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1. Introduction 

The front page shows a variant of the Müller-Lyer illusion: The corners of the tall white 

triangles facing each other (top) appear to be farther apart than the apices of the long red 

triangles (bottom). Actually, the spacing is the same. The question arises whether an 

algebraic expression can be found approximating the perceived spacing as a function of one 

independent variable, well within the experimental error limits.  

Any perception may be called an illusion in the sense that the visual system does not employ 

absolute units when, for example, judging an object or distance as being large or small. 

However, varying a certain parameter (eg, the angle at the apex of the triangles or of the fins 

in the classic Müller-Lyer illusion), it turns out, that the distance between the apices appears 

to vary in a quite systematic way. Putting on the results over the parameter chosen one 

usually finds that the experimental values, beside some scatter, seem to follow a smooth 

function. 

On measuring the magnitude of a visual illusion as a function of a particular variable, its 

value is usually varied in steps of equal size over the course of the experiment. The 

experimental results are plotted on a diagram, together with their standard deviations, and 

it is common practice to connect them by straight lines which give an impression of the 

general trend and the characteristic features of the illusion. Occasionally, this is called a 

signature (Ninio and O´Regan, 1999).  

Psychophysical experiments on visual illusions help to narrow down the range of possible 

causes of an illusion. Assuming that visual data processing is based on specific 

neurophysiological mechanisms, one may set up a conceptual model for each of the illusions 

from which a hypothetical explanation can be derived as well as an algebraic function 

approximating the experimental values. It turns out that in case of some of the illusions just 

one of quite simple expressions serves the purpose, eg, an exponential decay function or a 

lognormal function. One may call them basic functions. Other illusions can be approximated 

only by a combination of several functions, indicating that there may be more than one of so 

called basic effects involved. However, comparing different illusions, one may check whether 

they partly share the same basic functions. This may be useful with regard to the question 

whether these illusions may be partly based on the same effects and possibly share similar 

features of data processing. 

Coren, Girgus, Erlichmann, and Hakstian (1976) published a classification system for visual-

geometric illusions, based upon the interrelationship between behavioral responses to 

various distortions, employing forty five illusion configurations. They also report on earlier 

attempts to classify geometric visual illusions. 
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2. Basic Functions  

As already mentioned, in case of some of the illusions, the experimental values can be 

approximated within the error limits by a fairly simple algebraic expression, eg, by an 

exponential decay function or even a linear function. One may assume that they correspond 

to certain mechanisms in the context of visual data processing. However, from these basic 

functions more complicated expressions can be built up, suitable to describe illusions where 

several effects seem to be involved, interacting as well as opposing effects. In the following, 

examples of simple functions are given, each of them approximating either one particular 

geometric visual illusion or one particular effect contributing to one of the more complex 

illusions.  

 

2.1 Power function  

As experiments show, a change in the size of the retinal image of an object does not 

necessarily result in a proportionate change of its perceived size (Schur, 1925; Gilinsky, 

1955). To give an example, the diameter y of the retinal image of a simple geometrical 

object, eg, a circular line, will shrink with increasing distance of observation x, following the 

power function y(x)  x^(-1), due to a law of  geometrical optics (Fig. 1, lower curve). 

However, in general, the perceived size will not shrink quite as rapidly. This is known as size 

constancy.  
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Fig. 1   
Red curve: Perceived diameter of a bright 
disk as a function of the distance of 
observation (in horizontal direction, 
independent variable x, in meters).  

 
Functions:  
upper curve:  y= (x/d0)^(n-1) 
Results of fitting:    
                                  n= 0.578(22)  
    Chi^2/DoF= 0.00046 
     R^2 =  0.98614 
 
  lower curve:   y= (x/d0)^(-1)    
  (no size constancy, retinal  image)               

 

The perceived shrinking effect can be approximated by adding a parameter, n, to the 

exponent of the independent variable, leading to y(perc, x)  x^(n-1)  (Kreiner, 2004). The 

underlying conceptual model is based on the idea that the visual system selects a section of 

limited size from the retinal image for data processing in order to produce the perceived 
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image. The size of this conspicuity range chosen will be reduced progressively as soon as the 

structure of interest gets finer with increasing distance of observation while the data 

processing and storage capacity stays constant, leading to an enlarged apparent image. The 

data In Fig. 1 refer to an experiment performed by Schur (1925). She measured the 

perceived size of a bright disk seen in the dark while the distance of observation was varied 

between 4.8m and 16m (red curve in Fig. 1). The function employed for the fitting procedure 

is y(x) = (x/d0)^(n-1), where the d0=4 in the denominator indicates that the experimental 

values found for the perceived size are standardized to the apparent size of the reference 

disk which was to be seen at a constant distance of 4 meters.  

As a result, a size constancy parameter of n=0.578(22) was found. The dashed blue 

horizontal line corresponds to n=1, [y(x) = (x/d0)^0 = 1 = const.], which means that the 

apparent size would stay the same for any distance of observation. The blue lower curve 

gives the perceived size in the absence of any size constancy effect (n=0), simultaneously 

corresponding to the size of the retinal image as a function of distance.  

This power function is suitable do describe all possible degrees of size constancy, just by 

varying the parameter n between 0 and 1. This parameter determines the slope of the 

function telling the magnification, ie, the apparent size relative to the retinal image at any 

distance. As shown later, this concept of a variable conspicuity range can be applied to 

related illusions as well, where, eg, a triangle or a stroke pattern stay at constant distance, 

but reduce in size, so the information density (fineness of structure) increases. See Chapter 

4, Variants of size constancy.   

 

2.2  Exponential decay function 

The typical exponential decay function 
starts from a maximum value at x=0, 
first decreasing rapidly, but then 
approaching the x-axis slower and 
slower.   
 
