed, i.e., 4000 rpm. The points that show the highest departure from
the collapse have been produced by simulations that show also strong MRI
amplitudes. This behavior can be qualitatively understood by considering
that a strong MRI amplitude can appreciably modify the #-component of
the flow, as depicted in Figure When the MRI is strong (left), the
azimuthal component of the velocity field ug shows a different spatial distri-
bution in comparison with a case where the MRI is negligible (right). The
two simulations have the same applied magnetic field but different rotation
rates of the cylinders and endcaps, placing the first one above the MRI
threshold and the second one under it in the parameter space (see Figure
3.4). When the MRI mode is strong, ug(z,t) shows a bump close to the
mid-plane, hence enhancing the value of the measured azimuthal velocity
and giving rise to the departure from the profile of Figures the
outlying point in Figure has a very strong MRI amplitude (~20% of the
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applied field, whereas in the experiment a percentage of ~3% is expected)
and corresponds to the run shown in Figure (left).
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Figure 5.10: Azimuthal component of the velocity field at » = 16 cm for
different applied fields and rotation rates obtained by SFEMaNS.
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Figure 5.11: Normalized azimuthal component of the velocity at » = 16 cm
obtained by SFEMaNS. Strong departures from the common data collapse are
a sign of the presence of a strong MRI mode.
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Similarly, as displayed in Figures [5.13{5.14] at » = 15 c¢m we find a
similar behavior, although in this case the outlying point is probably due
to the strong applied magnetic field. It is worth noticing that Heracles
also finds a departure from the collapse where a strong MRI amplitude is
present. Within this two-code project, Heracles has been providing faster
simulations, i.e., better statistics and the correlation between the MRI and
the departure from the data is more pronounced (see, e.g., Figures
. Both codes hence confirm that — by properly normalizing the velocity
and the applied magnetic field — the data tend to show the same profile;
moreover, when the flow is capable of triggering a strong MRI mode, it is
modified in such a way that the collapse of the date is not satisfied anymore.
In section the impact of this preliminary analysis on the future of the
numerical or laboratory experiment will be discussed.

5.3.1 Inflow vs outflow mid-plane jets

In this section, we will address the main difference between the two codes
that ought to be understood by future investigation. According to Heracles,
the poloidal circulation of the flow always takes the form of two Ekman cells
meeting in an inflow at the mid-plane, and the recirculation takes place
in a narrow outflowing jet close to the endcaps (in qualitative agreement
with [25]). On the other hand, the SFEMaNS simulations show also a two
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Figure 5.12: Meridional plane of the conducting fluid region, Pm = 0.003.
The color shows the #-component of the velocity field when (left) a strong
MRI mode is present and (right) the MRI is very weak. The two simula-
tions have the same Lundquist number S=2.3 but different rotation rates of
cylinders and endcaps (i.e., different Rm).
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Figure 5.13: Azimuthal component of the velocity field at » = 15 cm for
different applied fields and rotation rates obtained by SFEMaNS.
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Figure 5.14: Normalized azimuthal component of the velocity at » = 15 cm
obtained by SFEMaNS. The rightmost point of the red curve experiences the
effect of a strong applied field, whereas departures from the pale blue profile
correlate with the MRI amplitude.
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correlates with the strength of the MRI amplitude (Figure . Figure
courtesy of J. Weissmann.
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Figure 5.18: Inflow mid-plane jet:
The poloidal circulation of the flow
takes the form of two Ekman cells
meeting in an inflow at the mid-plane,
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jet close to the endcaps. These results

Figure 5.19: Qutflow mid-plane jet:
The poloidal circulation of the flow
takes the form of two Ekman cells
meeting in an oufflow at the mid-
plane, recirculating in a narrow n-
flowing jet close to the endcaps.

agree with [25]. These results agree with [59].

Ekman cell poloidal flow, but the two cells can meet either in an inflow at
the mid-plane (Figure , or in the opposite sense (i.e., an outflow at
the mid-plane, see Figure . In the first case, the results agree with the
simulations described in [59]. These two opposite results seem to depend
upon the fluid Reynolds number; unfortunately, the orientation of the radial
component of the flow at the mid-plane in the experiment is still subject to
investigations, since there is currently no possibility to determine the flow
orientation in the experiment because the ultrasound velocimetry technique
produces noisy results when directed radially inward (because of the reflec-
tion on the inner cylinder). Thus, the direct validation with experimental
results is still missing, but there are plans to upgrade the device in order to
allow the measurement of radial velocities at the mid-plane.

5.3.2 Scaling of the MRI Amplitude with Re

Following the investigation in [90], we also analyzed — by using Heracles —
the scaling behavior of the MRI depending on the fluid Reynolds number Re.
With our general approach, we used the fixed rotation speed configuration
MRI-Z 100% at a constant applied magnetic field, so that S = 2.3. This
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set-up corresponds to a fixed magnetic Reynolds number Rm of 15.3. We
then varied the kinematic viscosity v so that 2000 < Re < 40, 000.

Figure [5.20[shows the time development of the MRI amplitude A for sim-
ulations with different fluid Reynolds numbers. This figure shows that the
growth rates and maximum amplitudes are close to each other, whereas the
saturated amplitude A strongly depends on Re. The two curves that seem
to fall out of this scheme show a different behavior during the growth phase.
The saturated value however blends in with the other simulations which is
confirmed in the next figure. The reason for this behavior is probably an
effect of the initial condition.
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Re = 3925 --oooeoe
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= 0.04 Re = 0813 - - - -
g Re = 39252 -
< 0.03
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Figure 5.20: Time development of the MRI amplitude A for simulations with
different Reynolds numbers Re at otherwise identical parameters with S =
2.3 and the MRI-Z 100% configuration. Picture obtained with Heracles.

In figure [5.21] we show the saturated MRI amplitude A, depending on
the fluid Reynolds number Re. A fit through the data points shows that the
amplitude is scaling with a power law

A;=a-Re?, (5.1)

with a = 0.24 and b = 0.20, so A; o« Re~?20, Extrapolating these results to
the Reynolds numbers in the experiment with Re =~ 2 - 10° provides an
estimate for the expected amplitude in the experiment of approximately 1.3
%. This estimation blends in very well with the estimate we have just given
in the section before. In other words, our results give an upper limit for the
saturated MRI amplitude in the experiment of approximately 1.5 %.
Moreover, these findings present a similar scaling as in , where a
scaling with Ag o Re~ 1/ 4 and a similar time dependence of the amplitude
as we have shown in figure has been reported. The difference between
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Figure 5.21: Scaling of the saturated MRI amplitude As with the fluid
Reynolds number Re. The rotation speed configuration was MRI-Z 100%,
the applied magnetic field was constant, with S = 2.3. Picture obtained
with Heracles.

the exponent in the scaling relation can be explained by a slightly different
configuration of the rotation speeds.
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5.4 Conclusions and outlook

Numerical simulations with SFEMaNS and Heracles show promising results
about the possibility of detecting the presence of the MRI. Target of this
two-code approach was the investigation of the following topics: (i) Whether
the azimuthal scaling can be reproduced with Heracles and SFEMaNS, and
(ii) whether we were able to find out how a MRI mode would influence
the scaling. The magnetic boundary conditions do not seem to be decisive
here: SFEMaNS obtains very similar results with pseudo-vacuum and true-
vacuum conditions (whereas Heracles is capable only of pseudo-vacuum at
present). The rotation rate and the applied magnetic field B, are the main
variable parameters, upon which the MRI amplitude strongly depends. The
main result of our analyses is that, by looking at strong departures from
the self-similar profile of wy/u; as function of wa/uy, it can be possible
— in the experiment — to detect possible influences of the MRI mode on
the flow. Past numerical investigations were not able to find this scaling
relation [75]. Furthermore, the simulations done by [90] showed that in the
experiment the azimuthal velocity is only changed in the order of 2% for a
fully saturated MRI amplitude. This value is on the same order of magnitude
as the experimentally measured drift below the threshold for the MRI, which
complicates the experimental identification of the instability [75].

In order to easily compare simulations and the experiment, we carried
out numerical simulations with fixed Prandtl number. With this choice,
we were able to follow the experimental procedure more closely, since, in
the experiment, Pm is a material constant while the magnetic Reynolds
number Rm is modified by changing the rotation rate. The Prandtl number
has been chosen according to the available computational resources, keeping
only the applied magnetic field and the rotation rates as free parameters.
As conclusion of our numerical investigation we can note that we are able to
reproduce the scaling relation as reported in [75], namely for small rotation
rates (i.e., for small MRI amplitudes). Furthermore, for simulations with
larger MRI amplitudes we find a strong correlation between the strength
of the MRI and the deviation from the azimuthal velocity scaling. The
fact that we do not observe a perfect collapse can probably be explained
with the MRI threshold [75] that is expected in the experiment: opposed
to the behavior in our numerical simulations where we find MRI also for
infinitesimal applied fields.

Another difference with the experiment we observed is the slope of the
scaled plots of the azimuthal velocities, since both Heracles and SFEMaNS
foresee a smaller vale of the slope, most probably due to the higher vis-
cosity in the simulations. Despite these differences we can conclude that —
according to the numerical results — the azimuthal velocity scaling is indeed
suitable to identify MRI modes and to measure their strength.

With the results of this investigation we can also give a rough estimate
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for the upper limit of the MRI amplitude in the experiment. A comparison
of the numerical with the experimental data suggests that the MRI am-
plitude in the experiment in [75] is less than 1.5 %, whereas a lower limit
cannot be given with this method. In order to support this comparison we
have additionally performed a series of simulations to analyze the scaling
of the MRI amplitude with the fluid Reynolds number Re. We have shown
that the MRI amplitude scales with Ay oc Re™ %20, If the MRI amplitudes
from our simulations are extrapolated to Reynolds numbers comparable to
the experiment in the order of Re ~ 2 -10° we get an estimate for the
MRI amplitude of 1.3 %. Although both estimates are rather rough, they
nevertheless provide a consistent prediction.

Further numerical explorations are needed, in order to firmly confirm
(or rule out) this hypothesis. For instance, future simulations can study
whether a local refinement of the numerical resolution near the endcaps
and perhaps in the mid-plane “jet” has an impact on the results, since the
coupling to the endcaps is responsible for the Ekman circulation in the first
place. For reasons of computational performance, the resolution may be
coarsened in the bulk, where stronger gradients of the physical quantities
do not take place. Another possible direction for future investigations is to
run simulations with Heracles by using as initial condition the “outflow”
configuration calculated by SFEMaNS. To do this analysis, a mapping of the
flow from the SFEMaNS grid to the Heracles one is needed. Similar efforts
have been already put into this idea in [25], but it turned out the only way
to produce an outflow (using only Heracles) was by changing the ratios
Q;/Q (i = 2,3 or 4). On the other hand, a two code approach is worth
being explored on this topic.

On the experimental side, plans have been made in order to measure the
radial velocity by installing two ultrasound probes in the same port; their
beams would point at equal angles on either side of the radial line. In prin-
ciple, the sum of the two channels should measure u, (if it is axisymmetric),
and the difference should measure ug. Moreover, the experimentalists have
plans for sensors embedded in the flow (hence facilitating the measurements
in the conducting fluid region), but these plans are still in formative stages.

If it will be confirmed that the departure from the self-similar profile is
a sign of the presence of the MRI, this can be still not enough for a solid
understanding of the phenomenon: The physical meaning of this self-similar
behavior is still not clear, since this observation merely comes from the anal-
ysis of the experimental data. Further explorations of the parameter space
with numerical simulations (but keeping the Prandtl number constant) can
be a good strategy to gain insights into this unclear phenomenon. More-
over, future simulations can explore feasible ways of increasing the MRI
amplitude in the experiment before these measurements will be physically
implemented into the device.

An important difference between the experimental and the numerical
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results is the slope of the scaled plots of the azimuthal velocities as functions
of the applied field: Both Heracles and SFEMaNS predict a much smaller
slope. We suggest that this discrepancy is a consequence of the high viscosity
of the simulations. Nevertheless, we conclude that for our simulations the
azimuthal velocity scaling is a suitable way to identify the presence of MRI
modes, as originally supposed by the experimentalists [75].
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Chapter 6

Quantifying turbulence in
the dynamo experiment

“Turbulence is the most
important unsolved problem of
classical physics.”

Richard Feynman

This Chapter deals with some of turbulent properties detected in the
numerical simulations of the Madison Dynamo Experiment. The reason
why turbulence plays a fundamental role in liquid metal experiments is the
following. The magnetic Prandtl number Pm (i.e., the ratio of the kine-
matic viscosity to the magnetic diffusivity, or Rm/Re) associated with lig-
uid sodium (the most common liquid used in such experiments) is of the
order of 107°. Since the goal of the experiments is to sustain a dynamo, the
threshold of the dynamo instability should be overcome, i.e., the magnetic
Reynolds number should be larger than a critical value Rm.. In turn, Rm,
is typically of the order of 102, hence Re = Rm/Pm is of the order of 107
for liquid sodium. Such a huge number testifies that is impossible to avoid
the development of turbulence in the flow. Hence, characterizing the inter-
mittent properties is a crucial ingredient in the understanding of dynamo
action and eventually take measures in the laboratory that can facilitate
the onset of the dynamo instability. On the other hand, the presence of
turbulent motions in the fluid usually hinders the dynamo process. This
last consideration motivated us to investigate — via numerical simulations
— more general properties of the turbulent motion in the Madison sphere.
Moreover, characterizing the turbulence of the simulated system can be a
good way to benchmark the simulations against the experimental data.

In particular, we focused our attention on the possible presence of in-
termittent behaviors in the MDE system. Intermittency is one of the most
intriguing and measurable features of turbulence (for a brief introduction
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to it, see [2.4.4)). In analyzing the intermittent simulated data, it turned
out that the choice of the inertial range (i.e., the range of scales between
the scale of the forcing/boundaries and the viscous dissipation scale) could
strongly influence our results (i.e., the determination of the scaling law of
the structure functions, see below). In other words, with a suitable choice
of the extrema of the inertial range, almost every possible result could be
extracted from the data, making the analysis poor and arbitrary. In order
to avoid this eventuality, we used a technique known as Extended-Self Simi-
larity (ESS) [104-106], which allowed us to obtain a more unbiased analysis.
This technique is still not fully understood by the scientific community, yet
it is used in many other works; it has been originally developed for homoge-
neous isotropic turbulence in order to successfully characterize intermittent
flows. We will show that not only this method surprisingly works with our
data, but that it works also under circumstances in which it is not supposed
to work, i.e., in anisotropic and inhomogeneous turbulence.

Needless to say, with our simulations we are not able to reach the fluid
and magnetic Reynolds numbers of the experiment, nevertheless it is pos-
sible to provide quantitative analyses that can constitute a possible way to
compare the real system and the simulated one in a more enlightening way.
As already stated above, we use the DYNAMO code for this task, since this
code provides a unique virtual laboratory, where the physics of a spherical,
bounded system in the framework of dynamo theory can be explored.
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6.1 Intermittency

Turbulent flows exhibit sudden bursts of activity, especially at small spatial
scales. This phenomenon is called intermittency and leads to departures
from self-similarity and to non-Gaussian probability density functions of the
velocity increments, with large central peaks and long tails. Intermittency
can be detected in different contexts, such as the solar wind [47,49,107-110],
or the interstellar medium [111,|112], as well as in laboratory experiments
[107,|113] and numerical simulations [114H116]. This phenomenon is in-
terpreted as an effect of spatially localized structures in the flow such as
vortex filaments or current sheets [38]. In other words, turbulent systems
show small-scale fluctuations whose statistics exhibit irregular features like
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clumpy activity (i.e., irregular spatial distribution of regions where the en-
ergy is dissipated or flows from a scale into another). The self-similarity
hypothesis, which describes the small-scale statistics of the signal by simply
mapping the large scale statistics by a scale factor, does not take into ac-
count these irregular effects. In other words, the presence of intermittency
in a turbulent system invalidates the hypotheses on which the Kolmogorov
41 phenomenology is based [34,35].

While intermittency is well studied in the idealized situation of homo-
geneous isotropic turbulence (see [117] and references therein), there is also
considerable interest in quantifying intermittency in flows that are closer to
experimental and real-world scenarios. Dynamo experiments may serve as
one prominent example for such systems. Here, turbulence is known to shift
the threshold for self-sustained dynamo activity, as it has been demonstrated
for different setups, both numerically and experimentally, by a number of
authors [81,/97,/118-121].

We will proceed by first introducing the main statistical techniques in
Sec. before we describe the numerical setup in detail in Sec. The
main results of this study are presented and discussed in Sec. before we
conclude.

6.2 Quantifying intermittency

Intermittency in turbulent systems is often detected and characterized by
studying the statistical properties of the velocity increments u(x + r,t) —
u(x,t) or of the two-point correlation function (u(x + r,t)u(x,t)), where
u(x,t) denotes the velocity field and the angular brackets denote averag-
ing. In particular, the investigation described in this chapter is carried out
by focusing on the so-called structure functions, i.e., the moments of the
probability density function of the velocity increments.

It has been shown — experimentally and numerically — that, at high
Reynolds numbers, structure functions of order p show an r» scaling [37,38].
The results of experiments and numerical simulations show that the scaling
exponents ((p) of the p'"-order structure function deviate from the scale-
invariant exponent which is commonly referred to as anomalous scaling and
the consequence of intermittency. In fact, the analysis of the {(p) exponents
can reveal how much the spatial distribution of the energy dissipation is
clumpy. If the decay of the vortices occurs in such a way that the vortices
are teased out into finer vortices, the vorticity field becomes spotty, as well as
the enstrophy scalar field, where the enstrophy is just defined as the squared
modulus of the vorticity. Since the energy dissipation is proportional to the
enstrophy, where the proportionality factor is the viscosity of the medium,
then the spatial distribution of the energy dissipation € will have the same
degree of spottiness, therefore e will be concentrated only into regions where
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high the vorticity is high. Moreover the exponents of the velocity increment
functions are correlated with the degree of spottiness of the small-scale struc-
ture of the fluid (see [33]), therefore those functions are a reasonable choice
for measuring spatially intermittent turbulent behaviors. In particular, one
can study the departure of the third-order structure function scaling law
from the exact result, derived by Komogorov, that this function follows a
linear scaling law. Indeed, from the Karman-Howarth equation (which de-
scribes the evolution of the two-point correlation function) it is possible to
derive the Kolmogorov equation, which relates structure functions of order
2 and 3 (see, e.g., Ref. [122]). In turn, Kolmogorov equation, in locally
isotropic turbulence and for r in the inertial range, predicts a linear scaling
for the longitudinal third order structure function (the so-called four-fifth
law).

