Aus dem Institut für klinische Transfusionsmedizin und Immungenetik der Universität Ulm

(Ärztlicher Direktor: Prof. Dr. med. H. Schrezenmeier)

Etablierung eines auf Luminex xMAP® Carboxybeadtechnologie basierenden Untersuchungsverfahrens, zum Einsatz in der Routinediagnostik von Zytokinpolymorphismen

Dissertation zur Erlangung des Doktorgrades der Medizin der medizinischen Fakultät der Universität Ulm

> vorgelegt von Jens Putzbach geb. in Dohna

> > 2013

Amtierender Dekan: Prof. Dr. Thomas Wirth

- 1. Berichterstatter: Prof. Dr. Bernd Jahrsdörfer
- 2. Berichterstatter: Prof. Dr. E. Marion Schneider

Tag der Promotion: 26.06.2014

"Der Geist ist wie ein Fallschirm – er kann nur funktionieren, wenn er offen ist."

Thomas R. Deware

	Inhaltsverzeichnis	Ι
	Abkürzungsverzeichnis	III
1.	EINLEITUNG	1
1.1	Zytokine	1
1.2	Single Nucleotide Polymorphismen (SNP)	7
1.3	Möglichkeiten der SNP-Analyse	8
1.4	Beschreibung der untersuchten SNP und deren Bedeutung	11
1.5	Bedeutung der Zytokine für die Transplantationsimmunologie	19
1.6	Fragestellung	21
1.7	Entwicklungsansatz	21
2.	MATERIAL UND METHODEN	23
2.1	Material	23
2.2	Methoden	41
3.	ERGEBNISSE	67
3.1	Ergebnisse der PCR und MPCR	67
3.2	Ergebnisse des Amplifikationserfolgs durch Sequenzierung	68
3.3	Ergebnisse der Testvalidierung	76

4.	DISKUSSION	102
4.1	Vergleich zwischen Luminex xMAP® Carboxybeads,	102
	der Referenzmethode (SSP), sowie Sequenzierung und DNA-	
	Microarray	
4.2	Beurteilung der Ergebnisse und Problemanalyse	107
4.3	Erfahrungen in der Entwicklung und Möglichkeiten der	110
	Systemoptimierung	
4.4	Ausblick und Zukunft der xMAP® Carboxybeadtechnologie	112
	in der Abteilung für Transplantationsimmunologie	
5.	ZUSAMMENFASSUNG	114
6.	LITERATUR	116
	Danksagung	VI
	Lebenslauf	VII

Abkürzungsverzeichnis

Α	Adenin					
Abb.	Abbildung					
bp	B asen p aare					
C	Cytosin					
CCR5	Chemokine-5 Rezeptor					
cDNA	komplementäre Desoxyribonukleinsäure (${f c}$ omplementary					
	Desoxyribonucleic acid)					
CFTR	Cystic Fibrosis Transmembrane Conductance Regulator					
СООН	Carboxylgruppe					
COPD	chronisch obstruktive Lungenerkrankung (C hronic					
	obstructive pulmonary disease)					
dATP	Desoxyadenosintriphosphat					
DAXX	Death domain-associated protein 6					
dCTP	Desoxycytidintriphosphat					
ddNTP	Didesoxyribonukleosidtriphosphat					
dGTP	D esoxy g uanosin t ri p hosphat					
DNA	Desoxyribonukleinsäure (Desoxyribonucleic acid)					
dNTP	Desoxyribonukleosidtriphosphat					
dTTP	D esoxy t himidin t ri p hosphat					
EDC	1- E thyl-3-(3- d imethylaminopropyl) c arbodiimid ($C_8H_{17}N_3$)					
EDTA	Ethylendiamintetraacetat					
Fa	Firma					
fw	f or w ard					
G	Guanin					
GvHD	Transplantat-Wirt-Reaktion (Graft versus Host Disease)					
HGMD	Human Gene Mutation Database					
IFNg	Interferon gamma					
IFNgR	Interferon gamma Rezeptor					

IgA	Immunglobulin A
IgE	Immungloulin E
IL1	Interleukin-1
IL1a	Interleukin-1 alpha
IL1b	Interleukin-1 beta
IL1R	Interleukin-1 Rezeptor
IL1RN	Interleukin-1 Rezeptorantagonist
IL2	Interleukin-2
IL4	Interleukin-4
IL4Ra	Interleukin-4 Rezeptor alpha
IL6	Interleukin-6
IL10	Interleukin-10
IL12b	Interleukin-12 beta
JAK-STAT	Januskinase Signal Transducers and Activators of
	Transcription
Lo	Locus
МАРК	Mitogen-activated-protein-Kinase
MES	2-Morpholinoethansulfonsäure (2-(N-Morpholino)
	ethanesulfonic acid hydrate - C ₆ H ₁₃ NO ₄ S)
мнс	Haupthistokompatibilitätskomplex (M ajor
	Histocompatibility Complex)
MPCR	Multiplex Polymerasekettenreaktion (Multiplex Polymerase
	Chain Reaction)
NCBI	National Center for Biotechnology Information
NF-ĸB	Nuclear factor 'kappa-light-chain-enhancer'
NOD2 Card 15	Nucleotide-binding oligomerization
	d omain-containing protein 2
PCR	Polymerasekettenreaktion (Polymerase Chain Reaction)
rDNA	ribosomale Desoxyribonukleinsäure (r ibosomale
	Desoxyribonucleic acid)
rev	reverse

RNA	Ribonukleinsäure (R ibo n ucleic a cid)
rpm	Umdrehungen pro Minute (R ounds p er m inute)
SDS	Natriumdodecylsulfat (Lauryl sulfate sodium salt -
	C ₁₂ H ₂₅ NaO ₄ S)
SNP	Punktmutation (Single Nucleotide Polymorphism)
SODD	Silencer of Death Domain
SSP	sequenzspezifischer Primer (S equence S pecfic P rimer)
т	Thymin
Tbl.	Tabelle
ТЕ	Tris-EDTA
TGFb	Transforming growth factor beta
ТМАС	Tetramethylammonium Chloride (C ₄ H ₁₂ ClN)
TNFa	Tumor necrosis factor alpha
TNF R1	Tumor necrosis factor Receptor Type 1
TNF R2	Tumor necrosis factor Receptor Type 2
Tris	2-Amino-2-(hydroxymethyl)-propan-1,3-diol (C ₄ H ₁₁ NO ₃)
Tween20	Poly(oxy-1,2-ethandiyl)-monododekansäure-sorbitylester
	(C ₁₈ H ₃₄ O ₆)
TRADD	TNF-Rezeptor assoziiertes Protein
UV	ultraviolett

1. Einleitung

1.1 Zytokine

Zytokine stellen eine Gruppe von Proteinen und Peptiden dar, welche als signalvermittelnde Elemente von humanen wie auch tierischen Zellen produziert werden, damit diese untereinander kommunizieren können. Die Übermittlung dieser Signale wird über die Gruppe der Zytokinrezeptoren vermittelt, die sich auf der Oberfläche der Zielzellen befinden. Die Zytokine selbst wirken wie Hormone oder Neurotransmitter, werden jedoch nicht von spezifischen Organen oder Neuronen produziert, sondern von einer Vielzahl von Zelltypen. Eine zentrale Rolle nimmt ihre Funktion im Immunsystem ein. Hier haben die Zytokine einen wichtigen Stellenwert in der Modulation von immunologischen, entzündlichen oder infektiösen Prozessen. So werden beispielsweise T-Zellen und Makrophagen durch Zytokine aktiviert und stimuliert, wenn das Immunsystem ein Pathogen bekämpft. Weiterhin werden Makrophagen und T-Zellen durch Chemotaxis mittels Zytokinen zum Ort der Infektion "gelockt".

Ihren Effekt entfalten die Zytokine über die Bindung an spezifische Rezeptoren auf der Oberfläche von Effektorzellen. Über eine intrazelluläre Signalkaskade findet die Signalverarbeitung statt, indem zum Beispiel die Transkription von Genen hoch beziehungsweise herunter reguliert wird. Daraus resultierend ergibt sich eine Vielzahl von möglichen Effekten, wie die vermehrte Produktion von anderen Zytokinen, ein erhöhter Einbau von Zelloberflächenrezeptoren oder Feedback-Inhibition des eigenen Signalprozesses. Dabei wirken Zytokine oft pleiotrop, das heißt einzelne Zytokine haben verschiedenste Wirkungen, je nach dem Zielgewebe, an das sie binden. Gleichzeitig sind die Auswirkungen mancher Signalkaskaden verschiedener Zytokine redundant, sprich verschiedene Zytokine haben bei Bindung an das gleiche Zielgewebe einen ähnlichen Effekt. Die Einteilung der Zytokine wird oft anhand der Rezeptorenfamilie, an die sie binden, vorgenommen. Dies schließt die Typ I Zytokine (Hämatopoetin Familie), Typ II Zytokine (Interferon Familie), die Tumornekrose Faktor Familie, die Interleukin 1 Familie, sowie die Transforming growth factor Familie ein.

Interleukin-1 (IL1) gehört zu den zuerst beschriebenen Zytokinen. Zunächst wurde es als Substanz, welche Fieber induziert und Lymphozyten kontrolliert, erkannt. In den Jahren 1984/1985 wurde herausgefunden, dass IL1 aus zwei verschiedenen Proteinen besteht, die IL1 alpha (IL1a) und IL1 beta (IL1b) genannt wurden [41]. Beide werden von Makrophagen, dendritischen Zellen und Monozyten gebildet und nehmen eine proinflammatorische Wirkung bei der Bekämpfung von Infektionen ein. Sie erhöhen die Expression von Adhäsionsfaktoren an endothelialen Zellen, um die Transmigration von Leukozyten an den Ort der Entzündung zu ermöglichen. Weiter greifen sie in die Thermoregulation des Hypothalamus ein, was zu einer Erhöhung der Körpertemperatur führt und als Fieber wahrgenommen wird. Daher wird IL1 auch als Pyrogen bezeichnet. Die Produktion von IL1b ist mit der Beobachtung von Hyperalgesie im Bereich des entzündeten Gewebes und der Entstehung von Fieber assoziiert [80]. Eine weitere Rolle nimmt IL1 in der Regulation der Hämatopoese ein.

Neben IL1a und IL1b gehört auch der Interleukin-1 Rezeptorantagonist (IL1RN) zur IL1 Superfamilie. Dieser, ursprünglich 1984 von zwei unabhängigen Instituten beschriebene und damals noch als Interleukin-1 Inhibitor bezeichnete Antagonist, bindet auf den Zelloberflächen an dieselben Rezeptoren, wie es auch IL1a und IL1b tun. Im Unterschied zu IL1a und IL1b entfaltet die Bindung von IL1RN jedoch kein Signalwirkung, sondern hemmt die Signalübermittlung durch IL1a und IL1b kompetitiv [41]. Der Rezeptor über den die Wirkung der beschriebenen Zytokine der Interleukin-1 Superfamilie vermittelt wird, heißt Interleukin-1 Rezeptor (IL1R).

Interleukin-2 (IL2) wird als Immunantwort produziert, wenn Antigene aus der Umgebung Zugang zum Organismus erhalten [22,106]. Diese werden von Lymphozyten als fremdartig erkannt, worauf die Lymphozyten beginnen IL2 auszuschütten. Die Interaktion mit dem Interleukin-2 Rezeptor bewirkt, durch die Aktivierung und die Expression spezifischer Gene, die Stimulation, Differenzierung und das Überleben der antigenselektierten, zytotoxischen T-Zelle [7,8,108]. Damit ist IL2 essentiell für die Entwicklung und Ausbildung des T-Zellgedächtnisses, welches von der Anzahl und Funktion von Antigen selektierten T-Zell-Klonen abhängig ist. IL2 ist außerdem an der Entwicklung der T-Zellen im Thymus, hinsichtlich der Reifung von regulatorischen T-Zellen, beteiligt [94,110,111]. Diese regulatorischen T-Zellen verhindern, dass andere T -Zellen Selbstantigene erkennen und auf diese reagieren. Somit wird verhindert, dass eine Autoimmunantwort erfolgen kann. IL2 wird daher benötigt, um zwischen "eigen" und "fremd" unterscheiden zu können. IL2 ermöglicht zudem die Produktion von Immunglobulinen durch B-Zellen und induziert die Differenzierung und Proliferation von natürlichen Killerzellen [119,120].

Interleukin-4 (IL4) wurde erstmals 1982 von Howard et al. beschrieben. Es nimmt eine Schlüsselrolle in der humoralen und adaptiven Immunantwort ein [54]. IL4 ist ein Zytokin, welches die Differenzierung von nativen T-Helferzellen in Th2-Zellen induziert. Durch die Aktivierung von IL4 produzieren die Th2-Zellen zusätzliches IL4 und stimulieren sich so selbst (autokrine Stimulation). In B-Zellen induziert IL4 den Klassenwechsel zu IgE und reguliert die Produktion von MHC-Klasse 2 Molekülen hoch. Vermittelt wird die Wirkung durch den Interleukin-4 Rezeptor. IL4 gehört zudem zu den antiinflammatorischen Zytokinen, die ein Überschießen von Entzündungsreaktionen verhindern.

Interleukin-6 (IL6) ist ein proinflammatorisches Zytokin, welches von T-Zellen und Makrophagen ausgeschüttet wird, um eine Immunantwort bei Traumata, wie zum Beispiel Verbrennungen, auszulösen. Die Ausschüttung findet unter anderem in Skelettmuskelzellen, wie auch glatte Muskelzellen der Gefäße, statt. Weiterhin wurde die Produktion von IL6 auch in Osteoblasten beobachtet [43]. IL6 stellt einen wichtigen Mediator für Fieber und der Akutphasereaktion bei Entzündungen dar. Im Muskel und Fettgewebe führt die Stimulation des dort gebildeten IL6 zu einer Energiemobilisation, was eine Erhöhung der Körpertemperatur zur Folge hat. Darüber hinaus kann IL6 von Makrophagen als Reaktion auf spezifische, mikrobielle Moleküle sezerniert werden. Diese Moleküle binden an Detektionsmoleküle auf der Zelloberfläche, welche als Tolllike Rezeptoren bezeichnet werden. Diese induzieren eine intrazelluläre Signalkaskade, welche die Produktion von weiteren inflammatorischen Zytokinen initiiert [9].

Interleukin-10 (IL10) wird primär von Monozyten gebildet und hat vielfältige Effekte bei der Immunregulation und bei Entzündungen. IL10 reguliert die Expression von Th1-Zytokinen und MHC-Klasse II Antigenen. Dies erfolgt aufgrund der Eigenschaft, dass IL10 in der Lage ist, die Synthese von Interferon gamma (IFNg), Interleukin-2 (IL2), Interleukin-3 (IL3), sowie Tumor necrosis factor alpha (TNFa) zu inhibieren, welche von Makrophagen und T1-Helferzellen ausgeschüttet werden. IL10 verstärkt das Überleben, die Proliferation und die Antikörperproduktion von B-Zellen. Knockout Studien an Mäusen lassen vermuten, dass IL10 zudem eine entscheidende immunregulatorische Funktion im Gastrointestinaltrakt hat. Weitere Tierversuche zeigten, dass IL10 auch in Mastzellen produziert wird und der inflammatorischen Antwort dieser Zellen entgegen wirkt, welche sie bei allergischen Reaktionen entfalten [50].

Interleukin-12 beta (IL12b) ist eine Untereinheit von Interleukin-12. Es ist ein Zytokin, welches unter anderem mit T-Zellen und natürlichen Killerzellen interagiert. IL12 selbst ist ein durch Disulfidbrücken verbundenes Heterodimer. Dieses besteht aus Interleukin-12 alpha und Interleukin-12 beta. Sezerniert wird es durch aktivierte Makrophagen und dendritische Zellen, welche ihrerseits der Th1-Zellentwicklung dienen [56]. Weitere Effekte sind die vermehrte Produktion

-4-

von Interferon gamma (IFNg), Tumor necrosis factor alpha (TNFa) und die Reduktion der Suppression von IFNg, welche durch IL4 vermittelt wird.

Interferon gamma (IFNg) ist ein dimerisiertes lösliches Zytokin, das zur Familie der Typ II Interferone gehört [49]. Die ursprüngliche Bezeichnung lautete "Makrophagen aktivierender Faktor". Im Gegensatz zu Interferon alpha und Interferon beta, die von jeder Zelle exprimiert werden können, wird IFNg nur von T-Lymphozyten, dendritischen Zellen und natürlichen Killerzellen ausgeschüttet. Dieses Zytokin wirkt antiviral, immunmodulatorisch und antitumorös [100]. Die Wirkung von IFNg wird durch die Interaktion mit den Rezeptoren Interferon gamma receptor 1 und Interferon gamma receptor 2 (IFNgR1 und IFNgR2) vermittelt. Durch die Bindung an die Rezeptoren wird die Signalkaskade des JAK-STAT Weges aktiviert. Zusätzlich fördert IFNg die Differenzierung von Th1-Zellen durch Hochregulation von Transkriptionsfaktoren.

Der Transforming growth factor beta (TGFb) ist ein Protein, welches in drei Isoformen existiert. Diese werden als TGFb1, TGFb2 und TGFb3 bezeichnet. TGFb gehört zu einer Familie von Proteinen, welche als Transforming growth factor Superfamilie bekannt ist und zu der außerdem Inhibine, Activin, Antimüllerian hormone und Bone morphogenetic protein gehören. TGFb selbst kontrolliert unter anderem die Proliferation und Differenzierung verschiedener Zelltypen. Allerdings kann es auch als negativer, autokriner Wachstumsfaktor wirken. So spielt TGFb eine wichtige Rolle bei der Apoptose, indem es über den SMAD oder DAXX pathway Apoptose in Zellen induzieren kann [92,101].

Tumor necrosis factor alpha (TNFa) ist ein Zytokin, welches in der systemischen inflammatorischen Immunantwort eine Rolle spielt. Aufgrund dieser Eigenschaft wird es auch den Zytokinen zugeordnet, die eine Akutphasereaktion auslösen. Im einzelnen kann TNFa den Zelltod durch Apoptose induzieren, aber auch Einfluss auf die Differenzierung von Zellen nehmen, Inflammation auslösen und

Einleitung

die virale Replikation modulieren. Aufgrund dieser Eigenschaften wurde impliziert, dass seine Dysregulation, zum Beispiel in Form einer Überexpression, Einfluss auf eine Vielzahl menschlicher Krankheiten haben könnte, nicht zuletzt auch auf die Entstehung von malignen Tumoren [73]. Die Signalkaskade kann durch Binden von TNFa an die Rezeptoren TNFR1 oder TNFR2 initiiert werden. TNFR1 findet sich in den meisten Gewebearten, während TNFR2 nur auf Zellen des Immunsystems exprimiert wird. Das Binden der Liganden an die TNF-Rezeptoren führt zu einer Änderung der Konfiguration des Rezeptors und damit zu einer Dissoziation des inhibitorischen Proteins SODD. Die Dissoziation erlaubt das Binden des agonistischen Proteins TRADD an die entsprechende Bindungsdomaine. Hierdurch werden drei Pfade der weiteren Signalkaskade beschritten [28,118].

Über die Aktivierung von NF-kB, einem heterodimeren Transkriptionsfaktor, wird die Transkription von Proteinen verstärkt, die in den Zellüberlebenszyklus und die Proliferation von Zellen eingreifen, inflammatorische Immunantworten regulieren, sowie Faktoren, die der Apoptose entgegenwirken.

Über den MAPK pathway werden über mehrere Schritte einer Kaskade Transkriptionsfaktoren aktiviert, welche zur Zelldifferenzierung und Proliferation beitragen. Diese Signalkette ist im allgemeinen als proapoptotisch zu sehen. Der dritte Signalweg führt wie bei allen Mitgliedern der TNF-Rezeptoren Superfamilie, die sogenannte "death-domains" enthalten, zur Induktion von Auch wenn der durch TNFa induzierte Zelltod eine, in Apoptose [47]. Anbetracht der starken inflammatorischen Wirkung, eher untergeordnete Rolle im Vergleich zu anderen Apoptose spielt. Denn auch auslösenden Signalkaskaden, wie zum Beispiel dem Fas-System, ist die Fähigkeit, den Zelltod auszulösen vergleichsweise schwach und oftmals durch den antiapoptotischen Effekt von NF-kB maskiert.

Ausgeschüttet wird TNFa hauptsächlich von Makrophagen, jedoch auch von anderen Zellen, wie Lymphozyten, Mastzellen, endothelialen Zellen, kardialen Monozyten, Fettgewebe, Fibroblasten und neuronalem Gewebe. Als Stimulus für

Einleitung

die Freisetzung wirken Lipopolysaccharide und andere bakterielle Antigene, sowie IL1. Zusammen mit IL1 und IL6 entfaltet es, je nach Zielorgan, verschiedene Wirkungen. Im Hypothalamus führt TNFa zur Suppression des Appetits und zur Induktion von Fieber. In der Leber führt es zur Produktion von Akutphaseproteinen, wie C-reaktivem Protein, und einer Vielzahl weiterer Entzündungsmediatoren. Weiterhin kommt es zu Erhöhung der Insulinresistenz in der Leber und im peripheren Gewebe. Neutrophile Granulozyten werden durch TNFa angelockt und können mit dessen Hilfe an die endothelialen Zellen binden, um anschließend in das umliegende Gewebe zu migrieren. Makrophagen selbst werden durch TNFa autokrin zur vermehrten Phagozytose stimuliert, sowie zur Produktion von IL1 und dem inflammatorischen Prostaglandin E2 angeregt. Lokal führt eine erhöhte Konzentration von TNFa im Gewebe zu den kardinalen Zeichen einer Entzündung, nämlich Schwellung, Rötung, Überwärmung und Schmerz.

1.2 Single Nucleotide Polymorphism (SNP)

Beim Vergleich von zwei beliebigen menschlichen Individuen, lässt sich in deren Genomen eine Übereinstimmung von 99,99% finden [116]. Lediglich die restlichen 0,1% zeigen interindividuell Unterschiede der DNA-Sequenz. Diese Unterschiede werden als Polymorphismen bezeichnet. Handelt es sich hierbei um einen Unterschied, der nur eine Base an einer Position der DNA-Sequenz umfasst, spricht man von einem Single Nucleotide Polymorphismus, beziehungsweise einer Punktmutation oder kurz SNP. Etwa 90% der polymorphen Stellen im Genom werden durch SNPs abgebildet, nur die restlichen 10% entfallen auf andere Ausprägungen, wie zum Beispiel repetitive DNA-Sequenzen [32]. Ein SNP ist dadurch charakterisiert, dass für eine Stelle im Genom mindestens zwei verschiedene Nucleotide existieren. Dabei ist die zahlenmäßig geringer vertretene Variante mindestens zu 1% in der Population zu finden [20].

SNPs können sich innerhalb eines Gens im kodierenden oder nicht kodierenden Bereich befinden, aber auch in der Region zwischen den Genen. Befindet sich ein SNP in einem kodierenden Abschnitt, heißt dies nicht zwingend, dass auch die Aminosäuresequenz und somit das gebildete Produkt verändert wird. Dies ist der Degeneration des genetischen Codes geschuldet. SNP, die auch aus dem mutierten Allel das korrekte Protein bilden, werden als stumme Mutationen bezeichnet.

Wirkt sich ein SNP auf die Aminosäuresequenz aus, so spricht man von Missense- und Nonsense-Mutationen. Während bei der Missense-Mutation ein verändertes Protein gebildet wird, welches die natürliche Funktion nicht so erfüllen kann, wie das unveränderte Original, kommt es im Fall der Nonsense-Mutation zu einem Abbruch der Proteinbildung, ohne die Entstehung eines fertigen Proteins.

SNPs, die sich in einer nicht kodierenden Region befinden, können über Veränderungen beim Spleißen der Gene, über ein verändertes Bindungsverhalten von Transkriptionsfaktoren oder durch Veränderung der Sequenzen von nicht- kodierender RNA ebenfalls Einfluss auf die normale Funktionen des Gens nehmen und so Erkrankungen verursachen. Um Angaben über die mittlerweile hohe Anzahl nachgewiesener SNP bereit zu stellen, existieren verschiedene Datenbanken, die es unter anderem erlauben, entsprechende Informationen über Lage, nachgewiesene Allele und deren Häufigkeit im Genom verschiedener Ethnien einzuholen. Eine dieser Datenbanken, welche auch für diese Arbeit genutzt wurde, ist die des National Center for Biotechnology Information (NCBI) [131]. Eine weitere Datenbank stellt zum Beispiel die Human Gene Mutation Database dar (HGMD).

1.3 Möglichkeiten der SNP-Analyse

Für die Bestimmung von SNP im Routinebetrieb medizinischer Einrichtungen stehen mehrere Methoden zur Verfügung. Zum einen kommt die Methode der

sequenzspezifischen Primer (SSP) zur Anwendung. Eine weitere Möglichkeit besteht in der Sequenzierung der entsprechenden Abschnitte des Genoms. Als verhältnismäßig neue Methode wurde die Typisierung mittels BioChips, sogenannten DNA-Microarrays etabliert.

1.3.1 Sequenzspezifische Primer (SSP)

Bei der Typisierung mittels sequenzspezifischer Primer, bindet einer der Primer im Bereich des SNP an die DNA. Der zweite Primer bindet weiter von der polymorphen Stelle entfernt . Ist der sequenzspezifische Primer komplementär zu dem jeweiligen SNP kann der Primer vollständig binden und die PCR-Reaktion findet statt. Im Fall das die Mutation vorliegt, kann dieser Primer nicht binden und somit auch kein PCR-Produkt entstehen. Über den Nachweis der amplifizierten PCR-Produkte in einem Agarosegel, nach elektrophoretischer Auftrennung und optischer Auswertung mit Ethidiumbromid und UV-Licht, kann anschließend der Genotyp der Probe für den untersuchten SNP bestimmt werden [85,124,125].

1.3.2. Sequenzierung

Bei der Methode der DNA Sequenzierung nach Sanger, auch Kettenabbruch-Synthese genannt, wird durch enzymatische Verlängerung mittels einer DNA-Polymerase einer der beiden komplementären DNA-Stränge verlängert. Dies geschieht ausgehend von einem Primer, welcher komplementär an eine kurze Zielsequenz der DNA bindet.

Als Sequenzierreaktion kommt danach eine abgewandelte Form der PCR zum Einsatz, in der aber nur ein Primer eingesetzt wird, der die DNA linear amplifiziert. Bei der Reaktion werden neben den dNTPs, die auch bei der PCR

Einleitung

eingesetzt werden, auch Didesoxynukleosidtriphosphate (ddNTP) zugesetzt. Diese sind für eine spätere Nachweisreaktion markiert. Im Vergleich zu den Ursprüngen der Methode kommen heutzutage vor allem Fluoreszensfarbstoffe bei der Markierung zur Anwendung, während früher mit Radioisotopen gearbeitet wurde. Heute wird jeder der vier ddNTPs durch einen spezifischen Fluoreszensfarbstoff gekennzeichnet, die mittels Anregung durch einen Laser, Licht in verschiedenen Wellenlängenbereichen emittieren. Dieses kann durch Detektoren erfasst und anschließend zur Auswertung genutzt werden.

Durch den Zusatz von ddNTPs kommt es bei der Amplifikation aufgrund des Fehlens einer Hydroxylgruppe am 3'-Kohlenstoffatom zu einem Abbruch der Reaktion, da die Phosphatgruppe des nächsten Nukleotids nicht binden kann. So entstehen während der Amplifikation verschieden lange DNA-Fragmente, die jeweils mit einem der markierten ddNTPs enden. Alle Fragmente derselben weisen am Ende das entsprechende, für diese Position im Länge, komplementären Strang kodierte, ddNTP auf. Da bei der Reaktion für jede Position der Basen ein entsprechend langes Fragment entsteht, kann im Anschluss an die Sequenzierreaktion diese Fragmente mittels Kapillaranalysiert elektrophorese aufgetrennt und werden, indem die Fluoreszenzsignatur für jede Fragmentlänge erfasst wird. Das so entstehende Chromatogramm gibt dann, entsprechend der Abfolge der Farben, die Sequenz der entsprechenden Basen der untersuchten DNA-Region wieder [95,96]. Im Falle einer Mutation werden der selben Position verschiedene an Fluoreszenssignaturen registriert.

1.3.3 DNA-Microarrays

In steigender Zahl findet auch die Methode der DNA-Microarrays beim Nachweis von SNP Einzug in die Laborwelt. Bei dieser Methode werden cDNA-Oligonukleotide oder Fragmente von PCR-Reaktionen auf ein Trägermaterial ("Spotted Microarrays") oder aber synthetisch hergestellte Oligonukleotide ("Oligonucleotide Microarrays") aufgebracht. Diese sind auf einer bestimmten Position eines Rasters aufgebracht, zum Beispiel einem Glasträger, und dienen als Sonden für das zu untersuchende Material.

Aus dem zu untersuchenden Material kann RNA extrahiert werden, die nach Schritten der Aufreinigung und Vervielfältigung in cDNA oder RNA umgeschrieben und mit einem Fluoreszenzfarbstoff markiert wird. Eine andere Möglichkeit besteht in der Extraktion von DNA, welche zunächst amplifiziert und ebenfalls mit einem Fluoreszenzfarbstoff markiert wird. In der eigentlichen Hybridisierungsreaktion binden die markierten cDNA, RNA oder PCR-Produkte an die komplementären Sonden, welche sich auf dem Array befinden. Im Anschluss wird durch einen Waschschritt das ungebundene Material vom Array entfernt und für jede Position das Fluoreszenzsignal mittels Anregung durch einen Laser und Nutzung der entsprechenden Detektoren registriert. Auf diese Weise kann ermittelt werden, ob ein gesuchte spezifische Sequenz an der entsprechenden Sonde gebunden hat und somit im zu untersuchenden Material nachzuweisen war.

1.4 Beschreibung der untersuchten SNP und deren klinische Bedeutung

Die von uns untersuchten Polymorphismen werden mit zahlreichen Einflüssen auf Erkrankungen in Verbindung gebracht, die zum Teil vermutet, in anderen Fällen auch schon hinreichend bewiesen sind. Nicht zuletzt sind die von uns untersuchten Polymorphismen in unserem Institut mit der gezielten Fragestellung verbunden, ob diese SNP einen Einfluss auf das Auftreten und eine unterschiedlich starken Ausprägung von Graft-versus-Host Reaktionen (GvHD) bei knochenmarktransplantierten Patienten haben. Eine der ersten Studien, welche diese Frage zur Grundlage nahm, erschien 1998 und wurde von Middleton et al. publiziert [78]. Auch wenn in dieser Arbeit noch kein Zusammenhang zwischen ausgewählten Zytokinpolymorphismen und der Mortalität bei GvHD festgestellt werden konnte, zeigten sich jedoch Hinweise darauf, dass die untersuchten SNP Einfluss auf die Stärke der Ausprägung einer GvHD nehmen und legte damit den Grundstein für weitere Betrachtungen.

Im IL1a-Gen, welches sich auf Chromosomen 2 (2q14) befindet, untersuchten wir den Polymorphismus rs1800587 (C>T). Er befindet sich im 5'untranslatierten Bereichs des Gens, so dass vermutet wird, dass er Einfluss auf die Transkription und Expression des Gens hat. Dieser Polymorphismus stellt wie alle anderen von uns betrachteten Polymorphismen eine Punktmutation dar. Der Einfluss dieser Mutation wurde bereits in Zusammenhang mit der Abnahme der Knochendichte und Wirbelsäulenfrakturen untersucht [63], sowie auf die Prädisposition für eine ankylosierende Spondylitis [126]. Anlass der oben genannten Studie war die Beobachtung, dass in Monozyten von Patienten mit Osteoporose ein erhöhter Spiegel von IL1a festgestellt wurde, welches die Resorption der Knochenmasse fördert. Daher erfolgte die Untersuchung verschiedener SNP auf IL1a, unter anderem auch der von rs1800587. Allerdings konnte diese Studie keinen Einfluss von rs1800587 auf ein häufigeres Auftreten von verminderter Knochendichte und pathologischen Wirbelkörperfrakturen aufzeigen. Die zweite der genannten Studien, welche zur Klärung eines eventuellen Effektes von IL1a Polymorphismen auf das Auftreten von ankylosierender Spondylitis durchgeführt wurde, zeigte eine häufigeres Auftreten des mutierten Allels in der Gruppe der Erkrankten. In einer Metastudie zu diesem Thema zeigte sich, dass ein erhöhtes Vorkommen dieser Mutation bei ankylosierender Spondylitis bei Europäern, nicht aber bei Asiaten zu verzeichnen war [70].

Ein weiter Einfluss, der rs1800587 zugeschrieben wurde, steht im Zusammenhang zu spontanem Hörverlust und Morbus Ménière. Als Grund hierfür wurde eine erhöhte Permeabilität von Blutgefäßen im Innenohr angeführt, die durch Entzündungsreaktionen entsteht. Diese soll durch IL1a beeinflusst werden und damit nicht zuletzt auch mit dem Vorhandensein der Mutation rs1800587 verknüpft sein [44]. Für die Transplantationsimmunologie bedeutend war der 2003 erschienene Beitrag von Cullop et al., in der im Zusammenhang mit Knochenmarktransplantationen die Vermutung äußerte, dass neben anderen Risikofaktoren, die Typisierung von rs1800587 dazu beitragen kann, eine GvHD bei HLA-gematchten Knochenmarktransplantationen vorherzusagen [34]. Auch wenn Mehta et al. in der 2007 veröffentlichen Studie dies nicht bestätigen konnten [77], bleibt rs1800587 weiter Gegenstand ähnlicher Betrachtungen.

Im IL1b-Gen, welches ebenfalls auf Chromosomen 2 (2q14) zu finden ist, untersuchten wir die beiden SNP rs1143634 (C>T) und rs16944 (T>C). Der Polymorphismus rs1143634 ist im Exon 5 lokalisiert, rs16944 ist noch vor dem ersten Exon im Promotorbereich zu finden. Ähnlich wie bei IL1a wurden auch diese beiden SNP auf einen Zusammenhang mit Erkrankungen des rheumatischen Formenkreises und degenerativen Gelenkerkrankungen untersucht [74,81,102]. In neueren Studien wurde auch ein Zusammenhang zu neurodegenerativen Erkrankungen aufgezeigt, so wurde rs1143634 eine Rolle bei der Entwicklung von Demenz zugeschrieben [10,98]. Das mutierte Allel von rs16944 scheint Auswirkungen auf die Aktivität des dorsolateralen, präfrontalen Cortex, bei an Schizophrenie erkrankten Patienten, zu haben [88] und wurde in einer Studie von 2007 ebenfalls mit dem Auftreten von multipler Sklerose in Verbindung gebracht [16]. 2009 wurde der Einfluss von IL1b auf die Entstehung von GvHD nach Knochenmarktransplantationen in einer Studie untersucht. Hier zeigte sich zwar kein direkter Zusammenhang mit dem Auftreten einer GvHD, es scheint aber einen Einfluss auf die Entstehung von Komplikationen, wie Infektionen und Thrombosen, während einer GvHD zu haben [45].

Neben Polymorphismen in den IL1-Genen wurden auch jeweils ein SNP im Bereich des IL1R (rs2234650) und IL1RN (rs315952) untersucht. Rs2234650 (C>T) und rs315952 (C>T) finden sich beide auf Chromosom 2 (rs2234650: 2q12; rs315952: 2q14). Rs2234650 befindet sich mehrere tausend Basen vor dem ersten Exon des IL1R Gens, rs315952 hingegen liegt im letzten Exon des IL1RN Gens. Neben einem Einfluss auf eine ankylosierende Spondylitis [40], wurde auch der Einfluss von rs315952 in der Pathogenese des systemischen Lupus erythematodes postuliert [113].

Im IL2-Gen untersuchten wir die zwei Polymorphismen rs2069762 (T>G) und rs2069763 (G>T). Beide finden sich auf Chromosom 4 (4q26). Der Einfluss beider SNP wurden aufgrund der immunmodulatorischen Wirkung von IL2 untersucht, unter anderem bezüglich der Immunantwort nach Vakzinierung gegen Masern. Hier zeigte sich eine erhöhte Antikörperproduktion und Lymphozytenantwort bei Vorliegen der Mutationen [39,51]. In einer 2011 veröffentlichen Studie wurde der Einfluss beider SNP auf mögliche akute Abstoßungsreaktionen bei Nierentransplantation untersucht, welcher sich jedoch in dieser Studie nicht nachweisen ließ [89]. Rs2069762 wurde weiter in Zusammenhang mit der Prognose bei Patienten, die an einem follikulären Lymphom erkrankten untersucht. Neben weiteren Faktoren schien auch dieser Polymorphismus die Prognose zu beeinflussen [27]. In einer anderen Studie wurde der Zusammenhang dieses SNP und einer verstärkten Expression von IL2, als Folge der durch den Polymorphismus veränderten Promoterregion, untersucht. Hieraus resultierte ein verändertes Verhältnis von Th1- zu Th2-Zellen, welches zugunsten der Th2 Zellen verschoben war und womit ein Zusammenhang einer erhöhten Anfälligkeit für allergische Erkrankungen vermutet wurde [30].

Insgesamt vier Polymorphismen weckten unser Interesse bei IL4 und dessen Rezeptor IL4Ra. Für IL4, gelegen auf Chromosom 5 (5q31), untersuchten wir rs2243248 (T>G), rs2243250 (C>T) und rs2070874 (T>C). Im Gen des IL4Ra auf Chromosom 16 (16q12) untersuchten wir rs1801275 (G>A). Bedeutung erlangten die Polymorphismen in Zusammenhang mit verschiedenen Erkrankungen. Rs2243248 hat laut Studienlage einen Einfluss auf die Entstehung von Gliomen [19]. Der Polymorphismus rs2243250 zeigte einen signifikanten Unterschied in der Menge des Sezernierten von IL4 und wurde in Bezug zur Pathogenese der Multiplen Sklerose diskutiert [1].

Im IL6-Gen fanden zwei weitere SNP unsere Beachtung. Die auf Chromosom 7 (7p21) im Promotorbereich befindlichen SNP rs1800795 (G>C) und rs1800797 (G>C). Beide SNP wurden zusammen auf eine prognostische Graduierung in Bezug auf Erkrankungen der Bandscheiben untersucht. Hier zeigten sich erste Hinweise darauf, dass bestimmte Haplotypen einen Einfluss auf Schmerzhäufigkeiten zu haben scheinen [62]. In einer weiteren Studie wurde unter der Annahme, dass verschiedene Haplotypen, resultierend aus den Polymorphismen in der Promotorregion, eine erhöhte Transkription und Sekretion von IL6 nach sich ziehen und damit das Risiko des Auftretens einer symptomatischen distalen Osteoarthritis erhöhen [57]. Nebst diesen Studien wurden die beiden im Promotorbereich gelegenen SNP auch auf ihren Zusammenhang zu verschiedenen Formen von Neoplasien untersucht. So wird angenommen, dass neben anderen Faktoren, Polymorphismen in der Promotorregion von IL6 einen Einfluss auf Brustkrebs [103,104], die Entstehung von Gliomen im erwachsenen Alter [19] und das Auftreten von kolorektalen Karzinomen haben [105]. Bedeutend für die Transplantationsimmunologie wurde rs1800795 durch den Einfluss auf die Funktion und den Verlust von transplantierter Nieren. Hier wurde ein erhöhter Spiegel von IL6 als Ursache für Abstoßungsreaktionen diskutiert [65]. Ähnlich verhält es sich bei hämatopoetischen Stammzellspenden, wo die SNP der IL6-Promotorregion Einfluss auf das Auftreten einer GvHD bei den Empfängern nehmen [2].

Die Polymorphismen rs1800896 (A>G), rs1800871 (C>T) und rs1800872 (C>A) wurden von uns im Bereich des Gens für IL10 untersucht, welches sich auf Chromosom 1 (1q31) befindet. Alle drei SNP befinden sich im Promotorbereich und nehmen so Einfluss auf die Sezernierung von IL10. In bestehenden Studien wurde der Einfluss von rs1800896 unter anderem bei der Entstehung von

allergischem Asthma untersucht [55]. Hier zeigte sich in Zusammenhang mit Mutationen in IL10 ein erhöhtet IgE-Spiegel im Serum und lässt auf Basis dessen einen Zusammenhang bei der Entstehung von Allergien und Asthmaexazerbationen vermuten. In einer weiteren Studie konnte gezeigt werden, dass die Haplotypen, die aus den untersuchten SNP entstehen, Einfluss auf die Menge von IL10 nehmen, welches produziert wird. Der Haplotyp ATA ist mit einem signifikant höheren IL10 Serumspiegel assoziiert als die übrigen. Auf Basis dieser Erkenntnis folgte die Schlussfolgerung, dass dieser Haplotyp einen Einfluss auf die Entstehung von rheumatoider Arthritis habe, was Gegenstand einer weiteren Studie war [52]. Die Vermutung, dass diese Polymorphismen auch mit dem Entstehungsrisiko von Non-Hodgkin-Lymphomen assoziiert seien, lies sich allerdings bisher nicht belegen [68]. In einer weiteren Arbeit fand sich allerdings ein Indiz dafür, dass rs180071 eine Rolle bei der Entwicklung von Morbus Alzheimer spielen könnte [5].

Die durch die Mutationen veränderten IL10 Werte sind auch in der Transplantationsimmunologie interessant. In einer Untersuchung über das Outcome bei Nierentransplantationen stellte sich ein schlechteres Outcome der Patienten heraus, wenn sie den Haplotypen ACC, im Vergleich zu dem Haplotypen GCC, aufwiesen [109]. Eine ähnliche Aussage fand man bei einer Studie zu hämatopoetischer Stammzelltransplantation und dem Auftreten von GvHD, denn auch hier ergaben sich günstigere Ergebnisse beim Vorhandensein des Haplotypen GCC [11]. Diese Arbeit unterstreicht die Ergebnisse von Karabon et al., die ebenfalls eine Verringerung des Risikos einer GvHD bei vorliegen des Haplotypen GCC beim Empfänger ergab. Zusätzlich schien der Haplotyp ACC beim Spender sich ebenfalls günstig auf die Verringerung des GvHD Risikos auszuwirken [58].