 
 
 
 
 
 
                                Fig. 2  

                                Exponential decay function                     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.2.1 A variant of the Delboeuf Illusion (Fig. 3) may serve as an example. Skinner and 

Simmons (1998) report that the apparent size of the small square depends on its position in 

 x 

 y(x)= Max 

dy(x) 

 dx 
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relation to the larger one. It appears largest in a concentric position, but the magnitude of 

the effect decreases as soon as it moves out of center. The authors investigated the 

perceived size of the small square (the target T) in relation to a larger one (L). The diagram in 

Fig. 3 shows the apparent size of the target as a function of the displacement x. Out of the 

six values obtained by the authors, only the first four are shown where T is at least partly 

overlaps L, forming a conceptual unity.  

 
 

Fig. 3  Delboeuf illusion on two 
squares. The experimental values 
refer to the perceived size of the 
target T (the smaller square) as a 
function of its position relative to 
L. Data from Skinner and Simmons 
(1998). 

 
 
 Function fitted: 
          y = 4.3∙exp(-B∙x) 
 
The factor 4.3 means the 
maximum illusion (in mm), at 
x=0. 
 
Results of fitting: 
    B= 0.00469(48)    
              Chi^2/DoF = 0.04713 
              R^2 =   0.97959 
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The exponential decay function fitted can be derived from a model in the following way:  

Maximum Illusion occurs when T and L are exactly concentric. This supports the conclusion 

that it is based on the impression of symmetry and coherence, leading to closer inspection 

which triggers a size constancy effect. A small shift would already distort it considerably, 

causing a fairly strong effect, ie, a decrease of apparent size. However, the same shift, 

applied to squares already out of center, has a considerably smaller impact. This leads to the 

differential equation: 

                                      or   
            

         
                  (1)                                                 

 

In other words: An infinitely small decrease of the illusion [d(magnitude)] is in proportion 

the actual magnitude times an infinitely small offset of the squares [d(offset)]. B means a 

parameter to be fitted from the experimental date. This is called a differential equation. 

Integration leads to 

 

 
            

         
                    --->                                      (2)  

L 
T 
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The constant of integration C can be found from choosing        = 0. In this case, both 

squares are concentric and the magnitude of the illusion is at its maximum, C=        . 

From Eq (2): 

 

  
           

     
 = B (offset)            or                                                      .    

 

This function, the solution of the differential equation, describes an exponential decay of the 

illusion with increasing offset between the target square (T) and the inducing square (L).    

 

2.2.2 Zöllner Illusion. Luminance contrast 

This example refers to the effect of the luminance on the magnitude of the Zöllner (1860) 

illusion (Li and Guo, 1995). The goal was to measure the error in estimating the parallelness 

of adjacent lines as a function of the contrast. The error was found to approach a constant  
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Fig. 4   Effect of luminance contrast 
on the magnitude of the Zöllner 
illusion. Data from Li and Guo 
(1995). 
 
Function:       y= D-A∙exp(-B∙x) 
   
Parameters Fitted: 
 
D= 1.029(22)   
A= 2.37(27)  
B= 0.0670(72)   
 
Chi^2/DoF= 0.00098 
R^2 =  0.99524 
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Fig. 5  Effect of luminance contrast 
on stereoscopic threshold. 
 
 
Function: 
y=D+A∙exp(-B∙x) 
 
Parameters obtained 
   
D= 1.143(63)  
A= 56.0(38)  
B= 0.1810(63)   
 
Chi^2/DoF= 0.01815 
R^2 =  0.99871 

 



7 
 

value D (Fig. 4). The same authors investigated the effect of the luminance contrast on the 

stereoscopic threshold (Fig. 5). In Fig. 6 the exponential parts of each function are compared. 
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Fig. 6  Comparison of the two 
exponential functions only. 
 
Function : 

y= exp(-B∙x) 
 
 
 
 
 
Corresponding to the larger B-
value, the function 
characterizing the stereoscopic 
threshold approaches the limit 
considerably faster.   

 

In case of the influence of the luminance contrast on the Zöllner illusion the function is 

smoother, indicating that the maximum effect is approached slower than in case of the 

stereoscopic threshold.  

 

2.3   Linear function 

  

Fig. 7 gives a variant of the Poggendorff illusion, investigated by Wenderoth, Beh, and White     

(1978). There is an oblique black test line and a vertical inducing line at its right end. There 

were five dots in a row at each end of the line, out of which only one was presented at a  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 7   A variant of the Poggendorff illusion. The ten dots 
are aligned with the oblique test line. In the experiment 
only one dot was shown at a time. The goal was to 
determine the point of subjective alignment. 
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time. In the experiment, line-dot alignment errors were measured. The goal of the 

experiment was to measure the point of subjective vertical alignment at each of the ten 

horizontal coordinates. It turned out that the subjects shifted the dots slightly towards the 

horizontal in order to achieve alignment. The effect is less pronounced near the open end of 

the oblique line, but seems to be enhanced by the vertical inducing line. However, in any 

case the perceived vertical offset depends linearly on the distance from the end of the test 

line. Fig. 8 (below) gives the perceived positions of the dots where they appear to be aligned. 

The grey line gives the true extension of the test line. A linear function D + A*x can be fitted 

to the subjective positions of the dots. The results are:  

Table 1 dots near left tip dots near vertical line 

D  1.43(31)
   

 0.28(14)  

A    0.888(12)    0.756(12) 
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Fig. 8    
Subjective line-dot 
alignments. The subjective 
vertical offset is 
proportional to the distance 
from the end of the test 
line. Fit of the function  
y(x) = D+A*x.   
 
The true position of the 
dots is along the grey 
oblique line.  