Two kinds of structure functions are usually defined: the longitudinal
Sp,1, and the transverse S, r structure functions of order p, i.e.,

r

Spr = (60h) = <[<u(x +r) — u(x)) . 7:|p> (6.1)

r
and

Sy = (6uh) = < [(u(x tr) - u(x)) : ﬁ}p>, (6.2)

where r represents the separation vector while n is a unit vector perpendic-
ular to r. In case of isotropic and homogeneous turbulence, we have that
Sp.x = (x,r) = Sp x(r), where the subscript X represents L or T

Due to the finite Reynolds numbers accessible in experiments and nu-
merical simulations, methods have been sought after to more unambiguously
characterize anomalous scaling. A significant improvement of the scaling
exponent analysis can be given using an empirical technique, known as Ex-
tended self-similarity method (ESS, see [104-106]): Instead of considering
the dependence of S, on r, one usually considers the formula

[((6ux)P)] o [{(Sux)*) . (6.3)

Indeed, in the inertial range, it is expected that S3 ~ r, according to the
Kolmogorov four-fifth law; therefore, the generic p—th structure function has
the same scaling exponent as a function of r or of the third-order longitudinal
structure function. Eq. can be generalized in the following way [123]

[((Bux)”)] oc [{(8ux)*) |7, (6.4)

where B(p,s) = ((p)/((s). Recasting expression |((dvx)P)| oc 7P in this way
has, as a consequence, that the relative exponents ((p, s) are independent
of the scale (over a broad range) even when the absolute ones are not, as
frequently observed [124]. In other words, the motivation of the use of ESS is
that the exponents ((p) can be computed — with a higher degree of accuracy
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— as B(p,3) using the rigorous result ((3) = 1 derived by Kolmogorov, as
already shown in Eq. , since these exponents are constant over a larger
range of scales and not only in the inertial range [104,123].

In this chapter, we present results obtained with a variant of the ESS,
as originally done in Refs. [104},/105], i.e., by using alternative structure
functions, defined with the absolute values of the longitudinal velocity in-
crements,

Sp.x(r) = (lovx[?). (6.5)

As pointed out in [125], by using the absolute value, the scalings turn out
to be better, but in this way there is no equivalent to the four-fifth law
for the third-order structure function that can be used in order to convert
relative exponents B(p,s) = ((p)/((s) into the absolute ((p) exponents. If
the system shows this above-mentioned large independence of the scaling
exponent on the scale, the estimation of the relative exponents is easier,
since they are constant in the range r € [n, L], where 7 is the Kolmogorov
dissipation scale. Moreover, it turns out that the relative exponents are
independent of flow geometry and fluid Reynolds number, meaning that
corrections to Kolmogorov’s theory can already be addressed at low fluid
Reynolds numbers. In [106] it is pointed out that this feature suggests that
scaling and intermittency are concepts which are not specifically related
only to fully developed turbulence but that can be found at relatively low
fluid Reynolds numbers provided that the right recasting of Eq. is
performed.

In [123] and [106] the impact of inhomogeneity and anisotropy on the
ESS technique are briefly discussed. The authors of these papers state that
possible discrepancies between the results obtained from homogeneous sys-
tem analyses and inhomogeneous ones could be observed (as in |126], where
the range of validity of ESS is narrower respect to the expected one). Hence,
inhomogeneous flows can show a reduced range of validity of ESS, due to
boundary layer effects. Then, ESS should be applied far from the bound-
aries, where the velocity field shows a local homogeneity and isotropy. The
boundary layer thickness (which is of the order of L Re /2 see [18]) is
a length scale larger than 7 (which is of the order of L Re=3/4, according
to Kolmogorov’s theory) and this new scale could be able, in principle, to
modify the ESS scaling. Experimental data measured closer to the bound-
aries seem to confirm this last statement [123]. It is therefore important
to verify ESS in inhomogeneous, anisotropic systems with large shear flows,
as suggested in [106]. As observed in [125], in spite of several attempts to
explain the success of ESS (see, e.g., Refs. [44,124,127-130], ESS is still not
fully understood. In the light of the discussion above, we stress the fact
that the main scope of the work described in this chapter is to show that
the ESS method can be successfully applied to the data that were numeri-
cally generated in order to model an experimental system characterized by
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a strong inhomogeneity and anisotropy. Further outcomes of this analysis
are discussed in Section [6.5]

The expression of the second-order structure function can be generalized
to include the deviation from Kolmogorov scaling (¢(2) = 2/3) outside the
inertial range. As stated in [131}/132], an example of such a generalization
can be

So(r) o T2/3f(%>, (6.6)

or

S5 rf(f), (6.7)
n
where f(r/n) is a dimensionless quantity — called form function. Comparing
Eq. with the Kolmogorov result ((3) = 1, one should expect that the
form function is of the order of unity in the inertial range. Keeping the ESS
results in mind, a natural consequence of Eq. is that it is possible to
generalize the scaling properties of the generic p!* moment:

s (11 (2) 69

as suggested in [133].

6.3 Numerical setup

As already mentioned, the results presented in this Chapter have been ob-
tained using the DYNAMO code. The simulations have a radial resolution
n, = 512, which means that the grid space between the mesh points in the
radial direction is of the order of one millimeter. The angular resolutions of
those simulations is ng = 80 and ny = 160 (respectively, the number of lon-
gitudinal and latitudinal grid points). The relatively high radial resolution
was chosen in order to allow us to study — with the appropriate resolution
— structure functions with the separation vector r e, (see Egs. and
(6.2)). For this reason, 50 points in the sphere are chosen where the time
series of the velocity and magnetic fields are recorded. The coordinates of
the first 25 points share the same colatitude and longitude 6 = 90° and
¢ = 0, therefore in Eq. the separation vector r lies in the equatorial
plane, in the radial direction, i.e.,

(6.9)

r « é,

0=n/2,p=0

Adjacent points are separated by 10 grid points (about 1 cm) and this array
of probes is located between r1 = 250, i.e., about 25 cm (which corresponds
to the reference probe at x) and ro = 500, i.e., about 50 cm. The second
array is also placed in the radial direction, between the same r; and ro,
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but at 8 = 121° and ¢ = 0. In order to compute the transverse structure
functions, we used ég and é4 as the two independent transverse directions
on the plane perpendicular to the separation vector (since in Eq. we
indicated a generic direction 7 on that plane). The choice of the location of
the arrays is due the fact that similar locations are used in the MDE [81].

Seven kinds of simulation were performed. In the following table, their
most important parameters are reported.

Run Reg Rmog Re Rm U C

2000 40 1120 22 0.56 0.01
2000 40 1060 21 0.53 0.03
2000 40 820 16 0.41 0.07
2000 40 640 12 0.32 0.15
2000 200 540 54 0.27 0.01
2000 200 540 54 0.27 0.07
2000 200 540 54 0.27 0.15

N OO W N

The number C represents a dimensionless parameter proportional to the
amplitude of superimposed magnetic field, whereas the numbers Rey and
Rmg are numerical parameters read by the DYNAMO code before a simula-
tion is started. By multiplying them with the characteristic velocity U, the
fluid and the magnetic Reynolds numbers Re and Rm are obtained. The
reduction of the characteristic velocity U when stronger background mag-
netic fields are applied — as shown in the table — is due to the amplification
of Lorentz force effect, leading the run into a non-kinematic regime.

6.4 Results

In this section, we discuss the results of the simulations, focusing our atten-
tion in particular on the application of the techniques described in section
It turns out that analyzing the data by means of the plain structure
functions does not lead to clear conclusions, since the determination of their
scaling exponents is an operation that is biased by the identification of the
inertial range. In other words, the results obtained by analyzing the struc-
ture function behavior are not robust enough and can lead to misleading
conclusions. On the other hand, the sound achievement of the work de-
scribed in this chapter is that the ESS represents a valuable way of letting
the data collapse on straight lines over a range that is to be way larger than
the relatively narrow inertial range. It is worth emphasizing, however, that
this method does not solve once and for all the identification of the absolute
exponents of the structure function scaling laws; on the other hand, this
technique turns out — unexpectedly — to work notwithstanding the presence
of strong inhomogeneities and anisotropies. As stated in Section one of
the main motivations of this analysis is that it is important to verify ESS
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in inhomogeneous, anisotropic systems, because, for instance, the boundary
layer — whose thickness is larger that the Kolmogorov dissipation scale —
could negatively affect the applicability of ESS. On the contrary, the system
we study provides a new example of inhomogeneous and anisotropic system
where the ESS technique turned out to be crucial for extracting the statisti-
cal information from the data. In the following, we describe in more details
the outcome of the analysis.

Plain structure functions.— Following Kolmogorov’s standard analysis, a
rough estimate of the viscous dissipation scale is

n~ L Re™3/%, (6.10)

Since for our system L ~ 0.53 m (the radius of the MDE sphere), the dis-
sipation scale turns out to be about 3 or 4 mm for the typical Reynolds
numbers of the simulations. In consequence, to be sure that the calcula-
tion of the scaling exponents was not affected by viscous effects which take
place at small scales, we have not considered values of r below ~ 10n. In
fact, Stolovitzsky et al. |[134] pointed out that the transition from dissipa-
tive to inertial regimes occurs at r/n 2 11. Th results show that a (Taylor
expansion) dependence up to 30 mm (log;,7/mm ~ 1.5) is observed — con-
firming this previous estimation about the viscous range — and a range of
approximately constant scaling can be identified between ~ 60 and 110 mm.
The interval where the scaling exponents are calculated goes from 30 up to
usually 70-80 mm. Considering further points negatively affects the quality
of the calculation, as an effect of inhomogeneity due to the force term in
the governing equations. The central outcome of this analysis clearly shows
that the forcing and the dissipation scales are too close to each other to
extrapolate scaling laws of the structure functions.

Use of ESS.— In the following, we use ((3) as the reference exponent,
since it can be shown that ((p)/(3) turns out to be scale independent for
low orders and on a larger range [135] and because ((3) = 1 exactly in 3D
Navier-Stokes turbulence. The error bars of the exponents are calculated
via a standard linear regression of the data in a log-log plane using a least-
squares method provided by GNUPLOT (see [136]). As an estimate of
the fitting procedure error, GNUPLOT reports the standard deviation of
the fitted curve o which is defined as the rms of the residuals. By using
geometrical considerations on the growth rates of the magnetic energy, it can
be shown that the error on the slope of the curve (slope which corresponds
to the exponents we are calculating) is 20 /Ax, where Ax is the length of
the range of the independent variable on which the fit is performed. Figures
and show how ESS-corrected structure functions appear. It is clear,
therefore, that with this method we can fit a straight line with great accuracy
to the functions log(|du,[P) with the dependence described by Eq. (6.3)). Our

results are in line with what the investigations of [104] show: the slopes of
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the various curves (i.e., the relative exponents of the structure functions) are
constant over the whole range of variation of the separation r. In Section
[C] a detailed overview of the results is shown in tabular form, where the
exponents in the tables are all calculated by means of ESS, which turns
out to work in every case and providing small uncertainties. The results
obtained with the use of ESS analysis are discussed in Section
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Figure 6.1: Third-order longitudinal structure function vs second-order lon-
gitudinal structure function (log-log) for run number 4, # = 90°. One can
visually appreciate how powerful ESS turns out to be, since the range of
constant scaling extends over the whole range of separation vector available
to the numerical experiment.

Form function.— We use the simulated data to analyze the properties of
the form function. Then we extend the array of probes to the inner part of
the sphere too (from 7; = 10 em up to r; = 50 em, every 10 mm) and perform
a simulation with an intermediate magnetic field C = 0.07 (see Figure .

A qualitatively similar result concerning the shape of the form function
can be found in , where experimental studies were performed for fluids
of different Reynolds numbers. As Fig. [6.3] shows, the form function turns
out to be independent on the order p. Although the secondary bumps shown
by the form function cannot be easily explained, this result confirms that
our spherical, bounded, anisotropic flow —immersed in a weak magnetic field
— shares properties of real fluids studied in different geometries.

Time intermittency.— As our numerical setup is motivated by the MDE
experiment, we also seek for an evaluation of our data that can be compared
to experimental measurements. True multi-point measurements are experi-
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Figure 6.2: Third-order longitudinal structure function vs second-order lon-
gitudinal structure function (log-log) for run number 6, # = 90°. As above,
the calculation of the exponent ((2)/¢(3) (the slope of the fitted line) is
visibly improved.
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Figure 6.3: Form function vs separation, C = 0.07, § = 90°. The form
function is equal to 1 in what can be identified as the inertial range.
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mentally hard to realize, which is why often temporally resolved single-point
measurements are taken. This method is used also for solar wind observa-
tions, where the data are measured by a single satellite which does not
have the possibility to spatially cover the large scales which characterize
the solar wind; instead, it focuses on the temporal analysis of the turbu-
lence advected by the solar wind towards the location of the satellite. The
single-point measurements then can be related to multi-point measurements
by some additional assumptions like Taylor’s frozen flow hypothesis or the
random sweeping hypothesis by Tennekes and Kraichnan. For the present
investigation it turns out that ESS can also be detected in the temporal
signals. In formulas, the temporal structure functions of order p is

Sp(7) = ([o(t + 1) —v(t)[P), (6.11)

where 7 is the temporal separation of the two recordings. As an illustra-
tive example, in Figure we show the structure functions of order p of the
magnitude of the velocity field versus the temporal separation 7 in a log-log
plot for run number 2 at the location § = 121°, r; = 400, ¢ = 0. A linear
phase can be distinguished when 7 is less than about 6 times the diffusivity
time 7, and it demonstrates and quantifies the presence of a memory effect
of the signals (related to the effects of viscosity).

The same data showed in Figure[6.5] are re-plotted versus the generalized
coordinate Ss3 in Figure[6.6] according to the ESS technique. This plot shows
how strongly we can improve the robustness of the evaluation of the scaling
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Figure 6.4: Form function vs separation, C = 0.07, § = 121°.
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exponents, since they are evaluated via a linear fit of the logarithm of the
independent and dependent variables. In Appendix we reported the
calculated relative exponents ((p)/{(3) for two points at § = 121°, precisely
at r; = 250 and at r; = 400. The results show a strong deviation from
the Kolmogorov prediction in most of the cases, although we observe non-
intermittent signals for some runs.

The similarity of these results to those in , obtained from edge
plasma turbulence is noteworthy. The exponents of the temporal analysis
are shown in tabular form in Section[D] As well as in the spatial case, all the
exponents are calculated exploiting the ESS method. In the tables, 7probe
indicates the radial location of the probe where the simulated temporal
signals are measured.
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Figure 6.5: Structure functions of order p of the magnitude of the velocity
field versus the temporal separation 7 in a log-log plot for run number 2 at
the location # = 121°, ry = 400, ¢ = 0 (since the latitude is the same used
also in the MDE). The scaling is linear when 7 is less than about 6 times
the diffusivity time 7,, and this proves the presence of memory effect of the
signals.

Scaling properties of the Elsasser variables.— An analysis similar to Kol-
mogorov’s was carried out for magnetohydrodynamics (MHD) by Irosh-
nikov and Kraichnan [39]. The considered fields are the symmetrized
Elséisser variables z* = u+ B, where B is the normalized field B/ /mp. It
can be shown that for the study of the scaling exponents, the superscripts
=+ of the Elsasser variables are unimportant; in the following we will drop
them, using for the calculations the variable z*. The theoretical studies of
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Kraichnan and Iroshnikov take into account the different mechanism of the
energy cascade due to the presence of the magnetic field and starts from
the hypothesis of scale independence of the energy dissipation. This set of
hypotheses leads to the equations

((621)7) = (

(z(x +r) — z(x)) : ;‘p> x 7, (= % (6.12)
It can be shown that, starting from these equations, the energy spectrum
presents the scaling Ej, ~ k~3/2 instead of the Kolmogorov Ej ~ k°/3
prediction. The Iroshnikov-Kraichnan spectrum can be observed in di-
rect numerical simulations of 2D MHD decaying turbulence at moderate
Reynolds numbers (lower than ours, see [138]). Higher Reynolds number
simulations [139] or satellite observations of MHD turbulence in the solar
wind [47-49] emphasize that the Iroshnikov-Kraichnan scaling should be
modified in favor of nonlinear models of the functions ((p) [46}50.52,[53].
Since we are dealing with 3D MHD simulations, we should compare our
results with those of works like |140] or [141], highlighting that — in our
case — we model the stirring in such a way in order to mimic the real stir-
ring in the MDE, leading to an inhomogeneous and anisotropic force term
in the equations. Exploiting again the ESS technique but using ((4) as a
reference exponent (according to [39,/40,50] this exponent is expected to be
close to unity), we perform a simulation with C = 0.07 and Rmg = 40. In
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Figure 6.6: The same data showed in Figure here plotted versus the
generalized coordinate S3, according to the ESS technique.
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this case we take into account the inner part of the sphere too: Previous
simulations [98] in fact suggested that a large value of the magnetic field can
be observed in the inner core and in order to have a B amplitude compara-
ble with the u amplitude, we prolong our two arrays from the center up to
the 50 cm. Results can be seen in Tables and along with a model
developed independently by Grauer, Krug, Marliani [50], and Politano and
Pouquet [51] (we will call it the GKMPP model in the following). This
model has the advantage to give predictions without any use of adjustable
parameters. It was developed as an extension of the She & Lévéque model
to MHD using the same Iroshnikov-Kraichnan hypothesis on the temporal
scale of the energy transfer (which differs from the Navier-Stokes one). It
should be emphasized again that these results do not give us information
about the absolute exponent ((4), for which the expectation ((4) = 1 is
wrong, as pointed out in [141].

Table 6.1: Relative exponents of the structure functions of the Elsésser
variable z*, 6 = 90°.

longitudinal (é,) transverse (ég) transverse (é4) GKMPP p/4
CI/QL 0.279 £0.013 0.2854 0.003 0.34 +0.03 0.284 0.25
Ca/Cu 0.533 +£0.017 0.536 +0.004 0.61 +£0.04 0.543 0.5
C3/C4 0.769 £+ 0.013 0.7714+0.0022 0.82 £0.03 0.780 0.75
<5/C4 1.234 +0.021 1.225 + 0.003 1.17 £0.04 1.204 1.25

Table 6.2: Relative exponents of the structure functions of the Elsésser
variable zT, = 121°.

longitudinal (é,) transverse (ég) transverse (é4) GKMPP p/4
C1/C 0.289 £ 0.011 0.292+ 0.008 0.30£0.03 0.284 0.25
Ca/Cu 0.540 + 0.012 0.544 £0.009 0.55£0.03 0.543 0.5
(3/C4  0.775+£0.008 0.77740.006 0.78 £0.02 0.780  0.75
C5/Ca 1.220 £ 0.010 1.218 £ 0.009 1.22 £0.03 1.204 1.25

6.5 Summary and conclusions

The main motivation of our study was the quantitative characterization of
a turbulent system that was originally designed for triggering the growth of
a magnetic field in an optimal way. It is known, indeed, that turbulence in
liquid metals obstacles this process. One possible way to study this problem
is the precise spatio-temporal characterization of the eddies that play a
detrimental role for dynamo action [120121]. Another, more general way to
face this problem is to search for possible hidden symmetries of the turbulent
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flow, as the investigation of the scaling properties of the structure functions
can provide. The goal is threefold: (i) Testing existing models in order to
understand what kind of turbulent behavior is taking place in the system
under study (e.g., the She & Lévéque model, the Politano & Pouquet model,
etc); (ii) testing different techniques used under other sets of hypotheses in
order to suggest to the experimentalists how to extract the information
from the data (e.g., ESS, characterization of the form function, etc); (ii)
Providing numerically generated data that can be directly compared to the
ones obtained by the MDE. Let us discuss in more detail these three points.

Concerning point (i), we have found that our system shows features
that are best described by models like those proposed by She & Lévéque
(for hydrodynamic investigations) or by Grauer, Krug, Marliani, Politano
and Pouquet (for MHD intermittency, [50,/51]). These models turn out to
be good references for the predictions of the departure of the results from
the homogeneous and isotropic theory in the MDE simulated system. The
reason why we performed this structure function analysis lies in the fact
that the study of scaling exponents is a standard way to characterize the
intermittent properties of the turbulent system. Since different models have
been elaborated for describing intermittency, it is important to compare
them to our findings.

