
Fakultät für Mathematik und Wirtschaftswissenschaften

Credibility estimation in insurance
data:

generalized linear models and
evolutionary modeling

Dissertation

zur Erlangung des Doktorgrades Dr. rer. nat.
der Fakultät für Mathematik und Wirtschaftswissenschaften

der Universität Ulm

vorgelegt von

Edo Schinzinger

aus Kurume (Japan)

2015



Amtierender Dekan: Prof. Dr. Werner Smolny

Erstgutachter: Assoc. Prof. Dr. Marcus Christiansen

Zweitgutachter: Prof. Dr. Ulrich Stadtmüller

Tag der Promotion: 22. Juni 2015



Abstract. Generalized linear models (GLM) have multiple applications, in particular
they are a popular tool in insurance for fitting claims data. Insurance portfolios typically
consist of heterogeneous clusters with similar but different risk characteristics. Problems
arise when only limited statistical information is available for individual clusters. Credi-
bility theory is a commonly used actuarial tool to improve statistical inference for small
clusters, however credibility estimators have only been developed for a few specific mod-
els and a general theory remains lacking. In the present thesis we fill that gap, presenting
a credibility estimator in a general GLM setting allowing all simple exponential families
with natural link functions and cluster specific volume parameters. We study asymptotic
properties of the estimator and illustrate our new concept with both a simulation study
and an application to mortality data.

In the second part of the thesis we deal with an application of evolutionary credibility
models to mortality data. Such a model correctly recognizes the random nature of the
underlying time factor and further allows for the flexibility of time series modeling. The
final model incorporates a smoothing procedure over time that ensures robustness over
successive forecasts.

Zusammenfassung. Verallgemeinerte Lineare Modelle (GLM) sind ein beliebtes Werk-
zeug in der Regressionsanalyse und finden oft Verwendung in der Versicherungsmathe-
matik. Das Portfolio eines Versicherungsunternehmens besteht typischerweise aus het-
erogenen Gruppen mit ähnlichen, aber dennoch unterschiedlichen Risikomerkmalen und
versicherungstechnische Größen müssen für jede Gruppe einzeln geschätzt werden. Dabei
treten Schwierigkeiten auf, falls bestimmte Gruppen nur wenig statistische Informa-
tion enthalten. Die Credibility-Theorie wird in genau solchen Fällen eingesetzt um die
Schätzung durch Berücksichtigung des gesamten Portfolios zu verbessern. Credibility-
Ansätze bestehen jedoch nur für einige Spezialfälle des GLMs und ein allgemeingültiges
Verfahren wurde bisher nicht entwickelt. In der vorliegenden Arbeit schließen wir diese
Lücke, indem wir ein auf GLM angepasstes Credibility-Modell vorstellen. Wir er-
lauben alle natürlichen Exponentialfamilien mit kanonischer Linkfunktion und zudem die
Berücksichtigung von gruppenspezifischen Mengenparametern. Die Vorteile des Modells
werden anhand von Simulationstudien und Beispielen aus der Sterblichkeitsmodellierung
verdeutlicht.

Im zweiten Teil der Arbeit entwickeln wir ein zeitdynamisches Credibility-Modell, das
speziell auf Sterblichkeitsdaten zugeschnitten ist. Unser Modell behandelt die stochastis-
chen Zeitfaktoren als solche und erlaubt ihre flexible Modellierung mit Techniken der
Zeitreihenanalyse. Das finale Modell ermöglicht eine rekursive Aktualisierung der Prog-
nosen anhand neuer Beobachtungen. Die auf diese Weise erzeugten Prognosen sind
robust gegenüber aufeinanderfolgenden Beobachtungszeiträumen.
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CHAPTER 1

Introduction

Credibility theory is a topic of Bayesian statistics that appears in many areas of ac-
tuarial science. Research in this field began with the pioneering work of Bichsel (1964),
which was motivated from premium calculation in car insurance. Bichsel studied a
method to incorporate individual claim statistics in the calculation to protect “good”
risks from a forthcoming premium increase. Subsequently, credibility theory experienced
a rapid growth and its methods are now established in many statistical models. New
methods have been developed because of the practical necessity to respond to the contin-
uously changing requirements of an actuary. Indeed, actuaries currently need to consider
all types of underwriting risk that are categorized into risk of random fluctuations and
risk of errors. In particular, the latter demands a proper reflection of the stochastic
nature of the underlying problem. The main purpose of this thesis is to extend the
actuarial toolbox by providing further credibility models.

Even with the passage of time, the fundamental idea to balance the individual risk
experience with the collective risk experience still remains. While the former is more
relevant in estimating future expectations, it is also more volatile than the latter. Un-
certainty increases as less statistical information is contained in the individual cluster.
Estimates obtained using the collective, on the other hand, may inadequately reflect
the individual characteristics. The golden mean, which is the credibility estimator, is
constructed by weighting both forms of information according to their credibility. From
a more mathematical point of view, a portfolio of N random variables (Bi, Yi)

N
i=1 is

considered. Individual observations are assumed to be an outcome of the random vector
Yi = (Yij)j∈N whose distribution Fβi is entirely or partly specified through the realization
βi of Bi. The great flexibility for the map βi 7→ Fβi allows a wide variety of models. We
will, for instance, obtain the Bühlmann-Straub model, cf. Buhlmann and Straub (1972),
when Yij = Bi + εij , and the linear regression model, cf. Hachemeister (1975), when
Yij = XjBi+ εij with covariate vectors Xj and error terms εij . More complex structures
will be studied in the thesis. In all of the models, we seek a function T (Y1, . . . , YN )
that optimally estimates Bi with respect to the mean squared error. While classical
Bayesian methods rely on some parametric families of conjugate prior distributions for
the Bi, credibility follows a non-parametric approach established by Bühlmann (1967).
In insurance applications it is untypical to impose much structure on the distributions;
instead, structure is imposed on the class of admissible estimators. Indeed, credibility
estimators are linear Bayes estimators, in that they are restricted to affine structures of
the observation vectors. Seeking the optimal solution typically leads to the form

B̂i = αiβ̂i + (1− αi)E[Bi]

of a weighted average of the best individual estimator β̂i and best collective estimator
E[Bi]. Such structures, which may also be interpreted in a multidimensional context,
are termed a credibility formula.

7



8 1. INTRODUCTION

A credibility model unites the individual clusters, which have a certain structure in
common, “under one roof”. The clusters are a priori identical in the sense that their
unobservable risk profiles Bi are identically distributed but variation in the portfolio
arises once these variables are drawn. Many statistical models attempt to describe a
collection of random variables, including a copula model that combines the individual
clusters under a certain stochastic dependence structure. These models normally aim
to correctly estimate the joint distribution of the entire portfolio, whereas the purpose
of credibility models is fundamentally different. One is often interested only in certain
clusters, where either the lack of individual information should be compensated or one
wants to show that the information is sufficient on its own. Credibility theory provides
a simple yet powerful way to make use of the portfolio structure in both cases.

1.1. Part 1

This thesis deals with two forms of credibility models each studied separately. Part 1
deals with credibility estimation for generalized linear models (GLM), which are a pop-
ular tool in insurance applications, among others. Poisson-GLMs, for example, are
used for fitting counted data, including the claim frequency in a car insurance portfolio,
cf. Ohlsson (2008), and the number of deaths in a life insurance portfolio, cf. Brillinger
(1986). In both examples observed data are typically available for heterogeneous clusters
referring to different countries, different groups of people and so forth, and insurance
rates and actuarial reserves have to be calculated individually for each cluster. However,
problems will arise when the clusters contain limited statistical information, for example,
a small number of samples. Although a credibility approach would be the first choice, a
proper framework for GLMs remains lacking in the literature.

Several papers studied similar types of models. Jewell (1974) demonstrated that for
an exponential family of distributions that the credibility formula equals the exact Bayes
estimator, meaning that the linear approximation and the exact formula agree when the
conjugate prior distribution is assumed for the Bi. Generalized linear mixed models
(GLMM), which were studied by Breslow and Clayton (1993), extends the classical
GLM framework by random effects. While a GLM allows the first moment of the risks
Yij to be related to a linear model of the form

g(E[Yij ]) = Xijβi, j = 1, . . . , n,

for some link function g, covariate vectors Xij and parameter vectors βi, a GLMM
assumes that there is a joint fixed effect β but adds a Normal distributed random effects
component Bi. More precisely,

g(E[Yij | Bi]) = Xijβ + ZijBi

with covariate vectors Zij . This model was extended by Lee and Nelder (1996) to
a hierarchical GLM that allows the inclusion of non-Normal random effects ν(Bi) for
some strictly monotonic function of Bi. Estimations for Bi are derived by maximizing
the hierarchical likelihood under the assumption that the Bi are distributed according to
the conjugate prior. The optimal solution then has the structure of a credibility formula.
The first credibility type model that follows a semi-parametric approach can be found in
Ohlsson and Johansson (2006) and Ohlsson (2008) for GLMs of Tweedie distributions.
They consider a multiplicative model that in our terminology reads

E[Yij | Bi] = g−1(Xijβ)Bi,
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such that Bi is considered as a multiplicative random effect with E[Bi] = 1. Given
the GLM parameter β, credibility estimators for the Bi are obtained by considering the
scaled observations Ỹij = Yij/g

−1(Xijβ). Although the Tweedie models cover practically
relevant distributions like the Poisson and Gamma distributions, their model is in our
opinion unsatisfactory. The random effect is scalar valued and equally affects all obser-
vations and covariates in the fit. However, it is more realistic to assume a GLMM-like
structure with Xij = Zij , where each component βk of the p-variate GLM parameter
includes its own random effect Bik. Furthermore, from a theoretical point of view, the
scaled model Ỹij disregards the stochastic character of β, which is typically unknown

and must be replaced by an estimator β̂. Their credibility formula for Bi does not apply
under a random scaling factor. De Vylder (1985) approaches the problem in a different
way. The author considers a pure random effect model

E[Yij | Bi] = g−1(XijBi)

and approximates the right hand side using a linear model x̃i + X̃ijBi. Credibility
estimators for the non-linear regression model are then derived using the linear structure
of the approximating model. However, a convergence behavior towards the exact solution
is not provided.

In this thesis we adopt the pure random effect model g (E[Yij | Bi]) = XijBi but we
consistently deal with the non-linear structure. Our model refrains from distributional
assumptions on Bi but only demands mild regularity assumptions that do not restrict
its applicability. A credibility formula is established for all simple exponential families
with natural link functions and we further allow incorporation of volume parameters in
terms of cluster specific weights and offset terms.

There are several papers dealing with random effect models that are not restricted
to credibility type solutions but allow any kind of structure, see Fahrmeir et al. (1994)
for an overview. Predictions for the random effects are typically performed in a two-
step procedure. In a first step, the fixed parameters are estimated through maximizing
the marginal likelihood, which is obtained by integrating over the random effects dis-
tribution. Because an analytic solution of the integral is only available in special cases,
repeated numerical integration is required. Let us mention Gauss-Hermite quadrature,
cf. Anderson and Aitkin (1985), Gibbs sampling, cf. Zeger and Karim (1991), Laplace
approximation, cf. Breslow and Clayton (1993) and Markov chain Monte Carlo, cf. Gilks
et al. (1996), to name some of the approximation methods. Santner and Duffy (1989)
proposes an EM-type algorithm for indirect maximization of the marginal likelihood to
avoid the numerical integration. Prediction of the random effects is then based on the
posterior density, where parameters are replaced by their consistent estimates. The de-
scribed methods are numerically intensive and their solutions are not readily traceable.
The credibility formula, on the other hand, provides a closed form solution and each
involved component has a practical interpretation.

Part 1 of the thesis is organized as follows. Chapter 2 has a preparatory role and
provides a brief introduction to credibility models and GLMs. Basic terminology and
notation that are used throughout the work are established. We start with the multi-
variate and linear regression credibility models, because these provide a solid theoretical
foundation on which we can develop our theory. Indeed, from a theoretical point of view,
they are special cases of our credibility model below that is tailored for GLMs.
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In Chapter 3 the credibility approach for GLMs, abbreviated with CGLM, is estab-
lished. We consider a simple setting, where the N clusters are assumed to be indepen-
dent and identically distributed. The latter property will be relaxed in a later stage
of analysis by allowing additional cluster specific parameters. The underlying model is
semi-parametric with the prior distribution for the Bi having a compact support but
not specified further. Following the structure of conventional credibility models, we seek
an optimal solution within the affine class of the best individual estimators, namely
the maximum likelihood estimators (MLE) for the GLM parameter with respect to the
distribution of Yi given Bi. The individual solutions, where the Bi are treated as con-
stants, are then considered under the unconditional probability measure that takes the
random nature of the Bi into account. Problems immediately arise because these esti-
mators are not square integrable, meaning that mean squared error optimization is not
possible or, to be precise, the mean squared error does not even exist. We overcome
this problem by introducing what we term the pseudo maximum likelihood estimator
(PMLE), which is a square integrable modification of the MLE. The PMLE restricts
the MLE to a sequence of events where the behavior can be kept under control and we
justify the procedure by showing that the probability of these events convergences to
one. A detailed construction is given through Theorem 3.2 and Definition 3.3. Using
these quantities instead, the credibility formula, Theorem 3.7, follows by solving the
optimization problem. Because the PMLE is biased this formula does not have the typ-
ical structure of a weighted average and also contains structural parameters that are
difficult to estimate. To solve these issues, we use the notion of asymptotic equivalence
in probability, cf. Definition 3.8. Theorem 3.9 then provides an asymptotic equivalent
credibility formula that is both easy to interpret and handle, and the involved structural
parameters can all be consistently estimated as we prove in Theorem 3.12. The theory is
completed with a simulation study that demonstrates the effectiveness of our approach.
We compare the simulated mean squared error of the credibility estimator with that of
the individual estimator. In accordance with our primary motivation, the improvement
will be remarkable when clusters contain only a small number of observations, and when
the sample size is large the clusters will be evaluated as being greatly credible.

Chapter 4 takes a closer look at the credibility model from a purely theoretical
perspective. The special cases of a Poisson-CGLM and of grouped data are studied for
possible impacts on the parameter estimation and the model assumptions. With the
Poisson assumption, the PMLE and the MLE agree with high probability, and more
precisely, the probability of the complementary event decays at an exponential rate
instead of an inverse linear rate, cf. Theorem 4.1. Consequences on the estimation are
discussed in Theorem 4.2. If data have a grouped structure, i.e. when there are only
finitely many different covariate vectors, the assumption of the support of Bi being
compact will reduce to mild integrability conditions for Bi, see Theorem 4.5.

Chapter 5 extends the credibility model with additional cluster specific volume pa-
rameters. These include offset terms in the linear predictor or weights, which may be the
dispersion of a simple exponential family or a binary variable to describe missing obser-
vations. We allow these parameters to vary from cluster to cluster such that the portfolio
consists of independent but no longer identically distributed pairs (Bi, Yi). The revised
model is more relevant for practical applications because clusters rarely have identical
volumes. In the presented example of mortality data, for example, a proper model for
the death counts must account for the different population sizes of each country, age
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group and calendar year. Theorem 5.7 establishes the (asymptotic) credibility formula
and thus makes a credibility estimation for such cases possible. The different volumes
associated with the observed data are reflected in the formula in the form of cluster
specific credibility weights. For the calculation, the structural parameters need to be
estimated and these are derived in Theorem 5.9. The chapter ends with simulation stud-
ies that present the influence of different volume parameters. As one would intuitively
expect, clusters with small volumes, for example a small number of samples or a high
dispersion, benefit most from credibility estimation.

Finally, Chapter 6 concludes with an application to real-world mortality data. Sto-
chastic mortality modeling is a very topical subject and the focus in research is changing
from single-country to multi-country models. However, many papers investigate the es-
tablishment of a joint model framework for the whole portfolio rather than using the
data to improve the estimation for single countries, see, for example, Li and Lee (2005)
and Hatzopoulos and Haberman (2013). A CGLM provides a natural way to extend
GLM-based single-country models to a multi-country framework and we illustrate this
procedure by means of the Cairns-Blake-Dowd model, cf. Cairns et al. (2006), which
decomposes the death rates into age and time factors. The fit includes 36 European and
first world countries and credibility estimators are calculated for their individual time
factors. In accordance with our expectations, the benefits of the credibility approach are
greatest for Iceland and Luxembourg, which are the countries with the smallest popu-
lations. The paths of the estimated time factors are smoother compared to those of the
individual estimators and in fact, the credibility formula will smooth out humps that are
incredible when compared to other calendar years and countries. This effect will become
more apparent when we fit the model to the very advanced ages of 90 to 100 years.
These ages are usually excluded from fitting because the data is very volatile due to the
small exposure-to-risk. Most of the countries in the fit, for example France, Germany,
Japan, UK and USA among others, are evaluated as being highly credible such that the
credibility and individual estimators almost agree. Therefore, from a credibility point of
view, a multi-country model is redundant for these countries.

1.2. Part 2

The second part of the thesis deals with credibility models of an evolutionary type.
If we interpret i as a time index, then (Bi, Yi)

N
i=1 will belong to a single cluster observed

in successive periods i = 1, . . . , N and credibility methods can be used to obtain best
predictions for future values. These predictions are successively updated based on recent
observations that are weighted according to their credibility. In the thesis we investigate
an evolutionary credibility framework for mortality modeling.

Mortality forecasts are used in a wide range of fields, including in making health
policy, pharmaceutical research, social security, retirement fund planning and life insur-
ance, to name just a few. In most countries, governmental agencies regularly publish
mortality projections. In Belgium, for example, the Federal Planning Bureau now pro-
duces projected life tables on an annual basis, based on the most recent observations.
However, standard forecasting approaches do not incorporate any smoothing procedures
over time and this may cause some instability from one forecast to another. This is
due to the model being entirely re-fitted based on an extended data set and that no
association is made between the successive projections.
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Following the elegant approach to mortality forecasting pioneered by Lee and Carter
(1992) many projection models decompose the death rates (on a logarithmic scale) or
the 1-year death probabilities (on a logit scale) into a linear combination of a limited
number of time factors. See, for example, Hunt and Blake (2014). In a first step,
regression techniques are used to extract the time factors from the available mortality
data. In a second step, the time factors are intrinsically viewed as forming a time series to
be projected to the future. The actual age-specific death rates are then derived from this
forecast using the estimated age effects. This in turn yields projected life expectancies.

In the first step of the two-step model calibration procedure, the random nature of
the unobservable time factor is disregarded, and this may bias the analysis. Because
possible incoherence may arise from this two-step procedure, Czado et al. (2005) inte-
grated both steps into a Bayesian version of the model developed by Lee and Carter
(1992) to avoid this deficiency. After Czado et al. (2005), Pedroza (2006) formulated
the Lee-Carter method as a state-space model, using Gaussian error terms and a ran-
dom walk with drift for the mortality index. See also Girosi and King (2008), Kogure
et al. (2009), Kogure and Kurachi (2010) and Li (2014) for related works. However, the
practical implementation of Bayesian methods often requires computer-intensive Markov
Chain Monte Carlo (MCMC) simulations. This is why we propose in this thesis a simple
credibility model ensuring robustness over time while keeping the computational issues
relatively easy and allowing for the flexibility of time series modeling. It is worth stressing
that the time factor is treated here as such, and not as a parameter to be estimated from
past mortality statistics using regression techniques before entering time series models.
In this way, we recognize the hidden nature of the time factor and its intrinsic random-
ness. The credibility Cairns-Blake-Dowd model, which will be introduced in Chapter 6,
can be also classified into this category of mortality models. It takes into account the
stochastic character of the time factors but specific time dynamics are nevertheless not
incorporated.