 

The Baldwin, the Müller-Lyer, and the Delboeuf illusion have one effect in common called 

averaging. Two geometric elements of different extension seem to influence each other such 

that the element of larger extent appears to shrink slightly and vice versa. For the 

contribution of a linear function see chapters 4.2, 4.3, 4.4. 

 

 

2.5 Lognormal function  

 

In the café wall illusion black and white rectangles arranged in rows appear wedge shaped     

( Fraser, 1908; Gregory, 1977). In the version shown below (Fig. 9) only one kind of 

shadowed tiles is employed. In the version investigated each tile was framed by a narrow 
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Fig. 9 
 
Basic pattern. The middle row is 
slightly shifted with respect to the 
rows above and below. 

 
 
 
 
 
 
 

 
 
The tiles are shaded from white to 
black and to white again. The 
border lines of the rectangles are 
omitted.  
 
 
Inserting two grey lines (as  
shown to the right) 
 
 
in between two rows (as indicated 
by the arrows) causes the tiles of 

 
 
 
 
 
 
 
 

the middle row to appear wedge 
shaped. 
 

 
 
 

 
 
 
 

        

  

 
Fig. 10  Magnitude of the Cafè wall  
illusion as a function of the width 
of the framing line of shadowed 
rectangles. Semi-logarithmic plot. 
40% grey refers to the darkness of 
the line separating the rows of 
tiles. The green bar indicates the 
resolution limit of the eye (one 
min arc = 2.91E-4 rad). The 
maximum illusion occurs at a line 
width clearly below this limit.  
 
Function:  
y = A*exp[-B*(log(x/C)^2)] 
 
Parameters fitted: 
A= 59.7(26) 
B= 0,527(63) 
C=1.549(81) 
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grey line, its width being the independent variable x (Kreiner, 2008; 2012). Starting from zero 

line width (at x= -, on a logarithmic scale), there will be no wedge illusion. Plotting the 

magnitude of the illusion as a function of the line width (in deg arc) one finds that it first 

increases and then, after having passed through a maximum, decreases again towards x= . 

Plotted over a linear scale of the line width, this curve exhibits an asymmetric shape and can 

be approached by a lognormal function:  y(x) =  exp[-(ln x)2]. In Fig.10 it is shown in a semi-

logarithmic plot.  It turns out that the maximum illusion occurs at a line width definitely 

below the resolution limit of the eye (which is at about 1 min arc). In addition, the 

magnitude of the illusion depends on the luminance contrast of the framing line as well, so 

does the exact position of the maximum. In the example given darkness was 40%.   

 

2.4 Trigonometric function 

The degree of an illusion may depend on the orientation of the stimulus, as it has been 

observed on the Poggendorff illusion by Weintraub and Krantz ( 1971, 1980). Weintraub, 

Krantz, and Olson (1980) found that the magnitude of the Poggendorff illusion oscillates 

following a sinusoidal function.  

Trigonometric functions are suitable to describe periodicity. Rotating the stimulus by 3600 

will again produce the same result, but the curve determined experimentally may exhibit 

features repeating after rotation of 900 as well (Fig. 11).   
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Fig. 11   Fit of a cosine function to 
the results of an investigation of 
the Poggendorff illusion. Average of 
four data sets (Kreiner, 2012). 
 
Function: 
y=D+S1*cos(4*(x-S2)) 
 
Parameters: 
D= 5.10(19)  
S1= 2.58(25);    S2= -2.75(156)   
 
Chi^2/DoF = 0.86066 
R^2 =  0.83212 
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3. Variants of size constancy 

3.1  Guessing the supposed true size 

From the data given by Schur (1925) a size constancy parameter of n=0.578(22) has been 

found for horizontal direction of observation. This means that, when increasing the distance 

of observation by a factor of four, an object would appear about twice as large as one would 

expect it from geometrical optics. For vertical direction of observation, n turned out to be 

considerably smaller [0.319(34)].  
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Fig. 12  Experiment by Gilinsky 
(1955).  
 
Apparent size of an isosceles 
triangle as a function of the 
distance of observation, x. RET 
means the perceived size (lower 
red curve), OBJ the supposed 
true size, both as a function of 
the distance of observation. The 
true size is overestimated. The 
black curve refers to the size of 
the retinal image.  
 
Function: 
y=(x/d0)^(n-1) 
Results: see figure 

 

Gilinsky (1955) performed a similar experiment with isosceles triangles, achieving a similar 

size constancy parameter [n=0,504(34)]. In another experiment subjects were asked to 

indicate the true size of the target. It turned out that it was always overestimated, leading to 

a size constancy parameter n>1 (Fig. 12). 

 

 

3.2 Variation of size at constant distance 

 A size constancy effect is found as well when, instead of the distance of observation, the 

height of the triangles is varied (Gilinsky, 1955). The function to be fitted has to be slightly 

modified.  The size constancy parameter can be still employed (Kreiner, 2009). The perceived 

size of an object varying in size (but not in its distance) is SR(r)  (1/ rret)
n-1 ,  where rret means 

the size of the object´s retinal image. Smaller objects appear larger than expected from 

geometrical optics. Fig. 13 gives the perceived size of isosceles triangles (height: 78, 66, 54, 

and 42inch) at a distance of 100 feet (left, top), 200, 400, 800, 1600, and 4000 feet. The first 

value (top, left) means the perceived size of the 78`` triangle observed from a distance of 100 

feet. All other values are standardized to this value. The mean size constancy parameter was 

found to be n= 0,420(27). 
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Fig. 13 
Relative perceived size of four 
isosceles triangles of different 
height watched from the same 
distance.  
 
Each of the groups corresponds to 
a certain fixed distance: 100, 200, 
400, 800, 1600, and 4000 feet.  
 
The solid grey line gives the size 
of the retinal image. The first four 
values (100 feet) show the true 
size, because the reference 
triangles used for comparison 
were positioned at a distance of 
100 feet as well. The average size 
constancy parameter was found 
to be n= 0,420(27). 