Das Gen für IL12b befindet sich auf Chromosom 5 (5q31). Wir untersuchten daraus den SNP rs3212227 (A>C). Bisher fand dieser Polymorphismus Aufmerksamkeit in der Untersuchung eines eventuellen Zusammenhanges mit Psoriasis [23,24,84]. Des weiteren wurde auch der Zusammenhang zu dem

Auftreten von Myokardinfarkten [75] und dem Überleben bei follikulären Lymphomen untersucht [27]. Während ein signifikanter Zusammenhang in Fall der Mutation mit Psoriasis festgestellt werden konnte und auch ein Einfluss auf das Outcome bei follikulären Lymphomen nachgewiesen wurden, konnte keine signifikante Assoziation zwischen rs3212227 und Myokardinfarkten beschrieben werden.

Im Bereich des Gens IFNg, lokalisiert auf Chromosomen 12 (12q14), Polymorphismus untersuchten wir den rs2430561 (T>A). Dieser Polymorphismus liegt in der Region eines Short-Tandem-Repeats mit einer CA Basenabfolge. Untersucht wurde rs2430561 auf einen Zusammenhang mit Hepatitis C [91], subakuter sklerosierender Panenzephalitis [128] und IgA-Nephropathie [99]. Während die ersten beiden Studien keinen eindeutigen Zusammenhang zu den untersuchten Krankheiten ergaben, konnte im Falle der IgA-Nephropathie eine eindeutige Assoziation des Auftretens mit dem Vorhandensein des A-Allels gezeigt werden. In Bezug auf Transplantationen zeigte sich auch bei IFNg ein Einfluss auf die Abstoßungsreaktion bei transplantierten Nieren. In mehreren Studien konnte aufgezeigt werden, dass der Genotyp AA sich günstig auf das Transplantat auswirkt, während das Vorliegen von T-Allelen mit einer erhöhten Abstoßungsrate verbunden war [33,61,129]. Dies ließ sich auf verschieden stark ausgeprägte Produktion von IFNg zurückführen. Während der Genotyp TT mit einem hohen IFNg-Spiegel korreliert war, zeigte der Genotyp AA im Vergleich niedrigere Werte und führte somit zu den besseren Prognosen. Im Kontext zu diesem SNP wurde ebenfalls der Einfluss auf lebertransplantierte Patienten untersucht und auch hier konnte Zusammenhang zwischen diesem SNP und dem Auftreten einer ein Abstoßungsreaktion nachgewiesen werden [60].

Für den Bereich des TGFb-Gens untersuchten wir zwei SNP. TGFb ist auf Chromosomen 19 (19q13) lokalisiert, der erste der beiden SNP lautete rs1982073 (C>T), der zweite SNP war rs1800471 (G>C). In bisherigen Studien zeigten sich Zusammenhänge zwischen rs1982073 und der Entstehung einer COPD, aber auch der koronaren Herzkrankheit [26,64,115]. Neben diesen Erkenntnissen wurde auch ein modulierender Aspekt bei der Krankheitsausprägung der zystischen Fibrose beschrieben [18]. Untersuchungen, die der Frage nachgingen, inwiefern dieser Polymorphismus einen Einfluss auf Osteoporose bei Frauen hat, zeigten jedoch keinen eindeutigen Anhalt für eine Assoziation mit rs1982073 [69,76]. Rs1800471 wird in der aktuellen Studienlage zusammen mit drei weiteren, von uns nicht betrachteten, TGFb Polymorphismen und dem sich daraus ergebenden Haplotypen, hinsichtlich des Einflusses auf das Risiko für die Entstehung vom Myokardinfarkten untersucht [114]. Für die Transplantationsimmunologen wurde rs1982073 interessant, da dieser SNP Einflüsse auf Komplikationen und Abstoßungsreaktionen bei sowohl Nieren- als auch Lungentransplantierten hatte [4,74]. So nimmt TGFb Einfluss auf Lungenfibrosen und stellt so einen Risikomarker bei Lungentransplantationen dar [4].

Die letzten beiden Polymorphismen, die wir betrachteten, waren zwei SNP im Bereich des TNFa-Gens. Dieses befindet sich auf Chromosomen 6 und die untersuchten SNP lauteten rs1800629 (G>A) und rs361525 (G>A). In der Literatur wurden bisher verschiedenste Einflüsse dieser Mutationen auf Krankheitsbilder diskutiert. Der Einfluss von rs1800629 wurde in Zusammenhang mit verschiedenen Neoplasien untersucht. Während die Untersuchung eines möglichen Zusammenhangs zwischen Mutationen im TNFa Genen und der Entstehung von Prostatakarzinomen keine Signifikanz ergab [36], zeigte sich jedoch eine Erhöhung des Erkrankungsrisikos bei Non-Hodgkin Lymphomen [122,123]. Weiterhin wurde das Risiko für das Auftreten von Osteoporose bei Frauen untersucht, die Träger des mutierten Alleles waren. Es wurde der Vermutung nachgegangen, ob sich durch diese Mutation ein reduziertes Risiko für Osteoporose ergab [79]. Hier zeigte sich für Patientinnen mit der homozygoten Variante eine bessere Belastbarkeit gegenüber Krafteinwirkung durch Biegung. Der zweite SNP, rs361525, zeigte in ersten Studien ein erhöhtes Risiko für Brustkrebs bei Frauen, wenn diese die mutierte Variante des SNP im Genom trugen. Allerdings stammten diese Daten aus einer Erstuntersuchung und müssen noch auf ihre Reproduzierbarkeit hin geprüft werden [46]. Für die Transplantationsimmunologie wiederum bedeutend sind beide SNP aufgrund des nachgewiesenen Einflusses beider Mutationen auf das Auftreten einer GvHD. So belegten mehrere Studien, das zum einen rs361525 Auswirkungen auf das Auftreten einer chronischen GvHD hat, während sich derselbe Polymorphismus bei einer akuten GvHD nicht bemerkbar machte [117]. Zu ähnlichen Ergebnissen kamen auch Wang et al. in ihrer Studie, nach der ebenfalls das Auftreten des Genotyps G/A in diesem SNP mit einer erhöhten Inzidenz von GvHD assoziiert war. Rs1800629 scheint gemäß der Studienlage Einflüsse auf den Erfolg von Nierentransplantationen zu nehmen. Als Ursache hierfür wurden unterschiedlich hohe TNFa-Serumspiegel vermutet, verursacht durch die Mutation in rs1800629 [48,83,86,90]. Ähnliche Ergebnisse zeigten sich auch bei hämatopoetischen Stammzellspenden, bei denen der Einfluss dieses SNP ebenfalls nachgewiesen wurde [13,87]

1.5 Bedeutung der Zytokine für die Transplantationsimmunologie

Das vorausgegangene Kapitel demonstriert die Vielfalt der Fragestellungen, welche mit den von uns untersuchten SNP verknüpft sind. Gerade in der Transplantationsimmunologie besteht ein besonderes Interesse an deren Auswirkungen. Die untersuchten Zytokine haben Auswirkungen auf eine große Anzahl von immunologischen Prozessen und sind daher auch mit dem Verlauf und der Entstehung von immunologischen Erkrankungen assoziiert [38]. Durch die Entwicklung der molekularbiologischen Techniken konnten während der vergangenen Jahrzehnte eine Vielzahl von polymorphen Stellen identifiziert werden, die in Bindungsstellen von Transkriptionsfaktoren der Zytokingene

Einleitung

liegen und so unterschiedlichen Einfluss auf die Produktion selbiger nehmen [59]. Aus diesem Grund sind, je nach genetischer Anlage, einige Individuen anfälliger für inflammatorische Prozesse und die Entwicklung einer Immunantwort nach Transplantationen. So ziehen erhöhte TNFa und erniedrigte IL10 Werte eine höhere Rate an Abstoßungsreaktionen nach Herztransplantation nach sich, während hohe Werten für TNFa und IL10 bei Nierentransplantierten zu schlechteren Prognosen führten [59]. Ähnlich verhielt es sich auch beim Outcome nach Knochenmarktransplantationen. Hier zeigen die polymorphen Stellen innerhalb der Zytokingene ebenfalls Auswirkungen auf die Prognose und Entwicklung von Immunreaktionen nach Knochenmarkspenden. So wurden Polymorphismen in den Genen für IL6, IL10, IFNg und TNFa hinreichend untersucht und deren Einfluss belegt [3,12,25,59,72].

Dies schließ Graft-versus-Host-Reaktionen nach allogenetischen Knochenmarktransplantationen mit ein. Hier kommt es initial zu einer inflammatorischen Antwort und es werden IL1 und TNFa freigesetzt, die zu einer Gewebeschädigung führen. In einer zweiten Phase werden alloreaktive T-Zellen des Spenderknochenmarks aktiviert [67,78]. Erhöhte Spiegel von TNFa konnten mit schweren Komplikationen und erhöhter Mortalität nach Knochenmarktransplantation in Beziehung gebracht werden [78]. In einer klinischen Phase II Studie konnte durch die Gabe von monoklonalen TNFa-Antikörpern das Auftreten und die Schwere einer GvHD verzögert werden [53,78]. Dies ließ die Vermutung zu, dass die Produktion von TNFa beim Empfänger einer Knochenmarkspende einen Einfluss auf die Entwicklung einer GvHD hat [78]. Ein niedriger Spiegel von IL10, als Inhibitor von TNFa [66,78,93], führt zu einem erhöhten Auftreten von akuten und chronischen GvHD [78]. Die Prädispositionen von Spender sowie Empfänger führen so zu Unterschieden im Outcome der Patienten nach Transplantationen, womit deutlich wird, wie hoch der Einfluss von Zytokinen ist und welche Bedeutung diese in der Transplantationsimmunologie haben.

1.6 Fragestellung

Die Fragestellung, die dieser Arbeit zu Grunde lag, ist die Schaffung der Möglichkeit zur Etablierung einer Luminex xMAP® Carboxybead basierenden Anwendung, die es ermöglicht 22 SNP in den beschriebenen Zytokinen zu detektieren. Diese Anwendung soll in unserem Labor die bisher verwendete SSP Technologie ablösen, um einen höheren Probendurchsatz zu ermöglichen und damit schneller Typisierung bei wissenschaftlichen Fragestellungen, wie den Einfluss auf Immunreaktionen und GvHD bei Knochenmarks- und Stammzelltransplantationen, zu gewährleisten.

1.7 Entwicklungsansatz

Die Entwicklungsarbeit beschränkte sich im Wesentlichen auf drei Kernpunkte. Der erste Punkt der Entwicklung umfasste zunächst die Notwendigkeit der Etablierung von PCR-Amplifikaten für alle Gene, welche die für uns interessanten Polymorphismen tragen. Dies musste geschehen, um eine ausreichend große Menge spezifischer Amplifikate zur Verfügung stehen zu haben, um am Ende die Typisierung der SNP vornehmen zu können. Dabei war zu beachten, dass alle Amplifikate unter gleichen Bedingungen entstanden, um die Möglichkeit zu haben, diese in insgesamt drei Gruppen einteilen und im Rahmen von drei MPCR, mit jeweils sechs beziehungsweise sieben Amplifikaten, amplifizieren zu können. Der Amplifikationserfolg dieser MPCR wurde durch Sequenzierung gesichert. Zum einen wurde damit sichergestellt, dass alle der sechs beziehungsweise sieben MPCR-Produkte wie erwartet amplifiziert wurden und zum zweiten, dass es sich bei den MPCR-Produkten um korrekte, die Polymorphismen tragende Genabschnitte handelte.

Der zweite und dritte Entwicklungsschritt befassten sich mit der Kopplungsreaktion der Captureoligonukleotide an die xMAP® Carboxybeads, sowie der eigentlichen Messung der Proben mit einem Luminex 100 IS Gerät (Fa. Luminex). Die Messung wurde in drei Teilmessungen unterteilt, die sich an den drei MPCR orientierten. Kopplungsreaktion und Messung mussten speziell für unsere Ansprüche an den Test optimiert werden. Anhand der Messung von 52 Proben, die bereits mit dem Zytokine CTS-PCR-SSP Tray Kit im Rahmen einer weiteren, in unserer Abteilung durchgeführten Studie typisiert wurden, konnte die neue Methode validiert werden. Die Kontrolle von Unstimmigkeiten zwischen Referenzmethode und der neuen Luminexmethode wurden durch Sequenzierung der betroffenen Proben überprüft.

2. Material und Methoden

2.1 Material

2.1.1 Untersuchungsmaterial

Zur Entwicklung der MPCR, welche als Grundlage der späteren Typisierung mit Luminex diente, wurden ausschließlich Proben meiner eigenen DNA verwendet (E1). Aus dem durch Venenpunktion gewonnenem Vollblut wurde die DNA isoliert. Zur Etablierung der Hybridisierungsreaktion wurden sechs DNA Proben verwendet (K1-K6). Bei diesen Probenmaterial handelte es sich um DNA von Mitarbeitern der Abteilung Transplantationsimmunologie des IKT Ulm sowie der Abteilung Transplantationsimmunologie der Universität Heidelberg. Diese DNA-Proben wurden freiwillig von den Probanden zu Forschungszwecken abgegeben. Für die endgültige Validierung der neuen Anwendung wurden die Proben K1 bis K6, sowie 46 Proben (bezeichnet als V01-V46) verwendet. Letztere DNA-Proben stammten aus einer zeitgleich in unserem Institut durchgeführten Studie, die den Einfluss von Zytokinpolymorphismen auf eine Graft-versus-Host Reaktion (GvHD) untersuchte. Diese untersuchte die DNA-Proben aus einem Probenpanel, welches Patienten beinhaltete, die an Erkrankungen des hämatopoetischen Systems litten, und den zugehörigen Spendern, deren Knochenmark den Patienten transplantiert wurde. Die Vortypisierung dieser Proben erfolgte mittels des Zytokine CTS-PCR-SSP Tray Kit (Universität Heidelberg) und ist unter Kapitel 2.2.6 beschrieben.

Da diese zeitgleich durchgeführte Studie die selben Polymorphismen untersuchte, wie der von uns neu entwickelte Test, konnten die von uns ermittelten Ergebnisse mit denen der Parallelstudie auf Übereinstimmung verglichen werden. Da diese DNA-Proben nur in geringer Menge vorlagen und einen nicht unerheblichen wissenschaftlichen Wert besaßen, wurde die gesamte DNA mit einem kommerziell erhältlichem Reagenziensystem so vermehrt, dass eine ausreichende Menge zur Verfügung stand und so gleichzeitig DNA-Material eingespart. Zur Vervielfältigung kam das Illustra GenomiPhi[™] V2 DNA Amplification Kit (Fa. GE Healthcare) zur Anwendung.

Tabelle 1 Übersicht der verwendeten DNA Proben						
Probenbezeichnung	Identität/Herkunft	Bemerkungen				
E1	Jens Putzbach	Genutzt zur Entwicklung der MPCR				
К1-К6	6 freiwillige Spender unter den Labormitarbeitern	Genutzt zur Entwicklung der Hybridisie- rungsreaktion und Vorvalidierung				
V01-V46	23 Erkrankte und 23 Kno- chenmarkspender einer Studienpopulation zu häma- topoetischen Erkrankungen	Genutzt zur Validierung Amplifikation mit GenomiPhi™ V2 zum Ausgleich geringer Probenmenge				
DNA Desoxyribonu MPCR Polymeraseke	ikleinsäure (D esoxyribo n ucleio ettenreaktion (M ultiplex P olyn	c a cid) nerase C hain R eaction)				

2.1.2 Konstruktion und Synthese von sequenzspezifischen PCR-Primern

Zur Bestimmung der umliegenden Gensequenzen der 22 von uns untersuchten Punktmutationen (rs1800587, rs16944, rs1143634, rs2234650, rs315952, rs2069762, rs2069763, rs2243248, rs2243250, rs2070874, rs1801275, rs1900797, rs1800795, rs1800896, rs1800871, rs1800872, rs3212227, rs2430561, rs1982073, rs1800471, rs1800629 und rs361525) in den Genen IL1a, IL1b, IL1R, IL1RN, IL2, IL4, IL4Ra, IL6, IL10, IL12b, IFNg, TNFa und TGFb wurde die Datenbank des National Center for Biotechnology (NCBI) genutzt [131]. Anhand dieser Sequenzen erfolgt die Planung für die PCR. Die Länge der PCR-Produkte sollte insgesamt 100 bp nicht unter-, sowie 350 bp nicht überschreiten, um später im Agarosegel noch gut auftrennbar und unterscheidbar zu sein. Eine weitere Bedingung, die an die PCR-Primer gestellt wurde, war die Schmelztemperatur der Primer, die zwischen 65,0 — 66,0 °C

liegen sollte. Diese war durch das von uns verwendete PCR-Programm vorgegeben. Die rechnerische Bestimmung der Schmelztemperatur übernahm das Programm Gene Fisher2 [133]. Dies stützte sich auf die Daten einer von SantaLucia veröffentlichen Arbeit, welche sich mit der Nearest-Neighbour-Thermodynamics Theorie für Oligonukleotide beschäftigte [97]. Alle für die PCR benötigten Primer wurden mittels des Programms GeneFisher der Universität Bielefeld (Technische Fakultät, Praktische Informatik) entworfen [133]. Anhand der eingegebenen DNA-Sequenzen und unter Berücksichtigung der gewählten Parameter erstellte Gene Fisher eine Liste von möglichen Primern, die den Bedingungen entsprachen. Die letzte von uns festgelegte Bedingung für die PCR-Primer war, dass die Primer, deren Amplifikate für die spätere Nachweisreaktion an Luminex xMAP® Carboxybeads hybridisiert werden sollten, am 5' Ende über eine Biotin Modifikation verfügten, über die der Farbstoff Streptavidin-R–Phycoerythrin an das Amplifikat binden konnte.

Durch diese Vorgaben ergab sich die Notwendigkeit insgesamt 19 PCR-Amplifikate zu realisieren, um alle 22 SNP durch die PCR zu erfassen. Der Grund hierfür lag in der Entfernung der einzelnen SNP innerhalb des Genoms. Die meisten SNP lagen soweit voneinander entfernt, dass sie nicht in einem gemeinsamen PCR-Amplifikat erfasst werden konnten, ohne die vorgegebene maximale Größe der PCR-Produkte zu überschreiten. Nur in den Fällen von IL10 (rs1800871 und rs1800872), TGFb (rs1982073 und rs1800471) und TNFa (rs1800629 und rs361525) konnten jeweils zwei SNP mittels einer PCR-Reaktion erfasst werden, wodurch sich die niedrigere Gesamtanzahl der PCR-Produkte im Vergleich zu den untersuchten SNP ergab. Für jedes der insgesamt 19 geplanten Amplifikate wurden jeweils mehrere forward und reverse Primer generiert. In der Regel wurden für jeden zu untersuchenden Genort drei forward und drei reverse Primer erstellt und dann durch die Fa. Thermo synthetisiert und geliefert. Diese wurden zur Etablierung in allen möglichen forward-reverse Kombinationen unter einheitlichen Bedingungen, wie unter Kapitel 2.2.4 beschrieben, amplifiziert. Die PCR-Ergebnisse wurden später in

Tabelle 2 Übersicht der verwendeten PCR-Primer							
Gen/ Genort	Primerbe- zeichnung	Sequenz		Schmelz- temp. °C	Produkt- länge	s/ as	Biotin Modifik.
IL1a	IL1a_fw	AGG GGC ATG CCA TCA CAC C	CTA G	65,2088	271 hr	S	Х
	IL1a_rev	TGC GTA AAG CCT CAG CCA G	GAA G	65,6072	271 bp	as	
IL1b Lo1	IL1b_1_fw	AGC TCA TCT GGC ATT GAT C	TG GTT C	65,0516	242 has	S	Х
	IL1b_1_rev	ATG TGG GAC AAA GTG GAA	GAC ACA C	65,2970	242 bp	as	
IL1b Lo2	IL1b_2_fw	CCG TAT ATG CTC AGG TGT C	CT CCA	65,1321	1041	s	Х
	IL1b_2_rev	CGG AGC GTG CAG TTC AGT	GAT C	65,0041	184 bp	as	
IL1R	IL1R_fw	TAG CGA AGT GGA GGG GGA	aag c	65,0930	4 4 7 1	s	Х
	IL1R_rev	ACA CCC AGG GGA ATG GAA	GGA TG	65,3851	147 bp	as	
IL1RN	IL1RN_fw	TTC CTA GGC CTC AGC TCT C	AC CT	65,3813	222.1	s	Х
	IL1RN_rev	ACG CCT TCG TCA GGC ATA T	TG GT	65,5991	222 бр	as	
IL2 Lo1	IL2_1_fw	CTT GCT CTT GTC CAC CAC A	AT ATG CT	65,8517	224	s	Х
	IL2_1_rev	CCC CCA AAG ACT GAC TGA A	TG GAT G	65,4704	221 bp	as	
IL2 Lo2	IL2_2_fw	ACA AAC AGT GCA CCT ACT T	CA AGT TCT	65,3630	200	S	Х
	IL2_2_rev	CCT GGT GAG TTT GGG ATT O	CTT GTA ATT C	65,2755	209 вр	as	
IL4 Lo1	IL4_1_fw	AAA ACA AGC AGG GCG GGT (GGT	65,5348	101 ha	S	Х
	IL4_1_rev	CTA CCT CAG TCT CCC AAA G	CT CTG A	65,2047	181 pp	as	
IL4 Lo2	IL4_2_fw	GGG TAA GGA CCT TAT GGA	CCT GCT	65,1006	122 ha	S	Х
	IL4_2_rev	ggc aga ata aca ggc aga (CTC TCC TA	65,9596	133 DD	as	
IL4 Lo3	IL4_3_fw	TGA TTG GCC CCA AGT GAC T	ga ca	65,2053	220 ha	S	Х
	IL4_3_rev	AGT TGC CGG CAC ATG CTA G	GCA	65,3818	239 DP	as	
IL4Ra	IL4Ra_fw	AGC TCT CTG AGC CAA CCA C	TG TG	65,7313	216 hr	S	Х
	IL4Ra_rev	AGA AGG CCT TGT AAC CAG C	ст стс	65,7616	210 pp	as	
IL6 Lo1	IL6_1_fw	CGC GGT GGC AAA AAG GAG	TCA C	65,9700	104 hn	S	Х
	IL6_1_rev	ACT CCA TCG CAG CCC CCC A	A	65,8390	104 Dh	as	
IL6 Lo2	IL6_2_fw	GAC ATG CCA AAG TGC TGA G	STC ACT	65,1236	194 bn	S	Х
	IL6_2_rev	AGC GGG TGG GGC TGA TTG	GA	65,8390	104 Dh	as	
as bp C DNA fw G IL1a IL1b IL1R	antisense Sequenz entspricht dem nicht kodierenden komplementärer DNA Strang Basenpaare Cytosin Desoxyribonukleinsäure (Desoxyribonucleic acid) forward Guanin Interleukin-1 alpha Interleukin-1 beta Interleukin-1 Rezeptor		IL4Ra IL6 Lo rev s T X	Interleukin- 4 Rezeptor alpha Interleukin- 6 Locus reverse sense Sequenz entspricht dem kodierenden DNA Strang Thymin markiert den Primer, der am 5' Ende mit Biotin modifiziert wurde			
IL1RN IL2	Interleukin-1 Rezeptorantagonist Interleukin-2 Fortsetzung der Tabelle auf Se				eite 27		

shelle 2. Üheveleht der vorwandeten DCD. Drimer

e 26	e 2 Obersicht der	verwendete	en PCR-P	rimer		
Primerbe- zeichnung	Sequenz		Schmelz- temp. °C	Produkt- länge	s/ as	Biotin Modifik.
IL10_1_fw	TCC TCG CCG CAA CCC AAC	TG	65,5607	JEE hn	S	Х
IL10_1_rev	GTT GTA AGC TTC TGT GGC	TGG AGT C	65,8233	200 Dh	as	
IL10_2_fw	GTT GGC ACT GGT GTA CCC	TTG TAC	65,3612	315 hn	S	Х
IL10_2_rev	AAG TTC CCA AGC AGC CCT	TCC AT	65,5607	512 Dh	as	Х
IL12b_fw	GGC ATT CTC TTC CAG GTT	CTG ATC C	65,2768	240 hn	S	Х
IL12b_rev	GAA GGC CCA TGG CAA CTT	GAG AG	65,2828	249 DP	as	
IFNg_fw	TCG TTG CTC ACT GGG ATT	TTG GAA G	65,5799	274 hn	S	
IFNg_rev	GTT CCA AAC ATG TGC GAG	TGT GTG	65,0023	274 00	as	Х
TGFb_fw	TCG AGG CCC TCC TAC CTT	TTG C	65,0930	244 hn	S	Х
TGFb_rev	TCC GCT TCA CCA GCT CCA	TGT C	65,6072	244.00	as	Х
TNFa_fw	AGA CCA CAG ACC TGG TCC	CCA A	A 65,5608 260		S	Х
TNFa_rev	ACC CAT GAG CTC ATC TGG	AGG AAG	65,3675	205.00	as	
Adenosin antisense Sequenz entspricht dem nicht kodierenden komplementärer DNA Strang Basenpaare Cytosin Desoxyribonukleinsäure (Desoxyribonucleic acid) forward Interferon gamma Interleukin-10 Interleukin-12 beta		Lo rev s TGFb TNFa G	Locus reverse sense S kodierer Thymin Transfor beta Tumor I Guanin markiert Ende mi wurde	equenz en nden DNA rming g rov necrosis fa t den Prime it Biotin mo	tspric Stran vth f a ctor a er, de odifizi	ht dem g actor alpha er am 5` ert
	e 26 Primerbe- zeichnung IL10_1_fw IL10_1_rev IL10_2_fw IL10_2_fw IL12b_fw IL12b_fw IL12b_rev IFNg_fw IFNg_fw IFNg_rev TGFb_fw TGFb_rev TNFa_fw TNFa_rev Adenosin antisense dem nicht kompleme Basenpaar Cytosin Desoxyribd (Desoxyribd forward Interleukin Interleukin	Primerbe- zeichnungSequenzIL10_1_fwTCC TCG CCG CAA CCC AACIL10_1_revGTT GTA AGC TTC TGT GGCIL10_2_fwGTT GGC ACT GGT GTA CCCIL10_2_revAAG TTC CCA AGC AGC CCTIL12b_fwGGC ATT CTC TTC CAG GTTIL12b_revGAA GGC CCA TGG CAA CTIIFNg_fwTCG TTG CTC ACT GGG ATTIFNg_fwTCG TTG CTC ACT GGG ATTIFNg_revGTT CCA AAC ATG TGC GAGTGFb_fwTCG AGG CCC TCC TAC CTTTGFb_revTCC GCT TCA CCA GCT CCATNFa_fwAGA CCA CAG ACC TGG TCCAdenosin antisense Sequenz entspricht dem nicht kodierenden komplementärer DNA StrangBasenpaare CytosinCytosinDesoxyribonukleinsäure (Desoxyribonukleinsäure (Desoxyribonukleinsäure (Desoxyribonukleinsäure (Desoxyribonucleic acid) forwardInterleukin-10 Interleukin-12 beta	Primerbe- zeichnungSequenzIL10_1_fwTCC TCG CCG CAA CCC AAC TGIL10_1_revGTT GTA AGC TTC TGT GGC TGG AGT CIL10_2_fwGTT GGC ACT GGT GTA CCC TTG TACIL10_2_revAAG TTC CCA AGC AGC CCT TCC ATIL12b_fwGGC ATT CTC TTC CAG GTT CTG ATC CIL12b_revGAA GGC CCA TGG CAA CTT GAG AGIFNg_fwTCG TTG CTC ACT GGG ATT TTG GAA GIFNg_revGTT CCA AAC ATG TGC GAG TGT GTGTGFb_revTCC GCT TCA CCA GCT CCA TGT CTNFa_fwAGA CCA CAG ACC TGG TCC CCA ATNFa_revACC CAT GAG CTC ATC TGG AGG AAGAdenosinLo rev dem nicht kodierendenAdenosinLo rev dem nicht kodierendenAdenosinTGFb revBasenpaareT CytosinCytosinTGFb Desoxyribonukleinsäure (Desoxyribonucleic acid)Interferon gamma Interleukin-10X Interleukin-12 beta	Primerbe- zeichnungSequenzSchmelz- temp. °CIL10_1_fwTCC TCG CCG CAA CCC AAC TG65,5607IL10_1_revGTT GTA AGC TTC TGT GGC TGG AGT C65,8233IL10_2_fwGTT GGC ACT GGT GTA CCC TTG TAC65,3612IL10_2_revAAG TTC CCA AGC AGC CCT TCC AT65,5607IL12b_fwGGC ATT CTC TTC CAG GTT CTG ATC C65,2768IL12b_revGAA GGC CCA TGG CAA CTT GAG AG65,2828IFNg_fwTCG TTG CTC ACT GGG ATT TTG GAA G65,5799IFNg_fwTCG TTG CTC ACT GGG ATT TTG GAA G65,0023TGFb_fwTCG AGG CCC TCC TAC CTT TTG C65,6072TNFa_fwAGA CCA CAG ACC TGG TCC CCA A65,5608TNFa_fwAGA CCA CAG ACC TGG TCC CCA A65,5608TNFa_revACC CAT GAG CTC ATC TGG AGG AAG65,3675AdenosinLoLocus reverse dem nicht kodierendensantisense Sequenz entsprichtrev reverse dem nicht kodierendensBasenpaareT ThyminThymin TransfoDesoxyribonucleic acid)TNFa GTumor I GuaninInterleukin-10X Ende mi wurdeMarkiert Ende mi wurde	Primerbe- zeichnungSequenzSchmelz- temp. °CProdukt- längeIL10_1_fwTCC TCG CCG CAA CCC AAC TG65,5607255 bpIL10_1_revGTT GTA AGC TTC TGT GGC TGG AGT C65,3612 65,8233315 bpIL10_2_fwGTT GCC AT GGT GTA CCC TTG TAC65,5607249 bpIL12b_fwGGC ATT CTC TTC CAG GTT CTG AGG65,2828249 bpIL12b_revGAA GGC CCA TGG CAA CTT GAA G65,5799 65,0023274 bpIFNg_fwTCG TTG CTC ACT GGG ATT TTG GAA G65,0023274 bpIFNg_revGTT CCA AAC ATG TGC GAG TGT GG65,0023244 bpIGFb_fwTCG AGG CCC TCC TAC CTT GTG C65,6072244 bpTGFb_fwTCG AGG CCC TCG TAC CTG TG C65,6072244 bpTGFb_revTCC GCT TCA CCA GGT CCC CA A65,5608 65,6072269 bpTNFa_fwAGA CCA CAG ACC TGG TCC CCA A65,5608 65,3675269 bpAdenosinLoLocus reversesense Sequenz ent kodierendensense Sequenz ent kodierenden DNABasenpaareTThymin Transforming grow betaTumor necrosis fa GuaninOesoxyribonukleinsäure Interferon gamma Interleukin-10Xmarkiert den Prime Ende mit Biotin mo wurde	Primerbe- zeichnungSequenzSchmelz- temp. °CProdukt- länge\$/ asIL10_1_fwTCC TCG CCG CAA CCC AAC TG65,5607255 bpsIL10_1_revGTT GTA AGC TTC TGT GGC TGG AGT C65,8233315 bpsIL10_2_fwGTT GGC ACT GGT GTA CCC TTG TAC65,5607asIL10_1_revGGC ATT CTC TTC CAG GT CT CA T65,5607asIL10_2_revAAG TTC CCA AGC AGC CCT TCC AT65,5607asIL12b_fwGGC ATT CTC TTC CAG GTT CTG ATC C65,2828asIL12b_revGAA GGC CCA TGG CAA CTT GAG AG65,2828asIFNg_fwTCG TTG CTC ACT GGG ATT TTG GAA G65,0023274 bpIFNg_revGTT CCA AAC ATG TGC GAG TGT GTG65,0023asTGFb_fwTCG AGG CCC TCC TAC CTT TTG C65,0023244 bpTGFb_revTCC GAT GCA CAG ACC TGG TCC CCA A65,5608asTNFa_revACC CAT GAG CTC ATC TGG AGG AAG65,5608269 bpasTNFa_revACC CAT GAG CTC ATC TGG AGG AAG65,3675asAdenosinLoLocusreverseasAdenosinLoLocusreverseasAdenosinCytosinTGFbTransforming growth fa betaDesoxyribonukleinsäureGGuaninTumor necrosis factor a Guanin(DesoxyribonukleinsäureGGuaninmarkiert den Primer, de Ende mit Biotin modifiziInterleukin-12betaTumor necrosis factor a GuaninGuanin

einer Agarosegelelektrophorese (siehe Kapitel 2.2.7) beurteilt. Im Anschluss wählten wir die als am besten geeignet erscheinende Primerkombination aus. Die Auswahlkriterien dabei waren einerseits deutlich abgrenzbare DNA-Banden unter UV-Licht, sowie andererseits das Fehlen von unspezifischen PCR-Produkten und Dimeren, die nicht der erwarteten PCR-Produktlänge entsprachen. Tabelle 2 auf den Seiten 26 und 27 zeigt die ausgewählten und letztlich genutzten Primerkombinationen mit deren Schmelztemperaturen und der Produktlänge für jede der 19 PCR-Reaktionen. Darüber hinaus sind die Primer angegeben, die für die spätere Nachweisreaktion mit den Luminex xMAP® Carboxybeads am 5' Ende mit Biotin modifiziert synthetisiert wurden.

2.1.3. Konstruktion und Synthese der Captureoligonukleotide

Die Captureoligonukleotide wurden als DNA-Sonden für die nachzuweisenden SNP benötigt. Für den Nachweis eines SNP wurden jeweils zwei Captureoligonukleotide benötigt, die jeweils auf eine Sorte xMAP® Carboxybeads gekoppelt wurden. Es wurde für jeden SNP ein Oligonukleotid mit der komplementären DNA-Sequenz des Wildtyps und eines mit der komplementären DNA-Sequenz der Mutation konstruiert. Diese sollten später sequenzspezifisch an die zu untersuchenden PCR-Amplifikate hybridisieren und somit die Auswertung ermöglichen. Die erste Konstruktionsbedingung aller Oligonukleotide war, dass sie eine am 5' Ende des Captureoligonukleotides platzierte Modifikation, bestehend aus einem Aminolink mit einem C12-Spacer, besaßen. Der Aminolink wurde zum Koppeln an die Oberfläche der xMAP® Carboxybeads benötigt. Der C12-Spacer gewährleistete eine entsprechende Entfernung zwischen der bindenden DNA-Sequenz und der Beadoberfläche, die PCR-Amplifikate ausreichend Platz zur Bindung die damit an Captureoligonukleotide hatten. Die zweite Konstruktionsbedingung war die Anzahl der Basen der Captureoligonukleotide. Sie sollten eine Länge von 22 bp aufweisen, um genügend Seguenzspezifität zu gewährleisten. Einzige Ausnahme bildet das Captureoligonukleotid IL1a Cap C, welches nur 21 bp lang war. Dies was nur der Tatsache geschuldet, dass dieses Captureoligonukleotid das erstsynthetisierte war. Die Position des SNP innerhalb des Captureoligonukleotids sollte dabei regelhaft an Position zwölf, gezählt vom 5'-Ende, liegen. Abweichungen davon zeigten das Captureoligonukleotid IL1a_Cap_C und die Captureoligonukleotide IL1b_1_Cap_T, IL1b_1_Cap_C, IL1R Cap T, IL1R_Cap_C, IL10_2_Cap_T, IL10_2_Cap_C, IFNg_Cap_T, IFNg Cap A, TGFb_2_Cap_C und TGFb_2_Cap_G. Im Falle von IFNg liegt die polymorphe Stelle asymmetrisch in Richtung des 3'-Ende verschoben, da sich der Polymorphismus in einem Short-Tandem-Repeat befindet und durch diese
Tabelle 3 Übersicht der verwendeten Captureoligonukleotide				
Zytokin/SNP	Bezeichnung Oligo- nukleotid	Sequenz	sense/ antisense	
IL1a –899	IL1a_Cap_C	GCC TTC AAT GGT GTT GCC TGG	antisense	
rs1800587	IL1a_Cap_T	AGC CTT CAA TGA TGT TGC CTG	G antisense	
IL1b -511	IL1b_1_Cap_T	GCT GTT CTC TGC CTC AGG AGC	T antisense	
rs16944	IL1b_1_Cap_C	GCT GTT CTC TGC CTC GGG AGC	T antisense	
IL1b +3962	IL1b_2_Cap_T	TCC CAT GTG TCA AAG AAG ATA	G antisense	
rs1143634	IL1b_2_Cap_C	TCC CAT GTG TCG AAG AAG ATA	G antisense	
IL1R +1970	IL1R_Cap_T	GTC GAG TCT GCA ACT CCC TCG	G antisense	
rs2234650	IL1R_Cap_C	GTC GAG TCT GCA GCT CCC TCG	G antisense	
IL1RN +111	00 IL1RN_Cap_T	GTG GTG GGG CCA CTG TCT GAG	C antisense	
rs315952	IL1RN_Cap_C	GTG GTG GGG CCG CTG TCT GAG	C antisense	
IL2 -330	IL2_1_Cap_T	TTT TCT TTG TCA TAA AAC TAC A	antisense	
rs2069762	IL2_1_Cap_G	TTT TCT TTG TCC TAA AAC TAC A	antisense	
IL2 +166	IL2_2_Cap_T	TGT AAA TCC AGA AGT AAA TGC	T antisense	
rs2069763	IL2_2_Cap_G	TGT AAA TCC AGC AGT AAA TGC	T antisense	
IL4 -1098	IL4_1_Cap_T	AAA AGA GCT ACA GTC TTA CCA A	A antisense	
rs2243248	IL4_1_Cap_G	AAA AGA GCT ACC GTC TTA CCA A	A antisense	
IL4 +166	IL4_2_Cap_T	CAG CAC TGG GGA ACA ATG TTC	T antisense	
rs2243250	IL4_2_Cap_C	CAG CAC TGG GGG ACA ATG TTC	T antisense	
IL4 -590	IL4_3_Cap_T	GAC AAT GTG AGA CAA TTA GTT	T antisense	
rs2070874	IL4_3_Cap_C	GAC AAT GTG AGG CAA TTA GTT	T antisense	
IL4Ra +1902	2 IL4R_Cap_A	GTA CAA ACT CCT GAT AGC CAC T	T antisense	
rs1801275	IL4R_Cap_G	GTA CAA ACT CCC GAT AGC CAC	T antisense	
IL6 nt565	IL6_1_Cap_A	CTG CCT GGC CAT CCT CAA ATT 1	T antisense	
rs1800797	IL6_1_Cap_G	CTG CCT GGC CAC CCT CAA ATT	T antisense	
IL6 -174	IL6_2_Cap_C	TCC TTT AGC ATG GCA AGA CAC	A antisense	
rs1800795	IL6_2_Cap_G	TCC TTT AGC ATC GCA AGA CAC	A antisense	
IL10 -1082	IL10_1_Cap_A	CCT ACT TCC CCT TCC CAA AGA A	antisense	
rs1800896	IL10_1_Cap_G	CCT ACT TCC CCC TCC CAA AGA A	A antisense	
A A antisense S k bp E C C DNA C G G IL 1a I IL1b I IL1R I Rot markiert	Adenosin Sequenz entspricht dem nic codierenden komplementäre DNA Strang Basenpaare Cytosin Desoxyribonukleinsäure Desoxyribonucleic acid) Guanin Enterleukin Enterleukin Enterleukin-1 beta Enterleukin-1 Rezeptor die Stelle des SNP inner	IL1RN Interleukin ht IL2 Interleukin er IL4 Interleukin IL4Ra Interleukin IL6 Interleukin IL10 Interleukin sense Sequenz e kodierende SNP Punktmuta (Single Nu T Thymin	n- 1 Rezeptorantagonist n- 2 n- 4 n- 4 Rezeptor alpha n- 6 n- 10 entspricht dem en DNA Strang ation ucleotide P olymorphism)	
Fortsetzung	der Tabelle auf Seite 3	naib der Captureoligonukleotidseq 30	uenz	

VOIT Selle 2	5									
Zytokin/SN	Bezeich	nung Oligo- ukleotid				Sec	quenz			sense/ antisense
IL10 -819	IL10_2_	_Cap_T	GGC	ACA C	GAG	AT <mark>A</mark> ⁻	ΓΤΑ (CAT CAC	С	antisense
rs1800871	IL10_2_	_Cap_C	GGC	ACA C	GAG	AT <mark>G</mark> ⁻	TTA (CAT CAC	С	antisense
IL10 -592	IL10_3_	_Cap_A	CCC	CGC C	CTG	ΤΑС ٦	GT A	agg aag	С	sense
rs1800872	IL10_3_	_Cap_C	CCC	CGC C	CTG	T <mark>C</mark> C T	GT A	Agg aag	С	sense
IL12b -118	3 IL12b_C	Cap_A	CAT	TTA G	GCA 1	ГС <mark>Т</mark> А	AC T	AT ACA	4	antisense
rs3212227	IL12b_C	Cap_C	CAT	TTA G	GCA 1	ГС <mark>G</mark> А	AC T	TAT ACA	A	antisense
IFNg UTR5	544 IFNg_Ca	ар_Т	ACA	ACA C	CAA A	AAT C	aa a	TC TCA (2	sense
rs2430561	IFNg_Ca	ар_А	ACA	ACA C	CAA A	AAT C	aa a		С	sense
TGFb Codon	10 TGFb_1	_Cap_T	GTA	GCA C	GCA	GCA (GCA	GCA GCC	G	antisense
rs1982073	TGFb_1	_Cap_C	GTA	GCA C	GCA	GC <mark>G</mark> (GCA	GCA GCC	G	antisense
TGFb Codon	25 TGFb_2	_Cap_C	ACG	CCT G	GC	C <mark>C</mark> G (CCG	GCC GCC	G	sense
rs1800471	TGFb_2	_Cap_G	ACG	ССТ С	GGC	C <mark>G</mark> G (CCG	GCC GCC	G G	sense
TNFa -308	TNFa_1	_Cap_A	GAA	CCC C	GT (CAT C	SCC CCT	С	antisense
rs1800629	TNFa_1	_Cap_G	GAA	CCC C	GT (CC <mark>C</mark> (CAT C	SCC CCT	С	antisense
TNFa -238	TNFa_2	_Cap_A	CCT	ссс т	GC -	TCT G	AT T	CC GAG	G	antisense
rs361525	TNFa_2	_Cap_G	CCT	ссс т	GC -	FC <mark>C</mark> G	GAT T	CC GAG	G	antisense
A antisense bp C DNA G IFNg IL 10	Adenosin Sequenz ents Kodierenden H DNA Strang Basenpaare Cytosin Desoxyribonu (Desoxyribonu (Desoxyribonu Guanin Interferon ga Interleukin-10	oricht dem nic complementär kleinsäure ucleic a cid) imma 0	ht er		IL: se SN T TG TN	12b nse IP Fb Fa		Interleuk Sequenz e kodierend Punktmut (Singlenu Thymin Transforn Tumor Ne	in- 12 b eta entspricht o len DNA St ation cleotide P o ning G rowt ecrosis F ac	dem rang blymorphism) h F actor b eta tor a lpha

Fortsetzung Tabelle 3 Übersicht der verwendeten Captureoligonukleotide von Seite 29

Rot markiert die Stelle des SNP innerhalb der Captureoligonukleotidsequenz

verschobene Position die Bindungsspezifität erhöht werden sollte. In den Fällen, in denen zwei SNP innerhalb eines PCR-Produktes nachgewiesen werden sollten, erfolgte der Nachweis für das eine SNP auf dem kodierenden Strang, die des zweiten SNP auf dem komplementären Strang, um eine gegenseitige Behinderung der Captureoligonukleotide zu verhindern. Alle Captureoligonukleotide wurden von der Fa. Metabion München synthetisiert. Sequenzen, Lokalisation des SNP innerhalb der Captureoligonukleotide sind in Tbl. 3 auf dieser und der vorangehenden Seite abgebildet.