Whereas most mortality studies consider both genders separately, the model that we
propose combines male and female mortality statistics. While ensuring model identifi-
cation, this is particularly useful in practical applications when both genders are usually
involved. In insurance applications, for example, separate analyses could lead to this
strong dependence pattern being missed, which considerably reduces possible diversifica-
tion effects between male and female policyholders within the portfolio. In demographic
projections, combining male and female data is necessary to ensure consistency in a
gender-specific mortality forecast. This problem has been considered by several authors
in the literature. Let us mention Carter and Lee (1992) who fitted the Lee and Carter
(1992) model to male and female populations separately and then determined the de-
pendence between the two gender-specific time factors. These authors considered three
models for the pair of time factors: a bivariate random walk with drift, a single time
factor common to both genders and a co-integrated process where the male index follows
a random walk with drift and there exists a stationary linear combination of both time
factors. More recently, Yang and Wang (2013) assumed that the time factors followed a
vector error correction model. See also Zhou et al. (2013). Other models incorporate a
common factor for the combined population as a whole, as well as additional factors for
each sub-population. The common factor describes the main long-term trend in mortal-
ity change while the additional factors depict the short-term discrepancy from the main
trend within each sub-population. Li and Lee (2005) proposed applying the augmented
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common factor model generalized by Li (2013) to several factors. The model structures
proposed in Delwarde et al. (2006), by Debón et al. (2011), and by Russolillo et al.
(2011) only include a single, common time factor. As argued in Carter and Lee (1992),
this simple arrangement may enforce greater consistency and is a parsimonious way to
model both populations jointly. However, it also implies that the death rates of the two
populations are perfectly associated, an assumption with far-reaching consequences in
risk management.

The thesis is innovative in that a new multi-population mortality projection model
is proposed, based on mortality improvement rates instead of levels. Recently, several
authors suggested targeting improvement rates to forecast future mortality instead of
the death rates. While the time dependence structure of death rate models is dominated
by the continuing downward trend, the improvement rates are already trend adjusted,
cf. Aleksic and Börger (2011) or Mitchell et al. (2013). Furthermore, the model is fitted
properly, recognizing the hidden nature of time factors which are not treated as unknown
parameters to be estimated from the mortality data. Mortality projections are derived
by means of the predictive distribution of the time index, i.e. it is a posterior distribution
given past observations. This is the credibility feature of the proposed approach. New
data feed this predictive distribution as they become available and so help to update
mortality projections. This recognizes the dynamic aspect of mortality forecasting and
avoids refitting the entire model based on new data. To the best of our knowledge, this
dynamic updating approach has not been used as yet and our numerical illustrations
demonstrate its advantages compared to classical frequentist approaches.

Part 2 of the thesis is organized as follows. Chapter 7 provides a brief introduction
into evolutionary credibility models and establishes such a model for the mortality im-
provement rates. Considering the age-aggregate mortality improvement rates allows us
to study the dynamics of the time factor in isolation from the detailed age structure.
This results in a state-space model, where the state variable, i.e. the time factor, follows
an autoregressive moving average process. However, this model possesses identifiability
issues regarding the innovation variances of the observation and state processes. We
consider a gender-combined model, which not only provides gender-consistent forecasts
but also ensures identifiability of the covariance structure. By introducing a gender
correlation parameter, we obtain a variance-covariance structure, cf. Lemma 7.3, that
ensures identifiability, cf. Theorem 7.4. The remainder of the chapter is devoted to
numerical illustrations based on Belgian data. The optimal model is selected and fit-
ted to the observed general population mortality experience with regard to different
degrees of homogeneity between the genders. Chapter 8 derives the predictive distribu-
tion, describes mortality forecasting obtained from that distribution, and discusses the
numerical results obtained from the Belgian population. We conclude with comparisons
with the Lee-Carter and the official mortality forecasts to demonstrate the advantage of
our approach in the sense of its robustness.
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CHAPTER 2

Preliminaries

2.1. Credibility Theory

The aim of this section is to give a brief overview of credibility theory. We will
focus on the essential points which are necessary for establishing credibility theory for
generalized linear models. The main reference for this section is Bühlmann and Gisler
(2005). However, our notation will slightly differ from their convention to make it
consistent with the upcoming chapters.

The multidimensional credibility model. To be considered is a portfolio of
N ∈ N clusters numbered i = 1, . . . , N . The observation vector of cluster i is denoted
by Yi = (Yij)

n
j=1 and its risk profile by Bi. Each Yij and Bi are p-variate random vectors

on some probability space (Ω,F ,P) and fulfill the following model assumptions.

(i) Conditionally, given Bi, the Yij , j = 1, . . . , n, are independent and identically
distributed (iid) with conditional moments

E[Yij | Bi] = Bi, (2.1)

Cov(Yij | Bi) = Σ(Bi). (2.2)

In (2.2), Σ : Rp → Rp,p stands for the covariance function.
(ii) The pairs (B1, Y1), . . . , (BN , YN ) are iid.

Assumption (ii) ensures that the portfolio is homogeneous. However, once the Bi are
drawn, the clusters become heterogeneous through the individual stochastic components
Bi and Σ(Bi). The aim is to find estimators B̂i for the conditional expectations or, in an
actuarial context, the fair premiums Bi. If Bi is a fixed but unknown constant, (2.1) and
(2.2) will allow empirical estimation for Bi. This individual solution is then extended
to a credibility solution where the random nature of Bi is taken into account. In the
following, we will denote the entireties B = (B1, . . . , BN ) and Y = (Y1, . . . , YN ) by bold
symbols. Let

L(1,Y) =

a+
N∑
i=1

n∑
j=1

AijYij : a ∈ Rp, Aij ∈ Rp,p


be the class of estimators which are affine functions of all available observations. The
classes L(1) and L(Y) are similarly defined by taking the corresponding component in
L(1,Y). As we have already motivated, imposing structure on the class of admissible
estimators is typical in credibility theory and the restriction compensates the lack of
distributional assumptions for the Bi.

Notice that (2.2) of assumption (i) implicitly requires that all observations Yij
are square-integrable, i.e. Yij ∈ L2(Ω,F ,P). Thus, L(1,Y) is a closed subspace of

17
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L2(Ω,F ,P) or in short L2. Recall that L2 is a Hilbert space equipped with the dot
product

〈X1, X2〉 = E[X ′1X2], X1, X2 ∈ L2,

where X ′1 denotes the transpose of X1.

Definition 2.1. The orthogonal projection

B̂i = Pro(Bi | L(1,Y)) (2.3)

is called the credibility estimator for Bi.

Identity (2.3) is equivalent to

B̂i = arg min
B̃i∈L(1,Y)

∥∥∥B̃i −Bi∥∥∥2

L2

and by using the induced norm

‖X‖L2 =
√

E[X ′X], X ∈ L2,

we get a more probabilistic interpretation for the credibility estimator. In fact, B̂i is the
minimizer of the expected quadratic loss function, which is also called the mean squared
error, within the class L(1,Y), i.e.

B̂i = arg min
B̃i∈L(1,Y)

E
[
(B̃i −Bi)′(B̃i −Bi)

]
. (2.4)

Solving (2.4) with respect to the parameters a and Aij provides an explicit solution for
the credibility estimator. See Jewell (1973) for details. Let

Ȳi =
1

n

n∑
j=1

Yij ,

β0 = E[Bi], (2.5)

S = E[Σ(Bi)] (2.6)

and T = Cov(Bi). (2.7)

Theorem 2.2 (Jewell, 1973). The multidimensional credibility estimator for cluster
i is given by

B̂i = AȲi + (I −A)β0 (2.8)

with credibility matrix

A = T

(
T +

1

n
S

)−1

.

Since E[B̂i] = E[Bi], the credibility estimator is the best linear unbiased estimator.
Structure (2.8) also has a nice interpretation. The credibility estimator is a weighted
average of the individual observed average Ȳi and the overall expected value β0. The
credibility matrix A assigns weights according to the variation within and between clus-
ters. By (2.6) and (2.7), we have that

1

n
S =

1

n
E[(Yij −Bi)(Yij −Bi)′] = E[(Ȳi −Bi)(Ȳi −Bi)′],

T = E[(β0 −Bi)(β0 −Bi)′]
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and they are the accuracies of Ȳi and β0 respectively. Hence, the weight of Ȳi (resp. β0)
is the accuracy of the opposite term in relation to the total accuracy

T +
1

n
S = Cov

(
E[Ȳi | Bi]

)
+ E

[
Cov(Ȳi | Bi)

]
= Cov(Ȳi).

The univariate setting allows a simpler interpretation in which case the credibility
weights read

A =
Var(Bi)

Var(Ȳi)
=

Var(Bi)

Var(Bi) + E[Var(Ȳi | Bi)]
,

1−A =
E[Var(Ȳi | Bi)]

Var(Bi) + E[Var(Ȳi | Bi)]
.

Furthermore, it is easy to check that

Ȳi = arg min
B̃i∈L(Y)

E
[
(B̃i −Bi)′(B̃i −Bi) | Bi

]
a.s.

and β0 = arg min
B̃i∈L(1)

E
[
(B̃i −Bi)′(B̃i −Bi)

]
,

i.e. Ȳi is the best estimator based on the individual observations without any prior
knowledge and β0 is in contrast the best estimator based only on the prior knowledge.
The sample mean Ȳi is sometimes also referred to as the best linear and individually
unbiased estimator of Bi. One should also notice that the structure of the class L(1,Y)

allows B̂i to depend on all observations of the collective but only data provided by its
own cluster appear in formula (2.8). Other clusters nevertheless become indispensable
when it comes to the estimation of the structural parameters β0, S and T , e.g.

β̂0 =
1

N

N∑
i=1

Ȳi.

Equally important is the fact the credibility estimator (2.8) fulfills the identity

B̂i = Pro(Bi | L(1,Y)) = Pro(Bi | L(1, Ȳ)), (2.9)

where

L(1, Ȳ) =

{
a+

N∑
i=1

AiȲi : a ∈ Rp, Ai ∈ Rp,p
}
.

Hence, one can compress the class of admissible estimators without losing relevant in-
formation.

Credibility theory is strongly related to Bayesian statistics. Specifically, the Bayes
estimator for Bi is, similar to (2.4), the minimum mean squared error estimator but
within L2 instead of L(1,Y). Thus, the credibility estimator is a linear Bayes estimator.
The Bayes estimator has the particular form

B̂
(Bayes)
i = E[Bi | Y] (2.10)

so that both estimators will agree if the conditional expectation is linear in Y. By
construction,

E
[
(B̂

(Bayes)
i −Bi)′(B̂(Bayes)

i −Bi)
]
≤ E

[
(B̂i −Bi)′(B̂i −Bi)

]
and the purpose of the credibility estimator may be doubted. However, the Bayes
estimator requires specification of the posterior distribution of Bi given Y. This can
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be determined for particular combinations of the prior and conditional distributions and
in such cases,

B̂
(Bayes)
i (y) =

∫
Rp
βP(Bi ∈ dβ | Y = y).

An explicit solution of the integral is generally not given and numerically intensive
integration methods have to be used. In contrast, the credibility formula (2.8) has a
closed form that is easy to evaluate and its estimation will even work if none of the
involved distributions are specified. Thus, credibility allows nonparametric modeling.
The generalization to a broader class of distributions is bought at the cost of a possibly
increased mean squared error. One should not also neglect the interpretability, which is
highly appreciated by practitioners.

The regression credibility model. A portfolio of N clusters with observation
vectors Yi = (Yi1, . . . , Yin) and risk profiles Bi, i = 1, . . . , N , is given. In the regression
credibility model, the Yij are univariate random variables that conditional on Bi satisfy
a regression equation. Provided a known design matrix X ∈ Rn,p with full rank p, the
precise model assumptions according to Hachemeister (1975) are as follows.

(i) Conditionally, given Bi, the Yij , j = 1, . . . , n, are independent and fulfill

E[Yij | Bi] = XjBi, (2.11)

where Xj ∈ R1,p is the j-th row of X. Furthermore, the clusters satisfy

Cov(Yi | Bi) = Σ(Bi). (2.12)

(ii) The pairs (B1, Y1), . . . , (BN , YN ) are iid.

Estimating the conditional expectations E[Yij | Bi] requires estimating the Bi, which
are in terms of (2.11) random p-variate regression parameters. Analogously to the mul-

tidimensional credibility model, the credibility estimator B̂i for Bi is defined as the
orthogonal projection of Bi on L(1,Y), where

L(1,Y) =

a+

N∑
i=1

n∑
j=1

AijYij : a ∈ Rp, Aij ∈ Rp,p
 .

Thus, every component of B̂i is an affine function of all observations. An equivalent
formulation is again provided by writing B̂i as the solution of the optimization problem

B̂i = arg min
B̃i∈L(1,Y)

E
[
(B̃i −Bi)′(B̃i −Bi)

]
.

The class L(1,Y) especially includes the best individual solutions. Considering Bi as
a fixed but unknown constant βi, cluster i follows a linear regression model, i.e. the
response vector Yi can be written as

Yi = Xβi + εi,

where εi is an error term satisfying

Eβi [εi] = 0 and Covβi(εi) = Σ(βi).

The moments are taken with respect to the conditional probability measure denoted by
Pβi . A main result in linear regression analysis, e.g. Seber and Lee (2012), states that

β̂i = (X ′Σ(βi)X)−1X ′Σ(βi)Yi (2.13)
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is the minimum mean squared error estimator for βi under Pβi . If the error terms are

conditionally Normal distributed, β̂i is also the maximizer of the conditional likelihood
function of Yi given Bi. When treating Bi as a random variable, expression (2.13) can
be generally written as

β̂i = (X ′Σ(Bi)X)−1X ′Σ(Bi)Yi (2.14)

and it is the best individual solution in the sense that

β̂i = arg min
β̃i∈L(Y)

E
[
(β̃i −Bi)′(β̃i −Bi) | Bi

]
a.s.

Its expected conditional covariance matrix or, in other words, its accuracy is given by

E
[
Cov(β̂i | Bi)

]
=
(
X ′E[Σ(Bi)]

−1X
)−1

.

The credibility solution is then constructed within L(1,Y) that contains β̂i and opti-
mization accounts for the stochastic character of the Bi. The credibility formula now
follows. Let

β0 = E[Bi],

S = E[Σ(Bi)],

T = Cov(Bi),

which are the structural parameters of the model.

Theorem 2.3 (Hachemeister, 1975). The regression credibility estimator for cluster
i is given by

B̂i = Aβ̂i + (I −A)β0 (2.15)

with credibility matrix

A = T
(
T +

(
X ′S−1X

)−1
)−1

.

Formula (2.15) is very similar to that of the multidimensional credibility model (2.8).

The credibility estimator is composed of the best individual estimator β̂i and the best
prior estimator β0 both weighted according to their credibility. As the best individual
solution β̂i is linear in Y, the credibility estimator also satisfies

B̂i = arg min
B̃i∈L(1,β)

E
[
(B̃i −Bi)′(B̃i −Bi)

]
, (2.16)

where

L(1,β) =

{
a+

N∑
k=1

Akβ̂k : a ∈ Rp, Ak ∈ Rp,p
}
.

This structure will motivate the credibility estimator for generalized linear models in a
later stage of analysis.
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distribution θ b(θ) Eθ[Y ] = b′(θ) Varθ(Y ) = b′′(θ) natural link

Nor(µ, 1) µ θ2

2 µ = θ 1 identity
Exp(λ) −λ − log(−θ) 1

λ = −1
θ

1
λ2

inverse
Poi(λ) log λ exp(θ) λ = exp(θ) λ log

Ber(p) log
(

p
1−p

)
log (1 + exp(θ)) p = exp(θ)

1+exp(θ) p(1− p) logit

Table 2.1. Common simple exponential families of type (2.17).

2.2. Exponential family and GLM

Following Fahrmeir and Kaufmann (1985) and Fahrmeir et al. (1994), we give a short
overview about exponential families and generalized linear models. The exponential
family is a class of probability distributions which have a certain form in common. A
q-variate random variable Y is said to follow a distribution of an exponential family if
its probability density function (pdf) has the structure

fθ(y) = c(y) exp
(
η(θ)′t(y)− b(θ)

)
.

Furthermore, one speaks of a simple or natural exponential family with natural param-
eter θ ∈ Θ if

fθ(y) = c(y) exp
(
θ′y − b(θ)

)
, (2.17)

where c is a non-negative measurable function. The set Θ ⊂ Rq is called the natural
parameter space and it contains all θ satisfying

0 <

∫
c(y) exp

(
θ′y
)
dy <∞.

The function fθ is therefore a pdf for all θ ∈ Θ and b(θ) defines the normalization factor.
Moreover, the set Θ is convex and all derivatives of b : Θ → R and all moments of Y
exist in its interior Θ0. In particular, we have

Eθ[Y ] =
∂b(θ)

∂θ
= µ(θ), (2.18)

Covθ(Y ) =
∂2b(θ)

∂θ∂θ′
= Σ(θ) (2.19)

with µ and Σ being called the mean and covariance functions respectively. The natural
exponential family includes many of the common distributions. An overview is presented
in Table 2.1. One may also include an additional nuisance parameter in (2.17), which
will be introduced in Chapter 5.

Assume that observations are sampled from independent random variables (Yj)j∈N
that belong to the same simple exponential family with parameters (θj)j∈N. Generalized
linear models (GLM), first introduced by Nelder and Wedderburn (1972), are character-
ized by the following structure. Known covariates Xj ∈ R1,p describe the distribution of
the Yj through a linear predictor

ηj = Xjβ,

where β ∈ B ⊂ Rp is called the GLM parameter out of an admissible set B. The linear
predictor ηj itself is related to the mean µj = µ(θj) by a link function g. More precisely,

g(µj) = ηj = Xjβ. (2.20)
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This identity makes regression practicable even in cases where µj is constrained, e.g.
µj ≥ 0 for Poisson and µj ∈ [0, 1] for Bernoulli variables. Of special interest are so-
called natural or canonical link functions g = µ−1 = (b′)−1. Then,

g(µj) = θj = Xjβ (2.21)

so that the linear predictor is directly connected to the natural parameter of the distri-
bution. In the sequel g will always be the natural link function if not otherwise stated.
It is also common to use the matrix notation

θ = Xβ

with design matrix X = (X ′1, X
′
2, . . . )

′. There is no consensus in literature concerning
the notion of covariates. While we call Xj a covariate vector, the term “design vector”
is also common. Design vectors are functions of covariates, for instance covariates a and
b may be coded as

Xj =
(
1 aj bj

)
to include a base effect which equally affects all j ∈ N.

Estimation of the parameter β is based on likelihood methods and the following
conditions are assumed to hold.

(L1) The admissible parameter space B is open and convex.
(L2) g is twice continuously differentiable with non-singular Jacobian.
(L3) Xjβ ∈ Θ0 for all β ∈ B and j ∈ N.
(L4)

∑n
j=1X

′
jXj has full rank p for sufficiently large n.

Considering (2.17), the log-likelihood function of sample (Y1, . . . , Yn) is, up to a constant
which does not depend on β, given by

ln(β) =

n∑
j=1

θ′jYj − b(θj). (2.22)

In view of (2.21), the mean and covariance functions (2.18) and (2.19) can be expressed
in terms of β and we write µj(β) = µ(θj) and Σj(β) = Σ(θj). Further quantities of
importance are the score function sn and the observed Fisher information matrix Fn
which are

sn(β) =
∂ln(β)

∂β
=

n∑
j=1

X ′j (Yj − µj(β)) , (2.23)

Fn(β) = −∂
2ln(β)

∂β∂β′
=

n∑
j=1

X ′jΣj(β)Xj . (2.24)

As E[Fn(β)] = Fn(β) the expected and observed Fisher information matrices agree.
Conditions (L2) and (L4) imply that Fn(β) is positive definite for large n so that the
log-likelihood function is concave. Therefore, convexity of B, cf. condition (L1), provides
uniqueness of the maximum if it exists. In what follows, we will denote Fn(β) simply
as the Fisher information matrix without any prefixes. For non-natural link functions,
Fn(β) involves stochastic components and its positive definiteness is not guaranteed.

