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Chapter 1
Introduction

Starting with the publication of Hochwald and Marzetta [19], noncoherent
communication based on subspaces has become a topic of interest in the

recent years. These transmission schemes use subspaces for transmission and
are commonly discussed in the context of MIMO (multiple-input multiple-
output). They offer the potential to be detected without any channel state
information in the receiver, i.e. noncoherent detection is possible. This benefit
is useful, if the channel is fast time-variant and frequency selective. Amongst
others, Hochwald and Marzetta, Zheng and Tse and Utkovski in [19], [47],
and [41] made proposals in the context of MIMO for transmission methods
based on subspaces.
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1 Introduction

OFDM-MFSK (orthogonal frequency division multiplexing M-ary frequency
shift keying) and its multitone variant (OFDM multitone FSK), proposed by
Wetz et al. in [45], [44] and by Linduska et al. in [25], can also be detected non-
coherently in the receiver. Moreover, the combination of OFDM and MFSK
offers in the case of fast time-varying frequency selective fading channels the
advantage of a very robust transmission scheme. OFDM can cope with the
frequency selective behaviour of the channel, whereas the FSK part can be
detected without the need of any knowledge of the channel. However, the
drawback of OFDM-MFSK is its bad bandwidth efficiency.

We show within this thesis, that there exists a close connection between the
noncoherent communication based on subspaces in the MIMO context and
noncoherent OFDM-MFSK and its multitone variant. The first central point
of this thesis is to work out this connection between both types of noncoherent
communication and to show, that OFDM-MFSK and its multitone variant can
be regarded as a special case of a transmission based on subspaces. Besides
a better theoretical understanding and a tight connection to the definition of
spaces in the mathematical sense, this new point of view for OFDM-MFSK
and its multitone variant offers the possibility to improve the bandwidth ef-
ficiency remarkably. In general, the subspace based transmissions make use
of subspaces of the same dimension. In contrast to this, we show for OFDM-
MFSK, that it is possible to use the available total space in a more efficient
way. We combine subspaces of different dimensions. This approach allows us

to increase the bandwidth efficiency to approach the upper bound of 1 bit/s
Hz .

On top of the new combined MFSK alphabet, we propose channel coding
with extended mapping and an iterative receiver (see [17] and [8]) to gain
one extra bit, which can be used for either increasing the data rate or the
redundancy used for channel coding. For the extended mapping, we com-
pare two possible schemes: symmetric extended mapping and non-symmetric
extended mapping. For symmetric mapping, for each transmit “symbol” of
the combined alphabet there are two possible bit labels leading to ambiguity.
Contrary to this, for non-symmetric mapping for the new combined FSK al-
phabet, it is possible to reduce the ambiguity.
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The outline of this thesis is as follows: In Chapter 2, a brief introduc-
tion to the fundamentals needed for this thesis is given. This includes the
mathematical description of the OFDM transmission model, followed by a
brief description of the channel models of interest, the Rayleigh block fad-
ing channel and the Rayleigh frequency selective fading channel. We present
our transmission model of interest, OFDM-MFSK and its multitone variant
and we shortly address its noncoherent detection part. This is followed by
the introduction of the coded transmission model. Afterwards an outlook to
the capacity of multipath fading channels, as proposed by Telatar in [38], is
given and we relate it directly to OFDM-MFSK. We describe the idea of a
noncoherent transmission based on subspaces, as proposed by Hochwald and
Marzetta in [19] and briefly explain the maximum-likelihood (ML) detection
rule, which is derived from a matrix variate normal distribution.

Chapter 3 contains our derivation of the connection of how OFDM-MFSK
and its multitone variant can be regarded as a special case of a noncoherent
communication based on subspaces. The vector-valued transmission model for
OFDM-MFSK is adapted to the matrix-valued transmission model, which is
common for the subspace based transmission methods. With the ability to de-
scribe OFDM-MFSK and its multitone variant as a special case of noncoherent
communication based on subspaces, we are able to develop the idea of how to
combine subspaces of different dimensions. The combination of subspaces of
different dimensions for OFDM-MFSK and its multitone variant allows us to
use the total available mathematical space in a more efficient way. We analyze,
that this implicates an increase of the bandwidth efficiency of OFDM-MFSK
in general and name the resulting system OFDM-COM-N/MFSK (OFDM
combined MFSK). We derive the ML matrix variate probability density func-
tion (PDF) for the Rayleigh block fading channel and the Rayleigh frequency
selective fading channel. Where possible, we simplify it to an ML detection
rule. We discuss the distance criterion, provide a mapping algorithm for Gray
mapping and define an upper bound, up to which dimension the subspaces
should be combined. To complete this chapter, we explain how to go back
from the subspaces to the FSK vectors.

In Chapter 4, detailed simulation results for an uncoded transmission over
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1 Introduction

the AWGN channel, the Rayleigh block fading channel, and the Rayleigh fre-
quency selective fading channel are discussed. We also show simulation results
for a coded transmission over the Rayleigh block fading channel, using an it-
erative receiver.

In Chapter 5, we address the possibility of extended mapping, to gain an ad-
ditional bit for increasing the data rate or redundancy for our new proposed
transmission scheme OFDM-COM-N/MFSK. Besides the existing approach
of extended mapping, we propose a non-symmetric mapping scheme for the
combined FSK alphabet, which offers the advantage, that the ambiguity for
the mapping can be reduced.

A list of frequently used acronyms, operators and symbols is given at the end
of this thesis. All entries of this list are introduced at their first appearance.
General notations, used throughout this thesis, are the following: Vectors and
matrices are written in bold lower and upper case letters, e.g. x and X. T

and H denote the transpose and the hermitian of a vector or a matrix and ∗

denotes the complex conjugate of a scalar.

The main contributions and key ideas of this thesis are contained in Chap-
ter 3, 4 and 5. Parts of them have already been published in [29], [28] and [46].
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Chapter 2
Fundamentals

Abasic model for a digital transmission is shown in Fig. 2.1, where a dig-
ital source Q, produces a bit sequence q(k), which is transmitted to the

digital sink S. Within the block COD, the bit sequence q(k) is encoded with
a channel code and interleaved, resulting in c(k), which is passed to the dig-
ital modulation device (MOD). Within this block, the coded data sequence
is mapped to the transmit sequence s(k) with a dirac-delta sampler. After
an interpolation lowpass filter (IP-LP) the continuous-time transmit signal
s(t) is obtained and transmitted over the channel. On the receiving side, the
received signal g(t) is obtained and band limited by an anti-aliasing lowpass
filter (AA-LP). After dirac-delta sampling, the digital received sequence g(k)
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2 Fundamentals

is handed over to the detector (DET), resulting in the received bit sequence
q̂(k) at the digital sink S.
In case of orthogonal frequency division multiplexing (OFDM) [42], the block
MOD and DET contain the OFDM modulation and demodulation.

Q COD MOD IP-LP

channel

AA-LPDETS

q(k) c(k) s(k)

kT

s(t)

g(t)

kT

g(k)q̂(k)

Figure 2.1: Digital transmission model [24]. Q: digital source, COD: encoding and
interleaving, MOD: digital modulation device, kT : dirac delta sampling,
IP-LP: interpolation lowpass filter, AA-LP: anti-aliasing lowpass filter,
DET: detector, S: digital sink.

In the following, the fundamentals for this thesis are discussed. After intro-
ducing the vector-valued OFDM transmission model [11], [24], the definition
of the assumed channel models is given. We introduce OFDM-MFSK and its
multitone variant, as proposed by Wetz et al. in [45] and [44] and by Linduska
et al. in [25]. This also includes the maximum-likelihood detection rule for
the AWGN (additive white Gaussian noise) channel, the Rayleigh block fad-
ing channel and the transmission model for bit-interleaved coded modulation
with iterative detection. In the following a brief introduction to the capacity
of frequency selective fading channels is given. Since we focus on a transmis-
sion based on subspaces, we also explain the principles of a transmission with
subspaces.
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2.1 OFDM

2.1 OFDM

OFDM is a special case of frequency division multiplexing (FDM). It is widely
used in wireless communication systems because of its high spectral efficiency,
small realization effort and its flexibility. OFDM is deployed in many wireless
communication standards such as LTE, WLAN, DAB and DVB-T, to mention
some of them. In the following, a short introduction of OFDM is given, based
on the literature of [4], [24], [32], [33] and [42], which are all recommended for
further reading on OFDM.

The idea of OFDM is to divide the available frequency band into a large
enough number of orthogonal subchannels, also named subcarriers. The sub-
carriers are transmitted in parallel and a large enough number of orthogonal
subcarriers leads to small spaces between neighbouring frequencies.

The setup of an OFDM system is the following. The modulation and de-
modulation is done by making use of the inverse discrete Fourier transform
(IDFT) and the discrete Fourier transform (DFT). This approach, as proposed
by Weinstein and Ebert in 1971 [43], allows the usage of efficient fast Fourier
transform (FFT) algorithms.

The basic waveforms in the low pass domain used for a transmission with
OFDM are time limited complex exponential functions, i.e.

eTk(t) = rect

(
t

T

)
ej2πfkt, k = 1, . . . , Nf ,

where T is the symbol duration. fk is the k-th subcarrier frequency and
Nf denoting the total number of subcarriers. To maintain orthogonality, the
frequencies fk have to be chosen in the following way

fk = fc +
k

T
,

with fc being the carrier frequency. The transmit signal is

sTk(t) =
∑
i

xk(i)eTk(t− iT ), k = 1, . . . , Nf .

7



2 Fundamentals

Due to the fact that the basic waveforms eTk(t), k = 1, . . . , Nf are time-limited
by rect

(
t
T

)
, intersymbol interference (ISI) occurs, if the channel is linearly

distorting. Therefore, a cyclic prefix of duration TG was introduced by Peled
and Ruiz in 1980 [30] to overcome ISI. The cyclic prefix is the repetition of the
last part of an OFDM symbol, which is put at the beginning of the transmit
signal. Thus, the OFDM transmit signal becomes

sT (t) =

Nf∑
k=1

∑
i

xk(i)eTk(t− iTs),

where Ts = T+TG is the sum of the symbol duration T plus the guard interval
TG. To make sure that no ISI occurs, the duration of the guard interval has
to be at least the maximum expected length of the channel impulse response.
However, the application of a cyclic prefix leads to an increase of the transmit
power, which looses its influence, if the OFDM symbol duration is sufficiently
long enough compared to the length of the cyclic prefix.

Mathematical Description of OFDM

To describe the underlying discrete-time OFDM system model, we use the
mathematical description of a vector-valued model, as shown in Fig. 2.2,
see [11] and [24]. Fig. 2.2 is based on Fig. 2.1 and includes the OFDM mod-
ulation and demodulation.

The OFDM transmission model on symbol basis [11], [24] is defined by

y = Hx + n, (2.1)

where x represents a column vector containing the transmit symbols and y is
the corresponding vector at the receiving side before equalization and detec-
tion. The OFDM channel matrix is assumed to be diagonal and is denoted by
H, where the entries on the main diagonal of H are the values of the transfer
function of the channel at the corresponding subcarrier frequencies. The col-
umn vector n models the additive white Gaussian noise. For this model an
OFDM guard interval in frequency domain of the length Ng, being longer than

8



2.1 OFDM

q(i)
MAP

x(i)

ser

par

... IDFT

x

...

add

cyclic

prefix

par

ser

kTs

IP-LP

s(t)

h(τ, t)

+
n(t)

g(t)

AA-LP

kTspar

ser

remove

cyclic

prefix
DFT

y

ser

par

x̃(i)
DET

q̂(i)

Figure 2.2: Mathematical description of an uncoded vector-valued OFDM system
model.
x: transmit vector, containing one OFDM block, y: receive vector, MAP:
mapping, ser/par: serial-to-parallel conversion, IDFT: inverse discrete
Fourier transform, par/ser: parallel-to-serial conversion, IP-LP: inter-
polation low pass filter, h(τ, t): channel impulse response, AA-LP: anti-
aliasing low pass filter, DFT: discrete Fourier transform, DET: detection.

the channel impulse response, is assumed. The (Nf × 1)-dimensional vectors
y, x and n (see Fig. 2.2) are also called blocks, since each vector represents
entries of a complete OFDM block.

If a time-variant channel with channel impulse response h(τ, t) is assumed,
there are two scenarios to distinguish: slow time-variant channels and fast
time-variant channels. In the first case, there occur no variations within one
block, i.e. the variation occurs block by block or after a random number of
subsequent OFDM blocks, and the model in Eq. (2.1) remains valid. However,
in case of time-variant channels, non-zero entries on the off-diagonal entries
of the channel matrix H occur. They occur due to a loss of orthogonality of
the subcarriers, i.e. the time-variance of the channel causes intersubchannel
interference. We assume perfect synchronization. To be able to apply the
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2 Fundamentals

OFDM transmission model, given in Eq. (2.1), it is possible to model the in-
tersubchannel interference as additional additive noise, which is assumed to
be Gaussian for a large enough number of subcarriers Nf , as shown by Russel
and Stüber in [34]. We make use of this assumption to model the intersub-
channel interference as additional noise and apply the OFDM transmission
model on symbol basis, Eq. (2.1).

2.2 Channel Models

In this work, we use a stochastic channel model in the frequency domain,
the discrete-time Rayleigh block fading channel model and the discrete-time
Rayleigh frequency selective fading channel model. As shown in Eq. (2.1), we
assume an OFDM transmission model on symbol basis in frequency domain
y = Hx + n.

2.2.1 Rayleigh Frequency Selective Fading Channel

For a frequency selective fading channel, one possible realization of the channel
matrix for the stochastic process is

H =


h11 0 · · · 0

0 h22 0
...

... · · · . . .
...

0 · · · · · · hNfNf

 (2.2)

with hll, l = 1, . . . , Nf being complex-valued zero mean unit variance fading
coefficients on the main diagonal of the channel matrix H, i.e. the mean value
of the fading coefficients µh = 0 and the variance σ2

h = 1. The side-entries
remain 0, i.e. no intersubchannel interference is assumed. The channel is time-
invariant and full frequency selective, since the fading coefficients are different
for every single subcarrier of the whole OFDM block. The fading coefficients
are assumed to be completely uncorrelated. Therefore the channel covariance
matrix becomes Λh = σ2

h I, where I is the Nf × Nf identity matrix. The

10



2.2 Channel Models

definition of Λh is given by Eq. (2.11).

2.2.2 Rayleigh Block Fading Channel

In case of a Rayleigh block fading channel, the OFDM block, consisting of
Nf subcarriers, is divided into subblocks of size M . Note, that Nf has to

be an integer multiple of M . This results in
Nf
M channel submatrices Hi,

i = 1, . . . ,
Nf
M of dimension M ×M . The channel matrix for one OFDM block

is

H =


H1 0 · · · 0

0 H2 0
...

... · · · . . .
...

0 · · · · · · HNf
M

 . (2.3)

In the following, one channel submatrix Hi of dimension M×M is considered

Hi = h IM×M =


h 0 · · · 0

0 h 0
...

... · · · . . .
...

0 · · · · · · h


M×M

, (2.4)

where h is a complex-valued fading coefficient with zero mean and unit vari-
ance, i.e. µh = 0, σ2

h = 1. This is equivalent to the fact, that the entries on the
main diagonal of the channel submatrix Hi are all the same for a subblock
of M subcarriers. For the subsequent block of size M a new independent
fading coefficient is obtained. Consequently, the channel matrix for the whole
OFDM block is frequency selective, but within each subblock it is constant.
The off-diagonal entries of the channel submatrices Hi are also 0. Since the
channel coefficients for a Rayleigh block fading channel are fully correlated,
the channel covariance matrix Λhi = σ2

h1M×M . 1 denotes the M×M all ones
matrix.
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2 Fundamentals

2.3 OFDM-MFSK and OFDM Multitone FSK

OFDM-MFSK, a combination of OFDM and M-ary frequency shift keying
(MFSK), was introduced by Wetz et al. in [45] and [44]. The benefit of
this combination is, that the OFDM part is able to cope with the frequency
selective behaviour of the channel and the FSK part (see [24] and [32]) can be
detected noncoherently in the receiver, i.e. without the need of channel state
information (CSI). This makes OFDM-MFSK attractive for transmission over
fast time-variant fading channels, because it is difficult or nearly impossible
to obtain a reliable channel estimate in the receiver, since it is outdated very
fast. An example for the practical application of OFDM-MFSK is frequency
hopping, where for each FSK block a jumping on a new set of frequencies has
to be made.

f
00 01 11 10 00 01 11 10 00 01 11 10

· · · · · ·∆f

block n− 1 block n block n + 1

Figure 2.3: Basic principle of an OFDM-4FSK modulation, [45] and [44].
Blue solid line: power on the subcarrier, dashed black line: empty sub-
carrier, i.e. no power, ∆f: subcarrier spacing.

For OFDM-MFSK an OFDM block, which consists of Nf subcarriers, is
divided into subblocks of size M , i.e. each subblock consists of M subcarri-
ers. After M subcarriers a new subblock of M subcarriers begins and in total
Nf
M subblocks are obtained. These blocks are modulated with MFSK and are
therefore called FSK blocks. For OFDM-MFSK one out of M subcarriers
within the corresponding FSK block is chosen for transmitting information,
whereas the other M − 1 subcarriers remain empty. With each FSK block of

12



2.3 OFDM-MFSK and OFDM Multitone FSK

size M it is possible to transmit m = log2M bits. Fig. 2.3 illustrates in an
example for M = 4 the basic idea of an OFDM-4FSK modulation scheme,
where the total number of the available subcarriers has to be a multiple of
M = 4 and is divided into FSK blocks of M = 4 subcarriers. Each of the
resulting FSK blocks is then modulated with 4FSK. This leads to subcarriers,
which are used for transmission (solid blue line in Fig. 2.3), i.e. energy is al-
located, and frequency positions, which remain empty (dashed black lines in
Fig. 2.3). Between the bits and the subcarriers, a Gray mapping is used.

In a conventional OFDM transmission scheme, where for example QAM
(quadrature amplitude modulation) is used for modulation, complex-valued
transmit symbols are obtained. In comparison, for OFDM-MFSK real-valued
vectors, consisting of M − 1 “0”s and one “1”, result. Therefore, the nomen-
clature in case of OFDM-MFSK is the following: transmit vectors, selected
from a transmit vector alphabet A, consisting of M orthogonal transmit col-
umn vectors xk, k = 1, . . . ,M are chosen for transmission. For OFDM-4FSK
this leads to a transmit vector alphabet of

A4FSK =




0
0
0
1

 ,


0
0
1
0

 ,


0
1
0
0

 ,


1
0
0
0




As described in Sec. 2.1, the channel matrix H in frequency domain for the
OFDM transmission model is a diagonal matrix of size Nf ×Nf

H =


h11 0 · · · 0

0 h22
. . .

...
...

. . .
. . .

...
0 ... ... hNfNf

 ,
since the cross talk caused by the time-variance of the channel is modeled as
additional noise. A diagonal channel matrix H leads in case of OFDM-MFSK
to the possibility, that each FSK block of size M can be detected separately.
This is equivalent to say, that only the corresponding part of the channel
matrix H for the underlying FSK block is needed for detection. This part of
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2 Fundamentals

the channel matrix is of size M ×M , with M entries on its main diagonal:

H =


h11 0 · · · 0

0 h22
. . .

...
...

. . .
. . .

...
0 ... ... hMM

 ,
In Sec. 2.2 the channel models of interest for this thesis have been introduced.
For the Rayleigh frequency selective fading channel it is directly possible to
regard the corresponding submatrices of dimension M × M of the channel
matrix H and to do the FSK block wise detection. For the Rayleigh block
fading channel, it is assumed, that the block size M for the submatrices Hi

of the channel matrix H corresponds to the FSK block size, also abbreviated
with M . This means, that for each FSK block of size M and its corresponding
submatrix Hi of the channel matrix H, the fading coefficient remains constant.