 

 

 

3.3  Influence of structural density of the context. Stroke pattern 

Size constancy in the sense that the perceived size of a target varies in a way not in 

proportion to the retinal image can be triggered by context elements of varying size or 

structure density as well. In experiments of this kind the size of the target, e.g., a straight 

line, a circle or a square, is kept constant, the observation distance too. However, it is 

observed that the perceived size of the target depends on certain structural characteristics 

of its context, eg, its spatial frequency or some other kind of information density. As an 

example, let us take a horizontal target line, with a regular pattern of parallel vertical strokes 

as the context elements. Observing just the pattern (without the target line) from some 

distance will produce a retinal image of certain size. Increasing the distance of observation 

will reduce the size of the image and, simultaneously, increase the spatial frequency 

characterizing the pattern. However, a comparable effect will be achieved when reducing 

the size of the pattern, but keeping the distance constant. Bearing in mind the conceptual 

model which explains size constancy effects from a reduction of the extent of the visual field 

in order to improve resolution, it follows that a finer stroke pattern will result in perceptual 

enlargement and, simultaneously, lead to a perceptional enlargement of the target line, too.   

 

In case the effect is triggered by a texture exhibiting a spatial frequency x, the perceived 

increase in the target´s size can be expressed as a power function of x, ie,  

                                                              y(perc, target)  x^(n),  

where n, again, is the size constancy parameter. To check this expression, one may set n=0. 

In this case, as x^(0) = const., a finer structure of the context elements will induce no 

apparent enlargement of the target. For n=1, on the other hand, the target will appear 
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enlarged in proportion to the spatial frequency, which may be expressed by the number of 

lines per unit length or by the inverse separation of any sort of structural elements. 

In Fig. 14 the perceived length of a red line is plotted versus the structure density of the 

inducing pattern, consisting of five white vertical lines above black ground. On a DIN A4 plot, 

the length of the target line was 61mm. The stimuli were projected with a beamer.  

Inspecting Fig. 14, one finds that the perceived length of the red line is considerably smaller 

than its true length of 61mm. This is explained from the way how the experiment was 

performed: The subjects determined the apparent length from comparison with a staple of 

parallel standard lines. Therefore, each of these lines was imbedded into another kind of 
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Fig. 14. Perceived length of a red line as a function of the structure density of a contextual pattern (five vertical 

strokes). The red dots on the abscissa correspond to the stimuli shown below the diagram. The dotted line at 

61mm gives to the true length of the target.  

 

Table 2. Data referring to Fig. 14 

 
Target: Horizontal line, length 61mm 
Inducing pattern: 5 vertical stripes 
 

Function:  y=A*x^(+n) 
Parameters fitted:  
                  A= 56.46(45);    n= 0.0757(77)  
           Chi^2/DoF= 0.37701    R^2 =  0.95022 

 

contextual structure, leading to some other sort of size constancy effect, too. However, this 

has no influence on the value of the size constancy parameter n.   
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4 Compound Illusions 

To some illusions several effects seem to contribute. The basic functions described so far 

may serve as a modular system which allows building up more complicated algebraic 

expressions. In a typical case, two opposing effects contribute to the illusion, one enhancing 

and the other one reducing the illusion magnitude. As they usually depend on the 

independent variable in a different way, the magnitude of the illusion exhibits a maximum 

for a certain value of x.  

 

4.1   The Checkerboard illusion  

Giora and Gori (2011) found that the perceived size of a square depends on the space 

frequency of the filling texture. This texture showed a square pattern with either (2x2), 

(4x4), (8x8), (16x16) or (32x32) subparts of equal size. The small squares were filled either in 

the checkerboard manner (black and white), or randomly with black, grey and white squares, 

arranged in an irregular way (Fig. 15). Fig. 16 gives data of the checkerboard arrangement. 

There, the relative perceived increase in the length of one side (square root of the relative 

increase in size) is plotted versus the number of microelements x along one edge. The 

 

 
 
 
 
 
 
 
 

 
Fig. 15 
Examples of square patterns presented 
in the experiments of Giora and Gori 
(2011). 
 

 

0 5 10 15 20 25 30 35

1,000

1,005

1,010

1,015

1,020

1,025

1,030

x Squares per side length

y
  
P

e
rc

e
iv

e
d

 s
id

e
 l
e

n
g

th
 /
 T

ru
e

 s
id

e
 l
e

n
g

th

 

 
Fig. 16  Perceived size of a square 
as a function of the space 
frequency of the texture. 
Checkerboard arrangement 
Data: Giora et al. (2011). 
 
Function: 

y= x^(n∙exp(-B∙x)) 

 
Parameters: 
n= 0.0148(6) 
B= 0.0382(26)  
 
Chi^2/DoF= 9.4652E-7 
R^2 =  0.98935 
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maximum indicates that there are at least two interacting and opposing effects involved. The 

visual system, so the size constancy hypothesis, will zoom into structured texture in order to 

improve resolution, leading to perceived enlargement of the object´s image. However, there 

is a limit to the resolving power of the eye, where further reduction of the visual field would 

not produce any more details. In addition, in case of a uniform pattern better resolution 

(and sacrificing attentional angle) would not produce more information. To account for this, 

the size constancy parameter is assumed to decrease exponentially with the space  
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Fig. 16b 
 
Linear fit: y= 1+A*x;           A= 0.00325(51)  
   Chi^2/DoF= 0.00002;      R^2=  0.77978 

 
Power function:  y= x^(n)      n= 0.01177(79) 
             Chi^2/DoF= 4.4202E-6;       R^2=  0.9554 
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Fig. 17 
 
Function:  y=x^(n*exp(-B*x)) 
 
Upper curve: 
Checkerboard arrangement 
            n = 0.0148(6)       B=0.038(26) 
 
Lower curve: 
Random arrangement 
           n = 0.01039(71)       B=0.0331(41) 

 

 

frequency. The function employed is                y=A*x^(n*exp(-B*x)).    