Finally, the maximum likelihood estimator (MLE) β̂ for β is given as the solution of

sn(β̂) = 0
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and it uniquely maximizes ln. Asymptotic properties of β̂ require further assumptions
on Fn, which will be discussed in Section 3.2. At this point, the reader should just
keep in mind that the MLE is the best estimator as it is asymptotically efficient. Its
asymptotic covariance matrix equals the inverse Fisher information matrix as sample
size n increases.

2.3. Remarks on notation

The transpose of a matrix A is denoted by A′. In connection with matrix square roots
defined through the identity A = A1/2AT/2, the transpose is addressed by a superscript
T . The inverse matrices are written as A−1 = A−T/2A−1/2. The norm ‖ · ‖ without a
subscript will always denote the (induced) 2-norm if not explicitly mentioned. Recall
that

‖v‖ =
√
v′v, v ∈ Rp,

‖A‖ = max
‖v‖=1

‖Av‖ =
√
λmax(A′A), A ∈ Rp,p.

This matrix norm is submultiplicative and consistent, i.e.

‖A1A2‖ ≤ ‖A1‖‖A2‖
and ‖A1v‖ ≤ ‖A1‖‖v‖

for square matrices A1, A2 and column vector v respectively. If applied to a random
variable Y , ‖Y ‖ will denote the ω-wise evaluation of the norm and ‖Y ‖L2 =

√
E[‖Y ‖2]

will denote the norm in the Hilbert space L2. Notice that the former is again a random
variable but the latter is deterministic.



CHAPTER 3

Credibility estimator for Generalized Linear Models

3.1. Model assumptions

We consider a portfolio of N ∈ N clusters (Bi, Yi), i = 1, . . . , N , on some probability
space (Ω,F ,P). Each cluster consists of a random GLM parameter Bi and an observation
vector Yi = (Yij)

n
j=1. We make the following assumptions for all i = 1, . . . , N .

(A1) Conditional on Bi = βi, the Yij , j = 1, . . . , n, are independent and their
distributions belong to a simple exponential family with natural parameters
θi = (θij)

n
j=1 ⊂ Θ. The conditional joint pdf fβi takes the form

fβi(y) =
n∏
j=1

c(yj) exp

 n∑
j=1

θijyj − b(θij)

 , y ∈ Rn, (3.1)

where c and b have been defined in (2.17).
(A2) The natural parameters are linked to a linear model by the identity

θi = g (E[Yi | Bi]) = XBi, a.s., (3.2)

where g is the natural link function, X ∈ Rn,p is a known design matrix and Bi
is a p-variate random GLM parameter.

(A3) The pairs (B1, Y1), . . . , (BN , YN ) are iid.

The distribution of Y = (Y1, . . . , YN ) is not specified until we condition on the
outcome β = (β1, . . . , βN ) of B = (B1, . . . , BN ). Then, under the conditional measure
Pβ, assumptions (A1) and (A2) state that the Yij follow a GLM of an univariate simple
exponential family with parameter βi. As g is the natural link function, the linear
predictor XjBi describes the first two conditional moments of Yij through the mean and
variance functions, respectively. Thus, we write

µj(Bi) = b′(XjBi) = E[Yij | Bi],
vj(Bi) = b′′(XjBi) = Var(Yij | Bi).

The Bi characterize the individual distributions of the clusters but without conditioning
on B, the clusters are homogeneous as declared by assumption (A3). As we combine
ideas from credibility theory and GLMs, we refer to the model as CGLM. We concentrate
on the univariate case since it is of main interest in practice and greatly simplifies the
notation. Comments on CGLM for q-variate exponential families will follow in the end
of Section 3.5.

Our aim is to establish credibility estimation for this model and a first step is to
find a proper definition of the credibility estimator for Bi. Estimation again follows
a two-step procedure. In the first step, best individual solutions are obtained by con-
sidering the local problem where the Bi are treated as unknown constants. The final

25
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credibility estimator is then calculated as the optimal solution within an admissible class
of estimators and optimization regards for the randomness of the Bi. Recall the multi-
variate and regression credibility models we have previously introduced. In both cases,
the credibility estimator was defined as the orthogonal projection of Bi on the space

L(1,Y) =

a+

N∑
i=1

n∑
j=1

AijYij : a ∈ Rn, Aij ∈ Rn,n
 ⊂ L2.

As the best individual solutions were elements of L(1,Y) we had L(1,Y) ⊇ L(1, Ȳ) (re-
spectively L(1,β)) and solving for the minimum mean squared error estimator revealed
that

Pro(Bi | L(1,Y)) =

{
Pro(Bi | L(1, Ȳ)) in the multivariate case,

Pro(Bi | L(1,β)) in the linear regression case,

cf. (2.9) and (2.16). Difficulty arises in the present case of GLMs since the conditional
expectations of the Yij are in general not linear in Bi. Estimators which are linear
functions of the observation vector cannot capture the effects of the link g so that
choosing L(1,Y) as the admissible class of estimators is too restrictive. In fact, L(1,Y)
does not contain the individual solutions, which will be introduced soon, and we should
directly select the credibility estimator within the class of the best individual solutions
instead. From a different point of view, one could have also defined the multivariate
and regression credibility estimators by means of (2.9) and (2.16) respectively. Their
optimality even in the larger class L(1,Y) is a nice-to-have property.

What do the best individual solutions look like? If we treat Bi as an fixed but
unknown constant βi, the natural choice will be the best estimator of a GLM, i.e. the
maximum likelihood estimator (MLE) β̂i. The MLE is defined through the quantities

(2.22) to (2.24) which now involve an additional cluster index i. More precisely, β̂i solves

sin(β̂i) =
∂lin(β̂i)

∂β
=

n∑
j=1

X ′j

(
Yij − µj(β̂i)

)
= 0. (3.3)

Special caution is needed as the GLM parameter itself is actually a random variable. The
maps lin and sin represent the true log-likelihood function and the true score function
under the conditional measure Pβ respectively but not under the unconditional measure
P. The latter requires integration involving the prior distribution of the Bi which we have
not specified. The reader should keep in mind that the β̂i are, to be precise, conditional
MLEs.

The presence of N similar clusters should improve the estimation of the Bi. The
idea of credibility estimation is to compose the best individual solutions into a mixing
estimator which benefits from the learning effect. As we will later see, β̂i is already, in
a proper sense, a good estimator but one should be worried if all other β̂l, l 6= i, clearly
differed. Following the considerations we have made so far, we select the admissible class
of estimators as

L(1,β) =

{
a+

N∑
i=1

Aiβ̂i : a ∈ Rp, Ai ∈ Rp,p
}
. (3.4)
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The credibility estimator for Bi is then defined as the orthogonal projection of Bi on
L(1,β) or equivalently as the minimizer of the quadratic loss function

B̂i = arg min
B̃i∈L(1,β)

E
[
(B̃i −Bi)′(B̃i −Bi)

]
.

However, a necessary condition is that L(1,β) ⊂ L2, i.e. the β̂i must be square inte-
grable. This is in general not satisfied as the next example reveals.

Example 3.1. We consider the Poisson case with the simple n × 1 design matrix
X = (1 . . . 1)′ giving that, conditional on Bi = βi,

Yij ∼ Poi (exp(βi)) , j = 1, . . . , n.

Then,

sin(β) =
n∑
j=1

(Yij − exp(β))

and it follows that

β̂i = log

 1

n

n∑
j=1

Yij

 . (3.5)

This expression is not well-defined if
∑n

j=1 Yj = 0 which occurs with positive probability.

Thus, β̂i /∈ L2 and also not with respect to the conditional measure Pβ.

We have to modify the MLEs in order to ensure square integrability and a possible
approach has been inconspicuously given in Example 3.1. Structure (3.5) seems not only

to be a counterexample for β̂i /∈ L2 but also a general problem in maximum likelihood
estimation. Indeed, MLEs are meant to be defined on some measurable set contained
in the whole sample space, cf. Witting and Nölle (1970) and Fahrmeir and Kaufmann
(1983). In many papers of nowadays, this aspect of a MLE is often not mentioned. The
absence is justified by the asymptotic existence of the estimator, that is the probability
of existence converges to one as sample size n increases. For the particular case of (3.5),
one can easily check that

P

 n∑
j=1

Yij = 0

 n→∞−→ 0.

We say that

β̂i1{
∑n
j=1 Yij>0} (3.6)

is a MLE on {
∑n

j=1 Yij > 0}. It is such a defining set which plays a crucial role in
credibility estimation and its proper construction is already half the battle.

3.2. The Pseudo Maximum Likelihood Estimator

To stress the role of the defining set and to clearly distinguish between the unre-
stricted MLE, we introduce an explicit notation for estimators of type (3.6). For some
family of measurable sets (Min)n∈N ⊂ F , we call

β̃in := β̂in1Min , n ∈ N, (3.7)
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the pseudo maximum likelihood estimator (PMLE). The additional index n now em-
phasizes the quantities’ dependence on the sample size. The aim of this section is to
construct Min such that β̃in ∈ L2 and also further properties will follow. For that pur-
pose and for the remainder of the chapter, we will work with the following regularity
assumptions.

(R1) The random vectors Bi have a compact and convex support B. Furthermore,
Bi has no mass at 0 ∈ Rp and on the boundary of B, i.e.

P(Bi = 0) = 0, (3.8)

P(Bi ∈ ∂B) = 0. (3.9)

(R2) g is twice continuously differentiable with non-singular Jacobian.
(R3) The admissible set of covariates

{Xj : j ∈ N} ⊂ Rp

is bounded and all of its elements satisfy Xjβ ∈ Θ0 for all β ∈ B.
(R4)

∑n
j=1X

′
jXj has full rank p for sufficiently large n.

(R5) The scaled Fisher information matrix

Fn(β)

n
=

1

n
(X ′W (β)X),

with W (β) = diag{vj(β) : j = 1, . . . , n}, converges pointwise to a positive
definite limit F (β) for all β ∈ B.

Remark. The above assumptions have to ensure that the conditional GLM is pointwise
valid for all realizations β ∈ B of Bi. Thus, they naturally coincide with the assumptions
(L1) to (L4) of a classical GLM. In particular, (R2) and (R4) are exactly the same as (L2)
and (L4) respectively. Condition (R1) is the counterpart to (L1) that stated openness and
convexity of B. Compactness seems to be in conflict with (L1) but we can without loss of

generality enlarge B to an open set, say B̃, where B̃\B gets zero weight. The main purpose
of (R1) is to make the Bi almost surely bounded and additional compactness is required
for technical reasons. The second part about point zero is just for technical purposes
and excludes only the trivial case where a regression model is redundant. Similar to
(L3), assumption (R3) deals with the admissible set of covariates. In addition to the
former prerequisites boundedness is now needed. Only (R5) is a totally new assumption
and concerns with the asymptotic properties of maximum likelihood theory. In fact,
it generalizes the linear growth condition of the Fisher information matrix as used by
McFadden (1973) and Andersen (1980) to the whole state space B of Bi.

The remainder of this section is devoted for the explicit construction of the sets (Min)
which will define the PMLE. The idea comes from Fahrmeir and Kaufmann (1985). For
δ > 0, we define a sequence of neighborhoods

Nn(δ,Bi) := {β ∈ B :
√
n‖β −Bi‖ ≤ δ}, n ∈ N, (3.10)

which are spheres with radius δ/
√
n and random central point Bi with respect to the

vector 2-norm ‖ · ‖. In addition, let

M δ
in := {lin(β)− lin(Bi) < 0, for all β ∈ ∂Nn(δ,Bi)} . (3.11)

If the event M δ
in occurs, there exists a local maximum in the interior of Nn(δ,Bi). Since

the log-likelihood function lin is concave, the local maximum is also an unique global
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maximum which is attained by β̂in. Therefore, ω ∈M δ
in implies that β̂in(ω) ∈ Nn(δ,Bi(ω)),

i.e.

1Mδ
in
‖β̂in −Bi‖ ≤

δ√
n
, a.s. (3.12)

The PMLE will be constructed along these sets with an appropriate choice for δ.

Theorem 3.2. For all η > 0, there exist a δ > 0 and an nη ∈ N such that for all n ≥ nη,

P
(
M δ
in

)
≥ 1− η, i = 1, . . . , N.

Moreover, there exist a null sequence (ηn)n∈N with corresponding sequence (δn)n∈N such
that

P
(
M δn
in

)
→ 1

and δn/
√
n→ 0, i.e.

Nn(δn, Bi)→ {Bi} a.s.

for all i = 1, . . . , N as n→∞.

Proof. See Section 3.5. �

Based on this theorem, we can finally define the PMLE as follows.

Definition 3.3 (PMLE). Let (δn) be as in Theorem 3.2. Then, the sets

Min := M δn
in

define the PMLE
β̃in = β̂in1Min , i = 1, . . . , N.

Theorem 3.2 is a very strong result as it provides asymptotic existence under the
unconditional measure P even though the distribution of Bi has not been specified.
The resulting PMLE is more comfortable to work with compared to the ordinary MLE.
Especially, β̃in is now square integrable.

Proposition 3.4. It holds that β̃in ∈ L2 for all n ∈ N.

Proof. We have

E
[
‖β̃in‖2

]
= E

[
‖β̂in1Min‖2

]
= E

[
1Min‖Bi + (β̂in −Bi)‖2

]
≤ E

[
1Min

(
‖Bi‖2 + ‖β̂in −Bi‖2 + 2‖Bi‖‖β̂in −Bi‖

)]
≤
(
c2
B +

δ2
n

n
+ 2cB

δn√
n

)
P(Min) <∞.

�

The proof demonstrates how the restriction to this particular Min dramatically sim-
plifies the calculation. Furthermore, asymptotic properties follow. In this connection,
recall that matrix square roots are denoted by A = A1/2AT/2, where the superscript T ad-
dresses the matrix transpose. The inverse matrices are then given by A−1 = A−T/2A−1/2.
See also Section 2.3 for an overview of notations.
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Theorem 3.5. The PMLE satisfies the following asymptotic properties as the number
of observations n grows to infinity.

i) β̃in is weakly consistent, i.e.

β̃in
P−→ Bi.

ii) β̃in is asymptotically unbiased, i.e.

E[β̃in]→ E[Bi].

iii) The second moments converge, i.e.

Cov
(
E[β̃in | Bi]

)
→ Cov(Bi)

and

Cov
(
E[β̃in | Bi], Bi

)
→ Cov(Bi).

iv) The conditional second moments converge, i.e.

Cov(β̃in | Bi)→ 0

almost surely and in L1.
v) β̃in −Bi is asymptotically Normal, i.e.

F T/2n (β̃in)(β̃in −Bi)
d−→ N (0, I).

In particular, F−1
n (β̃in) is the asymptotic covariance matrix of β̃in −Bi.

Proof. See Section 3.6. �

All properties except iii) are known from classical GLM theory, cf. Theorem 1 to
3 of Fahrmeir and Kaufmann (1985). Hence, if β denotes the true GLM parameter,
the convergence towards β in the particular types will hold under Pβ. This theorem
generalizes the results to the unconditional measure P. Moreover, the modification to
the PMLE does not disturb the convergences. All these properties will play a central
role in the next section where we will finally address the credibility estimation.

3.3. The credibility estimator

Recall that the the credibility estimator for Bi is generally defined as the orthogonal
projection of the target variable on some proper linear subspace of L2 or, in other
words, it is the Bayes estimator within this linear class. We have motivated to use
structure (3.4) as the subspace but it has turned out that L(1,β) is not contained in L2.
We now redefine

L(1,β) :=

{
a+

N∑
k=1

Akβ̃k : a ∈ Rp, Ak ∈ Rp,p
}

(3.13)

as the class of admissible estimators by mixing the PMLEs instead of the MLEs. The
final credibility estimator only depends on these variables and it does not matter whether
the PMLEs belong to a multivariate or an univariate exponential family. It directly
follows from Proposition 3.4 that L(1,β) itself is a Hilbert space as a subspace of L2.
Its linearity obviously follows from construction and since L(1,β) has finite dimension
it is also closed.
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Definition 3.6 (GLM credibility estimator). The credibility estimator for Bi is
defined as

B̂i = Pro(Bi | L(1,β)) (3.14)

or equivalently as

B̂i = arg min
B̃i∈L(1,β)

E
[(
B̃i −Bi

)′ (
B̃i −Bi

)]
. (3.15)

By choosing a = 0 and Ak = δikIp, with δik being the Kronecker delta and Ip ∈
Rp,p being the identity matrix, one can easily see that β̃i ∈ L(1,β). Therefore, the

GLM credibility estimator performs at least as good as the PMLE. Since β̃i is a weakly
consistent and asymptotically unbiased estimator, cf. Theorem 3.5, it is already a good
estimator. Moreover, the Bayes estimator E[Bi | Yn] is a Yn-martingale, where Yn =
(Yi1, . . . , Yin)Ni=1, and it converges almost surely and in L1 to Bi due to the martingale

convergence theorem, see e.g. (Revuz and Yor, 1999, Chapter II). As β̃i converges in
probability to the same limit Bi, both estimators agree in probability as n→∞. Thus,
the restriction to the linear class L(1,β) is not a big concern. All these n-asymptotic
properties of the PMLE seem to make credibility estimation redundant at first glance.
In fact, credibility models target situations where n is not very large. In these cases
missing observations can be partially compensated by involving further clusters and this
effect can be observed in the credibility formula for Bi which now follows.

Theorem 3.7. The solution of (3.14) and (3.15) is given by

B̂i = E[Bi] +A(β̃i − E[β̃i]) (3.16)

with credibility matrix

A = Cov(Bi, β̃i) Cov(β̃i)
−1. (3.17)

Proof. By plugging the linear representation of B̃i according to (3.13) into the mean
squared error (3.15), we get the objective function

fi(a,A1, . . . , AN ) := E

(a+

N∑
k=1

Akβ̃k −Bi

)′(
a+

N∑
k=1

Akβ̃k −Bi

) .
Taking its partial derivatives with respect to the components of a and the Al and setting
them equal to zero leads to the equations

a = E[Bi]−
N∑
k=1

AkE[β̃k],

E[Biβ̃
′
l] = E[aβ̃′l] +

N∑
k=1

AkE[β̃kβ̃
′
l], l = 1, . . . , N,

whereat the latter equation simplifies to

Cov(Bi, β̃l) =
N∑
k=1

Ak Cov(β̃k, β̃l), l = 1, . . . , N, (3.18)
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also called the orthogonality conditions. Notice that fi is differentiable as it is a poly-
nomial with respect to all components of a and Al. Thus, we may interchange differen-
tiation and integration. Since the function fi is convex, the solution of these equations
is indeed a minimizer. The stochastic components in β̃l are β̂l and 1Mln

. Both depend

only on (Bl, Yl) so by assumption (A3), β̃l and β̃k are independent for l 6= k. Thus,
(3.18) simplifies to

Cov(Bi, β̃l) = Al Cov(β̃l).