With an increasing size of M , the capacity of the Gaussian channel with
infinite bandwidth can be approached. However, the disadvantage is, that the
bandwidth efficiency η tends to 0 for M → ∞ [24]. For OFDM-MFSK the
upper bound for the bandwidth efficiency, i.e. the guard bands as well as the
cyclic prefix are neglected, is

ηMFSK =
log2M

M
, (2.5)

where log2M is the number of bits m, which are assigned to one FSK block
of size M . Compared to the logarithmic growth of the numerator, the denom-
inator, i.e. the bandwidth itself, grows linearly. As a result, the bandwidth
efficiency decreases with increasing M . Eq. (2.5) shows, that for OFDM-

MFSK the maximum achievable value for the bandwidth efficiency is 0.5 bit/s
Hz

either for OFDM-2FSK or OFDM-4FSK. For an increased number of sub-
carriers per FSK block of size M, M > 4, the bandwidth efficiency η gets
smaller. Because of its better power efficiency compared to OFDM-2FSK,
OFDM-4FSK is preferred.

To overcome the loss in bandwidth efficiency, Linduska et al. modified in
[25] the approach of OFDM-MFSK to OFDM multitone FSK. Instead of using
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2.3 OFDM-MFSK and OFDM Multitone FSK

one single tone out of M tones per FSK block of size M , N subcarriers out of
M subcarriers within one FSK block are chosen. This offers the possibility to
transmit m = blog2

(
M
N

)
c bits per OFDM multitone FSK vector. An abbrevi-

ation of OFDM multitone FSK is OFDM-N/MFSK and it is also suitable for
conventional OFDM-MFSK, which is OFDM-1/MFSK.

Considering the transmit vector alphabet A for a FSK block size of M = 4
and N = 2 active subcarriers

A2/4FSK =




0
0
1
1

 ,


0
1
0
1

 ,


0
1
1
0

 ,


1
0
0
1

 ,


1
0
1
0

 ,


1
1
0
0




is obtained.
Compared to OFDM-1/MFSK, the bandwidth efficiency is now

ηN/MFSK =

⌊
log2

(
M
N

)⌋
M

. (2.6)

For OFDM-4/8FSK a bandwidth efficiency of 0.75 bit/s
Hz is obtained and it is

possible to transmit six bits within an FSK block consisting of eight subcarri-
ers. This increase is remarkable, since for OFDM-8FSK it is only possible to
transmit three bits per FSK block of size M = 8 and the bandwidth efficiency

is 0.375 bit/s
Hz .

2.3.1 Noncoherent Detection

The maximum-likelihood (ML) detection of the transmitted vector, given
the received vector, is based on maximizing the probability density function
(PDF), conditioned on the transmitted vector. The PDF is always dependent
on the underlying channel and the transmit vector alphabet. In some cases,
it is possible to simplify the PDF in a way, that a detection metric results.
The noncoherent detection metrics for OFDM-MFSK for transmission over
the AWGN channel or the Rayleigh block fading channel were derived in [44].
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Since it is a noncoherent detection metric, no channel state information goes
into the calculation.

A block diagram of the assumed transmission model y = Hx+n is shown in
Fig. 2.4, where x denotes the transmit vector, y the corresponding vector on
the receiving side and n the contributions of the additive noise. The channel
matrix H can be reduced to h = |h0|ejϕ = ejϕ, with |h0| = 1 for an AWGN
channel, whereas for a block fading channel |h0| 6= 1. ϕ is a random variable
and characterizes the unknown phase of the channel and it is assumed to be
common for all subcarriers within one FSK block of size M.

· +
x

h = |h0|ejϕ n

y

Figure 2.4: Channel model

Wetz et. al have shown in [45] and [44], that a blockwise detection for
OFDM-N/MFSK is possible, according to the vector-valued transmission model
in Eq. (2.1). For deriving the detection metric, it is necessary to model the
intersubchannel interference as additional noise, so that the channel matrix H
remains diagonal. The multivariate conditional probability density function
(PDF) for the received vector y, given the transmitted vector x, is based on
the derivations in [9] and the definition in [21] and is

p(y|x, ϕ) =
1

πM det (Λ)
exp

(
− (y − E [y])

H
Λ−1 (y − E [y])

)
, (2.7)

where x and y denote again the transmit and receive vector respectively. ϕ
characterizes the unknown phase of the channel and is assumed to be common
for all subcarriers within one MFSK block of size M and det (Λ) denotes the
determinant of the covariance matrix

Λ = E
{

(y − E [y]) (y − E [y])
H
}
. (2.8)
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2.3 OFDM-MFSK and OFDM Multitone FSK

E [y] denotes the expected value of the received vector, i.e. its mean value,
respectively. Setting the values of y and E [y] into the definition of the co-
variance matrix Λ, we solve the problems to calculate the entries of Λ,

[Λ]ij = [x]i [x]
∗
j E

[
([H]ii − E [H]ii)

(
[H]jj − E [H]jj

)∗]
+ σ2

nδij , (2.9)

where

δij =

{
1 for i = j

0 for i 6= j
(2.10)

is the Kronecker delta. [H]ii denotes the values of the channel transfer func-
tion at the corresponding subcarrier frequencies on the main diagonal of the
channel matrix H and E [H]ii denotes the values on the main diagonal of the
mean channel matrix E [H]. σ2

n is the variance of the noise. The channel
covariance matrix Λh is componentwise defined by

[Λh]ij = E
[
([H]ii − E [H]ii)

(
[H]jj − E [H]jj

)∗]
. (2.11)

With this definition, it is possible to rewrite Eq. (2.9) by

Λ = diag(x)ΛHdiag(xH) + σ2
nI, (2.12)

where I denotes the M ×M identity matrix. diag(x) transforms the column
vector x into a diagonal matrix X. The entries on the main diagonal of X are
the elements of the column vector x. In [44], Wetz made use of the derivation
in [9] and the conditional PDF, where ϕ is integrated out, was obtained

p(y|x) =

π∫
−π

1

2π
p (y|x, ϕ) dϕ

=
1

πM det Λ
exp

(
−yHΛ−1y − xHE

[
HH

]
Λ−1E [H] x

)
I0
(
2
∣∣yHΛ−1E [H] x

∣∣) . (2.13)

I0 is the zero order modified Bessel function of the first kind. After specifying
the channel conditions for AWGN and Rayleigh block fading channels and the
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assumption of equiprobable bits, the same detection rule for OFDM-MFSK
results for both channel models

x̂ = argmax
xk∈{x1,··· ,xK}

|yHxk|2, (2.14)

which is the squared scalar product between the received vector y and all
possible transmit vectors xk.

The ML detection rule is based on the smallest angle, i.e. the principal
angle, between the received vector y and any of the transmit vectors xk. The
definition of the angle, see [6], between any pair of two vectors y and x is

cosy,xk α =
|yHx|
‖y‖‖x‖ , (2.15)

where yHx denotes the scalar product and ‖ ·‖ the norm of the corresponding
vector.

x1 =

1
0
0



x2 =

0
1
0



y

α

Figure 2.5: Projection of a received FSK vector for a transmission over a Rayleigh
block fading channel.

Fig. 2.5 shows a visualizing example for a transmission of a 3FSK vector
over a Rayleigh block fading channel. The FSK vector x1 has been transmit-
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2.3 OFDM-MFSK and OFDM Multitone FSK

ted. The corresponding received vector y was scaled by the fading coefficient
and the additive noise lead to a shift into the space. By calculating the prin-
cipal angle with the possible transmit vectors x1 and x2, the received vector
y is projected on both axes. The decision is made in favour of the minimum
principal angle. Note, that for an AWGN channel, there is no scaling of the
transmit vector along its corresponding axis. Simply noise is added. As a
consequence, for an AWGN channel, it would be possible to apply amplitude
shift keying (ASK).

2.3.2 Bit-Interleaved Coded Modulation

COD
∏

MAP

OFDM
transmission

DEMAP+
∏−1DEC

∏
+

q qc x

y

LDem

LDec

−

−

q̂

Figure 2.6: BIC-OFDM transmission model with an iterative receiver.

Channel coding adds in the transmitter redundancy, allowing the receiver
to detect and/or correct errors. Therefore, channel coding is used to improve
the performance of digital transmissions. We assume bit-interleaved coded
modulation [7] with iterative detection (BICM-ID) for our system. Fig. 2.6
shows the corresponding vector-valued transmission model from Eq. (2.1) for a
coded transmission with an iterative receiver. The source bit vector q, i.e. one
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information block vector, is convolutionally encoded in the block “COD” with
a terminated convolutional code with rate r = k

nc
[5]. k denotes the length

of the information sequence and nc the length of the code word sequence.
Since convolutional codes are sensitive to burst errors, an interleaver (block∏

) is used and afterwards the coded vector qc is mapped onto the OFDM-

N/MFSK vectors xk, k = 1, . . . ,
Nf
M , resulting in x = [x1 · · · xNf

M

]T . In the

next step the transmit vector x are transmitted over the vector-valued OFDM
transmission model, described in Sec. 2.1. In the receiver, the received vector
y = [y1 · · · yNf

M

]T contains one complete code block of OFDM-MFSK vec-

tors and it is processed by an iterative receiver, as suggested by Li and Ritcey
in [23] and then the received information block vector q̂ is obtained. Another
point of view for iterative demapping and decoding in the receiver, as it can
be seen in Fig. 2.6, is to treat the mapping as an inner code with code rate
r = 1, since no redundancy is added for the mapping, and the channel code
is regarded as an outer code.

Because of the special structure of the OFDM-N/MFSK blocks, it is possi-
ble to fragment the received vector y into subvectors yk of size M ×1, i.e. the
MFSK block size, as it has already been shown for the detection metric. These
subvectors yk are demapped and the iterative process is running as described
above. In the following the block indizes k are neglected for the purpose of
keeping the notation simple.

Demapping and decoding within an iterative receiver (c.f. Fig. 2.6) are per-
formed independently of each other, therefore the iterative receiver becomes
a suboptimum receiver. The demapper (DEMAP) calculates reliability infor-
mation for each bit of the received vectors y. The reliability information is
deinterleaved within the block

∏−1
and passed to the decoder (DEC). Within

the decoder, the reliability for each code bit is improved. Demapper and de-
coder are able to exchange information about the reliability within iterations.
Only extrinsic information, i.e. information gained within the demapper or
decoder is exchanged and therefore the input information is subtracted from
the gained reliability information.

For defining the reliability, log-likelihood ratios (LLR) [16] or L-values are
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2.3 OFDM-MFSK and OFDM Multitone FSK

a very useful measure. The idea of LLR is a mapping from probability space
to log-likelihood ratios. In [44], it has been shown, that the LLR of one code
bit cj , under the condition, that the vector y has been received, is defined by

L(cj |y) = ln

(∑
ai∈S0

j
p(y|x = ai)P (x = ai)∑

ai∈S1
j
p(y|x = ai)P (x = ai)

)
, (2.16)

where p(y|x = ai) denotes the PDF of the received vector y under the assump-
tion that the vector ai was transmitted. The PDF depends on the channel
and can be evaluated for the received vector y. P (x = ai) defines the a-priori
probability, that the vector ai has been transmitted and is derived with the
extrinsic feedback from the previous decoding steps

P (x = ai) =
∏
k

P (ck = ckai ) (2.17)

with ckai being the bits of the vector ai at position k. Since these bits are
independently from each other, their probabilities can be multiplied.

P (ck = 0) =
exp(LDec

k )

1 + exp(LDec
k )

P (ck = 1) =
1

1 + exp(LDec
k )

(2.18)

specify the probabilities that the bits ckai according to the vectors ai have been
transmitted. The L-values derived by the channel decoder in the previous it-
eration are represented with the vector LDec (c.f. Fig. 2.6). It is obvious, that
no feedback information LDec is available for the first iteration. Therefore the
a-priori probability for all symbols is assumed to be equal. After subtraction
of the a-priori information, it is now possible to obtain the extrinsic L-values of
all bits in the demapper. This results in LDem, the vector of extrinsic L-values.

The decoder works with the BCJR algorithm, which has been introduced
by Bahl et al. in [3]. It is possible to investigate and especially to visualize
the convergence behaviour of iterative decoding schemes in the receiver by
making use of extrinsic information transfer (EXIT) charts, as proposed by
Ten Brink in [39] and [40].
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2.4 Capacity of Multipath Fading Channels

The capacity and mutual information of frequency selective fading channels
without channel state information in the receiver has been discussed in [38]
by Telatar and Tse. The following main results were obtained.

• For an increasing bandwidth, the capacity of a frequency selective fading
channel approaches the capacity of the infinite bandwidth AWGN chan-
nel. Furthermore, it has been shown, that for “spread-spectrum” like
signals, for example code division multiple access (CDMA), the mutual
information approaches zero for an increasing bandwidth. This result
was confirmed by Medard et al. in [26].

• It is argued, that the input signals, which can achieve capacity, have to
be “peaky” in time or in frequency. Telatar et al. [38] also state, that
this is achieved by applying FSK and noncoherent detection.

These results are of high interest with respect to OFDM-MFSK and its mul-
titone variant. OFDM-MFSK signals are “peaky” by definition and we are
interested in noncoherent detection for frequency selective fading channels,
wherefore we expect OFDM-MFSK to be a very good candidate to approach
the maximum mutual information for frequency selective fading channels, as
proposed in [38].

2.5 Principles of Subspaces for Transmission

Unitary space-time modulation, as proposed by Hochwald and Marzetta in [18]
and [19], is a transmission scheme for MIMO channels based on subspaces and
can be noncoherently detected for Rayleigh flat fading channels. In the fol-
lowing, we discuss the basic principles of a transmission based on subspaces
on the basis of the work by Hochwald and Marzetta for unitary space-time
modulation.

There also exists a transmission model on symbol basis, as already given for
a single-input single-output (SISO) OFDM transmission in Sec. 2.1, Eq. (2.1),
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and it is described by
Y = H X + N. (2.19)

X is the transmit matrix of dimension Mtx×T , where Mtx denotes the number
of transmit antennas and T denotes the number of time-slots. X is taken from
a set of transmit matrices of a transmit matrix alphabet A, whereby

X ∈ A = {X1, . . . ,Xn}.

Y is the corresponding Nrx × T matrix at the receiving side, where Nrx de-
notes the number of receive antennas. The MIMO channel matrix H of size
Mtx × Nrx comprises complex Gaussian distributed fading coefficients with
zero mean and unit variance, which are assumed to be constant over T time-
slots, before they change to new independent realizations. The additive noise,
modeled by the matrix N, incorporates the noise contributions in Y and it is
white Gaussian noise with two-sided noise power spectral density of N0

2 .

In the following, the description of how the unitary space time modulation
signaling scheme could be regarded as a transmission based on subspaces, is
given. An illustrative example for transmitting 2-dimensional subspaces of
the 3-dimensional space is given for a MIMO transmission. Without loss of
generality, it can be extended to higher dimensional spaces.

For a 2× 2 MIMO transmission model, i.e. two transmit antennas (Mtx =
2) and two receive antennas (Nrx = 2), respectively, and constant fading
coefficients over T = 3 symbol periods, the following MIMO transmission
model on symbol basis, as proposed in Eq. (2.19), is obtained:

Y =

[
h11 h12

h21 h22

] [
x11 x12 x13

x21 x22 x23

]
+

[
n11 n12 n13

n21 n22 n23

]
(2.20)

The first important condition for transmitting subspaces is T > Mtx, i.e. the
number of time-slots T has to be larger than the number of transmit an-
tennas Mtx, since T defines the dimension of the space and Mtx defines the
dimension of the subspace. In the example of Eq. (2.20) the dimension of the
space is T = 3 (the number of the columns) and the dimension of the sub-
space is Mtx = 2 (the number of the rows). The second condition is, that the

23



2 Fundamentals

row vectors of the transmit matrix X, i.e. the 1× T -dimensional row vectors
x1 =

[
x11 x12 x13

]
and x2 =

[
x21 x22 x23

]
, have to be linearly indepen-

dent to span a Mtx-dimensional subspace of the T -dimensional space. If the
row vectors are orthogonal to each other, they can be interpreted as basis vec-
tors of the Mtx-dimensional subspace. Hochwald and Marzetta [19] assumed
orthonormal complex-valued vectors, i.e. the length of the 1× T -dimensional
row vectors is normed to 1 and unitary transmit matrices (matrices with or-
thonormal row vectors) are obtained. The transmit matrix X of Eq. (2.20)

could now be rewritten by X =

[
x1

x2

]
. Inserted in Eq. (2.20), this leads to[

y1

y2

]
=

[
h11 h12

h21 h22

] [
x1

x2

]
+

[
n1

n2

]
, (2.21)

where the received matrix Y =

[
y1

y2

]
as well as the noise matrix N =

[
n1

n2

]
have also been replaced.

In the receiver, no knowledge of the channel matrix H is required and it is
therefore called noncoherent. In the noise-free case, i.e. for N = 0, Eq. (2.21)
reduces to two received row vectors y1 and y2 of the received matrix Y,
which are a linear combination of both of the transmitted row vectors x1

and x2 of the transmit matrix X, scaled by the channel fading coefficients
hkl, k = 1, . . . , Nrx, l = 1 . . . ,Mtx.

y1 = h11 x1 + h12 x2

y2 = h21 x1 + h22 x2 (2.22)

Fig. 2.7 illustrates this for the xy-plane in R3, where a 2-dimensional sub-
space, spanned by the orthonormal basis vectors x1 =

[
1 0 0

]
and x2 =[

0 1 0
]
, is shown. For illustrating purposes the fading coefficients hkl, k =

1, Nrx = 2, l = 1,Mtx = 2 are assumed to be real valued. Each fading
coefficient scales one of the orthonormal basis vectors. The resulting vec-
tors y1 = h11x1 + h12x2 and y2 = h21x1 + h22x2 are both still located in
the xy-plane. This is equivalent to the fact, that the transmitted subspace
has not been changed by the channel matrix H. Going back to Eq. (2.22),
it becomes obvious, that y1 and y2 are linear combinations of x1 and x2,
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in which x1 and x2 are just scaled by the channel fading coefficients hkl,
k = 1, . . . , Nrx, l = 1, . . . ,Mtx. It is clear, that the received matrix Y is the
same subspace as the transmit matrix X, i.e. the channel matrix H cannot
change the transmitted subspace X. There are two cases, for the noise-free
case for which the original transmitted plane is lost and a correct decision is
not possible anymore: First of all, if one of the fading coefficients is 0 and sec-
ondly, if both resulting vectors y1 and y2 are pointing in the same direction.
However, the probability for the second event could be neglected compared
to the probability of having fading coefficients near zero. For both cases one
dimension is lost.

xy-plane

y

z

x

x1

x2

y1 = h11x1 + h12x2

y2 = h21x1 + h22x2

Figure 2.7: Illustration how the orthonormal basis vectors x1 and x2, which span a 2-
dimensional subspace (a plane) in the 3-dimensional space, are scaled and
rotated by different fading coefficients hkl, k = 1, Nrx = 2, l = 1,Mtx =
2.