In addition to these considerations, let us stress that the main result of
our study concerns point (ii). Indeed, we have shown that it is possible to
successfully make use of a set of methods that are conceived for homoge-
neous and isotropic systems. A sound proof of why these techniques can be
applied to this system is still lacking. A possible explanation can be given
in light of the interpretation described in [142], although further analyses
should be carried out in order to benchmark the formulas therein against
numerically simulated data. In fact, in the present context, the major ob-
stacle to having a clear characterization of the turbulent behavior is the
fact that a reliable measurement of the absolute exponents of the structure
functions is not possible, due to the narrowness of the inertial range. This
problem is usually overcome with a questionable identification of the in-
ertial range, i.e., considering the Kolmogorov’s prediction ((3) = 1 valid,
irrespective of the width of the interval where this scaling can be observed.
In order to overcome this issue, we exploited the Extended Self-Similarity
technique, i.e., adopting the point of view of the relative exponent measure-
ment. This method makes the calculation more unbiased, since the results
do not depend on the identification of the inertial range.

The exponents we find via ESS turn out to be very similar to the pre-
dictions of models used for investigations in periodic box simulations. In
fluid turbulence, She & Lévéque [52] and Dubrulle [143] postulated that the
ESS method works thanks to a hidden symmetry of the Navier-Stokes equa-
tions. The usefulness of ESS was already discussed by [108] and [144] for
MHD turbulence or by [145] and [137] for edge plasma turbulence of fusion
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devices.

The simulations show that MHD effects must be taken into account
when the magnetic field amplitude is higher, as found in the core of the
sphere where a strong magnetic field can be detected (B ~ 10Bgppiicd)-
Under these circumstances, the combined fields z¥ = u 4+ B turn out to
be more suitable for the study of scaling laws. Again, ESS allows us to
quantify the scaling laws of these fields. The scaling behavior is more similar
to that predicted by the GKMPP model than to the standard Iroshnikov-
Kraichnan p/4 scaling, due to the impact of inhomogeneity and anisotropy
of the system. The justification that the Iroshnikov-Kraichnan theory turns
out to be inaccurate can be found in [54,/55]. Those effects can be described,
within the statistical uncertainties, by means of a non-linear model (i.e.,
the GKMPP model) which departs from the prediction of the Iroshnikov-
Kraichnan theory, quantifying the deviation from self-similarity and again
confirming the presence of intermittency.

We investigated the form function of the structure functions too. The
qualitative shape of the simulated form function f(r/n) resembles that found
in wind-tunnel experiments [133], although the experiments have a com-
pletely different geometry and different fluid Reynolds numbers, enforcing
the original hypothesis that this function carries universal properties. More-
over, the form function does not depend on the exponent p, as shown also
by the experiments. Further investigations on the physical meaning of this
function are hence needed.

Another sound finding concerns the investigation of time intermittency
as well, which we detected by applying again the ESS technique, by analyz-
ing the temporal behavior of the fields in specific locations. Also in this case,
the best way to characterize intermittency is by means of ESS, which turns
out to be a crucial tool, without which a robust estimation of the exponent
and the detection of time intermittency would be technically difficult. The
outcome (i.e., the ESS can be applied to the temporal analysis) can facil-
itate the comparison with the experiment (point (iii)). Indeed, the reason
why we check whether we can apply ESS to the temporal domain is that
in the experiments it is easier to measure a temporal signal with a single
probe than with an array of probes registering several signals at the same
time at different locations for spatial analyses. In other words, we suggest
to the experimentalist to accomplish the same kind of analysis and to see
whether the same behavior can be detected. Characterizing which kind of
intermittency takes place in the experiment can give further insights into
the understanding of the system and can represent a new step towards the
control of turbulent effects that hinder dynamo action.
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Chapter 7

Facilitating dynamo action
via turbulence control

As already mentioned in previous chapters, the identification of flow ge-
ometries and topologies that are optimal for the attainment of a magnetic
instability is crucial [146,/147]. In order to achieve the dynamo mechanism,
experiments are focused on the investigation of the optimal setup which
enhances the probability of achieving dynamo action. The design of the
geometry, the choice of the fluid, the forcing mechanism, as well as the
boundary conditions and their material (for plasma dynamo experiments,
see [148]) play a crucial role in creating a flow field whose geometry provides
the right feedback mechanism for the creation of a self-sustaining magnetic
field. However, the design of the geometry of an experiment is not enough
for such a task because one should take into account also the detrimental
effects that turbulence has on the dynamo process, as recent experimental
investigations [81.[119] have shown. In [84] it is experimentally observed that
turbulence enhances the magnetic diffusivity of the liquid, an effect that hin-
ders dynamo action. The effects of turbulence have also been investigated
via numerical simulations: A fundamental work is described in [118], which
studied whether turbulence (in a Taylor-Green flow and in periodic boxes)
raises or lowers the dynamo threshold (i.e., the so-called critical magnetic
Reynolds number Rm,, above which the magnetic field growth takes place).
The main result of [118] is that the addition to the mean velocity field of
a large-scale stochastic noise significantly increases the threshold, whereas
for small-scale noise, the results depend on the correlation time of the noise
and the magnetic Prandtl number (the ratio of the magnetic to the fluid
Reynolds number).

Keeping these results in mind, one of the natural interpretations of
the fact that the Madison Dynamo Experiment has not yet achieved self-
excitation is that the rather high observed fluctuation level of large eddies
has played this detrimental role. It should be noted, in fact, that the mean
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flow of this experiment is supposed to be optimal for dynamo purposes (ac-
cording to ), hence it is hypothesized that the fact that the instantaneous
flow can differ significantly from the mean flow is the reason of that failure.
In order to make the instantaneous flow closer to the mean flow which fa-
vors dynamo action, an axisymmetric equatorial baffle (or annulus) near the
boundaries has recently been added to the MDE.

This Chapter deals with our first attempts to reduce the influence of
turbulence on the dynamo process. Although the results presented in this
Chapter do not give us a positive answer, this part of the analysis turned
out to be useful in the Chapter 8, where a more successful strategy has been
proposed to the experimentalists. Moreover, this first failure has been the
crucial step that fostered us to use a more powerful technique, the Singular
Value Decomposition technique, as described in Chapter
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7.0.1 Suppression of large-scale eddies in the MDE

After the introduction of the equatorial baffle in the MDE, new measure-
ments of the magnetic modes on the surface of the sphere were performed
and these measurements were compared in turn to the ones obtained with-
out the baffle . From this comparison, it is hence possible to identify
which interactions of the bubble diagram are more affected by the baffle.
In other words, it is possible to identify these three-wave interactions which
are suppressed by the presence of the baffle. It turns out that the velocity
modes which are more weakened are s{ and t}. We emphasize that this
last deduction is indirect, i.e., it is based on the assumption that the non-
linear interactions among the magnetic and the velocity modes follow the
bubble diagram suggested by the Bullard-Gellman formalism. According
to the results, these two modes are the most significantly damped modes,
while the small scales (high [ numbers) are almost unaffected by the baffle.
The eddies associated with s{ and ¢} would flow across the equatorial baffle,
as can be seen in Figures and These two figures show a graphical
representation of the velocity field lines of two eddies described by s! and
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S? t1

Figure 7.1: Eddy associated with Figure 7.2: Eddy associated with

the Bullard-Gellman function s?(r). the Bullard-Gellman function ¢(r).
Reprinted figure with permission Reprinted figure with permission
from [81]. from [81]

t1: they form a shear layer adjacent to the boundaries of the sphere which
flows perpendicularly through the equatorial plane.

7.0.2 Suppression of the turbulent resistivity

A second effect of the baffle which has been detected experimentally is the
reduction of the ’global’ turbulent resistivity (or turbulent magnetic diffusiv-
ity).

The mean field theory (MFT) predicts in fact that the turbulent fluc-
tuations of u and B lead to an alteration of the resistivity or magnetic
diffusivity n [30]. It can be shown within the framework of this theory that
the modified quantity, 7.y, is larger than the molecular one, n; specifically,
the relation is 1.ty = n + 17, where ny is called turbulent resistivity. If —
as just stated — the effective resistivity is larger than the molecular one, it
means that the effective magnetic Reynolds number Rm.s is smaller than
Rm by a factor of n/nr. In consequence, the dynamo excitation threshold
is enhanced and more difficult to reach. The main goal of the suppression of
the turbulent energy by means of an equatorial baffle can hence be viewed as
the reduction of the turbulent resistivity, lowering dynamo threshold. The
mathematical explanation of this effect from the MFT point of view has
been described in Chapter

As stated above in this section, the experiments show that this baffle
is able to reduce the amplitudes and the fluctuation levels of large eddies,
whose spatial extent is of the order of the experimental device itself. It can
be shown that — as a consequence — the final effect is a global reduction of
the turbulent resistivity. In fact, since the spectrum of the turbulent s2t2
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flow (driven by a large scale force peaked at [ = 2) drops off rapidly with [,
the fluctuations at low [ mainly contribute to the turbulence, whereas high [
play only a minor role. In other words, large scale eddies usually carry most
of the turbulent energy in this flow. Consequently, they are expected to be
the main source of turbulent resistivity nr. Suppressing them, the global
value of nr is reduced.

7.1 Role of the baffle in numerical simulations

In order to mimic the influence of the equatorial baflle in the MDE, we
implemented in the DYNAMO code a model which operates on the spatial
fields or on the spectral fields or on specific large eddy modes. As already
stated, a reduction of shear layer fluctuations by an equatorial baffle has
already been observed in water experiments with similar geometry [58,/149].
This method seems to be capable of improving the probability to exceed the
critical magnetic Reynolds number as results of other works suggest.

Before proceeding further, as already stated in previous section, a warn-
ing is necessary. Numerical studies of Laval et al. [118] show indeed that
large-scale noise tends to increase the dynamo threshold, suggesting thus
that in an experiment, it is crucial, for dynamo action to occur, to control
the large scale fluctuations, trying to keep them as stationary as possible.
Nevertheless, we should be very mindful of the fact that in [81], MFT is
used, applying its results to systems where large scale turbulence can play
a fundamental role, although one of the basic assumptions of MFT is — as
already pointed out — that the characteristic time and length scales of the
fluctuations are small compared with those of the mean fields. If we suppose
— as we did — that large eddies on the scale of the diameter of the spheri-
cal system are capable of carrying most turbulent energy, we are implicitly
assuming that the correlation length can be large as the system size; in con-
sequence, the calculation of the order of magnitude of o or 8 could be in
principle not exact or even misleading, since these quantities could be not
able to describe fully and meaningfully the effect of turbulence on the MHD
system under consideration.

In order to study all these aspects via numerical simulations, several runs
were performed with the purpose to investigate an impact of this baffle on
the dynamo threshold. The first one is the implementation of a baflle in the
spatial domain, slightly modifying the field at every time step. The second
method is an implementation of the same effect of the spectral field by a
modification of the toroidal modes which can be responsible of the large-
scale fluctuations observed in the experiment. This procedure exploits the
particular expression that the toroidal field has, i.e., the relation between
the 6 component of the toroidal velocity field and the toroidal spectral func-
tions ¢7(r). In particular, the toroidal mode ¢}(r) is the main mode which
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is subjected to this modification. The third baffle model is a spectral mod-
ification of the predicted flow, by zeroing out all the responsible modes of
the shear layer. A forth and final implementation uses a single mode zeroing
procedure: At every time step, single selected shear layer modes are zeroed
out. These four implementations are described and studied in detail in the
next subsections.

We chose to implement four different models of the baffle because every
one of these four has its pros. For instance, the first implementation —
in the spatial domain — is the most natural to design, since it operates
directly on the flow in order to suppress the motion through the equatorial
baffle near the boundaries. On the other hand, the implementations in
the spectral domain are conceptually simple, since they use the Bullard-
Gellman decomposition and permit to modify the profiles of specific modes.
Moreover, the use of a “spectral baflle” gives us the possibility to mimic
more easily the observed effects of the baffle in the MDE, since, in the
experiment, indirect measurements of the amplitude of the most important
modes are performed and then compared to the ones obtained without the
use of the baffle [81]. By making use of these different advantages of the
four approaches, we want to ensure the robustness of our results.

7.1.1 Implementation of the equatorial baffle in the spatial
domain

The first type of model is a modification of the computed velocity field.
As is explained in [81], the large-amplitude fluctuations of the shear layer
modes that we are trying to suppress are well captured, to lowest order, by
the t1 and s{ modes, i.e., large eddies with a prominent § component on
the equatorial plane, near the boundaries. In the code, a spatially smooth
suppression of this component was performed at every time step as a filter
on the predicted velocity field. More precisely, the z component of the field
was damped on the equatorial plane, near the boundaries, according to

11(1", 97 ¢) — U(T, 07 ¢) - ’sz(’l“, 05 d))ia

where the function f carries the spatial information of the damping mech-
anism. In order to avoid abrupt damping effects and steep gradients in the
simulations, the function f employs Gaussian functions to describe the tran-
sition between the region where the damping effect is present and the region
where it is not. In fact, it turned out that this Gaussian approach is well
suited to avoid numerical instabilities. In conclusion, the functional form of
f was chosen as

r2cos? 6

f(T’, 0, (b) = eXp{_i}fring(rv 0, ¢):

2
202
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where, in turn,

Frine = exp{—|[(rsinf — prmg)Q}/Qaf)} rsinf < pring
U | rSing > pring

The interpretation of the adjustable parameters o, 0, and ppi4 is as fol-
lows. The first parameter, o,, is a measure of the thickness of the baffle;
o, represents a damping parameter along the radial direction; pring is a
measure of the difference of the radius of the sphere and of the radius of
the baffle (in the experiment, it is 8 cm). Since the MDE has focused the
attention on the reduction of the turbulent resistivity (and hypothetically
on the reduction of the threshold, if we follow MFT results, see previous
sections), we can use our simulations to shed light on the impact of such
a baffle on the dynamo growth rates and on the dynamo threshold. The
reason why we implemented the filter with such a particular spatial shape
can be understood by inspecting the spatial behavior of the eddies we are
trying to influence (to have a graphical clue, see Figure 1 in [81]).

From first tests, it turns out that the main adjustable parameter is the
“baffle width”, i.e, the difference between the sphere radius and pying (in the
MDE, it is 8 cm). A series of 23 runs was performed, as indicated in Tables
and with three different values of this parameter (whose value, once
translated into real dimensions, is about 5.3 cm, 10.6 cm and 15.9 cm).
Among these 22 runs, 14 were performed using the smooth version of the
impellers model, while for the remaining 8 the non-smooth version of the
force was chosen.

The truncation level [,,,; of the spherical harmonic expansions was cho-
sen as it was done in previous studies carried out making use of the DYNAMO
code [87]; more precisely, the maximum number of [ modes was chosen in
order that energy spectra of the flows in Reuter’s hydrodynamics studies
drop off by at least three orders of magnitude between their maximum at 1
= 2 and their tails.

It is important at this point to clarify the meaning of the parameters
Reg and Rmyg used in the DYNAMO code. These two parameters appear in the
system of the governing equations solved by the DYNAMO code as coefficients
with the role of Reynolds numbers. The Reynolds numbers should depend,
however, on the characteristic amplitude of the velocity field, according to
the definition; in other words, they cannot be established a priori, before
starting a simulation, without any knowledge of the resulting flow field.
Hence, in order to realistically represent the usual dimensionless Reynolds
number, we follow an established convention according to which the root
mean square amplitude of the dimensionless velocity field, U = /(|ul?), is

multiplied with Reg and Rmg in order to obtain a more realistic estimation
of the standard fluid and magnetic Reynolds numberg]] In Tables and

In the definition of U, the overbar represents a temporal average, while the brackets
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Table 7.1: Run series A: Simulations with the first model of the baflle and
the smooth version of the force.

Run baffle width (cm) Rey Rmog 7 lmas

Al 5.3 100 90 320 30
A2 5.3 100 100 320 30
A3 5.3 200 90 320 30
A4 5.3 200 250 320 30
A5 5.3 300 80 320 30
A6 5.3 300 130 320 30
AT 5.3 300 175 320 30
A8 9.3 300 250 320 30
A9 5.3 600 250 360 52
A10 10.6 1000 200 512 52
All 10.6 1000 350 512 52
A12 15.9 1000 200 512 52
Al13 15.9 1000 230 512 52
Al4 15.9 1000 240 512 52
A15 15.9 1000 350 512 70

Table 7.2: Run series B: Simulations with the first model of the baflle and
the non-smooth version of the force.

Run Dbaffle width (cm) Rey Rmo 7 lnax

B1 5.3 100 90 320 30
B2 5.3 100 100 320 30
B3 9.3 200 90 320 30
B4 5.3 200 250 320 30
Bb5 5.3 300 80 320 30
B6 5.3 300 250 320 30
B7 5.3 500 250 320 30
B8 5.3 600 100 320 30

102



[7.4] we list, for those runs, the values of the root mean square velocity
U, the Reynolds numbers Re and Rm, the time range A7 over which the
calculation of the growth rate v was carried out, the growth rate itself and
its error Ay. With regard to the growth rate error, an already established
method was used: a least-squares method was used to fit a straight line to
the logarithm of the magnetic energy. Within the program GNUPLOT, the
least-squares algorithm minimizes the sum S of the squared differences (or
residuals) of the input data points and the straight function values, i.e.,

N
S=> (vi—g(t:))*,

where y; = In Ejs(t;) are the discrete data values of the logarithm of the
magnetic energy at time ¢; and the function g(¢) represents the fitted straight
line. As a measure of the goodness-of-fit, GNUPLOT gives the value o of
the root mean square of the residuals. From geometrical considerations, a
good estimation of the error of the growth rate is given by 20,/A7. This
expression was taken as the definition of Ay [87].

The results obtained via this kind of baffle model do not exhibit any gain
in the growth rate or any significant drop of the threshold (in most cases
the situation is even worst, especially for the non-smooth force) when we
compare them to the simulations of previous works [87] or with new runs
without the baffle. Among the cases where the growth rate is greater than
the ones obtained with simulations without the baffle (see Table growth
rates in bold face), run A8 seems to be particularly interesting, since the
growth rate error is relatively low and it is a turbulent case.

In Table we report a tabular overview of the simulations without
baffle. We use these results as a reference in order to compare the effects of
the modification of these default runs. Previous numerical investigations [87]
permit us comparison with simulations whose Reynolds numbers are not
indicated in Table [Z.5l

7.1.2 Implementation of the equatorial baffle in the spectral
domain

Damping the ti field

We implemented a second possibility of mimicking the effect of the baffle.
In order to explain how this method works, let us start from the expression
of the 6 and ¢ components of the toroidal vector field us,, in the Bullard-
Gellman decomposition of the velocity field u = uso, + upe. As shown in
the original paper [32], it reads:

a spatial average.
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Table 7.3: Run series A: Simulations with the first version of the baffle and
the smooth version of the force. The bold face growth rates are the only ones
which are larger than the growth rates obtained from simulation without the

baffle.
Run U Re Rm AT vy Ay
Al 038 38 34 125 15.523 0.008
A2 038 38 38 1.6 19.488 0.004
A3 041 82 37 0.7 -045 0.18
A4 041 82 102 1 74.6 1.1
A5 029 8 23 12 -10.55 0.03
A6 029 87 38 9.5 -0.184 0.008
A7 029 87 50 1.3 9.19 0.07
A8 046 138 115 0.3 49 3
A9 033 198 83 225 164 0.6
A10 04 400 80 0.6 @ -4.17 3
A1l 0.57 570 200 0.14 -19 7
A12 0.56 560 110 0.32 0 3
Al13 0.56 560 128 0.2 3 4
Al4 056 560 135 042 —-0.5 1.4

Table 7.4: Run series B: Simulations with the first version of the baffle and
the non-smooth version of the force.