In Fig. 16 only the first four values have been used for fitting (linear and power function).  

Fig 17 gives the fit with the complete function, for the regular as well as for random 

arrangement. 
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4.2   Variants of the Baldwin illusion 

4.2.1 Classic Baldwin illusion 

In its classic version (Baldwin, 1895) a straight horizontal line serves as a target, two squares 

are attached to its ends (Fig. 20). With increasing size of the squares, the length of the target 

first appears to increase slightly, but then, after a smooth maximum, it drops to values 

considerably below the perceived starting length. The increase and the decrease are usually 

ascribed to assimilation and contrast effects, respectively. Here it is interpreted as due to 

averaging and size constancy (Kreiner, 2004). Context elements, their shape, their size and 

their position, exert an influence on the perceived midpoint or the length of a line (Baldwin, 

1895). Due to [Brigell, Uhlarik, and Goldhorn (1977); Wilson and Pressey (1988)] the 

perceived length of a horizontal line extending between two squares first increases slightly 

as a function of the framing ratio, followed by a smooth maximum, and then decreases 

steeply, finally approaching an asymptotic value (Figs. 18, 19; data from Brigell et al.).   

0 2 4 6 8 10
0,90

0,92

0,94

0,96

0,98

1,00

1,02

1,04

1,06

Framing ratio x

y
  
L
(p

e
rc

e
iv

e
d
) 

/ 
L
0

 
         y=D+A*(x-1)         D= 0.979(14)   A= 0.086(29) 

 
Fig. 18  
 Left: Linear function, fitted to first values only. 
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              Right: Exponential decay function is added 

 

 

The experimental values plotted in Fig. 19 give the perceived length of the target line divided 

by its true length L0 (=100). The function employed for fitting is built up in the following way: 

The 1 within the first bracket corresponds to L0. Then, to first order of approximation, the 

deviation from L0 is given by the expression A*(x-1), describing the averaging effect, where 

averaging means that the apparent length of the target line increases with the size of the 

boxes. A is a parameter to be fitted, (x-1) is equal to the width of the two boxes divided by 

L0. This expression is zero for  x=1, where the boxes are yet infinitely small. Further, it is 

assumed that averaging fades away gradually, which is approximated by the exponential 

decay function exp(-B*L0*abs(x-1)). Finally, size constancy is taken into account by the 

power function, where (L0*x) means the full extension of the stimulus and n, again, is the 

size constancy parameter. For large x the exponential decay term seems to play a dominant 

role.   

y= 1+A*(x-1)*exp(-B*L0*abs((x-1)))    

A= 0.11(23) B= 0.017(26)  L0=100 (fixed) 
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                     y=(1+A*(x-1)*exp(-B*L0*abs(x-1)))*(L0*x)^(-n) 

 

 
Fig. 19   Effect of adding a 
power function with the size 
constancy parameter in its 
exponent. Data: Brigell et al. 
 
 
 
 
 
 
 
 
A= 0.355(26)  
B= 0.01147(67)  
L0= 100 (fixed) 
n= 0.01327(84) 
 
Chi^2/DoF= 0.00006 
R^2 =  0.97828 

 
 

 

Examples of stimuli are given in Fig. 20. With increasing framing ratio, the stimulus becomes 

larger. In contrast to the stimuli with a gap described in chapter 4.2.2, the three elements 

always remain a geometric unit. This, in addition to the fact that the variation of the total 

size of the stimulus extends over nearly one order of magnitude, might be a major reason 

why size constancy plays a dominant role.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 20    Classic Baldwin illusion, examples of stimuli. In contrast to the stimulus described in chapter 4.2.2, the 

context elements are always attached to the ends of the target.  They just vary in size. 

 

 

 L0 

 B  B 

 FR = (2B + L0)/L0 
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4.2.2 Baldwin with gaps 

The following variant of the Baldwin (1895) illusion is one of the rare cases where the 

magnitude of the illusion exhibits a singularity concerning its dependence on the 

independent variable. In this experiment full black squares of constant size are placed 

symmetrically at various positions along the axis of the target line, either within the length of 

the line or at some distance beyond its ends, leaving a gap. It is observed that the smooth 

maximum turns into a sharp peak (Figs. 22 and 23). This peak is mainly ascribed to averaging 

which occurs as long as the context elements are attached to the ends of the line. Averaging 

decreases rapidly with increasing gaps. It is assumed this is because the stimulus then does 

not present a uniform geometric element any more. Concerning the magnitude of the effect, 

the orientation of the stimulus plays an important role, too.   

 

The framing ratio was varied between 0.67 and 3.08 (Kreiner, 2011, 2012). In Figs. 22 and 23 

the experimental values are plotted versus the framing ratio x. For the fitting procedure the 

function  

                                        y= D+A*x+A2*exp(-B*(abs((3*x - 5)/2)))  

 

was chosen. The expression (3*x-5) follows from the geometry of the stimulus. With the 

squares attached to the ends of the target line, the framing ratio is 5/3. The maximum 

illusion occurs around x=1.67 where 3x-5 = 0. Tilting the stimulus by 30, 45, and 90 degrees 

enhances the illusion, but not quite in proportion to the angle of inclination.    

 

 
Fig. 21  Examples of stimuli 
presented.   
 
