Universitätsklinikum Klinik für Frauenheilkunde und Geburtshilfe Ärztlicher Direktor: Prof. Dr. Wolfgang Janni

Sektion Gynäkologische Onkologie Amtierender Leiter: Prof. Dr. rer.nat. Lisa Wiesmüller

Der Einfluss des Mismatch Reparaturfaktors hMSH2 auf distinkte Reparaturwege der DNA Doppelstrangbruch Reparatur

Dissertation

zur Erlangung des Doktorgrades der Medizin der Medizinischen Fakultät der Universität Ulm

> vorgelegt von Annabelle Schwan aus Aachen 2013

Amtierender Dekan: Prof. Dr. Thomas Wirth

- 1. Berichterstatter: Prof. Dr. Lisa Wiesmüller
- 2. Berichterstatter: Prof. Dr. Tatiana Syrovets

Tag der Promotion: 13.02.2015

INHALTSVERZEICHNIS

AbkürzungsverzeichnisI			
1	Ein	leitung1	
	1.1	DNA Reparatur1	
	1.2	Mismatch Reparatur (MMR) 2	
	1.3	DSB Reparatur	
	1.4	Homologie gerichtete DNA Reparatur5	
	1.5	Nonhomologous Endjoining9	
	1.6	Das humane MMR Protein hMSH2 und die DSB Reparatur10	
	1.7	Hereditäres Nichtpolypöses Kolonkarzinom Syndrom (HNPCC) 11	
	1.8	Fluoreszenzbasiertes Testsystem zur Analyse der verschiedenen DNA	
	Repar	aturmechanismen	
	1.9	Fragestellung17	
2	Ma	terial und Methoden	
	2.1	Material19	
	2.2	Antikörper 27	
	2.3	Plasmide	
	2.4	Eukaryotische Zelllinien und Bakterienstämme	
	2.5	DNA-Techniken	
	2.6	Proteinbiochemische Methoden	
	2.7	Zellkulturtechniken	
	2.8	Statistische Auswertung 44	
3	Erg	ebnisse	
	3.1	hMSH2 und die DSB Reparatur im chromosomalen Kontext 45	
	3.2	Der Einfluss von hMSH2 auf die DSB Reparatur im extrachromosomalen Kontext 57	
	3.3	Die Interaktion von hMSH2 mit den DNA Reparaturproteinen MRE11, ERCC1,	
	BRCA	2	

4	Disl	kussion	65
	4.1	Der MMR Fakor hMSH2 moduliert die HDR	66
	4.2	Modell zur Regulation der DSB Reparatur durch hMSH2	76
	4.3	Ausblicke	79
5	Zus	ammenfassung	
6	Lite	raturverzeichnis	83
7	Ank	hang	
	7.1	Danksagungen	
	7.2	Lebenslauf	

ABKÜRZUNGSVERZEICHNIS

5-FU	5-Fluorouracil
°C	Grad Celsius
ATPase	Adenosintriphosphatase
ATR	Ataxia telangiectasia and Rad3 related
BASC	BRCA1-assoziierter genome surveillance
	Komplex
BCA	Bicinchoninsäure
BER	base excision repair
BLM	Bloom syndrome, RecQ helicase-like
bp	Basenpaar
BRAF	proto-oncogene B-Raf- oder v-Raf murine
	sarcoma viral oncogene homolog B1- Gen,
	kodiert für die Serin/Threonin-Protein
	Kinase B-Raf
BRCA	breast cancer, early onset
BSA	Rinderserumalbumin
bzgl.	bezüglich
bzw.	beziehungsweise
С	Cytosin
C'	Carboxy-Terminus
ca.	circa
СНК	CHK checkpoint homolog (S. pombe)
cm	Zentimeter
CMV	Cytomegali Virus
CSR	Class Switch Recombination
CtIP	CtBP-interacting protein
d.h.	das heißt
ddH2O	zweifach destilliertes Wasser
DMEM	Dulbecco's Modified Eagle's Medium
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
DNA-PKcs	dsDNA-Proteinkinase catalytic subunit
ds	Doppelstrang, doppelsträngig
DSB	DNA Doppelstrangbruch
DNA-PK _{cs}	dsDNA-Proteinkinase catalytic subunit
DTT	Dithiothreitol
E. coli	Escherichia coli
EDTA	Ethylendiamin-tetra-Essigsäure
EGFP	enhanced green fluorescent protein
EGTA	Ethylen-Glycol-tetra-Essigsäure
EJ	end joining
ERCC	excision repair cross-complementing group
Fa.	Firma
FA	Fanconi Anämie
FACS	fluorescent activated cell sorter
FANC	Fanconi anemia complementing group

FAP	Familiäre Adenomatöse Polyposis
FCS	fötales Kälberserum
FL-12	Fluoreszenzkanal-1, -2
FSC	forward scatter
5-FU	Fluorouracil
fwd	forward
σ	Gramm oder Gravitationskonstante
GmbH	Gesellschaft mit beschränkter Haftung
Н2А	H2A Histon
H2AX	H2A histone family member X
$\gamma H 2 \Delta X$	H2M historic junity, memoer A
h	human oder Stunde
	Salzaäura
	nomology-alrected repair
HEPES	[4-(2-Hydroxyetnyl)-piperazino]-
	ethansulfonsaure
HDR	Homologie gerichtete DNA Reparatur
HMGB1	high mobility group box I Protein
HNPCC	Hereditäres Nichtpolypöses Kolonkarzinom
	Syndrom
HR	Homologe Rekombination
HRP	horse-radish-peroxidase
Hygro	Hygromycin-Resistenzgen
ICL	Interstrand cross-link
IDL	Insertions- bzw. Deletions-Loop
IgG	Immunglobulin G
Inc.	Incorporated
Int.	International
IR	ionisierende Strahlung
k	Kilo
kh	Kilobasennaare
kDa	Kilodalton
KG	Kommanditgesellschaft
KGaA	Kommanditgesellschaft auf Aktien
KBK	kolorektales Karzinom
KOH	Kaliumhydroxid
konz	konzentriert
Konz	Konzentration
Ku/0	= ARCC0
KU80	
I ID Madaana	Litter
LB-Medium	Luria-Bertani-Medium
LTR	long terminal repeat
m	Meter
m	Milli
M	Molar (mol/l)
MDC1	mediator of DNA-damage checkpoint 1
min	Minute
MLH	mutL homolog
MMR	Mismatch Reparatur

MOPS	3-(N-Morpholino)propansulfonsäure
MRE11	meiotic recombination 11 homolog
MRN	MRE11-RAD50-Nibrin-Komplex
mRNA	messenger Ribonukleinsäure
MSH	MutS homolog
hMSH2	humanes MutS-Homolog 2 Protein
hMSH3	humanes MutS-Homolog 3 Protein
hMSH6	humanes MutS-Homolog 6 Protein
MSI	Mikrosatelliteninstabilität
MW	Molekulargewicht
N'	Amino-Terminus
n	Nano
NaCl	Natriumchlorid
NaE	Natriumfluorid
NaOH	Natriumhydroxid
NaC	Natriumvanadat
NER	nucleotide excision renair
NHEI	Nonhomologous Endicining
nm	Nanometer
nM	Nanometer
ND40	Nonidat D40
Nr 40	Nummer
	nummer optische Dichte
0D	optische Dichte
	numor protein p35
	Polyacrylamid Dalyacrylamid Calalaktronhorean
PAGE	Polyacrylamid Gelelektrophorese
PB5	Phosphat-geputierte Salziosung
PCR	Polymerase-Kettenreaktion
PCNA	Proliferating-Cell-Inuclear-Antigen
PGS	Protein G-Sepharose
рн	Negativer dekadischer Logarithmus der
זת	Wasserstonnonen-Konzentration
PI DMC1	Propialumioala
PMS1	postmetotic segregation increased 1
PMI52	TA Deleverele etidline etidlin
PNK	14-Polynukleotidkinase
Puro	Puromycin-Resistenzgen
RAD	RAD homolog (S. cerevisiae)
Rad50	DNA Reparaturprotein, Bestandteil des
	MREII Komplex
rev	reverse
rel.	relativ
REcQL	RecQ protein-like
RFC	replication factor C
RNA	Ribonukleinsäure
RNAi	RNA-Interferenz
Rnase A	Ribonuklease A
RPA	replication protein A
S	Synthese
SAP	shrimp alkaline phosphatase

SDS	Natriumdodecylsulfat
shRNA	short hairpin RNA
siRNA	small interfering RNA
SIRT1	Säugetierortholog von Sir2, einer NAD ⁺ -
	abhängigen Deacetylase
Srs2	DNA-Helikase und DNA-abhängige ATPase
	(S. cerevisiae) (YJL092W, HPR5)
\$\$	Einzelstrang, einzelsträngig
SSA	Single Strand Annealing, nichtkonservative
	Homologe Rekombination
SSC	sideward scatter
SV40	Simian Virus 40
SWI/SNF	SWItch/Sucrose NonFermentable, Komplex,
	der an dem Remodeling von Nucleosomen
	beteiligt ist
Т	Thymidin oder Tween 20
Tab.	Tabelle
TAE	Tris-Acetat-EDTA-Puffer
TE	Tris-EDTA
TEMED	N,N,N',N'-Tetramethylethylendiamin
Tris	Tris(hydroxymethyl)-aminomethan
U	unit
u.a.	unter anderem
UpM	Umdrehungen pro Minute
UTR	Untranslated region
UV	Ultraviolett
V	Volt
v/v	Volumen pro Volumen
V(D)J	somatische Rekombination zwischen
	einzelnen Genabschnitten (v-variable, d-
	diversifying, j-joining)
W/V	Gewicht pro Volumen
WRN	Werner syndrome, RecQ helicase-like
Wt	Wildtyp
XLF	nonhomologous end-joining factor 1,
	Cernunnos
XPF	xeroderma pigmentosum, complementation
	group F
XRCC	X-ray cross complementing group
z.B.	zum Beispiel

1 EINLEITUNG

1.1 DNA Reparatur

DNA Schäden tauchen häufig in Säugetierzellen auf, da der Organismus ständig potentiell DNA schädigenden Quellen sowohl endogener als auch exogener Natur ausgesetzt ist. Endogene Quellen sind hierbei reaktive Sauerstoffspezies, die während der oxidativen Atmung oder aus Produkten des Lipidstoffwechsels entstehen. Zusätzlich können Basenfehlpaarungen durch hydrolytische Desaminierung von Basen und Fehlern während der Replikation entstehen. Als exogene Verursacher von DNA Schäden sind UV Licht, ionisierende Strahlung und eine Vielzahl gentoxischer Medikamente, wie beispielsweise Chemotherapeutika, zu nennen [81, 87, 168, 216].

DSBe stellen die schwerste Form der DNA Schädigung dar. Sie können während der Replikation, durch Einzelstrangbrüche oder durch einen Kollaps der Replikationsgabel entstehen. Sie treten aber auch während der V(D)J Rekombination und der Meiose auf [16, 96, 145]. Abhängig von der Läsionsart wird durch die DNA Schädigung einer der verschiedenen Reparaturwege initiiert, mit dem Ziel, die genomische Integrität wiederherzustellen. Betrifft der Schaden nur einzelne Basen, kann dieser entweder durch Nukleotidexzisionsreparatur (NER), Basenexzisionsreparatur (BER) oder Mismatch Reparatur (MMR) behoben werden. Mittels BER werden oxidierte, alkylierte und desaminierte Basen sowie abasische Stellen und DNA Einzelstrangbrüche entfernt. Bei der NER werden gezielt Pyrimidin Dimere und unförmige DNA Addukte über Exzision von bis zu 32 Nukleotiden entfernt. Mit Hilfe der MMR werden Basenfehlpaarungen, Insertionen und Deletionen erkannt und behoben. DSBe können entweder durch ein einfaches Ligieren der DNA Enden (NHEJ) oder durch Homologie gerichtete DNA Reparatur (HDR) behoben werden [216].

Fehler bei der DNA Reparatur führen zu Zelltod, Mutationen und Krankheiten. Zu deren Vermeidung benötigt ein verlässliches Reparatursystem nicht nur eine Koordination zwischen den verschiedenen Reparaturformen, sondern auch die Aktivierung von Zellzyklus *Checkpoints* und die Induktion der Apoptose [81, 145, 163, 168, 216].

1

1.2 Mismatch Reparatur (MMR)

Die MMR umfasst die Wiederherstellung einer intakten DNA Doppelhelix nach dem Auftreten von Basenfehlpaarungen bzw. Insertionen/Deletionen von bis zu acht Nukleotiden, die während der DNA Replikation auftreten. Basenfehlpaarungen können jedoch nicht nur aufgrund einer fehlerhaften Replikation sondern auch durch Methylierung, Oxidation und Desaminierung von Basen entstehen. In MMR defizienten Tumorzellen ist die Mutationsrate im Vergleich zu normalen Zellen 100-1000fach erhöht [90, 120].

Diese Reparaturform wurde bereits in *E.coli* genau untersucht und es konnten die Proteine MutH, MutL, MutS identifiziert werden [216]. Hierbei initiiert MutS als Homodimer den Reparaturweg, indem es Basenfehlpaarungen erkennt und an diese bindet. Gemeinsam mit dem MutL Komplex wird die nukleolytische Komponente des MMR Weges, das Protein MutH, rekrutiert. Diese Endonuklease spaltet den unmethylierten Strang. An der Exzision sind weiterhin auch eine Helikase und eine auf Einzelstränge spezialisierte Exonuklease beteiligt. Schließlich folgt die DNA Synthese und Ligation [128].

Die MMR scheint in Säugetieren ähnlich abzulaufen und bisher konnte eine Vielzahl von Homologien zu *E.coli* gefunden werden (Abbildung 1). So wurden zwei Äquivalente des MutS Homodimers (Muta, MutS β) und drei Äquivalente des MutL Komplexes (MutLa, MutL β und MutL γ) im Menschen identifiziert.

Der MutS α Komplex wird von dem Heterodimer MSH2/MSH6 gebildet, MutS β besteht aus den Proteinen MSH2/MSH3. Beide Komplexe erkennen kürzere Einzelbasenfehlpaarungen und kleinere Insertionen/Deletionen von ein bis zwei Basen Länge. Der MutS β Komplex erkennt zusätzlich noch längere Fehlpaarungen von bis zu acht Nukleotiden. Hierbei scheint der humane MutS α Komplex der Hauptfaktor bei der Erkennung fehlgepaarter Basen zu sein; der hMutS β Komplex fungiert eher als "*Back-up* System" [68, 119].

Abbildung 1 Funktionsweise der humanen MMR Komponenten und weiterer beteiligter Proteine. Die MutS Komplexe wandern das DNA Rückgrat entlang, wobei der MutS α Komplex v.a. Basenfehlpaarungen und Insertions- bzw. Deletions-*Loops* (IDL) unter Beteiligung von ein bis zwei Basen erkennt. MutS β erfasst zusätzlich auch größere IDLs. Nach Detektion einer Fehlpaarung rekrutieren MutS α oder MutS β MutL α , ein MLH1/PMS2 Heterodimer. Nach Adenosintriphosphat (ATP) Hydrolyse bindet der *replication factor C* (RFC) an das 5' Ende des fehlgepaarten DNA Abschnitts wodurch wiederum nachgeschaltete Proteine wie das *Proliferating-Cell-Nuclear-Antigen* (PCNA), die Exonuclease 1 (EXO1), die Polymerase δ (Pol δ) und die DNA Ligase I (LIG1) aktiviert werden. Das *replication protein A* (RPA) stabilisiert Zwischenprodukte und reduziert die Prozessivität des MutS α / EXO1 Komplexes auf ca. 250 Nukleotide. Sowohl die 5' gerichtete als auch die 3' gerichtete Exzision wird durch EXO1 in 5'-3'Orientierung ausgeführt. Für die 3' gerichtete MMR fügt der MutL α Komplex, nach Aktivierung durch *replication factor C* (RFC), PCNA und ATP eine zweite, weiter 5' gelegene Schnittstelle ein. Anschließend wird die Exzision wie gewohnt durch EXO1 ausgeführt [89]. Anschließed werden die DNA Enden durch eine Ligase verbunden.

Das wichtigste MutL Homolog ist das Protein MLH1, welches Heterodimere mit den MutL Homologen PMS2 (hMutL α), PMS1 (hMutL β), und MLH3 (hMutl γ) bildet. Hierbei scheint MutL α , bestehend aus MLH1-PMS2, die wichtigste Rolle bei der MMR zuzukommen [119, 144]. hMutL γ übernimmt Funktionen bei der meiotischen Rekombination; bisher konnte noch keine spezifische biologische Funktion des hMutL β Komplexes identifiziert werden [100]. Mittels MutL α wird die nukleolytische Komponente der MMR aktiviert. EXO1, eine 5'-3'

Exonuklease reseziert, in Anwesenheit von MutS α , MutS β und RPA, die fehlgepaarten Basen 5' gerichtet. Lange war die 3' gerichtete Exzision bei der MMR ungeklärt. In neuere Studien konnte gezeigt werden, dass MutL α zusätzlich noch eine *PCNA/replication factor C (RFC)*-

abhängige Endonukleaseaktivität besitzt, die eine zentrale Rolle bei der 3' gerichteten MMR einnimmt [93]. Hierbei inzidiert MutL α den DNA Abschnitt, der 5' zu der Fehlpaarung gelegen ist. EXO1 entfernt anschließend, ausgehend von dieser Schnittstelle, die fehlgepaarten Basen in 5'-3' Richtung. Jedoch zeigen EXO1 Nullmutanten in der Hefe und im Mausmodell nur einen leicht mutierten Phänotyp, sodass wahrscheinlich noch weitere, bisher nicht identifizierte Exonukleasen Funktionen bei der MMR übernehmen [8, 213]. Anschließend werden die entstandenen Lücken durch die Polymerase δ und ihre Kofaktoren PCNA und RFC aufgefüllt; die Ligation erfolgt mittels der DNA Ligase I.

Weitere Proteine, die an der MMR beteiligt sind, sind das Protein RPA und das *high mobility group box 1* Protein (HMGB1). RPA (*replication protein A*) bindet die heteroduplexe DNA noch vor MutSα und MutLα, stimuliert anschließend die Exzision der Fehlpaarungen, schützt die dabei entstehende einzelsträngige DNA und fördert die DNA Resynthese [49, 152, 222]. Das Protein HMGB1 bindet ebenfalls Basenfehlpaarungen und hat eine DNA entwindende Aktivität [109].

1.3 DSB Reparatur

DSBe sind die schwerste Art der DNA Schädigung. So kann ein einziger nicht reparierter DSB den Tod der Zelle hervorrufen [206]. DSBe entstehen sowohl durch endogene als auch exogene Quellen. In der Zelle selbst verursachen v.a. reaktive Sauerstoffspezies chemische Veränderungen des DNA Rückgrates. Mögliche exogene Quellen sind ionisierende Strahlung, Chemotherapeutika und Topoisomerase Inhibitoren. Man nimmt an, dass DSBe auch durch physikalischen Stress während der Mitose entstehen, wenn die Chromosomen zu den entgegengesetzten Polen gezogen werden. DSBe entstehen jedoch nicht nur akzidentiell, sondern werden auch von der Zelle gezielt selbst, mittels spezifischer Endonukleasen, induziert; beispielsweise während der V(D)J Rekombination und der *Class-Switch* Rekombination (CSR), im Rahmen der B-Zellreifung oder während der Meiose [180].

Die zwei Hautpmechanismen der DSB Reparatur sind die HDR und das NHEJ [86]. Während die HDR auf der Basis ausgedehnter Sequenzhomologien stattfindet, werden beim NHEJ die DNA Enden im Bereich des Bruches aufgrund kurzer Mikrohomologiebereiche ligiert. Die relative Verteilung dieser beiden Formen bei der Reparatur von DSB in Säugetierzellen wird kontrovers diskutiert [92]. Das zur Verfügung stehende *Template* ist hierbei ein wichtiger Schlüsselfaktor. Daher ist es nicht verwunderlich, dass die HR bevorzugt

in diploiden Zellen abläuft, und, dass die HR v.a. während der Meiose und der späten S- und G_2 -Zellzyklusphase stattfindet, wenn das Schwesternchromatid als Template verfügbar ist [111, 155]. Dagegen überwiegt die Reparaturform des NHEJs während der G_1 und frühen S-Phase [108, 194]. Auch während der DNA Replikation scheinen DSBe v.a. mittels HR behoben zu werden [77, 78].

Als Reaktion auf einen DSB kommt es zu einer raschen lokalen und globalen Chromatindekondensation, ein Vorgang, der die DSB Reparatur unterstützt, da so der Zugang von Reparaturproteinen zur der Schadensregion gefördert wird. Diese Reparatur assoziierten Chromatinveränderungen werden durch verschiedene Chromatin *Remodeling* Komplexe durchgeführt, die durch ATP Hydrolyse Histone entfernen oder ihre Konformation ändern. So beispielsweise der SWI/SNF Komplex, der MRN die Bindung an den DSB erleichtert. Durch die Freilegung des Chromatingerüsts wird nicht nur der Zugriff auf das Chromatingerüst gefördert, vielmehr werden auch Reparaturfaktoren und Chromatin *Remodeling* Bestandteile rekrutiert und Zellzyklus *Checkpoints* aktiviert [127].

Durch direkte Interaktion mit dem MRN Komplex werden die DNA Enden von diesem als DSB erkannt und gebunden. Dieser Komplex, bestehend aus den Proteinen MRE11, Rad50 und NBS1, übernimmt neben der Erkennung des Bruches weitere wichtige Funktionen: Er prozessiert die DNA in diesem Bereich und beeinflusst über verschiedene Proteine auch Checkpoint- und Signalkaskaden. So rekrutiert und aktiviert er die ATM Kinase [74, 107, 118, 143], welche wiederum eine Vielzahl anderer Proteine phosphoryliert, darunter auch das H2A/H2AX Histon und weitere Effektorkinasen, die die Schadensantwort propagieren. Das phosphorylierte γH2AX scheint hierbei eine zentrale Rolle einzunehmen: Es interagiert mit dem Mediatorprotein MDC1, welches wiederum ATM und MRN im Sinne eines positiven Feedbacks aktiviert und so zu einer weiteren Verstärkung des Signals führt [187]. Hierdurch kommt es zu einer stabilen Aktivierung von MRN, MDC1 und ATM und weiteren Proteinen im Rahmen der Schadensantwort. Dabei werden die HR und das NHEJ gleichermaßen gefördert.

1.4 Homologie gerichtete DNA Reparatur

Die Reparaturform der HDR ist ein sehr exakter Reparaturmechanismus, wobei die DSB Reparatur auf der Grundlage von Sequenzhomologien stattfindet. Der HDR kann in zwei Gruppen unterteilt werden: In die konservative Form der Homologen Rekombination (HR), die zellzyklusabhängig stattfindet und bei der der DSB Bruch durch Stranginvasion und austausch mit einem homologen Doppel behoben wird, und in die nichtkonservative Form des sog. *Single Strand Annealings* (SSA). Bei dieser Reparaturform werden repetitive Sequenzen durch Stranganlagerungsaktivitäten verknüpft. Beiden Reparaturformen gemeinsam ist die initiale Erkennung und Bindung des DSBes durch den MRN Komplex [11].

1.4.1 Homologe Rekombination

Der Hauptschritt bei der HR ist die Invasion eines DNA Einzelstranges in das homologe Doppel. Da diese Reparaturform von dem Vorhandensein einer homologen Sequenz abhängig ist, erfolgt die Reparatur vorwiegend in der späten S- und G₂-Phase des Zellzyklus, wenn das Schwesternchromatid als Matrize verwendet werden kann [155, 214]. Solch eine zellzyklusabhängige Restriktion der DSB Reparatur ist sehr wichtig; findet die HR während der G₁- Phase statt, kann es zu schwerwiegenden chromosomalen *Rearrangements* kommen, da dann falsche homologe Sequenzen als *Template* verwendet werden. Ein wichtiger Schritt bei der zellzyklusabhängigen Regulation der HR ist die Resektion des DSBes, wodurch einzelsträngige DNA Überhänge entstehen, die für die Stranginvasion unverzichtbar sind. Die Resektion des DSBes findet während der S/G₂-Phase des Zellzyklus statt und wird von dem Protein CDK beeinflusst, welches u.a. das Protein CtIP reguliert. [12, 35, 83, 85]. Im Gegensatz dazu werden für die Reparaturform des NHEJs keine einzelsträngigen DNA Abschnitte benötigt.

Die beschädigten DNA Enden werden zunächst durch nukleolytische Aktivität in 5'-3' Richtung resiziert, sodass einzelsträngige 3' Überhänge entstehen, wodurch die Stranginvasion erst ermöglicht wird (Abbildung 2). Auch das Protein CtIP und die Exonuklease EXO1 scheinen in die Prozessierung der DSB Enden involviert zu sein [142, 221]. Die einzelsträngigen DNA Enden werden durch RPA stabilisiert, wobei die Rekrutiertung und Phosphorylierung von RPA ebenfalls durch CtIP unterstützt wird [83]. Sowohl BRCA1 als auch BRCA2 fördern die HR, auch wenn nur für BRCA2 eine direkte Interaktion mit Rad51 detektiert wurde. Nach Lösen des Proteins RPA von der DNA, rekrutiert BRCA2 das Protein Rad51, eukaryotes Homolog des *E.coli* Proteins RecA, in den Bereich der Einzelstrang DNA, wo dieses ein Nukleoprotein-Filament um die einzelsträngige DNA bildet [157]. Wie wichtig seine Funktion für die HR ist, zeigt sich nach Verlust von BRCA2. Ohne BRCA2 kommt es zu einer Verschiebung der DNA Reparatur in Richtung der mutagenen Reparaturformen des SSAs und des NHEJs [130, 204]. Anschließend erfolgt mittels des Rad51 Nukleoproteinfilamentes die Stranginvasion in das homologe Doppel. Wichtige Kofaktoren, die Rad51 während der HR unterstützen, sind die Rad51 Paraloge XRCC2, XRCC3, Rad51B, C, D sowie Rad52 und Rad54. Sie unterstützen den Rad51 vermittelten Strangaustausch indem sie den heterotetrameren Rad51B-C-D-XRCC2- und den heterodimeren Rad51C-XRCC3- Komplex bilden. Weiterhin erhöht XRCC2 die ATPase Aktivität von Rad51 [192]. Rad52 fördert die Rad51 vermittelte Ablösung von RPA. Rad54, eine DNA abhängige ATPase und Mitglied der SNF2/SWI2 Familie, interagiert direkt mit Rad51 und stimuliert dessen Aktivität indem es das Protein bei der Suche nach homologen DNA Abschnitten und bei der Verknüpfung dieser Abschnitte unterstützt. Zusätzlich scheint es auch Funktionen als Chromatin-*Remodeling* Komplex zu übernehmen, indem es die DNA entwindet und öffnet. Gleichzeitig fördert es ebenfalls die Duplexinvasion des Rad51 Filaments [9, 206]. Indem Rad54 die HR unterstützt und gleichzeitig das mutagene SSA inhibiert fungiert es als eine Art Wegweiser zwischen der konservativen und der nichtkonservativen Form der HDR [47]. Im Gegensatz zur Hefe scheint das Protein Rad52 in Eukaryoten keine Funktionen bei der HR zu übernehmen [182].

Durch die Paarung des einzelsträngigen DNA Überhanges mit dem homologen Duplex kommt es zur DNA Synthese sowie nachfolgender Verlängerung des invadierten DNA Stranges. Die sich bei der Stranginvasion bildende *D-Loop* kann sich mit der anderen Seite des DSBes paaren, sodass das 3' Ende des nichtinvadierenden DNA Stranges ebenfalls mittels DNA Synthese verlängert wird, wobei es zur Ausbildung einer *Double Holliday Junction* kommt. Hierbei gibt es zwei Möglichkeiten der Fortführung der HR, die entweder zur Bildung von *Noncrossover* Produkten oder zur Bildung von *Crossover* Rekombinanten führt [193]. Verläuft die DNA Reparatur ohne *Crossover*, kann sich die neugebildetete DNA von der Matrize ablösen und zurückklappen. In Säugetierzellen scheint dies der favorisierte Weg zu sein [91]. Entstandene Lücken werden durch Polymerasen aufgefüllt und abschließend werden die DNA Enden ligiert.

Viele der Proteine, die bei der HR Funktionen übernehmnen, spielen auch bei der Krebsentstehung eine wichtige Rolle, insbesondere Keimbahnmutationen in dem Brustkrebs Suszeptibilitätsgenen BRCA1 (*Breast Cancer 1*) und BRCA2 (*Breast Cancer 2*) [66, 196]. Das Lebenszeitrisiko an Brustkrebs zu erkranken beträgt für Trägerinnen einer BRCA1 Mutation ca. 65%, für Betroffene mit BRCA2 Mutation ca. 45 % [10], gleichzeitig ist das Risiko für die Entwicklung ovarieller Tumoren ebenfalls deutlich erhöht [217]. Aber auch Mutationen in den Rad51 Paralogen sind mit einem vermehrten Auftreten von Mamma- und Ovarialtumoren assoziiert. So prädisponieren mono-allelische Mutationen von RAD51C und RAD51D für Tumoren der Brust und der Ovarien. Mutationen des XRCC2 Proteins konnten

in "Brustkrebsfamilien" detektiert werden, allerdings konnte noch keine genaue Assoziation zwischen verschiedenen XRCC2 Varianten und dem Risiko an Brustkrebs zu erkranken gefunden werden. Ebenfalls deuten neuere Daten auf ein erhöhtes Risiko für Brust- und Ovarialkarzinome bei Mutation von RAD51B hin [70].

1.4.2 Single Strand Annealing

Bei der nichtkonservativen Form der HDR erfolgt die Paarung sich wiederholender Sequenzen mit nachfolgender Resektion der dazwischenliegenden DNA Abschnitte. Das SSA geht immer mit einer Deletion einher, ist potentiell mutagen und findet im Gegensatz zur HR Rad51 unabhängig statt [207]. Das Protein Rad51 scheint diese Reparaturform sogar zu inhibieren. Die Anlagerungs- und Prozessierungsschritte während des SSA werden durch die Proteine Rad52 und die Endonuklease ERCC1 (Excision repair cross complementing group 1-Xeroderma pigmentosa complementation group F), eukaryotes Homolog von Rad1-Rad10 (Hefe), katalysiert (Abbildung 2) [6]. Zellen mit Defekten dieser Proteine weisen eine reduzierte SSA Aktivität auf [182]. Es gibt jedoch mechanistische Gemeinsamkeiten mit der konservativen Form der HDR, so scheint beim SSA die DNA Reparatur ebenfalls durch Bindung des MRN Komplexes initiiert zu werden [206]. Anschließend werden die DNA Enden in 5'-3' Richtung reseziert und die dabei erzeugte einzelsträngige DNA durch das Protein RPA umhüllt. Es folgt die Hybridisierung homologer Einzelstränge im selben oder in unterschiedlichen Chromosomen. Nicht komplementäre Sequenzen werden reseziert, abschließend werden die entstandenen Lücken mittels spezifischer Polymerasen aufgefüllt und die DNA Enden ligiert.

Durch Bindung von Rad52 in den Bereich des DSBes wird die Prozessierung und Anlagerung der DNA Einzelstränge vermittelt [129]. Rad52 formt dabei einen heptameren Ring um die DNA Enden und bindet sie auf diese Weise. So verhindert das Protein den unspezifischen Angriff von Exonukleasen und vermittelt gleichzeitig die Assoziation der DNA Enden [207]. Das Heterodimer ERCC1/XPF kürzt die überstehenden, nichthomologen 3' Überhänge [3, 203]. Hierbei handelt es sich um eine strangspezifische Endonuklease, die zusätzlich die 5' Exzision während des NER katalysiert [43]. Weiterhin bildet das Protein ERCC1 einen Komplex mit Rad52.