Run U Re Rm AT 0% Axy
Bl 023 23 21 2.5 4.54582 0.00006
B2 023 23 23 1.05 8.00 0.06
B3 034 68 31 255 8.61638 0.00017
B4 034 68 8 083 61.11 0.08
B5 041 123 33 16 -10.39 0.07
B6 041 123 103 04 26.3 0.32
Br 051 255 128 1.2 19.0 0.7
B8 054 324 54 2.3 -4.55 0.4
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Table 7.5: reference simulations without the use of the baffle.

Run Reg Rmg ny  lpmar AT ~y A~y
defl 100 85 320 30 14 2.790 0.002
defl 100 90 320 30 0.7 15.50 0.014
def2 100 100 320 30 1.3 19.494 0.004
def4 200 60 320 30 2.4 -2.983 0.007
def5 200 67 320 30 2 -0.2866  0.00014
def6 200 68 320 30 2.8 0.10138 0.00013
def7 200 70 320 30 12 0.861 0.006
def8 200 90 320 30 1.35 8.613 0.004

def9 200 250 320 30 3.23 74.6 1.1
defl0 300 80 320 30 6 5.6 0.6
defll 300 250 320 30 0.4 40.2 1.5
defl2 600 100 360 52 1.6 -6.0 0.4
defl3 600 250 360 52 1.6 24.42 1.1
defl4 1000 200 512 70 0.8 -2.3 1.5
defl5 1000 350 512 72 0.9 12 2
defl6 2000 200 512 70 1.7 -13.8 0.9
) £ (r) OV(0, ¢
0= 3 P00 2
Usor - é¢ _ % tl :7’) 8% af7 ¢) ] (72)

As already explained, the goal of the introduction of the equatorial baffle
is to suppress the shear layer fluctuations in the equatorial plane. This is
translated into a damping of the 6 component of the toroidal part of the
velocity field. This task can be accomplished by a reduction of the toroidal
spectral functions modes t;*(r) near the boundaries (i.e., at 7 ~ 1), as can
be easily seen from Equations (7.1)) and , under the hypothesis that in
this way a global reduction of the toroidal large scale eddies can be obtained.
This kind of filtering is performed by the DYNAMO code every time step of
the calculation in order to weaken the toroidal field in that regionﬂ As a
first attempt, we choose to damp the toroidal function #] (see [81]), one of
the modes that are mainly responsible of the large scale shear layer. The
damping was performed making use of an exponential prefactor in order to

2Tt is possible, in principle, to use the same strategy for the poloidal modes too, but
in this case, since the equations analogous to Equations — involve the derivative
of the poloidal functions respect to r and not simply the poloidal functions, the same
procedure leads to a damping of the derivative, which we avoided in order to not create
too steep gradients in the numerical runs.

105



Table 7.6: Run series C: simulations with the second version of the baffle
model and the non-smooth version of the force.

Run  o4ump Reg Rmo 1 s
C1 0.05 300 250 320 30
C2 0.1 300 250 320 30
C3 0.05 1000 350 512 70
C4 0.15 1000 350 512 70

influence the field near the boundaries in the following way:

) = () x (1 _exp{ _ = })

Odamp

In this formulation, we use the adjustable parameter o44y,, as a measure of
the width of the baffle. In Table the runs which were performed are
listed.

It should be noted that, as a spurious effect of this numerical filter, the
¢-component of the toroidal field is damped too, since expression shows
that the ¢-component depends — as well as the 8-component of the field —
on the functions ¢;* in a similar fashion. In Table the results of series
C runs are listed. This technique seems to be promising, since runs C1 and
C3 show growth rates which are just slightly larger than the ones obtained
by the default simulations. The reference case for run C1 gives v = 40,
while for run C3 we find a value of 12. As reference cases, we can use the
results of previous studies (see [87]); in this former investigation, however,
the simulations used lower resolutions than ours and we should be careful
when we compare the results. With lower resolutions, in fact, the predictions
of the growth rates can be quite optimistic, i.e., they lead to larger values.
For instance, the reference case for run C3 has a growth rate of 15, as it can
be easily calculated by interpolating the results of these previous simulations
(in this case, n, = 320 and [0, = 38, less than our n, = 512 and U4, = 72).
These results should not be overestimated: although an enhancement of the
growth rate — taking into a account the uncertainties — can be detected, the
impact on the threshold does not seem to be tremendous. Nevertheless, we
should underline that, according to this analysis, an optimum value of the
numerical baffle width exists, since runs C1 and C3 share the same value of
the adjustable parameter oggm, (Whose amplitude is related to the spatial
extension of the filtering effect of the numerical baffle). Using larger values,
as the results suggest, seems to have even more detrimental effects on the
dynamo instability. If this technique is enough realistic in order to mimic the
effect of a real baffle, as future investigations can probably confirm, what
we learnt from these results is that the dynamo threshold can be rather
sensitive to the choice of the width of the installed baffle.
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Table 7.7: Run series C: Results.

Run U Re Rm ATt vy Ay
Cl 048 144 120 041 45 3
C2 048 144 120 045 425 1.6
C3 057 570 200 0.8 171 1.8
C4 0.56 560 200 0.65 15 4

Damping the toroidal modes with a positive #-component in the
equatorial plane

An analogous test was made applying the same damping to all the ¢;"(r)
functions which can be responsible for the shear layer flow observed in the
experiment. The toroidal modes we are talking about are those with both
even [ and even m or those with both odd [ and odd m. In other words,
we are only interested in modes which contribute to a non-zero value of
the 68 component of the velocity field on the equatorial plane. It can easily
be shown, using the properties of the spherical harmonics )j", that zeroing
these modes makes expression identically zero at § = 90° (i.e., on
the equatorial plane), irrespective of the functional form of the ¢ modes.
With this modified version of the spectral baffle, a simulation was performed
using ogqmp = 0.15. The other parameters were: Rey = 1000, Rmg = 350,
ny = 512, e = 70. With this choice, it is possible to use run C4 as a
reference case. The growth rate turns out to be smaller that that of run C4,
having the value of 3 (£3) over a time range of about 0.5 diffusivity time
units.

Zeroing out the shear layer modes

Another way to introduce in the simulations the effect of the baffle is the
zeroing out of a specific set of modes during every time step. The set of
toroidal modes which were zeroed out is formed by the mode responsible of
the shear layer (the same one damped in the previous version of the baffle,
see description), while the set of poloidal modes is formed by modes whose
! and m indexes are not both contemporarily even or odd. The zeroed
poloidal modes were chosen following the same criterion described in the
previous section, i.e., the set of modes to be zeroed out must contribute to
the #-component of the velocity field on the equatorial plane. According to
the Bullard-Gellman decomposition, the expression — analogous to Eqgs
— for the #-component of the poloidal part of the velocity field is

. Ldsp"(r) 0Y;"(0, ¢)
Wt (&= 9

I,m

(7.3)
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Simulations at Reyp = 1000 with two different magnetic diffusivities (Rmg =
350 and Rmg = 600) were performed, with a radial resolution of n, = 512
and 4 = 70 l—modes. For the case with Rmg = 350, the growth rate turns
out to be -28+4 over 0.25 7., while in the case with Rmg = 600, the growth
rate is -22+2. In both cases, the introduction of the baffle was particularly
detrimental if we consider that the dynamo threshold is expected to be about
Rm, = 111, according to previous simulations [87].

Zeroing out single specific modes

Zeroing out specific modes (e.g. s9(r) and ¢1(r)) can represent another pos-
sible way to induce in the system the effects of the baffle, without destroying
too much the interaction among velocity and magnetic modes, as it happens
when the previous version of the baffle is applied. As can be seen in [81],
experiments show that one of the main effects of the equatorial baffle is
a weakening of the amplitude and of the fluctuations of these two modes,
which represent (to lowest order) the shear layer. In order to complete this
analysis, other investigations on the impact on the growth rate were con-
ducted zeroing other modes too, i.e., si(r), si(r), t3(r) (see table for an
overview of the simulations).

Table 7.8: series D: simulations with a by “hand” zeroing of various specific
velocity modes.

Run Zeroed modes Rey Rmg 1 lmaz

D1 59 1000 200 512 52
D2 59 1000 350 512 52
D3 59 600 140 360 30
D4 ST 600 250 320 30
D5 t 600 250 320 30
D6 ts 600 250 320 30
D7 53 600 250 360 52
DS s9, 600 250 320 30
D9 9, ¢ 1000 200 512 52
D10 9, # 1000 230 512 52
D11 9, # 1000 250 512 52
D12 9, 1000 350 512 52

As in the previous approach, this implementation is detrimental for the
amplification of the magnetic field. In fact, looking at the results in Table
and comparing them to the default simulation, none of them seems
to represent a step forward in the attempt to enhance the growth rate.
The main conclusion is that, although these large scale modes are probably
responsible for large departures from the Dudley-James mean flow, as the
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Table 7.9: Run series D: results.

Run U Re Rm ATt v Ay
D1 0.57 570 114 0.23 2 3
D2 058 580 203 0.5 -4.7 15
D3 054 324 75 08 2 3
D4 053 318 132 2 176 0.9
D5 056 336 140 1.2 184 14
D6 053 318 132 5 49 1.1
D7 036 216 135 035 12 3
D8 0.54 324 90 1.5 19.7 1.1
D9 0.7 570 114 0.35 -9 3
D10 0.57 570 131 09 -14 1.3
D11 0.57 570 142 1.11 -2.8 0.8
D12 0.57 570 200 0.7 7.3 1.5

experiments seem to suggest, their complete absence (numerically speaking,
the zeroing at every time step of the corresponding function s;* and ;"
for every value of the radius) can anyway disturb too much the complex
interaction[ﬂ among the various velocity and magnetic modes.

7.2 Summary and interpretation of the results

The investigation described in this chapter was performed by modifying the
default version of the DYNAMO code in such a way that the effect of the equa-
torial baffle of the MDE could be mimicked. The goal was to study the
changes associated with the baffle that are detected experimentally, as de-
scribed in [81]. The results of these new simulations were compared to the
default ones. The latter were started afresh when it was needed (when the
Reynolds numbers were not yet explored with the DYNAMO code). In some
other cases, simulations performed for previous investigations [87] were used.
The main observables used for such a comparison were the root mean square
velocity U as a measure of the back-reaction of the magnetic field on the
flow and the growth rate of the magnetic energy in order to quantify the
‘efficiency’ of the dynamo mechanism. Four different strategies were used.
The first one was the modification in the spatial domain of the velocity
flow in order to filter out the 8-component of the flow near the boundaries
and on the equatorial plane. The remaining methods were focused on the
modification of the velocity field in the spectral domain, filtering out the
amplitude of the toroidal functions of the Bullard-Gellman decomposition

3A graphical representation of this interaction can be seen in [32] in the shape of a
bubble diagram which shows the transfer of energy among the magnetic modes using
specific velocity modes as catalysts.
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near the boundaries or by zeroing specific modes that the experiment in-
dicates as possible disturbance for the dynamo mechanism. The first goal
of this modification of the code was the reduction of the turbulence level
of these modes, while the final goal was the enhancement of the effective
magnetic Reynolds number in order to exceed the dynamo threshold also
for runs below the critical value Rm, (since a reduction of the turbulent
resistivity is expected thanks to the baffle).

The results of the simulations do not show a particular trend toward the
lowering of the threshold. Except for a few runs, the introduction of these
modifications seems to be even more detrimental for the dynamo mecha-
nism. Despite these difficulties and limitations, interesting conclusions shall
be anyway drawn. The first one is the realization that the best way of in-
troducing the effects of the baffle without affecting too much the complex
interaction between the velocity field and the magnetic field is to operate
in the spectral domain. Thanks to the Bullard-Gellman decomposition, in
fact, we are able to manipulate directly single flow modes and study the ef-
fects of our modifications using the net of three-wave interactions described
by the bubble diagram (shown in [32]). This possibility turns out to be
very important, because the experiment measure the energy in these spe-
cific modes, therefore a more direct comparison between experimental and
simulated data can be done. Moreover, a spectral model of the baffle is the
easiest way to suppress the fluctuation level of the energy contained in the
eddy associated with ¢i. By modifying the amplitude of the radial func-
tion #(r) at the radial distance 7 we want, we are able to make changes to
the shear layer flow in a very specific way. It is promising that, with this
technique, not only the mean energy in the eddy associated to ¢1 can be
suppressed, but also of its fluctuation level. This result is highly desirable
because, as the MFT shows, a decrease in the fluctuation level of ¢} leads to
a correspondent decrease of the turbulent resistivity [81].

It turns out from this baffle model analysis that the interactions among
the various modes that are responsible for the dynamo instability are very
fragile. It is not a surprise that the geometry of the flow field can be of crucial
importance for the onset of the dynamo instability (one of the main purposes
of dynamo theory is, in fact, the identification of geometries which foster
this phenomenon), but in this case even a very slight modification of the
predictor-corrector steps of the Crank-Nicholson discretization method can
result in a lowering of the growth rates and, consequently, in an enhancement
of the threshold.

In order to lower the dynamo threshold, several strategies were explored
so far. Among the ones which turned out to be numerically stable, the best
one is represented by a filtering of the toroidal spectral functions ¢i(r) for
value of r close to the maximum value 1. Concerning this technique, the
spatial extent of the ’filtering region’ can lead to very different results, as
the simulations show. This is, of course, in agreement with the fact that
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perturbing the geometry too much can enhance the instability threshold, but
besides this qualitative result, we find a limiting value of the baffle width
(0.05 times the radius of the sphere) which — at least according to the DYNAMO
code — should not be exceeded. Apparently, a too significant modification
of the flow creates an obstacle to the dynamo mechanism especially to the
« effect. In fact, it can be shown that oo depends on the correlation between
poloidal e toroidal velocity modes which share the same [ (see, e.g., equations
in [81]). If the « effect is reduced, the generation mechanism of a large scale
magnetic field through the interaction of small scale velocity and magnetic
fluctuations is obstructed, as the enhancement of the threshold shows.

A promising result is the comparison of the experimental spectra of the
components of the velocity and the magnetic fields with the simulated ones.
It turns out that, especially for the magnetic field, the statistics of the time
series is very similar. This analysis — which future investigations should
keep exploring — shows that the real and the simulated systems are getting
closer, thanks to the suppression of the fluctuations of the energy contained
in the shear layer eddy #1 and the introduction of the equatorial baffle in the
experimental device. We interpret the suppression of the energy fluctuation
by 25% of the previous value as a signal of decrease of the turbulent resis-
tivity, as the MDE has experienced with the introduction of the equatorial
baffle. From these analysis, we confirm that the equatorial baffle is not able
to change drastically the dynamo mechanism — although it has a positive
impact on the velocity field fluctuations — and that other modifications of
the flow (or of the boundary conditions) should be taken into account in
order to stimulate the magnetic field instability at lower Reynolds numbers.

Only a different strategy, as described at the end of chapter , will solve
the issue that the equatorial baffle was not able to solve. The justification
of this can be found in next chapter, where a completely different approach
has been carried out after the unsuccessful results described in this chapter.
This approach has been a thorough quantitative analysis of turbulence in
the numerical MDE carried out in order to precisely identify vortexes with
detrimental effects on dynamo action. The technique used to perform this
task is the so-called Singular Value Decomposition (SVD). This statistical
tool did not only allow us to explain why the equatorial baffle approach did
not bring the positive results. It also gave us the possibility to gain further
insight into the problem and therefore to design a new implementation of
the baffle that turned out to foster dynamo action.
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Chapter 8

Shedding light on the
dynamo mechanism: The
role of turbulence

8.1 Introduction

This Chapter represents the core of this dissertation: A detailed study of
the role that turbulence plays in the MDE. This task has been accomplished
by applying — for the first time in dynamo theory — a well-known technique
to analyze the spatio-temporal statistical properties of the data produced by
the DYNAMO code. The aim of this Chapter is hence to scrupulously describe
the dynamics of the flow in order to understand which configurations are
mostly detrimental for the dynamo process and which ones are favorable.
The idea is the following: Decomposing the field via the Bullard-Gellman
decomposition (32|, we identify the modes which turn out to have an im-
pact on the dynamo threshold Rm.. In order to facilitate this analysis, we
analyze the velocity field — simulated by the DYNAMO code [94,(98] — with a
technique known as Singular Value Decomposition (SVD). This technique
has been widely applied to the analysis of turbulent flows [150] and, more
recently, to a variety of transport processes in plasma microturbulence, in-
cluding impurity transport [151], electromagnetic transport [152], resistive
ballooning plasma fluctuations [153], and saturation mechanisms [154]. A
pedagogical introduction to this decomposition and its applications can be
found in [155].

The Chapter is structured in the following way: in Section we will
describe the Singular Value Decomposition, with emphasis on the decompo-
sition of the flow fields predicted by the DYNAMO code; in Section [8.3we focus
on the results of a “water” experiment (setting the magnetic conductivity
to zero), showing the detailed structure and dynamics of the turbulent field
found via SVD; in Section we use the analysis of our results in order
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to explain in more detail the dependence of the dynamo threshold Rm. on
turbulence (i.e., the curve Rm.(Re), previously found for this spherical sys-
tem); Section deals with possible ways to control large scale turbulence
in order to facilitate dynamo action. Part of the results discussed in this
Chapter have been recently published or submitted .
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8.2 SVD analysis

The Singular Value Decomposition (SVD) also known as Proper Orthogonal
Decomposition or Principal Component Analysis, is a mathematical tech-
nique used in the framework of multivariate statistics in order to simplify
the representation of datasets or in order to reduce the memory which is
needed to store them. Pedagogical introductions to this analysis and its
applications can be found in .

The principal aim of this method is the reduction of the number of
variables used to quantify the properties of the data under analysis.

This reduction is obtained by substituting the original variables with
a set of latent variables which are less numerous, via an orthogonal linear
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transformation of the former variables. This process can be easily under-
stood geometrically with the following picture. A dataset can be represented
as a set of points immersed in a cartesian system (the parameter space). The
geometrical distribution of these data points — generally speaking — could
not have any correlation with the variables represented by the cartesian
axes. On the contrary, the SVD analysis finds the principal components of
the set of points, in other words, it finds new cartesian axes which have the
highest correlation with the geometry of the distribution of the points: The
data points are hence spread mainly over the new axes. Mathematically,
this means that the distribution of the data has its maximum variances in
correspondence with the new set of variables. The fact that the SVD anal-
ysis chooses variables with maximized variance comes from the result that
the variance of a particular variable of a dataset quantifies how much the
distribution of the points is spread over the axis of that variable. Moreover,
this technique chooses a particular ordering of the new variables: they are
ordered according to decreasing variance. This means that the first variables
contain more information than the others and describe the large-scale fea-
tures of the geometrical distribution; the other variables add less information
to the description, focusing on the small-scale featuresﬂ

With this new representation of the data, it is possible to reduce the com-
plexity of the dataset by projecting the data on the first new variables and
limiting oneself to analyzing only the information described by these first
principal components. In other words, the technique suggests an optimal set
of eigenmodes that capture the main features of the data. Differently from
other linear transformations used in statistics, in this technique the dataset
itself determines the transformation, i.e., the technique tailors itself to the
data. The SVD analysis is a very general and powerful technique applied
in different contexts: in cosmology and astronomy (for the huge catalogues
of galaxies), in the problem of the compression of the data (e.g., images),
even to analyze medicine data. Further readings about the applicability of
this technique can be found in a dedicated chapter in reference [155] and
references therein or in Ref. [156]. In this last reference, several applications
of this decomposition can be found and a similar matrix formalism is em-
ployed. Guidelines about how to implement a SVD routine can be found in
the classical textbook [157].