We have seen so far, that the channel does not change the transmitted sub-
space. However, the contributions from the row vectors of the noise matrix N
are present in any component of the T -dimensional space. This means, that
the noise changes the transmitted subspace, i.e. the subspace is rotated out.
Fig. 2.8 shows this effect for the example of transmitting a plane in R3. The
corresponding noise components result in the vectors y1 = h11x1 +h12x2 +n1

and y2 = h21x1 +h22x2 + n2, which could be located outside of the xy-plane.
The received plane, which is spanned by y1 and y2, is rotated out of the xy-
plane.
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xy-plane

y

z

x

received plane

n2

n1x1

x2

y1 = h11x1 + h12x2 + n1

y2 = h21x1 + h22x2 + n2

Figure 2.8: Illustration how the orthonormal basis vectors x1 and x2, which span a 2-
dimensional subspace (a plane) in the 3-dimensional space, are scaled and
rotated by different fading coefficients hkl, k = 1, Nrx = 2, l = 1,Mtx =
2. The noise components n1 and n2 cause a rotation of the transmitted
subspace out in the 3-dimensional space.

It is clear, why the fading coefficients of the channel matrix H for the MIMO
scenario have to be constant for a duration over T time-slots. T defines the di-
mension of the space and the 1×T dimensional row vectors xl, l = 1, . . . ,Mtx,
which have to be linearly independent, span the Mtx-dimensional subspace.
Therefore the row vectors are not allowed to change within T time-slots, be-
cause otherwise the underlying subspace would be changed. After T time
slots, the channel coefficients change to new independent realizations, which
also have to be constant for the upcoming T time-slots.

Note, that in case of different numbers of transmit and receive antennas,
the following two cases arise: For Mtx < Nrx the rows of the receive matrix
Y become linearly dependent, whereas for Mtx > Nrx the received subspace
Y becomes a subspace of lower dimension of the transmitted subspace X.

In [19], Hochwald and Marzetta are assuming unitary transmit matrices Φl

of dimension Mtx × T
ΦlΦ

H
l = I, (2.23)

where T denotes the number of time-slots and Mtx denotes the number of
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transmit antennas. The resulting identity matrix I is of dimension T ×T . The
row vectors of the unitary transmit matrices Φl are assumed to be linearly
independent from each other. Note, that Hochwald and Marzetta originally
used the matrix-valued transmission model Y = XH + N. For this case, the
transmit matrices Φl are of dimension T ×Mtx and orthonormal column vec-
tors occur. Since we use the matrix-valued transmission model from Eq. 2.19,
we adapted the original system of Hochwald and Marzetta.

In [19] the conditional matrix variate probability density function of the
received matrix Y, under the condition, that Φl has been transmitted, was
used and it is defined by

p(Y|Φl) =
exp

(
−tr

{
Λ−1YHY

})
πTNrxdetNrxΛ

, (2.24)

where Y is of size Nrx×T , tr(A) denotes the trace of the matrix A and det Λ
is the determinant of Λ. Λ is the T × T covariance matrix

Λ = I +
ρ

Mtx
ΦH
l Φl. (2.25)

I denotes the T × T identity matrix and ρ the expected signal-to-noise ra-
tio (SNR) at each receiver antenna, independently of the number of transmit
antennas. Furthermore, it is assumed that the channel matrix H is neither
known by the transmitter nor by the receiver. Therefore no channel state
information is available for the detection of the transmitted matrices Φl in
the receiver and the receiver itself is called noncoherent.

The maximum-likelihood (ML) decision rule for the transmission of unitary
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subspace based matrices, as defined in [19], is

Φ̂l = argmax
Φl∈{Φ1,··· ,ΦL}

p (Y|Φl)

= argmax
Φl∈{Φ1,··· ,ΦL}

exp

(
−tr

{[
I + ρT

Mtx
ΦH
l Φl

]−1

YHY

})
πTNdetNrx

[
I + ρT

Mtx
ΦH
l Φl

] (2.26)

= argmax
Φl∈{Φ1,··· ,ΦL}

tr{YΦH
l ΦlY

H}. (2.27)

= argmax
Φl∈{Φ1,··· ,ΦL}

‖YΦH
l ‖2F , (2.28)

where ‖ · ‖2F is the squared Frobenius norm. It projects the received subspace
Y back to the tested subspaces Φl. The decision is made in favour of the
maximum received value. A detailed explanation of the derivation of the ML
decision rule is given within Appendix A.

2.6 Chapter Summary

The basic essentials, which build the foundation for this thesis, have been
introduced within this chapter. An overview of OFDM and the vector-valued
transmission model for OFDM, as proposed by [24] and [11] has been given.
This section was followed by the definition of the assumed channel models, the
Rayleigh block fading channel model as well as the Rayleigh frequency selec-
tive fading channel model. OFDM-MFSK and OFDM multitone FSK, which
is the transmission technique of interest, have been explained. The drawback,
its bad bandwidth efficiency, has been worked out. The derivation of the de-
tection metric has been discussed. Afterwards the transmission model for bit-
interleaved coded modulation with iterative detection for OFDM-MFSK and
its multitone variant has been addressed. We gave a brief introduction on the
capacity of frequency selective fading channels, as proposed within the work
of [38] and [26]. To achieve capacity of frequency selective fading channels,
“peaky” signals, which can be noncoherently detected, should be used. This is
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true for OFDM-MFSK and its multitone variant. We expect OFDM-MFSK
to be a very good candidate to achieve capacity within frequency selective
fading channels. Last, the principles of subspaces for transmission have been
discussed and visualized with examples.
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Chapter 3
OFDM-MFSK and Transmissions
Based on Subspaces

Noncoherent transmission based on subspaces in the MIMO context were
proposed by Hochwald and Marzetta in [19], c.f. Sec. 2.5. OFDM-MFSK

and its multitone variant is also called noncoherent and there seems to be
a connection between OFDM-MFSK and those subspace based transmission
methods. In the following we will show, that OFDM-MFSK and its multitone
variant are special cases of a noncoherent communication based on subspaces
as shown for MIMO systems in Sec. 2.5.
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The key idea of this thesis is to combine subspaces of different dimensions
in terms of OFDM-MFSK to exploit the total available mathematical space
in a more efficient way. The possibility of having orthogonal subspaces, as it
is the case for 1/MFSK is lost. However, we will show, that a combination of
subspaces of different dimensions in case of OFDM-MFSK and its multitone
variant offers the advantage of increasing the bandwidth efficiency of OFDM-

MFSK significantly and the upper bound of 1 bit/s
Hz can be approached. This

is without a substantial increase in complexity.

Because of the transmission based on subspaces and the combination of
subspaces of different dimensions, an ML detection rule, based on the matrix
variate complex-valued normal distribution will be derived. We will study the
matrix variate probability density function for complex-valued receive matri-
ces for the Rayleigh block fading channel, the AWGN channel and the Rayleigh
frequency selective fading channel, and we will simplify it to an ML detection
rule, where possible.

We will provide a criterion up to which dimension it is useful to combine
subspaces of different dimensions and show an algorithm for a Gray mapping
of the subspaces. Therefore, we briefly describe the distance criterion, which
is the principal angle between any pair of subspaces.

The connection between the combined subspaces and the FSK vectors will
be illustrated. The matrix variate PDF and the bivariate PDF are compared
for this purpose. The shape of the multivariate PDF for a line and a plane is
shown in a descriptive example.

Parts of this work have been published in [29] and [28].

32



3.1 OFDM-MFSK as a Subspace Based Transmission

3.1 OFDM-MFSK as a Subspace Based
Transmission

The basis for the derivation of the connection between OFDM-N/MFSK and
the noncoherent MIMO subspace transmission was laid in the work of Wetz
in [44] and further developed in our work, presented in [29].

In Sec. 2.1, Eq. (2.1), a vector-valued transmission model in the frequency
domain for a conventional OFDM transmission scheme is introduced where
column vectors x are transmitted. As shown in Sec. 2.5, for a noncoherent de-
tection in the receiver based on subspaces, transmit matrices X are required.
To reach this goal, i.e. the representation of a transmit vector x of a con-
ventional OFDM system as a transmit matrix X, each column vector will be
represented by a diagonal matrix.

X =


x1 0 ... 0
0 x2 ... 0
... ... ... ...
0 0 ... xNf

 ,
where Nf represents the number of OFDM subcarriers and xl, l = 1, . . . , Nf
are taken from a transmit symbol alphabet. Consequentially, the transmit
vector alphabet changes to a transmit matrix alphabet consisting of a set
of transmit matrices Xl = diag(xl), where diag(xl) is the function, which
transforms the transmit vector xl to a diagonal transmit matrix X. It is now
possible to rewrite the vector-valued transmission model for a conventional
OFDM transmission (c.f. Eq. (2.1))

y = Hx + n

with matrices, resulting in
Y = HX + N.

It is important to notice, that X, Y and N have become diagonal matrices
of dimension Nf ×Nf . The resulting matrix-valued transmission model cor-
responds to Eq. (2.19), on which the subspace based transmission, explained
in Sec. 2.5, is built upon. The channel matrix H remains unchanged. For the
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3 OFDM-MFSK and Transmissions Based on Subspaces

special case of OFDM-N/MFSK, it is here also possible, to regard the FSK
block matrices of size M ×M independently from each other

x1 0 · · · 0

0
. . .

...
...

. . . 0
0 0 0 xM

 ,
instead of taking the matrix for the whole OFDM block of dimension Nf ×
Nf into account. In Sec. 2.3, it was shown, that OFDM-1/MFSK and its
multitone variant OFDM-N/MFSK are based on transmitting column vectors.
In case of OFDM-1/4FSK, the transmit vectors xl, l = 1, . . . ,M = 4 are
chosen from the transmit vector alphabet

A1/4FSK =




0
0
0
1

 ,


0
0
1
0

 ,


0
1
0
0

 ,


1
0
0
0


 .

For the subspace based representation of OFDM-N/MFSK, transmit matrices
Xl and their corresponding receive matrices Yl, as well as noise matrices
N are needed. In the case of OFDM-N/MFSK these matrices are M ×M -
dimensional matrices, since M defines the number of subcarriers within one
FSK block and M also defines the dimension of the space. In case of OFDM-
1/4FSK, the new transmit matrix alphabet is

A1/4FSK
=




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 ,


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .

Obviously, the frequencies are now on the main diagonal of the transmit ma-
trices Xl, l = 1, . . . ,

(
M
N

)
. For illustrating purposes, the frequency positions

are colored in blue. The frequencies of the OFDM subcarriers of the FSK
block of size M are now represented by the scalar entries xll, l = 1, . . . ,M
on the main diagonal of the corresponding matrix. In general, the transmit
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3.1 OFDM-MFSK as a Subspace Based Transmission

matrix alphabet could be created by

A =

{
diag(xl) |xl ∈ AN/MFSK, l = 1, . . . ,

(
M

N

)}
.

diag(x) is the function, which transforms a vector x to a diagonal matrix X,
with the subcarrier frequencies on the main diagonal of the matrix X. One
important condition for transmitting subspaces within the MIMO context is,
that the number of the transmit antennas Mtx, defining the dimension of the
subspace, has to be smaller than the number of time-slots T , defining the
dimension of the space. For the vector-valued OFDM-N/MFSK transmission
model it is obvious, that if rewriting the transmit vectors to transmit matrices,
this necessary condition is not fulfilled. From now on, we restrict ourselves to
the case of pure OFDM-1/MFSK and its multitone variant, where M defines
the dimension of the space and M ×M transmit matrices Xl, l = 1, . . . ,

(
M
N

)
are used. To transmit subspaces, at least one row has to be zero or linearly
dependent of the other M − 1 rows (c.f. Sec. 2.5). For OFDM-N/MFSK this
is always true, since at most M − 1 subcarriers out of M subcarriers per FSK
block could be chosen for transmission, c.f. Sec. 2.3. By transforming the
transmit vectors xl into diagonal matrices Xl, an artificial degree of freedom
is added. The OFDM subcarriers are on the main diagonal, whereas the off-
diagonal entries are zero. These off-diagonal zeros are “artificial”, since they
do not exist within the OFDM transmission model. For any OFDM-N/MFSK
transmit matrix alphabet, subspaces, i.e. lines or planes are obtained, since
N of the row vectors are linearly independent and define a basis of a N -
dimensional subspace. Since M−N rows are the 0 vector of dimension 1×M ,
they are linearly dependent. In the case of OFDM-N/MFSK, the resulting
row vectors within the matrices are always orthogonal vectors. An example is
the following matrix 

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 ,
which represents the column vector

[
1 0 1 0

]T
of the OFDM-2/4FSK

alphabet and which represents now a N = 2–dimensional subspace of the
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y

z

x

Figure 3.1: Illustrating example: OFDM-2/3FSK. Three 2-dimensional subspaces of
the 3-dimensional real-valued space R3 are shown.

M = 4–dimensional space.

Fig. 3.1 illustrates an example of 2-dimensional subspaces of the 3-dimensional
real-valued vector space R3. This corresponds to an OFDM-2/3FSK alphabet,
where N = 2 out of M = 3 subcarriers are selected. Note, that this is just an
example to visualize the subspace based representation of OFDM-N/MFSK.

The transmit matrix alphabet is

A2/3FSK =


1 0 0

0 1 0
0 0 0

 ,
1 0 0

0 0 0
0 0 1

 ,
0 0 0

0 1 0
0 0 1


and represents three orthogonal, 2-dimensional planes of the 3-dimensional
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space. Note, that the three planes are orthogonal in the sense, that they form
a right angle, but they are not orthogonal subspaces, since they intersect in
more points than the origin [6], [20], [36].

3.2 Combining Subspaces of Different Dimensions

So far, we have shown in the previous section, that pure OFDM-1/MFSK
and OFDM multitone FSK are special cases of the more general approach for
MIMO systems based on subspaces. For the MIMO transmission scenarios,
there usually exist two assumptions: All the subspaces have the same dimen-
sion and their corresponding complex-valued matrices are in general assumed
to be unitary, see Hochwald and Marzetta, as well as Ashikhmin et al. in [19]
and in [2] for example. There exists one obvious reason for this restriction,
since every subspace of a lower dimension is included within a subspace of
higher dimension. Fig. 3.2 illustrates in an example a plane, which is a 2-
dimensional subspace of the 3-dimensional space, and two lines, which are
1-dimensional subspaces of the 3-dimensional space and which are also a sub-
space of the plane.

xy − plane

y

z

x

Figure 3.2: Subspaces of different dimensions in the 3-dimensional space.

A possibility of combining subspaces of different dimensions would be ap-
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3 OFDM-MFSK and Transmissions Based on Subspaces

preciable to exploit the available total mathematical space in a better way. In
the following, we will show how to combine subspaces of different dimensions
in case of OFDM-N/MFSK. This scheme is called combined OFDM-N/MFSK,
in short OFDM-COM-N/MFSK.

A combination of subspaces of different dimensions results in an increase
in the size of the transmit matrix alphabet A. For different combinations of
OFDM-N/MFSK the new transmit matrix alphabet becomes

A =

M/2⋃
N=1

AN/MFSK, (3.1)

i.e. the union of the transmit alphabets A1/MFSK up to AM
2 /MFSK is the new

set of transmit matrices. It is of course possible to combine the subspaces
beyond M

2 . However, there exist drawbacks, which we work out at the end
of Sec. 3.5. If not stated otherwise, we will use the expression OFDM-COM-

N/MFSK for
⋃M/2
N=1 OFDM−N/MFSK, i.e. subspaces of different dimensions

are combined up to the dimension M
2 .

Fig. 3.3 shows an example for the purpose of illustration of subspaces in
the 3-dimensional space. Neglecting the fact, that we have an odd dimension
of three, three one-dimensional lines and three two-dimensional planes are
obtained. The transmit matrix alphabet consists now of six different matrices,
which could be chosen for transmission. The new transmit matrix alphabet
becomes

A1/3FSK∪ 2/3FSK =


1 0 0

0 0 0
0 0 0

 ,
0 0 0

0 1 0
0 0 0

 ,
0 0 0

0 0 0
0 0 1

 ,
1 0 0

0 1 0
0 0 0

 ,
1 0 0

0 0 0
0 0 1

 ,
0 0 0

0 1 0
0 0 1

 .

The lines and the planes are spanned by a set of three row vectors, which are
the basis vectors of the 3-dimensional space

{[
1 0 0

]
,
[
0 1 0

]
,
[
0 0 1

]}
.
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y

z

x

Figure 3.3: Subspaces of different dimensions in the 3-dimensional space. The x-,y-
and z-axis of the 3-dimensional space, colored in blue, gray and black
represent three lines, i.e. 1-dimensional subspaces. The planes, colored
in light blue, light gray and light red are the 2-dimensional subspaces of
the 3-dimensional space.

Compared to pure OFDM-1/MFSK or OFDM multitone FSK, the modu-
lation principle in frequency domain, as shown in Fig. 2.3 does not change
significantly. Instead of choosing one or N subcarriers respectively for each
FSK block of size M for transmission, different amounts of subcarriers per
FSK block are now chosen for transmission. The number of selected subcar-
riers corresponds to the dimension of the subspace. In the case of a FSK
block size of M = 4, Fig. 3.4 shows this in an example for the COM-N/4FSK
alphabet.

The corresponding transmit matrix alphabet for OFDM-COM-N/4FSK with-
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f000 001 011

· · · · · ·∆f

block n− 1 block n block n+ 1

Figure 3.4: Basic principle of OFDM-COM-N/4FSK modulation. Blue solid line:
power on the subcarrier, black dashed line: empty subcarrier, ∆f: sub-
carrier spacing.

out any energy normalization is

ACOM−N/4FSK =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 ,


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 ,


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 .
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For comparison, the transmit vector alphabet is

ACOM−N/4FSK =




1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

 ,


1
1
0
0

 ,


1
0
1
0

 ,


1
0
0
1

 ,


0
1
1
0

 ,


0
1
0
1

 ,


0
0
1
1


 .

It is obvious, that there are now ten subspaces and eight out of ten have to
be chosen for transmitting m = log2 8 = 3 bits per FSK block of size M = 4.
The question now is: Which subspaces should be chosen for transmission? We
will address this topic within Sec. 3.5.

3.3 Increased Bandwidth Efficiency of Combined
OFDM-N/MFSK

The possibility of combining subspaces of different dimensions leads to an in-
creased bandwidth efficiency of OFDM-COM-N/MFSK and is the main con-
tribution of this thesis. The number of bits per subspace islog2

 M
2∑

N=1

(
M

N

) = M − 1. (3.2)

In Sec. 2.3, the upper bound for the bandwidth efficiency η1/MFSK of pure
OFDM-1/MFSK, Eq. (2.5), is

η1/MFSK =
log2M

M

and for OFDM multitone FSK, N > 1, c.f. Eq. (2.6), the upper bound becomes

ηN/MFSK =

⌊
log2

(
M
N

)⌋
M

.

For OFDM-COM-N/MFSK, the bandwidth efficiency ηCOM−N/MFSK is de-
fined by

ηCOM−N/MFSK =

⌊
log2

[∑M/2
N=1

(
M
N

)]⌋
M

=
M − 1

M
. (3.3)
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Eq. 3.3 shows, that by combining different alphabets up to the dimension M
2 ,

the bandwidth efficiency ηCOM−N/MFSK increases remarkably, since the nu-
merator now increases linearly with the dimension M . It is of course possible
to combine subspaces beyond M

2 , however it turned out, that the combination

up to M
2 is an effective way of combining subspaces, c.f. Sec. 3.5. It can be

also observed, that for an increasing FSK block size M , i.e. for an increasing

dimension of the space, the upper bound of the bandwidth efficiency of 1 bit/s
Hz

is approached.

Table 3.1 shows the increased bandwidth efficiency for different OFDM-
N/MFSK and OFDM-COM-N/MFSK schemes. The modulation schemes
are ordered according to the increase in bandwidth efficiency. In the col-
umn “Number of vectors/matrices” of Table 3.1 the set of the total available
amount of vectors/subspaces is presented. However, for calculating the band-
width efficiency in the last column of Table 3.1, only 2M−1 vectors/subspaces
out of the set of the available vectors/subspaces are used, since this number
corresponds to the effectively number of used vectors/subspaces for transmis-
sion. This means, that the bandwidth efficiency is round down.