2.1.4 Chemikalien

In Tabelle 4 sind alle Chemikalien verzeichnet, die bei der Entwicklung und der Durchführung aller Arbeitsschritte benötigt wurden. Abgebildet sind die genaue Bezeichnung und die Firma, über welche die Reagenzien bezogen wurden.

Tabelle 4 Verw	rendete Chemikalien	
Bezeichnung	Chemisches Zeichen/Substanz (Summenformel)	Firma
Ammoniumsulfat	(NH ₄) ₂ SO ₄	Sigma, Steinheim
Borsäure	H ₃ BO ₃	Sigma, Steinheim
Cresolrot	o-Cresolsulfonphthalein ($C_{21}H_{18}O_5S$)	Sigma, Steinheim
dNTP Set 100 mMol/l Desoxyribonuk- leosidtriphosphat	dATP, dTTP. dCTP und dGTP (Desoxyadenosintriphosphat, Desoxythymi- dintriphosphat, Desoxycytidintriphosphat, Desoxy- guanosintriphosphat)	Sigma, Steinheim
EDC	1-Ethyl-3-(3-dimethylaminopropyl)carbodiimid ($C_8H_{17}N_3$)	Pierce Biotechnolo- gie, Rockford USA
EDTA Triplex III	Ethylendiamintetraessigsäure Dinatriumsalz- Dihydrat (C ₁₀ H ₁₄ N ₂ Na ₂ O ₈ * 2 H ₂ O)	Merck, Darmstadt
Ethanol 96 % und 70 %	C₂H₅OH	Sigma, Steinheim
Ethidiumbromid	$C_{21}H_{20}BrN_3$	Fisher scientific, Schwerte
Glycerin	1,2,3-Propantriol (C ₃ H ₈ O ₃)	Sigma, Steinheim
HiDi-Formamid	CH₃NO	Applied Biosystem, Foster City USA
LE Agarose	Agarose	Biozym, Hamburg
LiChromosolv/ Chromatographie- wasser	H ₂ O	Merck, Darmstadt
Magnesiumchlorid	MgCl ₂	Merck, Darmstadt
MES	2-Morpholinoethansulfonsäure ($C_6H_{13}NO_4S$)	Sigma, Steinheim
Natriumacetat	CH₃COONa	Sigma, Steinheim
Natriumhydroxid	NaOH-Pellets	Sigma, Steinheim
Salzsäure 37%	HCI	Sigma, Steinheim
Sarkosyl	Natrium-N-lauroylsarkosinat (C ₁₅ H ₂₈ NO ₃ Na)	Sigma, Steinheim
Fortsetzuna der T	abelle auf Seite 32	

Fortsetzung der von Seite 31	Tabelle 4 Verwendete Chemikalien	
Bezeichnung	Chemisches Zeichen/Substanz (Summenformel)	Firma
SDS 10%	Natriumdodecylsulfat (C ₁₂ H ₂₅ NaO ₄ S)	Sigma, Steinheim
Streptavidin 1mg/ml	Streptavidin-R-phycoerythrin Lösung	Molecular Probes, Eugene USA
TMAC 5 mol/l	Tetramethylammoniumchlorid (C ₄ H ₁₂ ClN)	Sigma, Steinheim
Tris	2-Amino-2-(hydroxymethyl)-propan-1,3-diol (C ₄ H ₁₁ NO ₃)	Merck, Darmstadt
Tris EDTA 100x Concentrate pH 8,0	1 mol/l 2-Amino-2-(hydroxymethyl)-propan-1,3-diol - HCl, pH 8,0 / 0.1 mol/l Ethylendiamintetraessig- säure	Sigma, Steinheim
Tris HCl 1M pH 8,0	2-Amino-2-(hydroxymethyl)-propan-1,3-diol - HCl, pH 8,0	Sigma, Steinheim
Tween 20	Poly(oxy-1,2-ethandiyl)-monododekansäure- sorbitylester ($C_{18}H_{34}O_6$)	Sigma, Steinheim
Ultra Pure EDTA 0,5 M	Ethylendiamintetraessigsäure ($C_{10}H_{16}N_2O_8$)	Invitrogen, Karlsruhe

2.1.5 Puffer und Gebrauchslösungen

Für das Herstellen der Puffer und Gebrauchslösungen wurden verschiedene Glasmesskolben, eine Accu Jet Pro Pipette (Fa. Brand) mit entsprechenden Glasspitzen, sowie die Eppendorf Research Mikropipetten 100 µl und 1000 µl (Fa. Eppendorf) verwendet. Feste Substanzen wurden mit der Navigator Waage (Fa. OHAUS) abgewogen.

2.1.5.1 PCR-Reaktionspuffer

Der PCR-Reaktionspuffer basiert auf einem in unserem Institut etablierten Mischungsverhältnis und wurde für alle PCR und MPCR verwendet. Der Reaktionspuffer besteht aus 10x Sulfatpuffer, 20 nmol/l dNTP Lösung, 0,1 mol/l MgCl₂ Lösung und einem 50% Glycerin-Farbstoffgemisch.

Tabelle 5 Lösungen	für PCR-Reaktior	nspuffer	
Lösung	Re	agenzien	Masse/Volumen
10x Sulfatpuffer			500 ml
	Tris		40,568 g
	Ammonium-Su	ulfat	10,960 g
	Tween 20		0,50 ml
	37% HCI Lösu	ing	5,00 ml
	Chromatograp	hiewasser	494,50 ml
0,1 mol/l MgCL ₂ Lösung			1000 ml
	MgCl ₂		20,330 g
	Chromatograp	hiewasser	1000,00 ml
20 mM dNTP Lösung			20 ml
	dNTPs-Set (je dCTP, dGTP u	weils 1ml dATP, nd dTTP)	4,00 ml
	Chromatograp	hiewasser	16,00 ml
Cresolrot-Stammlösung			120 ml
	Cresolrot		1,200 g
	Chromatograp	hiewasser	120,00 ml
50% Glycerin-Farbstoff-			500 ml
lösung	Glycerin		315,00 g
	Cresolrot-Stan	nmlösung	55,00 ml
	Chromatograp	hiewasser	195,00 ml
PCR dNTP dATP dCTP dGTP dTTP Tris Tween 20	Polymerasekettenreak Desoxynukleosidtriph Desoxyadenosintriphosp Desoxycytidintriphosp Desoxyguanosintripho Desoxythymidintripho 2-Amino-2-(hydroxym Poly(oxy-1,2-ethandiy	ktion (P olymerase C hai losphat osphat ohat osphat lethyl)-propan-1,3-diol l)-monododekansäure-	in R eaction) (C4H11NO3) -sorbitylester (C18H34O6)
Tabelle 6 PCR-Reak	tionspuffer		
Reagenz	vien	Vo	lumen
10x Sulfatpuffer			37,70 ml
0.1 M MaCl ₂ Lösuna			18,90 ml
20 mM dNTP Lösung			5,70 ml
50% Glycerin-Farbstoffle	ösung		37,70 ml
Gesamtvolumen:			100 ml
PCR dNTP	Polymerasekettenreak Desoxy n ukleosid t ri p h	ction (P olymerase C ha hosphat	in R eaction)

Die Zusammensetzung de Grundlösungen geht aus Tabelle 5 auf Seite 33 hervor, während Tabelle 6 auf Seite 33 das Mischungsverhältnis der Grundlösungen im letztlich verwendeten PCR-Reaktionspuffer wiedergibt. Der PCR-Reaktionspuffer wurde bei –20 °C gelagert.

2.1.5.2 Boratpuffer für die Gelelektrophorese

Für das Gießen von Agarosegelen und das Befüllen der Elektrophoresekammer wurde 1x Boratpuffer benötigt, der durch verdünnen von 10x Boratpuffer hergestellt wurde. Die Zusammensetzung beider Puffer sind in den Tabellen 7 und 8 auf dieser Seite folgend zu finden.

Tabelle 7 10x Boratpuffer f Gelelektrophorese				
Reagenzien	Volumen			
Tris	544,6 g			
Borsäure	278,0 g			
EDTA Triplex III	46,52 g			
destilliertes Wasser	5000 ml			
Gesamtvolumen:	5000 ml			
Tris2-Amino-2-(hydroxyrEDTAEthylendiamintetraa	nethyl)-propan-1,3-diol (C ₄ H ₁₁ NO ₃) cetat			

Tabelle 8 1x Boratpuffer f f i				
Reagenzien	Volumen			
10x Boratpuffer	250 ml			
Destilliertes Wasser	2250ml			
Gesamtvolumen	2500 ml			

2.1.5.3 Pufferlösungen für die Beadkopplung

Für die Kopplung der C12-Aminolink modifizierten Captureoligonukleotide an die xMAP® Carboxybeads von Luminex wurde zunächst ein Hybridisierungspuffer benötigt. Für das Aufreinigen nach der Hybridisierung setzten wir zwei verschiedene Waschpuffer ein. Die fertigen Beads wurden in einem Lagerpuffer resuspendiert. Die Zusammensetzung der Puffer sind in Tabelle 9 ersichtlich [132].

Tabelle 9 Gebrauchslösungen für Beadkopplung				
Lösung		Reagenzien	Masse/Volumen	
0,1 M MES	pH 4,5 Kopplung	js-Puffer	250 ml	
		MES	4,880 g	
		5 mol/l NaOH Lösung	5 Tropfen	
		Chromatographiewasser	250,00 ml	
0,02% Twe	en Waschpuffer I	[250 ml	
		Tween 20 Lösung	50,00 µl	
		Chromatographiewasser	250,00 ml	
0,1% SDS \	Naschpuffer II		250 ml	
		SDS 10% Lösung	2,50 ml	
		Chromatographiewasser	247,50 ml	
TE pH 8,0	Lagerpuffer		250 ml	
		Tris EDTA Puffer pH 8,0 Lösung	2,5 ml	
		Chromatographiewasser	47,50 ml	
MES Tween 20 SDS Tris EDTA NaOH TE	2-Mor Poly(d Natriu 2-Am Ethyle Natriu Tris-E	rpholinoethansulfonsäure (C ₆ H ₁₃ R pxy-1,2-ethandiyl)-monododekar umdodecylsulfat (C ₁₂ H ₂₅ NaO ₄ S) ino-2-(hydroxymethyl)-propan-1, en d iaminte t ra a cetat umhydroxyd EDTA	NO ₄ S) Isäure-sorbitylester (C ₁₈ H ₃₄ O ₆) ,3-diol (C ₄ H ₁₁ NO ₃)	

2.1.5.4 Pufferlösung für die Hybridisierungsreaktion

Für die Hybridisierung der PCR-Produkte mit den Beads und die anschließende Analyse wurden 1,5x TMAC Hybridisierungspuffer und 1,0x TMAC Analysepuffer verwendet. Für die Verdünnung der PCR-Produkte wurde ein Probenpuffer genutzt. Alle Puffer in ihrer Zusammensetzung sind in Tabelle 10 zu finden [132].

Tabelle 10 Gebrauchslösungen für Hybridisierungsreaktion				
Lösung	Reagenzien	Masse/Volumen		
20% Sarkosyl Lösung		250 ml		
	Sarkosyl	50,0 g		
	Chromatographiewasser	250 ml		
1,5x TMAC Hybridisierung	spuffer	250 ml		
	5 mol/l TMAC Lösung	225,00 ml		
	20% Sarkosyl Lösung	1,88 ml		
	1 mol/l Tris HCl pH 8,0 Lösung	18,75 ml		
	0,5 mol/l EDTA pH 8,0 Lösung	3,0 ml		
	Chromatographiewasser	1,37 ml		
1,0x TMAC Analysepuffer		250 ml		
	5 mol/l TMAC Lösung	150,00 ml		
	20% Sarkosyl Lösung	1,25 ml		
	1 mol/l Tris HCl pH 8,0 Lösung	12,50 ml		
	0,5 mol/l Lösung EDTA pH 8,0	2,0 ml		
	Chromatographiewasser	84,25 ml		
TE pH 8,0 Probenpuffer		250 ml		
	Tris EDTA Puffer pH 8,0	2,5 ml		
	Chromatographiewasser	47,50 ml		
TMACTetTris2-AEDTAEthTETris	ramethylammoniumchlorid (C₄ Amino-2-(hydroxymethyl)-propa Iylen d iaminte t ra a cetat s- E DTA	H ₁₂ CIN) an-1,3-diol (C ₄ H ₁₁ NO ₃)		

2.1.6 Verwendete kommerziell erhältliche Reagenziensysteme und Enzyme

Für die Isolierung der DNA Proben, die PCR, das Aufreinigen und Sequenzieren der PCR-Produkte, die genomische Vervielfältigung der DNA-Proben, die Gelelektrophorese, sowie die Typisierung der DNA Proben zur Validierung wurden kommerziell erhältliche Reagenziensysteme (Kits), beziehungsweise Enzyme und DNA-Längenmarker verwendet, wie sie auch in unserer Routinediagnostik Anwendung finden. Die Übersicht der verwendeten Reagenzien gibt Tabelle 11 auf dieser Seite wieder.

Tabelle 11 Verwendete kommerziell erhältliche Reagenziensysteme und Enzyme Image: State of the				
Bezeichnung	Firma			
QIAmp Blood Micro Kit	Quiagen	Hilden		
Exosap It Clean Up	USB Corp.	Cleveland USA		
BigDye® Terminator v1.1 Cycle Sequen- cing Kit	Applied Biosystems	Foster City USA		
CTS-SSP Zytokine Kit	Universität Heidelberg Abteilung für Trans- plantationsgenetik	Heidelberg		
Illustra GenomiPhi V2	GE Healthcare	München		
Olerup DNA Size Marker	Genovision/Quiagen	Vienne Österreich		
Taq DNA Polymerase	Quiagen	Hilden		

2.1.7. Geräte

In Tabelle 12 auf den folgenden beiden Seiten sind alle genutzten Geräte aufgeführt, die während Entwicklung und Versuchsdurchführung zum Einsatz kamen. Die Geräte sind nach den Arbeitsschritten sortiert aufgelistet, bei welchen sie verwendet wurden.

Tabelle 12 Verwendete Geräte				
Arbeitsschritt	Gerät	Firma		
Herstellung von Gebrauchslösungen	Micropipette Research 100 µl und 1000 µl	Eppendorf, Hamburg		
	Navigator Waage	Ohaus, Pine Brook USA		
	Pipette Accu Jet Pro	Brand, Wertheim		
Lagerung	Profiline Kühl- und Tiefkühlschrank(-20 °C)	Liebherr Ochsenhausen		
	Tiefkühltruhe –70°C	Revco, Asheville USA		
DNA Isolierung und Konzentrationsmes- sung	Micropipetten Research 100 μI und 1000 μI	Eppendorf, Hamburg		
-	Multipipette plus	Eppendorf, Hamburg		
	Spectrometer DU640	Beckmann, München		
	Thermomixer 5436	Eppendorf, Hamburg		
	Vortex Genie	Bender & Hobein AG, Zürich Schweiz		
	Zentrifuge Biofuge pico	Heraeus, Hanau		
	Zentrifuge Variofuge K	Heraeus, Hanau		
PCR/MPCR	Micropipetten Research 2,5 μl, 10 μl, 100 μl und 1000 μl	Eppendorf, Hamburg		
	Multipipette plus	Eppendorf, Hamburg		
	PCR System 9700	GeneAmp, Foster City USA		
	Vortex Genie	Bender & Hobein AG, Zürich Schweiz		
Gelelektrophorese	Accura 853 8 Kanalpipette	Socorex, Isba Schweiz		
	Electrophoresis Power Supply EPS 300	Amersham Pharma- cia Biotech, Frei- burg		
	Elektrophoresekammer	Protrans, Ketsch am Rhein		
	Fotografiereinheit	MWG Biotech, Ebersberg		
	Mikrowelle Micromat	AEG, Nürnberg		
Fortsetzung der Tal	belle auf Seite 39			

Fortsetzung der Tabelle 12 Verwendete Geräte von Seite 38				
Arbeitsschritt	Gerät	Firma		
Gelelektrophorese	Navigator Waage	Ohaus, Pine Brook USA		
	UV Transilluminator	UVP Inc., Cambridge UK		
Aufreinigung und Sequenzierung	3730 DNA Analyzer	Applied Biosystems, Foster City USA		
	Accura 855 5-50 µl 8 Kanalpipette	Socorex, Isba Schweiz		
	Micropipette Research 10 $\mu l,$ 100 μl und 1000 μl	Eppendorf, Hamburg		
	Multipette plus	Eppendorf, Hamburg		
	PCR System 9700	GeneAmp, Foster City USA		
	Vortex Genie	Bender & Hobein AG, Zürich Schweiz		
	Zentrifuge Multifuge 3 S-R	Heraeus, Hanau		
Beadkopplung	Micropipetten Research 10 $\mu l,$ 100 μl und 1000 μl	Eppendorf, Hamburg		
	Navigator Waage	Ohaus, Pine Brook USA		
	Vortex Genie	Bender & Hobein AG, Zürich Schweiz		
	Zentrifuge Centrifuge 5415C	Eppendorf, Hamburg		
Luminex Auswertreaktion	8 Kanal Micropipette Refference 10 µl	Eppendorf, Hamburg		
	12-pette 20-200 µl	Corning Costar Corp., Acton USA		
	e300 Pipette 10-300 µl	Biohit, Rosbach v.d. Höhe		
	Luminex 100 IS (Liquichip)	Quiagen, Hilden		
	Micropipetten Research 10 $\mu l,$ 100 μl und 1000 μl	Eppendorf, Hamburg		
	PCR System 9700	GeneAmp, Foster City USA		
	Pipette Proline 50-1200 µl	Biohit, Rosbach v.d. Höhe		
	Magnetschüttler Monoshake	Carl Roth, Karlsruhe		
	Vortexgerät Reax Top	Heidoplph, Schwa- bach		
	Centrifuge 2-5	Sigma, Steinheim		

2.1.8. Software

Zur Dokumentation und Auswertung benutzen wir Microsoft Office 2007, sowie den Microsoft Publisher 2007. Die Bearbeitung von Bildmaterial erfolgte mit dem von der Fa. Arcsoft vertriebenen PhotoStudio 2000. Für die Suche der umgebenden Gensequenzen der zu untersuchenden SNP wurden die Internetdatenbank des National Center for Biotechnology im Internet verwendet. Die Erstellung der Primer und Berechnung der Schmelztemperaturen erfolgte über das Programm Gene Fisher2 der Universität Bielefeld, welches ebenfalls über das Internet zugänglich war. Der 3730 DNA Analyzer, der zum Sequenzieren verwendet wurde, arbeitete mit der Data Collection Software 3.0, die im Lieferumfang enthalten war. Die Ergebnisse der Sequenzierung sind mit dem Programm Sequenzing Analysis v.5.2 ausgewertet und visualisiert worden. Die Datenaufnahme mit dem Luminex 100 IS wurde mittels der mitgelieferten Software Luminex IS Software v 2.3.182 betrieben. Tabelle 13 auf dieser Seite bildet eine Übersicht der Programme ab.

Tabelle 13 Verwendete Software		
Bezeichnung	Firma	
Luminex IS 100 2.3.182	Luminex Corp, Austin USA	Gerätetreiber Luminex IS 100 Ge- rät
Datacollection Software 3.0	Applied Biosystems	Gerätetreiber DNA Analyzer
MS Office 2007	Microsoft Deutschland Unterschleißheim	Dokumentation
MS Publisher 2007	Microsoft Deutschland Unterschleißheim	Dokumentation
PhotoStudio 2000	Arcsoft, Fremont USA	Bildbearbeitung
Sequenzing Analysis v.5.2	Applied Biosystems, Fos- ter City USA	Analyse DNA- Sequenzen
http://www.ncbi.nlm.nih.gov/snp	National Center for Bio- technology Information U.S. National Library of Medicine, Bethesda USA	Internetdatenbank
http://bibiserv.techfak.uni-bielefeld.de/ genefisher2/	Universität Bielefeld Technische Fakultät Praktische Informatik	Programm zur DNA- Primererstellung

2.2 Methoden

Funktionsweiße der Luminex xMap® Carboxybeads 2.2.1

Die xMAP[®] Carboxybead Technologie kombiniert fluoreszenzmarkierte Partikel mit der Technik einer Durchflusszytometrie. Bei den von der Firma Luminex gelieferten xMAP® Carboxybeads handelt es sich um sphärisch geformte Polystyrolpartikel, deren Größendimension sich im Mikrometerbereich bewegen [29]. Die Partikel, die auch als Beads bezeichnet werden, wurden mit zwei verschiedenen Fluoreszenzfarbstoffen markiert, wovon jeder dieser Farbstoffe verschiedene Teile des Farbspektrums emittiert (Rot und Infrarot) [35]. Durch Kombination der zwei Farbstoffe, die jeweils in zehn verschiedenen Konzentrationsstufen vorlagen, ergaben sich daraus 100 spektral unterscheidbare Schattierungen, wodurch 100 verschiedene Beadinsgesamt populationen (Beadklassen) entstanden. Diese Tatsache ermöglicht es, dass innerhalb eines einzigen Testansatzes die Analyse von bis zu 100 verschiedenen Items möglich ist und Vertrieb, PROGEN Biotechnik GmbH Nebenstehende Abb. 1 gibt das media.progen.de/multiplex-technology/ [17,35]. Prinzip der Fluoreszensmarkierungen wieder [134].

Abbildung 1 Fluoreszensmarkierung der xMAP® Carboxybeads

Demonstriert ist die Kodierung der Beads durch die unterschiedlichen Mischverhältnisse der beiden Farbstoffe und die daraus resultierende Identifizierbarkeit durch die Messung der Emissionen im rot und infrarot Bereich.

Ouelle:

Multiplexe Analytik mit Bead-basierten Assays Fa. Progen, Technischer Service Maaßstr. 30, 69123 Heidelberg http:// multiplex-analysis-bead-basedassays_de.pdf (24.02.2007) Mit freundlicher Genehmigung durch die Luminex Corporation Austin Texas USA.

Die zweite bedeutende Eigenschaft der Beads ist die Beschaffenheit der Beadoberfläche. Auf dieser finden sich zahlreiche primäre Carboxylgruppen (COOH). Diese erlauben es auf einfache Weise Liganden auf der Beadoberfläche zu binden, die als Detektionsmolekül der eigentlichen Nachweisreaktion dienen. Diese Nachweismoleküle können je nach geplanter Anwendung synthetisierte (Captureoligonukleotide), DNA Sonden sein die sequenzspezifisch, komplementär an die zu untersuchenden DNA Sequenzen binden können, welche durch PCR amplifiziert wurden. Neben der Möglichkeit Captureoligonukleotide für molekulargenetische Untersuchungen zu binden, können auch Antikörper, Enzyme oder Rezeptoren gebunden werden. Damit ist auch die Bestimmung von spezifischen Antigenen oder anderen Substraten in zu

untersuchenden Proben möglich. Zur Bindung von Captureoligonukleotiden, wie in unseren speziellen Fall, bedurfte es einer primären Aminogruppe am 5' Ende der Captureoligonukleotide. Zur Verbesserung der späteren Bindungsfähigkeit bei der Hybridisierung an PCR-Produkte musste zwischen der Aminogruppe und dem Captureoligonukleotid ein Spacer liegen, der aus einem Kohlenstoffgerüst von 12 Atomen besteht (C12-Spacer). Die Bindung zwischen den Carboxygruppen und der primären Aminogruppe wurde durch die Chemikalie EDC vermittelt. Hierbei aktiviert das EDC die Carboxylgruppe, so

$$\begin{array}{c} 0 & R_{1} - \frac{1}{N} - C = N - R_{2} + R_{3} - C - 0H & \underbrace{\begin{array}{c} 0 \\ 1 \\ 1 \\ (EDC) \end{array}} & R_{3} - C - 0 & \underbrace{\begin{array}{c} 0 \\ 1 \\ 1 \\ H_{+} \end{array}} & R_{3} - C - 0 & \underbrace{\begin{array}{c} 0 \\ 1 \\ 1 \\ 0 \end{array}} \end{array}$$

EDC reacts with carboxylic acid group and activates the carboxyl group, allowing it to be coupled to the amino group ($\rm R_4NH_2$) in the reaction mixture.

$$\begin{array}{c} H \\ R_{1} - \frac{1}{N} - C = N - R_{2} \xrightarrow{(2)}{R_{4}NH_{2}} R_{3} - C - NR_{4} + C \\ R_{3} - C - O \\ H \\ 0 \end{array} \xrightarrow{(2)}{R_{4}NH_{2}} R_{3} - C - NR_{4} + C \\ H \\ (Urea) \end{array}$$

EDC is released as a soluble urea derivative after displacement by the nucleophile, $R_4 NH_2$.

Abbildung 2 Reaktionsschema für EDC vermittelte Reaktionen

Schematische Darstellung der vermittelten Reaktion von Carboxyl– und primärer Aminogruppe durch EDC

EDC	1-(3-Dimethylaminopropyl)-3-ethyl- carbodiimide hydrochloride
R1-R4	Kurzschreibweise für organische Molekül- ketten, die an den funktionellen Gruppen gebunden sind
Quelle: A water-sol	uble carbodiimide crosslinker for zero-length,

A water-soluble carbodiimide crosslinker for zero-length, carboxyl-to-amine conjugation - Thermo Scientific http:// www.piercenet.com/browse.cfm?fldID=02030312 (04.03.2007) Mit freundlicher Genehmigung durch Thermo Fisher Scientific Inc. Waltham Massachusetts USA. dass der aktivierte Carboxyl-EDC-Komplex mit der endständigen Aminogruppe des am Captureoligonukleotid befindlichen Spacers reagieren kann. Im zweiten Reaktionsschritt erfolgt dann die kovalente, chemischem Bindung der beiden funktionellen Gruppen, unter Abspaltung des EDC-Rest in Form eines Harnstoffderivates. Abbildung 2 auf der vorangegangenen Seite zeigt das Reaktionsschema [130]. Zum Nachweis einer Bindung zwischen den Beads und dem nachzuweisenden Analyten wird ein Reportermolekül benötigt, welches zusammen mit dem Bead während der Messung detektiert werden muss, um eine erfolgreiche Nachweis führen zu können. Dieses Reportermolekül emittiert Licht im Bereich des grünen Farbspektrums und ist somit von den Fluoreszenzeigenschaften der Beadmarkierungen eindeutig zu unterscheiden.

Im Falle von molekulargenetischen Untersuchungen, die wie in unserem Fall die Analyse von SNP zum Ziel haben, wird als Reportermolekül Streptavidin-R-Phycoerythrin verwendet. Für die Messung muss die Möglichkeit bestehen, die zu untersuchende DNA markieren zu können. Da dies mit nativer DNA nicht problemlos möglich ist, muss zuvor von der zu untersuchenden Genregion eine PCR angefertigt werden. Bei dieser wurden entweder der forward oder reverse

Abbildung 3 Schematische Darstellung des Streptavidin-PCR-Beadkomplexes

Ein Luminex xMAP® Carboxybead (orange Sphäre) mit einem Captureoligonukleotid, welches über einen Spacer mit dem Bead verbunden ist. Die Abbildung zeigt weiter die Hybridisierung mit dem entsprechenden komplementären PCR-Produkt, welches zur Ermöglichung der Detektion am forward Primer mit einem Label (grüne Sphäre) markiert wurde.

PCR Polymerase Chain Reaction

Quelle: Recommendations for Probe/Primer Design for Direct Hybridization of Nucleic Acids - Luminex Corp http://www.luminexcorp.com/prod/groups/public/documents/lmnxcorp/probe-primer-design-direct-hyb.pdf (14.04.2012) Mit freundlicher Genehmigung durch die Luminex Corporation Austin Texas USA.

PCR-Primer so synthetisiert, dass sich an deren 5'-Ende eine Biotinmodifikation befindet. Diese erlaubt es, dass Streptavidin-R-Phycoerythrin an das Biotin binden kann und so ein Streptavidin-PCR-Amplifikatkomplex entsteht [37]. Abbildung 3 auf Seite 43 zeigt schematisch den Streptavidin-PCR-Beadkomplex [135]. Ein solcher entstandener Beadkomplex kann nach abgeschlossener Hybridisierung mit dem Luminex 100 IS Gerät analysiert werden.

Das für die Analyse der auf Beadtechnologie basierenden Assays genutzte Luminex 100 IS nutzt zwei Laser, die die Assays im Verfahren einer Durchflusszytometrie messen. Für die Assays werden 96-Well Platten, die auf dem XY-System gründen, verwendet, so dass 96 Proben vollautomatisch auf einmal analysiert werden können [29]. Hierzu werden die Proben nacheinander mittels einer Kolbenpumpe aus den Wells evakuiert und in eine Messküvette geleitet. In dieser wird die Probe hydrodynamisch fokussiert, indem die Probe mit einer Mantelflüssigkeit umspült wird, sodass eine wirbelfreie laminare Strömung entsteht, die es ermöglicht, dass die Beadkomplexe einzeln und präzise durch die Laserdetektion geführt werden können. Für die Detektion der Beads und die Quantifizierung der Analyte wurden zwei Festkörperlaser verbaut, die in einer optischen Bank angeordnet sind. Die Laser sind auf den Probenstrom fokussiert und regen die Fluoreszenzfarbstoffe der Beads und des Reportermolekül an. Diese emittieren senkrecht zu den einfallenden Laserstrahlen ihrerseits Licht, in der für die Farbstoffe spezifischen Wellenlänge. Dieses Prinzip ist in Abbildung 4 auf der folgenden Seite verdeutlicht [134]. Das emittierte Licht wird über Spiegel und Filter zu entsprechenden Detektoren geleitet. Die Detektoren wandeln das Licht wiederum in ein Messsignal um. Die erste Laserdiode arbeitet mit einer Wellenlänge von 633 nm und wird zur Erkennung der Beads verwendet, indem sie die in den Mikrosphären verwendeten Fluoreszenzfarbstoffe anregt und diese daraufhin Licht in einem Wellenlängenbereich von 645-669 nm und bei >712 nm emittieren. Die unterschiedlichen gemessenen Signalverhältnisse, die aus den verschiedenen Fluoreszenzfarbstoffkonzentrationen in den Carboxybeads resultieren, machen

die Detektion und Unterscheidung der verschiedenen Beadpopulationen möglich. Zusätzlich erfolgt durch eine zusätzliche Photodiode eine Messung der Seitwärtsstreuung, um die Partikelgröße bestimmen zu können. Durch diese Methode können fluoreszierende Verunreinigungen oder unspezifisch verbundene Beadaggregate herausgefiltert werden.

Zur Quantifizierung der gebundenen Analyten wird ein Yttrium-Argon-Germanium Feststofflaser verwendet. Dieser arbeitet mit einer Wellenlänge von 532 nm und regt den Fluoreszenzfarbstoff der Reportermoleküle an, so dass diese Licht emittieren. Der Farbstoff des Reportermoleküls muss Licht mit einer Wellenlängen im Bereich von 563-587 nm emittieren, um detektiert werden zu können. Die Intensität dieses emittierten Signals ist direkt proportional zu der an die Beads gebundenen Anzahl von Analyten und erlaubt so eine Aussage über die in der Probe vorhandene Menge des Analyten. Die Messung des Lichtsignals erfolgt mittels eines Photomultipliers. Die Signalverarbeitung erfolgt in der Zusammenbetrachtung aller qemessenen Signale. Die Photodioden

Abbildung 4 Messprinzip im Luminex 100 IS

Oberes Bild: Luminex 100 IS Mittleres Bild: hydrodynamische Fokussierung der Carboxybeads für die Messung im Strahlengang

Unteres Bild: Bead mit hybridisierten Analyten im Strahlengang der Laserdetektion

Quelle: Multiplexe Analytik mit Beadbasierten Assays Fa. Progen, Technischer Service und Vertrieb, PROGEN Biotechnik GmbH Maaßstr. 30, 69123 Heidelberg http://media.progen.de/multiplextechnology/multiplex-analysis-bead-basedassays_de.pdf (24.02.2007) Mit freundlicher Genehmigung durch die Luminex Corporation Austin Texas USA

Material und Methoden

Beadklassifizierung und den Größenausschluss ermitteln die bei Verunreinigungen. Die im Photomultiplier gemessene Signalstärke liefert das Ergebnis über die Menge der gebundenen Analyten. Die im Analysegerät empfangene Signale werden digitalisiert und in einen Signalprozessor geleitet, welcher die angefallenen Messwerte verstärkt und verarbeitet. Auf diese Weise kann das Luminex 100 IS Analysesystem bis zu 20.000 Messereignisse pro Sekunde verarbeiten. Abb. 5 auf dieser Seite zeigt schematisch die Anordnung der Laser- und Photodioden, welche die Lichtsignale messen [134].

Abbildung 5 Anordnung der optischen Messbank eines Luminex 100IS

Messbank bestehend aus zwei Lasern mit 633 nm und 532 nm Wellenlänge. Das durch den 633 nm Laser emittierte Licht, welches durch Anregung der fluoreszierenden Beads entsteht und der Klassifizierung der Beads dient, wird über die Avalanche-Photodioden (APD) registriert. Die quantitative Messung der Analyte erfolgt geht von den 532 nm aussendenden Laser aus. Das vom Streptavidin-R-Pyrophosphat nach Anregung emittierte Licht wird über den Photomultiplier (PMT) registriert.

Ouelle:

Multiplexe Analytik mit Bead-basierten Assays Fa. Progen, Technischer Service und Vertrieb, PROGEN Biotechnik GmbH Maaßstr. 30, 69123 Heidelberg http://media.progen.de/multiplex-technology/multiplexanalysis-bead-based-assays_de.pdf (24.02.2007)

Mit freundlicher Genehmigung durch die Luminex Corporation Austin Texas USA.

Die Analyse von Mutationen anhand der xMAP® Carboxybeadtechnologie wurde bereits für die Typisierung von Genveränderungen außerhalb des Bereichs der Zytokingene angewandt. Exemplarisch sind folgend einige Anwendungen aufgeführt, die sich dieser von Luminex angebotenen Technologie bedienten. So wurden beispielsweise Hämoglobinopathien bei Neugeborenen mittels Luminex xMAP® Carboxybeads aus getrockneten Blutproben diagnostiziert, mit dem Ziel

diesen Test auch beim Neugeborenenscreening einsetzen zu können [31]. Eine weitere Verwendung fand die Technik von Luminex in der Diagnostik von häufigen erblichen Erkrankungen der aschkenasischen Bevölkerung. In einer Anwendung wurden Proben auf acht verschiedene, epidemiologisch für diese Bevölkerungsgruppe bedeutende Erkrankungen untersucht. Diese Erkrankungen waren im einzelnen Tay-Sachs, Morbus Gaucher Typ I, Morbus Niemann-Pick Typ A und B, Mukolipidose Typ IV, familiäre Dysautonomie, Leukodystrophie, Bloom Syndrom und Fanconi Anämie Typ C [21]. Auch in der Diagnostik von SNP assoziierten Thrombophilien fand diese Methode bereits Anwendung [15]. In dieser Studie wurden sechs verschiedene Polymorphismen analysiert, um eine schnellere Diagnostik dieser zu erproben. Weiterhin konnte die Methode in der Diagnostik von mit zystischer Fibrose assoziierten Mutationen eingesetzt werden. In diesem Beispiel wurden 25 Mutationen und sechs polymorphe Sequenzen innerhalb des CFTR Gens untersucht [42]. Bereits 2001 wurde Luminex xMAP® Technologie nicht nur zur Typisierung von SNP im humanen Genom genutzt, sondern auch zur Identifizierung von Bakterien, die aufgrund spezifischer rDNA-Sequenzen nachgewiesen wurden [127]. Hier konnten 17 verschiedene Bakterienspezies unterschieden werden, die eine Bandbreite von gram-positiven und gram-negativen Vertretern wieder spiegelten.

2.2.2 DNA-Isolierung

Die Isolierung der DNA erfolgte nach dem in unserer Abteilung etablierten Standardverfahren nach Boom et al. [14]. Die Gewinnung der DNA erfolgte mittels des QIAmp Blood Micro Kit der Fa. Quiagen, welches die verwendetet Reagenzien und Enzyme (Proteinkinase K, AL Puffer, AW1 und AW2 Waschpuffer) enthielt. Entsprechend der laborinternen Arbeitsvorschriften wurden 200 µl einer in EDTA-Blutröhrchen abgenommenen Blutprobe zusammen mit 20 µl der Proteinkinase K Lösung und 200 µl Puffer AL zusammen in ein Eppendorfröhrchen gegeben. Zur Erhöhung der DNA- Konzentration hatte es sich bewährt, die benötigten 200 µl aus dem Buffycoat der vorher zentrifugierten Blutröhrchen zu entnehmen, welche 5 min lang bei 2500 rpm in einer Variofuge K (Fa. Heraeus) zentrifugiert wurden. Der Ansatz wurde durch 15 sekündiges Vortexen gut durchmischt und anschließend für 10 min in einem Eppendorf Thermomixer 5436 bei 56 °C inkubiert. Danach wurde dieses Reaktionsgemisch auf die im Kit enthaltenen Filtersäulen (Spin-Column) übertragen. Darauf folgend war zum Denaturieren der DNA die Zugabe von 200 µl 96% Ethanol nötig. Der nächste Schritt beinhaltete die einminütige Zentrifugation in einer Biofuge pico (Fa. Heraeus) bei 8000 rpm , wobei die DNA in den Filter der Spin-Column übertragen und von den restlichen Bestandteilen des Ansatzes getrennt wurde. Die durch den Filter zentrifugierte Lösung wurde verworfen. Zur vollständigen Aufreinigung folgten jetzt zwei Waschschritte mit den als AW1 und AW2 bezeichneten Pufferlösungen. Hierzu wurden im ersten Waschschritt 500 µl AW1 Puffer auf die Säule gegeben und wiederum bei 8000 rpm für eine Minute zentrifugiert und anschließend die abzentrifugierte Lösung wiederum verworfen. Dieser Waschschritt wiederholte sich ein weiteres mal mit dem AW2 Puffer, wobei jetzt eine Zentrifugation bei 13000 rpm (20000 G) für 3 Minuten erfolgte. Auch jetzt wurde die Waschlösung verworfen. Im letzten Schritt wurde die DNA durch Zugabe von 150 µl Chromatographiewasser (Li Chromosolve Fa. Merck) gelöst und durch Zentrifugieren für eine Minute bei 8000 rpm (6000 G) aus dem Filter der Spin-Column in ein Eppendorfröhrchen eluiert. Bis zur Verwendung wurden die DNA Proben bei – 21°C eingefroren.

2.2.3 Photometrische Bestimmung der DNA-Konzentration

Um die Menge der DNA Probe in den MPCR-Reaktionen korrekt kalkulieren zu können, war es nötig, die DNA Konzentrationen der eingesetzten Proben zu messen. Hierzu verwendet unsere Abteilung ein DU640 Spectrometer (Fa. Beckmann). Die zugrundeliegende Messtechnik basiert darauf, dass die sich in Lösung befindliche DNA einfallendes Licht eines definierten Wellenlängenbereichs, wenn es durch die Lösung hindurchtritt, absorbiert. Dieses transmittierte Licht wird gemessen und über den Grad der Abschwächung, anhand das Lambert-Beerschen-Gesetzes, konnte die Konzentration der DNA bestimmt werden. Um die Messungen durchzuführen, wurden die Proben im Verhältnis 1:10 verdünnt. Hierzu wurden 10 µl jeder DNA Probe zu 90 µl Chromatographiewasser hinzu gegeben. Die resultierende 100 µl Lösung wurde anschließend in einer Präzisions-Küvette Quarzglas Suprasil (Fa. Hellma) mittels des Spectrometers bei einer Wellenlänge von 260 nm und 280 nm gemessen und so die DNA Konzentration ermittelt.