The reduction of the complexity of the dataset leads, obviously, to a
loss of information, i.e., to the degradation of the quality of the information
respect to the original dataset. Nevertheless, it also provides a very good
control on the loss of information, which can be handled simply choosing a

1The expressions large-scale and small-scale are used here in a context which is different
from the context of turbulence in fluids, treated in the previous chapters; nevertheless,
if the SVD analysis is applied to fluid mechanics data, the large (small) scale features
of the distribution of the data often coincide with the large (small) scale features of the
turbulent fields.
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larger number of the principal component variables.

The mathematical aspects of the SVD analysis reveal interesting and use-
ful features, as described in Section [8.2.1 and [R.2.2] In the context of this
project, this technique was not merely used in order to save computer mem-
ory. The reason is more fundamental: By means of this method it is easier
to understand the behavior of the system by isolating the most important
dynamics and decomposing the fields in a more general (and appropriate)
way and finally in order to explore in details the dynamo mechanism, shed-
ding light on the details of the transfer of the energy between the kinetic
and the magnetic component of the system.

8.2.1 Statistical aspects of SVD

There are two mathematical approaches used in order to treat the problem
of the proper orthogonal decomposition. In this Section, we will describe the
approach which is more pedagogical, briefly described in the last Section.
In Section [8.2.2] we will discuss the other approach which is used normally
in practice, making use of the Singular Value Decomposition theorem of an
M x N matrix (see Appendix. The two procedures are mathematically
equivalent, as we will explain in next Section.

Let us start considering a set of N measures, where the :—th measure can
be represented as a M-dimensional column vector X; (i.e., M parameters
characterize each observation). The dataset can be viewed hence as a M x
N matrix (the so called matriz of observations). The goal of principal
component analysis is to find an orthogonal (unitary, if the data are complex)
transformation of the M coordinates axes of the parameter space, in order to
obtain new axes such that the data are spread mainly along the first axes and
such that the coordinates of the observations in the new representation are
uncorrelated statistically (or, at least, as much as possible). Mathematically,
the M-dimensional column vector of the new coordinates, X', is written as

X' = PX, (8.1)

where P is an M x M orthogonal matrix and X is an M-dimensional column
vector of the old variables. Let us indicate as A ; the ij-th component of the
matrix of the observation in the new system of coordinates. According to
Eq. X{j = Zi\i 1 Pir Xkj. The new sample mean of the new observation

vectors X1, ..., X’y is an M-dimensional vector X', whose i-th component
reads

N xi [ MN Mo
X = Z ]\;] = NZZP““XM = ZPika
j=1 k=1 j=1 k=1

i.e., the mean vector transforms via the same matrix which performs the
transformation.
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The new covariance matrix 3’ = (o;;) reads
N (X — X)Xy~ X)

r il 7 gl J
% = ; N-1

Using expression and the transformation property of the mean vector, it
is easy to show that

M M
ol =YY PaPjm0um,
=1 m=1
ie., ¥ =PxPT.

Let us impose that the transformation matrix P has the property that
the data have maximized variance along the first new coordinate y;; thus,
we want to maximize the quantity o], = Pip P1n0mn(having used Einstein’s
convention), with the constrain that P, P, = 1 (from the orthogonality
condition of the matrix P, i.e., Pt Py = dmn). The Lagrange multipliers
technique (see Appendix prescribes that, in order to obtain the solution,
one should find the extrema of the function

L(P) = PimPinomn — )\(lepln - 1)

The extrema are found by imposing the conditions

oL
0Py

= 2(0mk — A0k ) Pim = 0. (8.2)

Egs. represent a homogeneous system of M equations in the M
unknowns Pj,,,. This system has a non-trivial solution if and only if

det(aij — /\5m) =0, (83)

in other words, by diagonalizing the covariance matrix ¥. In order to un-
derstand the meaning of the eigenvalues of 3I, let us calculate the variance
of the data respect to the first new coordinate, i.e.,

oh1 = PiaPigoag. (8.4)

Equation @ shows that Pio008 = Ay Pig, where A\, is one of the solutions
of the secular equation then Eq. becomes

0'/11 = A7P15P51 = )"W

i.e., the eigenvalues of the covariance matrix X are the variances of the
dataset respect to the new coordinates. By ordinating the eigenvalues ac-
cording to the descending values, i.e., A1 > A2 > ... > Ajs, one associates
to the first new variable the largest variance, to the second one the second
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largest value of the variance and so on, creating in this way a hierarchy
of new coordinates. Moreover, the fact that the off-diagonal terms of the
matrix ¥’ are zero (because in the new system, the covariance matrix is
diagonal) assures that the variables are statistically uncorrelated.

8.2.2 Further important properties of the SVD analysis and
application to the DYNAMO data

Section [8.2.1] was introduced mainly in order to show the statistical prop-
erties of the SVD analysis and in order to explain to the reader the idea
beyond this method. In this section, instead, we describe in details how
we used this technique on our datasets and with which consequences. In
Figure a sample dataset of observations in represented as a set of points
immersed in the parameter space. With a translation of the axes it is pos-
sible to use the sample mean point as the origin of the new coordinate axes
(mean-deviation form, geometrically represented in Figure .

h

Figure 8.1: This plot represents a scatter plot of the N observations in the
parameter space, view as a set of N points immersed in a M-dimensional
cartesian coordinate system (in this schematic example, M = 2). Picture
taken from reference [155].

The matrix of observations, in this new representation called B, has as
1j-th element the value B;; = X;; — )A(l The sample covariance matrix is
an m X m matrix S defined by

1 T

S = N 1BB .
The procedure described in section [8.2.1] i.e., the diagonalization of the
covariance matrix 1/(N — 1)BB”, is mathematically equivalent to the so-
called singular value decomposition (see Appendix) of the M x N matrix
A= (N—1)"/2 BT, The singular value decomposition is the main tool for
performing the principal component analysis in practical applications. The
squares of the singular values of A are the p eigenvalues of the covariance
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matrix S = AA” and the right singular vectors of the matrix A are the
principal components of the data. From a computational point of view,
iterative calculation of the SVD of A is faster and more accurate than an
eigenvalue decomposition of S (see [155]).

The DYNAMO data which are analyzed via SVD are the velocity or
magnetic fields calculated by the simulations. In spatial representation,
the information contained in a vector field V(r;,t;), where r; is one of the
gridpoints of the considered simulation and ¢; is the j-th time step, can be
rearranged in a 2D matrix A(4, j) where the row index spans the spatial grid
and the three components of the field V while the column index j spans the
temporal dimension. In spectral representation, the information contained
in a vector field is represented with a couple of values (the poloidal and
toroidal radial profiles) as a function of the radial distance from the center
of the sphere and the modes [ and m. Here, we will indicate as r; this
generalized spatial point (r,l,m) and t; is again the j-th time step. The
data can be rearranged in a 2D matrix A(7,j) where the row index spans
the generalized spatial grid and the two components of the field while the
column index j spans the temporal dimension. This rearranging of the field
(see a schematic representation of it in F igure can be easily accomplished
by “unfolding” the spatial domain into a 1D array with ¢ = 1,2, ..., Ny,
where N is, in the spatial representation, equal to 3n,ngng (the prefactor
3 due to the three dimensionality of the original field) or to 2n,ny04es (the
prefactor 2 due to the presence of a toroidal and a poloidal components,
Numodes 18 the maximum number of relevant modes of the simulation, i.e.
(lmaz + 1) (lnaa + 2)/2 — 1, see [87]). Although we could analyze the fields

=k

Figure 8.2: The same plot as in Figure but with a translation of the
origin of the axes to the sample mean point (the data are in the mean-
deviation form). Picture taken from reference [155].
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both in spatial and in spectral representation but we chose the second one,
since this representation provides dataset which occupy less disk space and
the SVD routines (provided by D. Hatch) are consequently faster.

Figure 8.3: This picture shows schematically how the unravelling of a dataset
into a 1D array works. In other words, the data are stored in a 1D array
as they would be allocated in computer memory. Picture reprinted with
permission from reference , Copyright 2009, AIP Publishing LLC.

Based on this idea, we represent the spatiotemporal DYNAMO data as
the A € CNtotXNe matrix, where N, is the number of time steps considered, as
also shown in [158] in a fusion plasma context. With this new arrangement
of the data in a 2D matrix, it is possible to produce the singular value
decomposition (which we accomplish using a parallelized SVD solver ),
thus decomposing matrix A as

Nsvp

Az'j = Z akuk(ri)vk(tj), (8.5)

k=1

where we indicated with Ngyp the value min(Ny, N¢). The Ngyp modes
satisfy the orthonormality conditio

Nsvp Nsvp
Z Uy (1)U (r5) = Z Um (t5 )un(t;) = Omn.
i=1 j=1

The singular values oy are ordered in descending order of magnitude:
o1 > 02 > ... > ONg,p- The value o quantify the weight of the relative
k-mode, i.e., the amount of information contained in the k-mode. Using the
jargon of Fourier analysis, the spatial fields uy(t;) are the new generalized
basis functions (compare the idea of the change of reference frame explained
in Section and the temporal functions ojvy(t;) can be seen as the
spectrum of the data as a function of the time. Both sets uy(r;) and vy (t;)
are defined as the sets of the SVD modes, or SVD eigenfunctions.

If the singular values o decay fast as a function of k, as it typically
happens, most of the information is contained in the first few modes, and
the data can be compressed successfully, without a great loss of quality, by
truncating the sum in Eq. at k = r, with r < Ngyp. In the following,

2Tt should be noted that this orthonormality condition is lost when the data (in spectral
representation) are transformed again in vector fields in spatial representation.
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we will indicate with A() this truncation of the original dataset.

Another interesting statistical properties is the possibility of quantifying
the information entropy of the decomposed datasets. In fact, the dimen-
sionless value

Pk Nsvp o2 ( ’ )
k=1 k

is comprised between 0 and 1. Moreover

Nsvp

Z pr = 1.
k=1

Thus, it behaves as a probability distribution function, to which it is possible
to apply the formula of the normalized information entropy H, in order to
quantify the degree of order of the data, i.e.,

SSREYP prlog pi

log Nsvp
When the data are in a very ordered configuration, i.e., only one mode is
needed to represent the whole dataset (Aij = o1u1v1), then py = 019, hence
H = 0. On the contrary, in the “highly disordered” configuration, when the
information is uniformly distributed among all the SVD modes, the entropy
value is maximum, i.e., H = 1.

At this point, the natural question which can arise is: What is the
reason why we apply this decomposition of our DYNAMO dataset based on
generalized orthonormal eigenfunctions when we already have at our disposal
the standard spherical harmonics decomposition of the fields? The answer
is that, from the point of view of the “information content” of the different
possible expansions, the SVD analysis is optimal, as can be understood
following the arguments explained in Section [8:2:2] In fact, by fitting the
eigenfunctions to the data, this analysis has the properties that it minimizes
the Euclidean distance ||A — A(")|| between the original dataset A and its

truncated version A, where
=342 (8.8)
ij

is the Frobenius norm. In other words, the SVD analysis minimizes the
truncation error of the compressed version of the data. This feature is
mathematically equivalent to the maximization of the variance of the dataset
along the first new generalized reference axes, as explained in Section [8.2.2
in a very general case.

In conclusion, the SVD analysis turns out to be a powerful tool which
can capture more precisely the dynamics of our system, giving us the possi-

H =

(8.7)
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bility to understand the details of the dynamo process. In the next section,
we will describe the results obtained by applying the SVD analysis on a
hydrodynamic run.

8.3 SVD analysis of the virtual water experiment

In order to characterize quantitatively the hydrodynamics of the simulated
system, as a first step we apply the SVD analysis to the data produced
by a hydrodynamical simulation, i.e., setting to zero the conductivity of the
medium, at numerical fluid Reynolds numbers Reg = {600, 1100,3000}. Reg
is a parameter read by the DYNAMO code before a simulation is started; in
order to obtain the real fluid Reynolds number Re of a particular numer-
ical simulation, Reg is multiplied with the characteristic velocity U of the
simulation [87] because the characteristic velocity can only be determined a
posteriori via the equations U = Upps and vpms = /(v?) (the angle brack-
ets denote averaging in space and the overline denotes averaging in time
which is performed during the quasi-stationary phase of the flow after the
transient phase). The reason why Rep needs to be corrected lies in the
fact that Re must depend upon the fluid velocity, as its definition states.
In the simulations discussed in this chapter, U ~ 0.5. The number of ra-
dial grid points in the sphere is n, = 512, whereas the spectral resolution
is lmaz = {52,52,180} respectively. We then analyze the flow when it has
reached a saturated state, considering N; = {1550, 700,400} snapshots of the
velocity field (i.e., the number of time slices which constitute the columns
of the matrix A, see Section [8.2). The numbers N; are chosen according
to the available computer resources. With these input parameters, the re-
sulting Ngy p turns out to be exactly {1550, 700,400} respectively. We will
see that, among these Ngyp modes, only a few are necessary in order to
reconstruct the field without a great loss of quality. In the following, we will
separately analyze in detail the first two modes.

8.3.1 First SVD mode

We expect that the first SVD mode, i.e, u;(r) broadly captures the essential
features of this hydrodynamical experiment. As mentioned above, it turns
out that w;(r) is very similar to the mean field, which in turn resembles
the Dudley & James input flow, as the Figures [8.418.6| show. These figures
display a cross section of the sphere, i.e. the yz plane; whereas their color
shows — respectively — the radial, the 6- and the ¢-components of the first
SVD mode. As the color scales suggest, the magnitude of the vector field
is high in relation to the location of the impellers, and the typical counter-
rotating nature of the motion can be seen thanks to the ¢-component plot.
In other words, the shape of the original s2t2 flow can be recognized. A
caveat is needed: In the original Dudley & James configuration, the flow
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is driven outwards to the poles by the impellers and then it streams along
the walls to the equatorial plane; on the contrary, Figure shows that
the first mode behaves oppositely. However, once this mode is multiplied
by o1v1 in order to reconstruct the field, the original behavior is recovered
since o1v1 < 0 (as Figure shows; note that Jm{ojv1} ~ 0). We show
the radial profiles of the spectral functions s, (r) and t;,,(r) at Reg = 600
in Figures [8.7] These Figures suggest that the most important modes
are still those of the s2t2 ﬂowﬂ The situation is completely analogous at
higher Req, just noisier, since the flow is more turbulent.

The singular value associated with this mode is 01 = 96.9 at Reg = 600,
which means that the information content of this first mode is o
66.6% of the total.

k=1 %%

8.3.2 Second SVD mode

The second SVD eigenfunction is still relatively important. For instance, at
Reg = 600 the associated singular value o9 = 36.8 is such that this mode
contains alone 9.6% of the total information (see Section [8.3.3). Let us
analyze the spectral and spatial behavior of this mode. Figures|8.9| show
the radial profiles of the poloidal and toroidal stream function at Rey = 600
(as stated above, the situation at higher Req is analogous). As these plots
suggest, ua(r) consists of three main components: (a) a toroidal vortex tig

3Poloidal stream functions have different physical dimensions from toroidal ones (see
definition, Eq. , therefore direct comparisons of the scales of the plots in Figures
can take place only among stream function of the same kind (i.e., only among poloidal
or only among toroidal ones)
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Figure 8.6: First SVD eigenfunction, Rey = 600: The color represents the
magnitude of the ¢-component of the field. Picture reprinted with permis-

sion from [121], Copyright 2012, AIP Publishing LLC.
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Figure 8.7: Radial profile of the poloidal modes of the first SVD eigenfunc-
tion, Rep = 600. Picture reprinted with permission from [121], Copyright

2012, AIP Publishing LLC.
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Figure 8.8: Radial profile of the toroidal modes of the first SVD eigenfunc-
tion, Reg = 600. Picture reprinted with permission from , Copyright
2012, AIP Publishing LLC.

with a strong activity at r ~ 0.14; (b) a poloidal circulation s;9 which
provides the velocity field with a vertical component (i.e., a z-component);
this component has a relatively strong amplitude at about the same distance
as the toroidal vortex, making uz(r) helical; (c¢) noisy toroidal and poloidal
components with negligible amplitudes. In other words, the vortex has a
smooth and large scale spatial dependence, with an elongated helical shape
oriented along the axis of symmetry of the forcing mechanism. It does not
show any counter-rotating feature, as the s2t2 flow; on the contrary, its
“winding” configuration is equal in the two hemispheres. Figure [8.11] shows
a snapshot of the 3D fieldlines: The helical structure is readily recognized.
Figures [8.12}{8.13] confirm this description: In the first one the magnitude of
the second SVD mode on the yz plane is represented, whereas in the second
picture the ¢-component of the field is shown, proving that ua(r) has no trace
of the counter-rotating behavior of the impellers. An important remark: In
some regions of Figure the color changes discontinuously from y < 0
to y > 0: This is due to the fact that the y-component of the unit vector €4
changes sign form y > 0 to y < 0.

Note that this flow is characterized, at first glance, by a puzzling break-
ing of the symmetry expected from the force mechanism; the flow is driven
by counter-rotating impellers, and yet us(r) is characterized by a uniform
rotation orientation on the axis between the impellers. The expected sym-
metry can only be retrieved — in an average sense — when one follows the
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Figure 8.9: Radial profile of the poloidal modes of the second SVD eigenfunc-
tion, Reg = 600. Picture reprinted with permission from , Copyright
2012, AIP Publishing LLC.

temporal evolution of the mode, which exhibits alternating phases of oppo-
site rotational orientation (see below).

8.3.3 Singular values

As already stated, every singular value o;, quantifies the relative importance
of the k-th mode. In Figure the function o(k) = o}, (with Reg = 600)
is plotted in logarithmic scale. The plot shows that the decay of the singular
values is exponential in the medium range of k-modes and it is even steeper
at small values of k. This eventuality is particularly favorable, since it
has as a consequence that the information of the dynamics is condensed in
the first SVD modes, whereas further modes do not significantly improve
the understanding of the overall dynamics. Although this result seems to
suggest that adding more modes (i.e., using the SVD tools on more time
steps) does not add further details to the decomposition, it should be noted
that using a larger number of time steps can actually improve the statistics of
the first modes too, giving to the SVD tools the possibility to encapsulate the
information even better in the first modes. Table [B.I]reports the percentage
of information content of the first 6 modes calculated via the definition of
Pr, Eq. (i.e., the relative amount of information contained in the k-
th mode) with different Rep. As the table shows, at higher Reg, the flow
becomes progressively more turbulent and, comparatively, more energy is
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drained from the mean field and stored in the other extraneous modes.