We also added COM-N/4FSK/15, where all subspaces of the M = 4-
dimensional space, including the 4-dimensional space itself and excluding the
null space, i.e. the all zero matrix, are used. This is indicated by the writing
“/15”, since 15 subspaces are obtained. It can be seen, that 3.9069 bits per
FSK block of size M = 4 can be transmitted and a bandwidth efficiency of

0.9767 bit/s
Hz is achieved. The upper bound in bandwidth efficiency for OFDM-

MFSK in general is 1 bit/s
Hz .

It is obvious, that for OFDM-COM-N/4FSK, a remarkable increase in band-
width efficiency is obtained. Since 8 out of 10 vectors/subspaces are used,
three bits per FSK block of size M = 4 can be transmitted, leading to a

bandwidth efficiency of 0.75 bit/s
Hz . A bandwidth efficiency of 0.75 bit/s

Hz is also
achieved for OFDM-4/8FSK, but with a higher effort, since from 70 available
subspaces, 26 = 64 subspaces have to be chosen. It is obvious, that the com-
plexity of COM-N/4FSK is less, compared to 4/8FSK, since only eight out of
ten subspaces are needed to achieve the same bandwidth efficiency.
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If OFDM-7/16FSK, which has a bandwidth efficiency of 0.8125 bit/s
Hz , is com-

pared to OFDM-COM-N/8FSK, which has a bandwidth efficiency of 0.875 bit/s
Hz ,

we can see, that OFDM-COM-N/8FSK has the higher spectral efficiency for
less effort, since 7 bits are transmitted per FSK block of size M = 8 and
therefore only 128 subspaces (from 162 available subspaces) are needed. For
OFDM-7/16FSK 8196 = 213 subspaces out of 11440 available subspaces have
to be chosen to achieve a lower bandwidth efficiency with a much higher real-
ization effort.

Our proposal of combined subspaces turns out to be an efficient possibility
to increase the bandwidth efficiency of OFDM-MFSK remarkably, without a
noteworthy increase in the complexity of the system. To achieve the same
bandwidth efficiency with multitone FSK, which uses subspaces of the same
dimension, more subspaces are needed, as it can be seen in Tab. 3.1.

Furthermore, it can be seen, that for an increased FSK block size, the com-

bined alphabet tends to reach an upper bound of 1bit/s
Hz . Detailed simulation

results for the AWGN channel, the Rayleigh block fading channel and the
Rayleigh frequency selective fading channel will be shown in Chapter 4.

Table 3.1: Comparison of the number of transmitted bits per FSK block and the
bandwidth efficiency in bit/s

Hz
for different OFDM-N/MFSK and OFDM-

COM-N/MFSK modulation schemes.

Modulation Number of Bits per FSK block Bandwidth

scheme vectors/matrices
⌊
log2

[∑M/2
N=1

(
M
N

)]⌋
efficiency

1/16FSK 16 4 0.25

1/8FSK 8 3 0.375

2/16FSK 120 6 0.375

1/4FSK 4 2 0.5

2/4FSK 6 2 0.5
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Table 3.1: Comparison of the number of transmitted bits per FSK block and the
bandwidth efficiency in bit/s

Hz
for different OFDM-N/MFSK and OFDM-

COM-N/MFSK modulation schemes.

Modulation Number of Bits per FSK block Bandwidth

scheme vectors/matrices
⌊
log2

[∑M/2
N=1

(
M
N

)]⌋
efficiency

2/8FSK 28 4 0.5

3/16FSK 560 9 0.5625

3/8FSK 56 5 0.625

4/16FSK 1820 10 0.625

COM-N/4FSK 10 3 0.75

4/8FSK 70 6 0.75

5/16FSK 4368 12 0.75

6/16FSK 8008 12 0.75

7/16FSK 11440 13 0.8125

8/16FSK 12870 13 0.8125

COM-N/8FSK 162 7 0.875

COM-N/16FSK 39202 15 0.9375

COM-N/32FSK
∑16
N=1

(
32
N

)
31 0.9688

COM-N/4FSK/15 15 3.9069 0.9767

COM-N/64FSK
∑32
N=1

(
64
N

)
63 0.9844

3.4 Detection of Subspaces

So far we have shown, that it is also possible to combine different OFDM-
N/MFSK alphabets, mathematically resulting in a combination of subspaces
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of different dimensions. The matrix-valued transmission model

Y = HX + N (3.4)

is our transmission model of interest. To derive an ML detection rule for
a transmission based on subspaces, a matrix variate normal distribution is
needed, which builds the starting point. This involves both cases, the sub-
spaces of the same dimension as well as the combination of subspaces of dif-
ferent dimensions. The matrix variate Θ distribution of a matrix Y is defined
by Gupta and Nagar in [14] and [15]

f(Y) =
1(

2Γ
(
1 + 1

Θ

))MM
det(A)M det(B)M

exp

−
M∑
i=1

M∑
j=1

∣∣∣∣∣
M∑
k=1

M∑
l=1

A−1
ik (Ykl − E [Ykl])B

−1
lj

∣∣∣∣∣
Θ
 .

(3.5)

Y is the M ×M receive matrix and A and B are constant and nonsingular
M × M matrices. The stepwise derivation of the PDF is presented in the
Appendix B.

For Θ = 2, the PDF in Eq. (B.1) is then the matrix variate normal distri-
bution and [15] states for this case, that

Γ

(
1 +

1

2

)
=

1

2

√
π. (3.6)

The conditional matrix variate PDF for maximum-likelihood detection for
a received matrix Y, given a transmitted matrix X, is

p(Y|X) =
1

(π)
MM

2 det(Σ)
M
2 det(Φ)

M
2

exp
{
−tr

[
YHΣ−1YΦ−1

]}
(3.7)

where Σ and Φ are the among row covariance matrix and the among column
covariance matrix, c.f. [10]. All matrices are square M × M matrices and
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equiprobable transmit matrices Xk are assumed. It is possible to calculate Σ
by

Σ = E
[
(Y − E[Y])(Y − E[Y])H

]
=

[
Es
M

(σ2
h − µ2

h) + σ2
n

]
I, (3.8)

Es is the symbol energy divided by the FSK block size M . The complex-
valued fading coefficients are normal distributed with zero mean (µh = 0) and
unit variance (σ2

h = 1). The complex-valued additive white Gaussian noise
has zero mean and a two sided noise power spectral density of N0

2 .

The among column covariance matrix Φ is defined by

Φ = E
[
(Y − E[Y])H(Y − E[Y])

]
= XHΛhX + σ2

nI− µ2
hX

HX, (3.9)

where Λh denotes the M ×M covariance matrix of the channel.

In the following, we will derive the detection rules for the Rayleigh block
fading channel as well as the Rayleigh frequency selective fading channel, as
proposed in Sec. 2.2, for different modulation schemes, i.e. for N/MFSK as
well as for COM-N/MFSK. Or in other words, the detection rule for subspaces
of the same dimension as well as for subspaces of different dimensions will be
derived.

3.4.1 Rayleigh Block Fading Channel

The conditional PDF for a matrix variate Gaussian distribution for a trans-
mission over a Rayleigh block fading channel for detecting OFDM-N/MFSK
and OFDM-COM-N/MFSK, is

p(Y|X) =
1

(π)
MM

2 det(Σ)
M
2 det(Φ)

M
2

exp

{
−

M∑
k=1

M∑
l=1

[
YHΣ−1YΦ−1

]}
(3.10)
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with Σ and Φ, as defined in Eq. (3.8) and Eq. (3.9), respectively. Eq. (3.10)
has been slightly modified compared to Eq. (3.7), since the trace has been
substituted by the double sum

∑∑
, which sums up all entries of the result-

ing matrix YHΣ−1YΦ−1. We will show in the following, why the entries of
the resulting matrix have to be summed up.

For the Rayleigh Block Fading Channel, c.f. Sec. 2.2 the channel matrix H
is defined by (2.4)

H = h IM×M .

The fading coefficient h, constant for one FSK block of size M , has zero mean,
i.e. µh = 0, and unit variance (σ2

h = 1). Therefore the fading coefficients on
the main diagonal of the channel matrix are fully correlated, leading to an
M ×M channel covariance matrix Λh = σ2

h1, i.e. the all ones matrix. For an
energy normalized transmit matrix alphabet A, i.e. tr{XHX} = 1, the M×M
among row covariance matrix Σ becomes

Σ =

[
1

M
+ σ2

n

]
I, (3.11)

Σ−1 =
1

1
M + σ2

n

I (3.12)

and det(Σ) =

[
1

M
+ σ2

n

]M
. (3.13)

The M ×M among column covariance matrix becomes

Φ = XHΛhX + σ2
nI. (3.14)

Φ cannot be inverted in general, since the application of the Sherman-Morrison-
Woodbury formula [12] or any other inversion lemma leads to no solution.
However, since the transmit matrices X have the special property of being
transformed column vectors x,

XHΛhX

is identical to the dyadic product

xxH (3.15)
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of the corresponding column vector x = diag(X). Substituting XHΛhX by
the dyadic product of the vector x in (3.15), we obtain

Φ = xxH + σ2
nI. (3.16)

Note, that the matrix variate normal distribution in general uses the trace
instead of the double sum, c.f. [15] and [14]. However, for the Rayleigh block
fading channel in Sec. 2.2, this model is no longer valid. Under the trace, if we
only consider the part of the among column covariance matrix coming from
the channel, information is lost. Therefore, we have to sum over the whole
matrix to take into account all available information, which is outside the
main diagonal. Since the determinant of Λh is zero, it is not invertible and as
soon as subspaces of dimension 2 or higher are used, off-diagonal entries for
the dyadic product occur. As mentioned before, these entries are needed for
the right decision, since we want to maximize over the conditional probability
density function and

tr{XHΛhX} = tr{xxH} <
{N≥2}

M∑
k=1

M∑
l=1

xxH . (3.17)

As shown in [44], it is now possible to apply the Sherman-Morrison-Woodbury
formula [12] and

Φ−1 =
[
xxH + σ2

nI
]−1

=
1

σ2
n

I− 1

σ2
n

Ix

(
I + xH

1

σn

2

Ix

)−1

xH
1

σ2
n

I

=
1

σ2
n

I− 1

σ4
n

(
1 + 1

σ2
n
xHx

)xxH (3.18)

The determinant of Φ becomes

det (Φ) = det
(
xxH + σ2

nI
)

= σ2M
n det

(
1

σ2
n

xxH + I

)
= σ2M

n

(
1 +

1

σ2
n

xHx

)
. (3.19)
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Setting Σ−1, det Σ, Φ−1 and det Φ in Eq. (3.10), results in

p(Y|X) =
1

(π)
MM

2 det(Σ)
M
2 det(Φ)

M
2

exp

{
−

M∑
k=1

M∑
l=1

[
YHΣ−1YΦ−1

]}

=
1

(π)
MM

2

(
1
M + σ2

n

)MM
2 (σ2M

n (1 + xHx
σ2
n

))
M
2

exp

{
−

M∑
k=1

M∑
l=1

[
YH 1

1
M + σ2

n

IY

(
1

σ2
n

I− 1

σ4
n(1 + xHx

σ2
n

)
xxH

)]}
.

(3.20)

This can be further simplified

x̂ = argmax
xp∈{x1,··· ,xP }

1
1
M + σ2

n

1

σ4
n(1 +

xHp xp
σ2
n

)︸ ︷︷ ︸
=c

M∑
k=1

M∑
l=1

[
YHYxpx

H
p

]
k,l

= argmax
xp∈{x1,··· ,xP }

c

∣∣∣∣∣∣∣
M∑
k=1

M∑
l=1

 YH︸︷︷︸
=diag(yH)

xp


k,l

∣∣∣∣∣∣∣
2

= argmax
xp∈{x1,··· ,xP }

c
∣∣yHxp

∣∣2
= argmax

xp∈{x1,··· ,xP }

∣∣yHxp
∣∣2 , (3.21)

which is the squared scalar product of the vectors y and x, and x̂ is the de-
tected transmit vector. This result has been already derived in [44] for pure
OFDM-MFSK and has now also become the ML detection rule for transmit-
ting subspaces of the same dimension or of different dimensions for transmis-
sion over the Rayleigh block fading channel. We have shown the connection
between the transmission based on matrices and the transmission based on
vectors and we can conclude now, that it is also possible to use the combined
alphabet for the vector-valued transmission model for a transmission over a
Rayleigh block fading channel and detect it with the squared scalar product.
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3 OFDM-MFSK and Transmissions Based on Subspaces

AWGN

The ML detection rule for the AWGN channel turns out to be the same as for
the block fading channel. This is true, since we assume an unknown phase ϕ,
which is the same for all subcarriers, as defined in [44]. The channel matrix for
the whole OFDM block is H = I exp{jϕ}. Therefore, the values of the chan-
nel covariance matrix Λh are fully correlated and Λh = 1. Consequentially,
the derivations, made for the Rayleigh block fading channel in the previous
subsection, can be used without any changes.

3.4.2 Rayleigh Frequency Selective Fading Channel

For a Rayleigh frequency selective fading channel, as described in Sec. 2.2, the
channel matrix

H =


h11 0 · · · 0

0 h22 0
...

... · · · . . .
...

0 · · · · · · hMM

 (3.22)

has fading coefficients on its main diagonal with zero mean (µh = 0) and
unit variance (σ2

h = 1). The fading coefficients are not correlated at all and
therefore the M ×M channel covariance matrix is

Λh = σ2
hI.

This results for an energy normalized alphabet A in the same among row
covariance matrix Σ (c.f. Eq. (3.13)) as for the transmission over a Rayleigh
block fading channel. The M ×M among column covariance matrix becomes

Φ = XHIX + σ2
nI. (3.23)

Inverting Φ using the Sherman-Morrison-Woodbury formula [12] yields

Φ−1 =
1

σ2
n

I− 1

σ2
n

IX

(
I + XH 1

σ2
n

IX

)−1

XH 1

σn
2
I
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=
1

σ2
n

I− 1

σ4
n

X

(
I +

1

σ2
n

XHX

)−1

XH

=
1

σ2
n

I− 1

σ4
n

X



1

1+ 1
σ2n

x∗
11x11

0 · · · · · · 0

0 1

1+ 1
σ2n

x∗
22x22

0 · · ·
...

...
. . .

. . .
. . .

...
0 · · · · · · · · · 1

1+ 1
σ2n

x∗
MM

xMM


︸ ︷︷ ︸

=C

XH

=
1

σ2
n

I− 1

σ4
n

CXXH .

(3.24)

The matrix C is an M × M diagonal matrix, which contains the value 1
for x∗kkxkk = 0, i.e. the corresponding frequency is inactive. For an active
frequency position k, [C]kk has the value 1

1+ 1
σ2n
x∗
kkxkk

. The matrices can be

permuted, since all matrices are diagonal matrices. The determinant of Φ
becomes

det Φ = det
(
X I XH + σ2

nI
)

=
(
xkkx

∗
kk + σ2

n

)N (
σ2
n

)M−N
, (3.25)

where the first term consists of the entries for non-zero xkk, i.e. the active
subcarriers. M denotes the dimension of the space (the FSK block size) and
N denotes the dimension of the subspace, i.e. the number of active subcarriers
per FSK block of size M . Inserting Σ−1, det Σ, Φ−1 and det Φ into Eq. (3.7),

p(Y|X) =
1

(π)
MM

2

(
1
M + σ2

n

)M
(x∗kkxkk + σ2

n)
N

(σ2
n)
M−N

exp

{
−tr

[
YH

(
1

1
M + σ2

n

)
Y

(
1

σ2
n

I− 1

σ4
n

CXXH

)]}
(3.26)

is obtained as the conditional PDF for a Rayleigh frequency selective fading
channel. Two cases have to be distinguished now, subspaces of the same di-
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mension and the combination of subspaces of different dimensions.

If subspaces of the same dimension are transmitted, the diagonal entries on
the matrix C in Eq. (3.24) can be reduced to the constant c = 1

1+ 1
σ2n
x∗
kkxkk

,

xkk 6= 0. Since the entries ckk of C are multiplied on XXH , which has N
active and M − N inactive frequency positions, only the entries 1

1+ 1
σ2n
x∗
kkxkk

are contributing. They are the entries multiplied on the active subcarriers
and they are all the same. The PDF in (3.26) can now be further simplified
to

X̂ = argmax
Xk∈{X1,··· ,XK}

1

(π)
MM

2

(
1
M + σ2

n

)M
(xkkxkk + σ2

n)
N

(σ2
n)
M−N

exp

{
−tr

[
YH

(
1

1
M + σ2

n

)
Y

(
1

σ2
n

I− 1

σ4
n

cXXH

)]}
= argmax

Xk∈{X1,··· ,XK}
tr
[
YHXkX

H
k Y

]
= argmax

Xk∈{X1,··· ,XK}
‖YHXk‖2F , (3.27)

the squared Frobenius norm. With this result, we have proven, that it is
possible to use multitone FSK, i.e. subspaces of the same dimension, for a
transmission over full frequency selective fading channels with noncoherent
detection.

In case of the combination of subspaces of different dimensions, no further
simplification can be done. The entries 1

1+ 1
σ2n
x∗
kkxkk

for the active subcarriers

are different for every subspace of a different dimension, since the FSK blocks
are energy normalized. For the determinant of the among column covariance
matrix Φ, it is the same. It changes with the dimension of the subspace.
So far, no simplification of the PDF could be found for the transmission of
subspaces of different dimensions.
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3.5 Distance Measure

There are two questions open to answer for the combination of subspaces
of different dimensions: First of all, which subspaces should be chosen from
the transmit matrix alphabet for transmission? And what is an appropriate
distance measure between neighboring subspaces?

x1 =

1
0
0



x2 =

0
1
0



y

α

Figure 3.5: Projection of a received one-dimensional subspace for a transmission over
a Rayleigh block fading channel.

In Fig. 2.5, Chapter 2 the projection of a received vector y for a transmis-
sion over a Rayleigh block fading channel has been shown. Fig. 3.5 shows the
same scenario, when regarding the transmit vector x1 as a one-dimensional
subspace, i.e. a line, for a transmission over a Rayleigh block fading channel.
The subspace is scaled by the complex-valued fading coefficient and so far, the
subspace remains the same. Through the addition of the noise the subspace is
rotated into the space. Calculating the principal angle is the projection of the
subspace to all possible transmitted subspaces and is therefore an appropriate
measure of distance between the subspaces.

In case of pure OFDM-1/MFSK, both for the vector-valued transmission
model and the matrix-valued transmission model, the principal angle between
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neighboring subspaces is always 90◦. In case of OFDM multitone FSK and
OFDM-COM-N/MFSK, different angles between the subspaces occur.

Between any pair of vectors xk and xl, the enclosed angle is computed by
Eq. (2.15). In case of the matrix-valued transmission model, the principal
angle α between any two matrices Xk and Xl, i.e. subspaces, is defined by

cosαXkXl
=

tr
{
XH
k Xl

}
‖Xk‖F ‖Xl‖F

. (3.28)

Both definitions have the same result since

tr
{
XH
k Xl

}
=︸︷︷︸

M×M diagonal matrices Xk,Xl

xHk xl

and

‖X‖F =

√√√√ M∑
p=1

M∑
q=1

|xpq|2

=︸︷︷︸
only diagonal matrices X

√
x2

11 + · · ·+ x2
MM

=︸︷︷︸
xpp=xp, p=1,...,M

√
x2

1 + · · ·+ x2
M

= ‖x‖.

‖X‖F is the Frobenius norm of the matrix X and ‖x‖ defines the norm of the
vector x. The principal angles are identical for either the subspaces or their
corresponding FSK vectors.