Das SSA verursacht immer den Verlust einer der repetitiven Sequenzen. Zusätzlich kommt es zu einer Deletion des DNA Abschnittes, der zwischen den Wiederholungen liegt. Trotz dieses mutagenen Potentials scheint das SSA keine unbedeutende Rolle bei der DNA DSB Reparatur zu spielen, schon aufgrund der Tatsache, dass das Genom von Eukaryonten eine Vielzahl sich

wiederholender Elemente aufweist, die empfänglich für diese Reparaturform sind [142].

1.5 Nonhomologous Endjoining

Das NHEJ ist eine der Hauptformen der DSB Reparatur. Im Gegensatz zu der HR und dem SSA werden hierbei keine ausgeprägten Homologien benötigt. Die DNA Enden werden mittels kurzer oder völlig ohne Homologiebereiche ligiert. Es findet unabhängig von dem Protein Rad51 statt [78] und ist nicht auf eine bestimmte Zellzyklusphase beschränkt [155].

Man unterscheidet zwei Formen des NHEJ: das klassische und das noch weitgehend mechanistisch ungeklärte alternative NHEJ. Der klassische Weg benötigt eine Vielzahl von Proteinen und Faktoren, die auch eine Rolle bei der VDJ Rekombination während der B-Zellreifung spielen. Beim klassischen NHEJ binden zunächst KU70 und KU80 die DNA Enden, anschließend wird die katalytische Untereinheit der DNA Proteinkinase (DNA-PKcs) rekrutiert und aktiviert (Abbildung 2). Es entsteht das trimere DNA-PK-Holoenzym [48, 71]. Die an den DNA Enden gebundenen DNA-PK Moleküle scheinen sich gegenseitig zu phosphorylieren, bewirken dadurch ihre Dissoziation und ermöglichen so, falls aufgrund einer Modifikation der Enden nötig, eine Prozessierung der Strangenden durch Nukleasen (z.B. Artemis) [25, 34, 45, 116]. Schließlich werden die prozessierten DNA Enden durch den Proteinkomplex XRCC4/LIG4 verbunden [41, 73]. Bei dieser Reparaturform findet maximal eine minimale Prozessierung des DSB statt. Im Gegensatz dazu benötigt das alternative NHEJ

die oben genannten Faktoren nicht. Es basiert auf Paarung zwischen kurzen Mikrohomologiebereichen von ca. ein bis vier Nukleotiden und führt immer zu einer Deletion, ist also deutlich fehlerbehafteter. Es wird auch als Deletions-EJ oder MMEJ (*microhomology-mediated end joining*) bezeichnet [62, 113].

Es gibt mechanistische Gemeinsamkeiten aber auch Unterschiede zwischen den drei Reparaturwegen NHEJ, SSA und HR. Bindet das Heterodimer KU70/80 an den DSB, wird die DNA Reparatur in Richtung des NHEJs gebahnt, gleichzeitig werden das SSA und die HR inhibiert. Durch die KU vermittelte Protektion der DNA sind diese einer Prozessierung nicht mehr zugänglich, die jedoch für die HDR Reparatur nötig ist [46, 181]. Damit der HDR stattfinden kann, muss die KU vermittelte Bindung der DNA Enden verhindert werden. Anschließend wird die DNA im Bereich des Bruches prozessiert, sodass einzelsträngige DNA Überhänge entstehen. Hierbei scheinen die konservative und nichtkonservative Form der HDR während früher Schritte der DNA Reparatur Gemeinsamkeiten aufzuweisen [20]. So werden sowohl das SSA als auch die HR durch das Protein CtIP stimuliert, das direkt mit dem MRE11 Komplex interagiert und so durch Aktivierung der Nukleaseaktivität die Prozessierung der DNA Enden stimuliert [167]. Während späterer Reaktionsschritte unterscheiden sich das SSA und die HR jedoch in der Art wie die entstandene einzelsträngige DNA verwendet wird: Entweder kommt es zu einem Rad51 vermittelten Strangaustausch samt -invasion in die homologe DNA-Duplex oder es kommt zu einer Anlagerung einzelsträngiger homologer DNA Abschnitte. Während dieser späten Reaktionsschritte spielen sowohl die Endonuklease ERCC1 als auch das Protein Rad52 für das SSA eine entscheidende Rolle, wohingegen diese beiden Reparaturproteine die HR in Säugern nicht oder weniger beeinflussen. Anders verhält es sich mit Rad51, das die HR fördert und gleichzeitig das mutagene SSA inhibiert [182]. Zu Beginn der DSB Reparatur scheinen die HR und das SSA mechanistische Gemeinsamkeiten zu teilen. Während späterer Reaktionsschritte sind die beiden Reparaturformen jedoch deutlich voneinander distinkt.

1.6 Das humane MMR Protein hMSH2 und die DSB Reparatur

In Eukaryonten übernimmt das Protein MSH2 wichtige Funktionen bei der MMR und bildet dabei einen heterodimeren Komplex mit MSH3 bzw. MSH6. Jedoch hat MSH2 neben der postreplikativen Genauigkeitskontrolle noch weitere Aufgaben bei der DNA Reparatur: So aktiviert es Zellzyklus *Checkpoints* und induziert die Apoptose [178]. Weiterhin ist es ein Teil des BRCA1 Multiproteinkomplexes, der abnorme DNA Strukturen erkennt und diese behebt

[211]. Diese zahlreichen Aufgaben machen MSH2 nicht nur zu einem Tumorsuppressor, sondern vielmehr auch zu einem "Wächter" des Genoms. Neben der postreplikativen Genauigkeitskontrolle ist das MMR Protein ein wahrscheinlicher Akteur bei der DSB Reparatur. Bisher weiß man jedoch nur wenig darüber, inwiefern MSH2 diesen Reparaturweg beeinflusst. Aus der Hefe ist bekannt, dass MSH2 auch Funktionen während der DSB Reparatur übernimmt, indem es unterstützend bei der Entfernung nichthomologer DNA Enden und möglicherweise auch bei der Suche nach homologen DNA Abschnitten mitwirkt [59, 60, 164, 189, 190]. Weiterhin scheint das MSH2-MSH6 Heterodimer gemeinsam mit der Helikase Sgs1 (einem BLM Homolog) die Paarung zwischen nicht perfekt passenden DNA Sequenzen zu unterdrücken und so diese homeologe Rekombination zu verhindern. In E.coli inhibiert das MMR Protein den RecA vermittelten Strangaustausch [218]. Auch in Säugetierzellen verhindern die MutS Homologe MSH2, MSH3 und MSH6 die Rekombination zwischen divergierenden Sequenzen und könnten für die Genauigkeit der HR von Bedeutung sein [2, 44, 56]. hMLH1 und seine Komplexpartner haben ebenfalls antirekombinogene Eigenschaften auf die HR bei nur kurzen ununterbrochenen Homologien, [31, 176]. Hierbei scheinen Mutationen im MSH2 Protein schwerwiegendere Auswirkungen zu haben als solche des MLH1 oder PMS2 Proteins. Übereinstimmend mit diesen möglichen Aufgaben von hMSH2 bei der DSB Reparatur können menschliche Zellen ohne hMSH2 keine akkurate Reparatur von DSBen in Plasmid DNA durchführen [209].

1.7 Hereditäres Nichtpolypöses Kolonkarzinom Syndrom (HNPCC)

Der wichtige Beitrag der MMR Proteine zur Aufrechterhaltung der genomischen Integrität lässt sich an den Auswirkungen von Mutationen der MMR Gene feststellen. Sie führen nicht nur zur Ausprägung eines mutierten Phänotyps, sondern prädisponieren auch für die Entwicklung von Krebs; insbesondere die Entstehung kolorektaler Karzinome (KRK) wird begünstigt. Die erbliche Form, das Hereditäre Nichtpolypöse Kolonkarzinom Syndrom (HNPCC), auch als Lynch Syndrom bezeichnet, zeigt einen autosomal dominanten Erbgang mit unvollständiger Penetranz und ist ursächlich für 2-3% aller KRK [105].

Tumor	Risiko Männer	Risiko Frauen
kolorektales Karzinom	34-73%	32-59%
Endometriumkarzinom	-	39-50%
Ovarialkarzinom	-	7-8%
Magenkarzinom	1-6%	
Karzinom des	a des ns/ des 2-8% ers arzinom 1-4%	
Nierenbeckens/ des		
Harnleiters		
Gallengangskarzinom		
Dünndarmkarzinom	1-4%	
ZNS-Tumoren	ca. 2%	

Tabelle 1 Tumorspektrum und Lebenszeitrisiken bei HNPCC Patienten für alle MMR Gene. Wie auch bei sporadischen Kolonkarzinomen haben männliche Mutationsträger ein höheres Lebenszeitrisiko [185].

Aufgrund der vererbten Mutation in einem der MMR Gene tragen Betroffene in jeder Körperzelle eine defekte und eine regelhafte Genkopie. Durch eine zweite, zufällige (somatische) Mutation entsteht ein schwerer Defekt der DNA Reparatur mit der Folge eines erhöhten malignen Entartungsrisikos der Zelle. Typisch sind ein früher Krankheitsbeginn mit einem mittleren Erkrankungsalter von 45 Jahren, ein hauptsächlicher Befall des proximalen Kolons, die Ausbildung multipler Tumoren des Darmtrakts und ein weniger aggressiver Krankheitsverlauf. Das Risiko für die Entwicklung eines Kolonkarzinoms steigt dabei mit zunehmendem Alter: Bei 60 Jährigen liegt dieses Risiko zwischen 60 und 70%, im Alter von 80 Jahren steigt es auf 80% [185, 208]. Weiterhin zeigen diese Tumoren histopathologische Besonderheiten: Eine muzinöse/siegelringzellige Differenzierung, Tumor-infiltrierende Lymphozyten, eine Crohn-ähnliche lymphozytäre Reaktion und ein medulläres Wachstum. Neben dem Darmtrakt können noch weitere Organe, insbesondere das Endometrium, betroffen sein. Weitere mögliche extrakolische Manifestationen sind Ovarien, Urothel, Dünndarm, Magen, Gallengang und Gehirn [95, 177, 185] (Tabelle 1). Aber auch 10-15% aller sporadisch auftretenden Kolonkarzinome zeigen eine Mikrosatelliteninstabilität. Hier wird der Ausfall der MMR Aktivität meist durch Inaktivierung von MLH1 und PMS2 durch Methylierung des Promotors verursacht. Ursächlich für die Promotermethylierung kann eine somatische Mutation im BRAF-Gen sein, eine Mutation die bei HNPCC Trägern bislang nicht detektiert wurde. [26, 80, 177, 185].

Aufgrund der MMR Defizienz werden Fehler während der Replikation nicht mehr effizient behoben, es kommt zur sog. Mikrosatelliteninstabilität (MSI). Mikrosatelliten sind kurze repetitive, über das gesamte Genom verteilte DNA Sequenzen [103]. Da sich Mikrosatelliten ständig wiederholen sind sie besonders anfällig für Fehler während der Replikation. Ohne die MMR Faktoren kommt es zu einer Häufung dieser Replikationsfehler und die Anzahl von DNA Residuen innerhalb eines Mikrosatelliten vergrößert bzw. verkleinert sich, was als MSI bezeichnet wird [208].

Die wichtigsten Gene, die beim Lynch Syndrom betroffen sind, sind das MLH1, MSH2, PMS2 und MSH6 Gen. Häufig geht ein Verlust des MLH1 Proteins mit einem sekundären Ausfall der PMS2 Expression einher. Ähnlich verhält es sich bei einem Verlust von MSH2, hier fällt häufig konsekutiv das MSH6 Protein aus. Bei den Veränderungen der MLH1 und MSH2 Gene handelt es sich v.a. um *Nonsense, Missense* und *Frameshift* Mutationen sowie Veränderungen im Bereich der *Splicing* Region [177]. Interessanterweise führen Mutationen der verschiedenen MMR Gene zur Ausprägung unterschiedlicher Phänotypen: So führen Defekte des MSH2 Proteins zu einer erhöhten Inzidenz von Tumoren außerhalb des Darmtrakts [94]. Mutationen des MSH6 Proteins gehen, im Vergleich zu Defekten der anderen MMR Faktoren, mit einem selteneren Auftreten von Karzinomen, einem späteren Krankheitsbeginn und einer Prädisposition insbesondere für Adenokarzinome des Endometriums einher [80]. Das Risiko der malignen Entartung scheint für Betroffene mit einer PMS2 Mutation noch niedriger zu sein, allerdings fehlen aufgrund des geringen Auftretens dieser Mutation noch aussagekräftige Daten. Wie auch bei sporadischen KRK ist das Risiko für männliche Mutationsträger höher (Tabelle 1) [185].

Die Identifikation von Mutationsträgern basiert auf dem molekularbiologischen Screening von Familien, die die international festgelegten Kriterien für dieses Syndrom erfüllen (Tabelle 2). Namentlich sind dies die Amsterdam Kriterien I und II und die weniger streng gefassten Bethesda Kriterien [153, 177, 185].

Tabelle 2 Amsterdam Kriterien I und II sowie Bethesda Kriterien verändert nach Lynch et al. und Steinke et al. [115, 185].

Amsterdam Kriterien I

Alle Kriterien müssen zutreffen

Mindestens drei Familienangehörige mit histologisch gesichertem KRK.

Davon muss ein Betroffener mit den beiden anderen erstgradig verwandt sein; eine FAP muss ausgeschlossen sein.

Wenigstens zwei aufeinanderfolgende Generationen müssen betroffen sein.

Bei mindestens einem Betroffenen Diagnosestellung vor dem 50. Lebensjahr.

Amsterdam Kriterien II

Alle Kriterien müssen zutreffen

Mindestens drei Familienangehörige mit histologisch gesichertem KRK oder einem Karzinom des Endometriums, des Dünndarms, Ureters oder Nierenbeckens.

Davon muss ein Betroffener mit den beiden anderen erstgradig verwandt sein.

Eine FAP muss ausgeschlossen sein.

Wenigstens zwei aufeinanderfolgende Generationen müssen betroffen sein.

Bei mindestens einem Betroffenen Diagnosestellung vor dem 50. Lebensjahr.

Bethesda Kriterien

Mindestens eins der genannten Kriterien muss erfüllt sein

Patienten mit Auftreten eines KRKs vor dem 50. Lebensjahr.

Patienten mit synchronem oder metachronem KRK oder anderen HNPCC assoziierten Tumorerkrankungen (Endometrium, Ovarien, Magen, Gallengang, Dünndarm, Urothel) unabhängig vom Alter bei Diagnosestellung. Patienten mit KRK vor dem 60. Lebensjahr mit typischer Histologie (Tumor- infiltrierende

Lymphozyten, Crohn ähnliche Veränderungen, muzinöse oder siegelringzellige Differenzierung, medulläres Karzinom).

Patienten mit KRK, die einen Verwandten 1. Grades mit einem KRK oder einem HNPCCassoziierten Tumor vor dem 50. Lebensjahr haben.

Patienten mit KRK oder Syndrom assoziierten Tumoren (unabhängig vom Alter), die mindestens zwei Verwandte 1. oder 2. Grades haben, bei denen ein KRK oder ein HNPCC-assoziierter Tumor diagnostiziert wurde.

Für den molekularbiologischen Nachweis hat sich in der klinischen Routine die Testung der MSI durchgesetzt. Tumoren mit Defekten in den MMR Genen, die für die Proteine MLH1, MSH2 und PMS2 kodieren, zeigen generell eine MSI. Interessanterweise führen Defekte im Protein MSH6 nicht zu der gleichen hohen Frequenz an MSI, möglicherweise erklärbar mit der Kompensation durch die anderen MMR Proteine [26, 171]. Routinemäßig wird die Stabilität von fünf verschiedenem Mikrosatelliten untersucht. Tumoren werden als MSI hoch eingestuft (MSI-H), sollten zwei oder mehr Marker eine Instabilität aufweisen. Bei MSI niedrigen Tumoren dagegen weist nur einer der Marker eine Instabilität auf und bei MSI stabilen Karzinomen finden sich bei keinem der fünf Marker Auffälligkeiten [138]. Defekte in

der MM Reparatur spielen jedoch nicht nur bei der Krebsentstehung eine wichtige Rolle, sondern sind auch für die Therapie von Bedeutung. Beispielsweise scheinen hMSH2 defiziente Zellen nicht auf 5-FU, dem Standardchemotherapeutikum bei der Behandlung KRK anzusprechen. Auch eine Therapie mit Cisplatin oder Carboplatin hat bei Defekten in der MMR Maschinerie geringere Erfolgschancen; Oxaliplatin jedoch zeigt eine gute Wirkung [63, 121]. Gerade aufgrund dieser Konsequenzen für das therapeutische Vorgehen ist ein verlässliches Screening zur Detektion mutierter MMR Proteine wichtig.

1.8 Fluoreszenzbasiertes Testsystem zur Analyse der verschiedenen DNA Reparaturmechanismen

Um die Reparatur von DSBen in Abhängigkeit von der Expression des MMR Proteins hMSH2 genauer zu untersuchen, wurde für diese Arbeit das von Prof. Wiesmüller entwickelte fluoreszenzbasierte Testsystem verwendet [5]. Dieses beruht auf dem enhanced green fluorescent protein (EGFP) und der Meganuklease I-SceI. Die beiden EGFP Gene liegen in Serie vor, wobei man ein Akzeptor und ein Donor EGFP Gen unterscheidet. Das Akzeptor Gen, welchem ein CMV Promotor vorangeht, enthält die 18 bp lange Erkennungssequenz für die Meganuklease I-Scel, die den DSB induziert [147] und im menschlichen Genom ansonsten nicht vorkommt (Abbildung 3). Diese Erkennungssequenz wird von Deletionen oder Insertionen einiger Basen flankiert. Die Donor-EGFP Gene folgen nach einem Abstandhalter. Dabei handelt es sich entweder um eine Hygromycinresistenzkasette oder eine RFP(red fluorescent protein)-Expressions-Kassette. Die für die Chromophorregion kodierenden Aminosäuren der EGFPs sind durch die Insertion einer I-SceI-Erkennungssequenz nicht funktionsfähig. Nach erfolgreicher Reparatur des induzierten DSBes kommt es zu einer Expression des EGFP Proteins und die Zellen zeigen eine Grünfluoreszenz, was mittels Durchflusszytometrie detektiert werden kann. Durch unterschiedliche Anordnung und Variation des Designs von Akzeptor und Donor-EGFP ist es möglich die verschiedenen DSB Reparaturmechanismen genauer zu untersuchen (Abbildung 4). Für die Analyse der DSB Reparatur durch HR befinden sich zwei mutierte Formen des EGFP-Gens im Vektor (Abbildung 3).

Abbildung 3 Prinzip des Fluoreszenz-basierten DSB-Reparatur-Testsystems, beispielhaft dargestellt für die Homologie gerichtete DSB Reparatur (HDR), *Akyüz et al.* [5].

Das 5' *long terminal repeat* (LTR) und das 3' LTR des retroviralen Vektors p5NM flankieren das Konstrukt. Das Pyromycin Acetyltransferase Gen folgt nach einem Abstandhalter. Das Akzeptor EGFP Gen ist mutiert und enhält die I-*Sce*I Erkennungssequenz. Das Donor EGFP Gen fungiert als Substrat für die Homologe Rekombination (HR) und ist ebenfalls nich funktionsfähig. Der DSB wird durch die Meganuclease I-*Sce*I induziert, deren Expression durch den Östradiol sensitiven GRE Promoter gesteuert wird. Die Expression des HA-I-*Sce*I Fusionsprotein wurde mittels Immunblotting 24 h nach Östradiol Induktion (200 nM) verifiziert. Mittels der konservativen und nichtkonservativen Form der HDR kommt es zur Wiederherstellung eines intakten *wtEGFP*-Gens.

Das Akzeptor *EGFP* Gens weist im Bereich der I-*Sce*I Erkennungssequenz eine Deletion von entweder vier (HR-*EGFP*) oder 46 Basenpaare (Δ -*EGFP*) auf. Damit die HR effizient und fehlerfrei ablaufen kann, ist eine Mindestlänge von ca. 200 homologen Basenpaaren (bp) zwischen den zu rekombinierenden Substraten notwendig [55, 158]. Beim Δ -*EGFP*-Gen ist lediglich ein homologer Abschnitt von 168 bp gegeben, sodass eine limitierende Homologie zum Donor-*EGFP* Gen besteht. Das HR-*EGFP* weist dagegen mit 195 homologen bp eine ausreichende Homologielänge zum Donor-*EGFP*-Gen auf. Zur Detektion der nicht konservativen Form der Homologie gerichteten DNA Reparatur (SSA) besteht das DNA Substrat aus einem 3'-trunkierten 5'*EGFP*-Gen und einem HR-*EGFP*- Gen hinter das der Abstandshalter *RFP* kloniert wurde, sodass die transfizierten Zellen zusätzlich eine Rotfluoreszenz aufweisen.

Abbildung 4 DNA Reparatursubstrate zur Detektion der verschiedenen DSB Reparaturmechanismen, *Volcic et al.* [210].

Für die Untersuchung des NHEJs ist eine Genkopie des wt*EGFP*-Gens ausreichend (Abbildung 4). Das mutierte *EGFP* Gen enthält die integrierte I-*Sce*I-Erkennungssequenz, welche von einem Mikrohomologie Bereich - bestehend aus 5 bp - flankiert wird. Eine Reparatur durch das NHEJ hat die Deletion der gesamten Mikrohomologie-Sequenz zur Folge und führt zur Expression eines funktionellen *EGFP* Proteins. Die Frequenz erfolgreich rekonstituierter DSBe, die zur Wiederherstellung des *EGFP* Gens und nachfolgender Expression des grünfluroereszierenden *EGFP* Proteins führen, kann mittels Durchflusszytometrie detektiert werden.

1.9 Fragestellung

In der vorliegenden Arbeit sollte in menschlichen Zellen der Einfluss des MMR Proteins hMSH2 auf die verschiedenen Formen der DSB Reparatur untersucht werden und so seine möglichen Funktionen bei der Aufrechterhaltung der genomischen Stabilität weitergehend analysiert werden.

Mutationen im hMSH2 Gen, aber auch im hMLH1 Gen, führen zum vererbbaren HNPCC Syndrom, das die Ausbildung von Kolonkarzinomen begünstigt. Typisches Merkmal ist die hohe Mikrosatelliten Instabilität, hervorgerufen durch *Frameshift* Mutationen als Folge nichtbehobener Fehler während der Replikation [98].

Die MMR und die dabei beteiligten Komponenten wurden bereits in der Hefe gut untersucht. Aber auch unabhängig von der Replikation scheinen MSH2, MSH3, MSH6 sowie MLH1 und PMS1 wichtige Funktionen bei der DNA Reparatur zu übernehmen. So wurde v.a. für die MutS Homologe eine Suppression von Rekombinationsereignissen zwischen divergierenden Sequenzen beschrieben. Um eine mögliche Beeinflussung der verschiedenen DSB Reparaturformen durch hMSH2 genauer zu untersuchen, wurde das gut etablierte EGFP basierte Testsystem verwendet [5]. Mithilfe dieses Testsystems sollte nach Induktion eines DSB durch die Meganuklease I-*Sce*I die Effektivität und Qualität der DSB Reparatur in humanen Zellen in Abhängigkeit von der hMSH2 Expression untersucht werden. Weiterhin sollte auch die Rolle der beiden Interaktionspartner hMSH3 und hMSH6 bei der DSB Reparatur genauer analysiert werden. Um zu verstehen, wie im Detail hMSH2 die HDR moduliert, wurden Hauptfaktoren dieses Reparaturweges, die Proteine hRad51 und hRad52, sowie mögliche in der Literatur beschriebene Interaktionspartner des MMR Faktors, hierbei insbesondere die Proteine ERCC1, MRE11 und BRCA2, in ihrer Funktion beeinflusst. Vor dem Hintergrund dieser gezielten Eingriffe in die DSB Reparatur wurde erneut die Effektivität der DSB Reparatur in Abhängigkeit von hMSH2 analysiert, um zu verstehen, welchem molekularen Reaktionsweg die Wirkung von hMSH2 zuzuordnen ist.

2 MATERIAL UND METHODEN

2.1 Material

2.1.1 Geräte

Agarosegelelektrophorese-Kammern: RunOne PerfectBlue Mini Analysenwaage: P1200 Sartorius BP61 Autoklav: Varioklav 75S Brutschränke: Inkubator B6760 Inkubator 311 Inkubator 3862 Concentrator 5301 Durchflusszytometer: FACSCalibur ™ FACSCalibur™ HTS Eismaschine Gefrier-und Kühlsysteme: -86 °C, HFU3285SITOP-V37 -86 °C, Forma Scientific 917 Premium NoFrost Froster-520 Geldokumentationsanlage: *MultiImageTMLight Cabinet* Gelgießkammer SE200

Gene Pulser[®] mit *Pulse Controller*: Magnetrührer: Embitec, San Diego, CA, USA PeqLab, Erlangen Mettler, Gießen Sartorius, Göttingen H+P, Oberschleißheim Heraeus, Hanau Thermo, Egelsbach Forma Scientific, Marietta, OH, USA Eppendorf, Hamburg Becton Dickinson, Heidelberg Becton Dickinson, Heidelberg Ziegra, Isernhagen Kendro, Asheville, NC, USA Thermo, Fremont, CA, USA Liebherr, Ochsenhausen Kirsch, Offenburg Biozym Diagnostik, Oldenburg Hoefer Pharmacia Biotech, San Francisco, CA, USA Biorad, München

Heidolph MR1 **IKA-Combimag RCO** Mikroskope: Axiovert 25 Olympus IX50-S8F **Olympus BX51** Mikrotiterplatten-Photometer MRX Mikrowelle MS-1915H **PCR-Geräte** Primus pH-Meter MP230 Photometer DU640 Polyacrylamid-Gelelektrophoresesystem: SE250 Mighty Small II Stromversorgungsgeräte: **EPS 1000 EPS** 1001 EPS 2A 200 Schüttelinkubatoren: Certomat[®]R Phero-Shaker Variospeed *Easia*[®]*Shaker*

Sterilbank: *Clean Air DLF/REC6 Clean Air DLF/BSS6* Stickstofftanks: Apollo200 BT40 *Test-Tube-Rotator* Ultraschallbad Sonorex RK31 Heidolph Instruments, Schwabach Janke&Kunkel, Staufen im Breisgau

Zeiss, Jena Olympus, Tokyo, Japan Olympus, Tokyo, Japan Dynatech Laboratories, Chantilly, VA, USA LG Electronics, Seoul, Korea MWG-Biotech, Ebersberg Mettler-Toledo, Greifensee, Schweiz Beckman, München

Amersham Pharmacia Biotech, Freiburg Amersham Pharmacia Biotech, Freiburg

Amersham Pharmacia Biotech, Freiburg Amersham Biosciences, Piscataway, NJ, USA Amersham Biosciences, Piscataway, NJ, USA

B. Braun Biotech Int., Melsungen
Biotec-Fischer, Reiskirchen
Biotec-Fischer, Reiskirchen
Medgenix, Ratingen

Clean Air Techniek, Woerden, Niederlande Clean Air Techniek, Woerden, Niederlande

Messer-Griessheim, Euteneuen L'air Liquide, Champigny, Frankreich Snijders, Tilburg, Niederlande Bandelin, Berlin Western-Blotkammer TE Series VortexGenie 2 Zentrifugen: Biofuge 13

Biofuge pico Multifuge 1 _{S-R} Multifuge 3 _{S-R} Rotanta 96R

2.1.2 Software

BDTM PlateManager 1.0.1 BD Cell QuestTM Pro 4.0.2 BD Cell QuestTM Pro 5.2.1 Cell^F 2.5 ChemiImagerTM5500 Clone Manager 7.04

DU640 Benutzersoftware Gimp 2.2 Magellan 3 Microsoft Office Professional 2003-2010 ModFit LTTM version 3

Reference Manager Professional 10

Bender und Hobein, Zürich, Schweiz Heraeus-Sepatech, Osterode Kendro, Osterode Kendro, Osterode Kendro, Osterode Hettich, Tuttlingen

Amersham Pharmacia Biotech, Freiburg

BD Biosciences, Heidelberg **BD** Biosciences, Heidelberg **BD** Biosciences, Heidelberg Soft Imaging System, Münster Alpha Innotech, San Leandro, CA, USA Scientific&Educational Software, Cary, NC, USA Beckman, München FSFE, Düsseldorf Tecan, Crailsheim Microsoft, Redmond, WA, USA Verity Software House, Topsham, ME USA Thomson ResearchSoft, Stamford, CT, USA Graphpad Software, La Jolla, CA, USA

Graph Pad Prism 6.0

2.1.3 Chemikalien Enzyme und andere Produkte

Die in dieser Arbeit verwendeten Chemikalien wurden von den Firmen Merck (Darmstadt), Serva Feinbiochemica (Heidelberg), Riedel de Häen (Seelze) und Geschäftsbereich Fluka, Sigma-Aldrich Chemie (Deisenhofen) bezogen. Spezielle Chemikalien, Enzyme und Produkte stammten von folgenden Firmen: 2.1.3.1 Enzyme Proteinase K Restriktionsendonukleasen RNAse A T4-DNA-Ligase T4-DNA-Polymerase Taq-DNA-Polymerase 2.1.3.2 Chemikalien Aceton Acrylamide/Bis Solution (19:1) 40% (w/v) Agarose Ammoniumperoxodisulfat (APS) Ampicillin Bacto-Agar, - Trypton, - Hefe-Extrakt β-Glycerolphosphat Bromphenolblau **BSA** Cryomaxx S (Einfriermedium) Dimethylsulfoxid (DMSO) ddH₂O DMEM dNTPs DTT

DTT EDTA-Dinatriumsalz-Dihydrat epidermal growth factor (EGF) EGTA Ethanol absolute Sigma-Aldrich, Steinheim New England Biolabs, Frankfurt/M. MBI Fermentas, St. Leon-Rot Sigma-Aldrich, Steinheim Marligen, Ijamsville, MD, USA Roche, Mannheim New England Biolabs, Frankfurt/M. Quiagen, Hilden; PeqLab, Erlangen

Sigma-Aldrich, Steinheim Gibco BRL Life Technologies, Eggenstein Invitrogen, Karlsruhe Bio-Rad Laboratories, Hercules, CA, USA Serva, Heidelberg Difco Laboratories, Detroit, MI, USA

Merck, Darmstadt New England Biolabs, Frankfurt/M. PAA, Pasching Sigma-Aldrich, Steinheim Fresenius Kabi, Bad Homburg

Gibco BRL Life Technologies, Eggenstein Roche, Penzberg Sigma-Aldrich, Steinheim Applichem, Darmstadt Sigma-Aldrich, Steinheim Roth, Karlsruhe Sigma-Aldrich, Seelze Ethidiumbromid Fetal Calf Serum Gold (FCS) FACS-Clean, -Rinse, -Flow Glycerol Glycerolphosphat Glycin Größenstandards: GeneRuler™DNA Ladder Mix (100-10000 bp) PageRuler™Pre-Stained Protein Ladder PageRuler™Pre-Stained Protein Ladder Plus Hepes-Puffer

Insulin Isopropanol Isoseptol Kaliumacetat L-Glutamin β-Mercaptoethanol

Magermilchpulver (Marvel) Magnesiumacetat Magnesiumchlorid Magnesiumsulfat Methanol Natriumchlorid Natriumchlorid Natriumdodecylsulfat (SDS) Natriumfluorid Natriumperiodat Natriumpyruvat

Natriumvanadat Nicht essentielle Aminosäuren Nonident P40 Sigma-Aldrich, Steinheim PAA, Pasching Becton-Dickinson, Heidelberg J.T. Baker, Deventer, Niederlande Merck, Darmstadt Applichem, Darmstadt