2.2.4 PCR und MPCR

Die Entwicklung der PCR basierte auf der von Mullins et al. 1986 [82] beschriebene Methode. Die Bedingungen für die PCR wurden vorab festgelegt, um zu gewährleisten, dass alle Amplifikationen unter den gleichen Bedingungen zum gewünschten Ergebnis führten. Der Reaktionsansatz für die PCR wurde für ein Gesamtvolumen von 25 µl konzipiert. Die genaue Zusammensetzung des Reaktionsansatzes geht aus Tabelle 14 auf

e	Tabelle 14	PCR-Ansatz	
]	Rea	Volumen	
е	PCR-Reaktionspuffer		4,0 µl
n	Taq Polymerase 5 U/µl		0,1 µl
	Primer 10 p (je Primer 1	2,0 µl	
1	Proben DNA		2,0 µl
n I.	Chromatographiewasser		16,9 µl
R	Gesamtvolumen:		25,0 µl
-	PCR	Polymerasekettenreaktion	
-	DNA Desoxyribonukleinsäure (Desoxyribonucleic acid)		
2			

dieser Seite hervor. Die Gesamtmenge der eingesetzten Primer belief sich auf 2 μ l einer 10 pmol/ μ l Primerlösung, so dass für den forward, wie auch den

reverse Primer, jeweils 1 µl der Lösung benutzt wurden. Die verwendeten Primer, Reagenzien, sowie Gebrauchslösungen wurden bereits unter Kapitel 2.1 Material abgehandelt und können an dieser Stelle nachgeschlagen werden. Die PCR wurde in einem GeneAmp 9700 Thermocyclersystem amplifiziert. Im ersten Schritt wurde die DNA für 120 sec bei 94 °C denaturiert. Die nächsten zehn Zyklen begannen jeweils mit 15 sec zum Denaturieren bei 96 °C, gefolgt von 60 sec bei 65 °C in der das Annealing der Primer an die DNA und die Extension stattfand. Zyklus 11 bis 30 begannen wieder mit 15 sec bei 96 °C zum Denaturieren der DNA. Dem folgten 50 sec bei 61 °C zum Annealing der Primer und anschließend 30 sec bei 72 °C zur Extension der Amplifikate. Abbildung 6 auf dieser Seite zeigt dieses Thermocyclerschema graphisch. Die fertig amplifizierten PCR-Produkte wurden bei 4 °C im Kühlschrank gelagert, beziehungsweise bei einer Lagerdauer von mehr als drei Tagen bei -20 °C eingefroren.

Bei der MPCR musste der Reaktionsansatz wie folgt modifiziert werden, um mehrere Genloci gleichzeitig in einem Well sicher amplifizieren zu können. Das Gesamtvolumen von 25 µl wurde beibehalten. Die Menge des verwendeten PCR Puffers wurde auf 6 µl erhöht. Die zu untersuchenden SNP wurden in drei Gruppen aufgeteilt und für jede Gruppe eine MPCR entwickelt. Dies folgte keinem festen Grundsatz. Die Primer der Gruppen wurden zu je einem

Primermix zusammen gefasst. Hierzu	Tabelle 15 MPCR-Ansatz	:
wurden die Primer in der ursprünglich	Reagenzien	Volumen
gelieferten Konzentration von 100	PCR-Reaktionspuffer	6,0 µl
pmol/µl zu gleichen Teilen in ein	Taq Polymerase 5 U/µl	0,1 µl
Eppendorfröhrchen zusammengeführt.	Primer Mix	0,3 µl
Aus Tabelle 16 auf der folgenden Seite	(100 pmol/µl)	
geht hervor, welche Genloci zu den	Proben DNA	2,0 µl
drei MPCR zusammengefasst wurden.	Chromatographiewasser	16,6 µl
Für die Reaktionsansätze wurden		
jeweils 0,3 µl des entsprechenden	Gesamtvolumen: 25	
Primermixes verwendet. Während bei	PCR Polymerasekettenro	eaktion
der einfachen PCR 10 pmol eines	MPCR (Polymerase Chain Reaction) multiplex Polymerasekettenreaktion	
jeden Primers im Reaktionsansatz zu	(Multiplex Polymer Reaction)	ase Chain
finden waren, waren es bei der MPCR	DNA Desoxyribonukleins (Desoxyribonucleio	säure c a cid)
nur noch 2,5 pmol im Falle der beiden		

MPCR eins und zwei und im Fall der dritten MPCR 2,1 pmol je Primer. Die Gesamtmenge an Primern war im Falle der PCR 20 pmol, bei der MPCR 30 pmol. Die eingesetzte Probenmenge an DNA betrug mindestens 100 ng, so dass das Volumen entsprechend der gemessenen DNA-Konzentrationen eingesetzt werden musste. Um nicht für jede Reaktion unterschiedliche Probenvolumina pipettieren zu müssen, wurden ausschließlich DNA-Proben mit mindestens 50 ng/µl DNA Konzentration verwendet.

Daher legten wir die eingesetzten Volumina auf 2 μ l der DNA Proben fest. Wie bei der PCR nutzten wir auch bei den MPCR 0,1 μ l Taq Polymerase (Fa. Quiagen) je Reaktionsansatz. Tabelle 15 auf dieser Seite liefert eine Übersicht über den Reaktionsansatz für die MPCR.

Genau wie die PCR wurde auch die MPCR in einem GeneAmp 9700 Thermocyclersystem amplifiziert. Dazu wurde das gleiche Cyclerschema verwendet wie bei der PCR beschrieben (siehe Abb. 6 Seite 50). Auch die Lagerung bis zur weiteren Analyse wurde gleich zu der PCR gehandhabt.

Tabelle 16 Zusammenstellung der Primer-Mixe f Gir die MPCR Kits 1-3			
Primer Mi	x Genloci	Primer Be	zeichnung SNP
Kit 1	IL1a	IL1a_fw IL1a_rev	rs1800587
	IL1b Lo1	IL1b_1_fw IL1b_1_rev	rs16944
	IL1b Lo2	IL1b_2_fw IL1b_2_rev	rs1143634
	IL1R	IL1R_fw IL1R_rev	rs2234650
	IL1RN	IL1RN_fw IL1RN_rev	rs315952
	TNFa	TNFa_fw TNFa_rev	rs1800629 rs361525
Kit 2	IL4Ra	IL4Ra_fw IL4Ra_rev	rs1801275
	IL10 Lo1	IL10_1_fw IL10_1_rev	rs1800896
	IL10 Lo2	IL10_2_fw IL10_2_rev	rs1800871 rs1800872
	IL12b	IL12b_fw IL12b_rev	rs3212227
	IFNg	IFNg_fw IFNg_rev	rs2430561
	TGFb	TGFb_fw TGFb_rev	rs1982073 rs1800471
Kit 3	IL2 Lo1	IL2_1_fw IL2_1_rev	rs2069762
	IL2 Lo2	IL2_2_fw IL2_2_rev	rs2069763
	IL4 Lo1	IL4_1_fw IL4_1_rev	rs2243248
	IL4 Lo2	IL4_2_fw IL4_2_rev	rs2243250
	IL4 Lo3	IL4_3_fw IL4_3_rev	rs2070874
	IL6 Lo1	IL6_1_fw IL6_1_rev	rs1800797
	IL6 Lo2	IL6_2_fw IL6_2_rev	rs1800795
IFNg IL1a IL1b IL1R IL1RN IL2 IL4 IL4Ra IL6	Interferon gamma Interleukin-1 alpha Interleukin-1 beta Interleukin-1 Rezeptor Interleukin-1 Rezeptorantagonist Interleukin-2 Interleukin-4 Interleukin-4 Rezeptor alpha Interleukin-6	IL10 IL12b Lo MPCR SNP TGFb TNFa	Interleukin-10 Interleukin-12 beta Locus multiplex Polymerasekettenreaktion (Multiplex Polymerase Chain Reaction) Punktmutation (Singlenucleotide Polymorphism) Transforming growth factor beta Tumor necrosis factor alpha

2.2.5 Genomamplifikation mit GenomiPhi V2

Aufgrund der zum Teil geringen Menge der vorhandener DNA-Proben mussten diese vervielfältigt werden. Hierzu kam das von der Fa. GE Healthcare angebotene Kit Illustra GenomiPhi V2 zum Einsatz, welches zugegebene DNA in der gesamten Länge des DNA Stranges dupliziert und nicht, wie bei einer PCR üblich, nur kurze DNA Fragmente erzeugt. Auf diese Weise konnte erreicht werden, dass aus der eingesetzten Menge von 10 ng DNA am Ende der Reaktion eine 20 µl Probe mit einer DNA Menge von 4-7 µg wurden. Die letzte Angabe beruft sich auf die vom Hersteller angegebene DNA Menge. Entsprechend der Arbeitsvorschrift wurden jeweils 1 µl jeder DNA Probe mit 9 µl des mitgelieferten Sample Buffers in ein Well einer AB Gene 96-Well Platte pipettiert. Dieser Ansatz wurde im Anschluss in einen GeneAmp 9700 Thermocyclersystem für 180 sec bei 95 °C inkubiert, wodurch die komplementären DNA-Stränge der Doppelhelix getrennt wurden. Nach diesem Schritt wurde das Produkt auf 4 °C abgekühlt, dem Thermocycler entnommen und auf einen Kühlblock gestellt. Für die Amplifikationsreaktion wurden zu jedem Well 10 µl einer Mischung, bestehend aus 9 µl Reaction Buffer und 1 µl Enzyme Mix, gegeben. Dieser Reaktionsansatz wurde zur Vervielfältigung der DNA für 120 Minuten bei 30 °C im GeneAmp 9700 Thermocycler inkubiert. Zur Inaktivierung der Enzyme wurden am Schluss der Inkubation die Reaktionsansätze für 10 Minuten auf 65 °C erhitzt. Das entsprechende Thermocycler Programm findet sich auf Seite 54 in Abb. 7 graphisch dargestellt. Nach abgeschlossener Reaktion wurden die Reaktionsansätze mit 20 µl Chromatographiewasser (Fa. Merck) auf ein Gesamtvolumen von 40 µl verdünnt, wodurch eine rechnerische DNA-Konzentration von 100-170 ng/µl entstand. Die Lagerung der aufbereiteten Proben erfolgte bis zur weiteren Nutzung bei –21 °C im Tiefkühlschrank.

2.2.6 SNP-Typisierung mit Zytokin CTS-PCR-SSP Tray Kit

Die Typisierung der Proben, die zum Validieren unserer neuen Anwendung verwendet wurden, erfolgte mit der in unserem Labor genutzten Methode der sequenzspezifischen Primer. Alle Proben wurden mit dem Zytokine CTS-PCR-SSP Tray Kit typisiert, den die Abteilung für Transplantationsimmunologie der Universität Heidelberg vertreibt.

Zur Typisierung einer Probe wurden 28 PCR-Reaktionen benötigt. In den Reaktionsmix wurden 50 µl Proben DNA mit einer DNA Konzentration von 100 ng/µl, 138 µl des im Kit enthaltenen Mastermix, 329 µl LiChromosolv Chromatographiewasser (Fa. Merck) und 3 µl Taq Polymerase (5 U/µl, Fa. Quiagen) zusammen pipettiert. Auf diese Weise entstanden 520 µl Reaktionsansatz. Für jede PCR-Reaktion wurden 10 µl des Reaktionsansatzes in jedes Well der PCR-Platten gegeben. Die notwendigen PCR-Primer befanden sich in den PCR-Platten, in denen die Primer im getrockneten Zustand auf dem Boden der Wells vorlagen. Im Anschluss wurden die PCR-Platten in einem GeneAmp 9700 Thermocyclersystem amplifiziert. Das PCR-Programm war dabei identisch zu dem, welches für unsere PCR und MPCR verwendet wurde (siehe Kapitel 2.2.4). Nach der Inkubation im Thermocycler wurden alle Amplifikate wie unter

Kapitel 2.2.7 beschrieben, einer Gelelektrophorese unterzogen. Die Proben wurden im Anschluss gemäß der im Kit befindlichen Anleitung ausgewertet. Gemäß der SSP-Technik ergab sich das Typisierungsergebnis aus den Vorhandensein oder Fehlen von PCR-Amplifikaten, ersichtlich in Form der DNA-Banden im Agarosegel unter UV-Licht. Diese ließen eine Aussage über die Genotypisierung der SNP zu. Besonders zu beachten war, dass die bei jeder Reaktion mitgeführte Positivkontrolle ebenfalls als Bande im Gel erschien.

2.2.7 Agarosegelelektrophorese

Zur Kontrolle des Vorhandenseins aller PCR-Produkte, und damit einer erfolgreichen Reaktion, wurde nach jeder PCR eine Elektrophorese in einem 2% igen Agarosegel angefertigt. Hierzu wurde eine Elektrophoresekammer der Firma Protrans in Verbindung mit einem Power Supply EPS 300 der Firma Pharmacia Biotech als Spannungsquelle verwendet.

Für ein 2%iges Agarosegel wurden 6 g LE Agarose (Fa. Biozym) mit 300 ml 1x Boratpuffer in einem Erlenmeyerkolben vermengt und in einer Mikrowelle (Fa. AEG) bis zum Siedepunkt erhitzt. Nach einer kurzen Abkühlphase, in der das flüssige Gel auf 70 °C abgekühlte, wurden sechs Tropfen Ethidiumbromid (Fa. Eurobio) hinzu gegeben. Anschließend wurde die Lösung in den mit Gelkämmen vorbereiteten Gelträger gegeben. Das Gel kühlte dann auf Raumtemperatur ab und härtete aus, sodass die Gelkämme wieder entfernt und das Gel in die mit 1x Boratpuffer gefüllte Elektrophoresekammer gestellt werden konnte. Für die Gelelektrophorese wurden 10 µl jedes PCR-Produktes in je eine Geltasche pipettiert. Da der für die PCR benutzte Reaktionspuffer den Farbstoff Cresolrot beinhaltete, war kein Ladepuffer mehr notwendig, und das PCR-Produkt konnte direkt der Elektrophorese unterzogen werden. Um später die Länge der PCR-Produkte abschätzen zu können, wurden je Elektrophorese 10 µl SSP-AB-DNA-Size-Marker (Fa. Olerup) in eine Tasche unter den PCR-Amplifikaten gegeben. Die Elektrophorese wurde im Anschluss für 20 Minuten bei einer Spannung von 170 Volt und einer Stromstärke von 400 mA durchgeführt.

Die Beurteilung der Gele erfolgte unter UV-Licht mit Hilfe eines UV-Transilluminators (Fa. UVP Inc.). Die Ergebnisse wurden mit einer MWG Fotografiereinheit (Fa. Biotech) und einem Fotodrucker (Fa. Mitsubishi) als Bild dokumentiert.

2.2.8 Sequenzierung

Die Sequenzierung der MPCR-Produkte wurde eingesetzt, um einen sicheren Nachweis zu haben, dass erstens alle Produkte in den drei MPCR wie vorgesehen amplifiziert wurden, und zweitens um Unstimmigkeiten zwischen den Ergebnissen der SSP-Methode als Referenzmethode und unseres neuen xMAP® Carboxybead basierten Tests zu überprüfen.

Die Sequenzierung erfolgte nach dem von Sanger et al [95,96] beschriebenen Kettenabbruchverfahren. Bevor jedoch die MPCR-Produkte sequenziert werden konnten, mussten sie zunächst aufgereinigt werden, um Reste von Primern und übrig gebliebene dNTPs zu entfernen. Dies war nötig, da diese die Sequenzierung empfindlich gestört hätten. Hierzu wurde ein kommerziell erhältliches Enzym namens Exosap It (Fa. USB Corp) verwendet. Zur Aufreinigung wurden 10 μ l des MPCR-Produktes mit 3 μ l des Aufreinigungsenzymes versetzt und nach dem Verschließen der 96-Well Platte kurz durch Vortexen vermischt. Anschließend erfolgte die Inkubation bei 38 °C für 15 min in einem GeneAmp 9700 Thermocyclersystem. Die 38 °C stellten hierbei das Temperaturoptimum für die Enzymaktivität dar. Im Anschluss wurde der Reaktionsansatz für 15 min bei 80 °C inkubiert, wobei das Enzym denaturiert und somit inaktiviert wurde. Abb. 8 auf der nächsten Seite zeigt das Reaktionsschema. Die 13 μ l der aufgereinigten Probe konnte nun weiter für die Sequenzierung bearbeitet werden.

mit 2 µl LiChromosolv (Fa. Merk) Chromatographiewasser in eine mit Strichcode markierten PCR-Platte vorgelegt, welche kompatibel zu unserem Sequenzierautomaten war. Zu den vorgelegten 5 µl Probe wurden 5 µl des Reaktionsgemisches hinzugefügt. Dieses Reaktionsgemisch bestand aus dem kommerziell erhältlichen Sequenzierkit BigDye Terminator (Fa. Applied Biosystems) und dem Sequenzierprimer. Da bei der Sequenzierung nur ein Strang der MPCR-Produkte amplifiziert werden durfte, wurde nur ein Primer zu jeder Probe hinzu gegeben. Hierzu verwendeten wir die von uns für die PCR designten PCR-Primer. Diese wurden allerdings stärker verdünnt, so dass 3 µl einer 1 pmol/µl konzentrierten Primerlösung verwendet wurden. Zu diesen 3 µl kamen 1 µl Reaktionspuffer, sowie 1 µl Reaktionsenzym, welches die DNA-Polymerase und die dNTPs und ddNTPs beinhaltete. Dieser Ansatz von 10 µl Gesamtvolumen wurde in einem Thermocyclersystem 9700 von GeneAmp, nach dem in Abb. 9 auf der folgenden Seite dargestellten PCR-Programm, amplifiziert. Nach dieser Reaktion musste das Reagenz vor der Analyse aufgereinigt und die MPCR-Produkte gefällt werden. Hierfür wurden die Amplifikate in der PCR-Platte mit 25 µl einer Mischung aus 96% Ethanol und 3 mol/l Natriumacetatlösung versetzt. Das Mischungsverhältnis der Grundlösung war dabei 1000 µl 96% Ethanol und 40 µl 3 mol/l Natriumacetatlösung. Dieser

Ansatz wurde für 40 Minuten bei 2000 G in einer Zentrifuge Multifuge 3 S-R (Fa. Heraeus) zentrifugiert. Im Anschluss daran wurde der Überstand verworfen und zur Entfernung der gesamten Menge an Flüssigkeit die Platte für drei Minuten bei 150 G kopfüber zentrifugiert. Anschließend wurden die Pellets der Proben in den Wells mit 50 µl 70% Ethanol resuspendiert und ein weiteres mal für 15 Minuten bei 2000 G zentrifugiert. Nach diesem zweiten Zentrifugationsschritt wurde analog zum ersten wieder der Überstand abgegossen und die letzten Flüssigkeitsreste abzentrifugiert, indem die Platte kopfüber für drei Minuten bei 150 G zentrifugiert wurde. Bei allen Zentrifugationsschritten war die Zentrifuge so programmiert, dass sie möglichst langsam abbremste, damit die am Boden befindlichen Proben nicht wieder gelöst wurde und versehentlich mit dem Überstand verworfen wurden. Nach diesen Schritten wurden die Proben in 25 ul HiDi-Formamid-Lösung (Fa. Applied Biosystems) resuspendiert. Zur vollständigen Lösung der Proben vom Boden in der Formamidlösung wurden die Platten für zwei Minuten bei 90 °C inkubiert, um anschließend in einem 3730 DNA Analysor (Fa. Applied Biosystems) analysiert zu werden. Ausgewertet wurden die Rohdaten mit dem Programm Seguenzing Analysis (Fa. Applied Biosystems).

2.2.9 Kopplung der Captureoligonukleotide mit den xMAP® Carboxybeads

Die Kopplung der Captureoligonukleotide an die xMAP® Carboxybeads (=Beads) erfolgte angelehnt an ein von der Fa. Luminex vorgegebenem Schema [136]. Jedem Captureoligonukleotid wurde einer der 16 verschiedenen bestellten Beadpopulationen zugeordnet, so dass es bei keinem der drei Kits zu einer Überschneidung kam und jedes innerhalb eines Kits eingesetzten Captureoligonukleotid auf eine eigene Beadsorte gekoppelt wurde.

Für die Kopplung eines Captureoligonukleotids wurden aus dem Tube der entsprechend zugeordneten Beadpopulation nach sorgfältigem Vortexen 125 µl Beadsuspension entnommen und in ein Eppendorfröhrchen gegeben. Dieses wurde in einer Centrifuge 5415C (Fa. Eppendorf) bei 14000 rpm für drei Minuten zentrifugiert, sodass alle Beads in einem weißen Pellet am Boden des Röhrchens zu finden waren. Der Überstand an Lösung wurde vorsichtig abgegossen und verworfen. Das Pellet wurde im Anschluss in 40 µl des 0,1 mol/ I MES pH 4,5 Kopplungs-Puffer resuspendiert. Dazu wurden anschließend 2 µl der Captureoligonukleotidlösung (unverdünnt wie geliefert, 100 pmol/µl) hinzu gegeben. Zur Vermittlung der Bindung wurden 3 µl der frisch hergestellten EDC-Lösung zugefügt, welche aus 10 mg EDC-Puder und 1000 µl LiChromosolv (Fa. Merck) hergestellt wurde. Die Chemikalie EDC bewirkt in der Lösung, dass die COOH-Gruppen auf der Oberfläche der Beads und die primären Aminogruppen am Ende der C12-Aminomodifikation der Captureoligonukleotide eine Bindung eingehen, sodass diese kovalent aneinander gebunden werden. Der Ansatz wurde nach Vortexen bei Raumtemperatur abgedunkelt (abgedeckt in einer Schachtel) für 30 Minuten inkubiert. Nach diesen 30 min wurden noch einmal 3 µl einer nach gleicher Vorgehensweise frisch hergestellten EDC-Lösung zum Ansatz hinzugegeben. Nach nochmaligem Vortexen wurde der Ansatz ein zweites mal für 30 Minuten bei Raumtemperatur abgedunkelt inkubiert. Nach Abschluss der Inkubation folgten zwei Waschschritte, die das Ziel hatten, nicht gebundene Captureoligonukleotide und die Reste des EDC zu entfernen. Für

den ersten Waschschritt wurden 250 μ l des 0,02% Tween Waschpuffer I in das Eppendorfröhrchen gegeben und dieses in der Centrifuge 5415C (Fa. Eppendorf) bei 14000 rpm für drei Minuten zentrifugiert. Der Überstand über dem entstandenen Pellet wurde abgegossen und verworfen. Für den zweiten Waschschritt wurden das Pellet in 250 μ l des 0,1% SDS Waschpuffer II resuspendiert und ein letztes Mal in der Centrifuge 5415C (Fa. Eppendorf) bei 14000 rpm für drei Minuten abzentrifugiert. Der Überstand wurde wieder abgegossen und verworfen.

Zur Lagerung der Beads wurde das Pellet in 125 μ l TE pH 8,0 Lagerpuffer resuspendiert und diese Lösung dunkel im Kühlschrank bei +4 °C aufbewahrt.

Auf diese Art wurden alle Captureoligonukleotide an die entsprechenden Beads gekoppelt. Alle innerhalb eines Messansatzes genutzten Beads wurden vor der Verwendung in gleicher Menge zu einer Beadmischung zusammen pipettiert, sodass insgesamt die drei Beadmischungen entstandenen, deren Zusammensetzungen auf Seite 61 in Tabelle 17 zu finden sind.

2.2.10 Hybridisierung und Probenanalyse mit dem Luminex 100 IS

Für die Analyse der Proben mussten die Beadmischungen zusammen mit den entsprechenden MPCR Produkten hybridisiert werden. Auch hierfür wurde eine allgemeine Arbeitsanleitung der Fa. Luminex für unsere Anwendung modifiziert [137]. Im ersten Schritt wurden für die Typisierung eines jeden Kits jeweils 6 µl der MPCR-Amplifikate in eine neue 96-Well Platte übertragen. Zu diesen Proben wurden 33 µl des 1,5x TMAC Hybridisierungspuffer hinzugegeben. Dieser Puffer bewirkt den Ausgleich der verschieden hohen Schmelztemperaturen, den die an die xMAP® Carboxybeads gebundenen Captureoligonukleotide aufwiesen. Dazu wurden entsprechend des zu typisierenden Kits, die zugehörige Beadmischung gegeben. In den Fällen von Kit 1 und 3 waren dies 7 µl und im Fall von Kit 2 8

Tabelle 17	abelle 17 Zusammenstellung der xMAP® Bead Mixe für die Kits 1-3			
Primer Mix	Genloci	Captureoligonu nu	kleotid Bezeich- ng	SNP/ Messung am sense oder antisense strand
Kit 1	IL1a	IL1a_Cap_C IL1a_Cap_T		rs1800587 sense
	IL1b Lo1	IL1b_1_Cap_T IL1b_1_Cap_C		rs16944 sense
	IL1b Lo2	IL1b_2_Cap_T IL1b_2_CapC		rs1143634 sense
	IL1R	IL1R_Cap_T IL1R_Cap_C		rs2234650 sense
	IL1RN	IL1RN_Cap_T IL1RN_Cap_C		rs315952 sense
	TNFa	TNFa_1_Cap_A TNFa_1_Cap_G TNFa_2_Cap_A TNFa_2_Cap_G		rs1800629 sense rs361525 sense
Kit 2	IL4Ra	IL4Ra_Cap_A IL4Ra_Cap_G		rs1801275 sense
	IL10 Lo1	IL10_1_Cap_A IL10_1_Cap_G		rs1800896 sense
	IL10 Lo2	IL10_2_Cap_T IL10_2_Cap_C IL10_3_Cap_A IL10_3_Cap_C		rs1800871 antisense rs1800872 sense
	IL12b	IL12b_Cap_A IL12b_Cap_C		rs3212227 sense
	IFNg	IFNg_Cap_T IFNg_Cap_A		rs2430561 antisense
	TGFb	TGFb_1_Cap_T TGFb_1_Cap_G TGFb_2_Cap_C TGFb_2_Cap_G		rs1982073 sense rs1800471 antisense
Kit 3	IL2 Lo1	IL2_1_Cap_T IL2_1_Cap_G		rs2069763 sense
	IL2 Lo2	IL2_2_Cap_T IL2_2_Cap_G		rs2069763 sense
	IL4 Lo1	IL4_1_Cap_T IL4_1_Cap_G		rs1800896 sense
	IL4 Lo2	IL4_2_Cap_T IL4_2_Cap_C		rs1800871 sense
	IL4 Lo3	IL4_3_Cap_T IL4_3_Cap_C		rs1800872 sense
	IL6 Lo1	IL6_1_Cap_A IL6_1_Cap_G		rs1900797 sense
	IL6 Lo2	IL6_2_Cap_C IL6_2_Cap_G		rs1800795 sense
antisense IFNg IL1a IL1b IL1R IL1RN IL2 IL4 IL4Ra IL6	Sequenz entspricht dem nicht kodierenden komplementärer DNA Strang Interferon gamma Interleukin-1 alpha Interleukin-1 beta Interleukin-1 Rezeptor Interleukin-1 Rezeptorantagonist Interleukin-2 Interleukin-4 Interleukin-4 Rezeptor alpha Interleukin-6	IL10 IL12b Lo MPCR sense SNP TGFb TNFa	Interleukin-10 Interleukin-12 Locus multiplex Polym (Multiplex Polym Sequenz entsprikodierenden DN Punktmutation (Single Nucleot Transforming g Tumor necrosis	beta erasekettenreaktion merase Chain Reaction) icht dem IA Strang ide Polymorphism) rowth factor beta factor alpha

µl der entsprechenden Beadmischung (die zusammengehörige MPCR und Beadmischung, sowie der Inhalt dieser geht aus Tabelle 17 auf Seite 61 hervor). Zu jedem Ansatz kamen noch 4 µl (Kit 1 und 3) beziehungsweise 3 µl (Kit 2) TE 8,0 Probenpuffer hinzu, so dass insgesamt 50 µl Gesamtvolumen je Well entstanden. Zum Hybridisieren wurde der Ansatz in einem GeneAmp 9700 Thermocycler bei 95 °C für fünf Minuten inkubiert, wodurch die PCR-Amplifikate denaturierten und die Doppelstränge gelöst wurden. Danach fand die Hybridisierung bei 54,5 °C für 15 Minuten statt, in der die MPCR-Amplifikate an die komplementären Captureoligonukleotide hybridisierten.

Zur Entfernung von nicht gebundenen PCR-Produkten aus dem Analyseansatz, wurden die Reaktionsansätze nach dem Hybridisieren gewaschen. Dafür wurden die Ansätze in der 96-Well Platte in einer Zentrifuge des Typs Centrifuge 2-5 (Fa. Sigma) bei 3900 rpm für drei Minuten zentrifugiert, in welcher sich die an die Beads gebundenen MPCR-Amplifikate am Boden im Pellet absetzten. Anschließend wurde der Überstand dekantiert und das je Probe verbliebene Pellet mit 50 µl einer 1,0x TMAC/Streptavidin-R-phycoerythrin (Fa. Invitrogen) Lösung resuspendiert. Diese Lösung wurde direkt vor dem Waschen hergestellt. In 1000 µl 1,0x TMAC wurden 4 µl Streptavidin R-phycoerythrin (Fa. Invitrogen) gelöst. Nachdem alle Proben resuspendiert wurden, konnte der Ansatz wieder für 5 Minuten bei 54,5 °C in einem GeneAmp 9700 Thermocycler inkubiert

A -> DenaturierenB-> Hybridisieren der Beads mit PCR-Produkten, anschließendWaschschrittC -> Labeln der PCR-Produkte mit Biotin, anschließend WaschschrittPCRPolymerasekettenreaktion (Polymerase Chain Reaction)

Material und Methoden

werden. In diesem Reaktionsschritt erfolgte die Markierung mit dem Reportermolekül (Streptavidin-R-phycoerythrin), welches an die Biotinmarkierung gebunden wurde. Das Thermocyclerprogramm für die Hybridisierung und das Labeling ist in Abb. 10 auf der vorherigen Seite zu finden. Nach dem Labeling wurden die Reaktionsansätze ein zweites Mal gewaschen. Dieser Waschschritt erfolgte analog zum erste Waschschritt bei 3900 rpm für wiederum drei Minuten. Danach wurde der Überstand abermals dekantiert und die Pellets in den Wells mit je 50 µl 1,0x TMAC resuspendiert. Zuletzt wurden die Proben in eine 96-Well Platte umpipettiert, die für die Analyse im Luminex 100 IS konzipiert war. Hierzu wurden die Proben mit einer Corning Costar 12-Kanalpipette in eine entsprechende Platte übertragen und anschließend im Luminex 100 IS Gerät analysiert.

2.2.11 Auswertung der Analysedaten

Für die Auswertung und Typisierung der Proben, wurden die vom Luminex 100 IS ausgegebenen "Trimmed Mean" Daten verwendet. Diese spiegeln den medianen Wert des für jede Beadpopulation kumulierten Signals wieder, welches durch den Photomultiplier gemessen wurde.

Zur Typisierung eines SNP wurden immer beide zugehörigen Beadpopulationen betrachtet, also die für den Wildtyp und die Mutation. Beide Werte wurden jeweils mit dem aus der negativ Kontrolle ermittelten Leerwert korrigiert und folgend dividiert. Der daraus resultierende Quotient stellte die Grundlage der Auswertung dar. Siehe Formel (1) auf dieser Seite.

(1)
$$Q = (MW - LW) / (MM - LM)$$

QQuotient zur AuswertungMWTrimmed Mean Wildtyp

-63-

MM	Trimmed Mean Mutation
LW	Trimmed Mean Leerwert Wildtyp
LM	Trimmed Mean Leerwert Mutation

Um diese Rechnung weitgehend automatisiert vornehmen zu können, wurde in Microsoft Excel ein Auswertmakro erstellt, das die Berechnung ausführte, nachdem die Rohdaten in dieses kopiert wurden.

Die Auswertung der Quotienten erfolgte nach der Idee, das im Falle eines homozygoten Wildtyps ein hoher Wert im Zähler von Gleichung (1) steht und ein niedriger Wert im Nenner. Damit ergab sich ein hoher Quotient. Im Falle einer heterozygoten Situation sollten im optimalen Fall Zähler und Nenner gleich groß sein, so dass sich ein Quotient um den Wert 1 bildete. Im Fall der homozygoten Variante der Mutante nahm der Zähler einen kleinen Wert und der Nenner einen großen ein. Damit ergab sich ein Quotient der kleiner als eins war. Dieser Idee folgend konnten anhand der Ergebnisse für jeden SNP zwei Cut-Offs definiert werden, die die drei Möglichkeiten der Typisierung gegeneinander abgrenzte. So wurde für jeden einzelnen SNP verfahren und die Proben anhand dessen typisiert.

2.2.12 Ermittlung der Haplotypen

Bei mehreren SNP, welche nahe beieinander innerhalb des selben Gens zu finden waren, interessierte uns nicht nur die alleinige Genotypisierung der SNP, sondern auch die Konfiguration der Haplotypen, sprich welche Ausprägungen der SNP zusammen auf dem selben Chromosom lagen. Im Vergleich zur Methode SSP war die Bestimmung von Haplotypen mit Luminex bedeutend schwieriger und in bestimmten Konstellationen schlicht unmöglich. Die Bestimmung eines Haplotypen aus den Genotypen war dann kein Problem, wenn im Fall von zwei SNP im Gen einer oder beide SNP homozygot vorlagen.
Material und Methoden

Probleme ergaben sich dann, wenn beide SNP in der Genotypisierung heterozygot waren. Aufgrund dessen, dass die Ermittlung der Genotypen jedes SNP völlig unabhängig von einander durchgeführt wurde, lässt sich nicht ermitteln, welche Kombination der Genotypen zusammen auf einem Chromosom zu finden sind. Es ergäben sich drei Möglichkeiten für ein Chromosom, entweder an beiden Stellen der SNP den Wildtyp aufzuweisen, im zweiten möglichen Fall an beiden Stellen die Mutation oder aber die dritte Möglichkeit an einer Stelle den Wildtyp und am anderen die Mutation. Anhand der Messergebnisse im von uns entwickelten Verfahren ist die Auflösung dieses Problems nicht möglich.

Gleiches gilt für die beiden Gene, in denen drei SNP den Haplotypen bilden. Für eine eindeutige Bestimmung sind hier mindestens zwei homozygote Typisierungen erforderlich. Bei zwei oder mehr heterozygoten SNP wird die Zuordnung eines Haplotypen theoretisch unmöglich. Dennoch gelang es uns mit Ausnahme des Gens IL1b, die Haplotypen zu bestimmen. Möglich wurde dies, da in den anderen vorliegenden Haplotypisierungen durch SSP auffiel, das nicht jeder theoretisch mögliche Haplotyp gleich häufig im menschlichem Genom zu existieren schien. Da bestimmte Haplotypen nicht beziehungsweise nur in einer sehr geringen Haplotypfrequenz vorkamen, konnte selbst bei Heterozygotie mehrerer SNP die Haplotypen bestimmt werden. Diese Möglichkeit konnte auch bei den zwei Genen angewendet werden, die sich aus drei SNP zusammensetzten. Nur im Falle von IL1b traf dies nicht zu, da hier alle vier theoretisch möglichen Haplotypen etwa gleich häufig nachgewiesen wurden. Tabelle 18 auf dieser Seite gibt eine Übersicht über die häufig nachgewiesenen Haplotypen und zeigt die resultierende Schlussfolgerungen auf die Haplotypen, wie sie anhand der Genotypisierung mit xMAP® Carboxybeads von uns gezogen wurden. Anhand der in der Tbl. 18 auf der nachfolgenden Seite dargestellten Regeln, konnte jeweils einer der Haplotypen festgelegt werden [112].

Tbl. 18 Übersicht d Zytokinpolymorphis	er hauptsächlich vorko men	ommenden Haplotype	en der untersuchten	
Zytokin	IL2	IL4	IL6	
Hohe Haplotypfrequenz	GG 0,310 TG 0,425 TT 0,240	GCC 0,285 TCC 0,353 TTC 0,120 TTT 0,140	CA 0,286 CG 0,150 GG 0,698	
Keine oder niedrige Haplotypfrequenz	GT 0,024	GCT 0,014 GTC 0,007 GTT 0,002 TCT 0,007	GA 0,002	
Bemerkung	Eine Genotypisierung mit G an 1. Steller be- dingt den Haplotypen GG, eine Genotypisie- rung mit T an 2. Stelle bedingt den Haploty- pen TT	Eine Genotypisierung mit G an 1. Stelle be- dingt den Haplotypen GCC, ein T an 3. Stelle bedingt den Haploty- pen TTT	Eine Genotypisierung mit G an 1. Steller bedingt den Haploty- pen GG, eine Genoty- pisierung mit A an 2. Stelle bedingt den Haplotypen CA	
Zytokin	IL10	TGFb	TNFa	
Hohe Haplotypfrequenz	ACC 0,296 ATA 0,269 GCC 0,411	AC 0,502 GC 0,445 GG 0,053	CC 0,834 CT 0,043 TG 0,123	
Keine oder niedrige Haplotypfrequenz	ACA 0,020 ATC 0,003 GCA 0,000 GTC 0,000 GTA 0,000	AG 0,000	TT 0,000	
Bemerkung	Eine Genotypisierung mit G an 1. Stelle be- dingt den Haplotypen GCC, ein T an 2. Stelle bedingt den Haploty- pen ATA, eine Genoty- pisierung von A an 3. Stelle bedingt ebenfalls den Haplotypen ATA	Eine Genotypisierung mit A an 1. Stelle be- dingt den Haplotypen AC, eine Genotypisie- rung mit G an 2. Stelle bedingt den Haploty- pen GG	Eine Genotypisierung mit T an 1. Steller be- dingt den Haplotypen TG, eine Genotypisie- rung mit C an 2. Stelle bedingt den Haploty- pen CC	
 A Adenin C Cytosin G Guanin T Thymin 	IL2 Interleukin-2 IL4 Interleukin-4 IL6 Interleukin-6 IL10 Interleukin-10	TGFbTransforming growth factor betaTNFaTumor necrosis factor alpha		

Die Zahl hinter den Haplotypen gibt die Haplotypfrequenz an, die in der Studie von Trajkov et al. ermittelt wurde.

Quelle: Trajkov D, Arsov T, Petlichkovski A, Strezova A, Efinska-Mladenovska O, Gogusev J, Spiroski M: Distribution of the 22 cytokine gene polymorphisms in healthy Macedonian population. Bratisl Lek Listy. 110(1): 7-17 (2009)

3. Ergebnisse

3.1 Ergebnisse der PCR und MPCR

Die PCR Primer wurden so ausgewählt, dass für jeden zu untersuchenden Genabschnitt ein stabiles, ausfallsicheres PCR-Produkt zur Analyse zur Verfügung stand. Für die MPCR wurden in den Fällen für Kit1 (IL1a, IL1b Lo1, IL1b Lo2, IL1R, IL1RN und TNFa) und Kit2 (IL4Ra, IL10 Lo1, IL10 Lo2, IL12b, IFNg und TGFb) jeweils sechs Amplifikate in einen Reaktionsansatz zusammengefügt und erfolgreich amplifiziert. In Kit 3 (IL2 Lo1, IL2 Lo 2, IL4 Lo1, IL4 Lo2, IL4 Lo3, IL6 Lo1 und IL6 Lo2) waren es sieben Amplifikate.

Abbildung 11 auf Seite 67 zeigt für jeden Kit die Gelelektrophorese der einzelnen PCR-Produkte, sowie darunter an vorletzter Position die Gelelektrophorese der gesamten MPCR. Zur Verdeutlichung der Produktlänge ist in der untersten Zeile ein DNA-Marker mit vordefinierten Banden bei 50 bp, 100 bp, 200 bp, 300 bp, 400 bp, 500 bp und 1000 bp abgebildet. Das sich ergebende Bandenmuster der MPCR entstand durch Überlagerung der einzelnen Reaktionen. Aufgrund der ähnlichen Länge der Amplifikate und der nicht hochauflösenden Trennung im Agarosegel sind nicht mehr alle Amplifikate einzeln optisch identifizierbar, sondern mehrere Amplifikate einer Länge bilden innerhalb der MPCR eine gemeinsame Bande. Aus diesem Grund wurde die Sequenzierung zur Bestätigung der erfolgreichen Amplifikation angeschlossen.

3.2 Ergebnisse des Amplifikationserfolgs durch Sequenzierung

Die zur Kontrolle des Amplifikationserfolges aus den MPCR angefertigten Sequenzierungen sind im folgenden auf den Seiten 70 bis 76 abgebildet. Es wurde für alle MPCR-Amplifikate repräsentative Abschnitte der DNA Sequenzen ausgewählt, die gleichzeitig die Stellen der untersuchten SNP darstellen. Bei mehreren SNP innerhalb eines Gens, die zu weit auseinander lagen, um sie innerhalb eines Sequenzabschnittes demonstrieren zu können, wurden zwei Abschnitte ausgewählt. Wenn möglich wurden die Sequenzen des kodierenden Stranges dargestellt. Nur in den Fällen von IL1R, TNFa, IL4Ra, IL10, sowie IL2 wurde der komplementäre Strang gezeigt. Dies geschah immer dann, wenn der SNP zu wenige bp vom forward Primer entfernt war, da methodenbedingt zirka die ersten 20 bp der Amplifikate nicht in der Sequenz dargestellt werden konnten. Erst nach dieser Strecke ergab sich eine auswertbare Sequenz. Lag der SNP in dieser "blinden Zone", nutzten wir die Darstellung der komplementären Stränge. Ein weiterer Grund, um auf den komplementären Strang auszuweichen war IL10 Lo1, bei dem am Anfang des Amplifikates noch vor dem eigentlich zu untersuchenden SNP ein Short-Tandem-Repeat lag, welcher aufgrund verschiedener Anzahl an Wiederholungen der Basenfolge CA in beiden Allelen zu einer Phasenverschiebung in der weiteren Sequenz führte. Damit waren die Sequenzen im kodierenden Strang nicht mehr auswertbar, so das auch hier die Darstellung des komplementären Stranges genutzt wurde. Zur Darstellung der SNP wurden zur Demonstration sequenzierte Proben verwendet, die für den nachzuweisenden SNP heterozygot waren. Lediglich bei TNFa, TGFb und IL2 konnten keine Proben sequenziert werden, die dieser Anforderung entsprachen, so dass in diesen Fällen eine homozygote Variante abgebildet wurde. Alle untersuchten SNP wurden in den gezeigten Sequenzen durch einen senkrechten gelben Balken markiert. Auf den nachfolgenden Seiten sind in den Abb. 12 bis 19 die Ergebnisse der Sequenzierung sortiert nach den drei MPCR gezeigt.