By the same argument, Cov(Bi, β̃l) = 0 for i 6= l and it follows that Al = 0 for i 6= l.
Finally, we obtain

A := Ai = Cov(Bi, β̃i) Cov(β̃i)
−1

and putting together the pieces completes the proof. �

Notice that the covariance matrix Cov(β̃i) is symmetric and positive semidefinite so
it may happen that it is singular. However, this is the case if and only if a component
of β̃i is almost surely a linear combination of the others. Such a component is redun-
dant and should be avoided in the stage of modeling by choosing covariate vectors with
p − 1 components. We can without loss of generality assume that Cov(β̃i) is positive
definite and thus invertible such that the credibility matrix A always exists. The re-
sulting credibility formula (3.16) slightly differs from those for the multivariate and the
regression models (2.8) and (2.15) respectively. However, an analogous structure can

be established in an n-asymptotic meaning. Notice that A as well as B̂i depend on n
through the PMLE β̃in and its moments. The additional index n will be used whenever
its role is stressed.

Recall that two multivariate sequences (Gn), (Hn) ⊂ Rq are said to be asymptotically

equivalent as n→∞, written Gn
n∼ Hn, if

(Gn −Hn) ∈ o(Hn). (3.19)

The little-o symbol describes asymptotic dominance, i.e.

‖Gn −Hn‖ ≤ c‖Hn‖
for all c > 0 and n large enough. We use the additional superscript n in ∼ to dis-
tinguish between the same symbol without a superscript which stands for “distributed
as”. As the name suggests, asymptotic equivalence is indeed an equivalence relation
providing reflexivity, symmetry and transitivity. Reflexivity trivially follows. Symmetry
is provided since for every c > 0 and large n,

‖Hn −Gn‖
‖Gn‖

=
‖Gn −Hn‖
‖Hn‖

‖Gn + (Hn −Gn)‖
‖Gn‖

≤ c

1 + c

(
1 +
‖Hn −Gn‖
‖Gn‖

)
⇒ 1

1 + c

‖Hn −Gn‖
‖Gn‖

≤ c

1 + c
.

(Hn − Gn) ∈ o(Gn) then follows by multiplying both sides with 1 + c. This property

together with the triangular inequality directly imply transitivity of
n∼. We can generalize

the notion of asymptotic equivalence to random vectors and matrices by interpreting
(3.19) in a probabilistic manner. To this end, we use the oP-notation introduced by
Pratt (1959).
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Definition 3.8. Let (Gn) and (Hn) be sequences of multivariate random variables.

They are asymptotically equivalent in probability, written Gn
n∼ Hn, if

Gn −Hn ∈ oP(Hn),

i.e. for every c > 0,

P(‖Gn −Hn‖ ≤ c‖Hn‖)
n→∞−→ 1.

This is an intuitive generalization of the deterministic counterpart as the convergence
of the fraction ‖Gn − Hn‖/‖Hn‖ towards 0 must now hold in probability. We use the
same symbol since its meaning is always clear from the context.

Theorem 3.9. An n-asymptotic credibility formula is given by

B̂in
n∼ Anβ̃in + (Ip −An)E[β̃in], (3.20)

where An is the same as in (3.17).

The right hand side of (3.20) simply follows by replacing E[Bi] in (3.16) with its

approximation E[β̃in] but the formal proof requires some preparation. Notice that the
asymptotic formula now has the familiar structure which is easy to interpret. The
credibility estimator is composed of a cluster specific term Anβ̃in and a cluster common
term (Ip − An)E[β̃in]. The best individual estimator β̃in is weighted according to its
credibility An. If it is evaluated to be highly credible, i.e. An ≈ Ip, then the credibility
estimator will approximately equal the PMLE. As we will soon see, this is the case for
large sample sizes n, where β̃in consistently estimates Bi. The cluster common part will
compensate the lack of information if necessary. Thus, it can be interpreted as a learning
effect which vanishes as n increases.

Lemma 3.10. We have

An
n→∞−→ Ip

and consequently (B̂in − β̃in)→ 0 almost surely and in L1.

Proof. By (3.17),

An = Cov(Bi, β̃in) Cov(β̃in)−1

so that

An − Ip =
(

Cov(Bi, β̃in)− Cov(β̃in)
)

Cov(β̃in)−1. (3.21)

The law of total covariance, cf. Sheldon et al. (2002), yields

Cov(Bi, β̃in) = E
[
Cov(Bi, β̃in | Bi)

]
+ Cov

(
E[Bi | Bi],E[β̃in | Bi]

)
= Cov

(
Bi,E[β̃in | Bi]

)
and

Cov(β̃in) = E
[
Cov(β̃in | Bi)

]
+ Cov

(
E[β̃in | Bi]

)
.

Hence, (3.21) can be written as

An − Ip =
(

Cov
(
Bi,E[β̃in | Bi]

)
− Cov

(
E[β̃in | Bi]

)
− E

[
Cov(β̃in | Bi)

])
Cov(β̃in)−1.
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By claims iii) and iv) of Theorem 3.5, the first factor in brackets converges to the zero

matrix almost surely and in L1. Furthermore, Cov(β̃in) converges to Cov(Bi), which is

invertible, and so does Cov(β̃in)−1. We conclude that

sup
n

∥∥∥Cov(β̃in)−1
∥∥∥ <∞

and finally

‖An − Ip‖
n→∞−→ 0.

The convergence of B̂in − β̃in follows since supn ‖β̃in‖ <∞ almost surely. �

Lemma 3.11. The credibility estimator B̂in is weakly consistent.

Proof. The claim directly follows by the weak consistence of β̃i, its asymptotically
unbiasedness and Lemma 3.10. To be more precise,

‖B̂in −Bi‖ = ‖E[Bi] +Anβ̃in −AnE[β̃in]−AnBi − (Ip −An)Bi‖

≤ ‖An(β̃in −Bi)‖+ ‖An(E[Bi]− E[β̃in])‖+ ‖(Ip −An)(E[Bi]−Bi)‖

and the right hand side vanishes in P. �

We can now prove the asymptotic credibility formula (3.20).

Proof of Theorem 3.9. We have to show that(
Anβ̃in + (Ip −An)E[β̃in]

)
n∼
(
E[Bi] +A(β̃in − E[β̃in])

)
(3.22)

in the sense of Definition 3.8. In fact, their difference is

E[β̃in]− E[Bi],

whose norm vanishes by ii) of Theorem 3.5. It suffices to show that it is also asymptoti-

cally dominated by the right hand side of (3.22) which is B̂in. Lemma 3.11 implies that

‖B̂in‖ converges in probability to ‖Bi‖. Therefore,

‖E[β̃in]− E[Bi]‖
‖B̂in‖

is a product of two converging sequences. It converges in probability to 0, which is
the product of the limits, provided that P(‖Bi‖ = 0) = 0. The latter is guaranteed by
condition (R1) so that the claim follows. �

It remains to estimate the structural parameters of the model. Considering the
asymptotic credibility formula (3.20) and Definition (3.17), these are specifically

β0 := E[β̃i],

τ−1 := Cov(β̃i)
−1,

T := Cov(Bi, β̃i)

and their estimation is based on the N iid samples β̃1, . . . , β̃N . The first two quantities
allow empirical estimation but the third one requires some work. The next theorem
contains convergence statements with two control variables n and N . Limiting behavior
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of a sequence (Gn,N ) as both n → ∞ and N → ∞ should be interpreted as their
successive application, i.e. as

lim
n→∞

lim
N→∞

Gn,N .

Theorem 3.12. The structural parameters can be estimated as follows.

i) An unbiased and strongly N -consistent estimator for E[β̃i] is given by

β̂0 =
1

N

N∑
i=1

β̃i. (3.23)

ii) Let τ̂ be the sample covariance matrix of (β̃i)
N
i=1. Then,

τ̂−1 =
N − p− 2

N − 1
(τ̂)−1 (3.24)

is a weakly N -consistent estimator of Cov(β̃i)
−1.

iii) Let

Ŝ =
1

N

N∑
i=1

F−1
n (β̃i). (3.25)

Then,

T̂ = τ̂ − Ŝ (3.26)

is an asymptotically unbiased and weakly consistent estimator of Cov(Bi, β̃i) as
both n→∞ and N →∞.

iv) The credibility matrix can be estimated by

Â = T̂ τ̂−1, (3.27)

which is a weakly consistent estimator as both n→∞ and N →∞.

The estimator (3.24) for the inverse covariance matrix includes a factor N−p−2
N−1 , which

will be discussed after the proof.

Proof. ad i). As the β̃i are iid, the strong law of large numbers provides strong con-

sistency of β̂0. Unbiasedness directly follows by construction.

ad ii). The sample covariance matrix

τ̂ =
1

N − 1

N∑
i=1

(β̃i − β̂0)(β̃i − β̂0)′

is an unbiased and weakly consistent estimator of Cov(β̃i) as N → ∞. Therefore, by

the continuous mapping theorem, cf. (Klenke, 2006, Theorem 13.25), τ̂−1 consistently
estimates the inverse covariance matrix.

ad iii). First, we show the asymptotic equivalence of the expressions

Cov(Bi, β̃in)
n∼ Cov

(
E[β̃in | Bi]

)
. (3.28)

Since

Cov(Bi, β̃in) = Cov
(
Bi,E[β̃in | Bi]

)
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it suffices to prove that

Cov
(
E[β̃in | Bi]

)
n∼ Cov

(
Bi,E[β̃in | Bi]

)
.

This is easy to see as both terms converge to Cov(Bi), cf. Theorem 3.5. Thus,

Cov
(
E[β̃in | Bi]

)
n∼ Cov(Bi) and Cov

(
Bi,E[β̃in | Bi]

)
n∼ Cov(Bi)

so (3.28) follows by the transitivity of
n∼. We now estimate Cov(B, β̃i) by means of

(3.28) and we use the identity

Cov
(
E[β̃in | Bi]

)
= Cov(β̃in)− E

[
Cov(β̃in | Bi)

]
. (3.29)

As we have already seen, τ̂ is an unbiased and weakly N -consistent estimator for
Cov(β̃in). An intuitive choice for the second summand is

1

N

N∑
i=1

Cov(β̃in | Bi). (3.30)

However, these conditional covariance matrices are not known so that we look for esti-
mators

̂Cov(β̃in | Bi)
that are asymptotically unbiased and consistent as n grows to infinity. By claim v)
of Theorem 3.5, the inverse Fisher information matrix is the asymptotic conditional
covariance matrix of β̃in and is therefore a natural choice. In fact, it follows from
Lemma 3.14 and (3.9) that

lim
n→∞

F−1
n (β̃in) = 0, a.s. and in L1

and from Theorem 3.5 claim iv) that

lim
n→∞

Cov(β̃in | Bi) = 0, a.s. and in L1.

Thus,

Ŝ =
1

N

N∑
i=1

F−1
n (β̃in)

is an n-asymptotically unbiased and strongly n-consistent estimator for (3.30), which it-

self is an unbiased and strongly N -consistent estimator for E[Cov(β̃in | Bi)]. Altogether,

T̂ = τ̂ − Ŝ estimates (3.29) in an asymptotically unbiased and consistent way as both

n and N grow to infinity. T̂ preserves these properties for the left hand side of (3.28).
More precisely,

lim
n→∞

lim
N→∞

∥∥∥T̂ − Cov(Bi, β̃in)
∥∥∥

≤ lim
n→∞

lim
N→∞

∥∥∥T̂ − Cov(E[β̃in | Bi])
∥∥∥+ lim

n→∞
lim
N→∞

∥∥∥Cov(E[β̃in | Bi])− Cov(Bi, β̃in)
∥∥∥

≤ lim
n→∞

lim
N→∞

∥∥∥τ̂ − Cov(β̃in)
∥∥∥+ lim

n→∞
lim
N→∞

∥∥∥E [Cov(β̃in | Bi)
]
− Ŝ

∥∥∥
+ lim
n→∞

∥∥∥Cov(E[β̃in | Bi])− Cov(Bi, β̃in)
∥∥∥
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almost surely. Convergences of the first two summands have just been discussed. For
the last summand, asymptotic dominance (3.28) provides∥∥∥Cov(E[β̃in | Bi])− Cov(Bi, β̃in)

∥∥∥ ≤ c ∥∥∥Cov(Bi, β̃in)
∥∥∥

for all c > 0 and n large enough. The right hand side vanishes by taking c ↓ 0 and since

sup
n

∥∥∥Cov(Bi, β̃in)
∥∥∥ <∞

as Cov(Bi, β̃in) converges.

ad iv). The claim directly follows by applying the continuous mapping theorem on
ii) and iii). �

The credibility formula can now be evaluated by replacing its structural parameters
by their consistent estimators.

Corollary 3.13. The estimator

ˆ̂Bi = Âβ̃i + (Ip − Â)β̂0. (3.31)

is a weakly consistent estimator for the exact credibility estimator (3.16) as both n→∞
and N →∞.

Proof. The claim is a direct consequence of Theorem 3.9 and Theorem 3.12. �

In practice, we recommend two slight modifications of the presented estimators. The
first has been already indicated and concerns the estimation of the inverse covariance

matrix τ−1. Not only τ̂−1 but also (τ̂)−1 consistently estimates τ−1. The additional

factor of the former is justified by the asymptotic distribution. Since the β̃i are n-
asymptotically Normal, cf. Theorem 3.5, (N − 1)τ̂ is n-asymptotically Wishart dis-
tributed with N −1 degrees of freedom. The asymptotic distribution of 1

N−1(τ̂)−1 is the
inverse Wishart distribution with N − 1 degrees of freedom and its expectation contains
a factor (N − p − 2)−1. Thus, N−p−2

N−1 in (3.24) serves as a bias correction term. The
estimator is not necessarily asymptotically unbiased due to the fact that the convergence
to the inverse Wishart distribution only holds in law. Nevertheless, simulation studies

reveal that τ̂−1 performs much better than (τ̂)−1.

The second modification applies to the estimator of T = Cov(E[β̃i | Bi]). As T̂ estimates
a covariance matrix, it should be symmetric and positive semidefinite. By the nature of
structure (3.26), T̂ is symmetric but the latter property is not guaranteed. We therefore

propose a transformation of T̂ in the following way. There exist an orthogonal matrix
Q and a diagonal matrix D such that

D = Q′T̂Q,

where the diagonal elements of D are the eigenvalues of T̂ . We construct a new matrix D∗

by replacing all negative entries of D by zero. Then, a positive semidefinite alternative
T̂ ∗ for T̂ is given by

T̂ ∗ = QD∗Q′

and empirical evidence shows that this estimator performs better than T̂ . Details will
follow shortly.



38 3. CREDIBILITY ESTIMATOR FOR GENERALIZED LINEAR MODELS

N\n 15 25 50 100
no.1 no.2 no.1 no.2 no.1 no.2 no.1 no.2

5 2.14 1.02 3.33 1.06 5.89 1.05 12.04 1.05
10 1.12 0.90 1.47 0.95 2.02 0.98 3.28 0.98
20 0.90 0.85 1.01 0.90 1.18 0.95 1.49 0.97
30 0.86 0.83 0.93 0.89 1.04 0.94 1.20 0.97
50 0.82 0.81 0.89 0.88 0.97 0.93 1.05 0.96

MSE 0.132 0.078 0.038 0.019

Table 3.1. Relative improvement of the credibility estimator compared
to the PMLE. The line MSE shows the simulated mean squared error of
the PMLE.

One drawback of the credibility estimation is that the PMLE β̃i cannot be explicitly
calculated since the corresponding sets Min, cf. (3.11), have an abstract structure. The
PMLE is however more a theoretical construct introduced to build up the theory in
a clean mathematical way. Whenever the MLE β̂i can be numerically computed, we
pretend as Min has actually occurred so that the PMLE and the MLE agree. This step
can be theoretically justified by making the probability of agreement arbitrarily close to
1. According to Theorem 3.2, P(Min) ≥ 1 − ηn and we can choose a small ηn > 0 for
the particular sample size n of the data in fit.

3.4. Simulation Study

We conclude the theory with an illustrative example that shows the performance
of the credibility estimator. As mentioned earlier, credibility models target at situation
where only little statistical information is available for the single clusters. In this section,
we consider the case of a Poisson-CGLM. Let

Bi ∼ N (
(
2 1

)′
, I2), i = 1, . . . , N,

be iid and capped whenever ‖Bi‖ > 1000. The cap is needed to comply the compactness
condition (R1) even though it will never be reached in simulation. Conditional, given
these Bi, Yij follow a Poisson-GLM with parameter Bi and covariates

Xj =
(
1 j

n

)
, j = 1, . . . , n.

Thus, the component Bi1 describes the sensitivity to overall effects and Bi2 that to
linear effects. For several constellations of the portfolio and sample sizes (N,n), we run
m = 1000 scenarios ω1, . . . , ωm and compute the performance of the credibility estimator.
In detail, we calculate the aggregate realized quadratic losses of the credibility and the
(pseudo) maximum likelihood estimator and measure the relative improvement by∑m

k=1

∑N
i=1 ‖

ˆ̂Bi(ωk)−Bi(ωk)‖2∑m
k=1

∑N
i=1 ‖β̃i(ωk)−Bi(ωk)‖2

. (3.32)

In addition, modifications of the estimators are evaluated by means of this value. These
deal with the bias correction term N−p−2

N−1 in (3.24) and the transformation of T̂ into a
positive semidefinite matrix. Recall that we have recommended to use both of them.
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Figure 3.1. A particular realization and the associated estimators for
N = 30, n = 25 and E[Bi] = (2.5, 1)′.

Table 3.1 presents the simulation results. The columns labeled no.1 list the relative
improvement of the credibility estimator without the two modifications. Both of them
are applied in the estimation whose results are given in columns no.2. There are notice-
able differences between these two estimators but differences reduce as N gets larger.
We have also considered the modifications separately and the corresponding values lie
somewhere between the displayed ones. Generally, extremal behavior can be observed
in the first row (N = 5) and in the last column (n = 100). If the portfolio contains only
a small number of clusters, the estimation of the structural parameters as described in
Theorem 3.12 will not work well. There are simply too few independent observations to
estimate the empirical means and covariance matrices properly. When sample size n is
large, the relative improvement is very small. That does not mean that credibility esti-
mation performs badly. Rather, the opposite is the case: The credibility estimator is as
good as the PMLE which is already itself a good estimator. In all other constellations of
(N,n), the credibility estimator shows considerable improvements in sense of the mean
squared error. Lack of statistical information in single clusters can be compensated by
the huge amount of information that the portfolio delivers. This effect is especially large
if observations are atypical or contain irregularities as shown in Figure 3.1. The PMLE
underestimates the Poisson rates since most observations deviate to the downside. How-
ever, the credibility estimator successfully adjusts towards the true Poisson rates. One
should also notice that the credibility matrix A and its estimator Â are not necessarily
diagonal. The solid line and the dashed line representing the two estimators are in fact
not parallel. In many scenarios, both estimators almost agree.
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3.5. Proof of Theorem 3.2

The remainder of the chapter is devoted for proofs and we begin with that of
Theorem 3.2 which claims asymptotic existence of the PMLE. Throughout the proof
the cluster index i is omitted for notational simplicity, e.g. a particular element of
B = (B1, . . . , BN ) will be denoted by B instead of Bi.

Lemma 3.14. For all n ∈ N, 1
nFn is Lipschitz continuous with Lipschitz constant L > 0

and the sequence ( 1
nFn)n∈N converges uniformly on B, i.e.

sup
β∈B

∥∥∥∥ 1

n
Fn(β)− F (β)

∥∥∥∥→ 0

as n→∞.

Proof. Since Fn
n converges pointwise and its domain B is compact, uniform convergence

is guaranteed if the sequence (Fnn ) is equicontinuous. This is indeed the case. First recall
that a sequence of functions (gn) on D is said to be equicontinuous if for all x ∈ D and
ε > 0, there exists a δε,x > 0 such that for all y ∈ D with ‖y − x‖ < δε,x and all n ∈ N,

‖gn(x)− gn(y)‖ < ε.