MBI-Fermentas, St. Leon-Rot MBI-Fermentas, St. Leon-Rot MBI-Fermentas, St. Leon-Rot Gibco BRL Life Technologies, Eggenstein Invitrogen, Karlsruhe Sigma-Aldrich, Seelze Apotheke, Universität Ulm Merck, Darmstadt Biochrome, Berlin Bio-Rad Laboratories, Hercules, CA, USA Premier Brands, Spalding, U.K. Merck, Darmstadt Merck, Darmstadt Sigma-Aldrich, Steinheim Sigma-Aldrich, Seelze Applichem, Darmstadt Merck, Darmstadt Merck, Darmstadt Merck, Darmstadt Sigma-Aldrich, Steinheim Gibco BRL Life Technologies, Eggenstein Sigma-Aldrich, Steinheim Invitrogen, Karlsruhe Fluka. Neu Ulm

Opti-MEM [®] I Reduced Serum Medium	Invitrogen, Karlsruhe	
PBS (1x/10x)	PAA, Pasching	
PCI (Phenol/Chloroform/Isoamylalkohol (25:24:1)) Biomol, Hamburg	
Ponceau S Lösung	Sigma-Aldrich, Steinheim	
Propidiumiodid (PI)	Sigma-Aldrich, Steinheim	
Proteaseinhibitor-Tabletten	Roche, Mannheim	
Puromycin	Serva, Heidelberg	
Refobacin	Merck, Darmstadt	
Rotiphorese 10x SDS Page	Roth, Karlsruhe	
RPMI 1640 ohne Phenolrot	Gibco BRL Life Technologies,	
	Eggenstein	
RPMI 1640	Gibco BRL Life Technologies,	
	Eggenstein	
Salzsäure	Merck, Darmstadt	
Sterofundin	B.Braun Melsungen AG, Melsungen	
TEMED	Roth, Karlsruhe	
Trisma-Base	Sigma-Aldrich, Steinheim	
Tris/HCl	Roth, Karlsruhe	
Triton-X-100	Sigma-Aldrich, Steinheim	
Trypanblau	Sigma-Aldrich, Steinheim	
Trypsin-EDTA	PAA, Pasching	
Tween 20	Fluka, Neu Ulm	

Annexin-V-FLUOS Staining Kit	Roche, Penzberg	
BCA Protein Assay Kit	ThermoScientific, Rockford, IL, USA	
Blood and Cell Culture DNA Mini Kit	Qiagen, Hilden	
Cryo 1C Freezing Container	Nalgene, Rochester, NY, USA	
Chemilumineszenz Substrate:		
SuperSignal West Pico	ThermoScientific, Rockford, IL, USA	
SuperSignal West Dura Extended Duration	ThermoScientific, Rockford, IL, USA	
Dialyseplättchen	Millipore, Schwalbach	
Einfrierröhrchen	Greiner-Bio-One, Frickenhausen	
Elektroporationsküvetten (0,4 mm)	Bio-Rad Laboratories, Hercules, CA, USA	

2.1.4 Sonstige Materialien

FACS-Rundbodenröhrchen (5ml) Falconröhrchen 15 ml/ 50 ml Filterpapier Whatman 3 MM *FuGENE®HD Transfection Reagent* Hybond-C-Extra, Nitrocellulose Hyperfilm ECL Immobilon-P Membran (PVDF) *Lipofectamine™2000 Reagent* Mikrotiterplatten-Reader Sunrise™ *PowerPrep™ HP Plasmid Maxiprep Kits Rapid DNA Ligation Kit* Reaktionsgefäße 0,5ml/1,5ml/2ml

Restore[™] Western Blot Stripping Buffer QIAEX II Gel Extraction Kit QIAprep Spin Miniprep Kit QIAquick Gel Extraction Kit QIAquick PCR-Purification Kit ZK 96-, 24- und 6-Loch-Platte ZK-Platte 9 cm/15 cm

2.1.5 Puffer und Lösungen4x SDS Sammelgelpuffer

4x SDS-Trenngelpuffer

Annealing-Puffer

5 x DNA-Probenpuffer

Fixierlösung

Becton-Dickinson, Heidelberg Becton-Dickinson, Heidelberg Schleicher und Schüll, Dassel Roche, Mannheim Amersham Biosciences, Freiburg Amersham Biosciences, Freiburg Millipore, Eschborn Invitrogen, Karlsruhe Tecan, Crailsheim Marligen, Ijymsville, MD, USA Roche, Mannheim Eppendorf, Hamburg; Sarstedt, Nürmbrecht ThermoScientific, Rockford, IL, USA Qiagen, Hilden Qiagen, Hilden Qiagen, Hilden Qiagen, Hilden Sarstedt, Nürmbrecht; Nunc, Wiesbaden Sarstedt, Nürmbrecht; Nunc, Wiesbaden

0,5 M Tris/HCl, pH 6,8 0,4% (w/v) SDS

20 mM Tris/HCl, pH 7,6 0,4% (w/v) SDS

100 mM Kaliumacetat 30 mM Hepes-KOH, pH 7,4 2 mM Magnesiumacetat

50% (v/v) Glyzerin 0.1 g/l SDS 100 mM EDTA 0,25% (w/v) Bromphenolblau (BPB)

40% (v/v) Ethanol 50% (v/v) Aceton 10% (v/v) ddH₂O

10 x High-molecular-weight (HMW)-Puffer	495 mM Tris-Base 400 mM Glycin
Lysepuffer M	0,45% (v/v) Tween 20 0,45% (v/v) NP40 1% (v/v) Proteinase K (frisch zugeben)
PBS-T	0,05% (v/v) Tween 20 in 11PBS (1x)
10 x PI-Färbelösung	500 μg/ml Propidiumiodid 38 mM Natriumcitrat, pH 7,0
1 x PI-Färbelösung zur Zellzyklusanalyse	50 μg/ml RNAseA in mit PBS verdünnter 1 x PI-Färbelösung
2 x SDS-Probenpuffer	 125 mM Tris/HCl pH 6,8 3,1% (w/v) DTT 4% (w/v) SDS 20% (v/v) Glyzerin 0,05% (w/v) Bromphenolblau 4% β-Mercaptoethanol (frisch zugeben)
6 x SDS-Probenpuffer	 350 mM Tris/HCl pH 6,8 9,3% (w/v) DTT 10% (w/v) SDS 36% (v/v) Glyzerin 0,6% (w/v) Bromphenolblau 5% β-Mercaptoethanol (frisch zugeben)
Sterofundin/Hepes-Puffer	1% 1M Hepespuffer in Sterofundinpuffer
50 x TAE	2 M Trisbase 1 M Eisessig 0,1 M EDTA pH 8,3 mit konzentrierter Essigsäure einstellen
TBS-T	20 mM Tris/HCl, pH 7,6 137 mM Natriumchlorid 0,2% (v/v) Tween 20
TE-Puffer	10 mM Tris 1 mM EDTA, pH 8,0
TFB-I-Puffer	100 mM RbCl 50 mM MnCl ₂ 10 mM CaCl ₂ 30 mM Kaliumacetat

	15% Glyzerin pH 5,8 mit 0,2 M Essigsäure einstellen
TFB-II-Puffer	10 mM MOPS 10 mM RbCl 75 mM CaCl ₂ 15% (v/v) Glyzerin pH 7,0 mit NaOH einstellen
Tris-Glycin-Puffer	250 mM Glycin 50 mM Tris/HCl, pH 8,3
Zelllysepuffer für Proteinextraktion	50 mM Tris-Base (pH 7,4) 150 mM NaCl 2 mM EGTA 2 mM EDTA 25 mM NaF 25 mM β -Glycerolphosphat 0,1 mM NaV 0,2% (w/v) Triton-X-100 0,3% (v/v) NP 40 1 Proteaseinhibitorcocktailtablette (frisch zugesetzt)

2.2 Antikörper

2.2.1.1 Primärantikörper

Tabene 5 Frinarantikorper			
Name	Beschreibung/Arbeitskonzentration	Herkunft	
Anti- Aktin	Polyklonales Ziegenserum, Klon	Santa Cruz Biotechnology,	
	I-19, erkennt Epitop am C-	Inc., Santa Cruz, CA, USA	
	Terminus von humanem Aktin/		
	1/1000		
Anti-α-Tubulin	Monoklonaler Maus-Antikörper,	Abcam, Cambridge, MA,	
	detektiert das 57 kDa humane α-	USA	
	Tubulin am Epitop As 426-450/		
	1/10000		
Anti-BRCA2	Maus Antikörper, detektiert das	Calbiochem, Heidelberg	
	384 kDa humane BRCA2-Protein		
	am Epitop As 1651-1821		
	1/200		
Anti-ERCC1	Monoklonarer Maus Antikörper,	BD Pharmingen,	
	zur Detektion von ERCC1, Klon	Heidelberg	
	8F1		
Anti-Mre11	Polyklonales Kaninchen Serum,	Novus Biologicals, LLC,	

Tabelle 3 Primärantikörper

	detektiert das 81 kDa humane	Littleton, USA		
	Mre11 Protein			
	1:10000			
Anti-MSH2	Polyklonales Kaninchen Serum,	Santa Cruz, Heidelberg		
	bindet humanes MSH2 am N-			
	Terminus, N-20			
	1:1000			
Anti-Rad51	Monoklonaler Maus Antikörper,	Neomarkers, Fremont,		
	bindet humanes Rad51, Klon	USA		
	51RAD01			
Anti Rad52	1:200	Santa Cruz, Heidelberg		

2.2.1.2 Sekundärantikörper

^		
Name	Arbeitskonzetration	Herkunft
Ziege-anti-Maus IgG,	1:5000	Pierce/Thermo Fisher
konjugiert mit horse-radish-		Scientific Inc., Rockford, IL,
peroxidase (HRP,		USA
affinitätsgereinigt)		
Ziege-anti-Kaninchen IgG,	1:10000	Pierce/Thermo Fisher
konjugiert mit HRP		Scientific Inc., Rockford, IL,
(affinitätsgereinigt)		USA

2.3 Plasmide

Alle verwendeten Plasmide sind in aufgelistet. Die in dieser Arbeit verwendeten shRNA Vektoren finden sich in der .

Plasmid		Merkmale				Herkunft				
pBlueScriptII	KS	hoch(+/-)	Plasmidderivat von pBR322 mit					Stratagene,		
(pBS)			multipler Klonierungsstelle					Heidelberg		
pCMV-I-SceI			Vektor	zur	Expre	ession	der	Dr.	Maria	Jasin,
			Meganukl	lease	I-SceI	unter	der	Corne	ell Univ	versität,
			Kontrolle des CMV-Promotors.				New	York,	NY,	
								USA,	Rouet	et al.
								[156]		
pSuper			shRNA K	ontrol	lvektor			Brum	melkamp	o et al.
								[29]		
P5bPuroCMV-	wtEG	FP	Positivkontrolle zur Ermittlung der			Akyüz et al. [5]				

Tabelle 5 Plasmide
(wtEGFP)	Transfektionseffizienz, wtEGFP-	
	Expression unter der Kontrolle	
	eines CMV-Promotors	
p5xtrshSV40Hygb	Plasmidsubstrat zur Detektion der	Akyüz et al. [5]
PuroCMV-HR	konservativen und	
(HR-EGFP/3'EGFP)	nichtkonservativen Form der HDR	
	bei ausreichender Homologielänge	
p5xEsHygb	Plasmidsubstrat zur Detektion der	Akyüz et al. [5]
PuroCMV-delta	konservativen und	
$(\Delta$ -EGFP/5'EGFP)	nichtkonservativen Form der HDR	
	bei limitierter Homologielänge.	
p5xEsCMVHygb	Plasmidsubstrat zur Detektion der	Akyüz et al. [5]
PuroCMV-HR	Homologen Rekombination bei	
(HR-EGFP/5'EGFP)	ausreichender Homologielänge.	
p5bPuroCMV-N'-	Plasmidsubstrat zur Detektion der	Hinsch 2000
CMV-Red-HR	nichtkonservativen Form der HDR	
(5'EGFP/HR-EGFP)	bei ausreichender Homologielänge.	
pcDNA3	Leervektor, zur Protein-Expression	Invitrogen Gibco,
	in Säugerzellen ausgehend von	Karlsruhe
	cDNA unter der Kontrolle des	
	CMV-Promotors.	
pcDNA3.1Puro	Leervektor zur Proteinexpression	Invitrogen Gibco,
	in Säugerzellen uter der Kontrolle	Karlsruhe
	des CMV-Promotors, mit	
	Puromycinresistenzgen Kassette.	
P5bPuroCMV-N'CMV-Red-	Plasmidsubstrat zur Detektion der	Hinsch, 2000
HR(5'EGFP/HR-EGFP)	nichtkonservativen Form der HDR,	
	ausreichende Homologielänge	
pcDNA3.1Rad51SM	Überexpression von dominant	Lambert [104]
	negativem Rad51-Fusionsprotein	

Tabelle 6 shRNA Vektoren

Plasmid	shRNA	Kassette	Ursprung	Beschreibung
	(5'→3')			

pRSControl	Negativkontrolle/Leervek	Origene,	Plasmide ohne shRNA
	tor	Rockville, MD,	Kassette, dient als Kontrolle
		USA	zur pRS-shRNA-Plasmiden.
pRSMSH2 5	CAGGATGCCATTGTT	Origene,	2 Plasmide mit 29-mer
pRSMSH2 8	AAAGAAATTGTCAA	Rockville, MD,	shRNA Kassetten,
	AGGCATGCTTGTGTT	USA	Knockdown von hMSH2
	GAAGTTCAAGATGA		
pRSMSH3 2	GATTCTTGGTCAGTG	Origene,	2 Plasmide mit 29-mer
pRSMSH3 4	AGGATGAAAGCAAA	Rockvillem MD,	shRNA Kassetten,
	TGATGCTGTATCGGA	USA	Knockdown von hMSH3
	AGTTCTCCATTCAG		
pRSMSH6 4	TGTCCTGTTCTCTTC	Origene,	2 Plasmide mit 29-mer
pRSMSH6 6	AGGAAGGTCTGATA	Rockville, MD,	shRNA Kassetten,
	ATCAGATTCTGAGAG	USA	Knockdown von hMSH6
	TGACATTGGTGGCT		
pSuper	Negativkontrollplasmide/	Brummelkamp et	Plasmide ohne shRNA
	Leervektor	al. [29]	Kassette, als Kontrolle zu
			pSuper-shRNA-Plasmid
pSuperRad52	Sequenz nicht bekannt	Brummelkamp et	Plasmid mit shRNA
		al. [29]	Kassette, Knockdown von
			Rad52

2.4 Eukaryotische Zelllinien und Bakterienstämme

Die im Rahmen dieser Doktorarbeit genutzten eukaryotischen Zelllinien und Bakterienstämme sind in und aufgelistet. Östradiolarmes FCS wurde wie folgt hergestellt:

10 gNorit A (Aktivkohle)1,2 gDextran 351 1FCS30 min rühren,

anschließend bei 10.000 x g abzentrifugieren und den Überstand steril filtrieren.

Zelllinie	Eigenschaften	Kultivierung		
K562	Derivat der humanen, chronisch	12% östradiolarmes FCS		
	myeloischen Leukämie-Zelllinie	0,1% Refobacin		
	K562 (ATCC® CCL-243),	1% (v/v) L-Glutamin in		
	welches den durch Östradiol	RPMI 1640 phenolrotfrei		
	regulierbaren Transaktivator			
	GalERVP nach stabiler			
	Transfektion mit dem Vektor			
	pMV-GalERVP exprimiert			
	(Akyüz et al., 2002)			
K562(HR-EGFP/3'EGFP)	Derivat der humanen, chronisch	12% östradiolarmes FCS		
(Klon MHHR4)	myeloischen Leukämie-Zelllinie	1% (v/v) L-Glutamin in		
	K562 (ATCCCCL-243), enthält	RPMI 1640 phenolrotfrei		
	das HR-EGFP/3´EGFP			
	Konstrukt chromosomal			
	integriert (Akyüz et al., 2002)			
K562(Δ-EGFP/3´EGFP)	Derivat der humanen, chronisch	12% östradiolarmes FCS		
(Klon MH∆6)	myeloischen Leukämie-Zelllinie	1% (v/v) L-Glutamin in		
	K562(ATCCCCL-243), enthält	RPMI 1640 phenolrotfrei		
	das Δ-EGFP/3 EGFP Konstrukt			
	chromosomal integriert (Akyüz			
	et al., 2002)			
WTK1(HR EGFP/	Derivat der humanen	12% (v/v) FCS		
3'EGFP)SV40.fwd	Lymphoblastenzelllinie WTK1	0,1% (v/v) Refobacin		
	mit endogenem Mutanten p-53	1% (v/v) L-Glutamin in		
	mit chromosomal integriertem	RPMI 1640 Medium		
	Rekombinationskonstrukt HR-			
	EGFP/3'EGFP- SV40.fwd			
HeLa shRNA	HeLa SilenciX-Zelllinien (Tebu-	10 % (v/v) FCS 1 % (v/v)		
	Bio, Offenbach): HeLa-	Penicillin/Streptomycin		
	Zelllinien mit stabilem	1 % (v/v) L-Glutamin 0.1 % Refobacin		
	Knockdown (mind. 70%) auf	125 μg/ml Hygromycin-		
	Basis der RNA-Interferenz	B in DMEM High		

Tabelle 7 Eukaryotische Zelllinien

	(shRNA), zur Verfügung gestellt	Glucose-Medium
	von Prof. Dr. med. Peter Daniel,	
	Abteilung für Molekulare	
	Onkologie mit Schwerpunkt	
	Tumorgenetik am	
	Universitätsklinikum Charité,	
	Berlin	
Hel a shCo	Zelllinie mit inaktiver shRNA (2	
	Mismatches in einem Teil der	
	Haarnadelstruktur)	
	Zelllinie mit Knockdown von	
HeLa shBRCA2	BRCA2	
Hel a shMre11	Zelllinie mit Knockdown von	
	Mre11	
HeLa shERCC1	Zelllinie mit Knockdown von	
	ERCC1	

Tabelle 8 Bakterienstamm

Bakterienstamm	Merkmale/ Verwendung	Herkunft
E. coli DH5α	F`, $mcrA\Delta$ -($mrr hsdRMS$ -	New England Biolabs,
	mcrBC), $\varphi 80dlacZ\Delta M15$,	Frankfurt am Main, [79]
	$\Delta lac X74$, deoR, recA1,	
	araD139, ∆(ara, leu)7697,	
	galU, galK, λ -	
	, rspL, endA1, nupG/zur	
	Amplifikation von Vektoren	

2.5 DNA-Techniken

2.5.1 Transformation kompetenter Bakterien

Langsames Auftauen kompetenter *E.coli* Zellen auf Eis. Jeweils 45µl der Zellen wurden mit 200 ng Plasmisd DNA versetzt; anschließend 30 minütige Inkubation auf Eis. Nach einem Hitzeschock von 90 s bei 42 °C wurden die Bakterien für 5 min auf Eis inkubiert. Zugabe von 1 ml antibiotikafreiem LB-Medium und 60 minütiges Schütteln bei 37 °C. Die Bakteriensuspension wurde auf Selektivmedium ausplattiert und über Nacht inkubiert.

2.5.2 Einfrieren von Bakterienkulturen

Die Bakterienkultur (in LB-Medium) wurde mit DMSO (Endkonzentration 10%) versetzt und bei –80 °C eingefroren und gelagert.

2.5.3 Maxipräparation von Plasmid DNA aus E. coli

Für die Maxiplasmidpräparation wurden 300-400 ml Kultur in einem 121 Kolben für 12 h bei 37 °C und 180Upm inkubiert. Anschließend wurden die Bakteriern für 10 Minuten bei 8500UpM zentrifugiert, der Überstand wurde verworfen. Mithilfe des High-Purity Plasmid Maxiprep Kits wurde die Plasmid DNA nach Angaben des Herstellers isoliert. Untersuchung der DNA durch Restriktion mit verschiedenen Endonukleasen und anschließender Agarose-Die Konzentration Gelelektrophorese. der durch Maxipräparation gewonnen Nukleinsäurelösung wurde photometrisch bestimmt. Hierfür wurde die DNA Lösung mit TE-Puffer auf 1:100 verdünnt und die Extinktion dieser Verdünnung bei 260nm und 280 nm (OD₂₆₀, OD₂₈₀) gegen TE-Puffer als Referenz gemessen. Für dsDNA gilt dabei der Richtwert: OD₂₆₀ x 0,05 x Verdünnung entspricht der DNA-Konzentration in µg/µl. Ein Quotient von OD₂₆₀ zu OD₂₈₀ von über 1,8 zeigt an, dass die DNA frei von Proteinen ist. Anschließend wurde die Plasmid-DNA mit TE-Puffer auf eine DNA Konzentration auf 1 µg/µl verdünnt.

2.5.4 Hydrolyse von DNA durch Restriktionsendonukleasen

Zur Charakterisierung isolierten Plasmid-DNA der wurde diese mit Restriktionsendonukleasen behandelt. Dabei erfolgte die Restriktion in einem Gesamtvolumen von 20 µl (analytisch) bis 100 µl (präparativ). Als Inkubationspuffer wurden die vom Hersteller mitgelieferten Puffer verwendet, die 1:10 verdünnt wurden. Pro ug DNA wurden 1-5 U Restriktionsendonuklease zugegeben und mindestens 1 h bei der für das Enzym spezifischen Temperatur inkubiert. 1 U eines Enzymes ist als die Aktivität definiert, die 1 μ g DNA in 1 h bei 37°C spaltet. Die vollständige Spaltung wurde mittels Agarose Gelelektrophorese überprüft.

2.5.5 Auftrennung von DNA in der Agarose-Gelelektrophorese

Die Plasmide und Restriktionsansätze wurden in horizontalen Flachbett-Elektrophoresen aufgetrennt. Als Elektrophoresepuffer wurde 1xTAE-Puffer verwendet, diesem wurde 0,5-2% (w/v) Agarose zugegeben. Der Ansatz wurde in der Mikrowelle erhitzt und gelöst, abgekühlt und in mit geeigneten Kämmen bestückte Gelgießkammern gefüllt. Vor dem Auftragen der DNA-Proben auf das Gel wurden diese mit DNA-Probenpuffer (Endkonzentration 1x, MBI-Fermentas, St. Leon-Rot) versetzt. Parallel zu den Proben wurde ein DNA-Marker aufgetrennt. Die Separation erfolgte bei 80-100 V, bis die gesuchten Fragmente ausreichend aufgetrennt waren. Das Gel wurde für 20 min in einem Ethidiumbromidbad gefärbt. Die Detektion der DNA-Banden erfolgte über UV-Licht (*MultiImage™ Light Cabinet*, Alpha Innotech, San Leandro, CA, USA), die Dokumentation mittels *Image-Master (ChemiImage™ 5500*, Alpha Innotech, SanLeandro, CA USA).

2.5.6 Polymerase-Kettenreaktion (PCR)

Zur Amplifikation von DNA wurde in einem Reaktionsgefäß (0,2 ml) folgender Reaktionsansatz vorbereitet:

1-100 ng	DNA (1-10 ng Vektor-DNA bzw. 100 ng
	genomische DNA)
0,5 µl	Oligonukleotid 1 (100 pM/µl)
0,5 µl	Oligonukleotid 2 (100 pM/µl)
1,5 µl	dNTPs (5 mM)
5 µl	<i>Taq</i> -Puffer (10 x)
1 U	Taq-DNA-Polymerase
ad 50 µl ddH ₂ O	

Der Ansatz wurde in einem Thermocycler unter folgender Standardeinstellung inkubiert:

Denaturierung	5 min	95 °C
zur Amplifikation 30 Zyklen:		
Denaturierung	1-1,5 min	95 °C
Hybridisierung	1 min	T_{m}
Neustrangsynthese	0,5-1 min	72 °C

nach Ablauf der Zyklen

Neustrangsynthese	7 min	72 °C
Abkühlung auf		4 °C

Die Schmelztemperatur T_m für die Oligonukleotide wurde mittels dem *Oligonucleotide Properties Calculator* (www.basic.northwestern.edu/biotools/oligocalc.html) abgeschätzt und die Hybridisierungstemperatur entsprechend gewählt.

2.6 Proteinbiochemische Methoden

2.6.1 Probenaufbereitung für die SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)

2.6.1.1 Präparation von Totalhomogenaten

Hierfür wurden 1 x 10^6 bis 1 x 10^7 Zellen 5 min bei 300 x g zentrifugiert. Anschließend wurde das Zellpellet mit 2 x SDS Probenpuffer verdünnt, um eine Zellkonzentration von 0,5 – 1 x 10^4 Zellen/µl SDS-Probenpuffer zu erreichen. Die Proben wurden 15 min auf 95 °C erhitzt und bis zur weiteren Verwendung bei -20 °C gelagert.

2.6.1.2 Präparation von Zelllysaten

Hierfür wurden 1 x 10^6 bis 1 x 10^7 Zellen bei 300 x g für 5 min zentrifugiert, mit kaltem PBS gewaschen und erneut pelletiert. Die Zellpellets wurden nun in der 2-3 fachen Volumenmenge Lysepuffer resuspendiert und für 30 min auf Eis inkubiert. Um Zelltrümmer zu entfernten erfolgte bei 4 °C eine weitere Zentrifugation (16.000 x g für 15 min). Der Überstand wurde abgenommen und die Proteinkonzentration (0) bestimmt. Die löslichen Proteinfraktionen wurden mit Lysepuffer auf die gleichen Konzentrationen eingestellt und 6 x SDS-Probenpuffer im Verhältnis 1:6 dazugegeben. Die Proben wurden 15

min auf 95 °C erhitzt und bis zur weiteren Verwendung bei -20 °C gelagert.

2.6.1.3 Bestimmung der Proteinkonzentration

Für die Proteinkonzentrationsbestimmung wurde das BCA Protein Assay Kit nach Angaben des Herstellers verwendet. Dabei wurden die BSA-Verdünnungen für die Kalibriergerade und die Proben in einer 1:10-Verdünnung in eine 96-Well-Platte gegeben. Nach 30 minütiger

Inkubation bei 37 °C erfolgte die photometrische Messung (bei 570nm) des gebildeten Farbstoffs durch den Mikrotiterplatten-Reader SunriseTM.

2.6.2 SDS-Polyacrylamid-Gelelektrophorese (Laemmli [102])

Die Proteine wurden mittels einer diskontinuierlichen SDS-Polyacrylamid Gelelektrophorese aufgetrennt (SDS-PAGE). Hierbei wurde das Gelsystem von Amersham Pharmacia Biotech eingesetzt (Gelgröße: 8 x 10 x 0,075 cm). Nach vollständiger Denaturierung der Proteine und Ummantelung mit SDS Molekülen wurden diese anhand ihres Molekulargewichtes im elektrischen Feld aufgetrennt. Die Zusammensetzung für jeweils fünf SDS-PAGE-Gele ist in aufgeführt. Zunächst wurden die Lösungen für das Trenngel miteinander vermischt, wobei Ammoniumpersulfat (APS) und N,N,N',N'-Tetramethylethylendiamin (TEMED) zuletzt hinzugefügt wurden, da diese die Polymerisation induzieren. Das Trenngel-Gemisch wurde in die Gelgieß-Kammer SE200 zwischen einer Glas- und einer Porzellanplatte (beide getrennt durch 0,1 cm Abstandhalter) gegossen und mit Isopropanol überschichtet. Nach der Polymerisation des Trenngels wurde das Isopropanol dekantiert, auf das Trenngel das Sammelgel gegossen und der 10-Taschen-Kamm (0,1 cm) eingesteckt. Nach der Polymerisation wurden die Gele bis zur Verwendung für maximal eine Woche bei 4 °C aufbewahrt. Zur Durchführung der Elektrophorese wurde das Gel in eine Gellauf-Kammer Mighty Small II eingespannt, die mit 1x Rotiphorese SDS-Page Puffer (Roth, Karlsruhe) befüllt wurde. Der Gelkamm wurde vorsichtig entfernt und die Taschen mit Puffer gewaschen. Als Molekulargewichtstandard wurde ein Gemisch von Proteinen definierter Molekülmasse verwendet (PageRuler Pre-Stained Protein Ladder Plus, MBI-Fermentas, St. Leon-Rot; HiMark Pre-Stained Protein Standard, Invitrogen, Karlsruhe), von dem 10 µl in eine Geltasche pipettiert wurde. Die zu analysierenden Proben wurden vor dem Auftragen für 5 min auf 95 °C erhitzt. Mittels eines elektrischen Felds erfolgte die Auftrennung der denaturierten Proteine bei einer Stromstärke von 25 mA pro Gel. Anschließend wurden die Proteine durch Western-Blot Analyse dargestellt.

	60-200 kDa	16-70 kDa	16-70 kDa	12-45 kDa	
Proteingröße	Trenngel 8%ig	Trenngel 10%ig	Trenngel 12%ig	Trenngel 15%ig	Sammelgel
Acrylamid 30%, 0,8% Bisacrylamid	12 ml	15 ml	18 ml	22,5 ml	3,9 ml
4 x SDS/Tris pH 8,8	11,25 ml	11,25 ml	11,25 ml	11,25 ml	-

(Trenngelpuffer)					
4 x SDS/Tris pH 6,8	-	-	-	-	7.5 ml
(Sammelgelpuffer)					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
H ₂ O	21,75 ml	18,75 ml	15,75 ml	11,25 ml	18,3 ml
10% APS	150 µl				
TEMED	30 µl				

2.6.2.1 Protein-Größenstandard

Als Größenstandard bei der Gelelektrophorese wurden die MBI-Fermentas-Marker *PageRuler™Pre-Stained Protein Ladder* mit 10 Proteinen der Größen 170, 130, 95, 72, 55, 43, 34, 26, 17 und 10 kDa sowie der *PageRuler™Pre-Stained Protein Ladder Plus* mit 9 Proteinen von 250, 130, 100, 70, 55, 35, 27, 15 und 10 kDa verwendet.

2.6.3 Elektrophoretischer Transfer von Proteinen auf eine Membran (Westernblot, *Towbin et al.* [201])

Nach der SDS-PAGE Gelelektorphorese erfolgte der Proteintransfer mittels Nassblot Apparaur (TE Series) auf Nitrocellulose Membranen (Hybond C-Extra, Amersham Pharmacia Biotech, Freiburg). Dabei wurde die Membran in 1x HMW Puffer äquibrilliert. Das Blotten erfolgte abhängig von der Größe des zu transferierenden Proteins entweder für 90 min bei 100V unter Eiskühlung, alternativ für 10-14 h im Kühlraum bei 40V. Anschließend wurde die Membran mit Ponceau-Rot-Lösung angfärbt, um den Erfolg des Proteinstransfers zu kontrollieren.

2.6.3.1 Proteinnachweis durch Immundetektion auf Westernblot Membranen [24]

Der spezifische Nachweis der auf der Membran immobilisierten Proteine beruht auf der Reaktion eines primären Antikörpers (AK) mit seinem Antigen und der Bindung eines sekundären AK an den F_c-Teil des primären Antikörpers. Die an den sekundären AK gekoppelte Enzymaktivität (Peroxidase) ruft eine Lichtreaktion hervor. Zur Immundetektion transferierter Proteine mussten zunächst unspezifische Bindungsstellen der Membranen mit in PBS-T-Puffer gelöstem Milchpulver (5% (w/v)) für 30 min bei RT geblockt werden. Anschließend erfolgte die Inkubation mit dem jeweiligen Primärantikörper in PBS-T-Puffer versetzt mit 5% Milchpulver für 1-2 h bei RT oder über Nacht bei 4 °C. Dieser Antikörper erkennt spezifisch ein auf der Membran immobilisiertes Protein. Überschüssiger, ungebundener Primärantikörper wurde durch drei je fünf- bís zehnminütige Waschschritte mit PBS-T-Puffer entfernt.