The framing ratio is defined 
as FR=(2S + 2d + L0)/L0 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figs. 22 and 23 give the results for the horizontal and vertical orientation of the stimulus, 

respectively (Kreiner, 2011). The maximum occurs when the boxes are attached to the ends 

of the target line, forming a structural unity (d=0). In this case, averaging appears to be most 

efficient. The sharp decrease towards higher and lower values of the framing ratio is 

 S=36 

 L0 =108 

  d- 

  d+ 
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interpreted as due to a loss of the geometric context as soon as the line is more and more 

recognized as an element of its own. In addition, a slight overall increase of the values in 

proportion to the framing ratio is observed (Figs. 22b, 23b).  
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                                       y=D+A*x+A2*exp(-B* (abs((3*x - 5)/2))) 

 

 
Fig. 22 a   Perceived length of 
the red target line as a 
function of the framing ratio. 
The sharp peak occurs when 
the squares are attached to 
the ends of the target line. 
Target: Horizontal orientation 
 
 
 
 
 
 
 
D= 0.924(13) 
A= 0.0153(61)  
A2= 0.195(14) 
B= 3.49(67)  
     Chi^2/DoF= 0.00025 
     R^2=  0.95838 
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Fig. 22 b 
 
 
Target: Horizontal orientation 
 
Function: 
Left:  y = D +A*x 
 
D and A from Fig. 19a. 
 
  

 

 

 

A quite similar observation is made on the dumbbell illusion, where the squares are replaced 

by full circles. In this case, the exponential decay on either side of the maximum seems to be 

less steep (Kreiner, 2009, 2012).  
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Fig. 23a Perceived length of 
the target line for vertical 
orientation of the stimulus 
 
 
  
 
Function: 
 
 
 
D= 0.895(19)  
A= 0.0566(63)  
A2= 0.283(13)  
B= 1.89(29)  
 
Chi^2/DoF= 0.00023 
R^2 =  0.9835 
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Fig. 23b 
 
Target: Vertical orientation 
 
Function: 
 y = D +A*x 
 
D and A from Fig. 20a.  

 

 

 

4.3   The Müller-Lyer illusion  

Since Müller-Lyer (1889) first published this illusion it has been investigated by several 

authors (e.g., Yanagisawa, 1939; Fellows, 1967; Pressey, Di Lollo, and Tait, 1977; Predebon, 

1994). The apparent length of the shaft depends primarily on the geometric properties of 

the wings or fins (their length, the angle they subtend, whether the fins are ingoing or 

outgoing), and on the framing ratio (Figs. 24 to 26). Depending on whether the range 

spanned by the context elements is slightly larger or smaller than the length of the target 

line, it is perceived as being longer or shorter than its true length, respectively. This 

phenomenon, usually called assimilation, is explained by a theory of Pressey (1971) as an 

y= D+A*x+A2*exp(-B*(abs((3*x - 5)/2))) 
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averaging effect. It states that the apparent length of the line is averaged with the 

contextual magnitudes. 

In the investigations discussed next, gaps were left between the shaft and the ingoing wings 

(Fig. 26), their size being varied from zero to about half the length of the shaft.  It was found 

that the perceived length of the shaft as a function of the framing ratio first increases 

(reversed Müller-Lyer effect; Pressey et al., 1977), but then decreases again. The smooth 

maximum (Fig. 25) occurs at a framing ratio where the wings are positioned near the ends of 

the shaft, but still partly overlap with its ends. In contrast to this observation, in case of 

outgoing wings (Fig. 27) the apparent length of the shaft decreases continuously from zero 

gap on (Predebon, 1994; Fig. 28). The question arises what the apparent length would be 

when the outgoing fins were positioned at even shorter distance, i.e., within the length of 

the shaft (Fig. 27, bottom) and whether the shape of the curve would be similar or 

significantly different from the one describing ingoing wings. 

 

 

Fig. 24. Drawing by Müller-Lyer, published in 1889 in the  Archiv für Anatomie und Physiologie. 

 

4.3.1   Ingoing wings 

The data in Fig. 25 have been published by Pressey et al. (1977). Horizontally, the framing 

ratio FR is plotted (defined in Fig. 26). On the vertical axis the perceived length of the shaft in 

relation to its true length L0 is given. For fitting, the function 
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                                    L(perceived)/ L0 = D + A∙(x-1) ∙ exp[-B∙abs(x-1)]  

has been employed. (x-1) corresponds to twice the gap size, so the curve shows the 

magnitude of the illusion as a function of the gap size, too. The illusion had been measured 

for six angles of the (ingoing) fins. For the plot, the experimental results of each two of them 

had been combined (300+600, 900+1200, 1500+1800).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 25   Apparent length of the 
shaft plotted against the 
framing ratio. Ingoing wings. 
Function: 
y = D+A∙(x-1) ∙ exp[-B∙abs(x-1)] 
DEL= 0.9733(28)   
A= 0.399(26)    
B= 2.153(74)    
 
DEL_2= 0.9417(28)    
A_2= 0.459(23)     
B_2= 1.629(49)    
 
DEL_3= 0.9234(28)    
A_3= 0.467(21)    
B_3= 1.411(44)    
 
Chi^2/DoF= 0.00001 
R^2 =  0.99193 

 

Fig.  26                  α: 
                   1500 + 1800 
                     900 + 1200     
                     300 +   600   
Ingoing wings 

 
 
 
 
 

 

 

4.3.2  Outgoing wings 

Outgoing wings produce a noticeably different curve (Kreiner, 2012). The length of one wing 

is 0.41∙L0, with L0 again being the target length. The horizontal extension of one arrowhead 

is 0.375∙L0. There is a sharp peak at x=1.75, occurring at the maximum value where there ist 

still overlap, ie, where the wings are just attached to the ends of the target line [(2∙0375∙L0 + 

L0)/L0 =1.75)]. In addition, there is a general trend of the magnitude of the illusion to 

decrease with increasing x, corresponding to the negative value of the parameter A (Fig. 28). 
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Fig.  27     Target, outgoing wings              
 
             α = 50 degrees 
  
 
 
                           Framing ratio < 1.0 
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Fig. 28   The Müller-Lyer 
illusion on a shaft with 
outgoing wings. 