In short, the δ depends only on ε and x but not on n. A sufficient condition for equicon-
tinuity is that the family is Lipschitz continuous with the same Lipschitz constant. In
fact, for all β1, β2 ∈ B, applying the mean value theorem on the variance function
vj(·) = b′′(Xj ·) yields that∥∥∥∥ 1

n
Fn(β1)− 1

n
Fn(β2)

∥∥∥∥ ≤ 1

n

n∑
j=1

∥∥X ′jXj (vj(β1)− vj(β2))
∥∥

≤ 1

n

n∑
j=1

∥∥X ′jXj

∥∥∥∥∥ sup
ξ∈β1β2

X ′jb
(3)(Xjξ)

∥∥∥ ‖β1 − β2‖

≤ L ‖β1 − β2‖ .

Such a bound L > 0 exists since b′ = g−1 is twice continuously differentiable by (R2) and
since the domains of Xj and ξ are bounded. Also notice that B is convex and therefore
contains ξ. �

The set M δ
n. Recall the constructions (3.10)

Nn(δ,B) = {β ∈ B :
√
n‖β −B‖ ≤ δ}, n ∈ N,

for δ > 0 and (3.11)

M δ
n = {ln(β)− ln(B) < 0, for all β ∈ ∂Nn(δ,B)}.

We have already seen that √
n‖β̂n −B‖ ≤ δ

whenever the event M δ
n occurs. What remains to show is that 1− P(M δ

n) vanishes for a
particular choice of δ. More precisely, it suffices to prove that for all η > 0 there exist a
δ > 0 and an nη ∈ N such that

P
(
∃β ∈ ∂Nn(δ,B) : ln(β)− ln(B) ≥ 0

)
≤ η, for all n ≥ nη.
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Let δ > 0 and β ∈ ∂Nn(δ,B). The Taylor expansion of ln around B gives

ln(β)− ln(B) = (β −B)′sn(B)− 1

2
(β −B)′Fn(ξ)(β −B), (3.33)

with derivatives sn = ∂ln/∂β and Fn = −∂2ln/(∂β∂β
′) and an intermediate point ξ

which lies between β and B. By construction of Nn(δ,B),
√
n‖β −B‖ = δ

and thus, the vector

v :=

√
n

δ
(β −B)

fulfills ‖v‖ = 1. Substituting with v, the Taylor expansion (3.33) can be written as

ln(β)− ln(B) =
δ√
n
v′sn(B)− 1

2
δ2v′

Fn(ξ)

n
v,

where the two summands on the right hand side satisfy

v′sn(B) ≤ max
‖w‖=1

|w′sn(B)| ≤ ‖sn(B)‖ (3.34)

v′
Fn(ξ)

n
v ≥ min

‖w‖=1
w′
Fn(ξ)

n
w. (3.35)

The last inequality of (3.34) follows by the Cauchy-Schwarz inequality.

Lower bound for (3.35). Since B ∈ Nn(δ,B) ⊂ B and β ∈ ∂Nn(δ,B), it directly
follows from convexity of B that ξ ∈ Nn(δ,B). Now uniform convergence of the scaled
Fisher information matrix, cf. Lemma 3.14, yields a lower bound for the expression

w′
Fn(ξ)

n
w, ‖w‖ = 1.

Specifically, there exists for all ε > 0 an nε ∈ N which does not dependent on ξ such that
for all n ≥ nε, ∥∥∥∥Fn(ξ)

n
− F (ξ)

∥∥∥∥ ≤ ε.
It follows from the structure of an induced matrix norm and from the Cauchy-Schwarz
inequality that for all w ∈ Rp with ‖w‖ = 1,∣∣∣∣w′Fn(ξ)

n
w − w′F (ξ)w

∣∣∣∣ ≤ ε
and thus,

w′
Fn(ξ)

n
w ≥ w′F (ξ)w − ε.

By assumption the matrix F (ξ) is positive definite for all ξ. Furthermore, as an uniform
convergent limit of continuous functions Fn, F is also continuous. Boundedness of the
domain therefore provides for sufficiently small ε and some d > 0 that

w′
Fn(ξ)

n
w ≥ d > 0, for all n ≥ nε.
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Putting the pieces together. Altogether, we have

P (∃β ∈ ∂Nn(δ,B) : ln(β)− ln(B) ≥ 0)

= P
(
∃β ∈ ∂Nn(δ,B) : (β −B)′sn(B) ≥ 1

2
(β −B)′Fn(ξ)(β −B)

)
= P

(
∃β ∈ ∂Nn(δ,B) :

δ√
n
v′sn(B) ≥ 1

2
δ2v′

Fn(ξ)

n
v

)
≤ P

(
δ√
n
‖sn(B)‖ ≥ 1

2
δ2 min
‖w‖=1

w′
Fn(ξ)

n
w

)
≤ P

(
‖sn(B)‖ ≥ 1

2

√
nδd

)
(3.36)

for n ≥ nε. By Chebyshev’s inequality, the last expression satisfies

P
(
‖sn(B)‖ ≥ 1

2

√
nδd

)
≤ 4

nδ2d2
E
[
‖sn(B)‖2

]
, (3.37)

where the expectation linearly grows in n. More precisely, using the explicit structure
of the vector 2-norm ‖ · ‖,

E
[
‖sn(B)‖2

]
=

p∑
k=1

E

 n∑
j=1

Xjk (Yj − µj(B))

2
=

p∑
k=1

E

E
 n∑

j=1

Xjk (Yj − E[Yj | B])

2

| B


=

p∑
k=1

E

 n∑
j=1

X2
jkVar(Yj | B)


≤ pnV.

The norm ‖Xj‖ is bounded according to assumption (R3). In addition, the boundedness
of {Xj} and B ensures that the conditional variances as continuous images b′′(XjB) are
bounded. Hence, the above summands are bounded by some V > 0.

For a given η > 0, we can finally choose nη = nε and

δ := 2

√
pV

ηd2
.

For these choices,

1− P(M δ
n) = P

(
∃β ∈ ∂Nn(δ,B) : ln(β)− ln(B) ≥ 0

)
≤ η

for all n ≥ nη, which shows the asymptotic occurrence of Mn.

For the second part of the theorem, we choose a null sequence (ηn) which converges

to zero strictly slower than 1/n. Then, since δn = const · η−1/2
n , δn/

√
n vanishes and the

neighborhood shrinks to a singleton

Nn(δ,B)→ {B}, a.s.

as n→∞. This completes the proof.
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Remark (q-variate exponential families). Credibility estimation is purely based
on the PMLEs, which are the best individual solutions. Drawing observations from
q-variate simple exponential families only affects the construction of these estimators.
In particular, conditional expectations and variances have to be consequently replaced
by conditional expectation vectors and covariance matrices respectively. These changes
concern the likelihood functions, score functions and the Fisher information matrices
which now involve multivariate quantities. Their general structures have been already
introduced in (2.22) to (2.24). Nevertheless, the proof of Theorem 3.2 remains valid. We
only need to verify the last step (3.37). Specifically, we have q-variate quantities Xjk,
Yj and µj(B) so that

E
[
‖sn(B)‖2

]
=

p∑
k=1

E

 n∑
j=1

X ′jk (Yj − µj(B))

2
=

p∑
k=1

E

E
 n∑

j=1

Xjk (Yj − E[Yj | B])

2

| B


=

p∑
k=1

E

 n∑
j=1

X ′jkΣj(B)Xjk


≤ pnV.

We can find such a constant V > 0 since every covariate vector and every component of
the conditional covariance matrix Σj(B) is almost surely bounded.

3.6. Proof of Theorem 3.5

All proofs of the asymptotic properties are based on (3.12) and Theorem 3.2, i.e.

‖β̂n −B‖1Mn ≤
δn√
n
, a.s.

with a vanishing upper bound and P(Mn) → 1 at the same time. Also recall that B is
almost surely bounded by some constant cB > 0.

ad i). Let ε > 0. Then, β̃n is weakly consistent since

P(‖β̃n −B‖ > ε) = P(‖β̂n −B‖ > ε |Mn)P(Mn) + P(‖B‖ > ε |M c
n)P(M c

n)

≤ P
(
δn√
n
> ε |Mn

)
P(Mn) + P(‖B‖ > ε |M c

n)P(M c
n)

n→∞−→ 0.

ad ii). Concerning asymptotic unbiasedness, we have

‖E[β̃n]− E[B]‖ ≤ E[‖β̃n −B‖]

= E[‖β̂n −B‖1Mn ] + E[‖B‖1Mc
n
]

≤ δn√
n
P(Mn) + cBP(M c

n)

n→∞−→ 0.
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ad iii). We claimed that

Cov(E[β̃n | B])
n→∞−→ Cov(B).

In fact,∥∥∥Cov(E[β̃n | B])− Cov(B)
∥∥∥

=

∥∥∥∥E [(E[β̃n | B]−B +B − E[β̃n]
)(

E[β̃n | B]−B +B − E[β̃n]
)′]
− E[BB′] + E[B]E[B]′

∥∥∥∥
≤ E

[∥∥∥E[β̃n | B]−B
∥∥∥2
]

+ 2E
[∥∥∥E[β̃n | B]−B

∥∥∥∥∥∥B − E[β̃n]
∥∥∥]

+

∥∥∥∥E [(B − E[β̃n]
)(

B − E[β̃n]
)′]
− E[BB′] + E[B]E[B]′

∥∥∥∥
=: I + 2II + III,

where all summands I to III turn out to be null sequences. Specifically, by claim ii),

III ≤
∥∥∥∥E[B]

(
E[B]− E[β̃n]

)′∥∥∥∥+

∥∥∥∥E[β̃n]
(
E[β̃n]− E[B]

)′∥∥∥∥
≤
∥∥E[B]

∥∥∥∥E[B]− E[β̃n]
∥∥+

∥∥E[β̃n]
∥∥∥∥E[β̃n]− E[B]

∥∥→ 0.

Note that the L1-convergent sequence (β̃n) satisfies

sup
n
‖E[β̃n]‖ ≤ sup

n
E[‖β̃n‖] <∞. (3.38)

For the summand II,

E
[∥∥∥E[β̃n | B]−B

∥∥∥∥∥∥B − E[β̃n]
∥∥∥] ≤ δn√

n
E
[∥∥B − E[β̃n]

∥∥1Mn

]
+ cBE

[∥∥B − E[β̃n]
∥∥1Mc

n

]
.

By (3.38),

E
[∥∥B − E[β̃n]

∥∥1Mn

]
≤ cBP(Mn) + sup

n
E[‖β̃n‖]P(Mn) <∞,

E
[∥∥B − E[β̃n]

∥∥1Mc
n

]
≤ cBP(M c

n) + sup
n

E[‖β̃n‖]P(M c
n)→ 0

so that II vanishes. At last, convergence of summand I easily follows as

I = E
[∥∥∥E[β̂n | B]−B

∥∥∥2
(1Mn + 1Mc

n
)

]
≤ δ2

n

n
P(Mn) + c2

BP(M c
n)

→ 0.

We similarly show the second part of the claim, which was

Cov(E[β̃n | B], B)→ Cov(B).

The proof works analogue to above, but we add 0 = −B + B only in the first factor of
Cov(E[β̃n | B], B).
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ad iv). Limiting behavior of the conditional covariance matrix is derived similarly
to iii). Since

‖Cov(β̃n | B)‖ ≤ E
[
‖β̃n − E[β̃n | B]‖2 | B

]
≤ E

[
‖β̃n −B‖2 | B

]
+ 2E

[
‖β̃n −B‖‖B − E[β̃n | B]‖ | B

]
+ E

[
‖B − E[β̃n | B]‖2 | B

]
=: I + 2II + III,

it suffices to prove that all three summands converge to zero in the proper senses. By
using the monotonicity of the conditional expectation, we obtain

I = E[‖β̃n −B‖21Mn | B] + E[‖β̃n −B‖21Mc
n
| B]

≤ δ2
n

n
P(Mn | B) + c2

BP(M c
n | B).

The last expression vanishes almost surely and in L1. We get the same upper bound for
II and III as

II = E
[
‖β̃n −B‖‖B − E[β̃n | B]‖1Mn | B

]
+ E

[
‖β̃n −B‖‖B − E[β̃n | B]‖1Mc

n
| B
]

= E
[
‖β̃n −B‖‖E[B − β̃n | B]‖1Mn | B

]
+ E

[
‖β̃n −B‖‖E[B − β̃n | B]‖1Mc

n
| B
]

≤ δ2
n

n
P(Mn | B) + c2

BP(M c
n | B)

and

III = E
[
‖B − E[β̃n | B]‖21Mn | B

]
+ E

[
‖B − E[β̃n | B]‖21Mc

n
| B
]

≤ δ2
n

n
P(Mn | B) + c2

BP(M c
n | B).

ad v). Conditional on B = β, the relation

F T/2n (β̂n)(β̂n − β)
d−→ N (0, I)

holds under Pβ. It follows that β̂n is also asymptotically Normal under the unconditional
measure P. In detail, let Z ∼ N (0, Ip) and A be a Borel set in Rp, then by the dominated
convergence theorem,

lim
n→∞

P
(
F T/2n (β̂n)(β̂n −B) ∈ A

)
=

∫
B

lim
n→∞

Pβ
(
F T/2n (β̂n)(β̂n −B) ∈ A

)
P(B ∈ dβ)

=

∫
B
Pβ(Z ∈ A)P(B ∈ dβ)

= P(Z ∈ A).

The asymptotic normality of the PMLE β̃n can be directly concluded. We have

F T/2n (β̃n)(β̃n −B) = F T/2n (β̂n)(β̂n −B)1Mn − F T/2n (0)B1Mc
n
.

Since 1Mn converges in probability to 1 and F
T/2
n (0)B1Mc

n
converges in probability to

0, the claim follows by Slutsky’s theorem, cf. (Klenke, 2006, Theorem 13.18).





CHAPTER 4

Particular cases of CGLMs

Particular distributions and types of covariates often appear in regression models for
insurance data. This chapter investigates CGLM for two important situations.

4.1. Poisson data

Modeling frequency variables is a common task in many applications, e.g. the number
of certain events within a certain time period. Generally, the Poisson distribution is the
first point of contact for these cases. The previous chapter has broadly dealt with simple
exponential families and we are going to take a closer look at Poisson-CGLMs. They
are characterized by the conditional pdf of the Yij given Bi = βi, which now has the
structure

fβi(y) =

n∏
j=1

1

yj !
exp

 n∑
j=1

θijyj − exp(θij)

 , y ∈ Nn.

We will review the construction of the PMLE under the Poisson assumption and discuss
its effects on the credibility estimator. In doing so, the regularity assumptions (R1) to
(R5) remain unchanged. Notice that the natural link function of a Poisson distribution
is the log-link, cf. Table 2.1, and it satisfies the differentiability condition (R2) on the
parameter space (0,∞).

Large Deviation Techniques. First recall the construction of the events M δn
in , which

led to Definition 3.3 of the PMLE. We have chosen

M δn
in = {lin(β)− lin(Bi) < 0, for all β ∈ ∂Nn(δn, Bi)} ,

where

Nn(δn, Bi) = {β ∈ B :
√
n‖β −Bi‖ ≤ δn}.

A vanishing upper bound for the probability of the complement of M δn
in has been derived

by Chebyshev’s inequality, see (3.37). While the inequality can be applied to a broad
class of random variables, the provided upper bound is in general very rough. Cramér’s
theorem, see for instance Klenke (2006), is restricted to a special class of random variables
but usually provides a better approximation as the upper bound converges to the exact
probability. More precisely, let Sn be the sum of n iid random variables Z1, . . . , Zn and
x > E[Z1]. Then, the probability of large deviation satisfies

1

n
logP(Sn ≥ xn) ≤ −I(x)

and lim
n→∞

1

n
logP(Sn ≥ xn) = −I(x),

47



48 4. PARTICULAR CASES OF CGLMS

where

I(x) = sup
t∈R

(tx− logE[exp(tZ1)]) (4.1)

is the Legendre transform. In contrast to Chebyshev’s inequality, the upper bound
decays exponentially fast in n. We will repeat the last step of the proof of Theorem 3.2
using ideas from Cramér’s large deviation theory. In doing so, we will rely on the explicit
structure of the conditional expectations and variances, which are

b′(XjB) = b′′(XjB) = exp(XjB) =: λj(B).

The cluster index i will agin be omitted.

We have already seen in (3.36) that for sufficiently large n

1− P(M δn
n ) ≤ P

(
‖sn(B)‖ ≥ d

2

√
nδn

)
(4.2)

and the right hand side had an upper bound that, up to some constant factors, vanished
at rate δ−2

n . This rate was limited since we required δn√
n

to converge to zero at the same

time. The approximation of the upper bound can now be improved. Using the definition
of the 2-norm, the inequality (4.2) can be further continued as

P
(
‖sn(B)‖ ≥ d

2

√
nδn

)
= P

 p∑
k=1

 n∑
j=1

Xjk(Yj − λj(B))

2

≥ d2

4
nδ2

n


≤

p∑
k=1

P

∣∣∣∣∣∣
n∑
j=1

Xjk(Yj − λj(B))

∣∣∣∣∣∣ ≥ d

2
√
p

√
nδn


≤

p∑
k=1

P

 n∑
j=1

Xjk(Yj − λj(B)) ≥ d

2
√
p

√
nδn


+

p∑
k=1

P

 n∑
j=1

Xjk(Yj − λj(B)) ≤ − d

2
√
p

√
nδn

 . (4.3)

The second line follows since at least one of the p summands must exceed the average.
All summands on the last line are probabilities of large deviations. Let 1 ≤ k ≤ p. Then,
writing

P

 n∑
j=1

Xjk(Yj − λj(B)) ≥ d

2
√
p

√
nδn


=

∫
B
Pβ

 n∑
j=1

Xjk(Yj − λj(β)) ≥ d

2
√
p

√
nδn

P(B ∈ dβ)

allows us to consider the conditional probabilities instead under which the Yj are Poisson
distributed random variables.
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We apply Markov’s inequality with the exponential function to obtain

Pβ

 n∑
j=1

Xjk(Yj − λj(β)) ≥ d

2
√
p

√
nδn


≤ exp

(
− d

2
√
p
tn
√
nδn

)
Eβ

exp

tn n∑
j=1

Xjk(Yj − λj(β))

 (4.4)

with an arbitrary tn > 0. The expectation on the right hand side can be further simplified
as the Yj are conditionally independent Poisson variables. Specifically,

Eβ

exp

tn n∑
j=1

Xjk(Yj − λj(β))

 =
n∏
j=1

Eβ
[

exp(tnXjk(Yj − λj(β)))
]

=

n∏
j=1

exp(−tnXjkλj(β))Eβ [exp((tnXjk)Yj)]

=

n∏
j=1

exp(−tnXjkλj(β)) exp(λj(β)(exp(tnXjk)− 1))

= exp

 n∑
j=1

λj(β)(exp(tnXjk)− tnXjk − 1)

 .

Hence, the probability on the left hand side of (4.4) is bounded from above by exp(−rn),
where

rn :=
d

2
√
p
tn
√
nδn −

n∑
j=1

λj(β)(exp(tnXjk)− tnXjk − 1). (4.5)

We maximize rn with respect to tn to obtain the analogous structure to the Legendre
transform (4.1). However, structure (4.5) allows no analytic solution of the maximization
problem. We will construct a lower bound rn of rn with appropriate sequences (tn)n and
(δn)n such that rn →∞ and δn/

√
n→ 0 to avoid this problem.