Zur Detektion des gebundenen Primärantikörpers wurde die Membran 1 h mit einem von der Art des Primärantikörpers abhängigen Sekundärantikörper-Peroxidase (HRP)-Konjugats in PBS-T-Puffer mit 1-5% Milchpulver inkubiert und anschließend dreimal für je 15 min mit PBS-T gewaschen.

Gebundene HRP-Sekundärantikörper wurden mit dem *SuperSignal West Pico* oder *SuperSignal West Dura Extended Duration* Substraten (ThermoScientific, Rockford, IL, USA) nach Anweisung des Herstellers in Form von Chemilumineszenzsignalen auf einem Röntgenfilm (Hyperfilm ECL, Amersham Biosciences, Freiburg) detektiert. Das Signal wurde als Schwärzung sichtbar. Die Expositionszeiten lagen zwischen 1s und 90 min.

Um weitere Proteine auf derselben Membran zu untersuchen, mussten bereits gebildetee Antikörper Komplexe entfernt werden. Die Membran wurde hierfür 5-30 min lang, abhängig von der Affinität des Antikörpers, in *Restore™ Western Blot Stripping* -Puffer (ThermoScientific/Pierce, Rockford, IL, USA) bei RT geschwenkt und anschließend zweimal 15 min in PBS-T-Puffer gewaschen. Die so behandelte Membran konnte anschließend für weitere Immundetektionen verwendet werden.

2.7 Zellkulturtechniken

2.7.1 Erhaltung und Kultivierung von Zellen

Alle Arbeitsschritte wurde an der Sterilbank (Clean Air Techniek, Woerden, Niederlande) durchgeführt, die zuvor mit 70% igem Alkohol desinfiziert wurde. Als Verbrauchsmaterialien wurden sterile Einmalpipetten und sterile Gefäße verwendet. Alle Medien, Puffer und Lösungen, die für die Zellkultur verwendet wurden, wurden vor Gebrauch auf 37 °C erwärmt. Die Inkubation der Zellen erfolgte bei 37 °C im Zellinkubator (5% CO2, 95 % Luftatmosphäre, 90% relative Luftfeuchtigkeit).

2.7.1.1 Ablösen/Erhaltung von adhärenten Zellen

Nach Erreichen einer Konfluenz von 80-90% wurden die adhärent wachsenden Zellen zunächst mit pBS gewaschen. Anschließend wurden die Zellen dünn mit Trypsin überschichtet und für 2-5 min bei 37 °C inkubiert. Durch vorsichtiges Beklopfen der Außenkante der Schalen wurde die Loslösung der Zellen weiter unterstützt. Zur Inaktivierung des Trypsins wurde FCS-haltiges Medium hinzugegeben und die Zellen je nach Wachstum in

einem bestimmten Verhältnis (1:2 bis 1:10) gesplittet.

Die zugehörigen Medien aller verwendeter Zelllinien sind unter 0 angegeben.

2.7.1.2 Erhaltung von Suspensionszellen

Die Zelllinien K562(HR-EGFP-3'EGF) und k562(delta-EGFP/3'EGFP) wuchsen in Suspensionskultur. Sie wurden aufgrund des durch Östradiol induzierbaren GalERVP-Transkriptionsfaktors in phenolrotfreiem RPMI angezüchtet [5]. Je nach Wachstum wurden die Zellen in einem Verhältnis von 1:3 bis 1:6 gesplittet und zum weiteren Wachstum in neue Zellkulturschalen überführt und bei 37°C im Brutschrank inkubiert.

2.7.1.3 Einfrieren von Zellen

Eine subkonfluent bewachsene 15 cm durchmessende Schale wurde auf etwa 2 bis 3 Einfrierröhrchen verteilt. Die Zellen wurden von der Schale abgelöst und durch 3 minütige Zentrifugation bei 300 x g pellettiert. Das Zellpellet wurde in einem Einfriermedium resuspendiert, wobei pro Einfrierröhrchen 1,5 ml Medium verwendet wurden. Um den Einfrierprozess zu verlangsamen, wurden die Röhrchen in eine mit Isopropanol gefüllte Einfrierhilfe überführt und schließlich bei -80 °C bzw. in flüssigem Stickstoff gelagert.

2.7.1.4 Auftauen von Zellen

In einem Polypropylenröhrchen wurden 10 - 20 ml Erhaltungsmedium vorgelegt. Durch vorsichtiges Auf- und Abpippettieren von wenigen ml dieses Mediums wurden die Zellen langsam aufgetaut und in Poypropylenröhrchen überführt. Anschließend erfolgte die Zentrigution für 5 min bei 300 x g und der Überstand wurde verworfen. Das Zellpellet wurde in 15 ml frischem Erhaltungsmedium resuspendiert und in 10 cm Schalen überführt. Die Zellen wurden zur Erholung 24 - 48 h inkubiert und danach in andere Schalen überführt.

2.7.2 Transfektion von eukaryotischen Zellen

Zur Bestimmung der Effizienz der angewendeten Transfektionsmethode wurden eukaryotische Zellen mit dem Plasmid p5bPuroCMV-wtEGFP transfiziert. 12-96 h nach Transfektion wurde der prozentuale Anteil der grünfluoreszierenden Zellen am Durchflusszytometer (FACSCalibur[™] oder FACSCalibur[™] HTS) bestimmt.

2.7.2.1 Transfektion durch Lipofektion

Die Transfektion der HeLa shRNA-Zellen erfolgte durch Lipofektion mit dem FuGENE® HD-Transfektionsreagenz der Firma Roche. Bei der Lipofektion werden Nukleinsäuren mit Hilfe von Liposomen, die mit der Membran der Zelle fusionieren, in das Zellinnere eingebracht. Es wurde das Prinzip kationischer Lipidvesikel angewandt. Hierbei interagiert die DNA mit kationischen Lipiden durch ionische Interaktion. Die entstehenden Komplexe fusionieren mit der anionischen Oberfläche der Zellen, so dass die DNA durch Endozytose in die Zellen aufgenommen wird (Felgner et al., 1987; Günzburg et al., 1997). Ein Vorteil des FuGENE® HD-Reagenz ist, dass mit Serum im Kulturmedium gearbeitet werden kann.

Für die Versuche wurden 24 h vor der Transfektion $3x10^5$ Zellen in einer Vertiefung einer 6-Well-Platte in 2 ml Medium mit allen Antibiotikazusätzen ausgesät, da die Zellen ohne Antibiotikazusatz morphologische Veränderungen aufwiesen. Am Tag der Transfektion wurde zunächst das Medium durch antibiotikafreies Medium ersetzt. Es wurden pro Ansatz 8 µl FuGENE® HD-Reagenz mit 92 µl Opti-MEM I Medium in Polystyrolröhrchen gemischt, anschließend wurden 4,25 µg des jeweiligen DNA-Mixes (2,5 µg Expressionsplasmid, je 0,75 µg pCMV-I-SceI, 0,5 µg pBlueScriptII KS, DSB-Reparatursubstrat HR3'Red-EGFP), gelöst in 45,75 µl sterilem Wasser, hinzugefügt. Dieser Ansatz wurde für 20 min inkubiert und dann tropfenweise in das Well pipettiert. Die Zellernte erfolgte nach 24 h. Als Transfektionskontrollen wurden pro Ansatz jeweils Zellen in 2 Wells einer 6-Well-Platte transfiziert, hierbei wurde das pBlueScriptII KS Plasmid durch das wtEGFP-Plasmid ersetzt. Der Erfolg der Transfektion wurde mittels Fluoreszenzmikroskopie kontrolliert.

2.7.2.2 Transfektion durch Elektroporation

Bei dieser Methode wurden die Zellen einem elektrischen Feld ausgesetzt. Dabei entstehen für Millisekunden kleine, elektrisch neutrale Poren in der Zellmembran, durch welche die Passage von Molekülen wie beispielsweise DNA oder RNA in die Zelle möglich wird. Die Elektroporation wurde wie bei (Baum et al., 1994) beschrieben durchgeführt. Jeder Ansatz enthielt 0,4 x 10^7 Zellen, die in 400µl Kulturmedium ohne FCS resuspendiert wurden. Pro Elektroporationsküvette wurden zunächst 10-30µl DNA pipettiert, und anschließend 400µl der Zellsuspension zugefügt. Der Ansatz wurde durch Auf- und Abpippettieren gut durchmischt. Die Elektroporation erfolgte für die in dieser Arbeit verwendeten K562(HR-EGFP/3 EGFP) und K562(Δ -EGFP/3 EGFP) Zellen, WTK1(HR-EGFP/3 EGFP*SV40.fwd*) wie in beschrieben. Anschließend wurden die Zellen sofort in eine 6-Well Schale mit 3 ml Erhaltungsmedium überführt und für 24 h im Brutschrank inkubiert. Elektroporierte Zellen und DNA-Mixe sind in aufgezeigt

Zelllinie	Spannung (V)
K562	200
WTK1	240

Tabelle 10 Parameter zur exponentiellen Elektroporation bei einer Kapazität von 1050 µF

2.7.3 Durchflusszytometrie

Mit Hilfe eines Durchflusszytometers (FACSCalibur[™]) wurde die Frequenz der DSB-Reperatur, die Zellverteilung in den Zellzyklusphasen und der Anteil der apoptotischen Zellen gemessen. Es handelt sich um ein optisches Messsystem, mit dessen Hilfe sich in Lösung befindliche Zellen innerhalb kürzester Zeit analysiert werden können. Die Zellen werden in eine Kapillare gesogen, sodass sie einzeln auf einen gebündelten Laserstrahl einer bestimmten Wellenlänge (Argon Laser, 488 nm) treffen. Hierbei kommt es zu mehreren Ereignissen: Die Streuung des Laserstrahls nach vorn (FSC, Vorwärtsstreulicht) stellt die Lichtbeugung dar, die proportional zur Zelloberfläche ist und so Rückschlüsse auf die Zellgröße zulässt. Das Seitwärtsstreulicht stellt die Lichbrechung und Reflexion dar, die sich proportional zur Zellkomplexität und −granularität verhält. Fluoreszenzkanäle detektieren die Signale, die von zuvor angefärbten Zellbestandteilen (z. B. DNA) oder durch Fluoreszenz des exprimierten EGFP nach Anregung der Chromophore ausgesandt werden. Mehrere Spiegel mit unterschiedlichen Filtern erfassen das von der Zelle emittierte und gestreute Licht. Anschließend werden die Daten an einem Computer quantifiziert.

2.7.3.1 Rekombinationsfrequenzmessung [4]

Zur Messung wurden die Zellen bei 300g für 5 min zentrifugiert, das Zellpellet in 1 ml PBS / 0,2% EDTA resuspendiert, erneut sedimentiert und anschließend in 250 µl PBS/EDTA resuspendiert. Die Suspension wurde in FACS-Röhrchen überführt und die Fluoreszenz der Zellen am Durchflusszytometer analysiert. Bei der Darstellung FSC-H/SSC-H als Dot-Plot Diagramm musste bei einer Transfektion durch Elektroporation zunächst ein "Gating" erfolgen, um apoptotische Zellen von der Messung auszuschließen. Bei Einbringen der DNA mittels Lipofektion entfiel dieser Schritt aufgrund der hohen Überlebensrate der Zellen. Mit Hilfe der Fluoreszenzkanäle FL-1 und FL-2 wurde der Anteil grünfluoreszierender Zellen gemessen, wobei FL-2 die orangefarbene Eigenfluoreszenz der Zellen und FL-1 die Grünfluoreszenz des EGFP detektierte. Zur Berechnung der DSB-Reparaturfrequenz wurde neben der Anzahl der erfolgreichen Reparaturereignisse auch die Transfektionseffizienz gemessen. Hierfür wurden die Zellen anstelle des pBluescriptII KS-Vektors mit dem wtEGFP Plasmid transfiziert. Die Berechnung der Transfektionseffizienz erfolgte anhand dieser Formel:

Rekombinationsereignisse pro Zellzahl [%]

Rekombinationsfrequenz [%] =

Transfektionseffizienz [%]

Bei den Rekombinationsmessungen wurden 100.000 bis 1.000.000 Zellen ausgewertet, bei der Bestimmung der Transfektionseffizienz wurden 20.000 Zellen untersucht.

2.7.3.2 Einparametrische Zellzyklusanalyse (Propidiumiodidfärbung)

Die Zellzyklusanalyse mittels Propidiumiodidfärbung basiert auf der Interaktion des Farbstoffes Propidiumiodid mit der DNA der Zellen und nachfolgender Anfärbung der DNA. Dabei besteht ein linearer Zusammenhang zwischen DNA Gehalt der Zellen und ihrer Fluoreszenzintensität, vorausgesetzt der PI Farbstoff wird im Überschuss zugegeben.

Abbildung 6 Histogramm der Verteilung des DNA Gehaltes in einer diploiden Zellpopulation. Dargestellt sind der DNA Gehalt der Zellen und die Anzahl der Zellen im Verlauf der verschiedenen Phasen des Zellzyklus. In der G_0/G_1 -Phase (Ruhe- und Wachstumsphase) bereitet sich die Zelle auf die Replikation vor; Synthese von RNA und Proteinen. Der DNA Gehalt bleibt konstant (2n). In der folgender Synthese (S)-Phase findet die DNA Replikation statt, der DNA Gehalt ändert sich von 2n auf 4n. In der G_2 -Phase (prämitotische Phase) bereitet sich die Zelle auf die nächste Mitose vor (M-Phase).

Bei der Zellteilung diploider Zellen können vier Phasen unterschieden werden: Die G1-, S-, G₂- und die M-Phase. Die G₀-Phase der Zellen ist die Ruhephase, in dieser Zeit findet keine Zellteilung statt, die DNA liegt als Chromosenpaar (2n) vor. Die G₁-Phase stellt den Beginn der Zellteilung dar, es werden Proteine und RNA synthethisiert, die Zelle wächst. Der DNA Gehalt bleibt jedoch konstant, sodass eine Unterscheidung mittels PI Färbung nicht möglich ist und diese Phasen daher als G₀/₁-Phase zusammengefasst werden. In der nächsten Phase (der S-Phase) wird die DNA repliziert, so dass die Zelle am Ende der S-Phase tetraploid (4n) ist. In der sich anschließenden G2-Phase stellt die Zelle sicher, dass die DNA Replikation erfolgreich abgeschlossen wurde. Zudem bereitet sie sich auf die nächste Zellteilung, die Mitose (M-Phase), vor. Bei einer schnellwachsenden Säugerzelle dauert ein Zellzyklus etwa 24 h, wobei auf die G₁-Phase 12 h, auf die S-Phase und G₂-Phase 6 h und die Mitose 30 min entfallen. Zellen, die sich in der G2- oder M-Phase befinden, besitzen einen doppelten DNA-Gehalt (4n) im Vergleich zu Zellen, die sich in der G_0 - oder G_1 -Phase befinden (2n). S-Phase-Zellen haben einen DNA-Gehalt zwischen 2n und 4n. Zunächst wurde ein Zellpellet von 106 Zellen mit PBS gewaschen und in 1 ml PBS resuspendiert. Unter kontinuierlichem Schütteln wurde langsam 9 ml eiskalte Fixierlösung hinzugefügt, eine 15 minütige Inkubation auf Eis folgte. Die fixierten Zellen mussten anschließend mindestens 1 h bei -20 °C gelagert werden. Für die Färbung wurden die Zellen zunächst mit einer 1:1 Fixierlösung/PBS, anschließend mit PBS gewaschen und dann rehydriert. Das Zellpellet wurde mit 250 - 500 µl 1x PI-Färbelösung resuspendiert und 30 min auf Eis im Dunkeln inkubiert und bis zur Messung mit einem Durchflusszytometer (FACS Calibur) im Dunkeln auf Eis aufbewahrt. Zur Analyse und Auswertung der Zellzyklusdaten (PI-Färbung) wurde in einem Dot-Plot die Fläche (FL2-A) gegen die Weite (FL2-W) aufgetragen. Dupletten, die bei der Fixierung der Zellen entstehen können, wurden durch das Setzen eines Gates von der Messung ausgeschlossen. Bei diesen Dupletten handelt es sich um nicht vollständig separierte Zellen. Da eine Duplette ein breiteres Lasersignal als eine einzelne Zelle erzeugt, kann sie über die Darstellung der Peakbreite (FL2-W) von einer Einzelzelle unterschieden werden. Die so selektierten Zellen wurden als Histogramm dargestellt (s. Abbildung 7), wobei der DNA Gehalt gegen die Anzahl der Zellen aufgetragen wurde. Durch Gatesetzung konnte die prozentuale Zellzyklusverteilung ermittelt werden. Durch logarithmische Darstellungsweise der FL2-A-Werte wurde eine kompensierte Messung erreicht und in einigen Fällen erst so der Anteil an apoptotischen Zellen mit sehr geringem DNA-Gehalt sichtbar gemacht. Für diese Zellen wurde zusätzlich ein Gate eingerichtet, das sich linksseitig der anderen Gates befand.

2.8 Statistische Auswertung

Die Messwerte wurden als Mittelwerte \pm Standardabweichung (Microsoft Office Professional 2003-2010) oder als Balkendiagramme (GraphPad Prism 6, La Jolla, California, USA) dargestellt. Der *Wilcoxon matched pairs test* wurde verwendet, um die Signifikanz der Versuche innerhalb einer Zelllinie zu berechnen. Mittels des *Mann-Whitney U test* wurden die Versuchswerte zwischen verschiedenen Zelllinien genauer analysiert. Ein *p < 0.05 wurde als statistisch signifikant gewertet.

3 ERGEBNISSE

Um den Einfluss des humanen MMR Proteins hMSH2 auf die DSB Reparatur systematisch zu untersuchen, wurde das EGFP-basierende Testsystem in verschiedenen menschlichen Zelllinien angewendet [5]. Nach Induktion des Bruches des DNA Rückgrates mittels der Meganuklease I-*Sce*I erfolgte die Reparatur entweder mittels NHEJ oder Homologie abhängigen Mechanismen (HR und SSA), abhängig von dem zur Verfügung gestellten DNA Substrat. Aus der Hefe ist bekannt, dass MSH2 den Austausch zwischen heterologen DNA Sequenzen verhindert und Auswirkungen auf die HDR hat [2, 56, 59, 164, 190]. Daher sollten insbesondere die Effektivität der HDR in Säugetierzellen bei Suppression der hMSH2 Expression näher analysiert werden. In einem zweiten Schritt wurden mögliche, in der Literatur beschriebene Interaktionspartner des humanen MMR Proteins näher untersucht.

Die Rekonstitution des EGFP Gens wurde anhand der Population grün fluoreszierender Zellen mittels FACS Analyse gemessen. Mögliche indirekte Effekte, wie Zellzyklusverschiebungen, vermehrter Zelltod oder Unterschiede bei der Transfektioneffizenz, die die DSB Reparaturfrequenz ebenfalls beeinflussen könnten, wurden weitgehend ausgeschlossen.

3.1 hMSH2 und die DSB Reparatur im chromosomalen Kontext

3.1.1 Der Einfluss von hMSH2 auf die HDR in der stabilen Zelllinie K562(HR-EGFP/3'EGFP) bei ausreichender Homologielänge

Um die Rolle von hMSH2 bei der HDR genauer zu untersuchen, wurde die hMSH2 Expression in der Zelllinie K562(HR-EGFP/3'EGFP) durch shRNA exprimierende Vektoren gestört. Die hierbei verwendete K562(HR-EGFP/3'EGFP) Zelllinie enthielt das stabil integrierte HR-EGFP/3'EGFP Konstrukt, das vor allem als Substrat für die HDR fungierte. Eine Unterscheidung zwischen konservativer und nichtkonservativer Form der HDR ist hierbei jedoch nicht möglich. Die Expression des hMSH2 Proteins wurde durch die shRNA Plasmide pRSMSH2 5 und pRSMSH2 8 unterdrückt und gleichzeitig wurde mittels des pCMV-I-*SceI* Expressionsplasmids der DSB induziert. Die Proben wurden zudem entweder mit pBlueScriptII KS oder wtEGFP transfiziert, anschließend wurden die Messungen um die Transfektionseffizienz korrigiert. Drei der fünf Rekombinationsmessungen sowie die Westernblotanalysen wurden von Dr.rer.nat. Simone Siehler durchgeführt. Der *Knockdown* des hMSH2 Proteins bewirkte in der stabilen Zelllinie K562(HR-EGFP/3'EGFP) eine signifikante Verringerung der DSB Reparaturfrequenz verglichen mit dem Kontrollvektor. Für hMSH2 5 konnte eine Erniedrigung um 60% detektiert werden (p=0,0020), für hMSH2 8 zeigte sich annähernd eine Halbierung der Reparaturereignisse nach unterdrückter Expression (p=0,0420). Die gegen hMSH2 gerichteten shRNA exprimierenden Plasmide bewirkten eine Abnahme der hMSH2 Proteinmenge um 90%. Indirekte Effekte, die Einfluss auf die Effizienz der DSB Reparatur nehmen könnten, zeigten sich in der Zellzyklusanalyse nicht (Abbildung 8).

Abbildung 8 Einfluss der hMSH2 Expression auf die HDR in der stabilen Zelllinie K562(HR-EGFP/3'EGFP) bei ausreichender Homologielänge.

Die Zellen wurden mit einem Mix aus dem Expressionsplasmid pCMVI-*Sce*I, dem Kontrollplasmid pBlueScriptII sowie der jeweils vermerkten shRNA (pRSMSH2 5, pRSMSH2 8) bzw. dem Leervektor pRSControl kotransfiziert und für 24 h kultiviert.

A. Messung der DSB Reparaturfrequenz. Dargestellt sind Mittelwerte und Standardfehler von 14 Messwerten aus 5 voneinander unabhängigen Messungen. Zum besseren Vergleich wurden die mittleren Werte für den Leervektor (pRS Control) für jeden experimentellen Tag gleich 100% gesetzt, und die DSB Reparaturfreqenzen nach *Knockdown* von hMSH2 darauf bezogen (absoluter Wert für 100%: 2,96x10⁻⁴). Die Signifkanz-Berechnung wurde durchgeführt mit *Wilcoxon matched pairs test* und ist jeweils bezogen auf den Leervektor (pRS Control).

B. Westernblot Analyse. Es erfolgte die Immundetektion von hMSH2 und von Tubulin als Kontrolle der Auftragsmenge.

C. Zellzyklusanalyse. Der DNA-Gehalt der Zellen wurde nach Propidiumiodid (PI) Färbung durchflusszytometrisch bestimmt. Dargestellt werden die Mittelwerte und Standardfehler von vier Messwerten aus zwei voneinander unabhängigen Messungen.

Zusammenfassend zeigte sich im chromosomalen Kontext eine signifikante Inhibition der DSB Reparaturfrequenz nach supprimierter hMSH2 Expression. Das MMR Protein scheint den Homologie gerichteten Weg der DSB Reparatur zu fördern, wobei zu beachten ist, dass mittels des HR-EGFP/3'-EGFP DNA Substrats sowohl die konservative als auch die nichtkonservative Form der HDR analysiert wurde.

3.1.2 Der Einfluss von hMSH2 auf die HDR in der stabilen Zelllinie K562(Δ-EGFP/3'EGFP) bei limitierter Homologielänge

Die unter 3.1.1 genannten Versuche wurden für das Δ -EGFP/3'EGFP Substrat wiederholt, welches stabil in die Zelllinie K562 integriert wurde und das ebenfalls hauptsächlich die HDR detektierte. Das Δ -EGFP/3'EGFP Substrat unterscheidet sich von dem HR-EGFP/3'EGFP Konstrukt allein durch die Länge der homologen DNA Abschnitte, welche bei dem Δ -EGFP/3'EGFP Substrat auf 168 Basenpaare begrenzt waren. Nach verminderte hMSH2 Expression zeigte sich keine signifkante Änderung der Reparaturfrequenz im Vergleich zu der Kontrolle (Abbildung 9). Verschiebungen im Zellzyklus und Veränderungen des Apoptoseverhaltens der Zellen wurden nicht detektiert.

Abbildung 9 Einfluss der hMSH2 Expression auf die HDR in der stabilen Zelllinie K562(Δ-EGFP/3'EGFP) bei limitierter Homologielänge.

Die Zellen wurden mit einem Mix aus dem Expressionsplasmid pCMVI-*Sce*I, dem Kontrollplasmid pBlueScriptII KS sowie den shRNA Plasmiden pRSMSH2 5, pRSMSH2 8 oder dem Leervektor pRS Control kotransfiziert und für 24 h in Kultur gehalten.

A. Messung der DSB Reparaturfrequenz. Nach Korrektur um die Transfektionseffizienz erfolgte die Darstellung der Mittelwerte und Standardfehler von neun Messwerten aus drei voneinander unabhängigen Versuchsdurchführungen. Zur besseren Vergleichbarkeit der Daten wurden die mittleren Werte für die Kontrolle für jeden experimentellen Tag gleich 100% gesetzt und die Reparaturfrequenzen nach hMSH2 *Knockdown* auf diesen Wert bezogen (absoluter Wert für 100%: 4,4x10⁻⁴). Die Signifkanz-Berechnung wurde durchgeführt mit *Wilcoxon matched pairs test* und ist jeweils bezogen auf den Leervektor (pRS Control).

B. Zellzyklusanalyse. Der DNA-Gehalt der Zellen wurde nach PI Färbung durchflusszytometrisch bestimmt. Dargestellt wurden die Mittelwerte und Standardfehler von vier Messwerten aus zwei voneinander unabhängigen Versuchsdurchführungen

Da sich das HR-EGFP/3'EGFP und das Δ -EGFP/3'EGFP- Substrat lediglich in der Länge des zur Verfügung stehenden homologen DNA Bereiches unterschieden, deuten diese Daten daraufhin, dass das MutS Homolog hMSH2 eine Mindestanzahl homologer Basenpaare benötigt, um die HDR positiv zu beeinflussen. Eine weitere mögliche Annahme wäre, dass beide Formen der HDR gleichermaßen stattfanden, sodass sich der gegenteilige Effekt von hMSH2 auf diese beiden Reparaturformen neutralisierte. Hierdurch wäre die gleichbleibende Frequenz der DSB Reparatur nach hMSH2 *Knockdown* ebenfalls erklärbar.

3.1.3 Der Einfluss von MSH2 auf die HDR in der stabilen Zelllinie WTK1(HR-EGFP/3'EGFP)*SV40*.fwd bei ausreichender Homologielänge

Um den Einfluss von hMSH2 auf die HDR in einem weiteren Zellsystem genauer zu untersuchen, wurde die humanen Lymphoblastenzelllinie WTK1(HR-EGFP/3'EGFP)*SV40*.fwd mit chromosomal integriertem HR-EGFP/3'EGFP Konstrukt herangezogen. Dieser Konstrukt unterscheidet sich von HR-EGFP/3'EGFP lediglich im *Spacer*, indem die Hygromycin-Resistenz-Kassette durch einen Sequenzabschnitt des *SV40*-Genoms ersetzt wurde. Mittels dieses Reparatursubstrates wurde sowohl die Reparaturform des SSAs als auch die der HR detektiert. Nach transientem *Knockdown* des hMSH2 Proteins kam es zu einem signifikanten Anstieg der Reparaturereignisse um das 1,45 fache verglichen mit der Kontrolle (p=0,0039) (Abbildung 10). Es wurde also im Vergleich zu den bisherigen Versuchen ein gegenteiliger Effekt von hMSH2 auf die HDR nachgewiesen.

Abbildung 10 Einfluss der hMSH2 Expression auf die HDR in der stabilen Zelllinie WTK1(HR-EGFP/3'-EGFP)*SV40*.fwd bei ausreichender Homologielänge.

Messung der DSB Reparaturfrequenz. Die Zellen wurden mit einem Mix aus dem Expressionsplasmid pCMVI-*Sce*I, dem Kontrollplasmid pBlueScriptII KS und den shRNA Plasmiden pRSMSH2 5 und pRSMSH2 8 kotransfiziert. Nach Korrektur um die Transfektionseffizienz erfolgte die Darstellung der Mittelwerte und Standardfehler der neun Messwerte aus drei voneinander unabhängigen Versuchsdurchführungen. Zur besseren Vergleichbarkeit der Daten wurden die Mittelwerte der Kontrolle für jeden experimentellen Tag gleich 100% gesetzt und die Reparaturfrequenzen nach hMSH2 *Knockdown* auf diesen Wert bezogen (absoluter Wert für 100%: 8,6x10⁻⁴). Die Signifikanz-Berechnung wurde durchgeführt mit *Wilcoxon matched pairs test* und ist jeweils bezogen auf den Leervektor (pRS Control).

Um eine genauere Unterscheidung zwischen stattgefundener konservativer und nichtkonservativer Form der HDR zu erreichen, wurde in einem nachfolgenden Schritt die

Aktivität/Expression der Schlüsselproteine hRad51 bzw. hRad52 inhibiert (s. 3.1.5).

3.1.4 Der Einfluss der Komplexpartner hMSH3 und hMSH6 auf die HDR in der stabilen Zelllinie K562(HR-EGFP/3'EGFP) bei ausreichender Homologielänge

Aus der MMR ist bekannt, dass hMSH2 mit seinen Komplexpartnern hMSH3 und hMSH6 interagiert, um postreplikative Basenfehlpaarungen zu erkennen und diese zu beheben. Inwiefern diese beiden Faktoren hMSH2 auch bei der DSB Reparatur unterstützen, sollte mithilfe der folgenden Experiment genauer untersucht werden. Hierzu wurde in der K562(HR-EGFP/3'EGFP) Zelllinie die endogene Expression von hMSH3 und hMSH6 mithilfe der Expression zweier spezifischer shRNas nach entsprechender Plasmidtransfektion unterdrückt. Die Zellen wurden gleichzeitig mit dem pCMV-I-*SceI* Expressionsplasmid und pBluescriptII KS bzw. wtEGFP als Transfektionskontrolle transfiziert. 24 h nach Transfektion erfolgte die Rekombinationsmessung. Zwei der Rekombinationsmessungen wurden von Dr.rer.nat. Simone Siehler durchgeführt.

Es zeigte sich nach Suppression des hMSH3 bzw. hMSH6 Proteins eine deutliche Abnahme der Reparaturereignisse (Abbildung 11). Ohne hMSH3 und hMSH6 kam es also ebenfalls zu einer Suppression der HDR. Hierbei erreichten nur die Werte für die shRNAs MSH3 4 und MSH6 6 Signifikanz (MSH3 4: p=0,0049; pMSH6 6: p=0,0425). Die beiden Komplexpartner des hMSH2 Proteins scheinen also auch Funktionen während der DSB Reparatur zu übernehmen. Diese Beobachtung untermauerte die Annahme, dass das MMR Protein hMSH2 auch bei der DSB Reparatur mit seinen beiden Komplexpartnern hMSH3 und hMSH6 interagiert. In der Westernblot Analyse, die von Dr.rer.nat. Simone Siehler durchgeführt wurde, zeigte sich eine Abnahme der Proteinmenge auf 80% für hMSH3 und eine Reduktion auf 50% für das hMSH6 Protein nach transienter Expression eine Abnahme der Proteine hMSH3 und hMSH6 auf 30-60% bzw. 60-80% des Kontrollniveaus detektierbar (Abbildung 8). hMSH2 und seine beide Partner bilden vermutlich auch bei der HDR Heterodimere und beeinflussen auf diese Weise die DSB Reparatur. In der Zellzyklusanalyse zeigten sich nach *Knockdown* der MutS Homologe keine Veränderungen (Abbildung 11).

Abbildung 11 Einfluss der hMSH3 und hMSH6 Expression auf die HDR in der stabilen Zelllinie K562(HR-EGFP/3'EGFP) bei ausreichender Homologielänge.

Die Zellen wurden mit einem Mix aus dem Expressionsplasmid pCMVI-*Sce*I, dem Kontrollplasmid pBlueScriptII KS sowie der jeweils vermerkten shRNA (pRS MSH3 1, pRS MSH3 4, pRS MSH6 4 oder pRSMSH6 6) bzw. dem Leervektor pRS Control kotransfiziert und für 24 h kultiviert.