We developed an algorithm for the mapping of the subspaces, c.f. Fig. 3.6,
where the distance criterion between any pair of subspaces is the principal
angle. By having a Gray mapping over the resulting set B, each pair of neigh-
boring subspaces, which encloses the minimum principal angle, differs only by
one bit.
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1: procedure findmap(A)
2: B = ∅
3: B + A1 ∈ A
4: for all A \ B do

5: αAiB = acos
(

tr(AiB)
‖Ai‖F ‖B‖F

)
6: Â = argmin

Ai

(αAiB))

7: B + Â
8: end for
9: return B, GRAY(B)

10: end procedure

Figure 3.6: Gray mapping algorithm for COM-N/MFSK, Ai ∈ A, B ∈ B [46].

To find the ordered set B of transmit matrices, which shall be used, the
algorithm starts with the ordered set of subspaces A. Ordered set A means
here, that the null space is excluded, since it cannot be used for transmis-
sion, and that the subspaces A are ordered increasingly according to their
number in the binary system. The set B is ordered in the sense of a Gray
mapping. The set A builds the starting point to find the ordered set of trans-
mit matrices B. B is constructed by taking the first subspace (A1) from A,
i.e. B = A1 ∈ A. Next, all principal angles, separating each pair of subspaces
αAiB are calculated. The smallest αAiB, i.e. the subspace Â with the smallest
principal angle, is then added to the ordered set B. This process is repeated
with the last subspace B, added to B, and again all principal angles to the
remaining subspaces in the set A are calculated and compared. The closest
neighbor is selected and added to B. If more than one pair of subspaces have
the same minimum principal angle, αAiB, the first one is selected. The al-
gorithm continues until all subspaces are ordered pairwise according to the
minimum principal angle.

In Table 3.2, the distance profile for combined OFDM-N/4FSK based on
the angle between the subspaces, is given. Due to simplicity reasons of the
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manageable representation of the vectors xk, compared to their correspond-
ing matrices Xk, the distance profile is calculated according to the enclosed
angle between the vectors. Since Gray mapping is wanted, the subspaces

Table 3.2: Distance profile for the enclosed angle for combined OFDM-1/4FSK and
OFDM-2/4FSK.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
1
0
0
0




0
1
0
0




0
0
1
0




0
0
0
1




1
1
0
0




1
0
1
0




1
0
0
1




0
1
1
0




0
1
0
1




0
0
1
1


x1 0◦ 90◦ 90◦ 90◦ 45◦ 45◦ 45◦ 90◦ 90◦ 90◦

x2 0◦ 90◦ 90◦ 45◦ 90◦ 90◦ 45◦ 45◦ 90◦

x3 0◦ 90◦ 90◦ 45◦ 90◦ 45◦ 90◦ 45◦

x4 0◦ 90◦ 90◦ 45◦ 90◦ 45◦ 45◦

x5 0◦ 60◦ 60◦ 60◦ 60◦ 90◦

x6 0◦ 60◦ 60◦ 90◦ 60◦

x7 0◦ 90◦ 60◦ 60◦

x8 0◦ 60◦ 60◦

x9 0◦ 60◦

x10 0◦

have to be arranged in a way, that the angle between the directly neighboring
subspaces becomes minimum, i.e. 45◦ in the case of our example. One possi-
ble mapping of choosing eight subspaces out of the transmit matrix alphabet
ACOM−N/4FSK, containing ten matrices, is shown in Fig. 3.7. Due to the sim-
pler representation, we chose the vector representation. The angle between
the direct neighboring subspaces is always 45◦, i.e. the minimum principal
angle.
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x1 x2 x3 x4 x5 x6 x7 x8


0
0
0
1




0
1
0
1




0
1
0
0




0
1
1
0




0
0
1
0




1
0
1
0




1
0
0
0




1
0
0
1

Subspace Xl

45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦

Mapping

90◦ · · · · · · · · ·

0
0
0

 0
0
1

 0
1
1

 1
1
1

 1
0
1

 1
0
0

 1
1
0

 0
1
0



Figure 3.7: Basic principle for Gray mapping of OFDM-COM-N/4FSK.

For comparison reasons, we have a closer look at the second possible com-
bination of subspaces of different dimensions of the M = 4-dimensional space.
One- and three-dimensional subspaces, i.e. OFDM-1/4FSK and OFDM-3/4FSK,
are combined and the resulting transmit matrix alphabet becomes

A1/4FSK∪ 3/4FSK =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 .
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Table 3.3: Distance profile according to the enclosed angle for combined OFDM-
1/4FSK ∪ OFDM-3/4FSK.

x1 x2 x3 x4 x5 x6 x7 x8
1
0
0
0




0
1
0
0




0
0
1
0




0
0
0
1




0
1
1
1




1
0
1
1




1
1
0
1




1
1
1
0


x1 0◦ 90◦ 90◦ 90◦ 90◦ 54.7◦ 54.7◦ 54.7◦

x2 0◦ 90◦ 90◦ 54.7◦ 90◦ 54.7◦ 54.7◦

x3 0◦ 90◦ 54.7◦ 54.7◦ 90◦ 54.7◦

x4 0◦ 54.7◦ 54.7◦ 54.7◦ 90◦

x5 0◦ 48.2◦ 48.2◦ 48.2◦

x6 0◦ 48.2◦ 48.2◦

x7 0◦ 48.2◦

x8 0◦

In comparison to the combination of COM-N/4FSK, eight possible matrices
are obtained for 1/4FSK ∪ 3/4FSK. The matrices of the OFDM-3/4FSK al-
phabet are the flipped versions with respect to their frequency positions of the
matrices obtained for OFDM-1/4FSK. The corresponding distance profile for
the principal angles is shown in Table 3.3. Compared to COM-N/4FSK, the
minimum angle for combined OFDM-1/4FSK ∪ OFDM-3/4FSK is 54.7◦ and
therefore greater compared to the minimum angle of 45◦ for COM-N/4FSK.
For large additive noise, the alphabet for COM-N/4FSK is more robust against
errors, since less frequency positions are active. A false decision for a chosen
subcarrier in case of combined OFDM-1/4FSK ∪ OFDM-3/4FSK is more
likely, since for OFDM-3/4FSK more subcarriers are active and therefore ex-
posed both to the fading from the channel and the additive noise. Therefore,
the subcarriers modulated with OFDM-3/4FSK, contain more errors, as if
they were modulated with OFDM-2/4FSK. For the low noise region, this be-
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haviour reverses, since the greater minimum angle is the deciding criterion.

Within Sec. 3.2, we mentioned, that only subspaces up to dimension M
2

are combined. Since the application area of OFDM-N/MFSK are wireless
connections to users moving with high velocities, the mobile communication
channel suffers from a fast time-variant multipath propagation and additive
noise. Therefore, the receiver has to be capable of coping with the multiplica-
tive noise of the channel and the additive noise. As a consequence, we have
decided only to combine subspaces up to the dimension M

2 , since they are more
robust against multiplicative noise as well as large additive noise. There exists
a further reason: It is impossible to use the null space, since it is included in
every subspace and the space itself. Using methods like bit stuffing in case of
the null space is not possible, since the worse channel conditions do not allow
a recovery of the bit stuffed positions. Gaining another full bit, when going
beyond M

2 becomes impossible. Because of this reasons, we restrict ourselves

to combine subspaces up to the dimension M
2 .

3.6 From Subspaces Back to Vectors

It is possible to increase the bandwidth efficiency of OFDM-MFSK by com-
bining subspaces of different dimensions. To complete the topic, we show the
connection between the subspace based transmission model and the vector-
valued transmission model in the following. This connection can be shown,
by analyzing the different ML detection rules for the Rayleigh block fading
channel and the Rayleigh frequency selective fading channel.

3.6.1 Rayleigh Block Fading Channel

The multivariate conditional PDF for a received vector y, given the trans-
mitted vector x, for a transmission over a Rayleigh block fading channel, was
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given by Wetz in [44]

p(y|x) =
1

πMσMn

(
1 + xHx

σ2
n

)
exp

− 1

σ2
n

yHy +
1

σ4
n

(
1 + xHx

σ2
n

)yHxxHy

 . (3.29)

The derived ML detection rule is

x̂ = argmax
xk∈{x1,··· ,xK}

|yHx|2 (3.30)

for energy normalized transmit vector alphabets, i.e. xHx = 1.

We derived the conditional matrix variate PDF, c.f. Eq. (3.10), to be

p(Y|X) =
1

(π)
MM

2

(
1
M + σ2

n

)MM
2 (σ2M

n (1 + xHx
σ2
n

))
M
2

exp

{
−

M∑
k=1

M∑
l=1

[
YH 1

1
M + σ2

n

IY

(
1

σ2
n

I− 1

σ4
n(1 + xHx

σ2
n

)
xxH

)]}
.

This PDF is valid for the subspace based transmission for OFDM-N/MFSK
as well as OFDM-COM-N/MFSK, if energy normalized transmit matrix al-
phabets are used. We further simplified the conditional PDF to the squared
scalar product, for both OFDM-N/MFSK and the combination of subspaces of
different dimensions, c.f. Eq. (3.21). The necessary condition for deriving the
squared scalar product as the detection rule are energy normalized subspaces
in any case. If a decision based on matrices, i.e. subspaces, is wanted, it is
not possible to simplify the PDF, since the covariance matrix Φ in Eq. (3.14)
cannot be inverted in general, as it has been shown in Sec. 3.4.1. In this case
the PDF has to be used.

The connection between the subspaces and the vectors for OFDM-N/MFSK
and OFDM-COM-N/MFSK follows directly from the derivation of the ML
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detection rule, which is in both cases based on the squared scalar product
(Eq. (3.21)). By showing in [29] and in Sec. 3.1, that OFDM-MFSK is a special
case of the more general transmission based on subspaces, we developed the
idea to combine subspaces of different dimensions, [28], Sec. 3.2. Deriving the
ML detection rule for the subspace based transmission in Sec. 3.4.1, brought
us back to the vector-valued transmission model, defined in Eq. (2.1). A sim-
plification of the conditional matrix variate normal distribution in Eq. (3.10)
was only possible, if the among column covariance matrix Φ was inverted by
making use of the dyadic product of the transmit vector x, c.f. Eq. (3.18)
The conclusion is, that it is also possible to combine different energy normal-
ized transmit vectors and detect them with the squared scalar product. The
system complexity remains very low and the gain in bandwidth efficiency is
remarkable, as shown within Sec. 3.3.

Finally, the PDF for the multivariate Gaussian distribution,

p(y|x) =
1

(2π)M/2 det(Λ)M/2
exp

{
−1

2
(y − E[y])Λ−1(y − E[y])H

}
,

with covariance matrix Λ, as defined in Sec. 2.3.1, Eq. (2.12), is visualized for
the Rayleigh block fading channel. We chose the bivariate PDF, since it is
only possible to visualize the PDF of a two-dimensional real-valued vector. To
show the effects of transmit vectors with energy normalization and without
energy normalization, two energy normalized vectors

x1 =

[
1
0

]
, x2 =

[
1√
2

1√
2

]

and two vectors without energy normalization

x1 =

[
1
0

]
, x2 =

[
1
1

]
,

are chosen. Both vectors belong to a combined OFDM-1/2FSK ∪ OFDM-
2/2FSK alphabet. For the illustrative example, the 1-dimensional subspace
of the 2-dimensional space (x1) as well as the 2-dimensional space itself (x2)
are used. It should be noticed, that for illustration purpose only the vectors
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Figure 3.8: Comparison of the PDFs of the combined OFDM-1/2FSK ∪ OFDM-
2/2FSK alphabet with energy normalization and without energy normal-
ization for transmission over the Rayleigh block fading channel, σn = 0.5

could be used. But however, we have shown, that they could also be inter-
preted as matrices, c.f. Sec. 3.1. Fig. 3.8 shows for large noise the bivariate
PDFs for transmission over the Rayleigh block fading channel for transmit al-
phabets with energy normalization and without energy normalization, i.e. for
the transmitted vectors x1 and x2. Two PDFs are plotted within Fig. 3.8,
the PDF for the 1-dimensional subspace of the 2-dimensional space, i.e. the
PDF for transmission of x1 over a Rayleigh block fading channel with large
noise and the PDF for the 2-dimensional space, i.e. the PDF for transmission
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of x2 over a Rayleigh block fading channel with large noise. Fig. 3.8a and
Fig. 3.8b show the two plotted PDFs from a side view, whereas Fig. 3.8c and
Fig. 3.8d present the top view. Both views are presented to be suggestive of
how the PDFs with respect to their width and height look like for subspaces
of different dimensions.

−2
0

2

−3−2−10123

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x1x2

P
ro

ba
bi

lit
y 

D
en

si
ty

(a) with energy normalization

−2
0

2

−3−2−10123

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x1x2

P
ro

ba
bi

lit
y 

D
en

si
ty

(b) without energy normalization

x1

x2

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) with energy normalization

x1

x2

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) without energy normalization

Figure 3.9: Comparison of the PDFs of the combined OFDM-1/2FSK ∪ OFDM-
2/2FSK alphabet with energy normalization and without energy normal-
ization for transmission over the Rayleigh block fading channel, σn = 0.2

It can be observed, that, in case of the transmit alphabet with energy nor-
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malization in Fig. 3.8a and in Fig. 3.8c, the PDFs for both vectors have the
shape of a comb and the same height. This shows, that a detection rule ex-
ists besides the PDF. In contrary, Fig. 3.8b and Fig. 3.8d show, that without
any energy normalization, the PDF for the vector x2, is higher compared to
the PDF for the vector x1. In the terminology of regarding OFDM-COM-
N/MFSK as a noncoherent transmission based on subspaces, it can be seen,
that the height of the PDF for the two-dimensional space is much higher
compared to the height of the PDF for the one-dimensional subspace. It is
impossible to derive a decision in this case with the squared scalar product, as
derived in Eq. (3.21). For transmit alphabets without energy normalization
the PDF has to be used for detection. It can be also observed, that both
vectors and therefore the subspaces are not orthogonal.

Furthermore, the two Gaussian distributions, resulting from the multiplica-
tive channel and the additive white Gaussian noise, can be distinguished well.
This can be seen, when comparing Fig. 3.8 for large noise with Fig. 3.9 show-
ing the PDFs for transmit alphabets with energy normalization and without
energy normalization for a transmission over the Rayleigh block fading chan-
nel with low noise, σn = 0.2. All other observations made with respect to the
subspace based transmission for the comparison of the PDFs for a transmis-
sion over a Rayleigh block fading channel with energy normalized subspaces
and with subspaces without energy normalization within Fig. 3.8 can be also
made for Fig. 3.9.

3.6.2 Rayleigh Frequency Selective Fading Channel

In the following, we also show the connection between the multivariate PDF
and the matrix variate PDF for a Rayleigh frequency selective fading chan-
nel, i.e. the connection between the subspaces and the vectors is also worked
out. As shown within Sec. 3.4.2, we derived a detection rule for OFDM mul-
titone FSK, or in terms of subspace terminology, for subspaces with the same
dimension for a transmission over a Rayleigh frequency selective fading chan-
nel. An ML detection rule for a Rayleigh frequency selective fading channel
for OFDM-N/MFSK, based on the vector-valued transmission model, has not
been derived in [44]. Therefore, we derive it in the following and afterwards,
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3.6 From Subspaces Back to Vectors

the comparison between subspaces and vectors can be done.

Multivariate PDF

In [44] the detection rule, i.e. the squared scalar product, for an AWGN
channel and a Rayleigh block fading channel has already been derived. For
OFDM-1/MFSK, it is also valid for Rayleigh frequency selective fading chan-
nels, since only one subcarrier is active, and therefore the effect of Rayleigh
block fading and Rayleigh frequency selective fading is the same. However,
for OFDM multitone FSK and OFDM-COM-N/MFSK, it is no longer valid.
In the case of a Rayleigh frequency selective fading channel, the fading coef-
ficients hkk, k = 1, . . . ,M , are complex Gaussian distributed with zero mean
(µh = 0) and unit variance (σ2

h = 1) on the main diagonal of the channel ma-
trix H. Since they are completely uncorrelated, the correlation matrix of the
channel Λh = σhI. Inserted into the covariance matrix in Eq. (2.12), shown
in Sec. 2.3.1, this results in

Λ = diag(x)Idiag(xH) + σ2
nI, (3.31)

where diag(x) and diag(xH), are the transformed transmit vectors x and its
transposed. Rewriting Eq. (3.31) leads to

Λ = diag(x)Idiag(xH) + σ2
nI

= XXH + σ2
nI.

Λ can now be inverted with the Sherman-Morrison-Woodbury formula [12]

Λ−1 =
1

σ2
n

I− 1

σ2
n

IX

(
I + XH 1

σ2
n

IX

)−1

XH 1

σn
2
I

=
1

σ2
n

I− 1

σ4
n

X

(
I +

1

σ2
n

XHX

)−1

XH

=
1

σ2
n

I− 1

σ4
n

CXXH . (3.32)

The matrix C contains the constants 1
1+ 1

σ2n
x∗
kkxkk

of the corresponding k-th

subcarrier on its main diagonal. It is identical to the matrix C derived within
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Sec. 3.4.2. For OFDM multitone FSK, the matrix C can be reduced to a
constant c = 1

1+ 1
σ2n
x∗
kkxkk

, xkk 6= 0, which is the same for all vectors xk of the

transmit vector alphabet, since it only affects the active subcarrier frequencies.

The determinant of the covariance matrix Λ for OFDM-N/MFSK becomes

det Λ = det
(
diag(x) I diag(xH) + σ2

nI
)

= det
(
X I XH + σ2

nI
)

=
(
xkkx

∗
kk + σ2

n

)N (
σ2
n

)M−N
. (3.33)

Inserting Eq. (3.32) and Eq. (3.33) in Eq. (2.12), Sec. 2.3.1, results in

p(y|x) =
1

πN det Λ
exp

(
−yHΛ−1y

)
=

1

πN (xkkx∗kk + σ2
n)
N

(σ2
n)
M−N

exp

−yH
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σ4
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1
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x∗kkxkk
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=c
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y

 ,

=
1

πN (xkkx∗kk + σ2
n)
N

(σ2
n)
M−N exp

(
− 1

σ2
n

yHy +
1

σ4
n

cyH X XH y

)
.

(3.34)

For transmit vectors with equal energy, we obtain the ML detection rule for
OFDM multitone FSK, i.e. OFDM-N/MFSK, 1 ≤ N < M for a Rayleigh
frequency selective fading channel

x̂ = argmax
xk∈{x1,··· ,xK}

yHdiag(x)diag(xH)y

= argmax
xk∈{x1,··· ,xK}

‖yHX‖2F , (3.35)

is based on the squared Frobenius norm. This directly corresponds to the
result obtained in Eq. (3.27), which has been derived for a transmission based
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on subspaces of the same dimension.

As already discussed for the combination of subspaces of different dimen-
sions in Sec. 3.4.2, it is not possible to simplify the PDF for the combined
alphabet. For the multivariate PDF it is the same, since for a combination
of different FSK vectors, the constants within the matrix C are dependent on
the number of active tones per FSK vector. Therefore [C]kk are not constant
and cannot be neglected. The same reason holds for det Λ.

Comparison of the PDFs

The PDF for the vector-valued transmission over a frequency selective fading
channel, was derived in (3.34) and for the transmission with a fixed number N
out of M subcarriers, i.e. without a combined transmit vector alphabet, it can
be further simplified to the squared Frobenius norm as shown in Eq. (3.35).
The matrix-valued PDF, Eq. (3.26), is

p(Y|X) =
1

(π)
MM

2

(
1
M + σ2

n

)M
(xkkx∗kk + σ2

n)
N

(σ2
n)
M−N

exp

{
−tr

[
YH

(
1

1
M + σ2

n

)
Y

(
1

σ2
n

I−CXXH

)]}
.