The regularity assumptions (R1) to (R3) immediately imply that there exist con-
stants cX and cλ > 0 with

|Xjk| < cX and λj(B) ≤ cλ
for all j ∈ N and 1 ≤ k ≤ p. Writing the exponential function as a power series gives
that

n∑
j=1

λj(β)(exp(tnXjk)− tnXjk − 1) =

n∑
j=1

λj(β)

∞∑
l=2

(tnXjk)
l

l!

≤
n∑
j=1

λj(β)
∞∑
l=2

(tncX)l

l!

=
n∑
j=1

λj(β)(exp(tncX)− tncX − 1).



50 4. PARTICULAR CASES OF CGLMS

Since

exp(tncX)− tncX − 1 ≥ 0

we obtain

rn ≥
d

2
√
p
tn
√
nδn − cλn(exp(tncX)− tncX − 1) =: rn.

Notice that this lower bound does neither depend on β nor on k. Now, choose

tn =
1

cX
log

(
1 +

1√
n

)
, n ∈ N.

Then,

rn =
d

2
√
pcX

log

(
1 +

1√
n

)√
nδn −

√
ncλ

(
1−
√
n log

(
1 +

1√
n

))
(4.6)

and it suffices to find a sequence δn ∈ o(
√
n) such that rn →∞. Let

δn = nα, 0 < α <
1

2
.

The α-condition ensures that δn√
n

converges to zero. We consider the two summands in

(4.6) separately. By applying l’Hôpital’s rule, we get

lim
n→∞

log

(
1 +

1√
n

)√
nδn = lim

n→∞

log
(

1 + 1√
n

)
n−α−

1
2

= lim
n→∞

(−1
2)n−

3
2(

1 + 1√
n

)
(−α− 1

2)n−α−
3
2

= lim
n→∞

1

2

(
α+

1

2

)−1

nα
(

1 +
1√
n

)−1

= lim
n→∞

1

2

(
α+

1

2

)−1

nα

=∞.

Since d/(2
√
pcX) > 0, the first summand grows to infinity with speed nα. Next, we

study

l∞ := lim
n→∞

√
n

(
1−
√
n log

(
1 +

1√
n

))
to determine the limit of the second summand in (4.6). Since

lim
n→∞

√
n log

(
1 +

1√
n

)
= lim

n→∞

log
(

1 + 1√
n

)
n−

1
2

= lim
n→∞

(−1
2)n−

3
2(

1 + 1√
n

)
(−1

2)n−
3
2

= 1,
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we can apply l’Hôpital’s rule to determine l∞. More precisely,

l∞ = lim
n→∞

1−
√
n log

(
1 + 1√

n

)
n−

1
2

= lim
n→∞

(−1
2)n−

1
2 log

(
1 + 1√

n

)
−
√
n
(

1 + 1√
n

)−1
(−1

2)n−
3
2

(−1
2)n−

3
2

= lim
n→∞

n log

(
1 +

1√
n

)
−
√
n

(
1 +

1√
n

)−1

= lim
n→∞

√
n

(
√
n log

(
1 +

1√
n

)
−
(

1 +
1√
n

)−1
)
. (4.7)

Applying l’Hôpital another time gives

l∞ = lim
n→∞

√
n log

(
1 + 1√

n

)
−
(

1 + 1√
n

)−1

n−1/2

= lim
n→∞

1
2n
−1/2 log

(
1 + 1√

n

)
+
√
n
(

1 + 1√
n

)−1
(−1/2)n−3/2 +

(
1 + 1√

n

)−2
(−1/2)n−3/2

(−1/2)n−3/2

= lim
n→∞

−n log

(
1 +

1√
n

)
+
√
n

(
1 +

1√
n

)−1

+

(
1 +

1√
n

)−2

= lim
n→∞

−
√
n

(
√
n log

(
1 +

1√
n

)
−
(

1 +
1√
n

)−1
)

+ 1 (4.8)

Comparing (4.7) with (4.8), we get

l∞ = −l∞ + 1

so that l∞ = 1/2 follows. Altogether, rn ≥ rn →∞ and

Pβ

 n∑
j=1

Xjk(Yj − λj(β)) ≥ d

2
√
p

√
nδn

 ≤ exp(−rn) ≤ exp(−rn)
n→∞−→ 0.

Moreover, since the rate rn does not depend on β and k, we even obtain a vanishing
bound for the total probability and altogether,

p∑
k=1

P

 n∑
j=1

Xjk(Yj − λj(B)) ≥ d

2
√
p

√
nδn

 ≤ exp
(
−(log p)rn

) n→∞−→ 0.
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The probability of negative deviations in (4.3) similarly follows. We have

Pβ

 n∑
j=1

Xjk(Yj − λj(β)) ≤ − d

2
√
p

√
nδn


=Pβ

− n∑
j=1

Xjk(Yj − λj(β)) ≥ d

2
√
p

√
nδn


≤ exp

(
− d

2
√
p
tn
√
nδn

)
Eβ

exp

−tn n∑
j=1

Xjk(Yj − λj(β))


= exp

−
 d

2
√
p
tn
√
nδn −

n∑
j=1

λj(β)(exp(−tnXjk) + tnXjk − 1)


= exp(−r̃n) (4.9)

with tn > 0. The only difference to the former part is that the moment generating
function is now evaluated at −tn. As the covariates Xjk are bounded from below by
−cX , it holds that

exp(−tnXjk) + tnXjk − 1 =

∞∑
l=2

(−tnXjk)
l

l!

≤
∞∑
l=2

(tncX)l

l!

= exp(tncX)− tncX − 1.

Thus, r̃n ≥ rn, where rn is defined as in (4.6). Finally, we again choose δn = nα with
0 < α < 1/2 to obtain

p∑
k=1

P

 n∑
j=1

Xjk(Yj − λj(B)) ≤ − d

2
√
p

√
nδn

 ≤ exp
(
−(log p)rn

) n→∞−→ 0.

We summarize the result, which we have just proved, in the following theorem. It has
major impact on the estimation of the structural parameters.

Theorem 4.1. Let δn = nα with 0 < α < 1/2. Then, there exists a sequence (ηn)n∈N
such that

lim
n→∞

ηn
nα

= η0 > 0

and for Min := M δn
in ,

1− Pβ(M δn
in ) ≤ exp(−ηn), for all β ∈ B, (4.10)

1− P(M δn
in ) ≤ exp(−ηn). (4.11)

for sufficiently large n.

Theorem 4.2. Let δn = nα with 0 < α < 1/6. Then, for i = 1, . . . , N ,

lim
n→∞

nF−1
n (β̃in) = F−1(Bi), (4.12)

lim
n→∞

nCov(β̃in | Bi) = F−1(Bi), (4.13)
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where both convergences are in L1-sense. The limiting function F comes from the con-
vergence condition (R5).

The proof, which is mainly technical, will follow soon. Equations (4.12) and (4.13)
claim that the inverse Fisher information matrix and the conditional covariance matrix
converge to the same limit with the same speed 1

n . Especially, they are asymptotically
equivalent in probability, i.e.

F−1
n (β̃in)

n∼ Cov(β̃in | Bi).

Recall Theorem 3.12, where we have chosen

Ŝ =
1

N

N∑
i=1

F−1
n (β̃in)

as the estimator of S = E[Cov(β̃in | Bi)]. We have motivated this choice by the asymp-

totic normality of β̃in, where F−1
n (β̃in) was the appropriate scaling matrix. However,

asymptotic statements in the sense of L1 or P could not be provided besides both be-
ing L1 and P-null sequences. This is strongly connected to the convergence speed of
1 − P(Min) which is in general slower than 1

n . Until now, all proofs concerning the
PMLE were based on the fact that quantities were negligible on the complement of Min.
To mention a particular usage in the proof of Theorem 4.2, we want

E[‖sin(β̃in)‖] = E[‖sin(β̂in)1Min + sin(0)1Mc
in
‖]

= E[‖sin(0)1Mc
in
‖]

≤
√

P(M c
in)E[‖sin(0)‖2].

to vanish. As we will see later, E[‖sin(0)‖2] ≤ cn2 for some c > 0 so that

E[‖sin(β̃in)‖] ≤
√
P(M c

in)
√
cn.

In the case of a general simple exponential family, we have n
√

P(M c
in) → ∞ but an

exponentially fast decay of P(M c
in) solves this issue.

Proof of Theorem 4.2. The proof holds for all clusters i = 1, . . . , N and the
corresponding index i is omitted. First recall Lemma 3.14 which has provided uniform
convergence of the Fisher information matrix, i.e.

lim
n→∞

sup
β∈B

∥∥∥∥ 1

n
Fn(β)− F (β)

∥∥∥∥ = 0. (4.14)

This property can be easily extended to the uniform convergence of the inverse functions.

Lemma 4.3. It holds that

lim
n→∞

sup
β∈B

∥∥nF−1
n (β)− F−1(β)

∥∥ = 0. (4.15)

Furthermore, there exist a cF > 0 and an n0 ∈ N such that for all n ≥ n0,

sup
β∈B
‖F−1

n (β)‖ ≤ 1

n
cF . (4.16)
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Proof. Let ε > 0. Since matrix inversion is a continuous operation and B is compact,
there exists a δ > 0 such that for all β ∈ B,∥∥∥∥ 1

n
Fn(β)− F (β)

∥∥∥∥ < δ ⇒
∥∥nF−1

n (β)− F−1(β)
∥∥ < ε.

By (4.14), the δ-condition is always satisfied if n is chosen sufficiently large so that (4.15)
follows.

For the second claim, let β ∈ B. We have

‖F−1
n (β)‖ = λmax(F−1

n (β)) = λ−1
min(Fn(β)),

where λmax and λmin denote the largest and the smallest eigenvalue, respectively. We
have already seen in the proof of Theorem 3.2 that there exist constants d > 0 and
n0 ∈ N such that

λmin

(
Fn(β)

n

)
≥ d > 0, n ≥ n0.

These constants do not depend on β. Thus, by putting cF = d−1,

λ−1
min(Fn(β)) =

(
nλmin

(
Fn(β)

n

))−1

≤ 1

n
d−1 =

1

n
cF

for all n ≥ n0. �

Remark. Since the Cholesky square root F
−T/2
n (β) of F−1

n (β), which is defined through
the identity

F−1
n (β) = F−T/2n (β)F−1/2

n (β),

satisfies

‖F−1
n (β)‖ = ‖F−T/2n (β)‖2 = ‖F−1/2

n (β)‖2,

the above lemma can be extended to the norm of the square root, i.e.

sup
β∈B

∥∥∥F−T/2n (β)
∥∥∥ ≤ 1√

n

√
cF (4.17)

for sufficiently large n.

Lemma 4.3 shows that the inverse Fisher information matrix behaves like n−1 on B.
Moreover, F−1

n is almost constant on sufficiently small neighborhoods as the next lemma
reveals. For that purpose, we define

Vn(β,B) := F−1/2
n (B)Fn(β)F−T/2n (B).

Lemma 4.4. There exist a constant cV > 0 and n0 ∈ N such that for all n ≥ n0,

sup
β∈Nn(δn,B)

‖Vn(β,B)− Ip‖ ≤ cV
δn√
n
, a.s.

Proof. Recall that Fn/n is Lipschitz continuous on B with some Lipschitz constant
L > 0 that does not depend on n. Moreover, let cF and n0 as in Lemma 4.3 and choose
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cV = cFL. Then, we have for all β ∈ Nn(δ,B) and n ≥ n0,

‖Vn(β,B)− Ip‖ =
∥∥∥F−1/2

n (B)Fn(β)F−T/2n (B)− Ip
∥∥∥

=
∥∥∥F−1/2

n (B) (Fn(β)− Fn(B))F−T/2n (B)
∥∥∥

≤ n
∥∥∥F−1/2

n (B)
∥∥∥∥∥∥∥ 1

n
(Fn(β)− Fn(B))

∥∥∥∥∥∥∥F−T/2n (B)
∥∥∥

≤ ncF
n
L‖β −B‖

≤ cV
δn√
n

which proves the claim. �

Since δn/
√
n → 0 for δn = nα, it immediately follows from Lemma 4.4 that Vn

converges uniformly to Ip on Nn(δn, B). Moreover, the convergence speed does not
depend on B. Similar to the uniform convergence of nF−1

n , this convergence can be
extended to that of V −1

n towards Ip. Again, its convergence speed does not depend on
B. We can now proof (4.12), i.e.

lim
n→∞

nF−1
n (β̃n)

L1
= F−1(B).

Let ε > 0 and n sufficiently large. By Lemma 3.14, Lemma 4.3 and Lemma 4.4, we get∥∥∥nF−1
n (β̃n)− F−1(B)

∥∥∥ ≤ n ∥∥∥F−1
n (β̃n)− F−1

n (B)
∥∥∥+

∥∥nF−1
n (B)− F−1(B)

∥∥
= n

∥∥∥F−1
n (β̃n)− F−1

n (B)
∥∥∥ (1Mn + 1Mc

n

)
+
∥∥nF−1

n (B)− F−1(B)
∥∥

≤ n
∥∥∥F−T/2n (B)

(
V −1
n (β̂n, B)− Ip

)
F−1/2
n (B)

∥∥∥1Mn

+ n
∥∥F−1

n (0)− F−1
n (B)

∥∥1Mc
n

+
ε

2

≤ n
∥∥F−1

n (B)
∥∥∥∥∥V −1

n (β̂n, B)− Ip
∥∥∥1Mn

+ n
∥∥F−1

n (0)− F−1
n (B)

∥∥1Mc
n

+
ε

2

≤ ncF
n

ε

2cF
1Mn + 2cF1Mc

n
+
ε

2

almost surely. Thus,

E
[∥∥∥nF−1

n (β̃n)− F−1(B)
∥∥∥] ≤ ε

2
P(Mn) + 2cFP(M c

n) +
ε

2
n→∞−→ ε.

Since ε > 0 is arbitrary, the claim follows by taking ε ↓ 0.

One similarly proves the second claim (4.13), which was

lim
n→∞

nCov(β̃n | B)
L1
= F−1(B).
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In fact, for ε > 0 and n large enough,

∥∥∥nCov(β̃n | B)− F−1(B)
∥∥∥

≤
∥∥∥nF−T/2n (B) Cov(F T/2n (B)β̃n | B)F−1/2

n (B)− F−1(B)
∥∥∥

≤
∥∥∥√nF−T/2n (B)

(
Cov(F T/2n (B)β̃n | B)− Ip

)√
nF−1/2

n (B)
∥∥∥

+
∥∥nF−1

n (B)− F−1(B)
∥∥

≤ n
∥∥F−1

n (B)
∥∥∥∥∥Cov(F T/2n (B)β̃n | B)− Ip

∥∥∥+
∥∥nF−1

n (B)− F−1(B)
∥∥

≤ cF

∥∥∥Cov(F T/2n (B)(β̃n −B) | B)− Ip
∥∥∥+

ε

2

almost surely. It remains to show that the norm on the last line vanishes on average.
We have,

∥∥∥Cov(F T/2n (B)(β̃n −B) | B)− Ip
∥∥∥

≤
∥∥∥Cov(F T/2n (B)(β̃n −B) | B)− Cov(Vn(ξ,B)F T/2n (B)(β̃n −B) | B)

∥∥∥
+
∥∥∥Cov(Vn(ξ,B)F T/2n (B)(β̃n −B) | B)− Ip

∥∥∥ , (4.18)

where ξ lies on the line segment connecting β̃n and B. The ξ results from the Taylor
expansion of sn, that is

sn(B)− sn(β̃) = Fn(ξ)(β̃n −B).

The remaining steps can be roughly summarized as follows. Since Vn(ξ,B) converges to
Ip, see Lemma 4.4, the first summand on the right hand side of (4.18) vanishes. The
second summand vanishes as F−1

n (B) is, conditional on B, the asymptotic covariance

matrix of β̃n.

More specifically, we have

Vn(ξ,B)F T/2n (B)(β̃n −B) = Vn(ξ,B)F T/2n (B)F−1
n (ξ)(sn(B)− sn(β̃n))

= F−1/2
n (B)Fn(ξ)F−T/2n (B)F T/2n (B)F−1

n (ξ)(sn(B)− sn(β̃n))

= F−1/2
n (B)(sn(B)− sn(β̃n)).

We use the almost sure identities

Cov(sn(B) | B) = Fn(B),

E[sn(B) | B] = 0,

sn(β̂n) = 0
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to obtain

Cov(Vn(ξ,B)F T/2n (B)(β̃n −B) | B)− Ip
= Cov(F−1/2

n (B)(sn(B)− sn(β̃n)) | B)− Ip

= F−1/2
n (B)

(
E[(sn(B)− sn(β̃n))(sn(B)− sn(β̃n))′ | B]

−E[sn(B)− sn(β̃n) | B]E[sn(B)− sn(β̃n) | B]′ − Fn(B)
)
F−T/2n (B)

= F−1/2
n (B)

(
E[sn(β̃n)sn(β̃n)′ − sn(B)sn(β̃n)′ − sn(β̃n)sn(B)′ | B]

−E[sn(β̃n) | B]E[sn(β̃n) | B]′
)
F−T/2n (B)

= F−1/2
n (B)

(
E[(sn(β̂n)sn(β̂n)′ − sn(B)sn(β̂n)′ − sn(β̂n)sn(B)′)1Mn | B]

−E[sn(β̂n)1Mn | B]E[sn(β̂n)1Mn | B]′
)
F−T/2n (B)

+ F−1/2
n (B)

(
E[(sn(0)sn(0)′ − sn(B)sn(0)′ − sn(0)sn(B)′)1Mc

n
| B]

−E[sn(0)1Mc
n
| B]E[sn(0)1Mc

n
| B]′

)
F−T/2n (B)

= F−1/2
n (B)

(
E[(sn(0)sn(0)′ − sn(B)sn(0)′ − sn(0)sn(B)′)1Mc

n
| B]

−E[sn(0)1Mc
n
| B]E[sn(0)1Mc

n
| B]′

)
F−T/2n (B)

Therefore, the second summand on the right hand side of (4.18) satisfies∥∥∥Cov(Vn(ξ,B)F T/2n (B)(β̃n −B) | B)− Ip
∥∥∥

≤
∥∥F−1

n (B)
∥∥ (E[(‖sn(0)sn(0)′‖+ 2‖sn(B)sn(0)′‖)1Mc

n
| B] + E[‖sn(0)‖1Mc

n
| B]2

)
≤
∥∥F−1

n (B)
∥∥(√E[1Mc

n
| B]

(√
E[‖sn(0)sn(0)′‖2 | B] + 2

√
E[‖sn(B)sn(0)′‖2 | B]

)
+ E[1Mc

n
| B]E[‖sn(0)‖2 | B]

)
. (4.19)

As stated in Theorem 4.1, the conditional probability of M c
n is almost surely bounded

by an exponentially decaying term exp(−ηn). Moreover, one easily shows that all the
other conditional expectations in (4.19) are bounded by terms of polynomial order. For
instance, the Cauchy-Schwarz inequality gives that

E
[
‖sn(0)‖2 | B

]
= E

 p∑
k=1

 n∑
j=1

Xjk(Yj − µj(0))

2

| B


≤

p∑
k=1

E

 n∑
j=1

X2
jk

 n∑
j=1

(Yj − µj(0))2

 | B


≤ pc2
Xn

n∑
j=1

E[(Yj − µj(0))2 | B]

= pc2
Xn

n∑
j=1

(vj(B) + µj(B)2 − 2µj(B)µj(0) + µj(0)2)

≤ const · n2.
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Such a constant exists since v and µ are bounded by the compactness of B and the
admissible covariate space. Other upper bounds similarly follow.