A. Messung der DSB Reparaturfrequenz in Abhänigigkeit von hMSH3. Dargestellt sind Mittelwerte und Standardfehler von 9 Messwerten aus 3 voneinander unabhängigen Messungen. Zum besseren Vergleich wurden die mittleren Werte für den Leervektor pRS Control je experimentellem Tag gleich 100% gesetzt, und die DSB Reparaturfrqenzen nach *Knockdown* von hMSH3 darauf bezogen (absoluter Wert für 100%: 2,25x10⁻⁴). Die Signifkanz-Berechnung wurde durchgeführt mit *Wilcoxon matched pairs test* und ist jeweils bezogen auf den Leervektor (pRS Control).

B. Zellzyklusanalyse. Der DNA-Gehalt der Zellen wurde nach PI Färbung durchflusszytometrisch bestimmt. Dargestellt werden die Mittelwerte und Standardfehler von vier Messwerten aus zwei voneinander unabhängigen Messungen.

C. Westernblot Analyse. Es erfolgte die Immundetektion von hMSH3 und von Tubulin als Kontrolle der Auftragsmenge.

D. Messung der DSB Reparaturfrequenz in Abhängigkeit von hMSH6. Dargestellt sind Mittelwerte und Standardfehler von 12 Messwerten aus 4 voneinander unabhängigen Messungen. Zum besseren Vergleich wurden die mittleren Werte für den Leervektor pRS Control für jeden experimentellen Tag gleich 100% gesetzt und die DSB Reparaturfreqenzen nach *Knockdown* von hMSH6 auf diesen Wert bezogen (absoluter Wert für 100%: 3,01x10⁻⁴). Die Signifkanz-Berechnung wurde durchgeführt mittels *Wilcoxon matched pairs test* und ist jeweils bezogen auf den Leervektor (pRS Control).

E. Zellzyklusanalyse. Der DNA-Gehalt der Zellen wurde nach PI Färbung durchflusszytometrisch bestimmt. Dargestellt werden die Mittelwerte und Standardfehler von vier Messwerten aus zwei voneinander unabhängigen Messungen.

F. Westernblot Analyse. Es erfolgte die Immundetektion von hMSH6 und von Tubulin als Kontrolle der Auftragsmenge.

3.1.5 Der Einfluss von hMSH2 auf die HDR bei Störung der Funktionalität der Reparaturproteine hRad51 und hRad52

Da mittels des HR-EGFP/3'EGFP Rekombinationssubstrates sowohl die konservative als auch die nichtkonservative Form der HDR gemessen wurden, sollte durch weitere Versuche geklärt werden, welcher dieser Reparaturwege durch hMSH2 beeinflusst wurde. Hierbei wurde die unterschiedliche Abhängigkeit beider Reparaturformen von den Proteinen hRad51 und hRad52 ausgenutzt. Das SSA benötigt das Protein hRad52, findet jedoch unabhängig von hRad51 statt. Dabei bindet hRad52 die DNA Enden in Form eines Ringes und unterstützt so die Assoziation zwischen zueinander passenden DNA Enden. Im Gegensatz dazu fördern hRad51 und seine Paraloge die HR, indem sie die ATP abhängige Paarung und den Strangaustausch homologer DNA Abschnitte katalysieren und gleichzeitig das SSA supprimieren[182].

3.1.5.1 Der Einfluss von hMSH2 auf die HDR bei Störung der Funktionalität der Reparaturproteine hRad51 und hRad52 in der Zelllinie K562(HR-EGFP/3'EGFP)

Die folgend aufgeführten Experimente führte Dr.rer.nat. Simone Siehler durch. Zur Diskriminierung beider Reparaturformen wurde die Funktionalität bzw. Expression der Proteine hRad51 und hRad52 in der K562(HR-EGFP/3'EGFP) Zelllinie inhibiert. Für hRad51 wurde die Expression einer dominant negativen Mutante des Proteins verwendet. Die Expression von hRad52 wurde mittels einer spezifischen shRNA verringert. Zunächst erfolgte die Elektroporation des Kontrollvektors pRSControl bzw. der shRNA exprimierenden Plasmide pRSMSH2 5 und pRSMSH2 8. Anschließend wurden die Zellen in Kultur gehalten. Nach 48 h wurde eine weitere Transfektion mit dem pCMV-I-*Sce*I Expressionsplasmid, und den shRNA Vektoren pSuper oder pSuperRad52 bzw. pcDNA3.1 oder pcDNA3.1Rad51SM durchgeführt.

Nach *Knockdown* von hMSH2 zeigte sich eine signifikante, 1,8-fache Abnahme der Reparaturereignisse bei noch bestehender hRad51 bzw. hRad 52 Expression (p = 0,0078). Der fördernde Effekt auf die HDR konnte also bestätigt werden. Bei Überexpression von Rad51SM sank die Anzahl erfolgreicher DSB Reparaturen um den Faktor 2,2 verglichen mit der Kontrolle (Abbildung 12). Nach gleichzeitiger Störung der Funktionalität von hRad51 und Expressionsminderung von hMSH2 kam es zu einer 4,2-fachen Verringerung der

Reparaturfrequenz im Vergleich zu den Kontrollzellen. Beide Effekte waren additiv wirksam und fanden damit unabhängig voneinander statt.

Abbildung 12 Analyse der DSB Reparatur in der Zelllinie K562(HR-EGFP/3'EGFP) nach hMSH2 *Knockdown* und Störung der hRad51 Expression.

A. Messung der DSB Reparaturfrequenz. Die Zellen wurden mit den shRNA Vektoren pRS MSH2 5 und pRS MSH2 8 bzw. dem Leervektor pRS Control transfiziert und 48 h in Kultur gehalten. Anschließend erfolgte eine erneute Transfektion per Elektroporation mit Mix aus dem Expressionsplasmid pCMVI-*Sce*I, dem Kontrollplasmid pBlueScriptII KS sowie der dominant negativen Mutante pSuperRad51SM oder dem Leervektor pcDNA3.1. Nach Korrektur um die Transfektionseffizienz erfolgte die Darstellung der Mittelwerte und Standardfehler der neun Messwerte aus drei voneinander unabhängigen Versuchsdurchführungen. Zur besseren Vergleichbarkeit der Daten wurden die mittleren Werte der Kontrolle für jeden experimentellen Tag gleich 100% gesetzt und die Reparaturfrequenzen nach hMSH2 *Knockdown* auf diesen Wert bezogen (absoluter Wert für 100%: 6,72x10⁻⁴). Die Signifkanz-Berechnung wurde durchgeführt mit *Wilcoxon matched pairs test* und ist jeweils bezogen auf die Kontrolle (pRS Control/pcDNA3.1).

B. Westernblot Analyse. Es erfolgte die Immundetektion von hMSH2, hRad51 und hRad52 sowie von Tubulin als Kontrolle der Auftragsmenge.

Im nächsten Schritt folgte die Untersuchung der epistatischen Beeinflussung zwischen hMSH2 und hRad52 (Abbildung 13). Bei verminderter hRad52 Expression der K562(HR-EGFP/3'EGFP) Zellen kam es zu einem Anstieg der Reparaturereignisse um das 1,7 fache (p=0,0117) im Vergleich zur Kontrolle. Nach *Knockdown* beider Proteine zeigte sich eine 1,9-fache Steigerung der DSB Reparatur (p=0,0391), verglichen mit dem Leervektor. Interessanterweise kam es also ohne hRad52 zu einem Verlust der hMSH2 abhängigen Reduktion des HDR. In der Zellzyklusverteilung und der Apoptose waren nach Unterdrückung der Expression der verschiedenen DNA Reparaturproteine keine Veränderungen sichtbar (Daten nicht gezeigt).

Abbildung 13 Analyse der DSB Reparatur in der Zelllinie K562(HR-EGFP/3'EGFP) nach hMSH2 und hRad52 *Knockdown*.

A. Messung der DSB Reparaturfrequenz. Die Zellen wurden mit den shRNA Vektoren pRS MSH2 5 und pRSMSH2 8 bzw. dem Leervektor pRS Control transfiziert und 48 h in Kultur gehalten. Anschließend erfolgte eine erneute Transfektion per Elektroporation mit einem Mix aus dem Expressionsplasmid pCMVI-*SceI*, dem Kontrollplasmid pBlueScriptII KS sowie dem shRNA Vektor pSuperRad52 oder dem Leervektor pSuper. Nach Korrektur um die Transfektionseffizienz erfolgte die Darstellung der Mittelwerte und Standardfehler der neun Messwerte aus drei voneinander unabhängigen Versuchsdurchführungen. Zur besseren Vergleichbarkeit der Daten wurden die mittleren Werte der Kontrolle für jeden experimentellen Tag gleich 100% gesetzt und die Reparaturfrequenzen nach hMSH2 *Knockdown* auf diesen Wert bezogen (absoluter Wert für 100%: 8,09x10⁻⁴). Die Signifkanz-Berechnung wurde durchgeführt mit *Wilcoxon matched pairs test* und ist jeweils bezogen auf die Kontrolle (pRS Control/pSuper).

B. Westernblot Analyse. Es erfolgte die Immundetektion von hMSH2, hRad51 und hRad52 sowie von Tubulin als Kontrolle der Auftragsmenge.

In den K562(HR-EGFP/3'EGFP) Zellen wurden als Reparaturformen HR und SSA detektiert, belegbar durch die Abnahme der Reparaturfrequenz bei gestörter hRad51 Funktionalität. hRad51 supprimiert das SSA als konkurrierende Reparaturform [182]. Nach erfolgter hRad51 Inhibition kam es zu einer Reduktion der Rekombinationsfrequenz, aber nicht zu einer Inaktivierung der DSB Reparatur, was auf das SSA als weitere Reparaturform in dieser Zelllinie schließen lassen könnte. Ein weiterer Beleg für das Überwiegen des mutagenen SSAs in K562 Zellen liegt in ihrem Mutationsprofil. In der CML Zelllinie kommt es durch die Translokation zwischen den Chromosomen 9 und 22 zur Bildung eines chimeren BCR-ABL

Gens, das u.a. durch eine Hemmung der Apoptose und eine unregulierte Förderung des Zellwachstums zur genomischen Instabilität führt [42, 75]. Zusätzlich scheint BRC-ABL über die Aktivierung des Resektionsfaktors CtIP auch direkt mutagene Reparaturmechanismen wie

das SSA zu fördern [160]. Bei Inhibition von hRad52 wurde eine Zunahme der Reparaturereignisse beobachtet, es fand ein *Shift* des konkurrierenden SSA zur HR statt.

Zusammenfassend lässt sich bemerken, dass hMSH2 und hRad51 bei der DSB Reparatur in K562 Zellen unabhängig voneinander agierten. Vielmehr scheint hMSH2 hier regulierende Funktionen beim hRad52 abhängigen SSA zu übernehmen.

3.1.5.2 Der Einfluss von hMSH2 auf die HDR bei Störung der Funktionalität der Reparaturproteine hRad51 und hRad52 in der Zelllinie WTK1(HR-EGFP/3'EGFP)SV40.fwd

In der WTK1(HR-EGFP/3'EGFP)*SV40*.fwd Zelllinie zeigte sich bei vermindertem hMSH2 Status eine Zunahme der DSB Reparaturfrequenz. Da in dieser Zelllinie ein gegenteiliger hMSH2 Effekt auf die HDR auftrat, wurde, wie in K562(HR-EGFP/3'EGFP), wie unter 3.1.5.1 beschrieben, eine Inhibition der Expression der Proteine hRad51 und hRad52 durchgeführt, um genauer zwischen konservativer und nichtkonservativer Form der HDR unterscheiden zu können. Gleichzeitig sollte so der hMSH2 Effekt auf diese beiden Reparaturformen näher untersucht werden.

Hierbei zeigte sich nach *Knockdown* von hMSH2 bei noch bestehender hRad51 und hRad52 Expression abermals eine Zunahme der DSB Reparatur auf das 1,3 fache, auch wenn die Daten keine Signifikanz erreichten.

Abbildung 14 Analyse der DSB Reparatur in der Zelllinie WTK1(HR-EGFP/3'EGFP)SV04.fwd nach hMSH2 und hRad52 Knockdown.

Zur Messung der DSB Reparaturereignisse wurden die Zellen mit den shRNA Vektoren pRSMSH2 5 und pRSMSH2 8 bzw. dem Leervektor pRSControl transfiziert und 48 h in Kultur gehalten. Anschließend erfolgte eine erneute Transfektion per Elektroporation mit einem Mix aus dem Expressionsplasmid pCMV-I-*Sce*I, dem Kontrollplasmid pBlueScriptII KS sowie dem shRNA Vektor pSuperRad52 oder dem Leervektor pSuper. Nach Korrektur um die Transfektionseffizienz erfolgte die Darstellung der Mittelwerte und Standardfehler der neun Messwerte aus drei voneinander unabhängigen Versuchsdurchführungen. Zur besseren Vergleichbarkeit der Daten wurden die mittleren Werte der Kontrolle für jeden experimentellen Tag gleich 100% gesetzt und die Reparaturfrequenzen nach hMSH2 Knockdown auf diesen Wert bezogen (absoluter Wert für 100%: 8,24x10⁻⁴). Die Signifkanz-Berechnung wurde durchgeführt mit *Wilcoxon matched pairs test* und ist jeweils bezogen auf die Kontrolle (pRS Control/pSuper).

Nach *Knockdown* des Proteins hRad52 mittels eines spezifischen shRNA Plasmides kam es zu einer leichten, statistisch nicht signifikanten Abnahme der DSB Reparaturfrequenz (

Abbildung 14). Bei gleichzeitig unterdrückter Expression von hRad52 und hMSH2 kam es zu einem Verlust dieses Effektes auf die DSB Reparaturfrequenz. Es zeigte sich eine 1,4 fache Zunahme. hMSH2 und hRad52 scheinen also beide die konservative Form der HDR zu unterdrücken und/oder die nichtkonservative Form der HDR zu unterstützen. Diese hRad52 abhängige Wirkung von hMSH2 konnte bereits in der Zelllinie K562(HR-EGFP/3'EGFP) gezeigt werden (s. 3.1.5.1).

Bei Überexpression von Rad51SM stieg die Anzahl erfolgreicher DSB Reparaturen um den Faktor 1,4 verglichen mit der Kontrolle (Abbildung 15). Nach gleichzeitiger Inhibition der Funktion von Rad51 und der Expression von hMSH2 kam es zu einer 1,7-fachen Zunahme der Reparaturfrequenz im Vergleich zu den Kontrollzellen (p=0,0078). Da bereits der alleinige *Knockdown* von hMSH2 eine Zunahme der DSB Reparaturfrequenz um den Faktor 1,4 bewirkte (s. auch Abbildung 10), waren beide Effekte additiv wirksam und fanden damit unabhängig voneinander statt.

Abbildung 15 Analyse der DSB Reparatur in der Zelllinie WTK1(HR-EGFP/3'EGFP)SV40.fwd nach hMSH2 Knockdown und Störung der hRad51 Funktionalität.

Zur Messung der DSB Reparaturereignisse wurden die Zellen mit den shRNA Vektoren pRSMSH2 5 und pRSMSH2 8 bzw. dem Leervektor pRS Control transfiziert und 48 h in Kultur gehalten. Anschließend erfolgte eine erneute Transfektion per Elektroporation mit einem Mix aus dem Expressionsplasmid pCMV-I-*SceI*, dem Kontrollplasmid pBlueScriptII KS sowie der dominant negativen Mutante Rad51SM oder dem Leervektor pcDNA3.1. Nach Korrektur um die Transfektionseffizienz erfolgte die Darstellung der Mittelwerte und Standardfehler der neun Messwerten aus drei voneinander unabhängigen Versuchsdurchführungen. Zur besseren Vergleichbarkeit der Daten wurden die mittleren Werte der Kontrolle für jeden Versuchstag gleich 100% gesetzt und die Reparaturfrequenzen nach MSH2 Knockdown auf diesen Wert bezogen (absoluter Wert für 100%: 6,0x10⁻⁴). Die Signifkanz-Berechnung wurde durchgeführt mit *Wilcoxon matched pairs test* und ist jeweils bezogen auf die Kontrolle (pRS Control/pcDNA3.1).

hRad52 Knockdown noch hRad51 in den Da weder Inaktivierung WTKI(HR-EGFP/3'EGFP)SV40.fwd Zellen eine statistisch signifikante Anderung der DSB Reparaturfrequenz bewirkten, bleibt in den WTK1(HR-EGFP/3'EGFP)SV40.fwd Zelllen ungeklärt, ob sowohl SSA und HR in einer sich neutralisierenden Weise stattfanden oder noch ein weiterer, unbekannter Mechanismus aktiviert wurde. Denkbar ist auch, dass bei fehlender BCR-ABL-Mutation eine geringere Endprozessierung die HR gegenüber dem SSA bevorzugt stattfinden lässt. hRad51 supprimiert das SSA als konkurrierende Reparaturform [182]. Nach erfolgter hRad51 Inhibition käme es daher zur beobachteten Enthemmung der nichtkonservativen Form der HDR. Diese führte Zunahme zu einer der Rekombinationsfrequenz, was auf die HR als ansonsten dominierende Reparaturform in dieser Zelllinie schließen lassen könnte. Festzuhalten bleibt, dass in der Zelllinie WTK1(HR-EGFP/3'EGFP)*SV40*.fwd die Hauptreparaturform die HR detektiert wurde und so vor allem der inhibierenden Effekt von hMSH2 auf die konservative Form der HDR detektiert wurde. Gleichzeitig konnte die gemeinsame Interaktion von hMSH2 und hRad52 bestätigt werden.

3.2 Der Einfluss von hMSH2 auf die DSB Reparatur im extrachromosomalen Kontext

3.2.1 Der Einfluss von hMSH2 auf das SSA im extrachromosomalen Kontext in der Zelllinie K562

Im nächsten Schritt sollte die Abhängigkeit des hMSH2 Effektes von der chromosomalen Umgebung näher untersucht und gleichzeitig der Einfluss von hMSH2 auf die nichtkonservative Form der HDR eingehender beleuchtet werden. Die geschilderten Experimente wurden in der Zelllinie K562 durchgeführt. Es handelt sich hierbei um eine chronisch myeloische Leukämiezelllinie, die kein chromosomal integriertes DNA Reparatursubstrat enthält. Die Transfektion der Zellen erfolgte zunächst mit dem Leervektor pRSControl bzw. den beiden shRNA exprimierenden Vektoren MSH2 5 und MSH2 8, um einen *Knockdown* des MMR Proteins zu erreichen. Anschließend wurden die Zellen 48 h in Kultur gehalten. Mithilfe einer zweiten Elektroporation wurde das pCMV-I-*SceI* Expressionplasmid, das 5'-EGFP/HR-EGFP DNA Reparatursubstrat und pBluescriptII KS bzw. wtEGFP als Transfektionskontrolle in die Zellen eingebracht. Die Messung der erfolgreich rekonstituierten DSBe erfolgte 72 h nach der ersten Transfektion.

Abbildung 16 Einfluss der hMSH2 Expression auf das SSA in der Zelllinie K562.

Zur Messung der DSB Reparaturereignisse wurden die Zellen entweder mit dem Leervektor pRS Control oder den shRNA Vektoren pRSMSH2 5 und pRSMSH2 8 transfiziert und 48 h in Kultur gehalten. Es folgte eine 2. Transfektion mit einem Mix aus dem Expressionsplasmid pCMV-I-SceI, dem Kontrollplasmid pBlueScriptII KS sowie dem DNA Substrat 5'EGFP/HR-EGFP. Anschließend wurden die Zellen für 24 h kultiviert.

A. Messung der DSB Reparaturfrequenz. Nach Korrektur um die Transfektionseffizienz erfolgte die Darstellung der Mittelwerte und Standardfehler der fünfzehn Messwerte aus fünf voneinander unabhängigen Versuchsdurchführungen. Zur besseren Vergleichbarkeit der Daten wurden die mittleren Werte der Kontrolle für jeden experimentellen Tag gleich 100% gesetzt und die Reparaturfrequenzen nach hMSH2 Knockdown auf diesen Wert bezogen (absoluter Wert für 100%: 3,65x10-3). Die Signifkanz-Berechnung wurde durchgeführt mit *Wilcoxon matched pairs test* und ist jeweils bezogen auf den Leervektor (pRS Control).

B. Zellzyklusanalyse. Der DNA-Gehalt der Zellen wurde nach PI F\u00e4rbung durchflusszytometrisch bestimmt. Dargestellt wurden die Mittelwerte und Standardfehler von zwei Messwerten aus einer Versuchsdurchf\u00fchrung.
C. Westernblot Analyse. Es erfolgte die Immundetektion von hMSH2 sowie von Tubulin als Kontrolle der Auftragsmenge 72 h nach der 1. Transfektion.

Hierbei zeigte sich nach hMSH2 *Knockdown* für das 5'EGFP/HR-EGFP Substrat, mit dessen Hilfe die Reparaturform des SSAs detektiert wurde, eine signifikante Reduktion der Reparaturfrequenz (p=0,0125), (Abbildung 16). In der Zellzyklusanalyse waren keine Veränderungen detektierbar. In der Westernblotanalyse zeigte sich eine Reduktion der hMSH2 Proteins um 60%.

Zusammenfassend scheint der hMSH2 Effekt auf die DSB Reparatur im extrachromosomalen Kontext weniger stark ausgeprägt zu sein als in den Versuchen mit der stabilen Zelllinie K562(HR-EGFP/3'EGFP). Trotz geringerer Ausprägung bestätigte sich die regulierende Funktion von hMSH2 bei der nichtkonservativen Form der HDR.

3.2.2 Der Einfluss von hMSH2 auf das NHEJ im extrachromosomalen Kontext in der Zelllinie K562

Die unter 3.2.1 genannten Versuche wurden für das EJ-EGFP DNA Substrat wiederholt, um die Auswirkungen von hMSH2 auf die Reparaturform des NHEJ zu untersuchen. Nach *Knockdown* von hMSH2 zeigte sich keine Änderung der DSB Reparatureffizienz, hMSH2 scheint keine Funktionen bei der fehlerbehafteten Reparaturform des NHEJs zu übernehmen (Abbildung 17).

Wilcoxon matched pairs test und ist jeweils bezogen auf den Leervektor (pRS Control). B. Westernblot Analyse. Es erfolgte die Immundetektion von hMSH2 sowie von Tubulin als Kontrolle der

Auftragsmenge 72 h nach der 1. Transfektion.

3.3 Die Interaktion von hMSH2 mit den DNA Reparaturproteinen MRE11, ERCC1, BRCA2

Durch den stabilen *Knockdown* verschiedener in der Literatur beschriebener DSB-Reparaturproteine sollte ihre Funktion bei der Reparaturform des SSAs näher beleuchtet werden. Untersucht wurden die DNA Reparaturproteinen BRCA2, MRE11 und ERCC1. Im Anschluss sollte die Förderung des SSAs durch hMSH2 bestätigt werden und eine mögliche Interaktion des MMR Faktors mit den Nukleasen ERCC1 sowie MRE11 untersucht werden.

3.3.1 Die Funktion der DNA Reparaturproteine MRE11, ERCC1 und BRCA2 beim SSA in stabilen HeLa shRNA-Zelllinien

Die folgenden Versuche wurden in HeLa Zelllinien mit stabil im Genom integrierten shRNA-Sequenzen durchgeführt, wodurch die Expression der jeweiligen Proteine sehr effizient unterdrückt wurde. Betrachtet wurden die Herabregulationen von BRCA2 (HeLa shBRCA2), MRE11 (HeLa shMRE11), ERCC1 (HeLa shERCC1), jeweils im Vergleich zur Kontroll Zelllinie HeLa shControl. Die shRNA-Sequenz der Kontroll Zelllinie enthielt zwei *Mismatches* in einem Strang der Haarnadelstruktur und hatte somit keinen *Knockdown* zur Folge. Als DNA Reparatursubstrat wurde das 5'EGFP/HR-EGFP Konstrukt verwendet, welches lediglich die nichtkonservative Form der HDR detektierte. In einer zweiten Versuchsreihe wurde die Expression des MMR Proteins hMSH2 transient unterdrückt und die DNA Reparaturfrequenzen in den verschiedenen HeLa *Knockdown* Zellinien genauer untersucht. Nachgewiesen wurde der *Knockdown* der verschiedenen DNA Reparaturproteine mittels Westernblot Analysen, ebenso die exogene Unterdrückung der hMSH2 Expression. In der Zellzyklusanalyse zeigten sich keine Veränderung nach Herabregulierung der oben genannten DNA Reparaturproteine (Abbildung 20).

Abbildung 18 Einfluss der Expression der DNA Reparaturproteine MRE11, ERCC1 und BRCA2 auf das SSA.

Die Versuche wurden in HeLa Zelllinien mit stabil im Genom integrierten shRNA-Sequenzen durchgeführt, wodurch die Expression der jeweiligen Proteine unterdrückt wurde. Untersucht wurden der *Knockdown* von BRCA2 (HeLa shBRCA2), MRE11 (HeLa shMRE11), ERCC1 (HeLa shERCC1), jeweils im Vergleich zur Kontroll Zelllinie HeLa shControl. Zur Messung der DSB Reparaturereignisse wurden die Zellen mit dem Expressionsplasmid pCMV-I-*SceI*, dem Kontrollplasmid pBlueScriptII KS sowie dem DNA Substrat 5'EGFP/HR-EGFP kotransfiziert und für 24 h kultiviert.

A. Messung der DSB Reparaturfrequenz. Dargestellt sind Mittelwerte und Standardfehler von 11-15 Messwerten aus 3-5 voneinander unabhängigen Versuchdurchführungen. Zum besseren Vergleich wurden die Mittelwerte für die Kontolle (HeLashControl) für jeden experimentellen Tag gleich 100% gesetzt und die DSB Reparaturfreqenzen der verwendeten *Knockdown* Zelllinien auf diesen Werte bezogen (absoluter Wert für 100%: $3,07x10^{-2}$). Die Signifkanz-Berechnung erfolgte mittels *Mann-Whitney U test* und ist jeweils bezogen auf die Kontrolle (HeLashControl).

B. Westernblot Analyse. Es erfolgte die Immundetektion von MRE11 (*meiotic recombination 11 homolog*), ERCC1 (*excision repair cross-complementing group 1 protein*) und BRCA2 (*breast cancer type 2 susceptibility protein*) sowie von Tubulin als Kontrolle der Auftragsmenge.

Der Knockdown von MRE11 sowie ERCC1 führte zu einer signifikanten Abnahme der Reparaturfrequenz um 63,4% und 59,4% (MRE11: p<0,0001; pERCC1: p< 0,0001), was ihre regulatorische Funktionen während der nichtkonservativen Form der HDR belegte (Abbildung 18). Nach *Knockdown* von BRCA2 zeigte sich keine Abnahme der SSA Frequenz im Vergleich zur Kontroll Zelllinie. Vielmehr kam es ohne BRCA2 zu einer 1,4-fachen, jedoch statistisch nicht signifikanten, Zunahme der DSB Reparatur. Dies ist dadurch zu erklären, dass BRCA2 an der HR, nicht jedoch an dem konkurrierendem SSA beteiligt ist [182, 204]. In der Zellzyklusanalyse zeigten sich keine signifikanten Veränderungen (Abbildung 20). 3.3.2 Funktionelle Wechselwirkungen von hMSH2 mit den DNA Reparaturproteinen MRE11, ERCC1 und BRCA2 beim SSA in HeLa shRNA-Zelllinien.

In einem zweiten Versuch sollte das Zusammenwirken der oben genannten Reparaturproteine mit dem MMR Protein hMSH2 im Rahmen der nichtkonservation Form der HDR (SSA) genauer untersucht werden. Hierzu wurden die Zellen mit dem DNA Substrat 5'EGFP/HR-EGFP, pBluescriptII KS oder wtEGFP transifiziert. Die Expression des hMSH2 Proteins wurde durch die Kotransfektion mit den shRNA Vektoren pRSMSH2 5 und pRSMSH2 8 unterdrückt. Die erfolgreichen Reparaturereignisse wurden 24 h nach Transfektion mittels Durchflusszytometrie gemessen. Nach transientem *Knockdown* von hMSH2 kam es zu einer signifikanten Abnahme der Reparaturfrequenz in den Zelllinien HeLa shControl um 35,5% (p=0,0010), HeLa shMRE11 um 49,09% (p=0,0068) und HeLa shBRCA2 um 35,07% (p=0,0371) im Vergleich zu der Kontrolle (Abbildung 19). In der ERCC1 depletierten Zelllinie zeigte sich dagegen ein Verlust des hMSH2 Effektes auf die DSB Reparatur; es zeigte sich keine signifikante Änderung der Reparaturfrequenz. Diese Daten deuten darauf hin, dass hMSH2 und die Endonuklease ERCC1 das SSA in einem gemeinssmen Reaktionsweg beeinflussen. Demgegenüber scheint das MMR Protein unabhängig von MRE11 und BRCA2 zu agieren.

Abbildung 19 Einfluss der hMSH2 Expression auf die HDR in den verschiedenen HeLa shRNA Zellinien

A. Messung der DSB Reparaturfrequenz. Die Versuche wurden in HeLa Zelllinien mit stabil im Genom integrierten shRNA-Sequenzen durchgeführt, wodurch die Expression der jeweiligen Proteine unterdrückt wurde. Untersucht wurden der *Knockdown* von BRCA2 (HeLa shBRCA2), MRE11 (HeLa shMRE11), ERCC1 (HeLa shERCC1), jeweils im Vergleich zur Kontroll Zelllinie HeLa shControl. Zur Messung der DSB Reparaturereignisse wurden die Zellen mit einem Mix aus dem Expressionsplasmid pCMV-I-*Sce*I, dem Kontrollplasmid pBlueScriptII KS, dem DNA Substrat 5'EGFP/HR-EGFP sowie dem Leervektor pRSControl oder den shRNA Vektoren pRSMSH2 5 und pRSMSH2 8 transfiziert. Nach Korrektur um die Transfektionseffizienz erfolgte die Darstellung relativ zum Kontrollvektor pRS Control. Gezeigt werden die Mittelwerte von 12 Messungen aus 4 voneinander unabhängigen Durchführungen. Zur besseren Vergleichbarkeit der Daten wurden die mittleren Werte für die Kontrolle jeder *Knockdown* Zelllinie gleich 100% gesetzt und die Werte nach hMSH2 *Knockdown* auf diese Werte bezogen (absolute Werte für 100%: HeLa shControl: 3,07x10⁻². HeLa shERCC1: 1,15x10⁻², HeLa shMRE11: 1,23x10⁻², HeLa shBRCA2: 5,25x10⁻²). Die Berechnung der Signifikanzen erfolgte mittels *Wilcoxon matched pairs test*.

B. Westernblot Analyse. Es erfolgte die Immundetektion von hMSH2 sowie von Tubulin als Kontrolle der Auftragsmenge in den verschiedenen HeLa *Knockdown* Zelllinien.

In der Westernblotanalyse zeigte sich nach hMSH2 *Knockdown* eine Reduktion der Proteinmenge auf bis zu 45% im Vergleich zur Kontrolle.

shRNA-Sequenzen durchgeführt, wodurch die Expression der jeweiligen Proteine unterdrückt wurde. Untersucht wurden der *Knockdown* von BRCA2 (HeLa shBRCA2), MRE11 (HeLa shMRE11), ERCC1 (HeLa shERCC1), jeweils im Vergleich zur Kontroll Zellinie HeLa shControl. Die Zellen wurden wie unter 3.3.2 beschrieben transfiziert. Der DNA-Gehalt der Zellen wurde nach PI Färbung durchflusszytometrisch bestimmt. Dargestellt wurden die Mittelwerte und Standardfehler von zwei Messwerten aus einer Versuchsdurchführung.
4 DISKUSSION

DSBe stellen die schwerste Form der DNA Schädigung dar, da bei ihnen die betroffene Sequenz nicht von dem gleichen DNA Molekül wiederhergestellt werden kann. Aus diesem Grund ist eine verlässliche Reparatur der DSBe besonders wichtig, um einen Verlust von Erbinformation und chromosomale *Rearrangements* zu verhindern, die langfristig die Krebsentstehung begünstigen [57, 61]. DSBe entstehen endogen z.B. während der Replikation, durch Fehler der Topoisomerasen und exogen z.B. durch radioaktive Strahlung, sowie durch reaktive Sauerstoffspezies.