 
 Function: 

y = D+A*(x-1.75) + 
A2*exp(-B*abs(x-1.75)) 
 
Parameters fitted: 
D= 1.035(18)  

A=  0.0135(82) 
A2= 0.190(16)  
B= 2.55(63) 

       

 

 

 

4.4  Delboeuf illusion  

 

Among the illusions showing the effects of assimilation and contrast, the Delboeuf (1892) 

illusion is unique in two respects: The target and the inducing context element are identical 

in shape, and, although there is a gap between the target and the inducing circle, both seem 

to stay a unit because they are concentric, giving the impression of a ring. The term contrast 

usually indicates that, in case the context elements extend over a range considerably larger 

than the target, the target size will become apparently smaller than it is perceived without 

any context. Again, assimilation will be replaced by the term averaging and contrast by size 

constancy effect.  In  the Delboeuf illusion (Figs. 29, 30, 31), the size constancy effect on a 

circular line of constant diameter (the target)  can be expressed by a power function of the 

 FR = S/L0 

 

 

 

 S 

 L0 
 α 

 0.375∙L0 
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framing ratio, y(perc, target)  x^(-n). In case there is no influence of the inducing circle on 

the target (n=0), the perceived size of the target will stay constant. 

 

 

  

 

 

 

 

 

 

 

 

 

    Fig. 29   Example of the Delboeuf illusion. All the red circles are of identical size. 
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Function fitted: 

y=  (1-A*(1-x)*exp(-B 

*abs(1-x)))*C2*x^(-n)  

Parameters obtained: 

  

A= 0.422(57)  

B= 2.29(31)  

C2= 1.0387(37)  

n =  0.0584(64)  

 

Chi^2/DoF= 0.00026 

R^2 =  0.89937 

 

 

Fig. 30   Delboeuf illusion. Apparent size of the target circle (normalized to d0, its apparent size without context) 

as a function of the framing ratio. For framing ratios just below and above 1, averaging leads to an apparent 

decrease or increase of the target circle, respectively. For very large x-values the size constancy effect causes 

apparent shrinking of the stimulus. 
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1                                                                          4                                                 7

 

 
Fig. 31    
 
One of the transparencies 
presented. Framing ratio is 4.49 
(ratio of the outer diameters).  

Standard circle  4 matches the 
red target. 
 
 
 
 

 

 

4.5  Zöllner illusion 

There are several variants of the illusion first described by Zöllner (1860). In general, a field 

of oblique parallel lines makes a single horizontal or vertical line to appear tilted. Wallace 

and Crampin (1969) investigated the effect of background density of parallel lines on the 

Zöllner (1860) illusion. In the example given here the magnitude of the illusion has been 

investigated on the parallel sides of a rhombus (which are close to the vertical) as a function 

of the rotational angle of the inducing field (Fig. 32). The orientation of the background field 

was varied in steps from 40 (with respect to the vertical) to 450. A set of five diamonds was 

given for comparison. The results are plotted in Fig. 33. They give the perceived deviation of 

the parallel side from the vertical.  

1 2 3 4 5-12/00  
 

 
Fig. 32 the parallel sides of a 
rhombus appear to be inclined 
even more.  
 
 
 
Target: 
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Fig. 33    Apparent inclination of 
the nearly vertical sides of a 
rhombus as a function of the angle 
of rotation of the inducing field. 
Maximum inclination is 2.6

0
, when 

the field is rotated by 16
0
. 

 
 
 
 
 
Function:  
y=A∙x∙exp(-B∙x) 
 
Parameters: 
A= 25.11(72) 
B= 3.545(76) 

 

It is assumed that, at small intersect angles, the perceived additional tilt of the parallel sides 

is in proportion to the angle of rotation of the inducing field. This influence is supposed to 

decrease exponentially with increasing angle of rotation. This is expressed by the function 

y=A∙x∙exp(-B∙x), where x means the angle of counter clockwise rotation.  

 

4.6   Poggendorff illusion with context elements 

An oblique line is partly occluded by a vertical bar. The thought continuation of one of the 

protruding segments appears to miss the other one. The questions is whether this apparent 

shift is due to a perceived vertical shift or a tilt of the segments or whether just the thought  

 

 

 

 

 

 

 

 

                              

 

 
Fig. 34   Classic Poggendorff illusion (centre): The protruding ends of the crossing line appear to be vertically 
offset. Left: The magnitude of the illusion is enhanced, when the dots are positioned at the same height 
halfway between the merging points, but reduced, when they are just above and below them (right). The 
apparent vertical shift is given in relation to the width of the occluding bar. 

  6.3 12.3% 13.6 12.4% 25.5 12.9% 
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extension of a segment across the occluding bar deviates from the true orientation of the 

target line. This has been studied extensively  [eg, Obonai, 1931; Weintraub and Krantz, 

1971;  Weintraub, Krantz, and Olson, 1980); Wenderoth et al., 1978)]. In the example given 

here the influence of context elements is investigated (Kreiner, 2012). Two dots are 

positioned symmetrically right on the edges of the occluding bar and shifted vertically. The 

maximum illusion is observed when the dots are aligned horizontally, halfway between the 

merging points (Fig. 34). In the experiment, stimuli were shown with the dots in different 

positions along the edges, always opposite to each other with respect to the centre of 

symmetry. When coinciding with the merging points (x=0), the illusion corresponds to the 

classic variant. As the experiments of Wenderoth et al. (1978) have shown, the thought 

extension of an oblique line is turned slightly towards the horizontal when it is stopped by an 

inducing vertical line. Here, the dots seem to act in a twofold way, depending on their 

position: When placed halfway between the merging points, they strongly enhance the 

apparent shift. In addition, reduction or enhancement is observed depending on whether 

the dots are positioned either above and below (Fig 35, left) or within 

the merging points (right). The effect is 

quite pronounced for small values of the x 

coordinate and fades away for large x.  To 

first order this is approximated by a term 

x*exp(-B*(abs(x))):   

 

        y = D-A*x*exp(-B*(abs(x))) 

 

 

Fig. 36 gives the fit.  