Table 8.1: Information content of the first 6 k modes calculated via pg.

k=1 k=2 k=3 k=4 k=5 k=6
Reg =600 66.6% 9.6% 54% 29% 24% 1.8%
Rey =1100 56.7% 16.7% 51% 3.6% 2.6% 1.7%
Reg =3000 549 % 152% 5.3% 4.1% 25% 1.9%

8.3.4 Temporal evolution

The SVD analysis provides a detailed description of the dynamics of the
u(r) modes: The temporal eigenfunctions ojv1(t) and o2va(t) describe the
(decoupled) dynamics of the associated spatial modes. For instance, we show
the results with Rey = 600 (at higher Rey the outcome does not change).
As can be seen in Figures[8.15/and the imaginary parts of the two time
series are negligible compared to the real parts. With regard to the first
SVD mode, we note that the time series of the real part is an oscillation
around a stable value (around -2.5, value which will be used in the next
sections) which never crosses the ojv1(t) = 0 axis. This means that, as
we expect from the behavior of the s2t2 flow, the dynamics of the velocity
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Figure 8.10: Radial profile of the toroidal modes of the second SVD eigen-
function, Rey = 600. Picture reprinted with permission from [121], Copy-
right 2012, ATP Publishing LLC.
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Figure 8.11: Field lines of the second SVD eigenfunction, Rey = 600. The
helical structure described above can be recognized. The color represents

the magnitude of the field. Picture reprinted with permission from [121],
Copyright 2012, AIP Publishing LLC.
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Figure 8.12: Cross section of the
sphere, coordinate plane yz. The
color represents the magnitude of
the velocity field of the second SVD
mode, Reg = 600. The vortex
has its strongest activity along the
axis of symmetry, at a distance of
~ 0.14. Reprinted figure with per-
mission from [120].
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Figure 8.13: Cross section of the
sphere, coordinate plane yz. The
color represents the ¢ component of
the velocity field of the second SVD
mode, Reg = 600. For the disconti-
nuity in the color from the half-space
y > 0 to the half-space y < 0, see
text. Reprinted figure with permis-
sion from [120].

Figure 8.14: Left: Singular
values 0} as a function of &
in a lin-log-plot, Rey = 600.
For small values of k, the de-
cay of the singular values is
steeper than an exponential
one. Reprinted figure with
permission from [120].
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Figure 8.15: Real and imaginary parts of the SVD temporal eigenfunction
o1v1(t), Reg = 600. Reprinted figure with permission from [120].

field is basically an s2t2 flow with a superimposed oscillating variation of
the local magnitude of the vector field, conserving the rotational direction
in each hemisphere. The behavior of the oova(t) is different: The real part
changes sign, being limited roughly between +1.5 and —1.5 (values used in
the next sections). In other words, the helical vortex alternates phases with
opposite rotational directions. This is translated, spatially, in a reversal of
the vortex described in Section [8.3.2] These dynamics are difficult to extract
without the use of SVD, which constructs basis functions specifically suited
to the problem, and also clearly elucidates the temporal dynamics of each
basis function.

Summarizing, the dynamics of this hydrodynamic simulation can be de-
scribed by the following scenario. The usual counterrotating s2t2 flow is
produced by the forcing mechanism and it constitutes the main compo-
nent of the flow, namely a stationary background flow. This s2t2 flow is
subjected instantaneously to increasing or decreasing activities around the
mean configuration, as shown by the time trace in Figure 8.15 Superim-
posed to this background flow, a vortex-like component is spread over the
axis of symmetry, with alternating activity between two opposed configura-
tions, one with the same rotation direction of the s2t2 flow in the northern
hemisphere, the other one in the southern hemisphere. The additivity prop-
erty of the decomposition states that the field associated with this secondary
motion reinforces the magnitude of the velocity in the northern (southern)
hemispheres and weakens the other one, when it is in the former (latter) con-
figuration: In addition to the expected Dudley & James background flow,
every hemisphere has a pulsating activity near the 2z axis, and this activity
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Figure 8.16: Real and imaginary parts of the SVD temporal eigenfunction
oava(t), Reg = 600. Reprinted figure with permission from [120].

is in counter-phase with respect to the activity in the other hemisphere.

8.3.5 Comparison with previous results

In this section, we draw a comparison of our results with those obtained ex-
perimentally for a turbulent von Karméan swirling flow, where two impellers
counterrotate inside a cylindrical cavity and it was possible to
reach fluid Reynolds numbers of the order of 10%. In the experiment, a bro-
ken symmetry is observed — also in the exactly counterrotating case — with
similar features to what we find: Reversals of the azimuthal velocity of the
instantaneous flow are observed on the equatorial plane, and this fact can
be interpreted as a phenomenon with characteristics along the same lines of
the reversals of the vortex-like component represented by the second SVD
mode. The laboratory flow can be divided into two toroidal cells around
the two impellers, each one following the corresponding impeller, exactly as
the mean flow of our model does. At the same time the fluid is driven to-
wards the impellers and ejected to the cylindrical boundaries and the loop is
closed with the return of the fluid along the walls and the equatorial plane.
It turns out, however, that the flow presents two main configurations, each
one breaking the symmetry around the equator (i.e., a rotation of m around
every axis which lies on the equatorial plane). Moreover, the flow configura-
tion alternates between these two states, with spontaneous jumps from one
state to the other. Each of these configurations presents a “dominant cell”
(alternatively, the north or the south cell) characterized by a higher velocity
and a larger spatial extent. In other words, the locus of points where the
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azimuthal velocity is zero does not lie on the equatorial plan, but encroaches
on the northern (or in the mirror state, the south) half-space.

It is important to underline also the main difference between the experi-
mental and our numerical results: In the experiment, the two configurations
are relatively stable, i.e., the system can remain for relatively long periods in
one of the two states before it undergoes a reversal. According to our sim-
ulations, the alternation between the two states takes place not suddenly
as the experiment, but it is better described as an oscillation (compare,
e.g., Figure with Figure 3a in [160]). This difference probably emerges
because of the smaller values of Re in the simulations and because of the
presence of an equatorial baffle in the implementation of the DYNAMO code
(see . In fact, other experiments with the same cylindrical geometry,
but with the presence of an inner equatorial ring with a strong impact on the
turbulence (e.g., as described in |162]), do not observe a broken symmetry
of this type [160].

Nevertheless, if we compare the description of the dynamics given in
Section to the experimental picture, we can easily notice that the
similarities are strong, although the fluid Reynolds number of our simulation
is much smaller.

8.3.6 Role of time-stationary u,(r) in the dynamo process

In order to identify the impact of wug(r) on the dynamo mechanism, we
performed three kinds of time-stationary kinematic (i.e., the flow does not
evolve and is decoupled from the magnetic field) simulations at Rep = 600
and different Rm. The first one uses as fluid flow only w;(r) (the dominant
mode), weighted with the mean value (ov;(t)) (see Fig. [8.1F)). The second
(third) run uses the superposition of u (r) with ua(r), having weighted ua(r)
with the maximum positive (minimum negative) value of the oscillating time
trace o9ua(t). The impact on the dynamo process can be summarized by
comparing the growth rates of the magnetic energy and the critical magnetic
Reynolds numbers (see Table and Fig. where the are runs indicated
symbolically as “17, “1427, “1-2”, respectively).

As Fig. 817 shows, part of the detrimental effect on the dynamo thresh-
old at Reg = 600 can be ascribed to the presence of a time-stationary ua(r).
At Reg = 1100, u1(r) is noisier and less axisymmetric since the temporal
sampling is shorter (the resolution is higher and the dataset should be re-
duced in order to apply the SVD with the same CPU resources): adding
and subtracting u(r) and ua(r) produces different values of v because the
noisy toroidal component of u;(r) tends to cancel out us(r) in the ”1-2”
configuration. On the other hand, in the “14-2” configuration, us(r) turns
out to be detrimental. This last analysis does not take into consideration
the role of the fluctuations in ua(r), which can also play a detrimental role,
as suggested by the three-wave turbulent interaction picture in [81,163].
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Table 8.2: Growth rates of the magnetic energy for the runs “1” and “1+42”,
Reo = 1100.

44177 c¢1+277
Rmp=100 5.64+0.013 —-3.8+£04
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Figure 8.17: Left: Growth rates v of tjﬂmagnetic energy for the runs “17,
“1427, and “1-2”, Rey = 600. A time-stationary us(r) has a detrimental
effect on the kinematic dynamo threshold. -~ is scaled to the magnetic
diffusion time, 7, = pooL?. Reprinted figure with permission from [120].

8.4 An interpretation of the Rm.(Re) curve

One of the main results of [94] is the study of the stability curve Rm.(Re)
(Fig. 6 in the paper). The curve represents the dependency of the critical
magnetic Reynolds number of the dynamo instability on the fluid Reynolds
number, i.e., the impact of turbulence on the onset of the dynamo. Ac-
cording to [94], after a plateau in the laminar regime (at very small Re),
the curve exhibits a quasi-linear behavior as Re increases, demonstrating
that the dynamo threshold becomes more difficult to reach when the system
approaches the turbulent regime. Then, the stability curve shows a steep
increase after this linear phase. Remarkably, Rm. reaches an absolute maxi-
mum, i.e., there is a value of Re that makes the dynamo particularly difficult
to obtain. Starting from Re ~ 1800, the critical magnetic Reynolds number
decreases and a saturation of the curve occurs at higher Re. In other words,
regardless of the increase of turbulence in the fluid in this regime, the dy-
namo threshold remains constant and is not affected by a further increase of
Re. This results can play an important role during the design phase of an
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experiment, especially if the curve stays constant at values of Re that are
higher than the ones explored by the simulations described in [94]. An in-
terpretation of this flattening is given in [94] using scaling arguments within
the framework of the Kolmogorov-Richardson phenomenology.

Let us formulate another possible interpretation that can be given in
the light of the results of SVD analysis. As summarized in Table when
Re is increased, the relative energy content of the vortexes with a negative
effect is enhanced by turbulence, whereas the energy in the mean flow would
still depend only on the large scale forcing mechanism (and not on Re). In
fact, the presence of us(r) at Rey = 600 enhances Rm, by 20%, whereas
at Rep = 1100 by 37%. The picture suggests that turbulence, increasing
the energy of ug and not of ui(r) — which is prescribed by the force —
makes the dynamo instability more difficult to reach, because the energy is
redirected into velocity modes with a negative impact on the magnetic field
growth rate. This effect can hence explain the quasi-linear behavior that the
Rmc(Re) curve shows at low Re, where an increase of Re is converted into an
increase of the critical magnetic Reynolds number. This same argumentation
naturally leads to an explanation of the saturation of the Rm.(Re) curve
at high Re as well: As Reg increases, the detrimental modes that the SVD
finds are not allowed to grow indefinitely without a specific force mechanism
that drives them (i.e., a mechanism that is not present in the system under
study, because the impellers drive an $2¢2 flow), hence their negative impact
on the dynamo is limited although the system becomes more turbulent.

8.5 Strategies for turbulence control for dynamo
purposes

In this section, we describe strategies designed in order to control large scale
turbulence. The aim is to suggest practical actions to take in the experiments
which can have a positive effect on the growth rates of the magnetic energy
during dynamo action. We focus our attention on two different strategies.
The first one (Section is the control of shear layer turbulence, i.e., large
scale eddies close to the boundaries with a detrimental effect on the dynamo.
For this purpose, we model what was already installed in some experiments:
a ring-shaped equatorial baffle, attached to the boundaries on the equatorial
plane. As a second method (Section , we implement the application of
another baffle on the equatorial plane, disc-shaped, which was not used in the
experiments and whose positive effects can be interpreted according to the
results obtained via SVD. Section [8.5.1] draws on information described in
more detail in Chapter [7] and it is summarized here for matter of simplicity.
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8.5.1 Role of an equatorial baffle

Hydrodynamic experiments [58,(149] have shown that attaching an equato-
rial axisymmetric baffle to the inner surface of a cylindrical vessel (in the
mid-plane of the cylinder) represents a suitable technique to control the
fluctuation amplitudes of large scale flows. This strategy was used also
for a dynamo experiment in cylindrical geometry [78]. According to this
study, such a baffle also has an effect on the mean flow, making the shear
layer sharper around the mid-plane and, at the same time, reducing the
turbulence intensity especially at low frequencies, although the flow remains
strongly turbulent. The addition of such a baffle to a dynamo experiment
was motivated by the results of previous numerical or experimental investi-
gations that explored the influence of turbulence (especially at large scales)
on the dynamo threshold and of the transverse motion of the shear layer
across the mid-plane; e.g., the addition of large scale noise to the Taylor-
Green mean flow increases the dynamo threshold, as shown numerically
in [118]; also, fluctuating motion of eddies of the Roberts flow increase the
threshold |164]. In [165], it is reported that the magnetic induction (due
to an externally applied field) on a gallium flow depends significantly on
the large scale flow fluctuations. All the results described so far suggest
that the large scale motion and its fluctuations are of crucial importance for
the creation of a dynamo in the MDE, although there is no concrete the-
oretical prediction about this issue. Although the experiments mentioned
above have a slightly different geometry from the MDE, fluctuating large
scale eddies in the MDE can create a great difference between the instan-
taneous flow and the mean flow [86], creating a detrimental effect for the
magnetic field growth, although the mean flow — if stationary — is optimal
(according to [80]). In the MDE, with the application of an external ax-
ial magnetic field, it is possible to observe an intermittent behavior of the
magnetic field (whose fastest-growing eigenmode can alternate growing and
decaying phases, see [86]). This result is seen as an effect of the departure
of the instantaneous field from the mean field. In [81], it has been shown
that such a baffle can successfully reduce global turbulent resistivity in the
MDE.

Implementation of the equatorial baffle

The baffle effect consists of a modification of the computed velocity field by
suppressing the vertical component of the flow. This suppression is applied
at every time step in the spatial domain and then transferred to the spectral
domain by a spatial-to-spectral transform. The flow modification takes place
close to the boundaries, acting as a filter on the predicted velocity field.
More precisely, the z component of the field was damped according to the
following operation
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u(r,0,¢) = u(r,0,¢) —v.f(r,0)z, (8.9)

where the function f carries the spatial information of the damping mech-
anism. In order to avoid abrupt damping effects and steep gradients in
the simulations, the function f employs Gaussian functions to describe the
transition between the region where the damping effect is present and the
region where it is not. In fact, it turned out that this Gaussian approach
is well suited to avoid numerical instabilities and Gibbs phenomena. The
functional form of f was chosen as

[ exp{(rsinf — pring)Q)/(2af)} rsing < pring
f(r,0) = { 1 PG > prone (8.10)

The interpretation of the adjustable parameters o., 0, and ppig is as fol-
lows. The first parameter, o,, is a measure of the thickness of the baffle;
o, represents a damping parameter along the radial direction; pyi,4 is the
inner axial radius of the ring. The results are discussed in section

8.5.2 Role of a disc-shaped equatorial baffle between the im-
pellers

Another strategy — used to suppress or manipulate detrimental dynamics
— naturally comes from the results of the SVD analysis: We implemented
in the code the effect of a discoidal baffle centered on the equatorial plane
(i.e., lying between the impellers), in order to separate the dynamics in the
two hemispheres, avoiding a strong poloidal circulation near the axis and
facilitating the separation of the dynamics of the toroidal circulation in the
two hemispheres. In the light of the SVD results, the underlying idea is that
the disc can influence us(r) and hence facilitate the dynamo.

Implementation of the disc-shaped baflle.

The action of this disc consists of a modification of the computed velocity
similar to the one used for the ring-shaped baffle. The field is modified in
a flat circular region lying on the equatorial plane where a spatially smooth
suppression of the vertical component of the flow is performed at every time
step. This suppression acts as a filter on the predicted velocity field. The z
component of the field is damped according to Equation using another
f function in order to apply the damping mechanism in the center of the
equator. Again, the function f employs Gaussian functions to describe the
spatial behavior of the disc in order to avoid numerical instabilities (for this
reason, the disc is approximated by a flat ellipsoid). Thus, the functional
form of f for the disc is
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The interpretation of the adjustable parameters o,, and pg is straightfor-
ward: o, is a measure of the thickness of the disc; pg represents the disc
radius, whose value was chosen in order to cover spatially at least the region
of the equatorial plane through which us(r) flows, as Figures and
suggest.

8.5.3 Results

Kinematic simulations (i.e., neglecting the Lorentz force term in the Navier-
Stokes equations) show that the growth rate v of the magnetic energy is
enhanced by both the baffle and the disc. Nevertheless, the baffle effect
is not as strong as the disc effect. Table [8.3| shows the effect of the disc
on the default growth rate v. We indicate with ~, the growth rate of the
magnetic energy in presence of the baffle, 74 in presence of the disc. It
should be noted that a larger py is needed to have a non negligible effect
at Reg = 1000, confirming the necessity of a stricter control of large scale
turbulence at higher Rep. The results are discussed in section

Table 8.3: MHD simulations of dynamos with an implemented equatorial
disc in the center of the equatorial plane. 74 is the growth rate (the time is
scaled to the resistive diffusion time, 7, = pooL?) of the magnetic energy
in the presence of the disk; =, in the presence of the ring; vg is the default
growth rate, i.e., without any baffle.

Reg  Rmg  lmas Pd r Yd 0
300 80 30 0.28 7.62 18.8 4
300 100 30 0.28 155 30.8 9.8
300 150 30 0.28 31.2 58.6 24
300 250 30 0.28 52 109 39
600 250 52  0.28 284 454 22.6
600 250 72 0.28 299 504 22.6
1000 300 52 0.65 104 184 104

8.6 Interpretation of the results

In [80], Dudley and James studied the kinematic dynamo threshold of several
flows. It turned out that simple flows (like the s2t2, the s2t1 or sit1) can
trigger a dynamo field under specific circumstances. In particular, the flow
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sIt1 investigated in [80] is
u=t)+es, (8.12)

with Bullard-Gellman stream functions
s(r) = #}(r) = rsin (r7), (8.13)

and 7 € [0,1]. These modes are similar to the corresponding ones of the
second SVD mode, although they are not peaked near the axis as in our
case. If € = 0.17 and Rm > 155, this flow turns out to sustain a kinematic
dynamo.

The fact that the growth rate of the magnetic energy is negative for
a whole range of low Rm, where s2t2 is already a dynamo, can explain
the reason why the combinations u; 4 uy have lower growth rates than the
single u;. In fact, following the discussion in [166] (where the influence of
time dependent flows on the kinematic dynamo threshold in van Karman
flows was numerically investigated), the magnetic field responds to the in-
stantaneous velocity field, oscillating between instantaneous solutions of the
induction equation, and the resulting averaged growth rate is smaller than
that produced by the optimal configuration (in our case the s2t2 flow). A
possible three-wave interaction between the velocity modes and magnetic
modes plays a crucial role determining into which magnetic modes the ki-
netic energy flows: One role of the ug(r) mode should be in fact to extract
energy from the magnetic field dipolar dynamo mode and put it into other
magnetic modes that do not grow (they do not grow), namely reducing the
magnetic energy growth rate of the system. This idea will be tested by
future investigations.

The two strategies described in section turn out to have a positive
effect on the dynamo growth rate. In particular, by comparing the growth
rate v, in the presence of the ring, the growth rate 4 in the presence of the
disc, and the growth rate «y without any baffle, it turns out that the disc
has the strongest impact on «. This result is totally on the line to the SVD
results: most of the turbulent detrimental action takes place along the axis
and not only near the boundaries. This last analysis suggests how to put into
practice these results: controlling the symmetry of the counter-rotating flow
in the equatorial region, avoiding a strong poloidal circulation near the axis
and facilitating the separation of the dynamics of the toroidal circulation in
the two hemispheres may be the right strategy for facilitating the dynamo
instability.