Viele an der DNA Reparatur beteiligte Proteine konnten bereits identifiziert und ihre Funktionen konnten bei den verschiedenen Reparaturwegen genauer untersucht werden. Auch das MMR Protein MSH2 übernimmt wichtige Funktionen bei der DNA Reparatur, indem es Fehler während der Replikation behebt. Außerdem greift es regulierend in die Apoptose und die Aktivierung von Zellzyklus *Checkpoints* ein [19, 28].

Inwieweit hMSH2 und seine beiden Komplexpartner hMSH3 und hMSH6 auch Aufgaben während der DSB Reparatur übernehmen, ist in höheren Eukaryonten und insbesondere beim Menschen bisher noch weitgehend ungeklärt. Aus der Hefe weiß man, dass sich MSH2 im Bereich von DSBen anreichert [59] und eine Rolle bei der Entfernung nichthomologer DNA Enden spielt und möglicherweise bei der Homologiesuche mitwirkt [97, 164, 189, 190]. *Smith et al.* [178] zeigten mittels eines stabil ins Genom integrierten Reparatur Substrates, dass MSH2 nur einen geringen Effekt auf die Effizienz des NHEJ hat, und, dass die Länge der resultierenden Deletionen unabhängig vom MSH2 Status ist. Weiterhin ist bekannt, dass die MMR Proteine auch die HR beeinflussen. Hierbei verhindert MSH2 die Rekombination zwischen divergierenden Sequenzen und trägt so zur Beibehaltung der genomischen Integrität bei [179]. Außerdem bindet MSH2 *Holliday junction* ähnliche DNA Strukturen, eine Beobachtung die ebenfalls eine Beteiligung an der DSB Reparatur unterstützt [7].

Für die in der Arbeit durchgeführten Versuche wurde das von *Akyüz et al.* [5] entwickelte Testsystem verwendet, welches die DSB Reparatur nach I-SceI vermittelter DSB Induktion quantifizierte. Es wurde das Reparaturverhalten in verschiedenen menschlichen Zelllinien untersucht, nachdem die hMSH2 Expression mittels spezifischer shRNA Expressionsvektoren gestört wurde. Hierbei wurde aufgrund vorangegangener Beobachtungen im Labor Prof. Wiesmüller v.a. die Wirkung von hMSH2 auf das SSA genauer beleuchtet. Dies geschah sowohl im chromosomalen als auch im extrachromosomalen Kontext. Um eine genauere Unterscheidung zwischen den Auswirkungen des MMR Faktors auf die konservative und die nichtkonservative Form der HDR zu ermöglichen, wurde die Expression der beiden Schlüsselproteine der HDR, hRad51 und hRad52, inhibiert. Desweiteren wurde auch die Bedeutung der beiden Komplexpartner hMSH3 und hMSH6 bei der DSB Reparatur näher untersucht. Abschließend wurde noch die mögliche Interaktion zwischen hMSH2 und möglichen in der Literatur beschriebenen Partnern, wie den DNA Reparaturproteinen BRCA2, ERCC1 und MRE11, betrachtet.

4.1 Der MMR Fakor hMSH2 moduliert die HDR

Die MMR Proteine MSH2 und MLH1 und die übergeordneten MutS- und MutL-Komplexe teilen eine Vielzahl von Gemeinsamkeiten: Beide Proteine übernehmen wichtige Funktionen bei der MMR. Während die MutS Komplexe bei der MMR das DNA Rückgrat entlang fahren und dabei Basenfehlpaarungen erkennen und diese binden, fungieren MLH1 und seine Komplexpartner als Verbindungsglied zwischen dem Erkennungskomplex und der nukleolytischen Komponente der MMR oder üben selbst endonukleolytische Aktivität aus [93]. Eine weitere Gemeinsamkeit ist die Beeinflussung der HR, die sowohl durch die hMutS Homologe als auch durch die hMutL Homologe inhibiert wird. Die MutS Homologe überwachen die Bildung und Elongation der heteroduplexen DNA, indem sie den Strangaustausch beim Auftreten von Basenfehlpaarungen blockieren. Die MutL Homologe stimulieren dabei die MutS Proteine und destabilisieren möglicherweise diese blockierten Intermediate [191].

Distinkt sind die beiden Protein-Typen jedoch in folgenden Punkten:

- (i) in der Art und Weise wie die HR Reparatur supprimiert wird, und
- (ii) in der Beeinflussung der nichtkonservativen Form der HDR.

Die hMutL-Komplexe scheinen die HR auch unabhängig von dem hMSH2 Protein zu supprimieren [176]. hMLH1 und seine Komplexpartner inhibieren wie die hMutS-Komplexe vor allem die Rekombination zwischen DNA Bereichen mit nur kurzen ununterbrochenen Homologien, wobei der antirekombinogene Effekt wahrscheinlich durch die Beeinflussung verschiedener Komponenten des ATM-ATR Signalweges entsteht [31, 176]. Es ist bekannt, dass ATM im Rahmen der DSB Reparatur *Checkpoint* Signalwege triggert [172]. Dadurch scheint ATM fehlerbehaftete Reparaturereignisse zu minimieren und zur Aufrechterhaltung der genomischen Integrität beizutragen. Auch MSH2 und seine Homologe scheinen die Rekombination zwischen nicht perfekt passenden DNA Sequenzen zu inhibieren. In embryonalen Mäusestammzellen reduziert es die DSB induzierte HR zwischen Sequenzen mit

einer Divergenz von >1% deutlich [44]. Im Gegensatz zu den MutL Proteinen supprimieren die MutS Homologe diese homeologe HR jedoch, indem sie den Strangaustausch behindern. So ist aus *E.coli* bekannt, dass die MutS Proteine die RecA vermittelte Stranginvasion zwischen divergierenden Sequenzen inhibieren [218]. Die HR wird durch die MutS-Komplexe auch in der Hefe, der Maus und dem Menschen beeinflusst [2, 56, 106]

hMSH2 unterscheidet sich auch durch die Beeinflussung des SSAs von hMLH1. So beobachteten *Sugawara et al.* [190], dass die MutS Homologe MSH2 und MSH6 in der Hefe das SSA zwischen divergierenden Sequenzen über die Blockade heteroduplexer DNA Bereiche hemmen, wohingegen Mutationen der MutL Homologe keinen Effekt zeigten.

Auf der anderen Seite zeigte sich, dass die MutS Komplexe das SSA fördern, wenn der DSB in einem Bereich mit sich direkt wiederholenden Sequenzen auftritt. Hierbei scheinen die MutS-Komplexe in der Hefe freie 3^c Überhänge zu erkennen und dort mit der Endonuklease Rad1-Rad10 zu interagieren [189]. MSH2 und MSH3, nicht jedoch MLH1 und PMS1, werden somit sowohl während der HR als auch während des SSAs benötigt, um nicht homologe DNA Enden zu entfernen [140, 189].

Da hMSH2 auch Zellzyklus *Checkpoints* aktivieren und die Apoptose induzieren kann [19, 28], wurde für die Messung der Reparaturereignisse der frühstmögliche Zeitpunkt nach DSB Induktion gewählt. Parallel zu den DSB Reparaturmessungen wurden Zellzyklusanalysen durchgeführt, um auszuschließen, dass Veränderungen der DSB Reparaturfrequenz auf Zellzyklusverschiebungen oder einen -arrest zurückzuführen waren. Es zeigte sich jedoch für keine in dieser Arbeit verwendete Zelllinie eine signifikante Änderung des Zellzyklusverhaltens nach Alteration des hMSH2 Status unter den Bedingungen der DSB Reparatur Analyse.

Die Verwendung von stabilen Zelllinien mit im Genom integrierten DSB-Reparaturkonstrukt bietet gegenüber Messungen mit transient in Zellen eingeführten DNA Substraten den Vorteil, dass die Reparatur des DSBes im chromosomalen Kontext erfolgen kann. Die Chromatinverpackung beeinflusst die Reparatur des Bruches. So wird beispielsweise über die Phosphorylierung der Histonvariante H2AX eine Signalkaskade ausgelöst, die über die Aktivierung einer Vielzahl von Reparaturproteinen die Schadensantwort verstärkt und propagiert [107, 187, 197]. H2AX defiziente Zellen zeigten vermehrt chromosomale Abnormalitäten, erhöhte Sensitivität gegenüber radioaktiver Strahlung und eine Reduktion der HR [33].

Nachteilig ist sicher das im Vergleich zu transienten Versuchen ca. 50-100 fach seltenere Auftreten von Reparaturereignissen, sodass mindestens $2x10^5$ Zellen pro Einzelmessung analysiert wurden, um die Sensitivität für Messungen in einem Frequenzbereich von 10^{-4} bis 10^{-3} zu erreichen und verlässliche Aussage über das Reparaturverhalten der Zellen machen zu können [5].

4.1.1 hMSH2 stimuliert im Komplex mit hMSH3 und hMSH6 das SSA im chromosomalen Kontext

Das SSA ist ein effizienter Reparaturmechanismus um DSBe mit zwei freien Enden zwischen sich wiederholenden DNA Sequenzen zu beheben [141]. Dabei müssen die DNA Enden zunächst reseziert werden, was wahrscheinlich von dem MRN Komplex übernommen wird [195]. Auch die Endonuklease ERCC1/XPF ist an der Strangprozessierung beteiligt. Anschließend wird mithilfe des Rad52 Proteins die Anlagerung der komplementären Einzelstränge vermittelt [6, 21, 129]. Da die komplementären Einzelstränge zwischen repetitiven Sequenzen einfach hybridisieren können und damit das Schwesternchromatid als *Template* entbehrlich ist, findet das SSA, anders als die HR, während des gesamten Zellzyklus statt. Sequenzwiederholungen in der Nähe des DSBes werden als Substrat für die Hybridisierung der Einzelstränge verwendet, jedoch kommt es zu einer Deletion der DNA Bereiche zwischen den Wiederholungen, was das SSA zu einer ungenauen und fehlerbehafteten Art der DSB Reparatur macht. So kann es beispielsweise zum Verlust von Tumorsuppressorgenen oder zu Translokationen führen. Da Sequenzwiederholungen etwa 50% des menschlichen Genoms ausmachen (z.B. Alu Sequenzen) ist das SSA möglicherweise ein bedeutender Reaktionsweg bei der Mutagenese [58, 117].

Betrachtet man die Auswirkungen der hMSH2 Expression auf die HDR, so zeigten die Messungen mit der K562(HR-EGFP/3'EGFP) Zelllinie (Abbildung 8) mit stabil integriertem HDR Substrat eine signifikante Abnahme der Reparaturfrequenz bei vermindertem hMSH2 Expressionsniveau. Aus dem Vergleich der Reparatureffizienzen für die verschiedenen Reparatursubstrate im extrachromosomalen Kontext [175] und dem Vergleich der DSB Reparaturfrequenz nach Inhibition der Hauptfaktoren der HR (hRad51) und des SSAs (hRad52) (Abbildung 12, Abbildung 13) lässt sich schlussfolgern, dass hMSH2 vor allem die nichtkonservative Form der HDR fördert. Aus der Hefe ist bekannt, dass MSH2 und MSH3 das SSA fördern. Diese Interpretation wurde in der Zwischenzeit im Labor von Prof. Wiesmüller durch genomische PCR Analysen bestätigt. Aus der Hefe weiß man, dass hierbei die MMR Faktoren die zu verbindenden DNA Sequenzen stabilisieren und die Rad1-Rad10 Endonuklease in den Bereich des Bruches zu rekrutieren [189]. Auch *Betrand et al.* [22] bestätigten eine Interaktion zwischen dem MSH2-MSH3 Heterodimer und Rad1-Rad10 in der

Hefe .

Säugerzellen benötigen für eine effiziente DSB Reparatur Homologiebereiche von etwa 200 bp [158]. Homologiebereiche unterhalb dieser Homologielänge werden als divergierende Sequenzen erkannt, sodass antirekombinogene Mechanismen in Kraft treten, um eine fehlerhafte DNA Reparatur zu verhindern.

Die in der Arbeit durchgeführten Versuche in der K562(Δ -EGFP/ 3'EGFP) Zelllinie, bei der die Zahl homologer Basenpaare begrenzt war, zeigten nach *Knockdown* von hMSH2 keine signifikante Änderung der Reparaturfrequenz (Abbildung 9). Dies könnte bedeuten, dass hMSH2 für die Ausprägung seiner regulatorischen Funktion beim SSA ausreichende Homologielängen benötigt. Diese Daten sind mit der Beobachtung von *Sugawara et al.* [189] vereinbar, wonach das SSA zwischen divergierenden Sequenzen mit nur kurzen homologen Abschnitten durch MSH2 und MSH6 in *S.cerevisiae* verhindert wird. Hierzu würde das seltenere Auftreten von SSA *Events* in der Zellinie K562(Δ -EGFP/3'EGFP) im Vergleich zu den K562(HR-EGFP/3'EGFP) Zellen passen. In ersteren Zellen war SSA mittels genomischer PCR nämlich nicht, demgegenüber jedoch in letzteren Zellen sehr gut nachweisbar war [5, 215]. Eine weitere mögliche Erklärung für die fehlende Suppression der HDR nach hMSH2 Knockdown in der Zelllinie K562(Δ -EGFP/3'EGFP) wären zwei sich die Waage haltende Effekte, nämlich der Verlust der SSA Stimulierung, aber auch der HR Suppression zwischen divergierenden Sequenzen (s. 4.1.2).

Aus MMR Studien weiß man, dass MSH2 Heterodimere mit den Proteinen MSH3 und MSH6 bildet, um eine effektive postreplikative Genauigkeitskontrolle durchzuführen. Aber auch bei der DSB Reparatur scheint hMSH2 auf seine beiden Komplexpartner angewiesen zu sein. So supprimiert das MMR Protein gemeinsam mit hMSH2 und hMSH3 die homeologe Rekombination zwischen nichtidentischen DNA Sequenzen [2, 43, 55].

In den K562(HR-EGFP/3'EGFP) Zellen kam es nach alleinigem *Knockdown* von hMSH3 oder hMSH6 ebenfalls zu einer deutlichen Reduktion der DSB Reparaturfrequenz. Da zumindest ein erheblicher Teil der HDR Reparatur in den K562(HR-EGFP/3'EGFP) Zellen auf SSA Ereignisse zurückzuführen ist, deuten diese Daten darauf hin, dass hMSH2 auch bei der Regulation des SSAs auf seine Komplexpartner angewiesen ist (Abbildung 11). Dies ist konsistent mit der Beobachtung von *Sugawara et al.* in der Hefe, dass MSH2 bei der Regulation des SSAs zumindest MSH3 benötigt [189]. In der Westernblotanalyse (Abbildung 8) zeigte sich nach alleinigem hMSH2 Knockdown mit einer Abnahme der Proteinmenge um 90%, auch eine Reduktion der hMSH3 Proteinmenge auf 30-60% bzw. 60-80% (hMSH6) des Kontrollniveaus. Übereinstimmend mit dieser Beobachtung wurde bereits früher berichtet,

dass hMSH2 durch Formierung des MutSα Komplexes bzw. MutSβ Komplexes die beiden Proteine hMSH6 und hMSH3 stabilisiert [68].

4.1.2 hMSH2 supprimiert die HR im chromosomalen Kontext

Neben ihrer Rolle bei der Replikation und beim SSA scheinen die MMR Proteine auch in einen weiteren Reparaturweg, die HR, involviert zu sein. Sowohl in Säugetierzellen als auch in anderen Organismen ist die HR einer der Hauptreparaturwege bei der DSB Reparatur [56]. Die HR wird jedoch nicht nur bei der DSB Reparatur benötigt, sondern spielt auch bei der Chromosomentrennung und der Entstehung der genetischen Vielfalt eine Rolle [59]. Im Gegensatz zum fehlerbehafteten NHEJ ist die HR sehr akkurat und benötigt ausgedehnte homologe DNA Bereiche, wobei als bevorzugte Vorlage das unbeschädigte Schwesternchromatid benutzt wird [219]. Um ungewollte Rearrangements zu verhindern wird die Rekombination dabei sehr genau reguliert [165]. Daher treten spontane Rekombinationsereignisse nur zwischen DNA Bereichen auf, die ein gewisses Maß an Homologie teilen. Bei zu großen Heterologien zwischen den zu paarenden DNA Sequenzen wird die Rekombination dieser homeologen DNA Abschnitte supprimiert. Tritt ein DSB im Genom auf, wird die HR in einer Größenordnung des 2-3fachen stimuliert [110, 156, 165]. Aber schon eine relativ geringe Anzahl von Sequenzheterologien führt zu einer deutlichen Abnahme der Reparaturfrequenz. Denn die Rekombination zwischen nur fast identischen DNA Sequenzen kann zu chromosomalen Veränderungen wie Deletionen, Insertionen und Translokationen führen, die langfristig die Krebsentstehung begünstigen. Die Unterdrückung dieser homeologen Rekombination wurde über die verschieden Spezies hinweg konserviert und benötigt die MMR Maschinerie. Aus Untersuchungen in der Hefe weiß man, dass MSH2, MSH3, MSH6, MLH1 und PMS1 wichtig für die Genauigkeitskontrolle der HR sind. Hierbei scheint MSH2 die stärksten antirekombinativen Eigenschaften zu haben. Gemeinsam mit MSH6 bindet es Holliday Strukturen sowie verzweigte DNA Substrate und stimuliert weiter auch die Bindung von p53 an Holliday Strukturen. In S.cerevisiae zeigte sich ohne MSH2 eine 70-fache Zunahme des Crossover zwischen nur zu 91% identischen Sequenzen, alle anderen MMR Proteine hatten nur einen geringen Einfluss [128, 188, 191]. In Säugetierzellen verhindern MSH2, MSH3 und MSH6 ebenfalls die Rekombination zwischen divergierenden Sequenzen [2, 44, 56, 106].

Übereinstimmend mit den Funktionen von hMSH2 bei der Genauigkeitskontrolle der HR kam es in den K562(Δ-EGFP/3'EGFP) Zellen, bei denen das SSA strotz ähnlicher HDR Frequenz

wie in K562(HR-EGFP/3'-EGFP) schwerer als in den K562(HR-EGFP/3'-EGFP) Zellen nachweisbar ist [5, 215] und damit der Anteil der HR größer ist, nach hMSH2 Knockdown zu keiner statistisch signifikanten Änderung der DSB Reparaturfrequenz. Demgegenüber zeigten die Versuche in den K562(HR-EGFP/3'EGFP) Zellen bei inhibierter hMSH2 Expression eine signifikante Abnahme der DSB Reparaturereignisse um bis zu 60% (Abbildung 8). Dies lässt darauf schließen, dass sich in der K562(Δ -EGFP/3'EGFP) Zelllinie die Herabregulation des SSAs und die Derepression der HR nach hMSH2 *Knockdown* neutralisierten (Abbildung 9), während in den K562(HR-EGFP/3'-EGFP) Zellen der SSA- mindernde Effekt überwog. Da genomischen PCR Analysen für die WTK1(HR-EGFP/3'-EGFP)*SV40*.fwd Zelllinie aufzeigen, dass in diesem System HR gegenüber SSA Ereignissen leicht überwiegen [215], erklärt sich wiederum die Zunahme der HDR Ereignisse nach hMSH2 Knockdown (Abbildung 10). Meine Ergebnisse passen demnach insgesamt zu der früheren Beobachtung, dass hMSH2 defiziente Zellen einen hyperrekombinativen Phänotyp aufweisen [202, 218].

4.1.3 hMSH2 stimuliert das SSA im extrachromosomalen Kontext

Die transienten Versuche in der K562 Zelllinie unter Verwendung des 5'EGFP/HR-EGFP DNA Substrats (Abbildung 16) bestätigten, dass hMSH2 das SSA stimuliert. Allerdings fiel die Zunahme der Reparaturereignisse im Vergleich zu den Versuchen in den stabilen Zelllinien geringer aus. Mögliche Erklärungen für die extrachromosomal geringer auftretende Stimulation könnten sein:

i) dass es, bedingt durch höhere Kopienzahl von Tausenden von DNA Substraten

extrachromosomal im Vergleich zu einer intrachromosomalen Kopie, zu einer Erhöhung des Basalwertes bei erhaltener hMSH2 Expression kam, sodass keine weitere Steigerung aufgrund der Sättigung des Reparatursystem möglich war;

ii) dass die nackte (extrachromosmale) DNA im Gegensatz zu der chromatinverpackten DNA zu einer Steigerung des Basalwertes der Rekombinationsereignisse führte, die keine weitere Steigerung der DSB Reparaturfrequenz durch hMSH2 zuließ (ungünstiges "Signal-Rausch-Verhältnis");

iii) dass zudem in den extrachromosomalen Versuchen Regulationsmechanismen fehlten, die aufgrund des umgebenden Chromatingerüstes aktiviert werden. Die Chromatindekondensation und die damit verbundene Aktivierung weiterer Singalwege, z.B. die H2AX Phosphorylierung im Rahmen der Schadensantwort, könnten auch Auswirkungen auf die Stimulierung des SSAs durch hMSH2 haben.

Demgegenüber zeigte sich für das EJ-EGFP Substrat, mit dessen Hilfe das NHEJ detektiert

wurde, keine Änderung der DSB Reparatureffizienz nach Störung der hMSH2 Expression (Abbildung 17). Diese Beobachtung stimmt mit Daten in der Literatur überein, die zeigten, dass MSH2 nur einen geringen Einfluss auf das NHEJ hat [21, 178].

4.1.4 Die Analyse der funktionellen Interaktionen von hMSH2 mit den Reparaturproteinen hRad51 und hRad52 bestätigten eine Involvierung beim SSA

In der Hefe spielt Rad52 sowohl bei der konservativen als auch bei der nichtkonservativen Form der HDR eine zentrale Rolle. Hierbei wird es in der präsynaptischen Phase der HR benötigt, um Rad51 in den Bereich der Einzelstrang DNA zu rekrutieren, die zunächst von dem Protein RPA gebunden wird [99]. Gleichzeitig fördert Rad52 die Bildung des Rad51 Nukleoproteinfilamentes und ermöglicht so eine Stranginvasion in das homologe Doppel.

In Säugetierzellen dagegen scheint das Protein hRad52 alleinig das SSA zu beeinflussen [182]. So zeigten Rad52^{-/-} Mäusezellen keine Defekte bei der HR, jedoch war das SSA deutlich reduziert. Beim SSA bindet hRad52 die DNA Enden in der Form eines heptameren Ringes und verhindert einerseits die unspezifische Exzision der DNA Enden durch Nukleasen und vermittelt andererseits die Paarung der prozessierten DNA Einzelstränge. Die Funktionen von hRad52 bei der HR werden in Säugetierzellen wahrscheinlich von dem Protein BRCA2 übernommen. BRCA2 bindet ebenfalls einzelsträngige DNA und scheint die eukaryotische Rekombinase Rad51 zu kontrollieren und in den Bereich der einzelsträngigen DNA zu rekrutieren [67, 162].

hRad51, das den Strangaustausch mit dem homologen Doppel katalysiert, nimmt bei der HR eine kritische Rolle ein. So kommt es nach Ausschalten der Rekombinase zu einer Verschiebung der DSB Reparatur in Richtung des mutagenen SSAs [182].

Um genauer zwischen der nichtkonservativen und der konservativen Form der HDR unterscheiden zu können, wurden die Hauptfaktoren dieser beiden Reparaturmechanismen, hRad51 und hRad52, inhibiert bzw. herabreguliert. Hierbei zeigte sich in den K562(HR-EGFP/3'EGFP) Zellen (Abbildung 12, Abbildung 13), dass hMSH2 unabhängig von hRad51, aber abhängig von hRad52, die HDR und damit die nichtkonservative Form der HDR, nämlich das SSA, beeinflusste. Auch *Sugawara et al.* [189] konnten in der Hefe zeigen, dass MSH2 das SSA fördert. Etwas komplizierter gestalten sich die Ergebnisse in der WTK1(HR-EGFP/3'EGFP)*SV40*.fwd Zelllinie (Abbildung 10), da in diesen Zellen nach heutiger Kenntnis überwiegend HR stattfindet. Dies ließ den Einfluss von hMSH2 auf das SSA

schwerer abschätzen. Es war nur ein Trend zu erkennen, der auf eine HR Derepression nach hMSH2 Herabregulation deutete (

Abbildung 14, Abbildung 15). Im Gegensatz hierzu beobachteten *Bennardo* und Kollegen [21] keine Beeinflussung von SSA und Stimulierung von HR unabhängig von Sequenzheterologien in murinen ES Zellen. Dies wiederum steht im Gegensatz zu Ergebnissen von *LaRocque und Jasin* [106] sowie früheren Daten von *Elliott und Jasin* [56], die ebenfalls in murinen ES Zellen eine Reduktion der homeologen Rekombination, also der HR zwischen divergierenden Sequenzen, feststellten.

In dieser Arbeit wurde zum ersten Mal in humanen Zellen der Einfluss der hMSH2 Expression auf die HDR untersucht. Dies ist inbesondere deshalb von Bedeutung, da sich die Verwendung der einzelnen DSB Reparaturwege in Maus und Mensch deutlich unterscheiden. *Banuelos et al.* [14] konnten zeigen, dass in menschlichen Zellen die DNA Enden im Berereich eines DSBes schneller als in Mäusezellen wiederverknüpft werden, auch exprimieren menschliche Zellen deutliche höhere Mengen des Ku70/80 Proteins als Mäusezellen. Auch *Brons et al.* [27] konnten eine Vielzahl von Unterschieden im Verhalten von pluripotenten embryonalen Mäuse- und menschlichen Stammzellen detektieren. Beispielsweise bestehen Unterschiede darin, wie die Pluripotenz der Zellen beibehalten wird. Weiterhin scheint die epigenetische Stabilität in menschlichen Stammzellen deutlich höher zu sein als in Mäusestammzellen.

4.1.5 Funktionelle Interaktion von hMSH2 mit dem DNA Reparaturprotein ERCC1, nicht jedoch BRCA2, bestätigt die Rolle beim SSA

Die Beteiligung weiterer DNA Reparaturproteine an der Regulation des SSAs sowie deren Interaktion mit dem MMR Faktor hMSH2 wurde mittels der HeLa shRNA Zelllinien untersucht. Diese zeigten für das jeweilige Protein eine stabil stark verminderte Expression, die mittels Westernblotanalyse detektiert werden konnte (Abbildung 18). Die Messung der Reparaturereignisse bei ungestörter hMSH2 Expression ermöglichte die Analyse des Einflusses der Reparaturproteine ERCC1, MRE11 und BRCA2 auf die Effizienz der Reparaturform des SSAs.

Das Protein MRE11, ein Bestandteil des MRN Komplexes, übernimmt wichtige Funktionen bei der HDR. So erkennt und bindet der MRN Komplex DSBe und rekrutiert die Proteinkinase ATM in den Bereich des Bruches. Weiterhin scheint MRE11 sowohl bei der konservativen als auch bei der nichtkonservativen Form der HDR an der Resektion der DNA Enden im Bereich des DSBes beteiligt zu sein [11, 146]. Entsprechend dieser Aufgaben führte

DISKUSSION

der *Knockdown* von MRE11 in der HeLa shMRE11- Zelllinie zu einer starken Abnahme der Reparatureffizienz des SSAs und bestätigte so die wichtige Bedeutung von MRE11 für die nichtkonservative Form der HDR. Die Störung der ERCC1 Expression führte ebenfalls zu einer Verminderung der SSA Frequenz und ist konsistent mit der Funktion der Endonuklease bei der nichtkonservativen Form der HDR, wo ERCC1 die nichthomologen 3^c DNA Überhänge reseziert [3, 166]. Nach BRCA2 Knockdown kam es zu keiner signifikanten Änderung der Reparaturereignisse im Vergleich zur Kontrolle (Abbildung 18), passend zu der hauptsächlichen Beeinflussung der HR. Hierbei interagiert BRCA2 mit Rad51 und rekrutiert die eukaryotische Rekombinase in den Bereich des DSBes [88]. Die BRCA2 *Knockdown* Zelllinie diente in diesem Versuch also als weitere Kontrolle zur Einengung des DSB Reparaturweges SSA.

Nachdem die Beteiligung der verschiedenen DNA Reparaturproteine beim SSA verifiziert wurde, galt es zu klären, ob diese Proteine einen direkten Einfluss auf die regulatorische Funktion von hMSH2 bei der nichtkonservativen Form der HDR nehmen. Daher wurde im nächsten Schritt die Expression des MMR Proteins mittels spezifischer shRNAs gestört. In der Kontrollzelllinie zeigte sich nach hMSH2 Knockdown erwartungsgemäß eine Reduktion der SSA Frequenz, wie zuvor auch in der K562 Zelllinie beobachtet (Abbildung 8, Abbildung 16). Die BRCA2 Expressionsreduzierte Zelllinie zeigte ein Reparaturverhalten ähnlich der Kontrolle, was nochmals die Wirkung von hMSH2 auf das SSA unterstrich. Überraschenderweise blieb nach gestörter MRE11 Expression die signifikante Reduktion der SSA Frequenz bei verminderter hMSH2 Expression weiterhin bestehen. MRE11 und hMSH2 scheinen also bei der Regulation des SSAs keine gemeinsame Interaktion einzugehen, und vielmehr unterschiedliche Schritte dieses Reparaturweges zu unterstützen. Bei gleichzeitiger reduzierter Expression von ERCC1 und hMSH2 kam es zu keiner signifikanten Änderung der Reparaturereignisse. Der Verlust des hMSH2 Effektes auf die Reparaturfrequenz in der ERCC1 depletierten Zelllinie zeigte, dass ERCC1 als zentrales Zielmolekül funktionell mit dem MMR Protein interagierte. hMSH2 benötigte also zur Ausprägung seiner regulatorischen Funktionen bei der DSB Reparatur die Interaktion mit der Endonuklease ERCC1.

Das Protein ERCC1 bildet einen Komplex mit der Endonuklease XPF und schneidet spezifisch einzelsträngige 3^c Überhänge [23]. In Säugetierzellen übernimmt der Proteinkomplex Funktionen bei der NER und dem SSA [1, 3, 23, 166]. ERCC1 *Knockout* Mäuse zeigen ein deutlich schwereres Krankheitbild als NER defiziente Mäuse; sie leiden unter Multiorganversagen, Wachstumsstörungen und sterben früh [123, 198, 212]. Diese

Beobachtungen deuten auf zusätzlichen Funktionen der ERCC1/XPF Endonuklease bei der DNA Reparatur unabhängig von der NER, wie beispielsweise während des SSAs. Dabei entfernt die Endonuklease die heterologen DNA Überhänge und gilt neben dem Protein hRad52 als einer der Hauptfaktoren dieser Reparaturform [20].

Die beobachtete epistatische Beziehung zwischen hMSH2 und ERCC1 stimmt mit der Beobachtung überein, dass hMSH2 das SSA in hRad52 abhängiger Weise fördert. *Sugawara et al.* konnten in *S. cerevisiae* zeigen, dass die Proteine MSH2 und MSH3 die Endonuklease Rad1/Rad10 in den Bereich nichthomologer 3^c Überhänge rekrutieren und so deren Prozessierung fördert [189].