To complete the proof, it remains to study the first summand on the right hand side
of (4.18). We have,

∥∥∥Cov(F T/2n (B)(β̃n −B) | B)− Cov(Vn(ξ,B)F T/2n (B)(β̃n −B) | B)
∥∥∥

≤
∥∥∥E [F T/2n (B)(β̃n −B)(β̃n −B)′F 1/2

n (B) | B
]

−E
[
Vn(ξ,B)F T/2n (B)(β̃n −B)(β̃n −B)′F 1/2

n (B)V ′n(ξ,B) | B
]∥∥∥

+
∥∥∥−E [F T/2n (B)(β̃n −B) | B

]
E
[
(β̃n −B)′F

1/2
n (B) | B

]
+E

[
Vn(ξ,B)F

T/2
n (B)(β̃n −B) | B

]
E
[
(β̃n −B)′F

1/2
n (B)V ′n(ξ,B) | B

]∥∥∥
 =: V

≤
∥∥∥E [(Ip − Vn(ξ,B))F T/2n (B)(β̃n −B)(β̃n −B)′F 1/2

n (B) | B
]∥∥∥

+
∥∥∥E [Vn(ξ,B)F T/2n (B)(β̃n −B)(β̃n −B)′F 1/2

n (B)(Ip − Vn(ξ,B))′ | B
]∥∥∥+ V

≤ E
[
‖I − Vn(ξ,B))‖ ‖Fn(B)‖

∥∥∥β̃n −B∥∥∥2
| B
]

+ E
[
‖Vn(ξ,B)‖ ‖Fn(B)‖

∥∥∥β̃n −B∥∥∥2
‖Ip − Vn(ξ,B)‖ | B

]
+ V

≤ E
[
‖Ip − Vn(ξ,B))‖ ‖Fn(B)‖

∥∥∥β̂n −B∥∥∥2
1Mn | B

]
+ E

[
‖Ip − Vn(ξ,B))‖ ‖Fn(B)‖ ‖B‖2 1Mc

n
| B
]

+ E
[
‖Vn(ξ,B)‖ ‖Fn(B)‖

∥∥∥β̂n −B∥∥∥2
‖Ip − Vn(ξ,B)‖1Mn | B

]
+ E

[
‖Vn(ξ,B)‖ ‖Fn(B)‖ ‖B‖2

∥∥Ip − Vn(ξ,B)1Mc
n

∥∥ | B]+ V

=: I + II + III + IV + V.

If Mn occurs, both β̂n and ξ lie in Nn(δn, B). Thus, by Lemma 4.4,

‖Ip − Vn(ξ,B))‖ < cV
δn√
n
, a.s.

In addition, by the construction of Nn(δn, B),

‖β̂n −B‖ ≤
δn√
n
, a.s.

and there exists a constant cF > 0 with

‖Fn(B)‖ ≤ ncF
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for sufficiently large n. Hence, with δn = nα and some constant c > 0,

I = E
[
‖Ip − Vn(ξ,B))‖ ‖Fn(B)‖

∥∥∥β̂n −B∥∥∥2
1Mn | B

]
≤ c δn√

n
n
δ2
n

n
P(Mn | B)

≤ cn3α− 1
2

Since α < 1
6 , the right hand side vanishes as n → ∞ and so does E[I]. By the same

arguments, E[III] converges to zero. On the other hand, if M c
n occurs, the components

‖Ip − Vn(ξ,B)‖, ‖Fn(B)‖ and ‖B‖ are either bounded or grow at most at polynomial
speed. Since the decay of P(M c

n) is of exponential order, the summands E[II] and E[IV]
converge to zero. Assuming that α < 1/4, the same procedure works with the first
moments denoted by E[V], too. Altogether, we have shown that

lim
n→∞

∥∥∥E[nCov(β̃n | B)− F−1(B)]
∥∥∥ = 0

which completes the proof.

4.2. Grouped data

The particular case of grouped data concerns the structure of the covariates rather
than the distribution of the data. Let

A := {Xj ∈ R1,p : j ∈ N}
bet the set of admissible covariates. The data is called grouped if A is finite with g = |A|
being the number of groups. The interpretation is that each observation can be classified
into one of the groups l = 1, . . . , g, where all elements of group l share the same covariate
X(l) ∈ A. Hence,

A = {X(l) ∈ R1,p : l = 1, . . . , g}.
Of immense importance in application is categorical data, where p is the number of
categories. Then, for all j ∈ N and k = 1, . . . , p,

Xjk =

{
1 if j belongs to category k,

0 else.

By construction, there are at most 2p groups. Whenever g is finite, we can find a constant
cX > 0 such that

‖X(l)‖ ≤ cX and |X(l)k| ≤ cX (4.20)

for all l = 1, . . . , g and components k = 1, . . . , p. Furthermore, for every n ∈ N, we let

nl := |{j ≤ n : Xj = X(l)}|, l = 1, . . . , g, (4.21)

be the number of the first n observations that belong to the l-th group.

The construction of the PMLE was based on the regularity assumptions (R1) to (R5)
so far, see also Section 3.2. The grouped structure provides finiteness of A even though
(R3) only demands its boundedness. We are able to relax some of the other conditions in
return and in particular, we can weaken (R1) by dropping the compactness of B. It may
be replaced by some mild integrability conditions for Bi. The regularity assumptions for
grouped data look as follows.
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(G1a) The support B of the Bi is contained in an open and convex set and

P(Bi = 0) = 0, (4.22)

P(Bi ∈ ∂B) = 0. (4.23)

(G1b) Let v be the variance function associated to the underlying exponential family
and let v(l)(Bi) = v(X(l)Bi). Then, we have

E[v(l)(Bi)] <∞, l = 1, . . . , g, (4.24)

and E[v(l)(Bi)
−2] <∞, l = 1, . . . , ge. (4.25)

(G1c) Bi is square integrable, i.e.

E[‖Bi‖2] <∞.

(G2) The link function g is twice continuously differentiable with non-singular Jaco-
bian.

(G3) The number of admissible covariates is finite and all elements satisfy X(l)β ∈ Θ0

for all β ∈ B.
(G4) There exist ge ≥ p essential groups, i.e. they satisfy

nl
n

n→∞−→ αl > 0.

Moreover, the corresponding design matrix Xe ∈ Rge,p that consists of the
essential groups’ covariates has full rank p.

(G5) The scaled Fisher information matrix Fn(β)/n converges pointwise to a positive
definite limit F (β) for all β ∈ B.

The moment conditions (G1b) and (G1c) are easy to evaluate and allow a wide variety of
distributions for Bi. For instance in the Poisson case, v is the exponential function and
both (4.24) and (4.25) are equivalent to the existence of the moment generating function
of Bi at the values X(l) and −2X(l) respectively. Hence, common distributions as the
multivariate Gaussian is admissible for Bi. One may also notice that compactness of B
is sufficient for (G1b) and (G1c). Conditions (G2) and (R2) as well as the convergence
conditions (G5) and (R5) are both identical. As we have already mentioned, assumption
(G3) defines the grouped structure and replaces (R3). The second part of condition (G4)
implies the rank condition (R4). Moreover, (G4) seems to be strongly related to (G5)
since

1

n
Fn(β) =

g∑
l=1

nl
n
v(l)(β)X ′(l)X(l).

However, due to the presence of non-essential groups, (G4) is neither sufficient nor
necessary. If ge = g, i.e. if all groups are essential, (G4) will be sufficient and we will
obtain an explicit structure for the limiting function F that is

F (β) =

g∑
l=1

αlv(l)(β)X ′(l)X(l).

Given these modified regularity assumptions, we reinvestigate the construction of
the PMLE on the basis of Theorem 3.2.
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Theorem 4.5. Assume that assumptions (G1) to (G5) and

E

[
sup

ξ∈Nn(δn,Bi)
v(l)(ξ)

−2

]
<∞, l = 1, . . . , g, (4.26)

hold. Then, we can find a sequence (δn)n∈N such that

P(M δn
in )

n→∞−→ 1

and Nn(δn, Bi)
n→∞−→ {Bi}, a.s.,

where the involved quantities have been defined in (3.10) and (3.11).

Proof. The proof works similarly to that of Theorem 3.2. An intermediate result was
(3.36) which stated that

1− P(M δn
in ) ≤ P

(
‖sin(Bi)‖ ≥

1

2

√
nδnd

)
.

Compactness of B ensured that there exists a constant d > 0 with

min
‖w‖=1

w′
Fn(ξ)

n
w ≥ d

for sufficiently large n and all ξ ∈ Nn(δn, Bi) coming from the Taylor expansion of the
log-likelihood function lin. Instead, we now use

min
‖w‖=1

w′
Fn(ξ)

n
w ≥ inf

ξ∈Nn(δn,Bi)
min
‖w‖=1

w′
Fn(ξ)

n
w > 0

so that (3.36) changes to

1− P(M δn
in ) ≤ P

(
‖sin(Bi)‖ ≥

1

2

√
nδn

(
inf

ξ∈Nn(δn,Bi)
min
‖w‖=1

w′
Fn(ξ)

n
w

))
≤ P

(
‖sin(Bi)‖

(
inf

ξ∈Nn(δn,Bi)
min
‖w‖=1

w′
Fn(ξ)

n
w

)−1

≥ 1

2

√
nδn

)

≤ 2√
nδn

E

[
‖sin(Bi)‖

(
inf

ξ∈Nn(δn,Bi)
min
‖w‖=1

w′
Fn(ξ)

n
w

)−1
]

for all n ∈ N. The last step follows by Markov’s inequality. Applying Cauchy-Schwarz’s
inequality on the last term yields

1− P(M δn
in ) ≤ 2√

nδn

(
E
[
‖sin(Bi)‖2

]
E

[(
inf

ξ∈Nn(δn,Bi)
min
‖w‖=1

w′
Fn(ξ)

n
w

)−2
]) 1

2

(4.27)
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and we consider both expectations separately. By (4.20), we have

E
[
‖sin(Bi)‖2

]
=

p∑
k=1

n∑
j=1

X2
jkE[Var(Yij | Bi)]

=

p∑
k=1

g∑
l=1

nlX
2
(l)kE[v(l)(Bi)]

≤ pc2
X

g∑
l=1

nlE[v(l)(Bi)]

≤ pc2
Xn

g∑
l=1

E[v(l)(Bi)].

By assumption (G1b), E[v(l)(Bi)] exists for all groups l = 1, . . . , g. Finally, the
√
n on

the right hand side of (4.27) cancels out. It remains to analyze the second expectation
in (4.27). Let ξ ∈ Nn(δn, Bi) and w ∈ Rp with ‖w‖ = 1. Let without loss of generality
the groups l = 1, . . . , ge be essential. By (G4), we can choose 0 < ε < minl αl and α > 0
such that for sufficiently large n,

nl
n
≥ αl − ε ≥ α > 0, l = 1, . . . , ge.

Therefore,

w′
Fn(ξ)

n
w = w′

 n∑
j=1

1

n
vj(ξ)X

′
jXj

w

=

g∑
l=1

nl
n
v(l)(ξ)w

′X ′(l)X(l)w

≥
ge∑
l=1

nl
n
v(l)(ξ)

(
p∑

k=1

wkX(l)k

)2

≥ α
ge∑
l=1

v(l)(ξ)

(
p∑

k=1

wkX(l)k

)2

≥ α
(

min
l=1,...,ge

v(l)(ξ)

) ge∑
l=1

(
p∑

k=1

wkX(l)k

)2

.

Thus,

min
‖w‖=1

w′
Fn(ξ)

n
w ≥ αd min

l=1,...,ge
v(l)(ξ)

with

d := min
‖w‖=1

ge∑
l=1

(
p∑

k=1

wkX(l)k

)2

.

In order to verify that d > 0, we consider the matrix Xe which has been defined in
condition (G4). The matrix X ′eXe ∈ Rp,p is symmetric and positive semidefinite and has
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an orthogonal diagonalization QDQ′. Hence,

d = min
‖w‖=1

w′X ′eXew = min
‖w‖=1

(Q′w)′D(Q′w)

= min
‖w‖=1

w′Dw = λmin(X ′eXe),

where λmin denotes the smallest eigenvalue. By assumption (G4), Xe and X ′eXe have
full rank p so that d > 0. It follows that

E

[(
inf

ξ∈Nn(δn,Bi)
min
‖w‖=1

w′
Fn(ξ)

n
w

)−2
]
≤ (αd)−2E

[(
inf

ξ∈Nn(δn,Bi)
min

l=1,...,ge
v(l)(ξ)

)−2
]

= (αd)−2E

[
sup

ξ∈Nn(δn,Bi)
max

l=1,...,ge
v(l)(ξ)

−2

]
.

The expectation on the right hand side exists since (4.26) implies

E

[
sup

ξ∈Nn(δn,Bi)
max

l=1,...,ge
v(l)(ξ)

−2

]
<

g∑
l=1

E

[
sup

ξ∈Nn(δn,Bi)
v(l)(ξ)

−2

]
<∞.

Thus, (4.27) reads

1− P(M δn
in ) ≤ 1

δn
const

and choosing (δn) such that

δn →∞ and δn ∈ o(
√
n)

proves Theorem 4.5. �

For the remaining part, we will derive sufficient conditions for (4.26), which are
easy to verify. Notice that the expression supξ∈Nn(δn,Bi) v(l)(ξ)

−2 in (4.26) is indeed a

measurable function. Since v is continuous by assumption (G2), we can write

sup
ξ∈Nn(δn,Bi)

v(X(l)ξ)
−2 = sup

ξ∈Nn(δn,0)
v(X(l)(Bi + ξ))−2

= sup
ξ∈Nn(δn,0)∩Qp

v(X(l)(Bi + ξ))−2

= sup
ξ∈Nn(δn,0)∩Qp

fξ(Bi),

where each fξ(Bi) is measurable. As a pointwise supremum of measurable functions over
a countable set, the right hand side is again measurable.

Lemma 4.6. Let the conditional distribution of (Yij) belong to either of the distributions
Normal, Poisson, Gamma, Binomial or Negative Binomial, i.e. a member of the so-
called natural exponential family with quadratic variance function. Then, (4.26) holds.

Proof. The proof is not based on general properties of the variance functions but
on their explicit structures. Therefore, we examine each distribution in the above list
separately. The cluster index i of Bi will be dropped throughout the proof for notational
ease.

◦ Normal. Clear, since the variance function

v(l)(ξ) = σ2
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is constant and does not depend on ξ.

◦ Poisson. In the Poisson case,

v(l)(ξ)
−2 = exp(−2X(l)ξ).

Thus,

sup
ξ∈Nn(δn,B)

exp(−2X(l)ξ) = sup
ξ∈Nn(δn,B)

exp(−2X(l)(B + (ξ −B)))

= exp(−2X(l)B) sup
ξ∈Nn(δn,B)

exp(−2X(l)(ξ −B))

≤ exp(−2X(l)B) sup
ξ∈Nn(δn,B)

exp(| − 2X(l)(ξ −B)|)

≤ exp(−2X(l)B) sup
ξ∈Nn(δn,B)

exp(2‖X(l)‖‖ξ −B‖)

= exp(−2X(l)B) exp(2‖X(l)‖
δn√
n

).

Since exp(−2X(l)B) is integrable by assumption (4.25), the claim follows.

◦ Binomial. In the Binomial case, we have

v(l)(ξ) = m
exp(X(l)ξ)

(1 + exp(X(l)ξ))2

and

v(l)(ξ)
−2 = m−2 (1 + exp(X(l)ξ))

4

exp(2X(l)ξ)
,

where m ∈ N is a known dispersion parameter indicating the number of successive
Bernoulli trials. Again, we write X(l)ξ = X(l)B+X(l)(ξ−B) so that for all ξ ∈ Nn(δn, B),

v(l)(ξ)
−2 = m−2

(
1 + exp(X(l)B) exp(X(l)(ξ −B))

)4
exp(2X(l)B) exp(2X(l)(ξ −B))

.

The factor in the denominator satisfies

exp(X(l)(ξ −B)) ≥ exp(−2|X(l)(ξ −B)|) ≥ exp(−2‖X(l)‖
δn√
n

).

For the numerator, we have

(1 + exp(X(l)B) exp(X(l)(ξ −B)))4

≤
(
exp(‖X(l)‖‖ξ −B‖) + exp(X(l)B) exp(‖X(l)‖‖ξ −B‖)

)4
≤ exp

(
4‖X(l)‖

δn√
n

)(
1 + exp(X(l)B)

)4
.

Altogether,

E

[
sup

ξ∈Nn(δn,B)
v−2(X(l)ξ)

]
≤ exp

(
2‖X(l)‖

δn√
n

)
E

[
m−2 (1 + exp(X(l)B))4

exp(2X(l)B)

]

= exp

(
2‖X(l)‖

δn√
n

)
E[v(l)(B)−2]

and the expectation on the right hand side exists by (4.25).
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◦ Gamma. Let k > 0 be a known shape parameter. Then,

sup
ξ∈Nn(δn,B)

v(l)(ξ)
−2 = sup

ξ∈Nn(δn,B)
k−2(X(l)ξ)

4

≤ k−2 sup
ξ∈Nn(δn,B)

(
|X(l)B|+ |X(l)(ξ −B)|

)4
≤ k−2

(
|X(l)B|+ ‖X(l)‖

δ√
n

)4

Since the fourth moment of X(l)B exists, all its lower moments exist, too.

◦ Negative Binomial. The variance function has the structure

v(l)(ξ) =
1

r
exp(2X(l)ξ) + exp(X(l)ξ),

where r ∈ N is a known number of failures. The proof works similar to the previous
cases which is why we skip it. �

The restriction to specific distributions in Lemma 4.6 is unavoidable as the lemma
turns out to be generally wrong.

Example 4.7. Let the conditional distribution of Yij belong to an exponential family
with

b(θ) =

∫ θ

−∞

∫ t

−∞
exp(−s3/2)dsdt.

Since v(θ) = b′′(θ), we get the variance function

v(θ) = exp

(
−θ

3

2

)
.

Thus,
v(θ)−2 = exp(θ3)

which is monotonously increasing in θ. For simplicity, we further choose p = 1 and
a covariate X(l) = 1 so that X(l)B = B. Now, let B be distributed according to the
probability density function

fB(b) =

{
c exp(−b3)b−2, b ≥ 1

0, else

where c > 0 is the normalizing constant. Then

E[v(B)−2] = c

∫ ∞
1

exp(b3) exp(−b3)b−2db = c

∫ ∞
1

b−2 <∞.

On the other hand, the supremum

sup
ξ∈Nn(δn,B)

v(X(l)ξ)
−2

is attained at the right boundary of the interval Nn(δn, B). Thus,

sup
ξ∈Nn(δn,B)

v(X(l)ξ)
−2 = v(ξ0)−2

where ξ0 = B + δ/
√
n. Therefore,

v(ξ0)−2 = exp

((
B +

δ√
n

)3
)
.
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But

E[v(ξ0)−2] = c

∫ ∞
1

exp

((
b+

δ√
n

)3
)

exp(−b3)b−2db

= c

∫ ∞
1

exp

(
3b2

δ√
n

+ 3b
δ2

n
+

δ3

n3/2

)
b−2db =∞

as

lim
b→∞

exp

(
3b2

δ√
n

+ 3b
δ2

n
+

δ3

n3/2

)
b−2 =∞.

Hence,

E

[
sup

ξ∈Nn(δn,B)
v(ξ)−2

]
=∞.



CHAPTER 5

Incorporating weights

When applying CGLM theory to real world problems one will immediately realize
that portfolios are rarely homogeneous. Clusters, which may be the different regions,
time periods or products, contain data of the same subject but slightly differ in some
individual characteristics. They may now have individual volume parameters that are
known in advance. We will discuss three major cases where the portfolio consists of N in-
dependent but not identically distributed clusters and a general framework then follows.
The content of this chapter is mainly taken from Christiansen and Schinzinger (2015)
but we supply a more detailed analysis in the present thesis. Furthermore, Christiansen
and Schinzinger (2015) restricts to central results and coincidences will be appropriately
mentioned.