3.3 Ergebnisse der Testvalidierung

Auf den nachfolgenden Seiten 78 bis 99 werden die Ergebnisse der Typisierung mittels Luminex 100 IS, welche zur Validierung ermittelt wurden, dargestellt. Die nachstehenden Tabellen demonstrieren für jeden einzelnen SNP, den zu jeder Probe aus den Rohdaten gemäß Formel (1) Seite 63 ermittelten Quotienten. Dahinter stehend sind die sich aus den festgelegten Cut-Offs ergebenden Genotypisierungen ausgewiesen. Die Übersichtstabellen zeigen des weiteren die aus der gleichen Probe ermittelten Ergebnisse der Referenzmethode. Im Falle einer Diskrepanz zwischen beiden Methoden sind die Daten in den entsprechenden Zeilen farblich hervorgehoben. In diesen Fällen ist zusätzlich das Ergebnis der Sequenzierung angegeben. Für den Fall, dass die Ergebnisse aus Luminex und der Sequenzierung stimmig waren, ist die Zeile grün markiert, für den Fall, dass das Kontrollergebnis der Sequenzierung mit der der SSP-Referenzmethode übereinstimmte, wurde diese Zeilen rot hervor gehoben.

In vereinzelten Fällen waren keine Vortypisierungen verfügbar, meist war dies auf ein nicht auswertbares Testergebnis des SSP-Test zurück zuführen. Für diejenigen Proben, bei deren Polymorphismen dies zutraf, wurde diese in der Spalte der Referenzmethode mit "—" markiert.

Unter jeder Tabelle ist eine graphische Aufarbeitung der Quotienten zu finden. In diesen Graphiken sind die Quotienten vom Kleinsten zum Größten Quotienten sortiert dargestellt und jeweils mit der Probennummer versehen. In den Diagrammen sind die für den jeweiligen SNP festgelegten Cut-Off Werte ersichtlich, so dass die Ergebnisquotienten der Proben in Bezug zu der Lage der Cut-Off Werte betrachtet werden können. Datenpunkte, die als blaue Raute gekennzeichnet sind, markieren die Messungen, welche weder mit der Referenzmethode noch mit der Sequenzierung übereinstimmen, und dementsprechend Falschmessungen der Methode Luminex darstellen.

Lra	<u>n</u>	n	
1 1 (1		,, ,,	
L 1 M	~~		
LIY	υu	, , , ,	JJC

Tab. 1 A - Ade rot - Se	L9 /Abb enosin C equenzier	. 20 Ergebnis - Cytosin G - ung nicht übere	sse Typisie Guanosin T instimmend m	r ung für In - Thymin SS it Luminex g	terleu SP - Seq grün - S	kin 1 al Juenz s pez Sequenzie	pha (IL1a) r a ifische P rimer erung übereinsti	s1800587 Q - Q uotient mmend mit Lu	ıminex
Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung
V01	1.039	СТ	СТ		V27	2.648	СС	СС	
V02	2.429	СС	СС		V28	0.413	Π	TT	
V03	2.369	СС	СС		V29	2.255	СС	СС	
V04	2.389	СС	СС		V30	1.140	СТ	СТ	
V05	2.312	СС	СС		V31	2.591	СС	CC	
V06	0.792	СТ	СТ		V32	1.078	СТ	СТ	
V07	0.510	Π	Π		V33	2.467	CC	CC	
V08	2.300	СС	CC		V34	2.498	CC	CC	
V09	1.031	СТ	СТ		V35	0.464	Π	тт	
V10	2.509	СС	CC		V36	0.961	СТ	СТ	
V11	0.433	π	СТ	π	V37	1.056	СТ	СТ	
V12	1.291	СТ	СТ		V38	0.462	Π	TT	
V13	0.978	СТ	СС	СТ	V39	0.956	СТ	СТ	
V14	0.904	СТ	СС	СТ	V40	1.158	СТ	СТ	
V15	0.452	тт	СТ	π	V41	2.213	СС	СС	
V16	0.884	СТ	СТ		V42	0.998	СТ	СТ	
V17	2.270	СС	СТ	СС	V43	2.437	CC	СС	
V18	2.485	СС	СС		V44	2.147	СС	СТ	СС
V19	2.425	СС	СС		V45	1.666	СТ	СТ	
V20	0.919	СТ	СТ		V46	1.249	СТ	СТ	
V21	2.536	СС	СС		K1	2.734	CC	СС	
V22	3.245	СС	СС		К2	1.017	СТ	СТ	
V23	2.275	СС	СС		К3	2.814	СС	СС	
V24	2.647	СС	СС		K4	0.980	СТ	СТ	
V25	0.901	СТ	СТ		К5	1.043	СТ	СТ	
V26	0.424	TT	Π		K6	1.099	СТ	СТ	
				IL1a rs	1800587				

Lra	<u>nn</u>	nic	
1 1 (1			
L 1 M	C D		

Tab. 2 A - A de rot - Se	20 /Abb enosin C equenzier	. 21 Ergebnis - Cytosin G - ung nicht überei	Se Typisier Guanosin T nstimmend m	r ung für In - T hymin SS it Luminex g	terleul P - S eq rün - S	kin 1 be uenz s pezi Sequenzier	ta (IL1b) rs1 fische Primer (ung übereinstim	. 6944 Q - Q uotient Imend mit Lur	ninex
Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q s	Typisierung Luminex	Typisierung SSP	Sequenzie- rung
V01	2.486	СТ	СТ		V27	8.359	СС	CC	
V02	12.467	СС	СС		V28	9.030	СС	CC	
V03	2.345	СТ	СТ		V29	8.984	СС	CC	
V04	1.919	СТ	СТ		V30	9.790	СС	CC	
V05	10.939	CC	СС		V31	1.768	СТ	СТ	
V06	10.016	CC	СС		V32	8.023	СС	CC	
V07	2.261	СТ	СТ		V33	9.513	СС	CC	
V08	10.667	CC	СС		V34	8.678	СС	CC	
V09	9.035	CC	СС		V35	1.964	СТ	СТ	
V10	2.602	СТ	СТ		V36	2.103	СТ	СТ	
V11	10.648	СС	СС		V37	2.211	СТ	СТ	
V12	6.460	СС	СС		V38	8.803	СС	CC	
V13	2.109	СТ	СТ		V39	2.194	СТ	СТ	
V14	2.352	СТ	СТ		V40	7.317	СС	CC	
V15	11.277	СС	СС		V41	2.201	СТ	СТ	
V16	3.399	СТ	СТ		V42	2.112	СТ	СТ	
V17	11.567	СС	СС		V43	0.210	Π	Π	
V18	9.712	СС	СС		V44	2.033	СТ	СТ	
V19	2.038	СТ	СТ		V45	10.596	СС	CC	
V20	11.452	СС	СС		V46	2.007	СТ	СТ	
V21	1.811	СТ	СТ		K1	0.413	Π	Π	
V22	7.114	СС	СС		K2	1.992	СТ	СТ	
V23	2.002	СТ	СТ		К3	1.906	СТ	СТ	
V24	3.005	СТ	СТ		K4	2.036	СТ	СТ	
V25	0.190	TT	TT		К5	4.936	СС	CC	
V26	10.005	СС	СС		К6	5.473	СС	CC	
				IL1b rs	16944				

Lra	<u>nn</u>	nic	
1 1 (1			
L 1 M	C D		

Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie rung
V01	0.993	СТ	СТ		V27	0.100	CC	CC	
V02	0.063	СС	СС		V28	1.871	Π	Π	
V03	0.080	СС	CC		V29	0.074	СС	CC	
V 04	0.061	СС	СС		V30	0.576	СТ	СТ	
/05	0.068	СС	CC		V31	0.071	СС	CC	
/06	1.359	СТ	СТ		V32	0.948	СТ	СТ	
/07	0.646	СТ	СТ		V33	0.083	СС	CC	
/08	0.088	СС	CC		V34	1.186	СТ	СТ	
/09	0.079	СС	CC		V35	2.558	Π	Π	
/10	0.078	СС	СС		V36	0.971	СТ	СТ	
/11	0.792	СТ	СТ		V37	0.073	СС	CC	
/12	0.092	сс	СС		V38	2.693	Π	Π	
/13	0.890	СТ	СТ		V39	0.860	СТ	СТ	
/14	0.078	СС	СС		V40	1.896	π	СТ	π
/15	2.958	π	СТ	π	V41	0.079	СС	СТ	СС
/16	1.370	СТ	СТ		V42	0.789	СТ	СТ	
/17	0.078	СС	СС		V43	0.063	СС	CC	
/18	0.077	СС	СС		V44	0.070	сс	СТ	сс
/19	0.068	СС	СС		V45	0.832	СТ	СТ	
/20	0.719	СТ	СТ		V46	0.801	СТ	СТ	
/21	0.082	СС	СС		K1	0.075	СС	СС	
V22	0.108	СС	СС		К2	0.896	СТ	СТ	
/23	0.063	СС	СС		К3	0.181	СС	СС	
V24	0.066	сс	СС		K4	0.837	СТ	СТ	
/25	0.076	СС	СС		K5	1.062	СТ	СТ	
/26	1.046	СТ	СТ		K6	1.036	СТ	СТ	
	3,000			IL1b rs	1143634		- 514 - 824		
2,500								– Datenpunkte IL1b rs1143634	
2,000								Cut-Off CC/CT	
	ع. 1,000			<u></u>	11 145 145 145 145 145 145 145	K2 V32 V01 K6 K6 K7 K6	A 	-	
	0,500			- v30 - v20 - v20	5.5			Cut-Off CT/TT 1,60	
	0,000	10 10 10 10 10 10 10 10 10 10 10 10 10 1				40			

Lra	<u>nn</u>	nic	
1 1 (1			
L 1 M	C D		

ProbeQTypisierung LuminexTypisierung SSPSequenz rungV017.996TTCCTTV020.074CCCCCCV030.066CCCCCCV041.825CTCTCTV051.648CTCTCTV067.639TTTTTTV073.400CTCTCTV080.105CCCCCCV090.107CCCCCV100.103CCCCCV111.428CTCTCTV121.636CTCTCTV131.405CTCTCTV140.080CCCCCV150.092CCCCCV160.685CTCTCTV171.231CTCTCV180.084CCCCCV190.094CCCCCV201.158CTCTCTV211.541CTCTCTV231.701CTCCCTV240.104CCCCCV251.634CTCTCTV261.353CTCTCT	ie- Probe V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V45 V46 K1 K2	Q 0.089 0.124 0.077 0.081 0.076 1.880 0.099 1.322 1.208 6.831 1.595 0.098 1.543 0.081 1.293 1.263 1.619 1.265 1.115 0.060 1.677	Typisierung Luminex CC CT CT CT CC CT CT CC CT	Typisierung CC CT CT <t< th=""><th>Sequenzie- rung CC </th></t<>	Sequenzie- rung CC
V01 7.996 TT CC TT V02 0.074 CC CC Image:	V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V45 V46 K1 K2	0.089 0.124 0.077 0.081 0.076 1.880 0.099 1.322 1.208 6.831 1.595 0.098 1.543 0.081 1.293 1.263 1.619 1.265 1.115 0.060 1.677	сс сс сс сс сс сс сс сс сс ст сс ст ст ст ст ст сс ст ст ст <td< th=""><th>сс ст сс сс сс сс ст сс ст ст</th><th></th></td<>	сс ст сс сс сс сс ст сс ст	
V02 0.074 CC CC Image: CC V03 0.066 CC CC Image: CC V04 1.825 CT CT Image: CT V05 1.648 CT CT Image: CT V06 7.639 TT TT Image: CT V07 3.400 CT CT Image: CT V08 0.105 CC CC Image: CT V09 0.107 CC CC Image: CT V10 0.103 CC CC Image: CT V11 1.428 CT CT Image: CT V12 1.636 CT CT Image: CT V13 1.405 CT CT Image: CT V14 0.080 CC CC Image: CT V14 0.080 CC CC Image: CT V14 0.080 CC CC Image: CT V14 0.085 CT CT	V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V45 V46 K1 K2	0.124 0.077 0.081 0.076 1.880 0.099 1.322 1.208 6.831 1.595 0.098 1.543 0.081 1.293 1.263 1.619 1.265 1.115 0.060	сс сс сс сс ст ст <td>СТ СС СС СС СТ СТ СТ СТ СТ СТ</td> <td>CC</td>	СТ СС СС СС СТ СТ СТ СТ СТ СТ	CC
V03 0.066 CC CC C V04 1.825 CT CT CT V05 1.648 CT CT Image: Constraint of the straint of the stra	V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V45 V46 K1 K2	0.077 0.081 0.076 1.880 0.099 1.322 1.208 6.831 1.595 0.098 1.543 0.081 1.293 1.263 1.619 1.265 1.115 0.060 1.677	сс сс сс ст сс ст ст ст <td< td=""><td>сс сс сс ст ст</td><td></td></td<>	сс сс сс ст	
V04 1.825 CT CT CT V05 1.648 CT CT I V06 7.639 TT TT I V07 3.400 CT CT I V08 0.105 CC CC I V09 0.107 CC CC I V10 0.103 CC CC I V11 1.428 CT CT I V12 1.636 CT CT I V13 1.405 CT CT I V14 0.080 CC CC I V14 0.080 CC CC I V14 0.084 CC CC I V15 0.092 CC CC I V14 0.084 CC CC I V17 1.231 CT CT I V18 0.084 CC CC <td>V30 V31 V32 V33 V34 V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V45 K1 K2</td> <td>0.081 0.076 1.880 0.099 1.322 1.208 6.831 1.595 0.098 1.543 0.081 1.293 1.263 1.619 1.265 1.115 0.060 1.677</td> <td>сс ст сс ст ст <td>сс сс ст сс ст ст</td><td></td></td>	V30 V31 V32 V33 V34 V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V45 K1 K2	0.081 0.076 1.880 0.099 1.322 1.208 6.831 1.595 0.098 1.543 0.081 1.293 1.263 1.619 1.265 1.115 0.060 1.677	сс ст сс ст ст <td>сс сс ст сс ст ст</td> <td></td>	сс сс ст сс ст	
V05 1.648 CT CT CT V06 7.639 TT TT TT V07 3.400 CT CT CT V08 0.105 CC CC Image: CT V09 0.107 CC CC Image: CT V10 0.103 CC CC Image: CT V11 1.428 CT CT Image: CT V12 1.636 CT CT Image: CT V13 1.405 CT CT Image: CT V14 0.080 CC CC Image: CT V15 0.092 CC CC Image: CT V16 0.685 CT CT Image: CT V17 1.231 CT CT Image: CT V18 0.084 CC CC Image: CT V19 0.094 CT CT Image: CT V20 1.158 CT CT Image: CT<	V31 V32 V33 V34 V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V45 V46 K1 K2	0.076 1.880 0.099 1.322 1.208 6.831 1.595 0.098 1.543 0.081 1.293 1.263 1.619 1.265 1.115 0.060 1.677	сс ст сс ст ст ст ст ст сс ст сс ст сс ст сс ст ст ст <td< td=""><td>сс ст сс ст ст ст <td< td=""><td></td></td<></td></td<>	сс ст сс ст ст ст <td< td=""><td></td></td<>	
V06 7.639 TT TT CT V07 3.400 CT CT CT V08 0.105 CC CC C V09 0.107 CC CC Image: CT V10 0.103 CC CC Image: CT V11 1.428 CT CT Image: CT V12 1.636 CT CT Image: CT V13 1.405 CT CT Image: CT V14 0.080 CC CC Image: CT V15 0.092 CC CC Image: CT V16 0.685 CT CT Image: CT V17 1.231 CT CT Image: CT V18 0.084 CC CC Image: CT V19 0.094 CC CC Image: CT V20 1.158 CT CT Image: CT V21 1.541 CT CT Image: CT </td <td>V32 V33 V34 V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V45 K1 K2</td> <td>1.880 0.099 1.322 1.208 6.831 1.595 0.098 1.543 0.081 1.293 1.619 1.265 1.115 0.060 1.677</td> <td>ст сс ст ст ст ст ст ст сс ст сс ст ст</td> <td>СТ СС СТ СТ СТ СТ СС СС СТ СС СТ СТ</td> <td></td>	V32 V33 V34 V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V45 K1 K2	1.880 0.099 1.322 1.208 6.831 1.595 0.098 1.543 0.081 1.293 1.619 1.265 1.115 0.060 1.677	ст сс ст ст ст ст ст ст сс ст сс ст ст	СТ СС СТ СТ СТ СТ СС СС СТ СС СТ СТ	
V07 3.400 CT CT CT V08 0.105 CC CC Image: CC V09 0.107 CC CC Image: CC V10 0.103 CC CC Image: CC V11 1.428 CT CT Image: CT V12 1.636 CT CT Image: CT V13 1.405 CT CT Image: CT V14 0.080 CC CC Image: CT V15 0.092 CC CC Image: CT V16 0.685 CT CT Image: CT V17 1.231 CT CT Image: CT V18 0.084 CC CC Image: CT V19 0.094 CC CC Image: CT V20 1.158 CT CT Image: CT V21 1.541 CT CT Image: CT V22 0.086 CC CC Image: CT V24 0.104 CC CC Image: CT I	V33 V34 V35 V36 V37 V38 V39 V40 V41 V42 V43 V42 V43 V44 V45 V45 V46 K1 K2	0.099 1.322 1.208 6.831 1.595 0.098 1.543 0.081 1.293 1.263 1.619 1.265 1.115 0.060 1.677	сс ст ст п сс сс сс сс ст сс ст сс ст сс ст	СС СТ СТ ТТ СТ СС СС СТ СС СТ СС СТ СТ	
V08 0.105 CC CC CC V09 0.107 CC CC Image: CC V10 0.103 CC CC Image: CC V11 1.428 CT CT Image: CT V12 1.636 CT CT Image: CT V13 1.405 CT CT Image: CT V14 0.080 CC CC Image: CT V14 0.080 CC CC Image: CT V15 0.092 CC CC Image: CT V16 0.685 CT CT Image: CT V17 1.231 CT CT Image: CT V18 0.084 CC CC Image: CT V19 0.094 CC CC Image: CT V20 1.158 CT CT Image: CT V21 1.541 CT CT Image: CT V22 0.086 CC CC	V34 V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V45 K1 K2	1.322 1.208 6.831 1.595 0.098 1.543 0.081 1.293 1.619 1.265 1.115 0.060 1.677	ст ст т ст ст сс ст сс ст ст с	СТ СТ СТ СТ СС СТ СС СТ СТ СТ	
V09 0.107 CC CC CC V10 0.103 CC CC Image: CC Image: CC V11 1.428 CT CT CT Image: CC	V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V43 V44 V45 V46 K1 K2	1.208 6.831 1.595 0.098 1.543 0.081 1.293 1.263 1.619 1.265 1.115 0.060 1.677	ст TT CT CC CT CT CT CT CT CT CT	СТ ТТ СТ СС СС СТ СС СТ СТ СТ	
V10 0.103 CC CC V11 1.428 CT CT V12 1.636 CT CT V13 1.405 CT CT V14 0.080 CC CC V15 0.092 CC CC V16 0.685 CT CT V17 1.231 CT CT V18 0.084 CC CC V19 0.094 CC CC V20 1.158 CT CT V21 1.541 CT CT V22 0.086 CC CC V23 1.701 CT CT V24 0.104 CC CC V25 1.634 CT CT V26 1.353 CT CT	V36 V37 V38 V39 V40 V41 V42 V43 V44 V45 V45 V46 K1 K2	6.831 1.595 0.098 1.543 0.081 1.293 1.263 1.619 1.265 1.115 0.060 1.677	π cr cc cr cc cr cc cr	П СТ СС СП СС СП	
V11 1.428 CT CT Image: CT V12 1.636 CT CT Image: CT V13 1.405 CT CT Image: CT V14 0.080 CC CC Image: CT V14 0.080 CC CC Image: CT V15 0.092 CC CC Image: CT V16 0.685 CT CT Image: CT V17 1.231 CT CT Image: CT V18 0.084 CC CC Image: CT V19 0.094 CC CC Image: CT V20 1.158 CT CT Image: CT V21 1.541 CT CT Image: CT V22 0.086 CC CC Image: CT V23 1.701 CT CC CT V24 0.104 CC CC Image: CT V25 1.634 CT CT Image: CT V26 1.353 CT CT Image: CT	V37 V38 V39 V40 V41 V42 V43 V43 V44 V45 V45 V46 K1 K2	1.595 0.098 1.543 0.081 1.293 1.263 1.619 1.265 1.115 0.060 1.677	ст сс сс сс ст ст ст ст ст ст	СТ СС СТ СС СТ СТ СТ СТ СТ СТ	
V12 1.636 CT CT CT V13 1.405 CT CT Image: CT V14 0.080 CC CC Image: CC V15 0.092 CC CC Image: CT V16 0.685 CT CT Image: CT V17 1.231 CT CT Image: CT V18 0.084 CC CC Image: CT V19 0.094 CC CC Image: CT V20 1.158 CT CT Image: CT V21 1.541 CT CT Image: CT V22 0.086 CC CC Image: CT V23 1.701 CT CT Image: CT V24 0.104 CC CC Image: CT V25 1.634 CT CT Image: CT V26 1.353 CT CT Image: CT	V38 V39 V40 V41 V42 V43 V43 V44 V45 V46 K1 K2	0.098 1.543 0.081 1.293 1.263 1.619 1.265 1.115 0.060 1.677	сс ст сс ст ст ст ст ст сс сс сс сс	СС СТ СС СТ СТ СТ СТ СТ СТ СТ СТ СТ СТ С	
V13 1.405 CT CT CT V14 0.080 CC CC Image: CC V15 0.092 CC CC Image: CC V16 0.685 CT CT Image: CT V17 1.231 CT CT Image: CT V18 0.084 CC CC Image: CT V19 0.094 CC CC Image: CT V20 1.158 CT CT Image: CT V21 1.541 CT CT Image: CT V22 0.086 CC CC Image: CT V23 1.701 CT CC CT V24 0.104 CC CC Image: CT V25 1.634 CT CT Image: CT V26 1.353 CT CT Image: CT	V39 V40 V41 V42 V43 V43 V44 V45 V45 V46 K1 K2	1.543 0.081 1.293 1.263 1.619 1.265 1.115 0.060 1.677	ст сс ст ст ст ст ст ст ст ст сс сс ст	СТ СС СТ СТ СТ СТ СТ СТ СС СС	
V14 0.080 CC CC CC V15 0.092 CC CC Image: CC V16 0.685 CT CT Image: CT V17 1.231 CT CT Image: CC V18 0.084 CC CC Image: CT V19 0.094 CC CC Image: CT V20 1.158 CT CT Image: CT V21 1.541 CT CT Image: CT V22 0.086 CC CC Image: CT V23 1.701 CT CC CT V24 0.104 CC CC Image: CT V25 1.634 CT CT Image: CT V26 1.353 CT CT Image: CT	V40 V41 V42 V43 V44 V44 V45 V46 K1 K2	0.081 1.293 1.263 1.619 1.265 1.115 0.060 1.677	сс ст ст ст ст ст сс сс сс	СС СТ СТ СТ СТ СТ СТ СТ СС	
V15 0.092 CC CC V16 0.685 CT CT V17 1.231 CT CT V18 0.084 CC CC V19 0.094 CC CC V20 1.158 CT CT V21 1.541 CT CT V22 0.086 CC CC V23 1.701 CT CC V24 0.104 CC CC V25 1.634 CT CT V26 1.353 CT CT	V41 V42 V43 V44 V45 V45 V46 K1 K2	1.293 1.263 1.619 1.265 1.115 0.060 1.677	ст ст ст ст ст ст сс сс	ст ст ст ст ст ст ст сс	
V16 0.685 CT CT CT V17 1.231 CT CT CT V18 0.084 CC CC Image: CC V19 0.094 CC CC Image: CC V20 1.158 CT CT Image: CC V21 1.541 CT CT Image: CC V22 0.086 CC CC Image: CC V23 1.701 CT CC CT V24 0.104 CC CC Image: CC V25 1.634 CT CT Image: CT V26 1.353 CT CT Image: CC	V42 V43 V44 V45 V45 V46 K1 K2	1.263 1.619 1.265 1.115 0.060 1.677	а а а а а а	ст ст ст ст ст ст ст ст	
V17 1.231 CT CT V18 0.084 CC CC V19 0.094 CC CC V20 1.158 CT CT V21 1.541 CT CT V22 0.086 CC CC V23 1.701 CT CC V24 0.104 CC CC V25 1.634 CT CT V26 1.353 CT CT	V43 V44 V45 V45 V46 K1 K2	1.619 1.265 1.115 0.060 1.677	ст ст ст сс сс	СТ СТ СТ СТ СС	
V18 0.084 CC CC V19 0.094 CC CC V20 1.158 CT CT V21 1.541 CT CT V22 0.086 CC CC V23 1.701 CT CC V24 0.104 CC CC V25 1.634 CT CT V26 1.353 CT CT	V44 V45 V46 K1 K2	1.265 1.115 0.060 1.677	ст ст ст сс	ст ст ст сс	
V19 0.094 CC CC V20 1.158 CT CT V21 1.541 CT CT V22 0.086 CC CC V23 1.701 CT CC V24 0.104 CC CC V25 1.634 CT CT V26 1.353 CT CT	V45 V46 K1 K2	1.115 0.060 1.677	СТ	СТ	
V20 1.158 CT CT V21 1.541 CT CT V22 0.086 CC CC V23 1.701 CT CC V24 0.104 CC CC V25 1.634 CT CT V26 1.353 CT CT	V46 K1 K2	0.060	20 20	CC	
V21 1.541 CT CT V22 0.086 CC CC V23 1.701 CT CC V24 0.104 CC CC V25 1.634 CT CT V26 1.353 CT CT	K1 K2	1.677	СТ		
V22 0.086 CC CC V23 1.701 CT CC CT V24 0.104 CC CC CT V25 1.634 CT CT CT V26 1.353 CT CT CT	K2	11077		CT	
V23 1.701 CT CC CT V24 0.104 CC CC C V25 1.634 CT CT C V26 1.353 CT CT C		9,465	π	Π	
V24 0.104 CC CC V25 1.634 CT CT V26 1.353 CT CT	КЗ	1.476	СТ	СТ	
V25 1.634 CT CT V26 1.353 CT CT	K4	0.086	00	CC	
V26 1.353 CT CT	К5	11.538	π	Π	
	K6	1.363	СТ	СТ	
44,899	IL1R rs223465	50	10.	0.	
14,000					
12,000			<u>भ</u>	– Daten¢ rs2234	ounkte IL1R 650
10,000			<u>8</u> -		
- 8,000			400 V01		
			80 -	Cut-Of 0,40	f CT/CC
4,000			20A -		
2,000 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	V45 V44 V44 V34 V34 V3	7.23 7.23 7.24 7.25 7.23 7.23 7.23 7.23 7.23 7.23 7.23 7.23	- K1 - K1 - V23 - V32 - V32	Cut-Of 5,00	fTT/CT
	30	40	50		
<u>-</u> L	fd Nr.				

Lra	<u>n</u>	n	
1 1 (1		,, ,,	
L 1 M	~~		
LIY	υu	, , , ,	JJC

Tab. 2 A - Ade rot - S	23/Abb. enosin C equenzieru	24 Ergebniss - Cytosin G - Cytosing nicht überei	se Typisier Guanosin T nstimmend m	ung Interla Thymin SS it Luminex g	eukin 1 P - S eq rün - S	Rezept uenz s pezif equenzier	orantagonist fische Primer Q ung übereinstim	t (IL1RN) r 2 - Q uotient mend mit Lun	s315952 ninex
Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung
V01	2.400	тс	тс		V27	2.178	тс	тс	
V02	2.729	тс	тс		V28	4.701	СС	тс	СС
V03	2.532	тс	тс		V29	0.540	Π	Π	
V04	0.486	ΤТ	тт		V30	2.135	тс	тс	
V05	0.474	ΤТ	тт		V31	0.688	Π	Π	
V06	0.518	Π	TT		V32	7.819	CC	СС	
V07	3.103	тс	тс		V33	2.311	тс	тс	
V08	2.592	тс	ТС		V34	0.474	Π	Π	
V09	0.523	TT	тт		V35	8.571	CC	CC	
V10	2.055	тс	тс		V36	2.430	тс	тс	
V11	0.499	Π	тт		V37	0.501	Π	Π	
V12	0.658	TT	TT		V38	2.379	ТС	ТС	
V13	0.537	тт	тт		V39	2.352	тс	тс	
V14	0.498	тт	тт		V40	1.633	тс	тс	
V15	0.478	π	тс	π	V41	0.493	π	тс	π
V16	0.516	тт	тт		V42	0.459	Π	Π	
V17	0.498	тт	тт		V43	2.313	тс	тс	
V18	0.506	тт	тт		V44	2.385	тс	тс	
V19	0.498	тт	тт		V45	0.459	Π	Π	
V20	0.461	тт	тт		V46	0.765	Π	Π	
V21	0.505	тт	тт		K1	0.591	Π	Π	
V22	0.662	ΤТ	тт		К2	2.354	тс	тс	
V23	0.536	ΤТ	тт		К3	2.316	тс	тс	
V24	1.735	тс	тс		K4	2.327	тс	тс	
V25	2.651	тс	тс		К5	0.671	Π	Π	
V26	2.640	тс	тс		K6	2.168	тс	тс	
				IL1RN r	s315952				
	9,000	1					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	8,000						-		
	7 000						-	 Datenpunkte IL1I rs315952 	RN
	7,000,7								
	6,000								
5,000 4,000								Cut-Off TT/ TC	
								1,40	
	2,000			0+A					
	1,000	V42 V26 V26 V23 V23 V23 V38 V15 V15 V15 V16 V14	V12 V12 V12 V12 V12 V12 V12 V12 V12 V12	22 22 22 22 748 748]	0,0	
	0,000	ļ							
		0 10	20	30 Lfd Nr		40	50		

Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie rung
V01	1.723	AA	GA	AA	V27	0.754	GA	GA	
/02	0.123	GG	GG		V28	0.146	GG	GG	
/03	0.562	GA	GA		V29	0.508	GA	GA	
/04	0.644	GA	GA		V30	0.151	GG	GG	
/05	0.132	GG	GG		V31	0.672	GA	GA	
/06	0.144	GG	GG		V32	0.197	GG	GG	
/07	0.153	GG	GG		V33	0.780	GA	GA	
/08	2.452	AA	AA		V34	0.150	GG	GG	
/09	0.190	GG	GG		V35	0.832	GA	GA	
/10	0.140	GG	GG		V36	0.134	GG	GG	
/11	0.124	GG	GG		V37	2.185	AA	AA	
/12	0.161	GG	GG		V38	0.200	GG	GG	
/13	0.180	GG	GG		V39	0.821	GA	GA	
/14	0.132	GG	GG		V40	0.187	GG	GG	
/15	0.702	GA	GA		V41	0.166	GG	GG	
/16	0.125	GG	GG		V42	0.124	GG	GG	
/17	0.645	GA	GA		V43	0.179	GG	GG	
/18	0.133	GG	GG		V44	2.214	AA	GA	AA
/19	0.789	GA	GA		V45	0.139	GG	GG	
/20	0.150	GG	_		V46	0.154	GG	GG	
/21	0.157	GG	GG		K1	0.231	GG	GG	
/22	0.658	GA	GA		K2	0.228	GG	GG	
/23	0.174	GG	GG		K3	0.676	GA	GA	
/24	0.169	GG	GG		K4	0.217	GG	GG	
/25	0.145	GG	GG		K5	0.272	GG	GG	
/26	0.163	GG	GG		K6	0.275	GG	GG	
	3,000			TNFa r	s1800629				
	2,500						- A37	 Datenpunkte TNFa rs1800629 	
	tue 0 1,500 0						-	— Cut-Off GG/GA 0,40	
	1,000 0,500		 6 m ⊖ + Q > (a − x) (a − 	*S 2 2 2 2 8 8 * 8	K1 K5 K6 1 V03 1 V04	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		— Cut-Off GA/AA 1,50	
		V11 V11 V42 V16 V16 V16 V16 V16 V16 V16 V16 V18 V18 V18 V18 V18	V26 V26 V26 V246 V34 V27 V26 V21 V26 V21 V26 V26 V26 V26 V26 V26 V26 V26 V26 V26	××××××××××××××××××××××××××××××××××××××					
	0,000	0 10	20	30		40	L]

Ergebnisse

Probe	Q	Typisierung	Typisierung	Sequenzie-	Probe	Q	Typisierung	Typisierung	Sequenzie
	0.050	Luminex	SSP	rung	1/27	1.041	Luminex	SSP	rung
V01	0.356	GG	GG		V27	1.041	GA	GA	
V02	0.494	GG	GG		V28	0.422	GG	GG	
V03	0.417	GG	GG		V29	0.419	GG	GG	
V04	0.515	GG	GG		V30	0.440	GG	GG	
V05	0.487	GG	GG		V31	0.417	GG	GG	
V06	0.420	GG	GG		V32	0.500	GG	GG	
V07	0.426	GG	GG		V33	0.566	GG	GG	
V08	0.513	GG	GG		V34	0.396	GG	GG	
V09	0.532	GG	GG		V35	1.085	GA	GA	
V10	0.466	GG	GG		V36	0.532	GG	GG	
V11	0.462	GG	GG		V37	0.531	GG	GG	
V12	0.404	GG	GG		V38	0.559	GG	GG	
V13	0.500	GG	GG		V39	0.553	GG	GG	
V14	0.470	GG	GG		V40	0.450	GG	GG	
V15	0.500	GG	GG		V41	0.588	GG	GA	GG
V16	0.417	GG	GG		V42	0.525	GG	GG	
V17	0.524	GG	GG		V43	0.554	GG	GG	
V18	0.494	GG	GG		V44	0.521	GG	GG	
V19	0.515	GG	GG		V45	0.443	GG	GG	
V20	0.540	GG	—		V46	0.379	GG	GG	
V21	0.517	GG	GG		K1	0.362	GG	GG	
V22	0.383	GG	GG		K2	0.865	GA	GA	
V23	0.533	GG	GG		К3	0.366	GG	GG	
V24	0.525	GG	GG		K4	0.433	GG	GG	
V25	0.400	GG	GG		K5	0.343	GG	GG	
V26	0.511	GG	GG		K6	0.471	GG	GG	
	6,000			TNFa r	s361525				
	5,000							 Datenpunkte TNFa rs361525 	
	4,000 tie 3,000							— Cut-Off GG/GA 0.75	
	م 2,000								
	1,000	K6 V01 K3 K3 V46 V22 V24 V25 V23 V23 V23 V23 V23 V23 V23 V23 V23 V23	V16 V23 V23 V28 V28 V28 V28 V28 V28 V28 V28 V28 V28	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	418 404 477 477	22 22 22 23 20 23 20 23 23 23 24 23 25 25 25 25 25 25 25 25 25 25 25 25 25		Cut-Off GA/AA 5,00	
	0,000		I						

_			
Lra	<u>nn</u>	nic	\sim
		1 11 5	
_ 9	CD		

Tab. 2 A - A de rot - Se	2 5 / Abb enosin C equenziert	. 26 Ergebnis - Cytosin G - G ung nicht überei	se Typisier Guanosin T - nstimmend mi	r ung für In - Thymin SS it Luminex g	terleul P - S equir <mark>ün</mark> - S	kin 4 Re uenz s pezif equenzier	zeptor alpha ische P rimer G ung übereinstim	(IL4Ra) rs 2 - Quotient mend mit Lur	1801275
Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung
V01	2.093	AA	AG	AA	V27	1.069	AG	AG	
V02	1.915	AA	AG	AA	V28	2.537	AA	AA	
V03	2.094	AA	AA		V29	2.194	AA	AA	
V04	0.515	GG	GG		V30	2.712	AA	AA	
V05	2.106	AA	AA		V31	2.259	AA	AA	
V06	1.152	AG	AG		V32	0.497	GG	GG	
V07	2.297	AA	AA		V33	1.321	AG	AG	
V08	2.525	AA	AA		V34	2.268	AA	AA	
V09	2.273	AA	AA		V35	1.032	AG	AG	
V10	2.154	AA	AA		V36	1.021	AG	AG	
V11	2.288	AA	AA		V37	2.454	AA	AA	
V12	0.532	GG	GG		V38	1.086	AG	AG	
V13	1.086	AG	AG		V39	2.498	AA	AA	
V14	2.362	AA	AA		V40	2.251	AA	AA	
V15	2.211	AA	AG	AA	V41	2.109	AA	AG	AA
V16	2.186	AA	AA		V42	2.206	AA	AA	
V17	1.207	AG	AG		V43	2.669	AA	AA	
V18	1.597	AA	AG	AA	V44	2.260	AA	AA	
V19	2.330	AA	AA		V45	2.031	AA	AA	
V20	2.110	AA	AA		V46	0.892	AG	AG	
V21	2.079	AA	AA		K1	0.491	GG	GG	
V22	2.411	AA	AA		К2	1.062	AG	AG	
V23	2.444	AA	AA		К3	2.601	AA	AA	
V24	1.148	AG	AG		K4	0.998	AG	AG	
V25	1.048	AG	AG		К5	2.535	AA	AA	
V26	2.330	AA	AA		К6	0.836	AG	AG	
				IL4R:	a rs180127	5			
	3 -						/43 V30		
	25 -					#	V22 V37 V37 V38 V39 V39 V39 V39 V39 V39 V39 V39 V39 V39	Datenp	unkte IL4Ra
	-1-			² 40 82 41 82 83 61 77 -	V45 V15 V31 V44	V09 V19 V13 V13 V13 V13 V13		rs18012	2/5
	2 -		102	\$>>>>					
			- 2						

-85-

Ergebnisse

Tab. 2 A - Ade	26/Abb. enosin C	27 Ergebni - Cytosin G -	sse Typisiei Guanosin T	r ung für In - Thymin SS	terleul SP - Seq	kin 10 (] uenz s pezit	(L10) rs180 fische P rimer	0896 Q - Q uotient	
Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung
V01	9.024	AA	AG	AA	V27	0.170	GG	GG	
V02	9.950	AA	AA		V28	10.568	AA	AG	AA
V03	0.745	AG	AG		V29	1.103	AG	AG	
V04	1.586	AG	AG		V30	0.152	GG	GG	
V05	1.174	AG	GG	AG	V31	0.172	GG	GG	
V06	0.160	GG	GG		V32	11.174	AA	AA	
V07	1.002	AG	AG		V33	1.305	AG	AG	
V08	2.614	AG	AG		V34	1.848	AG	AG	
V09	0.132	GG	GG		V35	0.916	AG	AG	
V10	1.039	AG	AG		V36	1.021	AG	AG	
V11	0.164	GG	GG		V37	0.148	GG	GG	
V12	1.319	AG	AG		V38	0.853	AG	AG	
V13	11.307	AA	AA		V39	0.154	GG	GG	
V14	0.141	GG	GG		V40	2.767	AG	AG	
V15	10.274	AA	AA		V41	0.890	AG	AG	
V16	0.168	GG	GG		V42	1.037	AG	AG	
V17	10.001	AA	AA		V43	0.931	AG	AG	
V18	0.609	AG	AG		V44	1.080	AG	AG	
V19	0.868	AG	AG		V45	0.474	AG	AG	
V20	1.187	AG	AG		V46	11.174	AA	AA	
V21	1.084	AG	AG		K1	0.143	GG	GG	
V22	1.182	AG	AG		К2	0.149	GG	GG	
V23	0.916	AG	AG		К3	7.842	AA	AA	
V24	1.289	AG	AG		K4	0.926	AG	AG	
V25	0.917	AG	AG		К5	1.023	AG	AG	
V26	0.938	AG	AG		К6	0.858	AG	AG	
				IL10 rs′	1800896	l			
	12,000]					17 V15 1 V28 1 V28 1 V46 1 V13 1 V13		
	10,000)					×>-	Datenpunkte I rs1800896	L10
							-		
	8,000)				-	•	-	
	tient							Cut-Off GG/A	3
	опо 0							0,30	
	4 000) 							
	1,000					80A V40			
	2,000	,			0NO	- - - - - - - - - - - - - - - - - - -		Cut-Off AG/AA	
		g	V45 V45 V13 V13 V13 V13 V13 V13 V13 V13 V13 V13	v35 v25 v25 v43 v26 v26 v26 v26 v26 v26 v26 v26 v26 v26	42 55 55 44 5 5 5 5 5 5	>>>		0,00	
	0,000						1		
		0 1	0 20	30 Lfd Nr.		40	50		

rote Balken stellen korrekt typisierte Proben dar/über den Datenpunkten ist die Probenbezeichnung angegeben