Obwohl MRE11 ebenfalls frühe Prozessierungsschritte während des SSAs katalysiert, zeigte sich keine gemeinsame Interaktion von hMSH2 und MRE11. Eine mögliche Erklärung hierfür ist die unterschiedliche Abhängigkeit der DSB Reparatur je nach chemischer Modifikation und Eigenschaften der DNA Enden im Bereich des DSBes. So scheint die Prozessierung der Bruchenden mittels des MRN Komplexes nur dann zwingend benötigt zu werden, wenn die DNA Enden nicht frei zugänglich sind [220]. Die Resektion dieser blockierten DNA Enden erfolgt dann durch den MRN/CtIP Proteinkomplex, der bis zu mehrere Hundert Nukleotide entfernen kann. Hierbei bindet der MRN Komplex zunächst die DNA Enden und rekrutiert anschließend das Protein CtIP in den Bereich des Bruches. Sind die DNA Enden jedoch frei zugänglich, beispielsweise nach Induktion des DSBes durch die Meganuklease I-SceI (wie in unserem Testsystem verwendet), scheint die nukleolytische Funktion des MRE11/CtIP Komplexes nicht zwingend notwendig zu sein. Vielmehr fungiert das Protein dann als Plattform, um andere Reparaturkomponenten in den Bereich des Bruches zu rekrutieren. Hierbei aktiviert MRE11 u.a. die Proteine BLM, EXO1 und DNA2 [136]. Diese Beobachtung stimmt auch mit jüngeren Studien aus der Hefe überein [32, 125, 134, 137, 173]. Dies könnte eine mögliche Erklärung für den fehlenden Nachweis einer epistatischen funktionellen Beeinflussung zwischen hMSH2 und MRE11 sein. Dem gegenüber steht jedoch die Beobachtung von Buis et al. [30], dass in Vertebraten die nukleolytische Funktion von MRE11 essentiell für die DSB Reparatur ist, da die Meganuklease nach Induktion des Bruches an einem Ende der DNA gebunden bleibt. Dennoch wurde in einer kürzlich veröffentlichten Studie beschrieben, dass nach IR induziertem DSB die DNA Enden in einem alternativen Reaktionsweg unabhängig von dem MRE11/CtIP Komplex reseziert werden könnten. Hierbei interagiert möglicherweise die Nuklease EXO1 mit den Helikasen BLM und WRN [200].

4.2 Modell zur Regulation der DSB Reparatur durch hMSH2

Im Folgenden wurde ein mögliches Modell für die Regulation der DSB Reparatur durch das MMR Protein hMSH2 erstellt. Hierbei scheinen die Funktionen von hMSH2 bei der DSB Reparatur in Abhängigkeit von der Länge der zur Verfügung stehenden homologen DNA Abschnitte zu variieren. Limitierte Homologien indizieren divergierende Sequenzen während der HDR.

Vergleicht man die HR in ein und demselben Zelltyp (hier K562) in Abhängigkeit von der Homologielänge, so findet sich bei K562(Δ -EGFP/3'EGFP) (Abbildung 9) bei nur kurzen Homologien im Bereich des Bruches kein Unterschied in der HDR bei hMSH2 Expressionsverlust; die inhibierende Wirkung von hMSH2 auf die HR und die Förderung des SSAs scheinen sich hier die Waage zu halten.

Diese Beobachtung ist konsistent mit der Beschreibung von *Smith et al.* [178], dass in Säugern MSH2 die Rekombination zwischen divergierenden DNA Termini bei der DNA Reparatur unterdrückt. Auch *Elliott und Jasin* [56] beschrieben, dass in Säugerzellen schon eine 1,5% ige Sequenzabweichung die HR stark inhibiert und dass diese Suppression ohne MSH2 verschwindet. Auf diese Weise wird sichergestellt, dass eine Rekombination nur bei ausreichender Homologielänge stattfindet.

Abbildung 21 Modell zur Regulaton der DSB (Doppelstrangbruch) Reparatur durch hMSH2.
A. Beeinflussung der DSB Reparatur durch hMSH2 bei limitierter Homologielänge des verwendeten DNA Substrates: Bei limitierten homologen DNA Bereichen hielten sich die inhibierende Wirkung von hMSH2 (humanes MutS Homolog 2 Protein) auf die Homologe Rekombination (HR) und die Förderung des Single Strand Annealings (SSA) die Waage.
B. hMSH2 Effekt bei ausreichenden homologen DNA Bereichen: Bei ausreichender Homologielänge des zur

Verfügung stehenden Reparatursubstrates überwog die positive Beeinflussung des SSAs.

Die Annahme einer koordinierten Beeinflussung von HR und SSA durch hMSH2 wird auch durch die Tatsache unterstützt, dass sich beide Reparaturformen gegenseitig beeinflussen und eventuell sogar kompetitiv ablaufen. So fördert Rad51 die HR und inhibiert gleichzeitig das SSA [182].

Im Gegensatz dazu scheint beim Vorliegen ausreichender Homologien in K562 (K562(HR-EGFP/3'EGFP), (Abbildung 8) der fördernde Effekt von hMSH2 auf das SSA zu überwiegen. Diese Schlussfolgerung beruht einerseits auf der Auswertung der Reparaturfrequenzen der verschiedenen extrachromosomal eingesetzten Reparatursubstrate [175], andererseits auf dem Vergleich der chromosomalen DSB Reparatureffizienz nach Inhibition der Hauptfaktoren der HR (hRad51) und des SSA (hRad52) (Abbildung 12, Abbildung 13). Bei der nichtkonservativen Form der HDR scheint hMSH2 mit der Endonuklease ERCC1 zu interagieren, die während des SSAs die Prozessierung der heterologen DNA Enden katalysiert. Diese Beobachtung ist konsistent mit Studien aus *S.cerevisiae*, die zeigten, dass nichthomologe DNA 3' Überhänge nach Rekrutierung durch MSH2 und MSH3 mittels der Endonuklease Rad1/Rad10 entfernt werden. Zusätzlich scheinen die MMR Proteine die anzulagernden Regionen während des SSA zu stabilisieren [189].

Zu klären bleibt die Frage nach der biologischen Bedeutung der Förderung des mutagenen SSAs. Eine mögliche Erklärung hierfür ist die Beeinflussung der Antikörpervielfalt durch die MMR Proteine. So ist bekannt, dass die MMR Faktoren MSH2, MSH6, MLH1, PMS2 und EXO1 auch Funktionen während der Class Switch Rekombination (CSR) übernehmen [51, 126, 170, 183]. Mithilfe dieses Klassenwechsels können aktivierte B-Zellen den Antikörperisotyp wechseln und nicht nur IgM und IgD Antikörper, sondern auch die Antikörperklassen IgG, IgA und IgE produzieren. Die Antikörpereffektorfunktion wird im konstanten Gensegment innerhalb des IgH Lokus kodiert. DNA Brüche werden im Bereich der Switch (S) Region induziert und mittels langstreckiger Rekombinationsereignisse wird ein downstream gelegenes konstantes Gensegment mit einem antigenspezifischen Gensegment der V Region verbunden. Auf diese Weise werden die verschiedenen Antikörperisotypen generiert, ohne jedoch die Antigenspezifität zu verändern [50, 184]. Eine Vielzahl von Proteinen werden für die CSR benötigt; u.a. das Enzym AID (activation induced cyitidine deaminase), das Cytosin zu Uracil deaminiert und dadurch U-G Fehlpaarungen im Bereich der S-Region generiert [132]. Man nimmt an, dass diese Fehlpaarungen durch DNA Reparaturfaktoren der MMR und der BER erkannt und durch sie DSBe in diesem Bereich induziert werden. So kommt es ohne die MMR Faktoren MSH2, MSH6, MLH1, PMS2 oder EXO1 zu einer 2-5fachen Reduktion der CSR [15, 53, 54, 122, 169]. Die anschließende Ligation scheint durch Faktoren des NHEJ vermittelt zu werden [51, 84, 126, 149, 150, 170]. Eine jüngere Studie [52] zeigte, dass die MMR Proteine auch unabhängig von den Faktoren des NHEJ die CSR fördern. In diesem Modell scheint das MSH2-MSH6 Heterodimer die in der S-Region induzierte U-G Fehpaarungen zu erkennen, an diese zu binden und anschließend die Proteine MLH1-PMS2 und EXO1 in diesen Bereich zu rekrutieren. Dadurch kommt es zur Induktion von DSBen mit stumpfen oder kurz überstehenden DNA Enden, die dann als Substrat für NHEJ Pozesse während der CSR zur Verfügung stehen. MSH2 und seine Komplexpartner scheinen die CSR also unabhängig von dem NHEJ *Pathway* zu beeinflussen. Diese Aufgaben der MMR Proteine bei der CSR könnten eine mögliche Erklärung für die Förderung des mutagenen SSAs durch hMSH2 und seine Komplexpartner sein, auch wenn eine Beteiligung an der CSR bisher nur für die MutSα Homologe MSH2 und MSH6 beschrieben wurde.

Eine weitere mögliche biologische Bedeutung der Förderung der HDR durch hMSH2 könnte in der Aufrechterhaltung der telomerischen Integrität liegen. Telomere sind spezialisierte Nukleoproteinstrukturen, die die Enden der Chromosomen vor ungerichteten DNA Reparaturereignissen und Degradation schützen [139]. Die telomerische DNA setzt sich aus einigen 100 (Hefe) bis einigen 1000 bp (Vertebraten) zusammen. Bei Säugern lautet die repetitve Sequenz (TTAGGG), die sich am 3' Ende jedes parenteralen Einzelstrangs befindet und über den komplementären Strang hinausragt. Bei jeder Replikation verkürzt sich die telomerische DNA um 50-200 Nukleotide. Diese Verkürzung trägt wahrscheinlich zur Limitierung der Teilung somatischer Zellen in höheren Eukaryoten. Die telomerische DNA weist dabei Gemeinsamkeiten mit anderen repetitiven DNA Sequenzen innerhalb des menschlichen Genoms auf, was die MMR Maschinerie zu einem möglichen Akteur bei der Aufrechterhaltung der Telomere machen könnte [114]. Mendez-Bermudez et al. [124] konnten zeigen, dass es nach Depletion von hMSH2 in humanen Zellen zu einer signifikanten Verkürzung der telomerischen DNA kam. Demgegenüber stehen Ergebnisse aus MSH2 Knockout Mäusen, bei denen im entnommenen Gewebe und in embryonalen Fibroblasten keine Änderung der Telomerlänge oder der Rekombination im Bereich der Telomere detektiert werden konnte [40].

Gewebe mit verkürzten Telomeren haben ein erhöhtes Risiko eine telomerische Dysfunktion zu entwickeln, die zur Zellalterung, zu einer Architekturstörung des Gewebes führen könnten und möglicherweise auch zur Krebsentstehung beitragen könnte. Eine andere mögliche Folge wäre ein deutlich erhöhter Durchsatz gewebsspezifischer Stammzellen. Weiterhin könnte eine überschießende Verkürzung von Telomeren auch zur genetischen Antizipation in HNPCC betroffenen Familien beitragen, auch wenn die Datenlage zum Auftreten einer Antizipation beim HNPCC Syndrom sehr kontrovers ist [124]. Die Förderung der HDR durch hMSH2 könnte möglicherweise zur Stabilisierung der telomerischen DNA beitragen. Umgekehrt könnte der *Shift* von der HDR nach hMSH2 Expressionsverlust zu fehlerbehafteteren DSB Reparaturmechanismen (NHEJ) den Verlust von DNA Sequenzen im Bereich der Telomere begünstigen.

4.3 Ausblicke

Der MMR Faktor hMSH2 scheint die nichtkonservative Form der HDR gemeinsam mit der Endonuklease ERCC1 zu unterstützen. Weiterhin zu klären bleibt die hMSH2 Interaktion mit anderen DNA Reparaturproteinen, die ebenfalls Funktionen bei der DSB Reparatur übernehmen. Mögliche in der Literatur beschriebene Partner sind die DNA Reparaturproteine BLM, WRN, EXO1 und das Protein CtIP.

Aus der Hefe weiß man, dass die Exonuklease EXO1 auch Funktionen bei der homeologen Rekombination übernimmt. So zeigen EXO1 defiziente Zellen Defekte bei der Suppression der Rekombination zwischen invertierten Sequenzwiederholungen [8, 64, 133, 199]. Weiterhin ist bekannt, dass der MutSα Komplex die Aktivität dieser Exonuklease fördert [69]. *Nimonkar et al.* [135] zeigten, dass BLM die DNA Bindungsaffinität des Proteins erhöht und auch der MRN Komplex die Aktivität von EXO1 fördert. Diese vielfältigen Verknüpfungen machen die Exonuklease zu einem wahrscheinlichen Interaktionspartner von hMSH2.

Weitere mögliche Kandidaten für eine Involvierung in einem gemeinsamen Reaktionsweg mit dem MMR Faktor sind die Helikasen BLM und WRN. Wie wichtig ihre Funktionen bei der Aufrechterhaltung der genomischen Stabilität sind, zeigen die durch Mutationen der Proteine verursachten Krankheitsbilder. Typische Merkmale des Bloom's Syndroms sind ein erhöhtes Krebsrisiko, Kleinwüchsigkeit, Immundefizienz und Infertilität. Patienten mit Defekten des WRN Proteins weisen eine vorzeitige Alterung und ein erhöhtes Krebsrisiko (v.a. Sarkome) auf [65]. Auch treten gehäuft Katarakte, Hypogonadismus, Osteoporose, Diabetes Mellitus und Atheriosklerose auf [82, 131]. Beide Proteine entwinden die DNA Doppelhelix, wobei WRN zusätzlich noch eine exonukleolytische Aktivität in 3'-5' Richtung aufweist. Neben seinen Funktionen bei der DNA Replikation und der *Checkpoint* Kontrolle während der S-Phase des Zellzyklus beeinflusst die Helikase WRN auch die DSB Reparatur [13, 39, 174]. So interagiert es mit Schlüsselproteinen des NHEJs, scheint dabei jedoch kein essentieller Teil dieses Reparaturweges zu sein [101, 154, 161]. Viel wichtiger sind seine Funktionen bei der HDR. So kolokalisiert es nach Arrest während der Replikation mit dem Protein Rad51, einem der Hauptfaktoren der HR. Weiterhin erhöht WRN die Effizienz der Rad52 vermittelten Stranganlagerung [18]. WRN ist über das Protein Nibrin auch mit dem MRN Komplex assoziiert [37]. Wie wichtig diese vielfältigen Funktionen von WRN für die Homologie abhängige Rekombination sind, zeigt sich in WRN defizienten Zellen: Sie können keine ICLs auflösen, ein Vorgang für den die Rekombination benötigt wird [38, 39, 148]. WRN spielt eine Rolle beim SSA gemeinsam mit dem Protein SIRT1, eukaryotes Homolog von Sir2, einer NAD⁺-abhängigen Deacetylase, das bei der Aufrechterhaltung der telomerischen DNA eine Rolle spielen könnte [139, 205].

Ähnlich wie WRN übernimmt auch die Helikase BLM vielfältige Aufgaben bei der HR: So interagiert sie direkt mit einen Vielzahl von DNA Reparaturproteinen wie beispielsweise Rad51, MLH1, MSH6 und RPA, p53 und ist desweiteren gemeinsam mit MSH2, MSH6, MLH1, ATM und dem MRN Komplex ein Teil des großen BRCA1-assoziierten *genome surveillance Komplex* (BASC), der abnorme DNA Strukturen erkennt und diese behebt [211]. Interessant wäre es, auch das Zusammenwirken von hMSH2 mit den Reparaturproteinen CtIP und MRE11 genauer zu untersuchen. Der MRN Komplex bindet als eines der ersten Proteine den DSB [186]. Neben seinen vielfältigen Aufgaben bei der Propagierung der Schadensantwort rekrutiert der Komplex auch das Protein CtIP und bildet mit diesem einen Resektionkomplex. Zusätzlich scheint CtIP auch mit BRCA1 zu interagieren und benötigt zu werden, um einzelsträngige DNA Bruchenden zu bilden [36, 167]. Um eine mögliche epistatische Abhängigkeit zwischen hMSH2 und MRE11/CtIP näher zu untersuchen, gilt es zu klären, wie sich die Interaktion zwischen dem Resektionskomplex und hMSH2 verhält, wenn die DNA Enden chemisch modifiziert wurden und so durch kovalent gebundene Addukte einer MRE11 unabhängigen Resektion nicht mehr zugänglich sind [72, 167].

5 ZUSAMMENFASSUNG

Das DNA Reparatur Protein hMSH2 (humanes MutS Homolog 2 Protein) ist einer der Hauptfaktoren bei der Mismatch Reparatur (MMR), wobei es, gemeinsam mit seinen Komplexpartnern hMSH3 (humanes MutS Homolog 3 Protein) und hMSH6 (humanes MutS Homolog 6 Protein) Basenfehlpaarungen erkennt und behebt, um so eine möglichst fehlerfreie DNA Replikation zu ermöglichen. Defekte in der MMR führen dazu, dass sich Replikationsfehler anhäufen, die langfristig die Krebsentstehung fördern, insbesondere die Entwicklung kolorektaler Karzinome wird begünstigt. Jedoch hat hMSH2 neben der postreplikativen Genauigkeitskontrolle noch weitere Aufgaben bei der DNA Reparatur: So aktiviert es Zellzyklus Checkpoints und induziert die Apoptose. Weiterhin ist es ein Teil des breast cancer type 1 susceptibility protein (BRCA1) Multiproteinkomplexes, der abnorme DNA Strukturen erkennt und diese behebt. Diese zahlreichen Aufgaben machen MSH2 nicht nur zu einem Tumorsuppressor, sondern vielmehr auch zu einem "Wächter" des Genoms. Schließlich ist das MMR Protein auch ein wahrscheinlicher Akteur bei der DNA Doppelstrangbruch (DSB) Reparatur. Bisher weiß man jedoch nur wenig, inwiefern hMSH2 diesen Reparaturweg beeinflusst. Aus der Hefe ist bekannt, dass MSH2 auch Funktionen während der DSB Reparatur übernimmt, indem es unterstützend bei der Entfernung nichthomologer DNA Enden und möglicherweise auch bei der Suche nach homologen DNA Abschnitten beteiligt ist. Weiterhin scheint MSH2 gemeinsam mit MSH6 und der Helikase Sgs1 (einem BLM Homolog) die Paarung zwischen nicht perfekt passenden DNA Sequenzen zu unterdrücken und so diese homeologe Rekombination zu verhindern. In dieser Arbeit sollte die Beinflussung der DSB Reparatur durch hMSH2 näher beleuchtet werden. Dafür wurde das von Prof. Wiesmüller entwickelte Fluoreszenz basierte Testsystem angewandt. Mithilfe dieses Testsystems sollte nach Induktion eines DSBes durch die Meganuklease I-SceI die Effektivität der Homologie gerichteten DNA Reparatur in humanen Zellen in Abhängigkeit von der hMSH2 Expression untersucht werden. Weiterhin sollte hierbei auch die Rolle der beiden Interaktionspartner hMSH3 und hMSH6 genauer analysiert werden. Um zu verstehen, wie im Detail hMSH2 die Homologie gerichtete DNA Reparatur moduliert, wurden Hauptfaktoren dieses Reparaturweges, hRad51 und hRad52, sowie mögliche in der Literatur beschriebene funktionelle Interaktionspartner des MMR Faktors, hierbei insbesondere die Proteine ERCC1 (excision repair cross-complementing group 1 protein), MRE11 (meiotic recombination 11 homolog) und BRCA2 (breast cancer type 2 susceptibility protein), in ihrer Funktion beeinflusst. Anschließend wurde erneut die Effektivität der DSB Reparatur in Abhängigkeit des hMSH2 Status analysiert. Die Analysen der verschiedenen DSB Reparaturwege mittels spezifischer DNA Substrate ergaben bei ausreichender Homologielänge eine Förderung der nichtkonservativen Form der HDR (Single Strand Annealing) durch hMSH2. Auch bei der DSB Reparatur scheint hMSH2 gemeinsam mit seinen aus der MMR bekannten Komplexpartnern hMSH3 und hMSH6 zu wirken. Übereinstimmend mit der hauptsächlichen Aktivierung des Single Strand Annealings durch das MMR Protein zeigte sich ein gemeinsamer Reaktionsweg von hMSH2 und hRad52, dem Schlüsselfaktor der nichtkonservativen Form der Homologie gerichteten DNA Reparatur. Desweiteren konnte dargestellt werden, dass hMSH2 bei der DSB Reparatur unabhängig von hRad51, dem Hauptfaktor der Homologe Rekombination, agieren kann, womit eine indirekte Wirkung auf das konkurrierende Single Strand Annealing ausgeschlossen werden konnte.Bei Verkürzung der Länge der zur Verfügung stehenden homologen DNA Abschnitte waren bei supprimierter hMSH2 Expression keine Veränderungen der DSB Reparaturfrequenz detektierbar. Bei kurzen Homologien im Bereich des Bruches scheinen sich die inhibierende Wirkung von hMSH2 auf die Homologe Rekombination und die Förderung des Single Strand Annealings die Waage zu halten. Die Versuche im extrachromosomalen Kontext bestätigten die Förderung des Single Strand Annealings durch das MMR Protein, auch wenn der Effekt geringer ausgeprägt war als in den stabilen Zelllinien. Diese Daten deuten daraufhin, dass das Chromatingerüst Auswirkungen auf die hMSH2 Funktionen bei der DSB Reparatur hatte oder chromosomale Aktivitäten, wie die Replikation, für die Wirkung nötig sind. In einem nächsten Schritt wurde die epistatische Beziehung zwischen dem MMR Faktor und den DNA Reparaturproteinen MRE11, ERCC1 und BRCA2 untersucht. MRE11 ist ein Teil des Mre11-Rad50-Nbs1 (MRN) Komplexes, der DSBe erkennt und an diese bindet, und übernimmt unter anderem regulatorische Funktionen beim Single Strand Annealing. Die Endonuklease ERCC1 ist einer der Hauptfaktoren bei der nichtkonservativen Form der Homologie gerichteten DNA Reparatur. BRCA2 fördert die Homologe Rekombination. Es zeigte sich, dass hMSH2 und ERCC1 das Single Strand Annealing in einem gemeinsamen Reaktionsweg förderten und dass das MMR Protein unabhängig von MRE11 und BRCA2 agierte. Da ERCC1 eine für das Single Strand Annealing etablierte Nuklease darstellt, konnte die Bedeutung von hMSH2 für das Single Strand Annealing auch auf diesem Wege bestätigt werden. Mögliche biologische Bedeutungen dieser hMSH2 Funktion liegen in Förderung der Class Switch Rekombination, die die Antikörpervielfalt ermöglicht, oder evtl. auch in der Aufrechterhaltung der Telomer-Stabilität, welche zelluläre Senszenz vorzeitige und Alterung verhindert.

6 LITERATURVERZEICHNIS

1. Aboussekhra A, Biggerstaff M, Shivji MK, Vilpo JA, Moncollin V, Podust VN, Protic M, Hubscher U, Egly JM,Wood RD: Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80: 859-868 (1995)

2. Abuin A, Zhang H,Bradley A: Genetic analysis of mouse embryonic stem cells bearing Msh3 and Msh2 single and compound mutations. Mol Cell Biol 20: 149-157 (2000)

3. Adair GM, Rolig RL, Moore-Faver D, Zabelshansky M, Wilson JH, Nairn RS: Role of ERCC1 in removal of long non-homologous tails during targeted homologous recombination. EMBO J 19: 5552-5561 (2000)

4. Akyüz N: Entwicklung und Applikation eines auf Fluoreszenzdetektion basierenden Test-Systems für DNA-Austausch-Ereignisse. *Dissertation*. Universität Hamburg. (2001)

5. Akyuz N, Boehden GS, Susse S, Rimek A, Preuss U, Scheidtmann KH,Wiesmuller L: DNA substrate dependence of p53-mediated regulation of double-strand break repair. Mol Cell Biol 22: 6306-6317 (2002)

6. Al-Minawi AZ, Saleh-Gohari N,Helleday T: The ERCC1/XPF endonuclease is required for efficient single-strand annealing and gene conversion in mammalian cells. Nucleic Acids Res 36: 1-9 (2008)

7. Alani E, Sokolsky T, Studamire B, Miret JJ,Lahue RS: Genetic and biochemical analysis of Msh2p-Msh6p: role of ATP hydrolysis and Msh2p-Msh6p subunit interactions in mismatch base pair recognition. Mol Cell Biol 17: 2436-2447 (1997)

8. Amin NS, Nguyen MN, Oh S,Kolodner RD: exo1-Dependent mutator mutations: model system for studying functional interactions in mismatch repair. Mol Cell Biol 21: 5142-5155 (2001)

9. Amitani I, Baskin RJ,Kowalczykowski SC: Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules. Mol Cell 23: 143-148 (2006)

10. Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, Loman N, Olsson H, Johannsson O, Borg A, Pasini B, Radice P, Manoukian S, Eccles DM, Tang N, Olah E, Anton-Culver H, Warner E, Lubinski J, Gronwald J, Gorski B, Tulinius H, Thorlacius S, Eerola H, Nevanlinna H, Syrjakoski K, Kallioniemi OP, Thompson D, Evans C, Peto J, Lalloo F, Evans DG,Easton DF: Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72: 1117-1130 (2003)

11. Assenmacher N,Hopfner KP: MRE11/RAD50/NBS1: complex activities. Chromosoma 113: 157-166 (2004)

12. Aylon Y, Liefshitz B,Kupiec M: The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J 23: 4868-4875 (2004)

13. Bachrati CZ,Hickson ID: RecQ helicases: guardian angels of the DNA replication fork. Chromosoma 117: 219-233 (2008)

14. Banuelos CA, Banath JP, MacPhail SH, Zhao J, Eaves CA, O'Connor MD, Lansdorp PM,Olive PL: Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks. DNA Repair (Amst) 7: 1471-1483 (2008)

15. Bardwell PD, Woo CJ, Wei K, Li Z, Martin A, Sack SZ, Parris T, Edelmann W,Scharff MD: Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1-mutant mice. Nat Immunol 5: 224-229 (2004)

16. Bassing CH, Swat W,Alt FW: The mechanism and regulation of chromosomal V(D)J recombination. Cell 109 Suppl: S45-55 (2002)

17. Baum C, Forster P, Hegewisch-Becker S, Harbers K: An optimized electroporation

protocol applicable to a wide range of cell lines. Biotechniques 17: 1058-1062 (1994)

18. Baynton K, Otterlei M, Bjoras M, von Kobbe C, Bohr VA,Seeberg E: WRN interacts physically and functionally with the recombination mediator protein RAD52. J Biol Chem 278: 36476-36486 (2003)

19. Bellacosa A: Functional interactions and signaling properties of mammalian DNA mismatch repair proteins. Cell Death Differ 8: 1076-1092 (2001)

20. Bennardo N, Cheng A, Huang N, Stark JM: Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet 4: e1000110 (2008)

21. Bennardo N, Gunn A, Cheng A, Hasty P,Stark JM: Limiting the persistence of a chromosome break diminishes its mutagenic potential. PLoS Genet 5: e1000683 (2009)

22. Bertrand P, Tishkoff DX, Filosi N, Dasgupta R,Kolodner RD: Physical interaction between components of DNA mismatch repair and nucleotide excision repair. Proc Natl Acad Sci U S A 95: 14278-14283 (1998)

Biggerstaff M, Szymkowski DE, Wood RD: Co-correction of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro. EMBO J 12: 3685-3692 (1993)
Blake MS, Johnston KH, Russell-Jones GJ, Gotschlich EC: A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem 136: 175-179 (1984)

25. Block WD, Yu Y, Merkle D, Gifford JL, Ding Q, Meek K,Lees-Miller SP: Autophosphorylation-dependent remodeling of the DNA-dependent protein kinase catalytic subunit regulates ligation of DNA ends. Nucleic Acids Res 32: 4351-4357 (2004)

26. Boland CR, Koi M, Chang DK, Carethers JM: The biochemical basis of microsatellite instability and abnormal immunohistochemistry and clinical behavior in Lynch syndrome: from bench to bedside. Fam Cancer 7: 41-52 (2008)

27. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L: Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448: 191-195 (2007)

28. Brown KD, Rathi A, Kamath R, Beardsley DI, Zhan Q, Mannino JL,Baskaran R: The mismatch repair system is required for S-phase checkpoint activation. Nat Genet 33: 80-84 (2003)

29. Brummelkamp TR, Bernards R,Agami R: A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550-553 (2002)

30. Buis J, Wu Y, Deng Y, Leddon J, Westfield G, Eckersdorff M, Sekiguchi JM, Chang S, Ferguson DO: Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation. Cell 135: 85-96 (2008)

31. Cannavo E, Gerrits B, Marra G, Schlapbach R, Jiricny J: Characterization of the interactome of the human MutL homologues MLH1, PMS1, and PMS2. J Biol Chem 282: 2976-2986 (2007)

32. Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, Pokharel S, Campbell JL,Kowalczykowski SC: DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467: 112-116

33. Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC,Nussenzweig A: Genomic instability in mice lacking histone H2AX. Science 296: 922-927 (2002)

34. Chan DW, Chen BP, Prithivirajsingh S, Kurimasa A, Story MD, Qin J,Chen DJ: Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev 16: 2333-2338 (2002)

35. Chapman JR, Taylor MR,Boulton SJ: Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47: 497-510 (2012)

36. Chen L, Nievera CJ, Lee AY,Wu X: Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem 283: 7713-7720 (2008)

37. Cheng WH, von Kobbe C, Opresko PL, Arthur LM, Komatsu K, Seidman MM, Carney JP,Bohr VA: Linkage between Werner syndrome protein and the Mre11 complex via Nbs1. J Biol Chem 279: 21169-21176 (2004)

38. Cheng WH, Kusumoto R, Opresko PL, Sui X, Huang S, Nicolette ML, Paull TT, Campisi J, Seidman M,Bohr VA: Collaboration of Werner syndrome protein and BRCA1 in cellular responses to DNA interstrand cross-links. Nucleic Acids Res 34: 2751-2760 (2006)

39. Cheng WH, Muftic D, Muftuoglu M, Dawut L, Morris C, Helleday T, Shiloh Y,Bohr VA: WRN is required for ATM activation and the S-phase checkpoint in response to interstrand cross-link-induced DNA double-strand breaks. Mol Biol Cell 19: 3923-3933 (2008)

40. Conde-Perezprina JC, Leon-Galvan MA,Konigsberg M: DNA mismatch repair system: repercussions in cellular homeostasis and relationship with aging. Oxid Med Cell Longev 2012: 728430 (2012)

41. Critchlow SE, Bowater RP,Jackson SP: Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol 7: 588-598 (1997)

42. Daley GQ, Van Etten RA,Baltimore D: Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247: 824-830 (1990)

43. de Laat WL, Jaspers NG, Hoeijmakers JH: Molecular mechanism of nucleotide excision repair. Genes Dev 13: 768-785 (1999)

44. de Wind N, Dekker M, Berns A, Radman M,te Riele H: Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82: 321-330 (1995)

45. Ding Q, Reddy YV, Wang W, Woods T, Douglas P, Ramsden DA, Lees-Miller SP,Meek K: Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair. Mol Cell Biol 23: 5836-5848 (2003)

46. Downs JA,Jackson SP: A means to a DNA end: the many roles of Ku. Nat Rev Mol Cell Biol 5: 367-378 (2004)

47. Dronkert ML, Beverloo HB, Johnson RD, Hoeijmakers JH, Jasin M,Kanaar R: Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange. Mol Cell Biol 20: 3147-3156 (2000)

48. Dynan WS,Yoo S: Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 26: 1551-1559 (1998)

49. Dzantiev L, Constantin N, Genschel J, Iyer RR, Burgers PM, Modrich P: A defined human system that supports bidirectional mismatch-provoked excision. Mol Cell 15: 31-41 (2004)