From both PDFs, the multivariate PDF as well as the matrix variate PDF, it
can be observed, that in case of OFDM-COM-N/MFSK, there is no possibility
for further simplification of the PDFs, since the factors within the matrix C
and the determinants are dependent on the single elements xk (for the vector-
valued transmission) or xkk in case of the subspace based transmission. xk and
xkk differ because of the different active frequency positions or the different
dimensions of the subspaces, respectively. Furthermore, there is no possibility
for achieving a constant determinant for the purpose of neglecting it.

However, in the case of a pure multitone FSK alphabet, that is for a con-
stant number N of active subcarriers, or, when regarding the matrix-valued
transmission, for a transmission with subspaces of the same dimension N , the
determinants become constant and the matrix C contains a constant factor
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c = 1
1+ 1

σ2n
x∗
kkxkk

on the active frequency positions on its main diagonal and

can therefore be reduced to the constant factor c, c.f. Sec. (3.4.2), as well as
the underlying section. This results in the squared Frobenius norm.
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Figure 3.10: Comparison of the PDFs of the combined OFDM-1/2FSK ∪ OFDM-
2/2FSK alphabet with energy normalization and without energy nor-
malization for transmission over the Rayleigh frequency selective fading
channel, σn = 0.5

Fig. 3.10 and Fig. 3.11 show the bivariate PDF, evaluated for the vectors
x1 and x2, defined in Sec. 3.6.1, for transmission over the frequency selective
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fading channel for σn = 0.5 and σn = 0.2. We do again the comparison for
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Figure 3.11: Comparison of the PDFs of the combined OFDM-1/2FSK ∪ OFDM-
2/2FSK alphabet with energy normalization and without energy nor-
malization for transmission over the Rayleigh frequency selective fading
channel, σn = 0.2

using the vectors or subspaces with energy normalization and without energy
normalization. It is stressed again, that two different PDFs are plotted within
one of the subfigures to do a direct comparison of the PDFs for 1-dimensional
subspaces and the 2-dimensional space itself. Again, a view from the side
as well as the top view are presented to see the differences for the PDFs
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with respect to the subspaces of different dimensions as well as with respect
to energy normalization or no energy normalization for the transmit alphabet.

One important observation can be made: It becomes obvious, that the
vector-valued transmission with combined OFDM-N/MFSK can be regarded
as a noncoherent transmission based on subspaces. In this case x1 is regarded
as a line and x2 as a plane, whose basis vectors are rotated independently by
different fading coefficients. Therefore, the PDF for the line is shaped like a
comb over a line, whereas the PDF for the plane is a cone in the plane. It
becomes also obvious, that the line lies within the plane, since the comb is
within the cone.

Another point is, that no energy normalization (c.f. Fig. 3.10b, Fig. 3.10d,
Fig. 3.11b and Fig. 3.9d leads to a lower height of the PDF for the plane and
the diameter of the base area of the cone increases compared to the energy
normalized alphabet (c.f. Fig. 3.10a, Fig. 3.10c, Fig. 3.11a and Fig. 3.11c).

It becomes obvious, that it is impossible to derive a detection rule in case
of the combined alphabet, since the subspaces of different dimensions cannot
be distinguished.

3.7 Chapter Summary

The key idea of this thesis is the increase in bandwidth efficiency of OFDM-
MFSK. The starting point established the connection between the subspace
based noncoherent transmission schemes for MIMO channels, and OFDM-
MFSK and its multitone variant. We derived the connection between both
transmission schemes and we have shown, that OFDM-MFSK is s special case
of a noncoherent transmission based on subspaces as proposed by Hochwald
and Marzetta, Zheng and Tse, and Utkovski in [19], [47] and [41].

We presented the possibility of how to combine subspaces of different di-
mensions of OFDM-MFSK and its multitone variant. This combination of
subspaces of different dimensions is the key step to increase the bandwidth
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efficiency of OFDM-MFSK and its multitone variant significantly. For an
increasing FSK block size, the upper bound of the bandwidth efficiency ap-

proaches 1 bit/s
Hz . Compared to pure OFDM-1/MFSK, which has an upper

bound for the bandwidth efficiency of 0.5 bit/s
Hz for OFDM-1/2FSK and OFDM-

1/4FSK, OFDM-COM-N/4FSK has an upper bound of 0.75 bit/s
Hz , which is an

increase of 50 %.

First of all, we studied how to combine subspaces of different dimensions
to utilize the total available mathematical space in a better way. We have
seen, that the combination of subspaces never leads to orthogonal subspaces.
In contrary, for unitary space-time modulation unitary transmit matrices are
used. However, attention has to be paid to the combination of subspaces of
different dimensions, since the bandwidth efficiency of OFDM-MFSK can be
increased in a very effective way. The complexity of the system is less com-
pared to the multitone FSK approach, proposed in [25]. We have seen for
different FSK modulation schemes, that for our new proposed method COM-

N/4FSK a bandwidth efficiency of 0.75 bit/s
Hz is obtained. For 4/8FSK the same

bandwidth efficiency is obtained, but with the cost of requiring 70 subspaces.
For our combined alphabet COM-N/4FSK, we only need eight subspaces to
obtain this bandwidth efficiency.

To be able to detect the subspaces, we studied the matrix variate prob-
ability density function for complex-valued matrices. We have derived the
matrix variate PDF in its most general form and we have taken it as a start-
ing point to derive the conditional matrix variate PDF for the Rayleigh block
fading channel, the AWGN channel and the Rayleigh frequency selective fad-
ing channel. For the Rayleigh block fading channel, we have shown, that
the conditional PDF could be simplified to the squared scalar product for
N/MFSK and COM-N/MFSK, if energy normalized subspaces are assumed.
This has shown directly the connection between the subspaces and the FSK
vectors. For the Rayleigh frequency selective fading channel, the conditional
PDF could be simplified for the case, if subspaces of the same dimension are
used, i.e. OFDM multitone FSK. In this case, the ML detection rule turned
out to be the squared Frobenius norm. In the case of COM-N/MFSK, a sim-
plification of the conditional PDF for the Rayleigh frequency selective fading
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channel is not possible.

We analyzed the distance criterion, which turned out to be the principal
angle between any pair of subspaces. We concluded, that it is only useful
to combine the subspaces up to the dimension of M

2 . There are several rea-
sons for this bound: First of all, the null space, i.e. the all zero matrix, can
never be used, since it is included within all subspaces and the space itself.
In a consequence, it is never possible to gain another full bit, when going
beyond M

2 . We have shown for COM-N/4FSK/15, where all possible combi-
nations of subspaces of the M = 4-dimensional space and the 4-dimensional
space itself, except the null space, have been used, that the bandwidth effi-

ciency of 0.9767 bit/s
Hz almost reaches the upper bound of 1 bit/s

Hz . Since the null
space cannot be used for transmission, we omitted it by applying perfect bit
stuffing, i.e. we made sure, that four consecutive zeros will never be transmit-
ted. Applying a normal bit stuffing algorithm is not possible, since the worse
channel conditions in a Rayleigh block or Rayleigh frequency selective fading
environment, lead to the consequence, that bit errors are likely and there-
fore the bit stuffed positions cannot be recovered completely. A transmission
with a reasonable BER performance is therefore impossible. Additional rea-
sons for omitting subspaces with a dimension greater than M

2 are, that these
subspaces are technically the “bit flipped” versions of the subspaces of lower
dimensions. Therefore, more frequency positions are active and the subspaces
are more prone to errors, when transmitting over the assumed Rayleigh block
fading and Rayleigh frequency selective fading channels.

We have characterized the connection between the subspaces and the vec-
tors by analyzing the different PDFs and showing, that in our special case
they can be transformed into each other. Illustrating examples for the multi-
variate PDF for a COM-N/2FSK alphabet have been given and discussed.

If the resulting PDFs for the Rayleigh block fading channel and for the
Rayleigh frequency selective fading channel are compared, the Rayleigh block
fading channel leads to two non-orthogonal combs in case of the combined
alphabet, crossing in the origin. If the alphabet is with energy normalization,
the combs have the same height and the PDF could be further simplified to
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the squared scalar product, which is ML, for the vector-valued as well as for
the subspace based transmission. For the Rayleigh frequency selective fading
channel, the PDFs show, that the subspaces of different dimensions are scaled
by the different fading coefficients and rotated within the underlying subspace.

Finally, we want to stress the huge potential of combining subspaces of
different dimensions in case of OFDM-MFSK. The increase in bandwidth ef-
ficiency is significant and can be achieved without a substantial increase in
complexity. We have also shown the connection between the subspaces and the
vectors and therefore all results can be directly used with the vector-valued
transmission model. The combination of OFDM-MFSK and its multitone
variant is one of the main ideas in this work. The key idea has been dis-
cussed in Sec. 3.1, where the connection between OFDM-MFSK and a trans-
mission based on subspaces has been derived. The combination of different
OFDM-N/MFSK alphabets, or in other words the combination of subspaces
of different dimensions and therefore the resulting increase in bandwidth effi-
ciency, makes OFDM-COM-N/MFSK a very attractive transmission scheme
for a transmission over fast fading time-variant channels.
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Chapter 4
Simulation Results

In the following, simulation results for a transmission over the AWGN channel,
the Rayleigh block fading channel and the Rayleigh frequency selective fading
channel are discussed. The increase in terms of

• bandwidth efficiency

• power efficiency

is visualized for the bit error rate (BER) over Eb
N0

for an uncoded transmission
as well as for a bit-interleaved coded transmission with an iterative receiver,
c.f. Sec. 2.3.2.
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4 Simulation Results

Table 4.1: Bandwidth efficiency for different N/MFSK and COM-N/MFSK modu-
lation schemes.

Modulation Bits per Number of Number of Bandwidth

scheme FSK block FSK blocks subcarriers efficiency
[
bit/s
Hz

]
1/4FSK 2 105 420 0.5

3/8FSK 5 42 336 0.625

COM-N/4FSK 3 70 280 0.75

4/8FSK 6 35 280 0.75

7/16FSK 13 16 256 0.8125

COM-N/8FSK 7 30 240 0.875

COM-N/16FSK 15 14 224 0.9375

COM-N/4FSK/15 3.9069 52 208 0.9767

As reference plots we use 1/4FSK and different multitone FSK alphabets.
The modulation alphabets of interest are listed in Tab. 4.1. The setup is done
in a way, that the data rate is fixed and a total amount of 210 information
bits for 1/4FSK, 3/8FSK, COM-N/4FSK, 4/8FSK, COM-N/8FSK and COM-
N/16FSK is transmitted. For 7/16FSK and COM-N/4FSK/15 (introduced in
Sec. 3.3) 208 information bits are transmitted in total. We see, that pure
OFDM-1/MFSK needs 50 % more subcarriers to transmit the same amount
of bits as our proposed COM-N/4FSK alphabet. The simulations were carried
out without guard bands and/or guard intervals and therefore we compare the
upper bound for the bandwidth efficiency. For each transmission scheme 200
OFDM blocks are used. All alphabets are energy normalized, i.e. the sum
energy within one FSK block of size M is one. This means, that with an
increasing number of active frequencies, i.e. an increasing dimension of the
subspaces, the energy per active subcarrier decreases.
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4.1 Uncoded Transmission

4.1 Uncoded Transmission

Fig. 4.1 shows the bit error rate (BER) over Eb
N0

for an uncoded transmis-
sion over an AWGN channel for OFDM-1/4FSK, as proposed in [45] and [44],
and for OFDM-3/8FSK, OFDM-4/8FSK and OFDM-7/16FSK, as proposed
by [25]. OFDM-1/4FSK shows the best performance. However, it has the

worst bandwidth efficiency of 0.5 bit/s
Hz , c.f. Tab. 3.1. In the high noise region,
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Figure 4.1: Performance comparison (BER vs. Eb
N0

) of uncoded OFDM-1/4FSK,
OFDM-3/8FSK, OFDM-4/8FSK and OFDM-7/16FSK with noncoher-
ent detection and transmission over the AWGN channel, no cyclic prefix,
no guard bands.

we observe, that the alphabets with a smaller FSK block size perform bet-
ter. At Eb

N0
= 7 dB, 4/8FSK and 7/16FSK intersect and 7/16FSK starts to

approach 3/8FSK. For the low noise region, the minimum distance, i.e. the
principal angle, plays an important role, since the alphabets with a higher
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minimum angle, start to perform better. It turns out, that 7/16FSK has a
good bandwidth efficiency as well as a good power efficiency but with the cost
of an increased complexity, since 8192 subspaces are needed to transmit 13

bits per FSK block and to approach a bandwidth efficiency of 0.8125 bit/s
Hz .
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Figure 4.2: Performance comparison (BER vs. Eb
N0

) of uncoded OFDM-1/4FSK,
OFDM-COM-N/4FSK, OFDM-COM-N/8FSK, OFDM-COM-N/16FSK
and OFDM-COM-N/4FSK/15 with noncoherent detection and transmis-
sion over the AWGN channel, no cyclic prefix, no guard bands.

Fig. 4.2 shows the performance of 1/4FSK, COM-N/4FSK, COM-N/8FSK,
COM-N/16FSK and COM-N/4FSK/15 for an uncoded transmission over the
AWGN channel. The detection rule used for all transmission schemes is the
squared scalar product.

1/4FSK shows again the best performance having a worse bandwidth ef-
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4.1 Uncoded Transmission

ficiency. For the combined alphabets up to a dimension of M
2 , we observe

the same behaviour as for the multitone alphabets. For the low noise region,
the principal angle is the determining factor. The alphabets with a larger
minimum principal angle start to perform better compared to the ones with
a lower minimum principal angle. They gain in power efficiency.

For COM-N/4FSK/15 all subspaces without the null subspace are used.
Therefore the minimum distance, i.e. the principal angle, plays a role from
the beginning and it performs worse compared to COM-N/8FSK. At 7 dB, it
intersects with COM-N/16FSK. With respect to the minimum distance, we
benefit from the point, that for the combined alphabets up to the dimension
M
2 , the subspaces of higher dimension are not used completely.

For COM-N/MFSK, we see, that the BER is shifted to the right for the
higher ordered modulation scheme, i.e. the bandwidth efficiency is increased
on the cost of the power efficiency. This effect is contrary to pure MFSK,
where the BER performance increases for higher order modulation alphabets.
The effect obtained for COM-N/MFSK is similar as for other modulation
schemes like PSK or QAM, [31] and [24].

OFDM-4/8FSK and OFDM-COM-N/4FSK have the same bandwidth effi-

ciency of 0.75 bit/s
Hz . If OFDM-4/8FSK in Fig. 4.1 and OFDM-COM-N/4FSK

in Fig. 4.2 are compared, we can conclude, that in the region of 10−1, the com-
bined alphabet has significant less complexity and shows a better power effi-
ciency. Note, that the sum energy is twice compared to 4/8FSK, since the FSK
block size is M = 4. 7/16FSK and COM-N/8FSK have bandwidth efficiencies

of 0.8125 bit/s
Hz and 0.875 bit/s

Hz . However, for COM-N/8FSK the complexity of
the system is low compared to 7/16FSK. For COM-N/8FSK, only 128 vec-
tors/subspaces are needed, whereas for 7/16FSK 8196 vectors/subspaces are
used to obtain a bandwidth efficiency, which is less than the one for COM-
N/8FSK.

Fig. 4.3 and Fig. 4.4 show the simulation results for a transmission over the
Rayleigh block fading channel, as introduced in Sec. 2.2. The detection rule
used for all transmission schemes is the squared scalar product. Note, that in
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Figure 4.3: Performance comparison (BER vs. Eb
N0

) of uncoded OFDM-1/4FSK,
OFDM-3/8FSK, OFDM-4/8FSK and OFDM-7/16FSK with noncoher-
ent detection and transmission over the Rayleigh block fading channel,
no cyclic prefix, no guard bands.

case of an FSK block size of M = 4, the fading coefficient is constant over 4
subcarriers, before it changes to a new independent realization. For a block
size of M = 8, it is constant over 8 subcarriers, i.e. with an increasing FSK
block size and therefore for higher order modulation schemes, the channel has
to be constant for a larger number of subcarriers. The other possibility would
be, to assume the channel to be constant over M = 16 subcarriers. Anyhow,
this assumption is neglectable, since the decisions are made FSK block wise.

Additionally to Fig. 4.3 and Fig. 4.4, Table 4.2 shows the loss in Eb
N0

in dB
for the different modulation schemes. The loss in power efficiency for all mul-
titone FSK alphabets and for all combined FSK alphabets compared to pure

80



4.1 Uncoded Transmission

0 5 10 15 20 25 30 35 40 45
10−5

10−4

10−3

10−2

10−1

100

E
b
/N

0
 [dB]

B
E

R

 

 
1/4FSK
COM−N/4FSK
COM−N/8FSK
COM−N/4/15
COM−N/16FSK

Figure 4.4: Performance comparison (BER vs. Eb
N0

) of uncoded OFDM-1/4FSK,
OFDM-COM-N/4FSK, OFDM-COM-N/8FSK, OFDM-COM-N/16FSK
and OFDM-COM-N/4FSK/15 with noncoherent detection and transmis-
sion over the Rayleigh block fading channel, no cyclic prefix, no guard
bands.

1/4FSK is less, compared to the results obtained for the transmission over
the AWGN channel. OFDM-COM-N/4FSK shows roughly the same perfor-
mance compared to pure OFDM-1/4FSK. The difference between both curves
is neglectable, in contrast to the gain in bandwidth efficiency of 50% for the
combined alphabet. The loss between COM-N/4FSK and COM-N/8FSK is
around 1 dB. For COM-N/8FSK seven bits are transmitted within one FSK
block of size M = 8 performs better compared to 4/8FSK, where six bits are
transmitted for the same FSK block size. COM-N/4FSK/15 plays a special
role. It performs a bit worse, than COM-N/8FSK, but still better than COM-
N/16FSK. The loss in power efficiency is due to the reason, that all subspaces
except the null space are used for the transmission and the situation, that
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4 Simulation Results

Table 4.2: Loss in Eb
N0

for different N/MFSK and COM-N/MFSK modulation
schemes.

Modulation Loss
scheme [dB]

1/4FSK - COM-N/4FSK ∼ 0.4

COM-N/4FSK - 3/8FSK ∼ 0.1

3/8FSK - COM-N/8FSK ∼ 0.6

COM-N/8FSK - 4/8FSK ∼ 0.4

4/8FSK - 7/16FSK ∼ 0.5

7/16FSK - COM-N/4FSK/15 ∼ 0.3

COM-N/4FSK/15 - COM-N/16FSK ∼ 0.7

three or four subcarriers within a subspace can be used for transmission. As
a consequence, these blocks are more sensitive towards the fading from the
channel, compared to COM-N/8FSK, where the FSK block consists of eight
subcarriers and at most four out of eight subcarriers are active.

The performance in terms of BER vs. Eb
N0

[dB] for a transmission over a
Rayleigh frequency selective fading channel, as proposed in Sec. 2.2, can be
seen in Fig. 4.5 for N/MFSK and in Fig. 4.6 for COM-N/MFSK. Pure 1/4FSK
is again used as a reference plot. For the Rayleigh frequency selective fading
channel, each subcarrier is affected by a different independent fading coeffi-
cient. For 1/4FSK, either the squared scalar product or the squared Frobenius
norm can be used for detection. For N/MFSK, the squared Frobenius norm
is used for detection, whereas for the combined alphabets, the multivariate or
the matrix variate PDF are used for detection. Both PDFs presume knowl-
edge of the noise variance σ2

n and the channel covariance matrix Λh in the
receiver. The simulations have been carried out with perfect knowledge of σ2

n

and Λh.