8.7 Summary

In this work, we presented computational results with direct application
to the generation of magnetic fields in liquid metal experiments. The key
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result was the identification — via application of a powerful mathematical
technique to hydrodynamic simulations in spherical geometry — of turbulent
dynamics which could constitute an obstacle for the generation of magnetic
fields. These results can help to gain new insights into the hydrodynamics
of the flows that are important for experimental purposes. In fact, dynamos
are often not observed in laboratory at Reynolds numbers where they are
theoretically expected and understanding the reasons why this discrepancy
is found is fundamental in order to implement new experimental measures
designed to overcome this problem. Concerning the physical reason of these
difficulties, it has been suggested that turbulence (and in particular large
scale fluctuations of the flow) constitutes an obstacle to dynamos. Yet it
has been unclear to what extent these large scale fluctuations can have such
a detrimental effect and in what way they can work against the generation
of magnetic fields.

A detailed analysis of the fluid dynamics is the key issue and the Singular
Value Decomposition constitutes a precise tool for determining the eigen-
modes that better suit the problem. Furthermore, it identifies the temporal
behavior of each of them and quantitatively determines the hierarchy of
these modes. In this way, we identified specific features of the turbulent
flow that — in combination with the background flow — suppress magnetic
field generation. In other words, we proposed an easily classifiable dynamo
detrimental mechanism and provided an additional support for large scale
turbulence suppressing the dynamos rather than small scale.

In the last part, we showed the effect of two main strategies designed to
control large scale fluctuations in our numerical model: The implementation
of a ring-shaped and a disc-shaped baffles. The ring has already been used
in experimentally, showing itself to be able to reduce turbulent resistivity
in laboratory and — moreover — to slightly increase the growth rates in the
simulations. In particular, the disc increases the growth rates of the mag-
netic energy, and this result can be also useful for experiments with similar
topologies, since it constitutes a concrete step to take in order to overcome
possible suppression mechanisms generated by fluctuations that break the
so called m-symmetry of the system (i.e., a rotation of 7 around every axis
which lies on the equatorial plane).

Future works could be focused on the details of the effects on the mag-
netic field of the secondary dynamics identified in this study. A three-wave
interaction (between velocity modes and growing/damped magnetic modes)
is playing an important role and the SVD could constitute the right tech-
nique in order to determine it, e.g., by applying the SVD to the magnetic
field and investigating correlations with the most important u;(r)’s. In fact,
we expect that one role of us(r) should be to extract energy from the mag-
netic field dipolar dynamo mode and put it into other damped magnetic
modes.
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Chapter 9

Conclusions

“The larger the magnetic field,
the stronger our ignorance.”

Virginia Trimble (30 years
after Nordwijk)

In the course of this PhD project, two liquid-metal experiments have
been studied via numerical simulations. Both experiments are relevant for
astrophysics, since they study the possibility of recreating at laboratory
scales two important instabilities that pop up from magnetohydrodynamics
and that permeate the Universe: The dynamo instability and the magne-
torotational instability. In order to support the experimental investigation,
simulations can play a crucial role, by unveiling parameter regimes, details,
or spatiotemporal data that are unaccessible to the experimentalists. More-
over, both experiments have not reached the unstable regime (or, in the case
of the MRI experiment, it is hard to prove that the instability is actually
occurring): Therefore, simulations can foresee which measurements have to
be taken in order to facilitate (or amplify) the instabilities. In the following,
an overview of the main results of this work is given.

9.1 Interplay between turbulence and the dynamo
effect in the MDE

Concerning dynamo theory, we presented computational results with direct
application to the generation of magnetic fields in liquid metal experiments.
In particular, we focused our attention to the Madison Dynamo Experiment,
which was built to demonstrate self-excited dynamo action in an impeller-
driven flow of liquid sodium. The forcing mechanism is designed to impose
the so-called s2t2 flow to the working liquid, since previous studies have
shown that this flow facilitates dynamo action. The apparatus reaches a
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magnetic Reynolds number of Rm ~ 100, which implies a fluid Reynolds
number of Re ~ 107, since the magnetic Prandtl number Pm = Rm/Re
of liquid sodium is of the order ~ 107°. Due to this high fluid Reynolds
number, turbulence is easily excited, and the instantaneous flow can be dif-
ferent from the average flow that is supposed to cause dynamo action. These
detrimental effects of turbulent fluctuations are probably the main reason
why the current experimental setup does not show dynamo action. Those
fluctuations, whose spatial and temporal scale have not been explored before
but whose presence has been assumed by the experimentalists, enhance the
critical magnetic Reynolds number Rm, of the system, making the dynamo
regime more difficult to reach.

The key result of this work was the identification of turbulent dynamics
that constitutes an obstacle for dynamo activity, thanks to a fruitful applica-
tion of the Singular Value Decomposition (SVD) to the data produced by the
DYNAMO code. These results have produced new insights into the hydrody-
namics of the flows that are important for producing the dynamo mechanism
in experimental configurations, shedding light onto the temporal and spatial
scales of turbulent vortices. A detailed analysis of the fluid dynamics was
indeed the key issue, and the SVD constitutes a tool for determining the
eigenmodes that best suit the problem. Furthermore, the SVD identifies
the temporal behavior of each of these modes, and quantitatively defines
their relative importance. With these techniques, we identified specific fea-
tures of the turbulent flow that — in combination with the background flow
— suppress magnetic field generation. In other words, we proposed an eas-
ily classifiable flow structure that is detrimental to the dynamo mechanism,
and provided an additional support for large-scale turbulence suppressing
the dynamos rather than small-scale fluctuations.

We also studied the effect of two strategies designed to control large scale
fluctuations in our numerical model: The implementation of ring-shaped and
disc-shaped baffles. The ring has already been used in experiments, and was
shown to reduce turbulent resistivity in experiments, and to slightly increase
the growth rates in the simulations. This study indicates that the disc is
more effective at facilitating dynamo activity, as it more strongly increases
the growth rates of the magnetic energy. This result can also be useful
for experiments with similar topologies, since it constitutes a concrete step
to take in order to overcome possible suppression mechanisms generated
by fluctuations that break the so called m-symmetry of the system (i.e., a
rotation of m around every axis that lies on the equatorial plane).

Future work could be focused on the details of the effects on the mag-
netic field of the secondary dynamics identified in this study. A three-wave
interaction (between velocity modes and growing/damped magnetic modes)
is playing an important role, and the SVD could be useful for elucidating
these dynamics, e.g., by applying the SVD to the magnetic field and in-
vestigating correlations with the most important velocity eigenmodes. In
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fact, we expect that one role of the detrimental vortices is to extract energy
from the magnetic field dipolar dynamo mode and put it into other damped
magnetic modes.

9.2 Basic turbulent properties in bounded geome-
tries

Since turbulence can significantly alter the predictions of linear theory re-
garding the magnetic field growth rate, a further detailed analysis of the
fluid dynamics of the Madison Dynamo Experiment has been carried out.
Beside the SVD analysis of the simulated data, another, more general way to
face this problem has been pursued. This other strategy consists of search-
ing for possible hidden symmetries of the turbulent flow, as the investigation
of the scaling properties of the structure functions can provide, with three
main targets: (i) testing existing models in order to understand what kind
of turbulent behavior is taking place in the system under study; (ii) testing
different techniques used under other sets of hypotheses in order to suggest
to the experimentalists how to extract the information from the data; (ii)
providing numerically generated data that can be directly compared to the
ones obtained by the MDE.

By analyzing the DYNAMO simulations, we have found (point (i)) that our
system shows features that are best described by models like those proposed
by She and Lévéque (for hydrodynamic investigations) or by Grauer, Krug,
Marliani, Politano and Pouquet (for MHD intermittency [50,51]). These
models turn out to be good references for the predictions of the departure of
the results from the homogeneous and isotropic theory in the MDE simulated
system.

However, the main result of our study concerns point (ii). Indeed, we
have shown that it is possible to successfully make use of a set of methods
that are conceived for homogeneous and isotropic systems (Extended Self-
Similarity, analysis of the form function), although we still do not know the
physical reasons of this success. Moreover, our simulations show how MHD
effects must be taken into account when the magnetic field amplitude is
higher, as found in the core of the Madison sphere where a strong magnetic
field can be detected.

Another sound finding concerns the investigation of time intermittency
as well, which we detected by applying again the ESS technique, by analyz-
ing the temporal behavior of the fields in specific locations. Also in this case,
the best way to characterize intermittency is by means of ESS, which turns
out to be a crucial tool, without which a robust estimation of the exponent
and the detection of time intermittency would be technically difficult. The
outcome (i.e., the ESS can be applied to the temporal analysis) can facilitate
the comparison with the experiment (point (iii)). Indeed, the reason why
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we check whether we can apply ESS to the temporal domain is that in the
experiments it is easier to measure a temporal signal with a single probe
than with an array of probes registering several signals at the same time at
different locations for spatial analyses. In other words, we suggest to the
experimentalist to accomplish the same kind of analysis and to see whether
the same behavior can be detected. Characterizing which kind of intermit-
tency takes place in the experiment can give further insights in future into
the understanding of the system and can represent a new step towards the
control of turbulent effects that hinder dynamo action.

9.3 Magnetorotational Instability

The Princeton Plasma Physics Laboratory MRI Experiment was designed
to reproduce the magnetorotational instability in a cylindrical liquid gallium
apparatus, driven by boundary forces (i.e., viscous coupling with the rotating
walls of the cylinder). The forcing mechanism is designed to impose a Taylor-
Couette profile to the working liquid. The configuration of the apparatus is
relevant to astrophysics, since accretion disks share the same topology.

A two-code approach has been used within the Princeton collaboration,
and this dissertation describes what has been carried out using one of the two
codes. The simulations that had been done before with the Heracles code
have kept the rotation rates constant, which modifies the magnetic Prandtl
number Pm, although in the experiment Pm is a material constant while
the magnetic Reynolds number Rm is modified by changing the rotation
rate. Therefore, in order to run simulations that are more easily comparable
to the experiments, we kept the Prandtl number constant (as low as our
computational power allowed) keeping only the applied magnetic field and
the rotation rates as free parameters, although the experimental Prandtl
number is larger.

The main question we addressed with this two-code, fixed- Pm approach
is based on a recent experimental result: A scaling relation of the azimuthal
velocity in the magnetized flow of the experiment has been observed. Since
the identification of the MRI is not easy from an experimental point of view,
it has been supposed that this scaling behavior can be used as an indicator
of the presence of a MRI mode in the experiment. For simulations with
larger MRI amplitudes, both codes show a correlation between the strength
of the MRI and the deviation from the azimuthal velocity scaling, confirming
the hypothesis described above. In other words, data that show the highest
departure from the data collapse have been produced by simulations that
show also strong MRI amplitudes and this behavior can be qualitatively
understood by considering that a strong MRI amplitude can appreciably
modify the azimuthal component of the flow. Moreover, although the two
codes develop opposite flow orientations, they show a qualitatively similar
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azimuthal scaling behavior. With the results of our investigation, we were
also able to give an estimate of the upper limit of the MRI amplitude in
the current experimental apparatus. Differently from the experiment, we
observed that the slopes of the scaled plots of the azimuthal velocities as
a function of the applied magnetic field are smaller than the experimental
ones.

The experimental investigation can benefit from our work for the follow-
ing aspects: (i) it is worth keeping working on the data collapse discussed
above as a mean of detection of the MRI; (ii) since the numerical result
confirm the theoretical expectation of the order of magnitude of the MRI
amplitude, measurements have to be taken in order to enhance the MRI
strength (e.g., the conductivity of the endcaps can be modified or electrical
currents in the flow can be added); (iii) since the extrapolation of simulated
results should be carried out carefully, it would be beneficial to understand
whether the high fluid Reynolds number regime of the experiment strongly
affects the scenario. Concerning the last point, for instance at the experi-
mental Reynolds numbers a turbulent boundary layer can appear (although
it is missing in the simulations due to the small Reynolds number).

The investigation carried out so far show similarities and differences with
the experiment and further studies are indeed needed. Nevertheless we can
conclude that the first key results of our work are encouraging, since it is
worth exploring in more detail the possibility of using the azimuthal velocity
scaling as a suitable indicator of the MRI.
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Appendix A

Nondimensionalization of the
MHD equations

In computational fluid dynamics, it is common practice to nondimension-
alize the governing equations. In their nondimensional form, the equations
usually depend on fewer independent control parameters than in the original
form. Buckingham’s II-theorem [167] states the number of these indepen-
dent control parameters. The reason of this transform is not only simplicity
(since fewer parameters should be scanned in the simulations) but also in
order to better grasp the physics of the problem, since recasting the equa-
tions shows the existence of dynamic similarity: two flows are dynamically
similar if the nondimensional numbers that govern the flows have the same
value, even though the parameters contained in the nondimensional num-
bers have different values [168]. In the following, the MHD equations are
nondimensionalized, following appendix C of Reference [87].

A.1 Induction equation

In SI units, the magnetic induction equation reads

a; =V x (ux B)+7V?B. (A1)

In order to nondimensionalize this equation, a characteristic timescale for the
system under consideration has to be chosen. Usually, the eddy turnover
time 7, = L/U is chosen, where L and U are length and velocity scales
characteristic of the system under considerationﬂ Another possible choice is
the diffusion time 7, = L? /7, i.e., the timescale associated with the diffusion
term of the induction equation. The equations implemented in the SFEMaNS
code are rescaled using 7,, whereas in the DYNAMO code 7, is chosen. Let

1To be more precise, L is the characteristic length of the region where the vorticity of
the flow is nonzero.
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us review the case with the diffusion time. Introducing the dimensionless
(primed) variables

t=r1,t, (A.2)
x=Lx, u=Uu, V= %V’, (A.3)
we find W OB U, o
Tior = V x (0 x B) + ﬁv B, (A4)
which leads to
%]?—RmVx(uxB)—kVQB Rm—UnL (A.5)

where the primes have been dropped. Here, Rm is the dimensionless mag-
netic Reynolds number. It quantifies the importance of induction effects
when compared to dissipation effects. For a given flow geometry that does
not violate any anti-dynamo theorem, the value of Rm discriminates whether
dynamo action takes place or not. If the eddy turnover time 7, is used as
the characteristic timescale of the system, the induction equation in noni-
mensional form becomes

0B 1,

A.2 Navier-Stokes equation

The extended Navier-Stokes equation in SI reads

ou 1

— 4+ (u-V)u=-VP+vVu+ —(VxB)xB+f. (A7)
ot [op

In addition to the nondimensional quantities used in the previous section,
nondimensional variables for the pressure P’, the magnetic field B’, and the
external body force f’ are introduced, i.e.,

P=PyP,B= BB, f=fof" (A.8)
Eq. (A.7) hence becomes
ULow U?, , _, , vU B?
i . _ P+ = 2 / 0 '« B! B’ £
» at+L(u Viu' = V +T 5 Vou MOPL(VX ) x B+ fo
(A.9)

By comparison with the coefficients of the advective term, the scaling
factors for the pressure, the magnetic field and the body force are found to
be

U2

B§ = Upop, Py = U?, fo = T

(A.10)
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After dropping the primes and collecting the prefactors, the nondimensional
extended Navier-Stokes equation reads

?;: +Rm(u-V)u = —RmVP+ PmV*u+ Rm(V x B) x B+ Rmf, (A.11)
where the magnetic Prandtl number Pm = v/n is introduced. The fluid
Reynolds number is included via the relation Re = Rm/Pm. To translate
the nondimensional numbers Re and Rm (which are in fact fixed parameters
specified before a run is started) to physically meaningful Reynolds numbers,
a particular choice of the characteristic length and velocity scales has to be
made. In the DYNAMO code, for instance, the characteristic length scale L
is equal to the radius of the sphere, whereas for the MRI runs, the cavity
width Rp — R is chosen. In the case of a non stationary flow, the velocity
field fluctuates in space and time. Following an established convention, the
characteristic velocity is chosen for the DNYAMO runs as the time-averaged
rms velocity U = 1/(]u|?), where the overline denotes temporal and the (-)
operator denotes spatial averaging. The time-averaging is performed during
the kinematic phase of a run, i.e., when the backreaction of the magnetic
field on the flow is negligible. For the MRI runs, the peak velocity is chosen,
instead. This velocity is reached close to the inner cylinder, so vpeqr = 21771.
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Appendix B

Miscellaneous mathematical
results used throughout this
thesis

B.1 Equation of motion of the displacement dx
embedded in the fluid

Let us consider a Lagrangian coordinate system {X} at time ¢ = 0. At time
dt, the parcel that was originally at X will be (to the first order) at position
x(X,dt) = X+ u(X, 0)dt, whereas the parcel that was originally at X +dX
will be at position x(X + dX,dt) = X + dX + u(X + dX, 0)dt. Therefore,
the displacement dx(dt) = x(X + dX, dt) — x(X, dt) will be

dx(dt) = dX + (dx - a%)u(X,O)dt - (dx : a%)x(x’ dt).  (B.1)

Eq. (2.40) directly follows. Since Eq. (B.1]) represents also a solution to Eq.
(2.40), analogously the solution to Eq. is

B; B; Ox;
“(x,t) = L (X)=—=, B.2
S et = (X7 (B2)

with summation over repeated subscripts. This result shows that magnetic
field lines behave as they were “frozen” in the fluid: Indeed, if the two vectors
B/p and dx are proportional at the beginning of the motion, they will remain
proportional to each other as time goes by, since they are undergoing the
same transformation (via the jacobian matrix Ox;/0X;). Further reading
on this topic can be found in [16}[24], for instance.
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B.2 An important property of the pseudoscalar «

As explained in Chapter [2, the o term of the expansion of the turbulent
electromotive force £ drives a current parallel to the mean magnetic field
and this effect is the heart of dynamo action. The k—th component of £ is

= — ox;
U xB =uxB-u xB=u xB=¢,jv,B, J

0Xnm,
having used the Lagrangian solution (B.2) and ignored density variations.
Correlations between the fluctuating velocity and the Lagrangian jacobian
are usually considered stronger with each other that with the magnetic field,
ie.,

(B.3)

Ox; ox;
Ek” 7JB a Gk”Bm’U; an (B4)
m
therefore the o pseudotensor becomes
Oz /t , ;
« €V = = € Uy dt. B.5
km — €ijk Z@X ijk 0 8Xm ( )

In case of isotropic turbulence,

1 1/t
“apg = oW (Vxxv)dt=—- | H
ozkk /e”k/ lan 3/Ou (Vx x v)dt 3/0 dt,
(B.6)

where Vx|; = aixi and H' is the turbulent helicity. H measures how much
a fluid motion is helical, where a helical motion is a left- or right-handed
screw-type motion and lacks reflectional symmetry. Therefore, the « effect
can take place only from turbulent fluid motion which possesses handedness:
The presence of a non-zero helicity H’ is an essential ingredient.