-86-

Lra	<u>n</u>	n	
1 1 (1		,, ,,	
L 1 M	C L		
LIY	υu	, , , ,	JJC

Tab. 2 A - Add rot - S	27/Abb. enosin C equenzierr	28 Ergebnise - Cytosin G - G ung nicht überei	se Typisier Guanosin T - nstimmend mi	ung für Inte Thymin SS t Luminex g	erleuk P - S equ rün - S	in 10 (I I uenz s pezif equenzier	L 10) rs18008 ische P rimer G ung übereinstim	8 71 2 - Quotient mend mit Lun	ninex
Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung
V01	0.534	тс	тс		V27	1.358	CC	СС	
V02	0.299	тт	TT		V28	1.321	CC	СС	
V03	1.404	CC	CC		V29	0.566	тс	тс	
V04	0.437	тс	тс		V30	1.417	CC	СС	
V05	0.494	тс	СС	тс	V31	1.440	CC	СС	
V06	1.397	CC	СС		V32	0.458	тс	TC	
V07	0.458	тс	тс		V33	0.438	тс	TC	
V08	0.271	π	тс	тс	V34	0.443	тс	TC	
V09	1.358	CC	СС		V35	1.423	CC	СС	
V10	0.514	тс	тс		V36	0.508	тс	TC	
V11	1.382	CC	СС		V37	1.538	CC	CC	
V12	0.514	ТС	тс		V38	1.531	CC	CC	
V13	0.448	тс	TC		V39	1.348	СС	CC	
V14	1.354	CC	СС		V40	0.395	тс	TC	
V15	0.532	тс	тс		V41	1.316	CC	СС	
V16	1.363	CC	СС		V42	1.490	CC	СС	
V17	0.500	тс	тс		V43	1.421	CC	СС	
V18	0.556	тс	тс		V44	0.487	тс	тс	
V19	1.467	CC	СС		V45	1.422	CC	СС	
V20	0.522	тс	тс		V46	0.476	тс	TC	
V21	1.447	CC	СС		K1	1.572	CC	СС	
V22	0.379	тс	тс		K2	1.347	CC	СС	
V23	1.490	CC	СС		K3	0.187	Π	Π	
V24	0.439	тс	тс		K4	1.615	CC	СС	
V25	1.464	CC	СС		K5	0.401	тс	TC	
V26	1.382	CC	СС		K6	1.696	CC	СС	
	19		1	IL10 rs1	800871			L	
	1,6 -				1 8 8 8 8	V30 V43 V35 V31 V21 V21	N12 N12 N12 N12 N12 N12 N12 N12	- Datenpunkte II	.10
	1,4								
								Cut-Off TT/TC 0,34	
	0,2	v ◆ ¯ 				40	50	1,00	
	U	10	20	3∪ Lfd Nr.		40	U		

blaue Raute entspricht einer durch Luminex fehltypisierten Probe, rote Balken stellen korrekt typisierte Proben dar/über den Datenpunkten ist die Probenbezeichnung angegeben

_			
Lra	<u>ob</u>	n	
<u> </u>	~ 10		

Probe 0 V01 V02 V03 V04	Q 1.251 5.122 0.647 1.600 1.378	Typisierung Luminex AC AA CC	Typisierung SSP AC AA	Sequenzie- rung	Probe	Q	Typisierung	Typisierung	Sequenzie-
V01 V02 V03 V04 V05	1.251 5.122 0.647 1.600 1.378	AC AA CC	AC AA				Lummex	55P	rung
V02 V03 V04 V05	5.122 0.647 1.600 1.378	AA CC	AA		V27	0.648	CC	СС	
V03 V04 V05	0.647 1.600 1.378	CC			V28	0.598	CC	СС	
V04 V05	1.600 1.378		СС		V29	1.195	AC	AC	
V05	1.378	AC	AC		V30	0.648	CC	СС	
		AC	СС	AC	V31	0.631	CC	СС	
V06	0.633	СС	СС		V32	1.200	AC	AC	
V07	1.436	AC	AC		V33	1.398	AC	AC	
V08	3.134	AC	AC		V34	1.680	AC	AC	
V09	0.665	CC	СС		V35	0.615	CC	СС	
V10	1.289	AC	AC		V36	1.300	AC	AC	
V11	0.659	CC	СС		V37	0.649	CC	CC	
V12	1.415	AC	AC		V38	0.633	СС	СС	
V13	1.408	AC	AC		V39	0.648	CC	CC	
V14	0.632	СС	СС		V40	2.011	AC	AC	
V15	1.360	AC	AC		V41	0.691	CC	СС	
V16	0.616	СС	СС		V42	0.678	CC	СС	
V17	1.415	AC	AC		V43	0.638	CC	СС	
V18	1.048	AC	AC		V44	1.382	AC	AC	
V19	0.648	СС	СС		V45	0.666	CC	СС	
V20	1.279	AC	AC		V46	1.229	AC	AC	
V21	0.651	СС	СС		K1	0.645	CC	СС	
V22	1.444	AC	AC		К2	0.675	CC	CC	
V23	0.640	CC	СС		К3	9.287	AA	AA	
V24	1.511	AC	AC		K4	0.608	CC	CC	
V25	0.682	CC	СС		K5	1.480	AC	AC	
V26	0.589	СС	СС		K6	0.587	CC	СС	
	10 9 8 7						<u>2</u> -	- Datenpunkte II rs1800872	_10
	6	- <u>55 - 55 - 55 - 55 - 55 - 55 - 55 - 5</u>	<u>+9\$\$9559</u> ≠\$	84 14 14 14 14 14 14 14 14 14 1	00 10 10 10 10 10 10 10 10 10 10 10 10 1	100 100 100 100 100 100 100 100 100 100	1 43 1 434 1 434 1 440 1 408	Cut-Off CC/CA 0,85	
	0 - 0	10	20	30 Lfd Nr.		40	50		

_			
Lra	<u>ob</u>	n	
<u> </u>	~ 10		

Tab. 2 A - A de rot - Se	29/Abb. enosin C equenziert	30 Ergebnis - Cytosin G - (ung nicht überei	se der Typi Guanosin T · nstimmend m	sierung für • Thymin SS it Luminex g	F Inter P - Seq rün - S	leukin 1 uenz s pezif Sequenzier	2 beta (IL12 fische Primer (ung übereinstim	b) rs32122 Q - Quotient mend mit Lun	2 7 ninex	
Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	
V01	0.731	AC	AC		V27	1.173	AA	AA		
V02	0.957	AC	AC		V28	1.495	AA	AA		
V03	1.223	AA	AA		V29	1.242	AA	AA		
V04	0.622	AC	AC		V30	0.803	AC	AC		
V05	0.782	AC	AC		V31	0.740	AC	AC		
V06	1.195	AA	AA		V32	1.307	AA	AA		
V07	0.700	AC	AC		V33	0.625	AC	AC		
V08	1.711	AA	AA		V34	0.842	AC	AC		
V09	0.674	AC	AC		V35	1.249	AA	AA		
V10	1.182	AA	AA		V36	1.276	AA	AA		
V11	1.209	AA	AA		V37	1.224	AA	AA		
V12	1.268	AA	AA		V38	0.696	AC	AC		
V13	1.279	AA	AA		V39	0.327	СС	СС		
V14	1.195	AA	AA		V40	1.177	AA	AA		
V15	1.236	AA	AA		V41	1.206	AA	AA		
V16	1.188	AA	AA		V42	0.720	AC	AC		
V17	0.736	AC	AC		V43	1.319	AA	AA		
V18	0.271	СС	СС		V44	0.734	AC	AC		
V19	1.284	AA	AA		V45	1.209	AA	AA		
V20	1.161	AA	AA		V46	1.187	AA	AA		
V21	1.151	AA	AA		K1	1.522	AA	AA		
V22	0.653	AC	AC		K2	0.145	CC	CC		
V23	1.309	AA	AA		K3	1.368	AA	AA		
V24	0.728	AC	AC		K4	0.64	AC	AC		
V25	0.675	AC	AC		K5	0.676	AC	AC		
V26	0.821	AC	AC		К6	1.219	AA	AA		
	1,8 -			IL12b rs	3212227		80A -			
	1,6 1,4 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2									
									— Cut-Off CC/AC 0,50	
	0,4	- K5 - V18 - V18 - V18						Cut-Off AC/AA 1,05		
	0 + 0	10	20	30 Lfd Nr.		40	50	L]	

_		
Lra	nhn	

Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenz rung
/01	1.292	AT	AA	AT	V27	1.308	AT	AT	
02	1.318	AT	AT		V28	1.093	Π	Π	
03	1.291	AT	AT		V29	1.032	Π	Π	
)4	2.162	AA	AA		V30	1.287	AT	AT	
)5	1.046	TT	TT		V31	2.041	AA	AA	
)6	1.167	AT	AT		V32	1.005	Π	Π	
)7	2.194	AA	AA		V33	2.181	AA	AA	
08	1.062	тт	Π		V34	2.056	AA	AA	
)9	1.404	AT	AT		V35	1.079	Π	Π	
0	1.296	AT	AT		V36	2.114	AA	AA	
.1	1.376	AT	AT		V37	1.348	AT	AT	
.2	1.319	AT	AT		V38	1.391	AT	AT	
.3	1.469	AT	AT		V39	2.023	AA	AA	
.4	1.282	AT	AT		V40	2.225	AA	AA	
.5	1.344	AT	AT		V41	1.260	AT	AT	
16	1.025	тт	Π		V42	2.158	AA	AA	
.7	1.046	тт	Π		V43	2.319	AA	AA	
.8	1.375	AT	AT		V44	2.146	AA	AA	
19	1.989	AA	AA		V45	2.091	AA	AA	
20	2.116	AA	AA		V46	2.219	AA	AA	
21	1.038	Π	TT		K1	1.027	Π	Π	
22	1.030	Π	π		K2	2.431	AA	AA	
23	1.412	AT	AT		K3	1.385	AT	AT	
24	1.016	Π	π		K4	1.391	AT	AT	
25	1.055	TT	TT		K5	1.459	AT	AT	
26	1.335	AT	AT		K6	3.041	AA	AA	
	^{3,5} T			IFNg rs	2430561				
	з –						2 -	- Datenpunkte IF rs2430561	Ng
	2,5 -				61A	V31 V34 V35 V35 V35 V36 V344 V42 V442 V442	1 V33 1 V07 1 V46 1 V40 1 V43 1 K2		
	tient 2							Cut-Off TT/AT	
	no 1,5		V14 V14 V10 V10 V10 V10 V10 V10	<u>*************************************</u>	23 73 73 73			1,13	
	1 -	V32 V24 V16 V16 V21 V29 V21 V29 V25 V25 V25 V25 V25							
	0,5 -							Cut-Off AT/AA 1,70	
	0	10	20			40			

_			
Lra	harrow		\sim
		1122	
느떡	ັບບາ		

Tab. 3 A - A de rot - Se	B1/Abb. enosin C equenziert	32 Ergebnis - Cytosin G - G ung nicht überei	Typisierun Guanosin T · nstimmend m	g für Trans - T hymin SS it Luminex g	sformi P - S eq rün - S	n g grow uenz s pezif Sequenzier	th factor beta fische Primer Q ung übereinstim	a (TGFb) rs 2 - Quotient mend mit Lun	1982073	
Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	
V01	2.124	тт	СТ	π	V27	1.591	CC	СС		
V02	1.776	тс	тс		V28	2.167	Π	Π		
V03	2.355	ΤТ	тт		V29	1.426	СС	СС		
V04	2.077	тс	ТС		V30	1.874	тс	тс		
V05	1.975	тс	TC		V31	2.209	Π	Π		
V06	1.895	тс	ТС		V32	1.973	тс	тс		
V07	2.109	π	тс	π	V33	2.114	π	тс	тс	
V08	1.813	тс	TC		V34	2.396	Π	Π		
V09	2.142	Π	тт		V35	2.255	Π	Π		
V10	1.892	тс	тс		V36	1.907	тс	тс		
V11	2.014	тс	тс		V37	1.590	СС	СС		
V12	2.291	ΤΤ	Π		V38	1.899	тс	тс		
V13	2.218	Π	тт		V39	2.232	Π	Π		
V14	3.069	тт	тт		V40	1.972	тс	тс		
V15	2.187	TT	TT		V41	1.564	СС	тс	СС	
V16	2.094	тс	ТС		V42	2.430	Π	Π		
V17	2.295	тт	тт		V43	1.914	тс	тс		
V18	2.944	π	тс	π	V44	1.920	тс	тс		
V19	1.711	тс	тс		V45	2.059	тс	тс		
V20	2.047	тс	—		V46	2.593	Π	Π		
V21	2.208	тт	Π		K1	2.408	Π	Π		
V22	1.669	CC	СС		К2	2.010	TC	тс		
V23	2.084	тс	TC		К3	2.275	Π	Π		
V24	1.884	тс	TC		K4	1.958	TC	TC		
V25	1.611	СС	CC		K5	2.373	Π	Π		
V26	2.325	TT	TT		K6	1.929	тс	TC		
	3,5 - - Datenpunkte TGFb 2,5 - - - 2,5									
	Image: Second								толт	
	0 + 0	10	20	30 Lfd Nr.)	40	50	/ L		

blaue Raute entspricht einer durch Luminex fehltypisierten Probe, rote Balken stellen korrekt typisierte Proben dar/über den Datenpunkten ist die Probenbezeichnung angegeben

_			
Lra	nn	nic	$\sim \sim \sim$
느ㅋㅋ	~~		

Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie rung
/01	0.326	GG	GG		V27	3.104	GC	GC	
/02	0.325	GG	GG		V28	0.284	GG	GG	
/03	0.269	GG	GG		V29	0.277	GG	GG	
/04	0.265	GG	GG		V30	0.238	GG	GG	
/05	0.284	GG	GG		V31	0.253	GG	GG	
/06	2.542	GC	GC		V32	3.129	GC	GC	
/07	0.073	GG	GG		V33	0.170	GG	GG	
/08	12.267	GC	GC		V34	0.235	GG	GG	
09	0.275	GG	GG		V35	0.249	GG	GG	
'10	0.250	GG	GG		V36	0.256	GG	GG	
11	1.737	GC	GC		V37	0.268	GG	GG	
12	0.183	GG	GG		V38	0.187	GG	GG	
13	0.287	GG	GG		V39	0.271	GG	GG	
14	0.218	GG	GG		V40	0.266	GG	GG	
15	0.325	GG	GG		V41	0.245	GG	GG	
16	0.195	GG	GG		V42	0.154	GG	GG	
17	0.264	GG	GG		V43	0.252	GG	GG	
18	0.502	GG	GG		V44	0.308	GG	GG	
19	2.708	GC	GC		V45	0.198	GG	GG	
20	0.299	GG	—		V46	0.193	GG	GG	
21	0.281	GG	GG		K1	0.140	GG	GG	
22	0.025	GG	GG		K2	0.117	GG	GG	
23	0.203	GG	GG		К3	0.136	GG	GG	
'24	0.228	GG	GG		K4	0.216	GG	GG	
25	0.262	GG	GG		K5	0.176	GG	GG	
26	0.184	GG	GG		K6	0.259	GG	GG	
	²⁵ T			TGFI	o rs180047	1			
	20 -							– Datenpo rs18004	unkte TGFb 71
	15						80/	Cut-Off	GG/GC
	10 -						-	1,00	
	5 —						1 vii 1 vii 1 vii 1 vii 1 vii	Cut-Off 20,00	GC/CC
		<u>867858888888</u>	2344 2344 2344 2344 2344 2344 246 2344 246 2344 246 2344 246 246 246 246 246 246 246 246 246 2	736 717 717 717 717 717 717	V39 V33 V03 V03 V03 V03 V03 V03 V03 V03 V03	V21 V25 V28 V28 V28 V28 V28 V28 V28 V28	- 40 - 40 - 40		
	U + 0	10	20	3	0	40	50		

Lra	<u>nn</u>	nic	
1 1 (1			
L 1 M	C D		

Tab. 3 A - Ade rot - Se	34/Abb. enosin C equenzieru	35 Ergebnis - Cytosin G - G ung nicht überei	se Typisier Guanosin T · nstimmend m	ung für Int • Thymin SS it Luminex g	erleuk S P - S eq J <mark>rün</mark> - S	in 2 (IL 2 uenz s pezif equenzier	2) rs206976 ische Primer ung übereinstin	2 Q - Q uotient nmend mit Lur	ninex
Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung
V01	0.109	тт	GG	π	V27	0.823	TG	TG	
V02	0.751	TG	TG		V28	0.219	Π	TG	π
V03	0.108	Π	TT		V29	0.072	Π	—	
V04	0.785	TG	TG		V30	0.108	Π	Π	
V05	1.603	GG	GG		V31	0.158	Π	—	
V06	1.599	GG	GG		V32	0.105	Π	Π	
V07	0.146	тт	TT		V33	1.580	GG	GG	
V08	0.124	тт	TT		V34	0.533	TG	TG	
V09	1.636	GG	GG		V35	0.109	Π	Π	
V10	0.124	TT	TT		V36	1.770	GG	GG	
V11	0.867	TG	TG		V37	1.731	GG	GG	
V12	0.749	TG	TG		V38	1.797	GG	TG	GG
V13	0.136	тт	тт		V39	0.885	TG	_	
V14	0.128	Π	тт		V40	0.604	TG	TG	
V15	0.162	Π	тт		V41	0.186	Π	Π	
V16	0.128	ΤΤ	тт		V42	0.678	TG	TG	
V17	1.581	GG	_		V43	0.135	Π	Π	
V18	1.768	GG	GG		V44	0.145	ТТ	Π	
V19	0.794	TG	TG		V45	0.581	TG	_	
V20	0.171	TT	ТТ		V46	0.700	TG	TG	
V21	0.141	TT	ТТ		K1	0.076	ТТ	Π	
V22	0.819	TG	TG		К2	0.734	TG	TG	
V23	1.496	GG	GG		К3	0.119	ТТ	Π	
V24	0.106	тт	тт		K4	1.496	GG	GG	
V25	0.854	TG	TG		K5	0.719	TG	TG	
V26	0.104	тт	тт		K6	0.063	Π	Π	
	2,000	1		IL2 rs2	069762				
	1 800						V37 V38 V38 V38		
	1,000					EEA	000 000	 Datenpunkte IL rs2069762 	2
	1,000					K4 V2			
	1,400								
	1,200 Έ	-							
	000,1 otie				8	27 V11 V38		Cut-Off TT/TG 0,35	
	0,800								
	0,600								
	0,400			-				Cut-Off TG/GG	
	0,200	K6 K7 K7 K7 K7 K7 K7 K7 K7 K7 K7 K7 K7 K7	V00 V13 V13 V13 V13 V13 V13 V13 V13 V13 V13	V15				1,20	
	0,000	l , , , , , , , , , , , , , , , , , , ,	20	30 Lfd Nr.		40	50	I <u>I</u>]

_			
Lra	nh	nic	<u> </u>
1 1 (1			
<u> </u>	- $ -$		

Tab. 3 A - Ade rot - Se	35/Abb. enosin C equenziero	36 Ergebnis - Cytosin G - G ung nicht überei	se Typisier Guanosin T nstimmend m	ung für Int Thymin SS it Luminex g	erleuk P - S eq rün - S	in 2 (IL 2 uenz s pezif equenzier	2) rs206976 ische Primer ung übereinstin	3 Q - Q u nmend	iotient mit Lun	ninex
Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typi: SSP	sierung	Sequenzie rung
V01	0.544	GT	GG	GT	V27	0.684	GT	GT		
V02	0.613	GT	GT		V28	1.189	GG	GG		
V03	0.165	TT	TT		V29	0.602	GT	—		
V04	1.299	GG	GG		V30	0.540	GT	GG		GT
V05	1.236	GG	GG		V31	0.168	Π	—		
V06	1.333	GG	GG		V32	1.349	GG	GG		
V07	1.283	GG	GG		V33	1.264	GG	GG		
V08	0.872	GG	GG		V34	0.331	GT	GT		
V09	1.304	GG	GG		V35	1.270	GG	GG		
V10	0.623	GT	GT		V36	1.187	GG	GG		
V11	0.710	GT	GT		V37	1.339	GG	GG		
V12	0.555	GT	GT		V38	1.269	GG	GG		
V13	1.229	GG	GG		V39	0.639	GT	—		
V14	0.651	GT	GG	GT	V40	1.185	GG	GG		
V15	0.646	GT	GT		V41	1.362	GG	GG		
V16	0.640	GT	GT		V42	1.314	GG	GG		
V17	1.271	GG	_		V43	0.650	GT	GT		
V18	1.372	GG	GG		V44	1.279	GG	GG		
V19	0.609	GT	GT		V45	0.383	GT	-		
V20	0.276	тт	π		V46	0.627	GT	GT		
V21	0.546	GT	GT		K1	1.336	GG	GG		
V22	1.421	GG	GG		К2	1.310	GG	GG		
V23	1.437	GG	GG		К3	1.255	GG	GG		
V24	0.119	ТТ	тт		K4	1.082	GG	GG		
V25	1.298	GG	GG		K5	1.250	GG	GG		
V26	1.268	GG	GG		К6	0.401	GT	GT		
	1,600	1		IL2	rs2069763					·
							V22 V22 V23			
	1,400				728 X2 20 20 20 20 20 20 20 20 20 20 20 20 20	V35 V17 V44 V07 V25 V04	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 		- Daten	punkte IL2 9763
	1,200			4 V36	2					
	1 000			-						
	1,000			N08						
	0,800			224 V11					—— Cut-O 0,30	ff TT/GT
	0,600	<u>895</u>	V12 V13 V10 V10 V10 V10 V10 V10 V10 V10 V10 V10	\$>						
		€ S 	-							
	0,400	- X34								ff GT/GG
	0,200	- ⁻							0,80	
	0,000	0 10) 2	0 Lfd Nr.	, 30	40	50			

Lra	<u>nn</u>	nic	
1 1 (1			
L 1 M	C D		

ProbeQImmersionTypislerung SSPSequenzie rungProbeQTypislerung LuninezTypislerung SSPV010.327TTTV270.351TTTV020.304TTTV280.151TTTV030.313TTTV290.264TTTV040.331TTTV290.284TTTV050.317TTTV300.261TTTV060.301TTTV310.322TTTV070.313TTTV330.302TTTV090.261TTTV340.312TTTV090.313TTTV340.312TTTV100.702TGTGTGV360.345TTTV110.323TTTV370.351TTTV120.263TTTV380.326TTTV140.333TTTV400.243TTTV140.333TTTV410.359TTTV150.333TTTV410.374TTTV150.333 <th colspan="10">Tab. 36/Abb. 37 Ergebnisse der Typisierung für Interleukin 4 (IL4) rs2243248 A - Adenosin C - Cytosin G - Guanosin T - Thymin SSP - Sequenzspezifische Primer Q - Quotient ot - Sequenzierung nicht übereinstimmend mit Luminex grün - Sequenzierung übereinstimmend mit Luminex</th>	Tab. 36/Abb. 37 Ergebnisse der Typisierung für Interleukin 4 (IL4) rs2243248 A - Adenosin C - Cytosin G - Guanosin T - Thymin SSP - Sequenzspezifische Primer Q - Quotient ot - Sequenzierung nicht übereinstimmend mit Luminex grün - Sequenzierung übereinstimmend mit Luminex									
V01 0.327 TT TT V27 0.351 TT TT V02 0.304 TT TT V28 0.151 TT TT V03 0.318 TT TT TZ V29 0.284 TT TT V04 0.343 TT TT V30 0.261 TT TT V05 0.317 TT TT V31 0.323 TT TT V06 0.301 TT TT V32 0.200 TT TT V06 0.313 TT TT V32 0.200 TT TT V07 0.313 TT TT V33 0.302 TT TT V10 0.702 TG TG V36 0.345 TT TT V11 0.323 TT TT V38 2.361 TG TG V11 0.323 TT TT V40 0.243 TT TT V14 0.323 TT TT V41 0.359	obe (Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung
V22 0.304 IT IT V28 0.151 IT IT IT V33 0.318 IT IT IT V29 0.284 IT IT V44 0.343 IT IT IT V30 0.261 IT IT V55 0.317 IT IT IT V31 0.323 IT IT V66 0.301 IT IT IT V32 0.200 IT IT V07 0.313 IT IT IT V33 0.302 IT IT V08 0.313 IT IT V34 0.312 IT IT V09 0.261 IT IT V35 0.914 IG IG V10 0.702 IG IG IG V36 0.345 IT IT V11 0.323 IT IT V38 2.356 IG - V14 0.293 IT IT V40 0.243 IT IT V14)1	0.327	Π	тт		V27	0.351	Π	Π	
V03 0.318 TT TT V29 0.284 TT TT V04 0.343 TT TT TT V30 0.261 TT TT V05 0.317 TT TT TT V31 0.323 TT TT V06 0.301 TT TT TT V33 0.302 TT TT V07 0.313 TT TT V33 0.302 TT TT V08 0.281 TT TT V35 0.914 TG TG V10 0.702 TG TG V36 0.345 TT TT V11 0.323 TT TT V37 0.351 TT TT V14 0.293 TT TT V40 0.243 TT TT V14 0.293 TT TT V40 0.243 TT TT V14 0.303 TT TT V44 0.374 TT TT V17 0.313 TT TT V44<)2	0.304	Π	тт		V28	0.151	Π	Π	
V04 0.343 TT TT V05 0.317 TT TT V30 0.261 TT TT V05 0.317 TT TT TT V31 0.323 TT TT V06 0.301 TT TT V32 0.200 TT TT V07 0.331 TT TT V33 0.302 TT TT V08 0.313 TT TT V34 0.312 TT TT V09 0.261 TT TT TT V35 0.914 TG TG V10 0.702 TG TG V36 0.345 TT TT TT V11 0.323 TT TT V37 0.351 TT TT TT V12 0.263 TT TT V40 0.243 TT TT V14 0.303 TT TT V40 0.302 TT TT V14 0.303 TT TT V41 0.307 TT TT <)3	0.318	Π	TT		V29	0.284	Π	Π	
V05 0.317 TT TT V31 0.323 TT TT V06 0.301 TT TT V32 0.209 TT TT V07 0.331 TT TT V33 0.302 TT TT V08 0.313 TT TT V33 0.302 TT TT V09 0.261 TT TT V33 0.302 TT TT V09 0.261 TT TT V35 0.914 TG TG V10 0.702 TG TG V36 0.345 TT TT V11 0.323 TT TT V37 0.351 TT TT V11 0.323 TT TT V37 0.351 TT TT V14 0.323 TT TT V37 0.351 TT TT V14 0.331 TT TT V40 0.243 TT TT V15 0.333 TT TT V41 0.307 TT)4	0.343	Π	TT		V30	0.261	Π	Π	
V06 0.301 TT TT V32 0.200 TT TT V07 0.331 TT TT V33 0.302 TT TT V08 0.313 TT TT V33 0.302 TT TT V09 0.281 TT TT V35 0.914 TG TG V10 0.702 TG TG V36 0.345 TT TT V11 0.323 TT TT V37 0.351 TT TT V12 0.263 TT TT V39 0.326 TT TT V14 0.293 TT TT V40 0.243 TT TT V14 0.293 TT TT V40 0.302 TT TT V15 0.303 TT TT V40 0.302 TT TT V14 0.303 TT TT V41 0.307 TT TT V16 0.303 TT TT V44 0.374 TT)5	0.317	тт	тт		V31	0.323	П	Π	
V07 0.331 TT TT V33 0.302 TT TT V08 0.313 TT TT V34 0.312 TT TT V09 0.281 TT TT TT V35 0.914 TG TG V10 0.702 TG TG TG V36 0.345 TT TT V11 0.323 TT TT V37 0.351 TT TT V12 0.263 TT TT V37 0.351 TT TT V14 0.233 TT TT V40 0.243 TT TT V14 0.233 TT TT V40 0.243 TT TT V15 0.333 TT TT V41 0.390 TT TT V15 0.331 TT TT V42 0.307 TT TT V16 0.252 TT TT TT V44 0.374 TT TT V19 0.261 TT TT TT </td <td>)6</td> <td>0.301</td> <td>Π</td> <td>TT</td> <td></td> <td>V32</td> <td>0.290</td> <td>Π</td> <td>Π</td> <td></td>)6	0.301	Π	TT		V32	0.290	Π	Π	
V08 0.313 TT TT V34 0.312 TT TT V09 0.281 TT TT V35 0.914 TG TG V10 0.702 TG TG V36 0.345 TT TT V11 0.323 TT TT V37 0.351 TT TT V12 0.263 TT TT V38 2.336 TG V13 0.316 TT TT V39 0.326 TT TT V14 0.293 TT TT V40 0.243 TT TT V15 0.333 TT TT V40 0.329 TT TT V16 0.303 TT TT V41 0.320 TT TT V17 0.313 TT TT V43 0.307 TT TT V18 0.225 TT TT TT V44 0.230 TT </td <td>)7</td> <td>0.331</td> <td>Π</td> <td>TT</td> <td></td> <td>V33</td> <td>0.302</td> <td>Π</td> <td>Π</td> <td></td>)7	0.331	Π	TT		V33	0.302	Π	Π	
V09 0.281 TT TT V35 0.914 TG TG V10 0.702 TG TG V36 0.345 TT TT V11 0.323 TT TT V37 0.351 TT TT V12 0.263 TT TT V38 2.336 TG V13 0.316 TT TT V39 0.326 TT TT V14 0.293 TT TT V40 0.243 TT TT V14 0.293 TT TT V40 0.243 TT TT V14 0.303 TT TT V41 0.359 TT TT V17 0.313 TT TT V42 0.302 TT TT V17 0.313 TT TT V44 0.374 TT TT V19 0.282 TT TT TT V45 0.203 TT <td>)8</td> <td>0.313</td> <td>тт</td> <td>тт</td> <td></td> <td>V34</td> <td>0.312</td> <td>П</td> <td>Π</td> <td></td>)8	0.313	тт	тт		V34	0.312	П	Π	
V10 0.702 TG TG TG V36 0.345 TT TT V11 0.323 TT TT TT V37 0.351 TT TT V12 0.263 TT TT TT V38 2.336 TG)9	0.281	Π	TT		V35	0.914	TG	TG	
V11 0.323 TT TT V37 0.351 TT TT V12 0.263 TT TT V38 2.336 TG	.0	0.702	TG	TG		V36	0.345	П	Π	
V12 0.263 TT TT V38 2.336 TG V13 0.316 TT TT V39 0.326 TT TT V14 0.293 TT TT V40 0.243 TT TT V15 0.353 TT TT V40 0.424 TT TT V16 0.303 TT TT V41 0.359 TT TT V16 0.303 TT TT V42 0.302 TT TT V17 0.313 TT TT V42 0.307 TT TT V18 0.252 TT TT V44 0.374 TT TT V19 0.282 TT TT TT V45 0.203 TT TT V20 0.340 TT TT TT V46 0.775 TG TG V21 0.270 TT TT TT K2 0.886 TG TG V24 0.284 TT TT T <td>.1</td> <td>0.323</td> <td>тт</td> <td>тт</td> <td></td> <td>V37</td> <td>0.351</td> <td>П</td> <td>Π</td> <td></td>	.1	0.323	тт	тт		V37	0.351	П	Π	
V13 0.316 П П П V14 0.293 П	2	0.263	тт	Π		V38	2.336	TG	_	
V14 0.293 TT TT V40 0.243 TT TT V15 0.353 TT TT V41 0.359 TT TT V16 0.303 TT TT V42 0.302 TT TT V17 0.313 TT TT V44 0.374 TT TT V17 0.320 TT TT V44 0.374 TT TT V19 0.282 TT TT V45 0.230 TT TT V20 0.340 TT TT V45 0.230 TT TT V21 0.278 TT TT K1 0.202 TT TT V22 0.270 TT TT K2 0.886 TG TG V24 0.284 TT TT K4 0.289 TT TT V25 0.260 TT TT K4 0.289 TT T V26 0.307 TT TT K4 0.280 T T	3	0.316	Π	TT		V39	0.326	Π	Π	
V15 0.353 TT TT V41 0.359 TT TT V16 0.303 TT TT V42 0.302 TT TT V17 0.313 TT TT V43 0.307 TT TT V18 0.252 TT TT TT V44 0.374 TT TT V19 0.282 TT TT V45 0.230 TT TT V20 0.340 TT TT V45 0.230 TT TT V20 0.340 TT TT V46 0.775 TG TG V21 0.278 TT TT K1 0.202 TT TT V22 0.270 TT TT K2 0.886 TG TG V23 0.337 TT TT K4 0.289 TT TT V24 0.260 TT TT K4 0.208 TT T V25 0.260 TT TT K6 0.208 T <td>.4</td> <td>0.293</td> <td>тт</td> <td>тт</td> <td></td> <td>V40</td> <td>0.243</td> <td>П</td> <td>Π</td> <td></td>	.4	0.293	тт	тт		V40	0.243	П	Π	
V16 0.303 TT TT V42 0.302 TT TT V17 0.313 TT TT V43 0.307 TT TT V18 0.252 TT TT TT V44 0.374 TT TT V19 0.282 TT TT TT V45 0.230 TT TT V20 0.340 TT TT TT V46 0.775 TG TG V21 0.278 TT TT TT K1 0.202 TT TT V22 0.270 TT TT TT K1 0.202 TT TT V24 0.284 TT TT TT K3 0.245 TT TT V25 0.260 TT TT TT K6 0.208 TT TT V26 0.307 TT TT TT K6 0.208 TT T 100 100 100 100 100 100 100 100 100	.5	0.353	Π	тт		V41	0.359	Π	Π	
V17 0.313 TT TT V43 0.307 TT TT V18 0.252 TT TT V44 0.374 TT TT V19 0.282 TT TT TV V45 0.230 TT TT V20 0.340 TT TT V46 0.775 TG TG V21 0.278 TT TT TT K1 0.200 TT TT V22 0.270 TT TT TT K2 0.886 TG TG V23 0.337 TT TT K2 0.886 TG TG V24 0.284 TT TT K4 0.289 TT TT V25 0.260 TT TT TK K5 0.257 TT TT V26 0.307 TT TT K6 0.208 T T 100 100 100 100 100 100 100 100 100 100 100 100 100	.6	0.303	тт	тт		V42	0.302	П	Π	
V18 0.252 П П V44 0.374 П П V19 0.282 П П П V45 0.230 П П V20 0.340 П П П V45 0.230 П П V21 0.278 П П П K1 0.202 П П V22 0.270 П П П K2 0.886 TG TG V23 0.337 П П П K3 0.245 П П V24 0.284 П П П K4 0.289 П П V25 0.260 П П П K6 0.208 П П V25 0.260 П П П K5 0.257 П П V26 0.307 П П П K5 0.208 П П V26 0.307 П П П C C C 1000 1000	.7	0.313	TT	тт		V43	0.307	ТТ	Π	
V19 0.282 П П П V45 0.230 П П П V20 0.340 П П П П V46 0.775 TG TG V21 0.278 П П П N K1 0.202 П П П V22 0.270 П П П K2 0.886 TG TG V23 0.337 П П П K3 0.245 П П V24 0.284 П П П K4 0.289 П П П V25 0.260 П П П K6 0.208 П П П V26 0.307 П П П K6 0.208 П П П V25 0.260 П П П K6 0.208 П П П v26 0.307 П П П П П П П П П П П <t< td=""><td>8</td><td>0.252</td><td>тт</td><td>тт</td><td></td><td>V44</td><td>0.374</td><td>Π</td><td>Π</td><td></td></t<>	8	0.252	тт	тт		V44	0.374	Π	Π	
V20 0.340 IT IT V46 0.775 TG TG V21 0.278 IT IT IT K1 0.202 IT IT V22 0.270 IT IT IK1 0.202 IT IT V22 0.270 IT IT IK2 0.886 TG TG V23 0.337 IT IT IK3 0.245 IT IT V24 0.284 IT IT IK4 0.289 IT IT V25 0.260 IT IT IK5 0.257 IT IT V26 0.307 IT IT IK66 0.208 IT IT IL4 rs243248	9	0.282	тт	тт		V45	0.230	П	Π	
V21 0.278 TT TT K1 0.202 TT TT V22 0.270 TT TT TT K2 0.886 TG TG V23 0.337 TT TT TT K3 0.245 TT TT V24 0.284 TT TT K4 0.289 TT TT V25 0.260 TT TT K5 0.257 TT TT V26 0.307 TT TT K6 0.208 TT TT V26 0.307 TT TT TT K6 0.208 TT TT V26 0.307 TT TT TT K6 0.208 TT TT IL4 rs243248	20	0.340	TT	тт		V46	0.775	TG	TG	
V22 0.270 TT TT K2 0.886 TG TG V23 0.337 TT TT TT K3 0.245 TT TT V24 0.284 TT TT K4 0.289 TT TT V25 0.260 TT TT K5 0.257 TT TT V26 0.307 TT TT K6 0.208 TT TT IL4 rs2243248	21	0.278	тт	тт		K1	0.202	П	Π	
V23 0.337 П П К3 0.245 П П V24 0.284 П П П К4 0.289 П П V25 0.260 П П П K5 0.257 П П V26 0.307 П П П K6 0.208 П П V26 0.307 П П П K6 0.208 П П V26 0.307 П П П K6 0.208 П П V26 0.307 П П П K6 0.208 П П V26 0.307 П П П K6 0.208 П П IL4 rs2243248 Image: State Sta	22	0.270	Π	TT		K2	0.886	TG	TG	
V24 0.284 TT TT K4 0.289 TT TT V25 0.260 TT TT TT K5 0.257 TT TT V26 0.307 TT TT TT K6 0.208 TT TT IL4 rs2243248 - Datenpunkte IL/rs2243248 - Datenpun	23	0.337	Π	TT		K3	0.245	Π	Π	
V25 0.260 TT TT K5 0.257 TT TT V26 0.307 TT TT TT K6 0.208 TT TT IL4 rs2243248 IL4 rs2243248 0 0 - - Datenpunkte IL/rs2243248 0 4,000 - - - - Datenpunkte IL/rs2243248 4,000 -	24	0.284	Π	тт		K4	0.289	Π	Π	
V26 0.307 TT TT K6 0.208 TT TT IL4 rs2243248 IL4 rs2243248	25	0.260	Π	тт		K5	0.257	Π	Π	
IL4 rs2243248 7,000 6,000 6,000 4,000 3,000 2,000 3,000 1,000 8 x x x x x x x x x x x x x x x x x x x	26	0.307	Π	π		K6	0.208	Π	Π	
6,000 5,000 4,000 4,000 3,000 2,000 1,000 [★] × × × × × × × × × × × × × × × × × × ×		7,000			IL4 rs2	243248				
5,000 rs2243248 4,000		6,000							– Datenpunkte II	L4
5,000 4,000 3,000 2,000 1,000 (数 文 学 学 家 ② 学 学 ② 学 学 ③ 学 章 ② 学 第 ② 学 学 ③ ② 学 章 ③ ③ ③ ③ 章 ③ ③ ③ 章 ③ ⑤ ③ 章 ③ ⑤ ③ 章 ③ ⑤ ③ 章 ③ ⑤ ③ 章 ③ ⑤ ③ 章 ③ ⑤ ③ 章 ③ ⑤ ③ 章 ③ ⑤ ③ 章 ③ ⑤ ③ 章 ③ ⑥ ③ ◎ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦									rs2243248	
4,000 3,000 2,000 1,000 $\frac{2}{3} \times 2^{\frac{3}{2} \frac{3}{2} \sqrt{2} \frac{3}{2} \sqrt{2} \frac{3}{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} $		5,000								
1,000 0 <td></td> <td>4 000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		4 000								
5 3,000 \$ 2,000 \$ 1,000 \$ \$ \$		iotient							Cut-Off TT/TG	
2,000 1,000 [*] [*] [*] [*] [*] [*] [*] [*]		ే _{3,000}						*		
2,000 1,000 - _{我立} 安美安美安美安美安美安美安美美美美美美美美美美美美美美美美美美美美美美美美		2 000						-		
		2,000						44 V35 V33	Cut-Off TG/GG	;
		1,000	Control Contro Control Control Control Control Control Control Control Control Co							
0,000 +		000,0	0 10	20	30 Lfd Nr.		40	50		

_			
Lra	nh	nic	<u> </u>
1 1 (1			
<u> </u>	- $ -$		

Tab. 3 A - A de rot - Se	37/Abb. enosin C equenziert	38 Ergebnis - Cytosin G - ung nicht überei	se Typisier Guanosin T · nstimmend m	ung für Int - Thymin SS it Luminex g	erleuk S P - S equ I <mark>rün</mark> - S	t in 4 (IL 4 uenz s pezif Sequenzier	4) rs224325 fische Primer (ung übereinstim	D Q - Q uotient Imend mit Lur	ninex	
Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	
V01	2.476	СТ	СТ		V27	7.674	CC	CC		
V02	0.405	Π	тт		V28	1.730	ст	Π		
V03	6.337	СС	СС		V29	5.959	CC	СС		
V04	6.904	CC	CC		V30	7.282	CC	CC		
V05	7.623	CC	СС		V31	2.115	СТ	СТ		
V06	8.332	CC	СС		V32	2.755	СТ	СТ		
V07	5.383	CC	СС		V33	2.612	СТ	СТ		
V08	7.942	CC	СС		V34	6.300	CC	CC		
V09	9.505	CC	CC		V35	9.244	CC	CC		
V10	7.820	CC	СС		V36	7.576	CC	CC		
V11	6.977	CC	СС		V37	5.960	CC	CC		
V12	7.631	CC	СС		V38	6.667	CC	-		
V13	8.217	CC	СС		V39	2.104	СТ	π	СТ	
V14	7.935	CC	СС		V40	6.876	CC	CC		
V15	6.923	CC	СС		V41	6.052	СС	СТ	СС	
V16	0.839	Π	π		V42	5.583	CC	CC		
V17	6.414	CC	СС		V43	7.423	CC	CC		
V18	8.599	CC	СС		V44	7.105	CC	СС		
V19	7.171	CC	СС		V45	6.502	CC	CC		
V20	6.777	СС	СС		V46	1.737	СТ	СТ		
V21	8.225	СС	СС		K1	8.452	CC	СС		
V22	7.129	CC	СС		K2	3.912	СТ	СТ		
V23	1.979	СТ	СТ		K3	9.013	CC	CC		
V24	8.134	CC	СС		K4	5.557	CC	CC		
V25	7.893	CC	CC		K5	3.852	СТ	СТ		
V26	6.433	CC	CC		K6	3.937	CC	CC		
	¹⁰ T		<u>.</u>	IL4	rs2243250					
	9			5 5 5 5	V44 V22 V15 V30	V36 V05 V12 V12 V10 V10 V14	- 708 - 723 - 723 - 721 - 721	– Daten rs224	punkte IL4 3250	
	7 +		07 KK V42 V34 V34 V34	V15 V45 V28						
	otient		<u></u>					Cut-O	ff TT/CT	
	5 4	2 2 2 2 2								
	3	- 33								
	2								ff CT/CC	
	1 + 0 +	- 402	1				T			
	0	10	20	3 31 Lfd Nr.	כ	40	50			
	rote Balk	en stellen korrel	kt typisierte Pr	oben dar/üb	er den D	Datenpunkt	ten ist die Probe	enbezeichnung	angegeben	

_	
Lrao	hnicco
1 1 () ()	
LIGC	01110000

Tab. 3 A - Ad rot - S	38/Abb. enosin C equenzier	39 Ergebnis - Cytosin G - ung nicht überei	se Typisier Guanosin T instimmend m	ung für Int - T hymin SS it Luminex g	erleuk P - S eq rün - S	t in 4 (IL 4 uenz s pezif Sequenzier	4) rs207087 ische Primer ung übereinstim	4 Q - Q uotient nmend mit Lur	ninex
Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung
V01	1.489	тс	тс		V27	0.212	CC	СС	
V02	4.034	TT	TT		V28	3.394	Π	Π	
V03	0.283	CC	CC		V29	0.149	CC	CC	
V04	0.285	CC	CC		V30	0.185	CC	CC	
V05	0.261	CC	CC		V31	1.086	СТ	СТ	
V06	0.256	СС	CC		V32	1.156	СТ	СТ	
V07	0.250	CC	CC		V33	1.412	СТ	СТ	
/08	0.292	CC	CC		V34	0.154	CC	CC	
/09	0.234	CC	CC		V35	0.188	CC	CC	
V10	0.270	CC	CC		V36	0.220	CC	CC	
/11	0.294	СС	СС		V37	0.240	CC	СС	
V12	0.182	CC	CC		V38	0.266	CC		
V13	0.283	СС	СС		V39	1.284	СТ	π	СТ
V14	0.236	СС	СС		V40	0.202	CC	СС	
V 15	0.268	СС	СС		V41	0.269	СС	СТ	СС
/16	5.224	тт	тт		V42	0.188	CC	СС	
/17	0.263	СС	СС		V43	0.255	CC	СС	
V18	0.222	СС	СС		V44	0.245	CC	СС	
V19	0.268	СС	СС		V45	0.326	CC	СС	
V20	0.236	СС	СС		V46	1.208	СТ	СТ	
V21	0.299	СС	СС		K1	0.227	CC	СС	
V22	0.111	СС	СС		К2	2.890	СТ	CC	СС
V23	1.362	СТ	СТ		K3	0.074	CC	CC	
/24	0.217	СС	СС		K4	0.382	CC	CC	
V25	0.244	СС	СС		K5	1.399	СТ	СТ	
/ 26	0.234	СС	СС		K6	2.358	СТ	CC	
	6,000	1		IL4 rs2	070874	I			
	5,000						- A16	– Datenpunkte rs2070874	IL4
	4,000							-	
	Ouotient 3,000						2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Cut-Off CC/0 0,80	т
	2,000					N 231 1 V31 1 V32 1 V36 1 V38	- K5 - Vol	Cut-Off CT/T	т
	0,000	1 V29 1 V29 1 V29 1 V29 1 V29 1 V29 1 V29 1 V20 1 V20 1 V20	V24 V28 V18 V18 V18 V18 V18 V109 V10 V109 V10 V10 V14 V14	V07 V43 V66 V16 V17 V17 V18 V19 V19 V10	V13 V04 V08 V108 V11	K4 K4		3,70	
		0 10	20	30		40	50		

blaue Raute entspricht einer durch Luminex fehltypisierten Probe, rote Balken stellen korrekt typisierte Proben dar/über den Datenpunkten ist die Probenbezeichnung angegeben

Lfd Nr.