For COM-N/16FSK, 32768 subspaces are obtained. The ML detection us-
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Figure 4.5: Performance comparison (BER vs. Eb
N0

) of uncoded OFDM-1/4FSK,
OFDM-3/8FSK, OFDM-4/8FSK and OFDM-7/16FSK with noncoher-
ent detection and transmission over the Rayleigh frequency selective fad-
ing channel, no cyclic prefix, no guard bands.

ing the PDF has a high complexity, since all 32768 possibilities have to be
compared. Therefore, only COM-N/4FSK and COM-N/8FSK are used.

A higher ordered modulation alphabet leads in both cases, N/MFSK as
well as COM-N/MFSK, to a shift to the right of the curves. Pure 1/4FSK
still shows the best performance, having a worse bandwidth efficiency. COM-
N/4FSK is located in between 3/8FSK and 4/8FSK, whereas COM-N/8FSK
performs worse compared to 7/16FSK.

The effect of the frequency selective fading is, that each subcarrier is faded
out independently from its neighbors, i.e. each basis vector of a subspace is
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Figure 4.6: Performance comparison (BER vs. Eb
N0

) of uncoded OFDM-1/4FSK,
OFDM-COM-N/4FSK and OFDM-COM-N/8FSK with noncoherent de-
tection and a transmission over the Rayleigh frequency selective fading
channel, no cyclic prefix, no guard bands.

scaled differently. This leads to a decreased performance in terms of BER over
Eb
N0

for N/MFSK as well as COM-N/MFSK. However, we have shown, that
even for these scenarios, it is possible to increase the bandwidth efficiency.
If OFDM multitone FSK is used, the PDF can be simplified to the squared
Frobenius norm and an ML detection rule is obtained.

4.2 BICM and Iterative Detection

The performance of coded OFDM-N/MFSK and coded OFDM-COM-N/MFSK
is compared in the following. An iterative receiver, c.f. Sec. 2.3.2, is used and
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4.2 BICM and Iterative Detection

we optimize our mapping according to the optimization algorithm presented
in [46], to achieve the maximum extrinsic information of the demapper, by ap-
plying a vector swapping algorithm, in conjunction with the cost function pro-
vided in [35]. For channel coding a convolutional code with code rate rc = 1

2 ,
memory length 6 and generator polynomial

[
133 171

]
8

is used. Since we are
interested in worse channel scenarios, the simulations were carried out for a
transmission over the Rayleigh block fading channel. Neither guard bands nor
a cyclic prefix were used.
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Figure 4.7: Performance comparison (BER vs. Eb
N0

) of coded OFDM-COM-N/4FSK
with noncoherent detection and transmission over the Rayleigh block
fading channel for different iteration steps. Simulation parameters: no
cyclic prefix, no guard bands, rc = 1

2
, memory 6 convolutional code with

generator polynomial [133 171]8.

Fig. 4.7 shows the BER over Eb
N0

for coded OFDM-COM-N/4FSK. An it-
erative receiver with five iteration steps is used. No iteration corresponds to
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soft decoding of the convolutional code with the BCJR, i.e. serial demapping
and decoding. With an increasing number of iterations, a remarkable gain
in power efficiency for iterative demapping and decoding is obtained. With
decreasing noise power, less gain is achieved for a single iteration step. For the
following simulations five iteration steps are used for having optimal results
in the region of higher noise power.
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Figure 4.8: Performance comparison (BER vs. Eb
N0

) of coded OFDM-1/4FSK,
OFDM-3/8FSK and OFDM-4/8FSK with noncoherent detection and a
transmission over the Rayleigh block fading channel for different iteration
steps. Simulation parameters: no cyclic prefix, no guard bands, rc = 1

2
,

memory 6 convolutional code with generator polynomial [133 171]8.

Fig. 4.8 shows the performance of 1/4FSK, used again as reference plot,
versus 3/8FSK and 4/8FSK and Fig. 4.9 shows the BER over Eb

N0
for COM-

N/4FSK and COM-N/8FSK. The system setup, presented in Table 4.1 is
used and for coding a rate rc = 1

2 with memory 6 and generator polynomial
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4.2 BICM and Iterative Detection

[
133 171

]
8

is applied. Therefore the same data rate for all BER curves is
obtained.

In Fig. 4.8, we observe, that for serial demapping and decoding, i.e. no itera-
tion steps, 1/4FSK performs best. This is due to the fact, that the subspaces
are orthogonal to each other and that the optimization algorithm is made
for iterative detection. After five iteration steps, both 3/8FSK and 4/8FSK,
perform better compared to 1/4FSK. In the region of large noise, 3/8FSK per-
forms better than 4/8FSK. This is due to the fact, that in the uncoded case
for the Rayleigh block fading channel, see Fig. 4.3, 3/8FSK is better in the
region of a bit error probability of Pb = 10−1 up to Pb = 10−2. In this region,
coding starts to improve the resulting BER. We can conclude for multitone
FSK, that for large noise, subspaces of lower dimensions are beneficial. At
around 7 dB, 3/8FSK and 4/8FSK intersect. 4/8FSK is better than 3/8FSK.

For COM-N/4FSK and COM-N/8FSK in Fig. 4.9, a similar result is ob-
tained as for OFDM multitone FSK. However, for no iteration steps COM-
N/8FSK is slightly better than COM-N/4FSK. After five iteration steps, this
result is still obtained with a remarkable gain in power efficiency for both com-
bined alphabets compared to 1/4FSK. For a bit error probability of Pb = 10−6

for 1/4FSK Eb
N0

is approximately 12 dB, whereas for COM-N/4FSK 1.5 dB less
are needed to achieve the same BER and for COM-N/8FSK a gain of approx-
imately 5 dB compared to pure 1/4FSK is obtained.

Besides the increased power efficiency for five iteration steps for the com-
bined alphabets, the bandwidth efficiency is also larger compared to pure
OFDM-1/4FSK and the multitone FSK alphabets. For OFDM-COM-N/8FSK,
the waterfall region is at Eb

N0
= 6 dB.

It is stressed again, that for the combined alphabets of higher dimension,
i.e. for an increasing FSK block size M , two effects are obtained: The fading
coefficient is constant for a larger number of frequencies, i.e. the channel be-
comes more “flat”. And the bits are spread over more subcarriers. Since we
use a convolutional code with an interleaver, our coded bits are hugely spread
over the whole OFDM block. These facts lead to the gain for the combined
alphabets of higher dimension M .
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Figure 4.9: Performance comparison (BER vs. Eb
N0

) of coded OFDM-1/4FSK,
OFDM-COM-N/4FSK and OFDM-COM-N/8FSK with noncoherent de-
tection and a transmission over the Rayleigh block fading channel for dif-
ferent iteration steps. Simulation parameters: no cyclic prefix, no guard
bands, rc = 1

2
, memory 6 convolutional code with generator polynomial

[133 171]8.

4.3 Chapter Summary

Different simulation results for an uncoded transmission over the AWGN chan-
nel, the Rayleigh block fading channel and the Rayleigh frequency selective
fading channel have been discussed. We have observed an interesting effect for
COM-N/MFSK alphabets and for the multitone FSK alphabets for a trans-
mission over the AWGN channel. A higher dimension of the space, i.e. an
increasing FSK block size M , causes a shift of the BER curve to the right.
For COM-N/MFSK, this effect tends to be stronger, than for the multitone
FSK alphabets. This effect is well-known for modulation principles as QAM
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or PSK. It can also be observed for the Rayleigh frequency selective fading
channel.

However, for the uncoded transmission over the Rayleigh block fading chan-
nel, we have observed, that all results lie in the same region. OFDM-1/4FSK
shows the best performance, directly followed by our new proposed OFDM-
COM-N/4FSK. The difference in BER turned out to be neglectable, compared
to the gain in bandwidth efficiency of 50 % for COM-N/4FSK.

For the coded simulation results with BICM and an iterative receiver, the
main result obtained is, that the combined alphabets give a huge gain in power
efficiency compared to pure 1/4FSK, which has been used as reference plot.
To achieve this gain, an optimization algorithm for the mapping has been used.
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Chapter 5
Extended Mapping for
Transmission with Subspaces of
Different Dimensions

So far, we have seen, that the bandwidth efficiency of OFDM-MFSK can be
significantly increased by making use of our approach of combining sub-

spaces of different dimensions or for the case of the vector-valued transmission
by combining different FSK alphabets of the same FSK block size M . If not
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5 Extended Mapping for Transmission with Subspaces of Different Dimensions

mentioned otherwise, from now on we refer to vectors. Since channel coding
is a must in today’s transmission schemes, one could think about gaining an
extra bit for channel coding by making use of extended mapping, as proposed
by Clevron and Vary in [8] and by Henkel in [17]. This idea has been evaluated
within the master thesis of George Yammine and results have been already
published in [46].

In the following, the principles of extended mapping are briefly introduced.
This is followed by an extended mapping for OFDM-COM-N/4FSK, also
called symmetric extended mapping, and we will present the new idea of a
non-symmetric extended mapping for the combined FSK alphabet.

For performance comparison, we compare coded OFDM-COM-N/4FSK with
OFDM-1/4FSK with extended mapping for transmission over the Rayleigh
block fading channel. Finally, the simulation results of the two extended map-
ping schemes, symmetric and non-symmetric extended mapping, for OFDM-
COM-N/4FSK for transmission over the Rayleigh block fading channel are
discussed.

5.1 Principles of Extended Mapping

Extended mapping, see [8] and [17], offers the possibility of gaining additional
bits per FSK vector for coding. So far, the iterative demapper and decoder for
BICM-ID, c.f. 2.6, have been interpreted in the following way: the mapping
was an inner code with code rate rc = 1, since no redundancy was added for
the mapping, and the channel code was treated as an outer code. For 2m

N/MFSK vectors of the combined alphabet, which consisted of
∑M/2
N=1

(
M
N

)
vectors, m =

⌊
log2

[∑M/2
N=1

(
M
N

)]⌋
bits have been assigned. Therefore each

transmit vector was assigned an explicit bit mapping of length m.

Extended mapping is the process of assigning multiple bit labels to the
transmit vectors (in general constellation points). This presents the possibil-
ity to gain extra coded bits, with the cost of introducing ambiguity in the
mapping. This ambiguity can only be resolved with a turbo receiver, based
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5.1 Principles of Extended Mapping

on the receiver for BICM-ID. By doing so, the information exchange between
the demapper and decoder leads to the right decision over the ambiguous bit
mappings after a sufficient number of iterations.

Table 5.1: Extended mapping for OFDM-COM-N/4FSK. The black colored bits are
the same for each of the two combinations and the blue colored bits con-
tain the ambiguity.

Transmit vectors x1 x2 x3 x4 x5 x6 x7 x8

xk


0
0
0
1




0
0
1
0




0
1
0
1




1
0
1
0




0
1
0
0




1
0
0
1




0
1
1
0




1
0
0
0



Mapping


0
0
0
0




0
1
0
1




0
0
0
1




0
1
0
0




0
0
1
1




0
0
1
0




0
1
1
1




0
1
1
0




1
1
0
0




1
0
0
1




1
1
0
1




1
0
0
0




1
1
1
1




1
1
1
0




1
0
1
1




1
0
1
0


Table 5.1 provides an extended mapping for COM-N/4FSK. Multiple bit

labels are assigned to each FSK vector of length M = 4 and by doing so, one
extra coded bit is obtained. There exists ambiguity for each of the eight vec-
tors, since two possible bit combinations are assigned now to each of the eight
transmit vectors. To visualize the two combinations, the bits in Table 5.1 are
colored. The black colored bits are the same for each of the two combinations
and the blue colored bits contain the ambiguity. To analyze the behaviour
of the iterative system, we have discussed in [46] the EXIT charts [39] of the
system. For the mapping, a vector swapping algorithm, see [46] was used.

We have shown in Chapter 3.2, that for the combination of subspaces of
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5 Extended Mapping for Transmission with Subspaces of Different Dimensions

different dimensions, an alphabet is obtained, where not all of the included
subspaces are needed for transmission. If we go back to the vector-valued
transmission model, the alphabet of OFDM-COM-N/4FSK contains ten pos-
sible transmit vectors.

Table 5.2: Non-symmetric extended mapping for OFDM-COM-N/4FSK. The black
colored bits are the same for each of the two combinations and the blue
colored bits contain the ambiguity.

Transmit vectors x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

xk


0
0
0
1




0
0
1
0




0
1
0
0




1
0
0
0




1
1
0
0




0
0
1
1




1
0
1
0




0
1
0
1




1
0
0
1




0
1
1
0



Mapping


1
1
1
0




1
1
1
1




1
0
1
1




1
0
0
1




0
1
1
0




0
0
1
1




0
1
0
1




0
1
0
0




0
0
0
0




1
1
0
0




1
1
0
1




0
0
0
1




0
1
1
1




1
0
0
0




1
0
1
0




0
0
1
0



If extended mapping is applied for any combined alphabet, it is possible
to use all available vectors of the transmit vector alphabet. This results in
a lower ambiguity for the bit assignment in the mapping. With an increased
number of transmit vectors, single mappings can be assigned to a subset of
the transmit vectors, whereas double mappings are assigned to the rest of the
transmit vectors. This step leads to a reduced ambiguity for the mapping.
The iterative receiver benefits now of an increase of the available a-priori in-
formation, which itself leads to an increase of the extrinsic information due to
the decreased ambiguity of the multiple mappings.

The decision, which has to be made now, is to find the vectors, used for
single bit mappings, and the ones for double bit mappings. We propose a
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5.2 Simulation Results

similar non-symmetric extended mapping as proposed by Clevron and Vary
in [8]. The vectors with the largest separating angles are chosen for the double
mappings, i.e. the 1/MFSK vectors, since they enclose an angle of 90◦. Addi-
tional to these vectors, depending on the number of required vectors for double
bit mappings, pairwise orthogonal vectors from the next higher-dimensional
alphabet are chosen. The chosen transmit vectors are now optimized accord-
ing to the optimization algorithm in [46]. Table 5.2 shows a non-symmetric
extended mapping for OFDM-COM-N/4FSK. The blue colored bits highlight
the ambiguous bits.

5.2 Simulation Results

Fig. 5.1 shows the performance comparison for the BER over Eb
N0

for a coded
transmission over the Rayleigh block fading channel for OFDM-1/4FSK, OFDM-
1/4FSK with extended mapping and for OFDM-COM-N/4FSK without ex-
tended mapping. Guard intervals as well as guard bands are set to zero and
the number of iteration steps for the iterative receiver was set to five. The
transmit vectors are energy normalized. For OFDM-1/4FSK a rc = 1

2 , mem-
ory 6 convolutional code with generator polynomial [133 171]8 has been used.
For the other two schemes, we found out in [46], that a rc = 1

3 , memory 6
convolutional code with generator polynomial [133 165 171]8 and a rc = 1

3 ,
memory 3 convolutional code with generator polynomial [13 15 17]8 are op-
timum. The code rates have been chosen in a way, that the data rate for
all three systems is the same: 1 information bit per FSK vector. We can
observe, that OFDM-COM-N/4FSK shows an earlier convergence point com-
pared to OFDM-1/4FSK with extended mapping. A gain of approximately
2 dB is obtained. At Eb

N0
≈ 9 dB, OFDM-1/4FSK with extended mapping

starts to perform better than OFDM-1/4FSK. Important is the fact, that our
proposed combined alphabet shows a huge gain in power efficiency, compared
to OFDM-1/4FSK with extended mapping. Additionally, our combined al-
phabet can be realized in an effective way, compared to setting up a scheme,
using extended mapping.

Fig. 5.2 shows the simulation results for OFDM-COM-N/4FSK with sym-
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Figure 5.1: Performance comparison (BER vs. Eb
N0

) of a coded transmission over the
Rayleigh block fading channel for OFDM-1/4FSK, OFDM-1/4FSK with
extended mapping and OFDM-COM-N/4FSK.

metric extended mapping and OFDM-COM-N/4FSK with our new proposed
non-symmetric extended mapping with a rc = 1

2 , memory 2 convolutional code
with generator polynomial [5 7]8 for a transmission over a Rayleigh block fad-
ing channel. Uncoded OFDM-1/4FSK is used as reference plot and all three
simulation results have the same information data rate. We observe, that us-
ing non-symmetric extended mapping leads to an improved power efficiency
compared to OFDM-COM-N/4FSK with symmetric extended mapping. The
gain obtained is approximately 1 dB. Note, that the LLR values are calculated
bit-wise and therefore we have already taken into account the different symbol
probabilities for the case of the non-symmetric extended mapping.
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Figure 5.2: Performance comparison (BER vs. Eb
N0

) of uncoded OFDM-1/4FSK,
OFDM-COM-N/4FSK with symmetric extended mapping and OFDM-
COM-N/4FSK with non-symmetric extended mapping for a transmission
over the Rayleigh block fading channel.

5.3 Chapter Summary

In this chapter, we

• used symmetric extended mapping for our combined alphabet,

• introduced non-symmetric extended mapping for COM-N/MFSK,

• and analyzed the performance of our proposed combined FSK alphabet
without extended mapping versus pure OFDM-MFSK using extended
mapping.

OFDM-COM-N/4FSK has shown a huge gain (≈ 2 dB) versus OFDM-1/4FSK
with extended mapping. Both transmission schemes had the same end to end
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5 Extended Mapping for Transmission with Subspaces of Different Dimensions

data rate. This shows again the low complexity of our approach to increase
the bandwidth of OFDM-MFSK significantly.

We have shown that there is a gain of ≈ 1 dB when the non-symmetric
extended mapping is used for COM-N/4FSK, compared to the simulation
result for COM-N/4FSK with extended mapping.
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Chapter 6
Summary and Conclusions

The starting point for this thesis was to consider noncoherent communi-
cation over fast fading channels, where OFDM-MFSK and its multitone

variant, proposed by Wetz et al. and Linduska et al. in [45], [44] and [25],
built our starting point and we tried to improve the bandwidth efficiency of
OFDM-MFSK. The three new main contributions are:

• It was shown, that OFDM-MFSK and its multitone variant are a special
case of noncoherent communication based on subspaces as proposed by
Hochwald and Marzetta in [19].

• A new transmission scheme with subspaces of different dimensions was
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6 Summary and Conclusions

proposed with an increase in bandwidth efficiency approaching the limit
of 1 bit

s Hz , without a noteworthy increase of the complexity of the system.
This new transmission scheme is named OFDM-COM-N/MFSK.

• The advantage of extended mapping together with non-symmetric ex-
tended mapping was shown for OFDM-COM-N/MFSK.

In Chapter 2, we presented the necessary fundamentals for understanding
this thesis. We introduced the vector-valued transmission model [24], [11] for
OFDM, followed by a brief description of the channel models of interest for
this thesis. We presented OFDM-MFSK and its multitone variant, the trans-
mission schemes our work is built on. Both are very robust in fast fading
time-variant environments and can be detected noncoherently. However their
bandwidth efficiency is low. We shortly addressed their noncoherent detection
and described a coded transmission model with an iterative receiver. A short
note on the capacity of multipath fading channels was given, since Telatar
et al. [38] and Medard et al. [26], have shown for frequency selective fading
channels, that for a large transmission bandwidth the channel capacity of the
infinite bandwidth AWGN channel can be approached with “peaky” input
signals. They proposed FSK and noncoherent detection to be a good basis.
Finally, the basic principles for understanding a subspace based transmission
were given.

In Chapter 3 we have characterized, that OFDM-MFSK is a special case
of a noncoherent communication based on subspaces in the context of MIMO
systems. The starting point built the vector-valued transmission model for
OFDM-MFSK and the matrix-valued transmission model for the subspace
based communication system. We have shown, that the FSK vectors of di-
mension M × 1 can be transformed into matrices, by writing the frequency
positions of an FSK vector on the main diagonal of an M ×M dimensional
matrix, where the off-diagonal elements have to be “artificial” zeros.