B.3 Lagrange multipliers

The method of Lagrange multipliers is used to find extrema of a function
which is subjected to constraints. Let us suppose that we want to find the
maximum (or the minimum) of the function f(z1,...,2,) with the constrain
that the n independent variables of the function f satisfy g(x1,...,x,) = 0.
(0)

)

The necessary condition for a point x(0) = (x§0)7 . to be an extremum

for f is that
d
f= Z ox;

= 0. (B.7)

xX= x(O)
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Since the point the constraint condition is valid for point x(©) too, we also

have that "
dg
Y= 2o

dxi =0. (B.S)

X:X(O)

Equation states that we the n variables {z;} , are not independent,
but they are related due to Eq. In other words, it is possible to express
one of the n variables in terms of the other n — 1. If the n variables were
independent, Eq. would have as result that df/0dx; = 0, for every i.
Instead of solving Eq. using the dependency of a one of the differential
dz; in terms of the others, as Eq. suggests, it is easier to solve the prob-
lem in the following, equivalent way proposed by Lagrange. By multiplying
both sides of Eq. [B.8 by an unknown parameter A and by adding the result
to Eq. [B.7] one obtains

A ML o

i=1

The parameter A is known as Lagrange multiplier and is not determined at
this stage. For this reason, we chose a suitable value for A in such a way
that one of the n coefficients of the differentials dz; in parentheses in Eq.
becomes zero. With this choice, only n — 1 terms in the left-hand side
member of Eq. [B.9 remain non-zero. But we have seen that a set of n — 1
variables of the original n variables is a set of linearly independent variables.
Keeping all together, every single coefficient is zero, n — 1 due to the above
mentioned independency and the remaining one due to the smart choice of
the adjustable parameter X. In formulas,

of |9y

A =
858,’ + 8331 O’

for each 1.

In practice, one solves this set of equations in terms of the unknown
parameter A\ and determines a posteriori its value by imposing that the
solution satisfy the original constrain g(zi,...,xz,) = 0. This method is
easily generalized for cases where m constraint equations are present. The
generalization is simply carried out by introducing m Lagrange multipliers
and multiplying each constrain equation by one of the As, finally summing
all these conditions together and solving the problem in a way analogous to
the method described above.
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B.4 Singular Value Decomposition theorem

Let A be an M x N matrix. Then AT A is symmetric and can be orthogonally
diagonalized. Let {vi,...,v,} be an orthonormal basis for R" consisting of
eigenvectors of AT A, and let \q, ..., A, be the associated eigenvalues of AT A.
Then, for 1 <17 <n,

|Avi| |2 = (Avy)T Av; = vI AT Av;. (B.10)
Since v; is an eigenvector of AT A,
||14VZ||2 = VZTATAVi = VZT)\iVi = Ai, (Bll)

because v; is an unit vector. This equation chain proofs that the eigenvalues
of AT A are non-negative. With a suitable reordering of the orthonormal
basis, we can assume, without loss of generality, that Ay > Ao > ... > A\, > 0.
The square roots of the eigenvalues \; of AT A are called singular values of
the matriz A. Let us call them o;. By equation we find that they
represent the length of the vectors Avi, ..., Av,. It is possible to prove (see
Ref. [155]) the following

Theorem. Suppose {v1,...,v,} is an orthonormal basis of R™ consisting of
eigenvectors of AT A, arranged in such a way that the corresponding eigen-
values of AT A satisfy \1 > Xa > ... > A\, and suppose A has r non-zero sin-
gular values. Then {Av, ..., Av,} is an orthogonal basis for Col(A) (i.e., the
column space of A, the set Col(A) of all linear combinations of the columns

of A) and rank(A) = r.
Thanks to this result, under the same hypotheses, we prove the

Singular Value Decomposition Theorem. Let A be an M x N matriz
with rank(A) = r. Then there exists an M x N matriz ¥ of the form

(0 0)

where D is an v X r diagonal matriz and r < min(m,n), for which the
diagonal entries in D are the first r singular values of A, i.e., o1 > o9 >
.. > o0p >0, and there exist an m x m orthogonal matriz U and an n X n
orthogonal matriz V' such that

A=UxVvVT, (B.12)

Proof. The previous Theorem proved that the set {Avy,..., Av,} is an or-
thogonal basis of Col(A). By normalizing these vectors, we obtained a new
set {uy,...,u,} with
. AVz' . AVZ'

|Avil| o3

u;

151



or
AVZ' = o;Uy, (B.l?))

for 0 < ¢ < r. By extending this new set {u;};_; to an orthonormal basis
{u;}; of R™, we consider the matrices U = (u; uz ... uy,) and V =
(V1 V2 ... V), which are orthogonal by construction. Since only r eigenvalues
A; are nonzero (as in the previous theorem) and since they represent the
length of the vectors Avy, it follows that AV = (Avy ... Av, 0 ... 0). From
Eq. we have then that AV = (oju;y ... o,u, 0 ... 0). It is then trivial

to show that AV = XU, and, since V! = VT, we have that | A = USV7|.

Q.E.D.
O

As noticed in [155], the matrices U and V are not uniquely determined
by A, but the diagonal entries of ¢ are necessarily the singular values of A.
In Chapter |8 the rows of U and the columns of V7T represent respectively
the spatial POD modes and the temporal time traces associated with the
POD modes, while Nppop has the role of r, Ny, the role of M and N; that
of N. It is worth noticing that all this analysis can be carried out in C",
where the operation of complex conjugation should be taken into account in
the scalar products and where the matrices are in this case unitary instead
of orthogonal.

B.5 Origin of the Stewartson layer: The Taylor-
Proudman Theorem

The Taylor-Proudman theorem states that in a steady rotating flow of an
inviscid and homogeneous fluid, if the angular velocity of the rotation is
high enough, then the resulting flow is two-dimensional. In the following,
the angular velocity vector will be denoted by € = (0,0,2,) (in cartesian
coordinates); its modulus 2 must be large enough, so that that the Coriolis
force dominates the inertial terms (the so-called small Rossby-number limit).

Proof. Let us consider the inviscid Navier Stokes equations in steady state
(i.e., 9/0t = 0) in the frame co-rotating with the fluid,

p(u-Viu=—-2p2 xu— VP, (B.14)

where the effective pressure P is related to the fluid pressure p via P = p+p®
(® is the gravitational potential). By neglecting the advective term and
taking the curl of the last equation in order to get rid of the pressure term,
we get

(2-V)u=0, (B.15)
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since (), is constant. This means that

ou

— =0 B.16
az 9y ( )

i.e., all three components of the velocity field are independent of z. Moreover,

by taking the scalar product of Eq. (B.14)), we have

(Q- V)P =0, (B.17)

i.e., also the pressure is independent of z. The theorem hence states that mo-
tions whose timescale is small compared to the one associated to {2 become
independent of z.

O]
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Appendix

C

Tabular overview of the
simulated relative exponents

Table C.1: scaling exponents (relative to ((3)) of longitudinal structure

functions. °.

¢(1)/<3) <(2)/¢3) C(4)/<(3) <(5)/¢3)
Rmo=40 Bo =0.01  0.385 £ 0.012 0.709 £ 0.010 1.270 £ 0.014 1.53 £ 0.03
By = 0.03 0.39 +0.03 0.705 £ 0.025 1.28 + 0.04 1.56 + 0.08
Bp=0.07  0.377+£0.016 0.702 £ 0.011 1.283 £ 0.012 1.561 + 0.024
By =0.15 0.338 £0.03 0.671 £ 0.003 1.326 + 0.005 1.650 + 0.012
Rmo=200 Bo=0.01  0.387 £0.014 0.715 £ 0.014 1.253 £ 0.024 1.48 £ 0.05
Bo =0.07 0.33395£0.00008 0.6671 + 0.0007  1.33267 £ 0.00013  1.665 £ 0.003
Bo=0.15  0.339 +0.012 0.675 £ 0.009 1.311 % 0.009 1.611 + 0.017

Table C.2: scaling exponents (relative to ((3)) of transverse (along éy) struc-

ture functions. °.

¢(1)/¢(3) ¢(2)/¢(3) C(4)/<(3) ¢(5)/¢(3)
Rmo=40 Bp=0.01 0.387+0.020 0.720 £ 0.018 1.24 £ 0.03 1.46 £ 0.07
Bp =0.03 0.362+0.014 0.688 £ 0.010 1.303 + 0.01 1.60 £+ 0.03
Bp =0.07 0.332+£0.024 0.663 £ 0.021 1.34 £ 0.03 1.68 £ 0.07
By =0.15 0.34 £ 0.02 0.680 £ 0.016 1.31 £+ 0.02 1.63 £+ 0.04
Rmp=200 Bg=0.01 0.358+0.006 0.692 £ 0.006 1.286 £+ 0.013 1.56 £ 0.03
Bp = 0.07 0.37 +£0.05 0.71 £ 0.05 1.25 £+ 0.09 1.46 £ 0.22
Bp =0.15 0.369+0.024 0.710 £ 0.010  1.241 + 0.022  1.45 + 0.05
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Table C.3: scaling exponents (relative to ((3)) of transverse (along é4) struc-

ture functions. °.

(1)/CB3) <(2)/<(3) (4)/CB3) <(5)/<3)
Rmo=40 Bo =0.01 0.354£0.012 0.686 £ 0.013  1.30 £ 0.03 _ 1.58 £ 0.06
Bo=0.03 0.350+£0.012 0.682 £ 0.013 1311 +£0.024  1.62 £ 0.05
Bo =007 0.395+£0.024 0.724 £ 0.019 1.239 £ 0.0026  1.46 =+ 0.05
Bo=0.15 0.340£0.012  0.667 £ 0.011  1.339 + 0.017  1.68 £ 0.03
Rmo=200 Bo=0.01 0424£0014 0.749 £ 0.013  1.197 £ 0.022  1.36 + 0.05
By =007 0.382£0.015 0.726 £ 0.020 122 +0.05  1.43 £ 0.12
Bo=0.15 0.431£0.015 0.756 £ 0.015  1.20 £0.03  1.37 £ 0.07

Table C.4: scaling exponents (relative to ((3)) of longitudinal structure

functions. °.

¢(1)/<3) €(2)/<3) JONSE) <(5)/¢(3)
Rmo=40 B =0.01 0.306 £0.014 0.642 £ 0.013 1.373 £ 0.023  1.75 £ 0.06
Bo=0.03 0.35240.024 0.681 +£0.019  1.31 +0.03  1.63 £ 0.06
By =007 0.344£0.014 0.676 £ 0.011  1.319 £ 0.016  1.63 £ 0.04
Bp=0.15  0.37£0.03  0.70 + 0.02 129 +£0.03  1.57 £ 0.06
Rmo=200 Bo=0.01 0.344£0.010 0.680 £ 0.009 1.207 £ 0.016 1.57 £ 0.04
Bo=0.07 0.343£0.024 0.676 £ 0.017 1.317 £ 0.021  1.63 £ 0.04
Bo=0.15 0.37£0.05  0.70 £0.05 1286+ 0.025 1.56 £ 0.06

Table C.5: scaling exponents (relative to ((3)) of transverse (along &) struc-

ture functions. °.

<1)/CB3) <(2)/<(3) (4)/CB3) <(5)/<(3)
Rmo=40 Bo = 0.01 0.397 £0.018 0.723 £ 0.017  1.24 £ 0.03 1.46 £ 0.07
Bo=0.03 0.389£0.006 0.706 £ 0.010 1275 £ 0.011  1.54 £ 0.03
Bo =007 0.382£0.019 0.703 + 0.017  1.28 + 0.03 1.56 + 0.06
Bo=0.15 0.334£0.006 0.667 £ 0.006 1.332 £ 0.010  1.66 = 0.03
Rmo=200 Bo=0.01 0.389£0018 0.717 £ 0.023  1.24 £ 0.06 1.46 £ 0.14
By =0.07 0.357£0.005 0.686 + 0.004 1.305 + 0.006 1.601 =+ 0.015
By =0.15  0.361£0.008 0.697 + 0.007  1.275 £ 0.009  1.535 = 0.022

Table C.6: scaling exponents (relative to ((3)) of transverse (along é4) struc-

ture functions. ".

¢(1)/¢(3) €(2)/¢(3) €(4)/<(3) ¢(5)/¢(3)
Rmo=40 Bp=0.01 0.375+£0.016 0.698 £ 0.012 1.294 &+ 0.017 1.58 £ 0.04
Bp =0.03 0.333£0.016 0.669 £+ 0.013  1.328 £ 0.020 1.65 £+ 0.04
By =0.07 0.360£0.011 0.688 £+ 0.011  1.313 &£ 0.024 1.63 £ 0.06
Bo =0.15 0.35 £ 0.03 0.683 £ 0.023 1.31 £ 0.03 1.61 £+ 0.08
Rmo=200 Bp=0.01 0.355+0.019 0.689 £ 0.021 1.28 £ 0.06 1.53 £ 0.14
Bp =0.07 0.335£0.004 0.669 £+ 0.004 1.329 £ 0.008 1.656 £ 0.021
Bp=0.15 0.354£0.015 0.676 & 0.011  1.333 £ 0.015 1.67 £+ 0.03

155



Table C.7: predicted exponents of She & Leveque model and of Kolmogorov
classical analysis.

She & Leveque  Kolmogorov

OYEB) 0.364 0.333
¢(2)/¢(3) 0.696 0.667
¢(3)/¢(3) 1.000 1.000
¢(4)/¢(3) 1.280 1.333
¢(5)/¢(3) 1.538 1.667
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Appendix D

Time intermittency:
Calculated exponents

Table D.1: scaling exponents (relative to ((3)) of (Ju,(t + 7) — u,(¢)|P).

6 = 121°, r; = 250.
¢(1)/¢(3) ¢(2)/¢(3) ¢(4)/<(3) ¢(5)/¢(3)
Rmo=40 Bo — 0.0l  0.347+£0.002  0.6819 £ 0.0018 1.203 £ 0.009  1.56 + 0.028
Bo=0.03 035440005  0.688 +0.005  1.20+001 158+ 0.02
Bo=0.07 0.3514+0.005  0.685+0.006  1.29 +0.014  1.57 £ 0.03
Bo=0.15  0.35040.003  0.654 + 0.005  1.349 + 0.006 1.699 + 0.013
Rmo=200 Bo=0.01 0.408%0.009  0.750 £ 0.010  1.160 + 0.022  1.26 £ 0.05
Bo=0.07 0.333840.0018  0.669 + 0.0024  1.311 £ 0.015  1.59 + 0.23
Bo=0.15 038940006  0.694 +0.004 1313 £0.011  1.63 £ 0.10
Table D.2: scaling exponents (relative to ((3)) of (lug(t + 7) — ua(t)|P).
6 = 121°, r; = 250,
¢(1)/C3) <(2)/<B3) C(49)/<(3) <(5)/¢(3)
Rmo=40 Bo=0.01 0.378=+0.008 0.726 £ 0.015  1.10 £0.03 137 £ 0.07
Bp=0.03 037140013 0700 + 0.011 1288+ 0.014 157 + 0.03
Bo =0.07 0.355+0.007 0.688 + 0.007 1.206 + 0.010  1.582 + 0.023
Bo=0.15 0.345+0.003 0.675 + 0.002 1.323 + 0.003  1.646 + 0.006
Rmo=200 By —0.01 0.386£0.011 0.717 £ 0.011  1.24 £ 0.03 _ 1.461 £ 0.006
Bo=0.07 0.3474+0.004 0.681 + 0.005 1.208 + 0.013 158 + 0.03
Bo=0.15 043740017 0.734+ 0.011 1262+ 0.012 152 + 0.03
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Table D.3: scaling exponents (relative to ((3)) of (|ug(t + 7) — ug(t)[P).

9 = 121°, r; = 250.

¢(1)/<3) <(2)/<(3) C(4)/<(3) <(5)/¢3)
Rmo=40  Bo =01  0.350 £0.003 0.6860 £ 0.0028  1.284 £ 0.011  1.54 £ 0.03
Bo=0.03 0.351£0.004  0.688 % 0.004 128 £0.01  1.525 + 0.025
Bo=0.07 0.350£0.004  0.685 £ 0.004  1.298 £ 0.0084  1.585 = 0.019
Bo=0.15 0.343£0.007  0.675 £ 0.005  1.323 £ 0.006  1.643 %+ 0.012
Rmo=200 Bo=0.01 0.400%0.005 0.735 £ 0.005  1.194 £ 0.011  1.34 £ 0.03
Bo=0.07 0.333£0.002  0.667 +£0.003  1.316 £ 0.015  1.61 £ 0.04
Bp=0.15  0.4440.02 0.73 £ 0.016 1.273 £ 0.016  1.55 + 0.03

Table D.4: scaling
0 =121°, r; = 400.

exponents (relative to ((3)) of (|u,(t + 7) — u-(t)[P).

<(1)/C3) €(2)/<(3) ((4)/<3) <(5)/¢3)
Rmo=40 By =0.01  0.392 £ 0.009 0.738 £ 0.0017 1.18 £ 0.03 1.33 £ 0.07
Bo=0.03  0.346 £+ 0.004 0.682 £ 0.004 1.30 + 0.08 1.59 + 0.02
By =0.07  0.356 % 0.004 0.690 + 0.004 1.28 + 0.007 1.56 + 0.02
Bo=0.15  0.364£0.010 0.694 £ 0.010 1.288 + 0.016 1.57 &+ 0.004
Rmo=200 Bo=0.01  0.432 £ 0.018 0.762 £ 0.018 117 £ 0.03 1.31 £ 0.07
By =0.07 0.3348 £0.0003 0.66778 + 0.00013  1.33378 %+ 0.00005 1.6703 = 0.0003
Bo=0.15  0.464£0.025 0.752 £ 0.013 1.240 £ 0.012 1.472 £ 0.10

Table D.5: scaling
0 = 121°, r; = 400.

exponents (relative to ((3)) of (lug(t + 7) — wup(t)[P).

/B /B DB )/B)
Rmo=40 Bg =0.15 0.382 4+ 0.012 0.718 £+ 0.012 1.23 £+ 0.02 1.43 £ 0.04
Bg = 0.03 0.361 4+ 0.007 0.699 + 0.008 1.273 £ 0.016 1.54 £ 0.04
Bo =0.07 0.356 4+ 0.006 0.694 + 0.007 1.273 £ 0.016 1.53 £ 0.04
Bg =0.15 0.359 4+ 0.005 0.687 £ 0.004 1.302 £ 0.006 1.596 £ 0.005
Rmp=200 By =0.01 0.44 £+ 0.03 0.77 £ 0.03 1.18 4+ 0.05 1.36 &= 0.10
Bo =0.07 0.3336 £0.0024 0.668 £+ 0.003 1.313 £ 0.016 1.60 £ 0.04
Bg =0.15 0.55 + 0.07 0.81 + 0.05 1.17 £+ 0.06 1.34 £ 0.12

Table D.6: scaling
0 = 121°, r; = 400.

exponents (relative to ((3)) of (|ug(t + 7) — ug(t)[P).

<(1)/C3) ((2)/<(3) C(4)/<3) <(5)/<(3)
Rmo=40 Bo=0.15 0416+£0.011  0.759 £ 0.012 1.159 £ 0.025 1.29 £ 0.05
Bo=0.03  0.366+0.009  0.700 + 0.010 1.27 + 0.02 1.53 + 0.04
By =0.07 0.3365+0.0009 0.6697 + 0.0007  1.3297 % 0.0010 1.659 £ 0.003
Bo=0.15  0.323£0.006  0.650 + 0.008 1.380 + 0.019 1.78 + 0.04
Rmo=200 Bo=0.01  0405+0014  0.731 £ 0.011 1.228 £ 0.019 1.43 £ 0.04
By =0.07 0.3301+0.0011 0.6650 + 0.0006 1.33414 + 0.00028  1.6682 £ 0.0005
Bo=0.15  0.55+0.07 0.81 £ 0.05 1.17 + 0.06 1.33 £ 0.12
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