_		
Lra	<u>nhr</u>	
	~~	1000

Probe		5	Tab. 39/Abb. 40 Ergebnisse der Typisierung für Interleukin 6 (IL6) rs1800797 A - Adenosin C - Cytosin G - Guanosin T - Thymin SSP - Sequenzspezifische Primer Q - Quotient rot - Sequenzierung nicht übereinstimmend mit Luminex grün - Sequenzierung übereinstimmend mit Luminex								
	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung		
V01	0.833	GA	GA		V27	0.994	GA	GA			
V02	0.132	GG	GG		V28	2.783	GA	GA			
V03	0.119	GG	GG		V29	1.061	GA	GA			
V04	10.746	AA	AA		V30	15.936	AA	AA			
V05	14.125	AA	GA	AA	V31	0.111	GG	GG			
V06	0.096	GG	GG		V32	0.122	GG	GG			
V07	0.116	GG	GG		V33	1.031	GA	GA			
V08	8.479	AA	GA	AA	V34	0.091	GG	GG			
V09	0.096	GG	GG		V35	0.077	GG	GG			
V10	0.988	GA	GA		V36	0.090	GG	GG			
V11	0.925	GA	GA		V37	1.058	GA	GA			
V12	0.106	GG	GG		V38	0.128	GG	GA	GG		
V13	13.183	AA	AA		V39	0.106	GG	GG			
V14	0.974	GA	GA		V40	1.526	GA	GG	GA		
V15	11.344	AA	GA	AA	V41	0.992	GA	GA			
V16	0.095	GG	GG		V42	1.192	GA	GA			
V17	0.104	GG	GG		V43	1.065	GA	GA			
V18	0.629	GA	GA		V44	1.082	GA	GA			
V19	15.423	AA	AA		V45	0.078	GG	GG			
V20	11.120	AA	AA		V46	1.073	GA	GA			
V21	1.048	GA	GA		K1	33.392	AA	AA			
V22	1.069	GA	GA		К2	0.007	GG	GG			
V23	0.103	GG	GG		К3	0.961	GA	GA			
V24	1.188	GA	GA		K4	0.097	GG	GG			
V25	1.026	GA	GA		K5	1.021	GA	GA			
V26	0.090	GG	GG		K6	0.990	GA	GA			
				IL6 rs1	800797	0.000					
	30						<u>-</u>	- Dotomunkto			
								rs1800797			
	25										
	Duotient Guotient										
	15										
	5								4		
	o 5 0	2 > > > > > > > > > > > > > > > > > > >	20	30		40	50				
				Lfd Nr.							

Lra	<u>nn</u>	nic	
1 1 (1			
L 1 M	C D		

Tab. 40/Abb. 41 Ergebnisse Typisierung für Interleukin 6 (IL6) rs1800795A - AdenosinC - CytosinG - GuanosinT - ThyminSSP - Sequenzspezifische PrimerQ - Quotientrot- Sequenzierung nicht übereinstimmend mit Luminexgrün- Sequenzierung übereinstimmend mit Luminex									
Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung	Probe	Q	Typisierung Luminex	Typisierung SSP	Sequenzie- rung
V01	1.226	GC	GC		V27	1.373	GC	GC	
V02	0.279	GG	GG		V28	3.952	GC	GC	
V03	0.244	GG	GG		V29	1.565	GC	GC	
V04	10.856	СС	СС		V30	18.990	CC	СС	
V05	16.063	СС	GC	СС	V31	0.236	GG	GG	
V06	0.223	GG	GG		V32	0.218	GG	GG	
V07	1.329	GC	GC		V33	1.370	GC	GC	
V08	8.806	СС	GC	СС	V34	0.220	GG	GG	
V09	0.239	GG	GG		V35	0.207	GG	GG	
V10	1.240	GC	GC		V36	0.229	GG	GG	
V11	1.202	GC	GC		V37	1.378	GC	GC	
V12	1.551	GC	GC		V38	0.249	GG	GC	GG
V13	14.010	СС	СС		V39	0.254	GG	GG	
V14	1.292	GC	GC		V40	1.770	GC	GG	GC
V15	11.835	СС	GC	СС	V41	1.271	GC	GC	
V16	0.198	GG	GG		V42	1.418	GC	GC	
V17	0.242	GG	GG		V43	1.252	GC	GC	
V18	0.900	GC	GC		V44	1.442	GC	GC	
V19	15.719	СС	СС		V45	0.204	GG	GG	
V20	11.396	СС	СС		V46	1.408	GC	GC	
V21	1.766	GC	GC		K1	34.823	CC	СС	
V22	1.517	GC	GC		К2	0.200	GG	GG	
V23	0.229	GG	GG		K3	1.383	GC	GC	
V24	1.805	GC	GC		K4	0.191	GG	GG	
V25	1.269	GC	GC		K5	1.335	GC	GC	
V26	0.217	GG	GG		K6	1.614	GC	GC	
	35 –			IL6 rs1	800795		2		
	30 - Datenpunkte IL6 rs1800795								
	20						05 50.4 - 81.4		5C
	15	000							
	5	5 Cut-Off GC/CC 6,60 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							
	0 -	10	20	30 Lfd Nr.		40	50		
rote Balken stellen korrekt typisierte Proben dar/über den Datenpunkten ist die Probenbezeichnung angegeben									

Die 52 Proben wurden für alle 22 SNP typisiert. Damit ergaben sich für die Methode der Analyse mit dem Luminex 100 IS insgesamt 1144 Typisierungen. Diese konnten mit 1127 Ergebnissen der Referenzmethode verglichen werden, da in 17 Fällen kein Ergebnis der Typisierung durch die SSP-Methode vorlag. Von diesen 1127 Messungen stimmten 1070 im Vergleich der zwei Methoden im Ergebnis überein. Damit war in 57 Fällen eine Kontrolle der Ergebnisse durch Sequenzieren der entsprechenden Probe für den jeweiligen SNP notwendig. Diese verteilten sich wie folgt auf die Kits und einzelnen Zytokine:

Auf Kit 1 entfielen 19 zu kontrollierende Messungen und zwei fehlende Typisierungen durch die SSP Methode. Die 19 Kontrollen stellten 5,25% der in Kit 1 gemessenen Proben, bezogen auf 362 verglichenen Messungen (52 Proben typisiert auf sieben SNP, abzüglich zwei fehlender Ergebnisse), dar. Für IL1a rs1800587 mussten sechs, für IL1b rs1143634 vier, für IL1R rs2234650 drei, für IL1RN rs315952 drei und für TNFa rs1800629 zwei, sowie rs361525 eine Probe kontrolliert werden. Die Sequenzierung ergab eine Übereinstimmung in allen 19 diskrepanten Fällen mit den Ergebnissen der Typisierung durch Luminex. Damit ergab sich eine Fehlerquote von 0,00% bei der Untersuchung der SNP in Kit 1 mittels Luminex. Im Umkehrschluss stellten wir fest, dass unter unseren Laborbedingungen durch die SSP-Methode 5,25% der Proben falsch typisiert wurden und 0,55% kein Ergebnis aufwiesen.

Bei der Analyse der Proben für Kit 2 fielen 17 Typisierungen auf, die nicht mit der SSP-Methode übereinstimmten und wiederum zwei fehlende Typisierungen. Bei 414 verglichenen Typisierungen in Kit 2 (52 Proben typisiert auf acht SNP, abzüglich zwei fehlender Ergebnisse) machten diese 17 Diskrepanzen 4,11% der gesamten Typisierungen aus. Für IL4Ra rs1801275 mussten fünf, für IL10 rs1800896 drei, für rs1800871 zwei, für rs1800872 eine, für IFNg rs2430561 eine und für TGFb rs1982073 fünf Ergebnisse durch Sequenzierung kontrolliert werden. Hierbei zeigten sich zwei Fehler für die Methode Luminex. Diese fanden sich bei IL10 rs1800871 Probe V08 und TGFb rs1982073 Probe V33. Die übrigen
15 Sequenzierungen bestätigten die Ergebnisse von Luminex und widersprachen der Referenzmethode. Für Kit 2 lag damit die Fehlerquote für Luminex bei 0,48%, die Fehlerquote für die Typisierung mit SSP lag bei 3,62%. Bei 0,48% lag kein Ergebnis durch die Referenzmethode vor.

Für Kit 3 waren, bei 364 Typisierungen, 21 Kontrollen notwendig und es gab 13 fehlende Ergebnisse durch die SSP-Methode. Dies entsprach bei 351 zu vergleichende Proben (52 Proben auf sieben SSP typisiert, abzüglich 13 fehlender Ergebnisse) 5,98%, welche zur Kontrolle sequenziert werden mussten. Für IL2 rs2069762 und rs2069763 mussten jeweils drei, für IL4 rs2243250 zwei, für rs2070874 drei, für IL6 rs1800797 fünf und rs1800795 ebenfalls fünf überprüft werden. Im Fall der Probe K2 war für den SNP rs2070874 im IL4 Gen eine Fehlbestimmung seitens Luminex zu verzeichnen. Die übrigen 20 durch Sequenzierung überprüften Typisierungen stimmten mit dem Ergebnis von Luminex überein. Damit entsprach die Fehlerquote für Luminex für Kit 3 0,28%. Die Typisierung mittels SSP zeigte eine Fehlerquote von 5,70% auf. Bei 3,57% der SSP-Typisierungen lagen von Beginn an keine Ergebnisse vor.

Für alle Kits zusammen gezählt ergaben sich in 0,27% der Fälle eine Fehltypisierung durch Luminex. Einzeln für die SNP betrachtet ergaben sich eine Fehlerquote, bei IL10 rs1800871 von 1,92%, bei TGFb rs1982073 von 1,96% und bei IL4 rs2070874 von 1,96%. Dem gegenüber standen in 4,79% der Fälle Fehler seitens der Typisierung durch die SSP-Referenzmethode. In 1,48% der Typisierung gab es überhaupt kein Ergebnis durch die Methode der sequenzspezifischen Primer. Die Gesamtfehlerrate für die Referenzmethode, die sich aus Fehltypisierung und fehlendem Ergebnis ergebend, betrug 6,21%. Im Vergleich dazu lag die Gesamtfehlerrate der auf Luminex xMAP® Carboxybeads basierenden Methode bei 0,27%.

4. Diskussion

4.1. Vergleich zwischen Luminex xMAP® Carboxybeads, der Referenzmethode (SSP), sowie Sequenzierung und DNA-Microarray

Durch die Möglichkeit der Typisierung mittels des auf xMAP® Carboxybeads basierenden Systems zur Ermittlung der Genotypen, ergaben sich im Vergleich zu der vorher genutzten Methode der sequenzspezifischen Primer (SSP) einige Unterschiede.

Zum Ersten ist der Zeitaufwand anzumerken. Betrachtet man die Typisierung eines einzelnen Patienten, mussten bei der Referenzmethode mit sequenzspezifischen Primern 48 PCR-Reaktionen angesetzt und amplifiziert werden, welche im Anschluss auf ein Agarosegel aufgetragen, elektrophoretisch aufgetrennt, fotografiert und ausgewertet werden mussten. Für die Vorbereitung waren 30 Minuten einzurechnen, die PCR im Thermocycler benötigte 60 Minuten, das Auftragen auf das Agarosegel und die Elektrophorese 30 Minuten. Insgesamt ergab sich für die Typisierung eines Patienten ein Zeitaufwand von zwei Stunden. Da für die Typisierung 96-Well-Platten genutzt wurden, ließen sich innerhalb dieser Zeit zwei Patientenproben bestimmen.

Für die Bestimmung mittels xMAP® Carboxybeads ergaben sich folgende Zeiten. Für die Vorbereitungen waren, ähnlich zur Referenzmethode, 30 min und 60 min für die MPCR zu veranschlagen. Diesen Schritten folgte die Hybridisierungsreaktion, welche 50 Minuten dauerte. Die Typisierung mit dem Luminex 100 IS benötigte 40-50 sec je Probe. Da für die komplette Typisierung eines Patienten drei MPCR und damit auch drei Analysen im Luminex 100 IS nötig waren, waren für die Analyse einer Probe rund 145 min zu veranschlagen. Bei der Nutzung einer 96-Well-Platte war, abzüglich der drei Leerproben, die Analyse von 31 Proben in einem Arbeitsschritt möglich. Bei der kompletten Typisierung einer 96-Well Platte wurden, da alle Proben nacheinander typisiert wurden, insgesamt 220 Minuten benötigt. Folglich benötigte man bei der auf xMAP® Carboxybeads basierenden Methode drei Stunden und 40 Minuten im Vergleich zu zwei Stunden mit SSP. Allerdings wurde bei unserer Methode, mit insgesamt 31 analysierten Proben im Vergleich zu zwei Proben mittels SSP, die 15fache Zahl an Proben typisiert. Die fast verdoppelte Laufzeit wird also durch den wesentlich höheren Probendurchsatz nicht einfach nur ausgeglichen, sondern bietet im Vergleich zur SSP-Methode eine wesentlich zeiteffizientere Verarbeitung bei hohen Probenzahlen.

Der nächste wesentliche Punkt war die für eine Typisierung benötigte Menge an Proben DNA. Da bei der SSP-Methode 48 PCR notwendig waren, musste in entsprechendem Maße auch DNA eingesetzt werden. So wurden 50 µl einer 100 ng/µl konzentrierten DNA-Lösung eingesetzt, was insgesamt 5 µg entsprach. Bei der von uns entwickelten Methode hingegen wurden für jede MPCR 100 ng DNA eingesetzt. Was bei den drei für die Typisierung notwendigen Reaktionen eine Gesamtmenge von 300 ng bedeutete. Stellt dieser Mengenunterschied in der alltäglichen Routine mit DNA Proben nicht unbedingt ein Problem dar, macht es sich jedoch sehr stark bemerkbar, wenn die zu untersuchenden Proben nur in geringen Mengen vorliegen, und auch nicht problemlos weiteres Untersuchungsmaterial beschafft werden kann. Dies war bei unseren Untersuchungen so, da wir DNA-Proben von knochenmarktransplantierten Patienten untersuchten, die ihr Blut vor einer Knochenmarktransplantation für Untersuchungszwecke zur Verfügung stellten. Damit war es nach der Transplantation ausgeschlossen eine erneute native Blutprobe des Empfängers zur Isolierung von DNA entnehmen zu können. Demnach kam der eingesetzten Menge an DNA in diesem Fall eine beträchtliche Bedeutung zu.

Im Routinebetrieb würde sich der um den Faktor 16,66 erhöhte Bedarf an DNA in den Kosten, als auch dem Zeitaufwand, der für die Isolierung aufgebracht werden müsste, stark zum Nachteil der SSP-Methode unterscheiden. Im Fall unseres Probenpanels mussten wir einen zusätzlichen Schritt zu Vervielfältigung der DNA mittels Illustra GenomiPhi V2 zwischenschalten, um die Typisierung mittels SSP durchführen zu können. Dieser verursachte zusätzliche Kosten und erhöhte den Zeit- und Ressourcenbedarf. Als weiteren Vorteil kann man hinsichtlich der Kosten den Umstand werten, dass die Luminexanwendung modular in Kits aufgebaut wurde, so dass bei Fragestellungen, die nicht die Typisierung aller Polymorphismen benötigen, nicht das komplette Paket zum Test verwendet werden muss und somit wiederum Ressourcen gespart werden können.

Als nächster und gleichsam wichtigster Punkt im Vergleich der beiden Methoden soll die Fehlerquote bzw. Genauigkeit genannt sein. Hier sprechen die Zahlen, die bereits unter Ergebnisse dargestellt sind, klar für die Methode der xMAP® Carboxybeads von Luminex. Während bei der Methode der SSP eine Fehlerquote von 6,21% zu verzeichnen war, standen dem 0,27% bei den Carboxybeads entgegen. Abgesehen von der höheren Fehlerquote, bei den mittels SSP ermittelten Testergebnissen, gab es dort auch einen höheren Anteil von Testausfällen. Diese Proben hätten also ein weiteres mal mit SSP typisiert werden müssen, um eine vollständige Auswertung zu ermöglichen.

Ein nicht von der Hand zu weisender Vorteil den die SSP Methode bietet, ist der Umstand, dass mit ihr tatsächlich auch Haplotypen getestet werden konnten, da die sequenzspezifischen Primer dieser Anwendung auf einem DNA Strang innerhalb eines Gens jeweils zwei benachbarte SNP berücksichtigen, indem jeweils beide Primer an benachbarte SNP binden. Bei der Analyse mit xMAP® Carboxybeads war diese Bestimmung aufgrund der Entfernung nicht möglich. Die Bestimmung erfolgte bei uns nach der Ausschlussmethode, da bisher nur einige Haplotypen nachgewiesen wurden und nicht alle theoretisch denkbaren Möglichkeiten vorkamen. Nur aufgrund dieser Tatsache war es bei zwei und mehr SNP innerhalb eines Haplotypen möglich, Angaben über diesen treffen zu können. Auch wenn die Typisierung mittels xMAP® Carboxybeads im laufenden Routinebetrieb günstiger ist, stehen zu Beginn zunächst Investitionskosten an. Während die SSP-Methode lediglich einen Thermocycler, eine Gelelektrophoresekammer und UV-Lichteinheit benötigt, die in den meisten Labors ohnehin vorhanden sind, muss für die xMAP® Carboxybead Technologie zunächst ein Luminex 100 IS und gegebenenfalls weitere Ausrüstung beschafft werden. Diesen Bemühungen folgt dann noch die Einweisung für das labortechnische Personal, welche diese Applikation benutzen soll. Im Vorteil sind dabei sicherlich Labore, die ohnehin schon die Technologie des Luminex 100 IS für andere Applikationen, zum Beispiel der HLA-Typisierung, nutzen.

Im Vergleich dazu lassen Sequenzierung und DNA-Microarray ebenfalls keinen Rückschluss auf Haplotypen zu. Hiermit bieten Sequenzierung und DNA-Microarray also keine Vorteile, was die Aussagekraft der Typisierung angeht, gegenüber unserer Methode. Vom Verfahrensweg und Aufwand ähneln sich Sequenzierung, DNA-Microarray und unsere Methode grundsätzlich zu Beginn. Am Anfang steht bei beiden eine PCR-Reaktion, beziehungsweise ist auch ähnlich zu unserem Verfahren eine MPCR denkbar. Dieser Schritt ist also für alle Methoden bezogen auf den zeitlichen und arbeitstechnischen Aufwand gleich zu bewerten. Bei der Sequenzierung schließt sich jedoch noch das Aufreinigen, die eigentliche Sequenzierreaktion im Thermocycler gemäß der Kettanabbruchmethode und schließlich die Fällung der entstandenen Produkte an. Diese Arbeitsschritte beanspruchen selbst bei zügigem, routinierten Arbeiten einen Zeitraum von drei Stunden und anschließend folgt noch die Analyse mittels entsprechender Kapillarelektrophorese. Da es bei der Seguenzierung notwendig ist, die Amplifikate der PCR, beziehungsweise der MPCR, einzeln zu sequenzieren, würden im Fall der Typisierung aller von uns untersuchten SNP insgesamt 19 Sequenzierreaktionen durchgeführt werden müssen, um eine Probe komplett typisieren zu können. Im Vergleich zu unserer Methode stünde entsprechend ein deutlich höherer Arbeits- und Zeitaufwand dem gegenüber, sowie ein höherer Einsatz an Materialien.

Da bei der Sequenzierung kein Erwerb von mehr Informationen gegenüber den Carboxybeads zu erwarten wären, da auch hier die Bestimmung von Haplotypen unmöglich ist, scheint mir der erhöhte Aufwand in keinem Verhältnis zu einem etwaigen Nutzen zu stehen. Auch bei der Methode der Sequenzierung bleiben, je nachdem ob entsprechende Geräte bereits im Labor vorhanden sind, die Investitionskosten der entsprechenden Gerätschaften zu berücksichtigen.

Am vergleichbarsten ist meiner Meinung nach, unter Berücksichtigung von Zeitund Arbeitsaufwand, die Methode des DNA-Microarray. Hierzu fehlen in unserem Labor die praktischen Erfahrungswerte, da wir diese Methode zum Zeitpunkt dieser Arbeit nicht in unserem Labor nutzten. Auch hier dient eine PCR oder MPCR als Grundlage und benötigt einen vergleichbaren Zeit- und Ressourceneinsatz. Die anschließende Hybridisierungsreaktion auf dem entsprechend gestalteten DNA-Microarray, die Waschschritte und die letztliche Auswertung sollten, gemäß meiner Einschätzung, einen ähnlichen Umfang zu dem der Carboxybeads einnehmen. Bei dieser Methode ist ein ähnlich hoher Probendurchlauf wie im Luminex 100 IS denkbar. Ein möglicher Vorteil könnte die Tatsache sein, dass mit einem "Chip" alle 22 Polymorphismen typisiert werden könnten, jedoch ist dies prinzipiell auch mit der Methode der xMAP® Carboxybeads möglich. Dieser Weg wurde allerdings aus zwei Gründen nicht von uns beschritten. Zum einen benötigten wir ohnehin drei MPCR um alle SNP zu erfassen, da zu befürchten stand bei einer einzigen MPCR mit allen Primern nicht mehr alle Amplifikate und unspezifische Produkte zu erhalten. Dabei sollte auf den Schritt eines theoretisch möglichen Zusammenfügens der drei verschiedenen MPCR-Ansätze nach erfolgter Amplifikation verzichtet werden. Die zweite Befürchtung lag in unspezifischen Bindungen bei der Hybridisierung mit den Captureoligonukleotid bestückten Carboxybeads, die die Genauigkeit der Auswertung verschlechtert hätten. Ähnliche Probleme könnten sich aber auch bei der Methode des DNA-Microarray auftun. Wie auch bei der Methode der xMAP® Carboxybeads ist keine Bestimmung von Haplotypen möglich und entsprechende Geräte zur Analyse der DNA-Microarrays müssten beschafft werden. Womit sich der Schluss ziehen lässt, dass auch diese Methode keine signifikanten Vorteil gegenüber der von uns etablierten aufweist.

4.2. Beurteilung der Ergebnisse und Problemanalyse

Bei der Betrachtung der Typisierungsergebnisse der Polymorphismen fällt regelhaft eine hohe Trennschärfe zwischen den Genotypen der Polymorphismen auf. Bei den SNP in IFNg (rs2430561) und TGFb (rs1982073) traten allerdings Probleme auf. Zwar ließen sich durch Kenntnis des Typisierungsergebnis hier die Cut-Offs bestimmen, jedoch lagen die Quotienten der einzelnen Proben zum Teil sehr nah an den Cut-Offs, was eine sichere Typisierung von Proben für diese machte. Insgesamt Polymorphismen schwierig wiesen diese beiden Polymorphismen in der Entwicklung auch die größten Probleme auf, da zu Beginn die Ergebnisse von Luminex in keiner Weise die bekannte Typisierung widerspiegelten. Erst durch das Einführen des zweiten Waschschrittes nach der Markierung mit Streptavidin-R-phycoerythrin war der Polymorphismus für den SNP in IFNg überhaupt auswertbar. Allerdings verloren wir dadurch bei allen getesteten SNP beim Auslesen im Luminex 100 IS an Signalintensität, was die Qualität der Ergebnisse teils reduzierte, jedoch stellte sich die gewünschte Abgrenzbarkeit für die oben genannte Typisierung des Polymorphismus rs2430561 ein. Auf die Auswertbarkeit und Signalunterschiede der restlichen SNP-Typisierungen wirkte sich dieser Waschschritt, mit Ausnahme von IL4, im Endeffekt nur unwesentlich aus, so dass wir diesen Kompromiss eingingen.

Das Einführen des zusätzlichen Waschschrittes allein reichte jedoch nicht aus, um eine ausreichende Abgrenzbarkeit der Genotypen zu erhalten. So änderten wir zusätzlich das Design der Captureoligonukleotide für den betroffenen SNP. Hier zeigt sich die Notwendigkeit, im Gegensatz zu den übrigen Captureoligonukleotiden bei denen die polymorphe Stelle genau in der Mitte lag. Die Position zu verändern. Im Falle von IFNg wurde die polymorphe Stelle weiter nach außen an den Rand gerückt. Der Grund dieser Veränderung ging auf unsere Überlegungen zurück, dass durch diese Änderung eine spezifischere Bindung an die Zielsequenz ermöglicht werden sollte. Trotz dieser Maßnahmen blieb die Abgrenzbarkeit für die SNP rs2430561 und rs1982073 nur passabel und lag im Vergleich zu den restlichen SNP-Typisierungen hinsichtlich Genauigkeit zurück (vergleiche hierzu Tbl. 31 und 32 auf den Seiten 91 und 92). In der Überlegung darüber, was die Ursache für diesen Effekt sein könnte, hierfür am ehesten die Sequenzabfolgen infrage, welche die kamen Polymorphismen aufwiesen. Beide Polymorphismen lagen innerhalb, beziehungsweise am Ende eines Short-Tandem-Repeats. In diesen Basensequenzauffälligkeiten sahen wir einen Grund für unspezifische Bindung der Captureoligonukleotide, die zu der schlechteren Abgrenzbarkeit führten. Die neue Position am Rand des Captureoligonukleotides wird gemäß einer Empfehlung von Luminex für eher ungünstig gehalten, da die Bindungsspezifität abnimmt und nur dann angeraten, wenn wie in unserem Fall, andere Eigenheiten der Zielsequenz zu diesem Schritt zwingen [138].

Der zusätzliche Waschschritt für die Optimierung der Typisierung von IFNg und TGFb ging zu Lasten der Genauigkeit der Typisierung von IL4. Bei rs2243250 lagen die Proben K2, K5 und K6 direkt am Cut-Off. Im Polymorphismus rs2070874 kam es zu einer Fehltypisierung für die Probe K2. Durch den Vorgang des zusätzlichen Waschschrittes reduzierte sich die Signalstärke der gezählten Beads, welche vom Luminex 100 IS ausgelesen wurde. Dies wirkte sich wiederum negativ auf die ermittelten Quotienten aus, die wir zur Bestimmung des Genotyps heranzogen. Im Vorfeld der Entwicklung wurde die Typisierung nur mit einem Waschschritt durchgeführt, daher standen aus ersten Probeläufen ebenfalls Rohdaten zur Verfügung, welche zum Vergleich herangezogen werden konnten. Aus diesen Vorversuchen standen die Typisierungen für Kit 1 und Kit 3 zur Verfügung. Im Falle von IL4 zeigte sich hier, in den Versuchen mit nur einem Waschschritt, eine Typisierung wie sie wünschenswert gewesen wäre, mit ausreichend großen und eindeutigen Abständen zwischen den Quotienten der einzelnen Genotypen, so dass sich problemlos ein Cut-Off bestimmen ließ und es trat bei diesen Typisierungen kein Fehler auf.

Letztlich musste also die Konfiguration einen Kompromiss darstellen, um eine möglichst genaue Typisierung aller SNP zu erreichen. Eine Möglichkeit war es, unter der Prämisse für alle drei Kits den gleichen Verfahrensablauf zu haben, den zweiten Waschschritt immer durchzuführen, was jedoch auf Kosten der Genauigkeit bei der Typisierung von IL4 geschehen musste. Die zweite Möglichkeit wäre, ausschließlich bei der Typisierung von Kit 2 den zweiten Waschschritt durchzuführen, wodurch die bessere Auswertbarkeit von TGFb und IFNg gegeben wäre, und die restlichen Typisierungen von Kit 1 und Kit 3, inklusive der Typisierung von IL4, unbeeinflusst bliebe. Hierbei entstünde der Nachteil, dass aufgrund des zusätzlichen Waschschrittes in Kit 2, die Verfahrensweise für alle drei Kits nicht einheitlich wäre.

Im Verlauf des Entwicklungsprozesses erwies sich die MPCR als robuste Anwendung, die die an sie gestellten Erwartungen vollauf erfüllte. Als nachteilig betrachteten wir zunächst, dass es nicht möglich war, die MPCR auf das Funktionieren aller Primerpaare innerhalb eines Kits überprüfen zu können. Zwar war es möglich die Amplifikate in einem Agarosegel elektrophoretisch aufzutrennen, dies lieferte jedoch nur ein Bandenmuster, welches jedoch nicht eindeutig die Frage beantwortete, ob alle fünf beziehungsweise sechs MPCR-Produkte auch wirklich amplifiziert wurden. Dies ergab sich aus der Tatsache, dass die unterschiedlichen PCR-Amplifikate sich oft nur unwesentlich in der Basenzahl unterschieden und die Auflösung im normalen Agarosegel für die komplette und eindeutige Trennung nicht ausreichte. So ließ ein Gelbild nur eine Aussage darüber zu, ob überhaupt eine Reaktion abgelaufen war und ob Amplifikate mit den zu erwartenden Basenlängen entstanden waren. Zwar testeten wir auch unterschiedliche Beschaffenheiten der Agarosegele und länger dauernde elektrophoretischer Auftrennungen, um die Unterschiede zwischen Basendifferenzen von 2-40 bp herauszuarbeiten, jedoch erwies sich dies als zu Zeit- und Materialaufwendig, um dies bei jeder Reaktion anzuschließen. Benutzt wurden die Gelbilder nur noch, um von vornherein sagen zu können, ob eine Reaktion stattgefunden hatte oder nicht. Zum Beweis der erfolgreichen MPCR

für jedes gewünschte Amplifikat nutzten wir letztlich die Sequenzierung. Hier zeigte sich mehrfach, dass sich aus den MPCR-Reaktionen jedes einzelne Produkt heraus ausfallsicher sequenzieren ließ. Hieraus zogen wir die Schlussfolgerung, dass die drei MPCR ausreichend zuverlässig waren, um sie direkt mit den xMAP® Carboxybeads hybridisieren und analysieren zu können, ohne das wir einen Nachweisschritt zur Überprüfung der MPCR zwischenschalten hätten müssen.

4.3 Erfahrungen in der Entwicklung und Möglichkeiten der Systemoptimierung

Bei der Entwicklung dieser Applikation ergaben sich diverse Probleme, sowohl bei der Etablierung der MPCR, wie auch beim Erstellen der gekoppelten xMAP® Carboxybeads. Während bereits zu Beginn klar war, dass die Schmelztemperaturen der benutzten Primerpaare für die MPCR alle in etwa gleich sein mussten, stellte sich die Menge der eingesetzten Primer zunächst als schwierig heraus. Abgeleitet von der Menge der eingesetzten Primer in der PCR eines für die einzelne Amplifikationsreaktion, setzten wir die selbe Menge auch in der MPCR ein, so dass sich die gesamte Menge an Primern bei fünf bis sechs Primerpaaren je MPCR auch um den Faktor fünf bis sechs erhöhte. Das Ergebnis war, dass zunächst vor allem neben in geringem Grad amplifizierten MPCR-Produkten, eine stark ausgeprägte Bildung von Primerdimeren und unspezifischen MPCR-Produkten die Folge war. Über den Versuch, die Primerkonzentration anhand der Stärke der Bandenmuster für die jeweiligen Produkte individuell anzupassen, gelangten wir am Ende zu dem Entschluss, die Primerkonzentration drastisch zu senken. Daher setzten wir nur noch 30 pmol des Primer-Mix je Reaktion ein, wo es zuvor noch bis zu 120 pmol waren. Den Ergebnissen kam dies zugute, denn die Primerdimere und unspezifischen Banden in der Kontrolle durch die Gelelektrophorese verschwanden zugunsten einer deutlich besseren Qualität bei der Amplifikation der MPCR-Produkte [6]. Letztlich führte diese Erkenntnis auch zu der Entscheidung, keinen Versuch mehr zu unternehmen, eine MPCR mit allen Primern in einer Reaktion zu entwickeln. Basierend auf diesem neuen Konzept verlief die weitere Entwicklung anschließender Sequenzierung der MPCR mit zur Überprüfung des Amplifikationserfolges problemlos. Im Vergleich der drei etablierten MPCR-Kits schien es von Vorteil gewesen zu sein, wenn alle verwendeten Primerpaare möglichst kurze, das heißt um die 100 bp Länge liegende, Amplifikate ergaben. Hier zeichnete sich noch einmal eine bessere Qualität, im Vergleich zu den Kits die PCR-Produktlängen von über 250 bp beinhalteten, ab. Ob dies im geringeren Substratverbrauch in Form von dNTP zu sehen war, weil die Amplifikate kürzer waren, bleibt an dieser Stelle nur zu vermuten, auch wenn die Zugabe einer erhöhten Menge MPCR-Reaktionspuffers die Ergebnisse verbesserte. Jedoch ergaben höhere Mengen als 6 µl MPCR-Reaktionspuffer keine Verbesserung der Ergebnisse.

Die Entwicklung der gekoppelten xMAP® Carboxybeads verlief ebenfalls nicht ohne Schwierigkeiten. Während das Koppeln der Carboxybeads problemlos erfolgen konnte, die traten ersten Schwierigkeiten bei der Hybridisierungsreaktion auf. In den ersten Versuchen setzten wir C6-Spacer am 5'-Ende der Captureoligonukleotide ein und erhielten damit nur unspezifische Ergebnisse. Nachdem mehrere Testreihen mit geänderten Hybridisierungsbedingungen keine Änderung der Ergebnisse erbrachten, gingen wir der Überlegung nach, ob nicht ein längerer Spacer notwendig war. Unter der Vorstellung, dass die unspezifische Bindung aufgrund eines sterischen Problems die Hybridisierung der PCR-Produkte an die beadgebundenen Captureoligonukleotide verhinderten, entschieden wir uns für die Verwendung von Spacern mit einem Kohlenstoffgerüst, bestehend aus 12 Atomen [40]. Dieser Schritt erbrachte den gewünschten Erfolg und von diesem Zeitpunkt an waren die Hybridisierungsreaktionen bei der Entwicklung von Kit 1 und Kit 3 erfolgreich. Probleme traten dann erst wieder bei Kit 2 auf, als es an die

Auswertung von IFNg und TGFb ging, die bereits zuvor beschrieben wurden. Für eine zukünftige weitere Optimierung der Applikation ist es wahrscheinlich notwendig sie in Teilen neu zu konzipieren. In den Fällen, in denen die Bestimmung der Polymorphismen TGFb und IFNg nicht notwendig sein sollte, entsprechenden Primer- und Beadmixe können die komplikationslos und die Anwendung ohne den zusätzlich weggelassen eingeführten Waschschritt bei der Hybridisierung ausgeführt werden. Für die Verbesserung der Anwendung hinsichtlich des Verbleibs der beiden problematischen Polymorphismen im Kit, sollten zunächst die Captureoligonukleotide für TGFb überarbeitet werden. Damit könnte unter Umständen durch Veränderung des Designs der Captureoligonukleotide, vergleichbar zu IFNg, durch Verschiebung der polymorphen Stelle innerhalb des Captureoligonukleotides der Einfluss des Short-Tandem-Repeats minimiert werden. Eine weitere Möglichkeit zur Verbesserung könnte die Ausgliederung von TGFb und IFNg in einen eigenen Kit, beziehungsweise die Neuordnung der Kitzusammenstellung, sein. Hierzu müsste allerdings im letzten Fall die MPCR neu zusammengestellt und erneut validiert werden. Insgesamt entwickelten wir trotz der Probleme eine zuverlässige Anwendung, die eine rasche und genaue Typisierung der Proben erlaubt.

4.4. Ausblick und Zukunft der xMAP® Carboxybeadtechnologie in der Abteilung für Transplantationsimmunologie

Mittels des im Rahmen dieser Arbeit entwickelten Testverfahrens wurden in unserem Institut Einflüsse auf die Graft-versus-Host-Reaktion bei knochenmarktransplantierten Spender-/Empfängerpaaren untersucht. Hierzu wurden ca. 400 Proben von Spender/Empfängerpaaren analysiert. Basierend auf den Erfahrungen zu dieser Technologie entwickelten wir für drei Polymorphismen im NOD2/Card 15 Gen einen gleich angelegten Test, wenn auch ein einer geringeren Umfang, der ebenfalls eine MPCR nutzt und bei dem mittels xMAP® Carboxybeads, die mit entsprechenden Captureoligonukleotiden gekoppelt wurden, typisiert werden konnten. Damit wurden die bereits auf die Polymorphismen im Bereich der Zytokine getesteten 400 Spender-/ Empfängerpaare ebenfalls auf die Merkmale von NOD2/Card 15 mit derselben Fragestellung wie bei den SNP der Zytokingene untersucht. Die jüngste Anwendung, die anhand dieser Basisdaten entwickelt wurde, war zur Typisierung einer Deletion im Bereich des CCR5-Gens. Hierzu erfolgt aktuell eine Studie zur Klärung des Einflusses dieser Deletion auf die Infektionshäufigkeit von Cytomegalieviren auf humane Zellen. Die Entwicklung dieser beiden folgenden Anwendungen konnte mit den aus dieser Arbeit hervorgegangenen Basisdaten schneller und effizienter durchgeführt werden, beweist die Übertragbarkeit auf andere Gensysteme und ermöglicht so zukünftig vielfältige Anwendungsmöglichkeiten bei Fragestellungen, die Typisierungen von polymorphen Stellen im Genom verlangen.

5. Zusammenfassung

Wir knüpften an diese Arbeit die Zielsetzung, eine neue Methode zur Typisierung von Zytokinpolymorphismen im menschlichen Genom zu etablieren. Hierzu wollten wir 22 verschiedene Single Nucleotide Polymorphism (SNP) in den 13 Zytokingenen Interleukin-1 alpha (IL1a), Interleukin-1 beta (IL1b), Interleukin-1 Rezeptor (IL1R), Interleukin-1 Rezeptorantagonist (IL1RN), Interleukin-2 (IL2), Interleukin-4 (IL4), Interleukin-4 Rezeptor alpha (IL4Ra), Interleukin-6 (IL6), Interleukin-10 (IL10), Interleukin-12 beta (IL12b), Interleukin-6 (IL6), Tumor necrosis factor alpha (TNFa) und Transforming growth factor beta (TGFb) untersuchen, die mittels der xMAP® Carboxybead Technologie der Firma Luminex typisiert werden sollten. Dies geschah, um in Folgearbeiten den Einfluss dieser SNP auf das Auftreten und das Ausmaß von Graft-versus-Host-Reaktion bei knochenmarktransplantierten Patienten untersuchen zu können.