Being able to describe OFDM-MFSK as a noncoherent transmission based
on subspaces, we developed a possibility how to combine subspaces of different
dimensions. This was achieved by combining OFDM-MFSK and its multitone
variant and we named the new transmission scheme OFDM-COM-N/MFSK.

The combination of subspaces of different dimensions for OFDM-MFSK
and its multitone variant implicates an increase in bandwidth efficiency. This
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result is one of the main results of this thesis. We compare different MFSK,
multitone FSK and COM-N/MFSK modulation schemes with respect to their
bandwidth efficiencies and show, that with our proposed combined alphabets
the increase in bandwidth efficiency approaches 1 bit

s Hz . Noteworthy is the
circumstance, that the increase in bandwidth efficiency for COM-N/MFSK
can be realized in an effective way, since the complexity of the system does
not increase remarkably.

We also addressed the noncoherent detection of the subspaces for COM-
N/MFSK based on the matrix variate PDF and derived the conditional complex-
valued matrix variate PDF for the Rayleigh block fading channel and the
Rayleigh frequency selective fading channel. When possible, it was simpli-
fied to an ML detection rule. For the Rayleigh block fading channel, the
squared scalar product turned out to be ML for the combination of subspaces
of different dimensions. For the Rayleigh frequency selective fading channel
and subspaces of the same dimension, we have derived the squared Frobenius
norm for ML detection. This result is of interest, since it allows to increase the
bandwidth efficiency of OFDM-MFSK under worse channel conditions, since
for the Rayleigh frequency selective fading channel, each fading coefficient
changes independently.

We discussed the principal angle as distance measure and stated that only
subspaces up to the dimension M

2 should be combined.
Finally, we explained how to go back from subspaces to FSK vectors by

making a comparison of the conditional matrix variate PDF and the condi-
tional multi-variate PDF for the used channel models. Therefore, the results
derived for the subspace based transmission model have been transferred to
the vector-valued transmission model.

Detailed simulation results for uncoded transmission as well as coded trans-
mission over different channel models have been discussed within Chapter 4.
For transmission over the AWGN channel, we observed, that the combined
alphabet shows a similar behaviour as it is known for QAM or PSK, since
with an increasing FSK block size M , the resulting curve is shifted to the
right. This is contrary to pure OFDM-MFSK. For the Rayleigh block fading
channel, this behaviour relativizes, since OFDM-MFSK, its multitone variant
and the combined alphabets show similar results. The loss in Eb

N0
for COM-

N/4FSK compared to 1/4FSK is only ≈ 0.4 dB with an increased bandwidth
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6 Summary and Conclusions

efficiency of 50 %. We also presented simulation results for coded transmission
using an iterative receiver. Multitone FSK as well as COM-N/MFSK benefit
from the iterative demapper and decoder and show a huge gain compared to
OFDM-1/4FSK. With an increasing FSK block size the combined alphabets
have a larger gain in power efficiency after five iteration steps.

The third main contribution of this thesis was to investigate an extended
mapping scheme within Chapter 5. We proposed a symmetric extended map-
ping for our COM-N/4FSK alphabet and developed a non-symmetric extended
mapping scheme by making use of all available subspaces within the set of a
transmit alphabet. This results in reduced ambiguity for the bit labels, which
is also mirrored in the simulation results, where a gain of ≈ 1 dB for the
non-symmetric extended mapping is obtained compared to the symmetric ex-
tended mapping. We also compared 1/4FSK with extended mapping and
COM-N/4FSK without extended mapping, using the same code rate, such
that the data rate of both systems was the same. We have seen, that for the
Rayleigh block fading channel COM-N/4FSK shows a gain in power efficiency
of ≈ 2 dB compared to 1/4FSK with extended mapping. Since it is easier to
implement and realize COM-N/4FSK than 1/4FSK with extended mapping,
our proposed combined alphabet turns out to be effective with respect to the
increase in bandwidth efficiency and in power efficiency.

In this thesis, we characterized OFDM-MFSK and OFDM multitone FSK
as a special case of noncoherent subspace based transmissions. Based on this
subspace based transmission, we have shown as one of our key ideas, how sub-
spaces of different dimensions can be combined. An outstanding result of this
combination is the possibility to increase the bandwidth efficiency of OFDM-
MFSK significantly without a substantial increase in complexity. The upper
bound of 1 bit

s Hz for the bandwidth efficiency is approached. By making use
of extended mapping and non-symmetric extended mapping, we have gained
an additional bit for either increasing the data rate or the redundancy. We
propose OFDM-COM-N/MFSK being a very good candidate for the practical
application of frequency hopping. There is no need of channel state informa-
tion and it is very robust in fast fading environments.
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Appendix A
Unitary Space-Time Modulation:
Noncoherent ML receiver

The stepwise derivation of the maximum-likelihood detection rule for the
transmission of unitary subspace based matrices, as defined in [19], is

Φ̂l = argmax
Φl∈{Φ1,··· ,ΦL}

p (Y|Φl)
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A Unitary Space-Time Modulation: Noncoherent ML receiver

= argmax
Φl∈{Φ1,··· ,ΦL}

exp

(
−tr

{[
I + ρT

Mtx
ΦH
l Φl

]−1

YHY

})
πTNdetNrx

[
I + ρT

Mtx
ΦH
l Φl

] (A.1)

= argmax
Φl∈{Φ1,··· ,ΦL}

exp

(
−tr

{[
I− 1

1+
Mtx
ρT

ΦH
l Φl

]
YHY

})
πTN

(
1 + ρT

Mtx

)MtxNrx
. (A.2)

For solving from (A.1) to (A.2) the following matrix formulas have to be
applied [37]:

det(I + AB) = det(I + BA)

and the matrix inversion lemma

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1. (A.3)

Rewriting Eq. (A.2) leads to

Φ̂l = argmax
Φl∈{Φ1,··· ,ΦL}

exp

(
−tr

{
ITYHY

}
+ tr

{
1

1+
Mtx
ρT

ΦH
l ΦlY

HY

})
πTN

(
1 + ρT

Mtx

)MtxNrx

= argmax
Φl∈{Φ1,··· ,ΦL}

exp(−tr{ITYHY})exp

(
tr

{
1

1+
Mtx
ρT

ΦH
l ΦlY

HY

})
πTN

(
1 + ρT

Mtx

)MtxNrx

= argmax
Φl∈{Φ1,··· ,ΦL}

exp

(
tr

{
1

1 + Mtx

ρT

ΦH
l ΦlY

HY

})
. (A.4)

Based on the fact that a dependency on the transmitted matrix Φl is only
given in the second term of the exponential function, the maximum-likelihood
detection rule has been simplified to Eq. (A.4).

According to the definition of Hochwald and Marzetta in [19] the number
of time-slots T has to be greater than the number of transmit antennas Mtx,
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which leads to the following approximation of

1

1 + Mtx

ρT

=
1

ρT+Mtx

ρT

=
ρT

ρT +Mtx
≈︸︷︷︸

T>Mtx

1. (A.5)

Making use of this approximation yields

Φ̂l = argmax
Φl∈{Φ1,··· ,ΦL}

tr{ΦH
l ΦlY

HY}

= argmax
Φl∈{Φ1,··· ,ΦL}

tr{YΦH
l ΦlY

H}. (A.6)

Note, that the trace of a product of matrices is invariant with respect to cyclic
permutations of conformable matrices, [27].

The application of

‖A‖2F = tr
{
AHA

}
=

p∑
k=1

q∑
l=1

|akl|2, (A.7)

where ‖A‖2F is the squared Frobenius norm, is possible. For any matrix A
of dimension p × q, the squared Frobenius norm ‖A‖2F of A leads to the
same result as taking the trace of the hermitian of the matrix A times itself
(tr
{
AHA

}
), resulting in a quadratic matrix of dimension q × q.

Proof:

tr{AHA} = tr



∑p
k=1 a

H
1kak1 · · · ∑p

k=1 a
H
1kakq

...
. . .

...∑p
k=1 a

H
qkak1 · · · ∑p

k=1 a
H
qkakq




=

p∑
k=1

aH1kak1 + · · ·+
p∑
k=1

aHqkakq

=︸︷︷︸
aH1k=ak1,··· ,aHqk=akq

a2
11 + · · ·+ a2

1k + · · ·+ a2
qk + · · ·+ a2

qp
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=

p∑
k=1

q∑
l=1

|akl|2

= ‖A‖2F .

The ML detection becomes

Φ̂l = argmax
Φl∈{Φ1,··· ,ΦL}

‖YΦH
l ‖2F ,
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Appendix B
Detection of Subspaces

The matrix variate Θ distribution of a matrix Y is defined by Gupta and
Nagar in [14] and [15]

f(Y) =
1(

2Γ
(
1 + 1

Θ

))MM
det(A)M det(B)M

exp

−
M∑
i=1

M∑
j=1

∣∣∣∣∣
M∑
k=1

M∑
l=1

A−1
ik (Ykl − E [Ykl])B

−1
lj

∣∣∣∣∣
Θ
 .

(B.1)
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Y is the M ×M receive matrix and A and B are constant and nonsingular
M ×M matrices. The definitions for them will follow within this section. For
Θ = 2, the PDF in Eq. (B.1) is the matrix variate normal distribution and [15]
states for this case, that

Γ

(
1 +

1

2

)
=

1

2

√
π. (B.2)

The term within the exponential function could be rewritten

M∑
i=1

M∑
j=1

∣∣∣∣∣
M∑
k=1

M∑
l=1

A−1
ik (Ykl − E [Ykl])B

−1
lj

∣∣∣∣∣
2

= tr
((

A−1(Y − E [Y])B−1
) (

A−1(Y − E [Y])B−1
)H)

, (B.3)

due to the properties, that the inner double sum corresponds to a matrix
multiplication and the outer double sum corresponds to the squared Frobenius
norm. The definition of the squared Frobenius norm is

‖X‖2F =

m∑
i=1

n∑
j=1

|xij |2 = tr(XXH)

for any m× n matrix X, where xij denote the single elements of the matrix.
Inserting Θ = 2, Eq. (B.2) and Eq. (B.3) into Eq. (B.1), leads to

f(Y) =
1

(π)
MM

2 det(A)M det(B)M

exp
{
−tr

[(
A−1(Y − E [Y])B−1

) (
A−1(Y − E [Y])B−1

)H]}
=

1

(π)
MM

2 det(A)M det(B)M

exp
{
−tr

[(
A−1(Y − E [Y])B−1

)(
(B(−1))H(Y − E [Y])H(A−1)H

)]}
=

1

(π)
MM

2 det(A)M det(B)M

exp
{
−tr

[
A−1(Y − E [Y])(B−1(B(−1))H)
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(Y − E [Y])H(A−1)H
]}

=
1

(π)
MM

2 det(A)M det(B)M

exp
{
−tr

[
A−1(Y − E [Y])(BHB)−1(Y − E [Y])H(A−1)H

]}
.

So far we made us of mathematical applications of properties of the Hermitian
and the inverse of a matrix, [1] and [6]. Since the trace of a matrix is invariant
with respect to cyclic matrix permutations of conformable matrices [27], the
M ×M matrices for the present case can be rearranged

f(Y) =
1

(π)
MM

2 det(A)M det(B)M

exp
{
−tr

[
(Y − E [Y])HA−1(A−1)H(Y − E [Y])(BHB)−1

]}
=

1

(π)
MM

2 det(A)M det(B)M

exp
{
−tr

[
(Y − E [Y])H(AAH)−1(Y − E [Y])(BHB)−1

]}
.

Following the derivations in [15], we can now define positive definite M ×M
matrices Φ = BHB and Σ = AAH , such that A = Σ

1
2 and B = Φ

1
2 .

f(Y|E [Y] ,Σ,Φ) =
1

(π)
MM

2 det(Σ)
M
2 det(Φ)

M
2

exp
{
−tr

[
(Y − E [Y])HΣ−1(Y − E [Y])Φ−1

]}
(B.4)

The matrix-valued transmission model Eq. (2.19) is

Y = HX + N,

where the diagonal entries of the channel matrix H contain the fading coef-
ficients in the frequency domain. For a finite set of equiprobable transmit
matrices X, the mean of the received matrix Y is the expected value of Y,
i.e. E[Y], and it is defined by

E[Y] = E[HX + N] = E[H]E[X] + E[N] = E[H]X + E[N].
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The complex-valued additive white Gaussian noise has zero mean and two
sided noise power spectral density of N0

2 and the complex-valued fading co-
efficients in case of a Rayleigh block fading channel or Rayleigh frequency
selective fading channel, respectively, are normal distributed with mean µh
and variance σ2

h.

Gupta and Varga state in [14] and [15], that Σ ⊗ Φ, is a covariance ma-
trix, where ⊗ denotes the Kronecker product between the matrices Σ and Φ.
Σ denotes the amongst row covariance matrix and Φ the amongst column
covariance matrix, see [10] and therefore it is possible to calculate them by

Σ = E
[
(Y − E[Y])(Y − E[Y])H

]
(B.5)

Φ = E
[
(Y − E[Y])H(Y − E[Y])

]
(B.6)

The lemmas we used for the derivation of Σ and Φ can be found amongst
others in [13] and [22]. The amongst row covariance matrix becomes

Σ = E
[
(Y − E[Y])(Y − E[Y])H

]
= E

(HX + N− E[H]X− E[N]︸ ︷︷ ︸
=0

)(HX + N− E[H]X− E[N]︸ ︷︷ ︸
=0

)H


= E

[
(HX + N− E[H]X)(XHHH + NH −XHE[H]H)

]
= E

[
HXXHHH

]︸ ︷︷ ︸
= E[HX(HX)H ]
= E[|HX|2]
= E[|H|2]E[|X|2]

= σ2
h
Es
M I

+ E
[
HXNH

]︸ ︷︷ ︸
= E[HX]E[N]
= 0

−E
[
HXXHE[H]H

]

+E
[
NXHHH

]
+ E

[
NNH

]︸ ︷︷ ︸
= σ2

nI

−E
[
NXHE[H]H

]
− E

[
E[H]XXHHH

]
−E

[
E[H]XNH

]
+ E

[
E[H]XXHE[H]H

]
=

[
Es
M
σ2
h + σ2

n

]
I− E

[
HXXHE[HH ]

]
− E

[
E[H]XXHHH

]
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+ E
[
E[H]XXHE[H]H

]︸ ︷︷ ︸
= E[E[H]]E[XXH ]E[E[HH ]]

= µhIE[XXH ]µhI

= µ2
h
Es
M I

=

[
Es
M
σ2
h + σ2

n − µ2
h

Es
M

]
I

=

[
Es
M

(σ2
h − µ2

h) + σ2
n

]
I. (B.7)

Note that E[XXH ] is equal to the symbol energy Es divided by the FSK
block size M , i.e. it is the average energy per subcarrier within an FSK block
of size M .

The amongst column covariance matrix Φ is defined by

Φ = E
[
(Y − E[Y])H(Y − E[Y])

]
= E

(HX + N− E[H]X− E[N]︸ ︷︷ ︸
=0

)H(HX + N− E[H]X− E[N]︸ ︷︷ ︸
=0

)


= E

[
(XHHH + NH −XHE[H]H)(HX + N− E[H]X)

]
= E

[
XHHHHX

]
+ E

[
XHHHN

]
− E

[
XHHHE[H]X

]
+ E

[
NHHX

]
+E

[
NHN

]
− E

[
NHE[H]X

]
− E

[
XHE[H]HHX

]
−E

[
XHE[H]HN

]
+ E

[
XHE[H]HE[H]X

]
= XHΛhX + σ2

nI− µ2
hX

HX, (B.8)

where Λh denotes the covariance matrix of the channel.

The conditional matrix variate PDF for maximum-likelihood detection for
a received matrix Y, given a transmitted matrix X, is

p(Y|X) =
1

(π)
MM

2 det(Σ)
M
2 det(Φ)

M
2

exp
{
−tr

[
YHΣ−1YΦ−1

]}
.

(B.9)
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Appendix C
List of Frequently Used Acronyms,
Operators and Symbols

Acronyms

AA-LP anti aliasing lowpass filter
ASK amplitude shift keying
AWGN additive white Gaussian noise
BCJR Bahl, Cocke, Jelinek and Raviv
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C List of Frequently Used Acronyms, Operators and Symbols

BER bit error rate
BICM bit-interleaved coded modulation
BICM-ID BICM with iterative detection
BIC-OFDM bit-interleaved coded OFDM
CDMA code division multiple access
CSI channel state information
DAB digital audio broadcasting
DET detection
DFT discrete Fourier transform
DVB-T digital video broadcasting - terrestrial
FDM frequency division multiplexing
FFT fast Fourier transform
IDFT inverse discrete Fourier transform
IP-LP interpolation lowpass filter
LLR log likelihood ratio
LTE long term evolution
LTI linear time invariant
MAP mapper
ML maximum likelihood
MFSK M-ary Frequency Shift Keying
MIMO multiple input multiple output
OFDM Orthogonal Frequency Division Multiplexing
OFDM-MFSK OFDM and MFSK
OFDM-N/MFSK OFDM multitone FSK
OFDM-COM-N/MFSK OFDM combined N/MFSK
PDF probability density function
P/S parallel to serial conversion
QAM quadrature amplitude modulation
SISO single input single output
SNR signal-to-noise ratio
S/P serial to parallel conversion
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TDM time division multiplexing
WLAN wireless local area network

Operators

A∗ complex conjugate of the matrix A
AH complex conjugate transpose of the matrix A
AT transpose of the matrix A
A−1 inverse of the matrix A
[A]mn the mn-th entry of a matrix A
| · | absolute value
det(A) determinant of the matrix A
diag(x) transform the vector x into a diagonal matrix X
E[·] expected value
exp(x) exponential function of argument x
∈ element of a set or a field
b·c floor function, largest integer smaller or equal than the argument
⊗ Kronecker product
≤ less or equal
log logarithm
arg max

k
p(k) value of k, that maximizes p

‖ · ‖ norm
‖ · ‖2F squared Frobenius norm
uTv scalar product between two column vectors u and v∑n
k=1 ak sum of elements ak, k = 1, . . . , n

tr(A) trace of matrix A
A ∪ B union of two sets A and B

Symbols

1 all ones matrix
A transmit vector or transmit matrix alphabet
C set of complex-valued numbers
δ Kronecker delta
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C List of Frequently Used Acronyms, Operators and Symbols

Eb average energy per transmitted bit
Es symbol energy
Σ among row covariance matrix
fc carrier frequency
f∆ subcarrier spacing
fk k-th subcarrier frequency
g(t) received signal
h(τ, t) time-variant channel impulse response
H channel transfer function
|H| absolute value of the transfer function H
H channel matrix
I identity matrix, size according to context
Λ covariance matrix
Λh covariance matrix of the channel
M FSK block size
Mtx number of transmit antennas
m number of transmitted bits per transmit symbol/vector/matrix
N number of active subcarriers per FSK block of size M
N0 noise power spectral density
N AWGN matrix
Nf number of subcarriers of an OFDM transmission system
Ng number of subcarriers for guard interval
Nrx number of receive antennas
n(t) additive white Gaussian noise process in time-domain
n noise vector
η bandwidth efficiency
Φ unitary transmit matrix, or among column covariance matrix
ϕ phase
q(k) digital source bits
R set of real-valued numbers
rc code rate
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ρ expected SNR at each receiver antenna
s(t) transmit signal
σ2 variance
σ2
h variance of the channel
σ2
n noise variance
T number of time-slots
TG duration of the guard interval
t absolute time
τ delay time
µ mean value
X transmit matrix
x transmit vector
Y receive matrix
y receive vector
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