 
 
 
 
 
 
 
 
 
 
                             
                                                                    Fig. 35 

                                                            

-50 -40 -30 -20 -10 0 10 20 30
-1

0

1

2

3

4

5

6

7

8

9

 Distance from merging point / mm

 P
e

rc
e

iv
e

d
 m

is
m

a
tc

h
 /

 m
m

 

 
Fig. 36   Poggendorff illusion as a function 
of the position of dots on the vertical bars.  
 
 
 
 
Function:  y = D-A*x*exp(-B*(abs(x))) 
 
Parameters:  
D= 2.34(12) 
A= 0.52(12) 
B= 0.130(22) 
 
 
 

 

Horizontal arrangement of the dots seems to rotate the thought extension of the segments 

towards the horizontal, too. This effect fades away rapidly with the dots being shifted 

 x 
 +x 
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upwards and downwards. To take this into account, the function y=exp(-B2∙abs(x+8)) was 

employed (Fig. 37). 
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Fig. 37   Effect induced by horizontal 
orientation of the dots. 
 
Function: y=exp(-B2∙abs(x+8)) 
 
Parameter: B2=  0.073(19) 
(taken from the fit of the complete function, 
below) 
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Fig. 38   Fitting of the complete function 
 
 
 
Function:  

y = D  A*x*exp(-B*(abs(x)))* 

      exp(B2*abs(x+8)) 
 
D= 1.90(13)  
A= 0.553(93)  
B= 0.073(21)  
B2=  0.073(19)   
                              Chi^2/DoF= 0.20728 
                               R^2 =  0.87778  

 

 

The complete function (Fig. 38) fitted is  

 

                                             y = D  A*x*exp(-B*(abs(x)))*exp(B2∙abs(x+8)). 

 

 

4.7 Split circle illusion 

Dividing a circle asymmetrically by a vertical bar causes the two segments appear as if they 

belonged to circles of different size (Fig 39). The size of the smaller segment is 

underestimated and its relative apparent size further decreases with increasing true size of the 

large segment. Rotating the stimulus modulates the magnitude of the illusion. The illusion, 

again, is ascribed to a size constancy effect, similar to the Delboeuf illusion, where the target  
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Fig. 39   The size of the small segment is underestimated. The illusion depends on the size of the larger segment 

as well as on the angle of rotation.  
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Fig. 40   Apparent size of the small 

segment in relation to the large one. 

The size of the smaller segment is 

underestimated and its relative 

apparent size decreases with 

increasing true size of the large 

segment (size constancy effect).   

 

Function: 
y(x) = C2*x^(-n) 
 
Parameters: 
C2= 354(109) 
n= 0.32(7) 
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Fig. 41   With the bar tilted by 45

0
, 

the size of the smaller segment is still 
underestimated, but to a less degree. 
Again, its relative apparent size 
decreases with increasing true size of 
the large segment.  
 

Function: 
y(x) = C2*x^(-n) 
 
Parameters: 
C2= 192(80) 
n= 0.37(11) 
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circle perceptually shrinks when the context circle gets large compared to the target. For this 

reason the function y= C2∙x^(-n) has been chosen for the fitting procedure, where x means 

the true size of the left segment (Figs 40 and 41). The same function is part of the algebraic 

expression in chapter 4.4 (Delboeuf). The fact that the angle of rotation has an influence on 

the perceived size of the target segment is ascribed to the effect leading to the Poggendorff 

illusion, too: With the bar in vertical position the thought continuation of the small segment 

appears to be bent slightly towards the horizontal. Therefore, in comparison to the large 

segment, the small one appears to be even more reduced in size. 

 

4.8 Oppel-Kundt  
The experiments performed by Spiegel (1937) were carried out in the dark. Slits were cut 
into black cardboard and illuminated from the back (Fig. 1). The distance cd between the  
 

 

 
Fig. 42   The distance between the long slits on the left (ab) appears to be shorter than on the right (cd).    
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Fig. 43. Perceived length of a distance of horizontal extent (400 mm) as a function of the number of slits. The 

increase at low x is interpreted as due to the attempt of the visual system to improve resolution (size constancy 

effect) while the decrease at high x indicates that the filling structure is gradually regarded as a uniform 

pattern. Distance of observation was 2.7 m.  
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long slits was fixed in length. It was filled successively with up to x=47 vertical short slits. In 

the basic experiments they were equally spaced. The position of the slit a was variable. The 

subjects compared the two distances (cd vs. ab) and indicated as soon as they judged them 

to be equal.   

The increase at low x is interpreted as due to the attempt of the visual system to improve 

resolution (size constancy effect). In its extreme, a continuous row of elements will merge 

into a bright line without any structure. For this reason, n is assumed to decrease 

exponentially, leading to the function                                                          

                                                        y= 1+A∙x^[n∙exp(-B∙x)]        

   with the parameters A=0.0325(22), n=0.775(0,047), and B=0.0274(13).                                       

 

6. Conclusion 

From conceptual models algebraic functions are derived and fitted to the experimental 

results obtained from investigations on several classic geometric visual illusions and some of 

their variants. Occasionally, only one of the so called basic functions is needed, in other 

cases combinations of basic functions are employed.  Examples indicate that a fairly low 

number of algebraic functions is needed to approximate the experimental results of several 

geometrical visual illusions well within their error limits.  
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