Für die praktische Umsetzung entwickelten wir zunächst drei MPCR (multiplex Polymerase Chain Reaction), in denen die 13 betroffenen Zytokingene mit den SNP amplifiziert werden konnten. In einem weiteren Schritt koppelten wir an die xMAP® Carboxybeads Captureoligonukleotide, die an die entsprechenden Genabschnitte im Bereich der untersuchten SNP binden sollten. An die in den MPCR gewonnenen Amplifikaten erfolgte die Hybridisierung der an die Beads gekoppelten Captureoligonukleotide und die anschließende Analyse mit dem Luminex 100 IS Gerät. Aufgrund der gewonnenen Signale konnten anschließend der Genotyp für die SNP bestimmt, sowie die Haplotypen angegeben werden.

Zur Validierung der von uns entwickelten Testmethode analysierten wir 52 DNA (Desoxyribonucleic acid) Proben und typisierten sie hinsichtlich ihrer Genotypen. Die geschah zum einen mit einer bei uns ebenfalls genutzten Methode durch sequenzspezifische Primer und zum Vergleich die neue Testmethode. Bei Unterschieden im Ergebnis zwischen der neuen und der Referenzmethode kam zur Bestätigung des korrekten Genotyp die Sequenzierung zum Einsatz. Bei der Validierung wurden für jeden der zu untersuchenden SNP 52 Proben typisiert, was eine Gesamtzahl von 1144 Typisierungen ergab. Von diesen 1144 Proben fanden sich in 57 Fällen ein abweichendes Ergebnis zwischen der Methode der sequenzspezifischen Primer und der neu entwickelten xMAP® Carboxybead Methode. Bei der Kontrolle mittels Sequenzierung ergab sich das Bild, dass lediglich drei Fehltypisierungen bei den Carboxybeads zu verzeichnen waren, denen 54 Fehltypisierungen durch die sequenzspezifischen Primer gegenüberstanden. Damit ergab sich eine Fehlerquote von 0,27% bei den Carboxybeads, im Vergleich zu der von uns gewählten Referenzmethode mit einer Fehlerquote von 4,79%. Darüber hinaus erbrachte die Methode der sequenzspezifischen Primer bei der Testung in 17 Fällen kein Ergebnis, was zu einer Gesamtfehlerquote von 6,21% seitens der Methode SSP (sequenzspezifische Primer) führte.

Damit erbrachte diese Arbeit im Ergebnis eine neue Möglichkeit der effizienteren und schnelleren Typisierung von DNA-Proben, auf die für uns wichtigen SNP im Bereich der genannten Zytokingene, als sie bisher in unserem Labor möglich war. Diese bietet jedoch noch Raum für Optimierung im Bereich der Testung von IFNg und TGFb bietet, da hier eine schlechtere Abgrenzbarkeit der einzelnen Genotypen voneinander zu verzeichnen war, im Vergleich zu den restlichen untersuchten SNP in den anderen Zytokingenen. Zudem konnten basierend auf den Erfahrungen für die Testung dieser SNP, diese Methodik auch für SNP im Bereich von NOD2/Card 15 (Nucleotide-binding oligomerization domaincontaining protein 2), sowie bei der CCR5-Diagnostik (Chemokine-5 Rezeptor) eingesetzt werden.

6. Literatur

- [1] Akkad DA, Arning L, Ibrahim SM, Peplen JT: Sex specifically associated promoter polymorphism in multiple sclerosis affects interleukin 4 expression levels. Genes Immun 8: 703-706 (2007)
- [2] Ambruzova Z, Mrazek F, Raida L, Jindra P, Vidan-Jeras B, Faber E, Pretnar J, Indrak K, Petrek M: Association of IL6 and CCL2 gene polymorphisms with the outcome of allogeneic haematopoietic stem cell transplantation. Bone Marrow Transplant 44: 227-235 (2009)
- [3] Asderakis A, Sankaran D, Dyer P, Johnson RW, Pravica V, Sinnott PJ, Roberts I, Hutchinson IV: Association of polymorphisms in the human interferon-gamma and interleukin-10 gene with acute and chronic kidney transplant outcome: the cytokine effect on transplantation. Transplantation 71: 674-677 (2001)
- [4] Awad MR, El-Gamel A, Hasleton P, Turner DM, Sinnott PJ, Hutchinson IV: Genotypic variation in the transforming growth factor-beta1 gene: association with transforming growth factor-beta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation 66: 1014-1020 (1998)
- [5] Bagnoli S, Cellini E, Tedde A, Nacmias B, Piacentini S, Bessi V, Bracco L, Sorbi S: Association of IL10 promoter polymorphism in Italian Alzheimer's disease. Neurosci Lett 418: 262-265 (2007)
- [6] Bartošová P, Fiala I: Molecular evidence for the existence of cryptic species Assemblage of several myxosporeans (Myxozoa). Parasitol Res 108: 573-583 (2011)
- [7] Beadling C, Johnson KW, Smith KA: Isolation of interleukin 2-induced immediate-early genes. Proc Natl Acad Sci U S A 90: 2719-2723 (1993)

- [8] Beadling C, Smith KA: DNA array analysis of interleukin-2-regulated immediate/early genes. Med Immunol 1: 2 (2002)
- [9] Benedict C, Scheller J, Rose-John S, Born J, Marshall L: Enhancing influence of intranasal interleukin-6 on slow-wave activity and memory consolidation during sleep. FASEB J 23: 3629-3636 (2009)
- [10] Benke KS, Carlson MC, Doan BQ, Walston JD, Xue QL, Reiner AP, Fried LP: Arking interleukin-1 genes with cognition: Findings from the cardiovascular health study. Exp Gerontol 46: 1010-1019 (2011)
- [11] Bertinetto FE, Dall'Omo AM, Mazzola GA, Rendine S, Berrino M, Bertola L, Magistroni P, Caropreso P, Falda M, Locatelli F, Busca A, Amoroso A: Role of non-HLA genetic polymorphisms in graft-versus-host disease after haematopoietic stem cell transplantation. Int J Immunogenet 33: 375-384 (2006)
- [12] Bogunia-Kubik K, Mlynarczewska A, Wysoczanska B, Lange A: Recipient interferon-gamma 3/3 genotype contributes to the development of chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Haematologica 90: 425-426 (2005)
- [13] Bogunia-Kubik K: Polymorphisms within the genes encoding TNF-alpha and TNF-beta associate with the incidence of post-transplant complications in recipients of allogeneic hematopoietic stem cell transplants. Arch Immunol Ther Exp (Warsz) 52: 240-249 (2004)
- [14] Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J: Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28: 495-503 (1990)

- [15] Bortolin S, Black M, Modi H, Boszko I, Kobler D, Fieldhouse D, Lopes E, Lacroix JM, Grimwood R, Wells P, Janeczko R, Zastawny R: Analytical validation of the tag-it high-throughput microsphere-based universal array genotyping platform: application to the multiplex detection of a panel of thrombophilia-associated single-nucleotide polymorphisms. Clin Chem 50: 2028-2036 (2004)
- [16] Borzani I, Tola MR, Caniatti L, Collins A, De Santis G, Luiselli D, Mamolini E, Scapoli C. The interleukin-1 cluster gene region is associated with multiple sclerosis in an Italian Caucasian population. Eur J Neurol 17: 930-938 (2010)
- [17] Bovers M, Diaz MR, Hagen F, Spanjaard L, Duim B, Visser CE, Hoogveld HL, Scharringa J, Hoepelman IM, Fell JW, Boekhout T: Identification of genotypically diverse Cryptococcus neoformans and Cryptococcus gattii isolates by Luminex xMAP technology. J Clin Microbiol 45: 1874-1883 (2007)
- [18] Bremer LA, Blackman SM, Vanscoy LL, McDougal KE, Bowers A, Naughton KM, Cutler DJ, Cutting GR: Interaction between a novel TGFB1 haplotype and CFTR genotype is associated with improved lung function in cystic fibrosis. Hum Mol Genet 17: 2228-2237 (2008)
- [19] Brenner AV, Butler MA, Wang SS, Ruder AM, Rothman N, Schulte PA, Chanock SJ, Fine HA, Linet MS, Inskip PD: Single-nucleotide polymorphisms in selected cytokine genes and risk of adult glioma. Carcinogenesis 28: 2543-2547 (2007)
- [20] Brookes AJ: The essence of SNPs. Gene 234: 177-186 (1999)
- [21] Brown JT, Lahey C, Laosinchai-Wolf W, Hadd AG: Polymorphisms in the glucocerebrosidase gene and pseudogene urge caution in clinical analysis of Gaucher disease allele c.1448T>C (L444P). BMC Med Genet 7: 69 (2006)

- [22] Cantrell DA, Smith KA: The interleukin-2 T-cell system: a new cell growth model. Science 224: 1312-1316 (1984)
- [23] Capon F, Di Meglio P, Szaub J, Prescott NJ, Dunster C, Baumber L, Timms K, Gutin A, Abkevic V, Burden AD, Lanchbury J, Barker JN, Trembath RC, Nestle FO: Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis. Hum Genet 122: 201-206 (2007)
- [24] Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, Matsunami N, Ardlie KG, Civello D, Catanese JJ, Leong DU, Panko JM, McAllister LB, Hansen CB, Papenfuss J, Prescott SM, White TJ, Leppert MF, Krueger GG, Begovich AB: A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 80: 273-290 (2007)
- [25] Cavet J, Dickinson AM, Norden J, Taylor PR, Jackson GH, Middleton PG: Interferon-gamma and interleukin-6 gene polymorphisms associate with graft-versus-host disease in HLA-matched sibling bone marrow transplantation. Blood 98: 1594-1600 (2001)
- [26] Celedón JC, Lange C, Raby BA, Litonjua AA, Palmer LJ, DeMeo DL, Reilly JJ, Kwiatkowski DJ, Chapman HA, Laird N, Sylvia JS, Hernandez M, Speizer FE, Weiss ST, Silverman EK: The transforming growth factor-beta1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD). Hum Mol Genet 13: 1649-1656 (2004)
- [27] Cerhan JR, Wang S, Maurer MJ, Ansell SM, Geyer SM, Cozen W, Morton LM, Davis S, Severson RK, Rothman N, Lynch CF, Wacholder S, Chanock SJ, Habermann TM, Hartge P: Prognostic significance of host immune gene polymorphisms in follicular lymphoma survival. Blood 109: 5439-5446 (2007)

- [28] Chen G, Goeddel DV: TNF-R1 signaling: a beautiful pathway. Science 296: 1634-1635 (2002)
- [29] Chen J, Iannone MA, Li MS, Taylor JD, Rivers P, Nelsen AJ, Slentz-Kesler KA, Roses A, Weiner MP: A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension. Genome Res 10: 549-557 (2000)
- [30] Christensen U, Haagerup A, Binderup HG, Vestbo J, Kruse TA, Børglum AD: Family based association analysis of the IL2 and IL15 genes in allergic disorders. Eur J Hum Genet 14: 227-235 (2006)
- [31] Colinas RJ, Bellisario R, Pass KA: Multiplexed genotyping of beta-globin variants from PCR-amplified newborn blood spot DNA by hybridization with allele-specific oligodeoxynucleotides coupled to an array of fluorescent microspheres. Clin Chem 46: 996-998 (2000)
- [32] Collins FS, Brooks LD, Chakravarti A: A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 8: 1229-1231 (1998)
- [33] Crispim JC, Wastowski IJ, Rassi DM, Mendes-Junior Silva CT, Bassi C, Castelli EC, Costa RS, Saber LT, Silva TG, Donadi EA: Interferon-γ +874 polymorphism in the first intron of the human interferon-γ gene and kidney allograft outcome. Transplant Proc 42: 4505-4508 (2010)
- [34] Cullup H, Dickinson AM, Cavet J, Jackson GH, Middleton PG: Polymorphisms of interleukin-1alpha constitute independent risk factors for chronic graft-versus-host disease after allogeneic bone marrow transplantation. Br J Haematol 122: 778-787 (2003)
- [35] Dalva K, Beksac M: HLA typing with sequence-specific oligonucleotide primed PCR (PCR-SSO) and use of the Luminex technology. Methods Mol Med 134: 61-69 (2007)

- [36] Danforth KN, Rodriguez C, Hayes RB, Sakoda LC, Huang WY, Yu K, Calle EE, Jacobs EJ, Chen BE, Andriole GL, Figueroa JD, Yeager M, Platz EA, Michaud DS, Chanock SJ, Thun MJ, Hsing AW: TNF polymorphisms and prostate cancer risk. Prostate 68: 400-407 (2008)
- [37] Das S, Brown TM, Kellar KL, Holloway BP, Morrison CJ: DNA probes for the rapid identification of medically important Candida species using a multianalyte profiling system. FEMS Immunol Med Microbiol 46: 244-250 (2006)
- [38] Daser A, Mitchison H, Mitchison A, Müller B: Non-classical-MHC genetics of immunological disease in man and mouse. The key role of proinflammatory cytokine genes. Cytokine 8: 593-597 (1996)
- [39] Dhiman N, Ovsyannikova IG, Cunningham JM, Vierkant RA, Kennedy RB, Pankratz VS, Poland GA, Jacobson RM: Associations between measles vaccine immunity and single-nucleotide polymorphisms in cytokine and cytokine receptor genes. J Infect Dis 195: 21-29 (2007)
- [40] Diaz MR, Fell JW. High-throughput detection of pathogenic yeasts of the genus trichosporon. J Clin Microbiol 42: 3696-3706 (2004)
- [41] Dinarello CA: The interleukin-1 family: 10 years of discovery. FASEB J. 8: 1314-1325 (1994)
- [42] Dunbar SA, Jacobson JW: Rapid screening for 31 mutations and polymorphisms in the cystic fibrosis transmembrane conductance regulator gene by Lminex xMAP suspension array. Methods Mol Med 114: 147-171 (2005)
- [43] Febbraio MA, Pedersen BK: Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev 33: 114-119 (2005)

- [44] Furuta T, Teranishi M, Uchida Y, Nishio N, Kato K, Otake H, Yoshida T, Tagaya M, Suzuki H, Sugiura M, Sone M, Hiramatsu M, Sugiura S, Ando F, Shimokata H, Nakashima T: Association of interleukin-1 gene polymorphisms with sudden sensorineural hearing loss and Ménière's disease. Int J Immunogenet 38: 249-254 (2011)
- [45] Gao HL, Sun AN, Han Y, Zhang W, Hu XH, Wu DP, Ruan CG: Clinical significance of TNF-alpha, IL-1beta and IFN-gamma levels at early phase after allogeneic hematopoietic stem cell transplantation. Zhongguo Shi Yan Xue Ye Xue Za Zhi 17: 1321-1325 (2009)
- [46] Gaudet MM, Egan KM, Lissowska J, Newcomb PA, Brinton LA, Titus-Ernstoff L, Yeager M, Chanock S, Welch R, Peplonska B, Trentham-Dietz A, Garcia-Closas M: Genetic variation in tumor necrosis factor and lymphotoxin-alpha (TNF-LTA) and breast cancer risk. Hum Genet 121: 483-490 (2007)
- [47] Gaur U, Aggarwal BB: Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol 66: 1403-1408 (2003)
- [48] Gendzekhadze K, Rivas-Vetencourt P, Montano RF: Risk of adverse posttransplant events after kidney allograft transplantation as predicted by CTLA-4 +49 and TNF-alpha -308 single nucleotide polymorphisms: a preliminary study. Transpl Immunol 16: 194-199 (2006)
- [49] Gray PW, Goeddel DV: Structure of the human immune interferon gene. Nature 298: 859-863 (1982)
- [50] Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ: Mast cellderived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 8:1095-1104 (2007)

- [51] Haralambieva IH, Ovsyannikova IG, Kennedy RB, Vierkant RA, Pankratz VS, Jacobson RM, Poland GA: Associations between single nucleotide polymorphisms and haplotypes in cytokine and cytokine receptor genes and immunity to measles vaccination. Vaccine 29: 7883-7895 (2011)
- [52] Hee CS, Gun SC, Naidu R, Gupta E, Somnath SD, Radhakrishnan AK: Comparison of single nucleotide polymorphisms in the human interleukin-10 gene promoter between rheumatoid arthritis patients and normal subjects in Malaysia. Mod Rheumatol 17: 429-435 (2007)
- [53] Holler E, Ertl B, Hintermeier-Knabe R, Roncarolo MG, Eissner G, Mayer F, Fraunberger P, Behrends U, Pfannes W, Kolb HJ, Wilmanns W: Inflammatory reactions induced by pretransplant conditioning--an alternative target for modulation of acute GvHD and complications following allogeneic bone marrow transplantation? Leuk Lymphoma 25: 217-224 (1997)
- [54] Howard M, Paul WE: Interleukins for B lymphocytes. Lymphokine Res 1: 1 -4 (1982)
- [55] Hunninghake GM, Soto-Quirós ME, Lasky-Su J, Avila L, Ly NP, Liang C, Klanderman BJ, Raby BA, Gold DR, Weiss ST, Celedón JC: Dust mite exposure modifies the effect of functional IL10 polymorphisms on allergy and asthma exacerbations. J Allergy Clin Immunol 122: 93-98 (2008)
- [56] Kaliński P, Hilkens CM, Snijders A, Snijdewint FG, Kapsenberg ML: IL-12deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J Immunol 159: 28-35(1997)
- [57] Kämäräinen OP, Solovieva S, Vehmas T, Luoma K, Riihimäki H, Ala-Kokko L, Männikkö M, Leino-Arjas P: Common interleukin-6 promoter variants associate with the more severe forms of distal interphalangeal osteo-arthritis. Arthritis Res Ther: R21 (2008)

- [58] Karabon L, Wysoczanska B, Bogunia-Kubik K, Suchnicki K, Lange A: IL-6 and IL-10 promoter gene polymorphisms of patients and donors of allogeneic sibling hematopoietic stem cell transplants associate with the risk of acute graft-versus-host disease. Hum Immunol 66: 700-710 (2005)
- [59] Karabon L: The role of cytokine gene polymorphisms in organ and haematopoietic stem cell transplantation. Postepy Hig Med Dosw (Online) 58: 270-284 (2004)
- [60] Karimi MH, Daneshmandi S, Pourfathollah AA, Geramizadeh B, Malekhosseini SA, Nikeghbalian S, Yaghobi R, Bolandparvaz S: Association of IL-6 promoter and IFN-γ gene polymorphisms with acute rejection of liver transplantation. Mol Biol Rep 38: 4437-4443 (2011)
- [61] Karimi MH, Daneshmandi S, Pourfathollah AA, Geramizadeh B, Yaghobi R, Rais-Jalali GA, Roozbeh J, Bolandparvaz S: A study of the impact of cytokine gene polymorphism in acute rejection of renal transplant recipients. Mol Biol Rep 39: 509-515 (2012)
- [62] Karppinen J, Daavittila I, Noponen N, Haapea M, Taimela S, Vanharanta H, Ala-Kokko L, Männikkö M: Is the interleukin-6 haplotype a prognostic factor for sciatica? Eur J Pain 12: 1018-1025 (2008)
- [63] Knudsen S, Harsløf T, Husted LB, Carstens M, Stenkjaer L, Langdahl BL: The effect of interleukin-1alpha polymorphisms on bone mineral density and the risk of vertebral fractures. Calcif Tissue Int 80: 21-30 (2007)
- [64] Koch W, Hoppmann P, Mueller JC, Schömig A, Kastrati A. Association of transforming growth factor-beta1 gene polymorphisms with myocardial infarction in patients with angiographically proven coronary heart disease. Arterioscler Thromb Vasc Biol 26: 1114-1149 (2006)

- [65] Kocierz M, Siekiera U, Kolonko A, Karkoszka H, Chudek J, Cierpka L, Więcek A: -174G/C interleukin-6 gene polymorphism and the risk of transplanted kidney failure or graft loss during a 5-year follow-up period. Tissue Antigens77: 283-290 (2011)
- [66] Körholz D, Kunst D, Hempel L, Söhngen D, Heyll A, Bönig H, Göbel U, Zintl F, Burdach S: Decreased interleukin 10 and increased interferongamma production in patients with chronic graft-versus-host disease after allogeneic bone marrow transplantation. Bone Marrow Transplant 19: 691 -965 (1997)
- [67] Körholz D, Kunst D, Hempel L, Söhngen D, Heyll A, Bönig H, Göbel U, Zintl F, Burdach S: Decreased interleukin 10 and increased interferongamma production in patients with chronic graft-versus-host disease after allogeneic bone marrow transplantation. Bone Marrow Transplant 19: 691 -965 (1997)
- [68] Kube D, Hua TD, Klöss M, Kulle B, Brockmöller J, Wojnowski L, Löffler M, Pfreundschuh M, Trümper L: The interleukin-10 gene promoter polymorphism -1087AG does not correlate with clinical outcome in non-Hodgkin's lymphoma. Genes Immun 8: 164-167 (2007)
- [69] Langdahl BL, Uitterlinden AG, Ralston SH, Trikalinos TA, Balcells S, Brandi ML, Scollen S, Lips P, Lorenc R, Obermayer-Pietsch B, Reid DM, Armas JB, Arp PP, Bassiti A, Bustamante M, Husted LB, Carey AH, Pérez Cano R, Dobnig H, Dunning AM, Fahrleitner-Pammer A, Falchetti A, Karczmarewicz E, Kruk M, van Leeuwen JP, Masi L, van Meurs JB, Mangion J, McGuigan FE, Mellibovsky L, Mosekilde L, Nogués X, Pols HA, Reeve J, Renner W, Rivadeneira F, van Schoor NM, Ioannidis JP; APOSS investigators; DOPS investigators; EPOS investigators; EPOLOS investigators; FAMOS investigators; LASA investigators; ERGO investigators; GENOMOS Study: Large-scale analysis of association between polymorphisms in the transforming

growth factor beta 1 gene (TGFB1) and osteoporosis: the GENOMOS study. Bone 42: 969-981 (2008)

- [70] Lea WI, Lee YH: The associations between interleukin-1 polymorphisms and susceptibility to ankylosing spondylitis: A meta-analysis. (Publikation in Vorbereitung)
- [71] Li CJ, Yu LX, Xu J, Fu SJ, Deng WF, DU CF, Wang YB: Association between transforming growth factor beta-1 gene polymorphism and chronic allograft nephropathy. Nan Fang Yi Ke Da Xue Bao 27: 535-537 (2007)
- [72] Lin MT, Storer B, Martin PJ, Tseng LH, Gooley T, Chen PJ, Hansen JA: Relation of an interleukin-10 promoter polymorphism to graft-versus-host disease and survival after hematopoietic-cell transplantation. N Engl J Med 349: 2201-2210 (2003)
- [73] Locksley RM, Killeen N, Lenardo MJ: The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104: 487-501 (2001)
- [74] Maksymowych WP, Rahman P, Reeve JP, Gladman DD, Peddle L, Inman RD: Association of the IL1 gene cluster with susceptibility to ankylosing spondylitis: an analysis of three Canadian populations. Arthritis Rheum 54: 974-985 (2006)
- [75] Mangino M, Braund P, Singh R, Steeds R, Stevens S, Channer KS, Samani NJ: Association analysis of IL-12B and IL-23R polymorphisms in myocardial infarction. J Mol Med (Berl) 86: 99-103 (2008)
- [76] McGuigan FE, Macdonald HM, Bassiti A, Farmer R, Bear S, Stewart A, Black A, Fraser WD, Welsh F, Reid DM, Ralston SH: Large-scale population-based study shows no association between common polymorphisms of the TGFB1 gene and BMD in women. J Bone Miner Res 22: 195-202 (2007)

- [77] Mehta PA, Eapen M, Klein JP, Gandham S, Elliott J, Zamzow T, Combs M, Aplenc R, MacMillan ML, Weisdorf DJ, Petersdorf E, Davies SM: Interleukin-1 alpha genotype and outcome of unrelated donor haematopoietic stem cell transplantation for chronic myeloid leukaemia. Br J Haematol 137: 152-157 (2007)
- [78] Middleton PG, Taylor PR, Jackson G, Proctor SJ, Dickinson AM: Cytokine gene polymorphisms associating with severe acute graft-versus-host disease in HLA-identical sibling transplants. Blood 92: 3943-3948 (1998)
- [79] Moffett SP, Zmuda JM, Oakley JI, Beck TJ, Cauley JA, Stone KL, Lui LY, Ensrud KE, Hillier TA, Hochberg MC, Morin P, Peltz G, Greene D, Cummings SR: Tumor necrosis factor-alpha polymorphism, bone strength phenotypes, and the risk of fracture in older women. J Clin Endocrinol Metab 90: 3491-3497 (2005)
- [80] Morgan MM, Clayton CC, Heinricher MM: Dissociation of hyperalgesia from fever following intracerebroventricular administration of interleukin-1beta in the rat. Brain Res. 1022: 96-100 (2004)
- [81] Moxley G, Han J, Stern AG, Riley BP: Potential influence of IL1B haplotype and IL1A-IL1B-IL1RN extended haplotype on hand osteoarthritis risk. Osteoarthritis Cartilage 15: 1106-1112 (2007)
- [82] Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H: Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51: 263-273 (1986)
- [83] Mytilineos J, Laux G, Opelz G: Relevance of IL10, TGFbeta1, TNFalpha, and IL4Ralpha gene polymorphisms in kidney transplantation: a collaborative transplant study report. Am J Transplant 4: 1684-1690 (2004)

- [84] Nair RP, Ruether A, Stuart PE, Jenisch S, Tejasvi T, Hiremagalore R, Schreiber S, Kabelitz D, Lim HW, Voorhees JJ, Christophers E, Elder JT, Weichenthal M: Polymorphisms of the IL12B and IL23R genes are associated with psoriasis. J Invest Dermatol 128: 1653-1661 (2008)
- [85] Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, Smith JC, Markham AF: Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 17: 2503-2516 (1989)
- [86] Nikolova PN, Ivanova MI, Mihailova SM, Myhailova AP, Baltadjieva DN, Simeonov PL, Paskalev EK, Naumova EJ: Cytokine gene polymorphism in kidney transplantation--impact of TGF-beta 1, TNF-alpha and IL-6 on graft outcome. Transpl Immunol 18: 344-348 (2008)
- [87] Nordlander A, Uzunel M, Mattsson J, Remberger M: The TNFd4 allele is correlated to moderate-to-severe acute graft-versus-host disease after allogeneic stem cell transplantation. Br J Haematol 119: 113-1136 (2002)
- [88] Papiol S, Molina V, Rosa A, Sanz J, Palomo T, Fañanás L: Effect of interleukin-1beta gene functional polymorphism on dorsolateral prefrontal cortex activity in schizophrenic Patient. Am J Med Genet B Neuropsychiatr Genet 144B: 1090-1093 (2007)
- [89] Park SJ, Yoon YC, Kang SW, Kim TH, Kim YW, Joo H, Kim HJ, Jeong KH, Lee DY, Lee SS, Chung JH, Kim YH: Impact of IL2 and IL2RB genetic polymorphisms in kidney transplantation. Transplant Proc 43: 2383-2837 (2011)
- [90] Pawlik A, Domanski L, Rozanski J, Czerny B, Juzyszyn Z, Dutkiewicz G, Myslak M, Hałasa M, Słojewski M, Dabrowska-Zamojcin E: The association between cytokine gene polymorphisms and kidney allograft survival. Ann Transplant 13: 54-58 (2008)

- [91] Pereira FA, Pinheiro da Silva NN, Rodart IF, Carmo TM, Lemaire DC, Reis MG: Association of TGF-beta1 codon 25 (G915C) polymorphism with hepatitis C virus infection. J Med Virol 80: 58-64 (2008)
- [92] Perlman R, Schiemann WP, Brooks MW, Lodish HF, Weinberg RA: TGFbeta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol 3: 708-714 (2001)
- [93] Roncarolo MG, Battaglia M, Gregori S: The role of interleukin 10 in the control of autoimmunity. J Autoimmun 20: 269-272 (2003)
- [94] Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M: Immunologic selftolerance maintained by activated T cells expressing IL-2 receptor alphachains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 155: 1151-1164 (1995)
- [95] Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M: Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265: 687-695 (1977)
- [96] Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Biotechnology 24: 104-108 (1992)
- [97] SantaLucia J Jr: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 95:1460 -1465 (1998)
- [98] Sasayama D, Hori H, Teraishi T, Hattori K, Ota M, Matsuo J, Kawamoto Y, Kinoshita Y, Higuchi T, Amano N, Kunugi H: Association of interleukin-1β genetic polymorphisms with cognitive performance in elderly females without dementia. J Hum Genet 56: 613-616 (2011)

- [99] Schena FP, Cerullo G, Torres DD, Scolari F, Foramitti M, Amoroso A, Pirulli D, Floege J, Mertens PR, Zerres K, Alexopoulos E, Kirmizis D, Zelante L, Bisceglia L: Role of interferon-gamma gene polymorphisms in susceptibility to IgA nephropathy: a family-based association study. Eur J Hum Genet 14: 488-496 (2006)
- [100] Schroder K, Hertzog PJ, Ravasi T, Hume DA: Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75: 163-189 (2004)
- [101] Sebestyén A, Hajdu M, Kis L, Barna G, Kopper L: Smad4-independent, PP2A-dependent apoptotic effect of exogenous transforming growth factor beta 1 in lymphoma cells. Exp Cell Res 313: 3167-3174 (2007)
- [102] Sims AM, Timms AE, Bruges-Armas J, Burgos-Vargas R, Chou CT, Doan T, Dowling A, Fialho RN, Gergely P, Gladman DD, Inman R, Kauppi M, Kaarela K, Laiho K, Maksymowych W, Pointon JJ, Rahman P, Reveille JD, Sorrentino R, Tuomilehto J, Vargas-Alarcon G, Wordsworth BP, Xu H, Brown MA: International Genetics of Ankylosing Spondylitis. Prospective meta-analysis of interleukin 1 gene complex polymorphisms confirms associations with ankylosing pondylitis. Ann Rheum Dis 67: 1305-1309 (2008)
- [103] Slattery ML, Curtin K, Baumgartner R, Sweeney C, Byers T, Giuliano AR, Baumgartner KB, Wolff RR: IL6, aspirin, nonsteroidal anti-inflammatory drugs, and breast cancer risk in women living in the southwestern United States. Cancer Epidemiol Biomarkers Prev. 16: 747-755 (2007)
- [104] Slattery ML, Curtin K, Sweeney C, Wolff RK, Baumgartner RN, Baumgartner KB, Giuliano AR, Byers T: Modifying effects of IL-6 polymorphisms on body size-associated breast cancer risk. Obesity (Silver Spring) 16: 339-347 (2008)

- [105] Slattery ML, Wolff RK, Herrick JS, Caan BJ, Potter JD: IL6 genotypes and colon and rectal cancer. Cancer Causes Control 18: 1095-1105 (2007)
- [106] Smith KA: Interleukin-2: inception, impact, and implications. Science 240: 1169-76 (1988)
- [107] Socié G, Loiseau P, Tamouza R, Janin A, Busson M, Gluckman E, Charron D: Both genetic and clinical factors predict the development of graftversus-host disease after allogeneic hematopoietic stem cell transplantation. Transplantation 72: 699-706 (2001)
- [108] Stern JB, Smith KA: Interleukin-2 induction of T-cell G1 progression and c -myb expression. Science 233: 203-206 (1986)
- [109] Thakkinstian A, Dmitrienko S, Gerbase-Delima M, McDaniel DO, Inigo P, Chow KM, McEvoy M, Ingsathit A, Trevillian P, Barber WH, Attia J: Association between cytokine gene polymorphisms and outcomes in renal transplantation: a meta-analysis of individual patient data. Nephrol Dial Transplant 23: 3017-3023 (2008)
- [110] Thornton AM, Donovan EE, Piccirillo CA, Shevach EM: Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J Immunol. 172: 6519-6523 (2004)
- [111] Thornton AM, Shevach EM: CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188: 287-296 (1998)
- [112] Trajkov D, Arsov T, Petlichkovski A, Strezova A, Efinska-Mladenovska O, Gogusev J, Spiroski M: Distribution of the 22 cytokine gene polymorphisms in healthy Macedonian population. Bratisl Lek Listy. 110(1): 7-17 (2009)

- [113] Tsai LJ, Lan JL, Lin CY, Hsiao SH, Tsai LM, Tsai JJ: The different expression patterns of interleukin-1 receptor antagonist in systemic lupus erythematosus. C640+C23 Tissue Antigens 86: 493-501 (2006)
- [114] Tucker WB, Jackson JA, Hopkins DM, Hogue JF: Influence of dietary sodium bicarbonate on the potassium metabolism of growing dairy calves. J Dairy Sci 74: 2296-2302 (1991)
- [115] van Diemen CC, Postma DS, Vonk JM, Bruinenberg M, Nolte IM, Boezen HM: Decorin and TGF-beta1 polymorphisms and development of COPD in a general population. Respir Res 16: 89 (2006)
- [116] Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann

A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigó R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X: The sequence of the human genome. Science 291: 1304-1351 (2001)

- [117] Viel DO, Tsuneto LT, Sossai CR, Lieber SR, Marques SB, Vigorito AC, Aranha FJ, de Brito Eid KA, Oliveira GB, Miranda EC, de Souza CA, Visentainer JE: IL2 and TNFA gene polymorphisms and the risk of graft-versushost disease after allogeneic haematopoietic stem cell transplantation. Scand J Immunol 66: 703-710 (2007)
- [118] Wajant H, Pfizenmaier K, Scheurich P: Tumor necrosis factor signaling. Cell Death Differ 10: 45-65 (2003)

- [119] Waldmann TA, Tagaya Y: The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol. 17: 19-49 (1999)
- [120] Waldmann TA: The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 6: 595-601 (2006)
- [121] Wang JB, Ren HY, Li D, Sun Q, Lu DP: Frequency of donor TNF-alpha gene polymorphism in patients with graft versus host disease following hematopoietic stem cell transplantation. Zhongguo Shi Yan Xue Ye Xue Za Zhi 10: 133-137 (2002)
- [122] Wang SS, Cerhan JR, Hartge P, Davis S, Cozen W, Severson RK, Chatterjee N, Yeager M, Chanock SJ, Rothman N: Common genetic variants in proinflammatory and other immunoregulatory genes and risk for non-Hodgkin lymphoma. Cancer Res 66: 9771-9780 (2006)
- [123] Wang SS, Cozen W, Cerhan JR, Colt JS, Morton LM, Engels EA, Davis S, Severson RK, Rothman N, Chanock SJ, Hartge P: Immune mechanisms in non-Hodgkin lymphoma: joint effects of the TNF G308A and IL10 T3575A polymorphisms with non-Hodgkin lymphoma risk factors. Cancer Res 67: 5042-5054 (2007)
- [124] Watanabe G, Umetsu K, Yuasa I, Sato M, Sakabe M, Naito E, Yamanouchi H, Suzuki T: A novel technique for detecting single nucleotide polymorphisms by analyzing consumed allele-specific primers. Electrophoresis 22: 418-420 (2001)
- [125] Watanabe G, Umetsu K, Yuasa I, Suzuki T: Amplified product length polymorphism (APLP): a novel strategy for genotyping the ABO blood group. Hum Genet 99: 34-37 (1997)

- [126] Wu Z, Gu JR: A meta-analysis on interleukin-1 gene cluster polymorphism and genetic susceptibility for ankylosing spondylitis. Zhonghua Yi Xue Za Zhi 87: 433-437 (2007)
- [127] Ye F, Li MS, Taylor JD, Nguyen Q, Colton HM, Casey WM, Wagner M, Weiner MP, Chen J: Fluorescent microsphere-based readout technology for multiplexed human single nucleotide polymorphism analysis and bacterial identification. Hum Mutat 17: 305-316 (2001)
- [128] Yilmaz V, Demirbilek V, Gürses C, Yentür SP, Uysal S, Yapici Z, Yilmaz G, Muncey A, Cokar O, Onal E, Gökyiğit A, Saruhan-Direskeneli G: Interleukin (IL)-12, IL-2, interferon-gamma gene polymorphisms in subacute sclerosing panencephalitis patients. J Neurovirol 13: 410-415 (2007)
- [129] Zibar L, Wagner J, Pavlinić D, Galić J, Pasini J, Juras K, Barbić J: The relationship between interferon-γ gene polymorphism and acute kidney allograft rejection. Scand J Immunol 73: 319-324 (2011)

Internetquellen:

- [130] A water-soluble carbodiimide crosslinker for zero-length, carboxyl-toamine conjugation - Thermo Scientific http://www.piercenet.com/ browse.cfm?fldID=02030312 (04.03.2007)
- [131] dbSNP Short Genetic Variations National Center for Biotechnology http://www.ncbi.nlm.nih.gov/snp (03.12.2011)
- [132] DNA Buffers Luminex Corp http://www.luminexcorp.com/prod/groups/ public/documents/lmnxcorp/dna-buffer-list-protocol.pdf (03.12.2011)

- [133] GeneFisher2 Interactive PCR Primer Designe BiBi Serv Bielefeld University Bioinformatics Server http://bibiserv.techfak.uni-bielefeld.de/ genefisher2/ (03.12.2011)
- [134] Multiplexe Analytik mit Bead-basierten Assays Fa. Progen, Technischer Service und Vertrieb, PROGEN Biotechnik GmbH Maaßstr. 30, 69123 Heidelberg http://media.progen.de/multiplex-technology/multiplex-analysisbead-based-assays_de.pdf (24.02.2007)
- [135] Recommendations for Probe/Primer Design for Direct Hybridization of Nucleic Acids - Luminex Corp http://www.luminexcorp.com/prod/ groups/public/documents/Imnxcorp/probe-primer-design-direct-hyb.pdf (14.04.2012)
- [136] Sample Protocol For Carbodiimide Coupling of Amine-Modified Oligonucleotides to Carboxylated Microspheres – Luminex Corp http:// www.luminexcorp.com/prod/groups/public/documents/lmnxcorp/ oligonucleotide-coupling-proto.pdf (03.12.2011)
- [137] Sample Protocol for Oligonucleotide Hybridization Luminex Corp http:// www.luminexcorp.com/prod/groups/public/documents/lmnxcorp/ oligonucleotide-hybridization.pdf (03.12.2011)
- [138] SNP Genotyping Effect of Mismatch Position and Type on Duplex Stability - Luminex Corp http://www.luminexcorp.com/prod/groups/public/ documents/lmnxcorp/snp-genotyping-effect-of-misma.pdf (03.12.2011)
Danksagung

Zunächst möchte ich Prof. Dr. med. Schrezenmeier und PD Dr. med. Mytilineos dafür danken, mir diese Arbeit überhaupt erst ermöglicht zu haben. Desweiteren danke ich allen Mitarbeitern der Abteilung Transplantationsgenetik für das Einarbeiten in die Thematik und die verwendeten Methoden. Nicht zuletzt hat das gesamte Team dazu beigetragen meine Motivation hoch zu halten, als Versuche mal nicht die gewünschten Ergebnisse lieferten. Besonders möchte ich an dieser Stelle Kerstin Buschle und André Skambraks hervorheben, die mir die Welt der Sequenzierung und des Luminex 100 IS zu Beginn meiner Arbeit näher gebracht und auch immer wieder mit Anregungen bei der Optimierung meiner Verfahrensweise unterstütz haben.

Selbstverständlich müssen auch Andrea Martindale, Dr. med. Eva Hennel und Dr. med. Kirsten Recker Erwähnung finden, die mir, ebenfalls als Doktoranden am Institut, zur Seite standen, mit mir Probleme gewälzt, Lösungen gesucht oder einfach für ein Gespräch zur Ablenkung zwischen zwei Arbeitsschritten bereit standen. Großen Dank an Kirsten dafür, dass sie es auf sich genommen hat, meine Arbeit Korrektur zu lesen und ihr damit den letzten Schliff gegeben hat.

Zuletzt danke ich noch meiner Familie und meinen Freunden, vor allem Dr. med. René Kaiser, die mich immer wieder zum Weitermachen ermuntert haben, als ich die Lust schon fast gänzlich verloren hatte.

Alle hatten einen maßgeblichen Anteil daran, dass diese Arbeit zu einem Abschluss kommen konnte. Daher nochmals...

DANKE.

Lebenslauf

Persönliche Informationen:

Jens Putzbach Geboren am 29.06.1981 in Dohna, Sachsen Staatsangehörigkeit: deutsch

Ausbildung:

- 1988 1992 135. Polytechnische Oberschule Dresden
- 1992 2000 Johann Andreas Schubert Gymnasium Abschluss mit allgemeiner Hochschulreife
- 2001 2007 Studium der Humanmedizin Universität Ulm mit Approbation 2007
- 2005 2013 Institut für Transfusionsmedizin und Immungenetik Dissertation zur Erlangung des Doktorgrades der Medizin Thema: Etablierung eines auf Luminex xMAP® Carboxybeadtechnologie basierenden Untersuchungsverfahrens, zum Einsatz in der Routinediagnostik von Zytokinpolymorphismen

Beruflicher Werdegang:

2001	Eintritt in die Bundeswehr als Sanitätsoffiziersanwärter
	Militärische Vorausbildung bis zum Beginn des Studiums der
	Humanmedizin im Oktober 2001

- 2007 2010 Bundeswehrkrankenhaus Ulm Assistenzarzt für Innere Medizin Station Kardiologie, Aufnahmestation und Innere Intensivstation
- 2010 06/2013 Truppenarzt und stellvertretender Staffelchef der Sanitätsstaffel Dillingen an der Donau
- Seit 07/2013 Bundeswehrkrankenhaus Ulm Assistenzarzt für Innere Medizin Innere Intensivstation, Angiologie

Tätigkeiten im Ausland:

März bis Juli 2011 Einsatz als beweglicher Arzttrupp 25. Einsatzkontingent ISAF im Rahmen des Bundeswehreinsatzes in Afghanistan

Zusätzliche Qualifikationen:

2010 Erwerb der Zusatzbezeichnung Notfallmedizin2012 Fortbildung zum Hygienebeauftragten Arzt2013 Fortbildung zum Ernährungsmediziner

Blaustein, den 26.06.2014 Ort und Datum

Unterschrift