50. Eccleston C, Moore RA, Derry S, Bell RF,McQuay H: Improving the quality and reporting of systematic reviews. Eur J Pain 14: 667-669

51. Eccleston J, Schrader CE, Yuan K, Stavnezer J,Selsing E: Class switch recombination efficiency and junction microhomology patterns in Msh2-, Mlh1-, and Exo1-deficient mice depend on the presence of mu switch region tandem repeats. J Immunol 183: 1222-1228 (2009)

52. Eccleston J, Yan C, Yuan K, Alt FW, Selsing E: Mismatch repair proteins MSH2, MLH1, and EXO1 are important for class-switch recombination events occurring in B cells that lack nonhomologous end joining. J Immunol 186: 2336-2343 (2011)

53. Ehrenstein MR,Neuberger MS: Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation. EMBO J 18: 3484-3490 (1999)

54. Ehrenstein MR, Rada C, Jones AM, Milstein C,Neuberger MS: Switch junction sequences in PMS2-deficient mice reveal a microhomology-mediated mechanism of Ig class switch recombination. Proc Natl Acad Sci U S A 98: 14553-14558 (2001)

55. Elliott B, Richardson C, Winderbaum J, Nickoloff JA, Jasin M: Gene conversion tracts from double-strand break repair in mammalian cells. Mol Cell Biol 18: 93-101 (1998)

56. Elliott B,Jasin M: Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells. Mol Cell Biol 21: 2671-2682 (2001)

57. Elliott B,Jasin M: Double-strand breaks and translocations in cancer. Cell Mol Life Sci 59: 373-385 (2002)

58. Elliott B, Richardson C, Jasin M: Chromosomal translocation mechanisms at intronic alu elements in mammalian cells. Mol Cell 17: 885-894 (2005)

59. Evans E,Alani E: Roles for mismatch repair factors in regulating genetic recombination. Mol Cell Biol 20: 7839-7844 (2000)

60. Evans E, Sugawara N, Haber JE, Alani E: The Saccharomyces cerevisiae Msh2 mismatch repair protein localizes to recombination intermediates in vivo. Mol Cell 5: 789-799 (2000)

61. Ferguson DO,Alt FW: DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 20: 5572-5579 (2001)

62. Ferretti LP, Lafranchi L,Sartori AA: Controlling DNA-end resection: a new task for CDKs. Front Genet 4: 99 (2013)

63. Fink D, Zheng H, Nebel S, Norris PS, Aebi S, Lin TP, Nehme A, Christen RD, Haas M, MacLeod CL, Howell SB: In vitro and in vivo resistance to cisplatin in cells that have lost DNA mismatch repair. Cancer Res 57: 1841-1845 (1997)

64. Fiorentini P, Huang KN, Tishkoff DX, Kolodner RD,Symington LS: Exonuclease I of Saccharomyces cerevisiae functions in mitotic recombination in vivo and in vitro. Mol Cell Biol 17: 2764-2773 (1997)

65. Futami K, Ishikawa Y, Goto M, Furuichi Y,Sugimoto M: Role of Werner syndrome gene product helicase in carcinogenesis and in resistance to genotoxins by cancer cells. Cancer Sci 99: 843-848 (2008)

66. Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K, Tavtigian S, Bennett LM, Haugen-Strano A, Swensen J, Miki Y,et al.: BRCA1 mutations in primary breast and ovarian carcinomas. Science 266: 120-122 (1994)

67. Galkin VE, Esashi F, Yu X, Yang S, West SC,Egelman EH: BRCA2 BRC motifs bind RAD51-DNA filaments. Proc Natl Acad Sci U S A 102: 8537-8542 (2005)

68. Genschel J, Littman SJ, Drummond JT, Modrich P: Isolation of MutSbeta from human cells and comparison of the mismatch repair specificities of MutSbeta and MutSalpha. J Biol Chem 273: 19895-19901 (1998)

69. Genschel J,Modrich P: Mechanism of 5'-directed excision in human mismatch repair. Mol Cell 12: 1077-1086 (2003)

70. Golmard L, Caux-Moncoutier V, Davy G, Al Ageeli E, Poirot B, Tirapo C, Michaux D, Barbaroux C, CD DE, Nicolas A, Castera L, Sastre-Garau X, Stern MH, Houdayer C,Stoppa-Lyonnet D: Germline mutation in the RAD51B gene confers predisposition to breast cancer. BMC Cancer 13: 484 (2013)

71. Gottlieb TM,Jackson SP: The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72: 131-142 (1993)

72. Gravel S, Chapman JR, Magill C,Jackson SP: DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev 22: 2767-2772 (2008)

73. Grawunder U, Wilm M, Wu X, Kulesza P, Wilson TE, Mann M,Lieber MR: Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388: 492-495 (1997)

74. Grenon M, Gilbert C, Lowndes NF: Checkpoint activation in response to double-strand

breaks requires the Mre11/Rad50/Xrs2 complex. Nat Cell Biol 3: 844-847 (2001)

75. Groffen J,Heisterkamp N: The chimeric BCR-ABL gene. Baillieres Clin Haematol 10: 187-201 (1997)

76. Haber JE,Leung WY: Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proc Natl Acad Sci U S A 93: 13949-13954 (1996)

77. Haber JE: DNA recombination: the replication connection. Trends Biochem Sci 24: 271-275 (1999)

78. Haber JE: Partners and pathwaysrepairing a double-strand break. Trends Genet 16: 259-264 (2000)

79. Hanahan D: Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557-580 (1983)

80. Hewish M, Lord CJ, Martin SA, Cunningham D,Ashworth A: Mismatch repair deficient colorectal cancer in the era of personalized treatment. Nat Rev Clin Oncol 7: 197-208

81. Hoeijmakers JH: Genome maintenance mechanisms for preventing cancer. Nature 411: 366-374 (2001)

82. Huang S, Lee L, Hanson NB, Lenaerts C, Hoehn H, Poot M, Rubin CD, Chen DF, Yang CC, Juch H, Dorn T, Spiegel R, Oral EA, Abid M, Battisti C, Lucci-Cordisco E, Neri G, Steed EH, Kidd A, Isley W, Showalter D, Vittone JL, Konstantinow A, Ring J, Meyer P, Wenger SL, von Herbay A, Wollina U, Schuelke M, Huizenga CR, Leistritz DF, Martin GM, Mian IS,Oshima J: The spectrum of WRN mutations in Werner syndrome patients. Hum Mutat 27: 558-567 (2006)

83. Huertas P,Jackson SP: Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J Biol Chem 284: 9558-9565 (2009)

84. Imai K, Slupphaug G, Lee WI, Revy P, Nonoyama S, Catalan N, Yel L, Forveille M, Kavli B, Krokan HE, Ochs HD, Fischer A, Durandy A: Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 4: 1023-1028 (2003)

85. Ira G, Pellicioli A, Balijja A, Wang X, Fiorani S, Carotenuto W, Liberi G, Bressan D, Wan L, Hollingsworth NM, Haber JE, Foiani M: DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431: 1011-1017 (2004)

86. Jackson SP: Sensing and repairing DNA double-strand breaks. Carcinogenesis 23: 687-696 (2002)

87. Jackson SP,Bartek J: The DNA-damage response in human biology and disease. Nature 461: 1071-1078 (2009)

88. Jasin M: Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene 21: 8981-8993 (2002)

89. Jeppesen DK, Bohr VA, Stevnsner T: DNA repair deficiency in neurodegeneration. Prog Neurobiol 94: 166-200 (2011)

90. Jiricny J: Postreplicative mismatch repair. Cold Spring Harb Perspect Biol 5: a012633 (2013)

91. Johnson RD, Jasin M: Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 19: 3398-3407 (2000)

92. Johnson RD,Jasin M: Double-strand-break-induced homologous recombination in mammalian cells. Biochem Soc Trans 29: 196-201 (2001)

93. Kadyrov FA, Dzantiev L, Constantin N,Modrich P: Endonucleolytic function of MutLalpha in human mismatch repair. Cell 126: 297-308 (2006)

94. Kastrinos F, Stoffel EM, Balmana J, Steyerberg EW, Mercado R,Syngal S: Phenotype comparison of MLH1 and MSH2 mutation carriers in a cohort of 1,914 individuals undergoing clinical genetic testing in the United States. Cancer Epidemiol Biomarkers Prev

17: 2044-2051 (2008)

95. Kastrinos F, Balmana J,Syngal S: Prediction models in Lynch syndrome. Fam Cancer 12: 217-228 (2013)

96. Khanna KK,Jackson SP: DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27: 247-254 (2001)

97. Kijas AW, Studamire B,Alani E: Msh2 separation of function mutations confer defects in the initiation steps of mismatch repair. J Mol Biol 331: 123-138 (2003)

98. Kolodner RD: Mismatch repair: mechanisms and relationship to cancer susceptibility. Trends Biochem Sci 20: 397-401 (1995)

99. Krogh BO,Symington LS: Recombination proteins in yeast. Annu Rev Genet 38: 233-271 (2004)

100. Kunkel TA, Erie DA: DNA mismatch repair. Annu Rev Biochem 74: 681-710 (2005)

101. Kusumoto R, Dawut L, Marchetti C, Wan Lee J, Vindigni A, Ramsden D,Bohr VA: Werner protein cooperates with the XRCC4-DNA ligase IV complex in end-processing. Biochemistry 47: 7548-7556 (2008)

102. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 (1970)

103. Laghi L, Bianchi P,Malesci A: Differences and evolution of the methods for the assessment of microsatellite instability. Oncogene 27: 6313-6321 (2008)

104. Lambert S,Lopez BS: Characterization of mammalian RAD51 double strand break repair using non-lethal dominant-negative forms. EMBO J 19: 3090-3099 (2000)

105. Lamberti C, Mangold E, Pagenstecher C, Jungck M, Schwering D, Bollmann M, Vogel J, Kindermann D, Nikorowitsch R, Friedrichs N, Schneider B, Houshdaran F, Schmidt-Wolf IG, Friedl W, Propping P, Sauerbruch T, Buttner R, Mathiak M: Frequency of hereditary non-polyposis colorectal cancer among unselected patients with colorectal cancer in Germany. Digestion 74: 58-67 (2006)

106. Larocque JR,Jasin M: Mechanisms of recombination between diverged sequences in wild-type and BLM-deficient mouse and human cells. Mol Cell Biol 30: 1887-1897 (2010)

107. Lee JH,Paull TT: ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308: 551-554 (2005)

108. Lee SE, Mitchell RA, Cheng A, Hendrickson EA: Evidence for DNA-PK-dependent and -independent DNA double-strand break repair pathways in mammalian cells as a function of the cell cycle. Mol Cell Biol 17: 1425-1433 (1997)

109. Li GM: Mechanisms and functions of DNA mismatch repair. Cell Res 18: 85-98 (2008)

110. Liang F, Romanienko PJ, Weaver DT, Jeggo PA,Jasin M: Chromosomal double-strand break repair in Ku80-deficient cells. Proc Natl Acad Sci U S A 93: 8929-8933 (1996)

111. Liang F, Han M, Romanienko PJ,Jasin M: Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A 95: 5172-5177 (1998)

112. Lieber MR, Ma Y, Pannicke U,Schwarz K: Mechanism and regulation of human nonhomologous DNA end-joining. Nat Rev Mol Cell Biol 4: 712-720 (2003)

113. Lieber MR: The mechanism of human nonhomologous DNA end joining. J Biol Chem 283: 1-5 (2008)

114. Löffler G, Petrides PE,Löffler P: Biochemie und Pathobiochemie : mit 218 Tabellen ; [mit Poster], 7., völlig neu bearb. Aufl. edn. Springer: Berlin [u.a.], XXXVII, 1267 S.pp (2003)

115. Lynch HT, Lynch JF, Lynch PM,Attard T: Hereditary colorectal cancer syndromes: molecular genetics, genetic counseling, diagnosis and management. Fam Cancer 7: 27-39 (2008)

116. Ma Y, Pannicke U, Schwarz K, Lieber MR: Hairpin opening and overhang processing

by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108: 781-794 (2002)

117. Manthey GM, Naik N,Bailis AM: Msh2 blocks an alternative mechanism for nonhomologous tail removal during single-strand annealing in Saccharomyces cerevisiae. PLoS One 4: e7488 (2009)

118. Mantiero D, Clerici M, Lucchini G,Longhese MP: Dual role for Saccharomyces cerevisiae Tel1 in the checkpoint response to double-strand breaks. EMBO Rep 8: 380-387 (2007)

119. Marti TM, Kunz C,Fleck O: DNA mismatch repair and mutation avoidance pathways. J Cell Physiol 191: 28-41 (2002)

120. Martin SA, Lord CJ,Ashworth A: Therapeutic targeting of the DNA mismatch repair pathway. Clin Cancer Res 16: 5107-5113

121. Martin SA, Lord CJ,Ashworth A: Therapeutic targeting of the DNA mismatch repair pathway. Clin Cancer Res 16: 5107-5113 (2010)

122. Martomo SA, Yang WW,Gearhart PJ: A role for Msh6 but not Msh3 in somatic hypermutation and class switch recombination. J Exp Med 200: 61-68 (2004)

123. McWhir J, Selfridge J, Harrison DJ, Squires S,Melton DW: Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nat Genet 5: 217-224 (1993)

124. Mendez-Bermudez A,Royle NJ: Deficiency in DNA mismatch repair increases the rate of telomere shortening in normal human cells. Hum Mutat 32: 939-946 (2011)

125. Mimitou EP,Symington LS: Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. EMBO J 29: 3358-3369 (2010)

126. Min IM, Schrader CE, Vardo J, Luby TM, D'Avirro N, Stavnezer J,Selsing E: The Smu tandem repeat region is critical for Ig isotype switching in the absence of Msh2. Immunity 19: 515-524 (2003)

127. Misteli T,Soutoglou E: The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 10: 243-254 (2009)

128. Modrich P,Lahue R: Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 65: 101-133 (1996)

129. Motycka TA, Bessho T, Post SM, Sung P,Tomkinson AE: Physical and functional interaction between the XPF/ERCC1 endonuclease and hRad52. J Biol Chem 279: 13634-13639 (2004)

130. Moynahan ME, Pierce AJ,Jasin M: BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 7: 263-272 (2001)

131. Muftuoglu M, Oshima J, von Kobbe C, Cheng WH, Leistritz DF,Bohr VA: The clinical characteristics of Werner syndrome: molecular and biochemical diagnosis. Hum Genet 124: 369-377 (2008)

132. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y,Honjo T: Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102: 553-563 (2000)

133. Nicholson A, Hendrix M, Jinks-Robertson S,Crouse GF: Regulation of mitotic homeologous recombination in yeast. Functions of mismatch repair and nucleotide excision repair genes. Genetics 154: 133-146 (2000)

134. Nicolette ML, Lee K, Guo Z, Rani M, Chow JM, Lee SE,Paull TT: Mre11-Rad50-Xrs2 and Sae2 promote 5' strand resection of DNA double-strand breaks. Nat Struct Mol Biol 17: 1478-1485 (2010)

135. Nimonkar AV, Ozsoy AZ, Genschel J, Modrich P,Kowalczykowski SC: Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci U S A 105: 16906-16911 (2008)

136. Nimonkar AV, Genschel J, Kinoshita E, Polaczek P, Campbell JL, Wyman C,

Modrich P,Kowalczykowski SC: BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev 25: 350-362 (2011)

137. Niu H, Chung WH, Zhu Z, Kwon Y, Zhao W, Chi P, Prakash R, Seong C, Liu D, Lu L, Ira G,Sung P: Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467: 108-111 (2010)

138. Ogino S,Goel A: Molecular classification and correlates in colorectal cancer. J Mol Diagn 10: 13-27 (2008)

139. Palacios JA, Herranz D, De Bonis ML, Velasco S, Serrano M,Blasco MA: SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol 191: 1299-1313 (2010)

140. Paques F,Haber JE: Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 17: 6765-6771 (1997)

141. Paques F,Haber JE: Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63: 349-404 (1999)

142. Pardo B, Gomez-Gonzalez B,Aguilera A: DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship. Cell Mol Life Sci 66: 1039-1056 (2009)

143. Paull TT,Lee JH: The Mre11/Rad50/Nbs1 complex and its role as a DNA doublestrand break sensor for ATM. Cell Cycle 4: 737-740 (2005)

144. Peltomaki P: DNA mismatch repair and cancer. Mutat Res 488: 77-85 (2001)

145. Peterson CL,Cote J: Cellular machineries for chromosomal DNA repair. Genes Dev 18: 602-616 (2004)

146. Petrini JH,Stracker TH: The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol 13: 458-462 (2003)

147. Plessis A, Perrin A, Haber JE, Dujon B: Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130: 451-460 (1992)

148. Poot M, Yom JS, Whang SH, Kato JT, Gollahon KA, Rabinovitch PS: Werner syndrome cells are sensitive to DNA cross-linking drugs. FASEB J 15: 1224-1226 (2001)

149. Rada C, Williams GT, Nilsen H, Barnes DE, Lindahl T, Neuberger MS: Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol 12: 1748-1755 (2002)

150. Rada C, Di Noia JM,Neuberger MS: Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol Cell 16: 163-171 (2004)

151. Ralhan R, Kaur J, Kreienberg R,Wiesmuller L: Links between DNA double strand break repair and breast cancer: accumulating evidence from both familial and nonfamilial cases. Cancer Lett 248: 1-17 (2007)

152. Ramilo C, Gu L, Guo S, Zhang X, Patrick SM, Turchi JJ,Li GM: Partial reconstitution of human DNA mismatch repair in vitro: characterization of the role of human replication protein A. Mol Cell Biol 22: 2037-2046 (2002)

153. Rodriguez-Bigas MA, Boland CR, Hamilton SR, Henson DE, Jass JR, Khan PM, Lynch H, Perucho M, Smyrk T, Sobin L,Srivastava S: A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst 89: 1758-1762 (1997)

154. Rossi ML, Ghosh AK, Bohr VA: Roles of Werner syndrome protein in protection of genome integrity. DNA Repair (Amst) 9: 331-344 (2010)

155. Rothkamm K, Kruger I, Thompson LH,Lobrich M: Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23: 5706-5715 (2003)

156. Rouet P, Smih F, Jasin M: Introduction of double-strand breaks into the genome of

mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14: 8096-8106 (1994)

157. Roy R, Chun J,Powell SN: BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer 12: 68-78 (2011)

158. Rubnitz J,Subramani S: The minimum amount of homology required for homologous recombination in mammalian cells. Mol Cell Biol 4: 2253-2258 (1984)

159. Rudat V, Bachmann N, Kupper JH, Weber KJ: Overexpression of the DNA-binding domain of poly(ADP-ribose) polymerase inhibits rejoining of ionizing radiation-induced DNA double-strand breaks. Int J Radiat Biol 77: 303-307 (2001)

160. Salles D, Mencalha AL, Ireno IC, Wiesmuller L,Abdelhay E: BCR-ABL stimulates mutagenic homologous DNA double-strand break repair via the DNA-end-processing factor CtIP. Carcinogenesis 32: 27-34 (2011)

161. Sallmyr A, Tomkinson AE,Rassool FV: Up-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks. Blood 112: 1413-1423 (2008)

162. San Filippo J, Chi P, Sehorn MG, Etchin J, Krejci L,Sung P: Recombination mediator and Rad51 targeting activities of a human BRCA2 polypeptide. J Biol Chem 281: 11649-11657 (2006)

163. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K,Linn S: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73: 39-85 (2004)

164. Saparbaev M, Prakash L,Prakash S: Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae. Genetics 142: 727-736 (1996)

165. Sargent RG, Brenneman MA, Wilson JH: Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol Cell Biol 17: 267-277 (1997)

166. Sargent RG, Meservy JL, Perkins BD, Kilburn AE, Intody Z, Adair GM, Nairn RS,Wilson JH: Role of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells. Nucleic Acids Res 28: 3771-3778 (2000)

167. Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J, Baer R, Lukas J, Jackson SP: Human CtIP promotes DNA end resection. Nature 450: 509-514 (2007)

168. Scharer OD: Chemistry and biology of DNA repair. Angew Chem Int Ed Engl 42: 2946-2974 (2003)

169. Schrader CE, Edelmann W, Kucherlapati R,Stavnezer J: Reduced isotype switching in splenic B cells from mice deficient in mismatch repair enzymes. J Exp Med 190: 323-330 (1999)

170. Schrader CE, Guikema JE, Linehan EK, Selsing E, Stavnezer J: Activation-induced cytidine deaminase-dependent DNA breaks in class switch recombination occur during G1 phase of the cell cycle and depend upon mismatch repair. J Immunol 179: 6064-6071 (2007)

171. Shia J: Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry. J Mol Diagn 10: 293-300 (2008)

172. Shiloh Y: ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3: 155-168 (2003)

173. Shim EY, Chung WH, Nicolette ML, Zhang Y, Davis M, Zhu Z, Paull TT, Ira G,Lee SE: Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. EMBO J 29: 3370-3380 (2010)

174. Sidorova JM: Roles of the Werner syndrome RecQ helicase in DNA replication. DNA Repair (Amst) 7: 1776-1786 (2008)

175. Siehler SY: Einfluss der Proteine der Basenfehlpaarungsreparatur auf die Reparatur von DNA Doppelstrangbrüchen in Säugern. Humbiol Dissertation (2009)

176. Siehler SY, Schrauder M, Gerischer U, Cantor S, Marra G, Wiesmuller L: Human MutL-complexes monitor homologous recombination independently of mismatch repair. DNA Repair (Amst) 8: 242-252 (2009)

177. Silva FC, Valentin MD, Ferreira Fde O, Carraro DM,Rossi BM: Mismatch repair genes in Lynch syndrome: a review. Sao Paulo Med J 127: 46-51 (2009)

178. Smith JA, Waldman BC, Waldman AS: A role for DNA mismatch repair protein Msh2 in error-prone double-strand-break repair in mammalian chromosomes. Genetics 170: 355-363 (2005)

179. Smith JA, Bannister LA, Bhattacharjee V, Wang Y, Waldman BC, Waldman AS: Accurate homologous recombination is a prominent double-strand break repair pathway in mammalian chromosomes and is modulated by mismatch repair protein Msh2. Mol Cell Biol 27: 7816-7827 (2007)

180. Soulas-Sprauel P, Rivera-Munoz P, Malivert L, Le Guyader G, Abramowski V, Revy P, de Villartay JP: V(D)J and immunoglobulin class switch recombinations: a paradigm to study the regulation of DNA end-joining. Oncogene 26: 7780-7791 (2007)

181. Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A, Ried T, Danuser G,Misteli T: Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol 9: 675-682 (2007)

182. Stark JM, Pierce AJ, Oh J, Pastink A,Jasin M: Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol Cell Biol 24: 9305-9316 (2004)

183. Stavnezer J,Schrader CE: Mismatch repair converts AID-instigated nicks to doublestrand breaks for antibody class-switch recombination. Trends Genet 22: 23-28 (2006)

184. Stavnezer J, Guikema JE,Schrader CE: Mechanism and regulation of class switch recombination. Annu Rev Immunol 26: 261-292 (2008)

185. Steinke V EC, Büttner R, Schachtel HK, Schmiegel WH, Propping P: Hereditary nonpolyposis colorectal cancer (HNPCC) / Lynch syndrome. Dtsch Arztebl Int

2013; 110(3): 32–8. DOI: 10.3238/arztebl.2013.0032 (2013)

186. Stracker TH, Theunissen JW, Morales M,Petrini JH: The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair (Amst) 3: 845-854 (2004)

187. Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ,Jackson SP: MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123: 1213-1226 (2005)

188. Subramanian D,Griffith JD: Interactions between p53, hMSH2-hMSH6 and HMG I(Y) on Holliday junctions and bulged bases. Nucleic Acids Res 30: 2427-2434 (2002)

189. Sugawara N, Paques F, Colaiacovo M,Haber JE: Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci U S A 94: 9214-9219 (1997)

190. Sugawara N, Goldfarb T, Studamire B, Alani E,Haber JE: Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc Natl Acad Sci U S A 101: 9315-9320 (2004)

191. Surtees JA, Argueso JL, Alani E: Mismatch repair proteins: key regulators of genetic recombination. Cytogenet Genome Res 107: 146-159 (2004)

192. Suwaki N, Klare K, Tarsounas M: RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis. Semin Cell Dev Biol 22: 898-905 (2011)

193. Szostak JW, Orr-Weaver TL, Rothstein RJ,Stahl FW: The double-strand-break repair model for recombination. Cell 33: 25-35 (1983)

194. Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-

Iwai Y, Shinohara A,Takeda S: Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17: 5497-5508 (1998)

195. Tauchi H, Kobayashi J, Morishima K, van Gent DC, Shiraishi T, Verkaik NS, vanHeems D, Ito E, Nakamura A, Sonoda E, Takata M, Takeda S, Matsuura S,Komatsu K: Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature 420: 93-98 (2002)

196. Tavtigian SV, Simard J, Rommens J, Couch F, Shattuck-Eidens D, Neuhausen S, Merajver S, Thorlacius S, Offit K, Stoppa-Lyonnet D, Belanger C, Bell R, Berry S, Bogden R, Chen Q, Davis T, Dumont M, Frye C, Hattier T, Jammulapati S, Janecki T, Jiang P, Kehrer R, Leblanc JF, Mitchell JT, McArthur-Morrison J, Nguyen K, Peng Y, Samson C, Schroeder M, Snyder SC, Steele L, Stringfellow M, Stroup C, Swedlund B, Swense J, Teng D, Thomas A, Tran T, Tranchant M, Weaver-Feldhaus J, Wong AK, Shizuya H, Eyfjord JE, Cannon-Albright L, Tranchant M, Labrie F, Skolnick MH, Weber B, Kamb A,Goldgar DE: The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat Genet 12: 333-337 (1996)

197. Thompson LH: Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 751: 158-246 (2012)

198. Tian M, Shinkura R, Shinkura N,Alt FW: Growth retardation, early death, and DNA repair defects in mice deficient for the nucleotide excision repair enzyme XPF. Mol Cell Biol 24: 1200-1205 (2004)

199. Tishkoff DX, Boerger AL, Bertrand P, Filosi N, Gaida GM, Kane MF, Kolodner RD: Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proc Natl Acad Sci U S A 94: 7487-7492 (1997)

200. Tomimatsu N, Mukherjee B, Deland K, Kurimasa A, Bolderson E, Khanna KK,Burma S: Exo1 plays a major role in DNA end resection in humans and influences double-strand break repair and damage signaling decisions. DNA Repair (Amst) 11: 441-448 (2012)

201. Towbin H, Staehelin T,Gordon J: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 1979. Biotechnology 24: 145-149 (1992)

202. Trouiller B, Schaefer DG, Charlot F,Nogue F: MSH2 is essential for the preservation of genome integrity and prevents homeologous recombination in the moss Physcomitrella patens. Nucleic Acids Res 34: 232-242 (2006)

203. Tsodikov OV, Enzlin JH, Scharer OD, Ellenberger T: Crystal structure and DNA binding functions of ERCC1, a subunit of the DNA structure-specific endonuclease XPF-ERCC1. Proc Natl Acad Sci U S A 102: 11236-11241 (2005)

204. Tutt A, Bertwistle D, Valentine J, Gabriel A, Swift S, Ross G, Griffin C, Thacker J,Ashworth A: Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. EMBO J 20: 4704-4716 (2001)

205. Uhl M, Csernok A, Aydin S, Kreienberg R, Wiesmuller L,Gatz SA: Role of SIRT1 in homologous recombination. DNA Repair (Amst) 9: 383-393 (2010)

206. Valerie K,Povirk LF: Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22: 5792-5812 (2003)

207. Van Dyck E, Stasiak AZ, Stasiak A,West SC: Visualization of recombination intermediates produced by RAD52-mediated single-strand annealing. EMBO Rep 2: 905-909 (2001)

208. Vasen HF, Moslein G, Alonso A, Bernstein I, Bertario L, Blanco I, Burn J, Capella G, Engel C, Frayling I, Friedl W, Hes FJ, Hodgson S, Mecklin JP, Moller P, Nagengast F, Parc Y, Renkonen-Sinisalo L, Sampson JR, Stormorken A, Wijnen J: Guidelines for the clinical management of Lynch syndrome (hereditary non-polyposis cancer). J Med Genet 44: 353-362

(2007)

209. Villemure JF, Abaji C, Cousineau I,Belmaaza A: MSH2-deficient human cells exhibit a defect in the accurate termination of homology-directed repair of DNA double-strand breaks. Cancer Res 63: 3334-3339 (2003)

210. Volcic M, Karl S, Baumann B, Salles D, Daniel P, Fulda S, Wiesmuller L: NF-kappaB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes. Nucleic Acids Res 40: 181-195 (2012)

211. Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ,Qin J: BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14: 927-939 (2000)

212. Weeda G, Donker I, de Wit J, Morreau H, Janssens R, Vissers CJ, Nigg A, van Steeg H, Bootsma D,Hoeijmakers JH: Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr Biol 7: 427-439 (1997)

213. Wei K, Clark AB, Wong E, Kane MF, Mazur DJ, Parris T, Kolas NK, Russell R, Hou H, Jr., Kneitz B, Yang G, Kunkel TA, Kolodner RD, Cohen PE,Edelmann W: Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev 17: 603-614 (2003)

214. West SC: Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 4: 435-445 (2003)

215. Wiesmuller L: (personal

216. Wood RD, Mitchell M, Sgouros J,Lindahl T: Human DNA repair genes. Science 291: 1284-1289 (2001)

217. Wooster R,Weber BL: Breast and ovarian cancer. N Engl J Med 348: 2339-2347 (2003)

218. Worth L, Jr., Clark S, Radman M,Modrich P: Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. Proc Natl Acad Sci U S A 91: 3238-3241 (1994)

219. Wyman C, Ristic D,Kanaar R: Homologous recombination-mediated double-strand break repair. DNA Repair (Amst) 3: 827-833 (2004)

220. Wyman C,Kanaar R: DNA double-strand break repair: all's well that ends well. Annu Rev Genet 40: 363-383 (2006)

221. You Z,Bailis JM: DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends Cell Biol 20: 402-409 (2010)

222. Zhang Y, Yuan F, Presnell SR, Tian K, Gao Y, Tomkinson AE, Gu L,Li GM: Reconstitution of 5'-directed human mismatch repair in a purified system. Cell 122: 693-705 (2005)

7 ANHANG

7.1 Danksagungen

Mein besonderer Dank gilt Prof. Dr. Lisa Wiesmüller für Ihre stete Unterstützung und engagierte Betreuung, insbesondere während der experimentellen Arbeit.

Vielen Dank auch an Simone Siehler, die mich mit viel Geduld eingearbeitet hat und während der experimentellen Versuche so wunderbar betreut hat.

Danke an alle Mitarbeiter des EOL für ihre Unterstützung und die schöne gemeinsame Zeit.

Danke an meine Eltern, die mich während meines gesamten Studiums unterstützt und ermutigt haben.

Danke liebe Theresia, für deine Hilfe.

Dir lieber Bert ein riesen großes Dankeschön. Du hast mich in der letzten Phase unlaublich motiviert und so liebevoll unterstützt. Ohne dich wäre diese Arbeit nicht fertig geworden.

7.2 Lebenslauf

22.März 1985

geboren in Aachen

1991-1995

Besuch der Fritz-Baur Grundschule Mimmenhausen

1995-2004

Besuch des Gymnasiums im Bildungszentrum Markdorf

10/2004-05/2011

Studium der Humanmedizin an der Universität Ulm

01/2012-03/2013

Assistenzärztin am Institut für Pathologie des Universitätsklinikums Hamburg- Eppendorf (UKE)

05/2013-heute

Assistenzärztin am Institut für Pathologie des Agaplesion Diakonieklinikums Rotenburg (Wümme)

08/2008

Beginn der vorliegenden Dissertation Sektion Gynäkologische Onkologie Universitätsfrauenklinik Ulm

08/2008-05/2009

Förderung durch das Promotionsprogramm Experimentelle Medizin der Universität Ulm