5.1. Cluster specific effects

Known nuisance parameter. Recall structure (2.17) of a simple exponential family.
One can extend the class of distributions by allowing for an additional nuisance or also
called dispersion parameter λ > 0. Then, a random variable Y will belong to a simple
exponential family if its discrete or continuous density function is given by

fθ(y) = c(y, λ) exp

(
θy − b(θ)

λ

)
, y ∈ R. (5.1)

Common distributions which include a non-trivial nuisance parameter λ 6= 1 are the
following.

Example 5.1 (Binomial distribution). Let Y ∼ Bin(m, p) be Binomial distributed
with number of trials m ∈ N and success probability p ∈ [0, 1]. Then, not Y but the
relative Binomial distribution Y/m belongs to a simple exponential family as for k ∈ N
with k ≤ m,

Pθ
(
Y

m
=

k

m

)
=

(
m

k

)
pk(1− p)m−k

=

(
m

k

)
exp (k log p+ (m− k) log(1− p))

=

(
m

k

)
exp

(
m

(
log

(
p

1− p

)
k

m
− (− log(1− p))

))
.

Thus, the nuisance parameter equals 1
m .

67
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Example 5.2 (Gamma distribution). The Gamma distribution with mean parameter
µ > 0 and shape parameter ν > 0 has the probability density function

fθ(y) =
1

Γ(ν)

(
ν

µ

)ν
yν−1 exp

(
−ν
µ
y

)
=

1

Γ(ν)
ννyν−1 exp

(
ν
(
y(−µ−1)− logµ

))
with y ≥ 0. Hence, it belongs to a simple exponential family with θ = −µ−1 and
λ = ν−1.

In context of a CGLM, allowing cluster specific nuisance variables λi = (λij)
n
j=1,

i = 1, . . . , N , leads to a portfolio with non-identically distributed clusters. A particular
example is the Binomial-CGLM, where binary responses are taken from different num-
bers of repetitions mi = (mij)

n
j=1. The difference may be caused by experiment j being

observed in several environments in terms of time, place or group i. In the general case
of simple exponential families, observations (Yij)

n
j=1 are, conditional on Bi = β, indepen-

dent and distributed according to (5.1). For further progression, it is more convenient
to define the corresponding weights as the reciprocals wij = 1

λij
. Likelihood function,

score function and Fisher information matrix become all cluster specific, specifically

Fin(β) =

n∑
j=1

1

λij
b′′(Xjβ)X ′jXj =

n∑
j=1

wijb
′′(Xjβ)X ′jXj .

In the univariate case p = 1, Fin is increasing in each weight wij so that the more weight
is allocated to cluster i, i.e. less nuisance, the more information it contains. Credibility
estimators should take these information differences into account.

Different sample sizes. In the second case, the observation vectors Yi = (Yij)
ni
j=1

of the N clusters are assumed to have different lengths ni ∈ N. Then, summations in
lin(β), sin(β) and Fin(β) involve ni summands. Credibility estimators for clusters with

large sample sizes should allocate more weight to their individual estimates β̂i – or to
be more precise β̃i – than for small clusters. Different sample sizes can be incorporated
in the framework of additional weighting terms by choosing them as

wij :=

{
1 if j ≤ ni,
0 else.

(5.2)

This definition allows us to write

Fin(β) =

ni∑
j=1

b′′(Xjβ)X ′jXj =
n∑
j=1

wijb
′′(Xjβ)X ′jXj .

where n = maxi ni. This structure can be interpreted in the same way as for the nuisance
parameters. Obviously, information increases with the sample size or equivalently with
the amount of allocated weights.

Known offset parameter. Observations in Poisson-GLMs are claim or event counts
that follow a Poisson distribution, where the log-parameters are linked to a linear pre-
dictor. In practice, data like insurance claims are observed in time periods of different
lengths or the number of insured differs from period to period. These differences have
to be taken into account and a natural way to do so is to involve exposure terms. More
precisely, random variables Yj , j = 1, . . . , n, are said to be Poisson distributed with
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Poisson parameter µj > 0 and known exposure Ej > 0 if Yj ∼ Poi(Ejµj). Then, the
linear predictors are given by

logE[Yj ] = logEj + logµj = logEj +Xjβ,

so the terms logEj can be treated as known offset variables. In the general case, the
linear predictors may include known additive terms ξj ∈ R, i.e.

g(E[Yj ]) = ξj +Xjβ

=
(
ξj Xj

)(1
β

)
for j = 1, . . . , n. In view of the second identity, offsets can be interpreted as a component
of the covariate vector whose effect on the linear predictor are known in advance. When
considering a portfolio of size N , exposure terms of Poisson models or offset terms in
general typically vary for each cluster. This results in an inhomogeneous portfolio in
the sense that clusters are independent but not identically distributed. Special caution
is required in credibility estimation since the PMLE of large-offset clusters should be
treated differently than those of small-offset clusters.

5.2. The model

We summarize the three introduced cases under revised model assumptions that
allow additional cluster specific parameters. The assumptions look as follows.

(W1) Conditional on Bi = βi, the Yij , j = 1, . . . , n, are independent and their
distributions belong to a simple exponential family with natural parameters
θi = (θij)

n
j=1 ⊂ Θ and weights wi = (wij)

n
j=1 ⊂ R+. The conditional joint pdf

fβi takes the form

fβi(y) =
n∏
j=1

c(yj , wij) exp

 n∑
j=1

wij (θijyj − b(θij))

 , y ∈ Rn. (5.3)

(W2) The natural parameters are linked to a linear predictor by the identity

θij = g(E[Yij | Bi]) = ξij +XijBi, a.s., (5.4)

where g is the natural link function and ξi = (ξij)
n
j=1 ⊂ R are offset terms.

(W3) The risk profiles B1, . . . , BN are iid. The pairs (B1, Y1), . . . , (BN , YN ) are inde-
pendent but not necessarily identically distributed.

The model assumptions (W1) to (W3) incorporate the introduced nuisance parameters
wij = 1/λij , different sample sizes through (5.2) and offset terms in the linear predictor.
Furthermore, covariate vectors Xij may depend on the cluster, too. This is due to the
fact that observation j is not necessarily available for every cluster of the portfolio.

The credibility model defined through the assumptions (A1) to (A3) is a particular
case of the current model that incorporates weights. In fact, it can be derived by choosing
all wij = 1, ξij = 0 and Xij = Xj . We have established credibility theory for the simpler
model which now provides a fertile ground for working on CGLM based on (W1) to
(W3). The first steps are completely the same. We define the maximum likelihood
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estimators β̂i as the maximizer of the function

lin(β) =

n∑
j=1

wij (θijYij − b(θij)) , (5.5)

which is the true likelihood function when conditioned on Bi = β. Also of great impor-
tance are the score functions and Fisher information matrices

sin(β) =
∂lin(β)

∂β
=

n∑
j=1

wijX
′
ij (Yij − µij(β)) , (5.6)

Fin(β) =
∂2lin(β)

∂β∂β′
=

n∑
j=1

wijvij(β)X ′ijXij . (5.7)

The MLE solves sin(β̂i) = 0. The conditional mean and variance functions are now given
by

µij(Bi) = E[Yij | Bi] = b′(ξij +XijBi), (5.8)

wijvij(Bi) = Var(Yij | Bi) = wijb
′′(ξij +XijBi). (5.9)

If Yij is not observable, i.e. if wij = 0, its variance will be set to zero.

For credibility estimation, we instead use the PMLE β̃i which are the square inte-
grable modifications of the β̂i. Their construction according to Theorem 3.2 requires a
further condition in addition to the regularity conditions (R1) to (R5) as specified in
Section 3.2.

(R6) The weights wij and offset terms ξij are bounded.

This condition ensures that the mean and variance functions, cf. (5.8) and (5.9), remain
bounded. It directly follow from (R6) and the linear growth condition (R5) that the
effective sample sizes

ni =
n∑
j=1

1[wij>0]

grow linearly with n.

Lemma 5.3. The effective sample size ni is asymptotically bounded from both above and
below by n, i.e.

0 < lim inf
n→∞

ni
n
≤ lim sup

n→∞

ni
n
≤ 1. (5.10)

Proof. Since 1
nFin(β) converges to a positive definite limit Fi(β) and as this applies

also to their norms, it follows that

lim
n→∞

n

‖Fin(β)‖
=

1

‖Fi(β)‖
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for all β ∈ B. Hence, n is asymptotically bounded by ‖Fin(β)‖. Furthermore, it holds
that

‖Fin(β)‖ =

∥∥∥∥∥∥
n∑
j=1

wijvij(β)X ′ijXij

∥∥∥∥∥∥
≤

n∑
j=1

1[wij>0]

∥∥wijvij(β)X ′ijXij

∥∥
≤ V

n∑
j=1

1[wij>0]

= V ni

with some V > 0 since all summands are bounded. The upper bound V ni is also an
asymptotic upper bound for n and thus,

n ≤ Cni
for some C > 0 and sufficiently large n. The claim finally follows as

lim inf
n→∞

ni
n
≥ 1

C
> 0.

The other inequalities in (5.10) hold by definition. �

The lemma especially implies that ni → ∞ for all i as n → ∞. Furthermore,
information converges uniformly on B as shown in Christiansen and Schinzinger (2015).

Lemma 5.4. For all n ∈ N, 1
nFin is Lipschitz continuous with Lipschitz constant L > 0

and the sequence ( 1
nFin)n∈N converges uniformly on B, i.e.

sup
β∈B

∥∥∥∥ 1

n
Fin(β)− Fi(β)

∥∥∥∥ n→∞−→ 0.

Proof. For all β1, β2 ∈ B, the mean value theorem applied on the variance function
vij(·) = b′′(ξij +Xij ·) yields that∥∥∥∥ 1

n
Fin(β1)− 1

n
Fin(β2)

∥∥∥∥ ≤ 1

n

n∑
j=1

∥∥wijX ′ijXij (vij(β1)− vij(β2))
∥∥

≤ 1

n

n∑
j=1

|wij |
∥∥X ′ijXij

∥∥∥∥∥ sup
γ∈β1β2

X ′ijb
(3)(ξij +Xijγ)

∥∥∥ ‖β1 − β2‖

≤ L ‖β1 − β2‖ .

Such a bound L > 0 exists since b′ = g−1 is twice continuously differentiable by (R2)
and since the domains of wij , ξij , Xij and γ are bounded. By convexity, γ ∈ B. �

The construction of β̃i relies on (3.10) and (3.12), which are for δ > 0 and n ∈ N,

Nn(δ,Bi) = {β ∈ B :
√
n‖β −Bi‖ ≤ δ},

M δ
in = {lin(β)− lin(Bi) < 0, for all β ∈ ∂Nn(δ,Bi)} .
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Theorem 5.5. Consider the model defined through (W1) to (W3) and the conditions
(R1) to (R6). Then, there exists a sequence (δn) that satisfies

P(Min)
n→∞−→ 1

with Min := M δn
in and

Nn(δn, Bi)
n→∞−→ {Bi} a.s.

Proof. The proof is almost the same as for Theorem 3.2 but mean and variance func-
tions involve weights and offset terms, cf. proof of Lemma 5.4. They do not violate any
step in the proof since condition (R6) guarantees that all bounds still exist. Christiansen
and Schinzinger (2015) also presents an adjusted version of the proof. �

Theorem 5.5 defines the PMLE by means of Definition 3.3, i.e.

β̃in = β̂in1Min .

By construction of the sets Min and since ‖Bi‖ ≤ cB almost surely, we have

‖β̃in −Bi‖ ≤
δin√
n
1Min + cB1Mc

in
a.s. (5.11)

and this relation delivers the asymptotic properties of the PMLE, cf. Theorem 3.5.

Corollary 5.6. Theorem 3.5 holds under model assumptions (W1) to (W3) and regu-
larity conditions (R1) to (R6).

Proof. The claim follows by Theorem 5.5 and (5.11). The proof is exactly the same as
for Theorem 3.5 and can be also found in Christiansen and Schinzinger (2015). �

Finally, the credibility estimator B̂i is given in the same way as Definition 3.6. It is
the orthogonal projection of Bi on L(1,β), where

L(1,β) =

{
a+

N∑
i=1

Aiβ̃i : a ∈ Rp, Ai ∈ Rp,p
}
,

or equivalently, it is the minimum MSE estimator within this class. The first big change
brought by the additional cluster specific quantities concerns the credibility formula, i.e.
the explicit structure of B̂i.

Theorem 5.7. The credibility estimator is given by

B̂in = E[Bi] +Ain(β̃in − E[β̃in]) (5.12)

with credibility matrix

Ain = Cov(Bi, β̃in) Cov(β̃in)−1. (5.13)

Moreover, an asymptotic credibility formula is given by

B̂in
n∼ Ainβ̃in + (Ip −Ain)E[β̃in]. (5.14)

Proof. The proofs are identical to these of Theorems 3.7 and 3.9. Alternatively, see
Christiansen and Schinzinger (2015). �
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Since the β̃i are not identically distributed, we obtain cluster specific credibility
matrices Ain whose structure (5.13) equals (3.17). The result is in accordance to the
considerations we have made at the beginning of the chapter. Clusters contain different
amounts of information and therefore the PMLE should vary in credibility. For the
particular case of different sample sizes, large sample clusters allocate more weight to
their individual estimates β̃i since Lemma 3.10 provides that Ain → Ip as n→∞.

5.3. Estimation of the parameters

The structural parameters to be estimated in (5.13) and (5.14) are E[β̃in], Cov(β̃in)−1

and Cov(Bi, β̃in). Difficulties arise since we only have one iid sample for each β̃in. In the

framework (A1) to (A3) of iid clusters, all N random vectors β̃in were iid. Nevertheless,
the PMLE are comparable in the sense that each of them are weakly consistent estimators
of the corresponding Bi. These target variables Bi are iid. Thus, cluster specific effects
are less pronounced as n → ∞ and this property will be frequently used in estimation.
For that purpose, we use some important variables which are

T := Cov(Bi),

and Sin := E
[
Cov(β̃in | Bi)

]
.

By Theorem 3.5, they satisfy the asymptotic decomposition

Cov(β̃in)
n∼ T + Sin, (5.15)

which consists of a cluster common and a cluster specific term. The asymptotic equiv-
alence is easy to see since both expressions converge to the same limit Cov(Bi). We
first motivate the estimators on the basis of the estimation procedure in the iid case, cf.
Theorem 3.12, and then discuss the necessary changes for the new setting. Readers who
are mainly interested in the results may jump over to Theorem 5.9.

ad E[β̃in]. In the iid setting, the sample mean

β̂0 =
1

N

N∑
i=1

β̃in

was a strongly N -consistent and unbiased estimator for E[β̃in]. In the present setting,

n-asymptotic unbiasedness of β̃in yields

lim
n→∞

lim
N→∞

∥∥∥β̂0 − E[β̃in]
∥∥∥ ≤ lim

n→∞
lim
N→∞

∥∥∥β̂0 − E[Bi]
∥∥∥+ lim

n→∞

∥∥∥E[Bi]− E[β̃in]
∥∥∥

= lim
n→∞

lim
N→∞

∥∥∥∥∥ 1

N

N∑
i=1

(β̃in −Bi) + (Bi − E[Bi])

∥∥∥∥∥
≤ lim

n→∞
lim
N→∞

1

N

N∑
i=1

∥∥∥β̃in −Bi∥∥∥+ lim
N→∞

∥∥∥∥∥ 1

N

N∑
i=1

Bi − E[Bi]

∥∥∥∥∥ .
The second sum on the last line almost surely vanishes by the strong law of large numbers
and the fact that the Bi are iid. For the first sum, we use the dominated convergence
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theorem. By (5.11), all its summands are almost surely bounded such that

lim
N→∞

sup
n∈N

1

N

N∑
i=1

∥∥∥β̃in −Bi∥∥∥ ≤ lim
N→∞

1

N

N∑
i=1

sup
n∈N

∥∥∥β̃in −Bi∥∥∥ <∞
and therefore

lim
n→∞

lim
N→∞

1

N

N∑
i=1

∥∥∥β̃in −Bi∥∥∥ = lim
N→∞

1

N

N∑
i=1

lim
n→∞

∥∥∥β̃in −Bi∥∥∥ = 0.

The last convergence holds in probability because β̃in is weakly n-consistent, cf. Theo-
rem 3.5. Hence, β̂0 is a weakly consistent estimator of E[β̃in] as n→∞ and N →∞ and
it is also n-asymptotically unbiased. Nonetheless, we propose a weighted sample mean
of the type

β̂0 =

(
N∑
i=1

Ci

)−1 N∑
i=1

Ciβ̃in (5.16)

with Ci ∈ Rp,p. The sample mean can be written in form of structure (5.16) by selecting
constant weights Ci ≡ C. The estimator obtained by choosing the Ci as the inverse
covariance matrices of the β̃in has minimum MSE among all estimators of type (5.16).
Thus, we choose

β̂0 :=

(
N∑
i=1

Cov(β̃in)−1

)−1 N∑
i=1

Cov(β̃in)−1β̃in. (5.17)

Notice that β̂0 does not depend on i although the target variable E[β̃in] does. The idea
behind this is the asymptotic equivalence of the first moments, i.e.

E[β̃in]
n∼ E[Bi] =: β0, i = 1, . . . , n. (5.18)

For calculation of (5.17), the inverse covariance matrices in (5.17) have to be replaced
by their estimators which follow soon.

ad Cov(β̃in)−1 and Cov(Bi, β̃in). In a first step we analyze the sample covariance
matrix

τ̂ =
1

N − 1

N∑
i=1

(
β̃in −

1

N

N∑
l=1

β̃ln

)β̃in − 1

N

N∑
j=l

β̃ln

 ,
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which appeared in the estimators (3.24) and (3.26). Using the independence of the β̃in,
we get

E[τ̂ ] =
1

N − 1

N∑
i=1

E

(β̃in − 1

N

N∑
l=1

β̃ln

)(
β̃in −

1

N

N∑
l=1

β̃ln

)′

=
1

N − 1

N∑
i=1

N − 2

N
E
[
β̃inβ̃

′
in

]
− 2

N

N∑
l=1
l 6=i

E[β̃in]E[β̃′ln]

+
1

N2

N∑
l=1

E
[
β̃lnβ̃

′
ln

]
+

1

N2

N∑
l=1

N∑
k=1
l 6=l

E[β̃ln]E[β̃′kn]

 .

Further, by (5.18) and the convergence of the second moments,

E[τ̂ ]
n∼ 1

N − 1

N∑
i=1

(
N − 2

N

(
Cov(β̃in) + β0β

′
0

)
− 2(N − 1)

N
β0β

′
0

+
1

N2

N∑
l=1

Cov(β̃ln) +
1

N
β0β

′
0 +

N − 1

N
β0β

′
0

)

=
1

N − 1

N∑
i=1

(
N − 2

N
Cov(β̃in) +

1

N2

N∑
l=1

Cov(β̃ln)

)

=
N − 2

N(N − 1)

N∑
i=1

Cov(β̃in) +
1

N(N − 1)

N∑
i=1

Cov(β̃in)

=
1

N

N∑
i=1

Cov(β̃in).

This simplification will not be possible if we use the weighted sample mean (5.17) instead

of 1
N

∑
l β̃ln in τ̂ . The β̃in have different covariance matrices and τ̂ estimates their

arithmetic mean. Hence, for some specific cluster i, τ̂ over- or underestimates Cov(β̃in)
depending on the constellation of the portfolio. In order to remove the systematic error,
we use decomposition (5.15). We then obtain

E[τ̂ ]
n∼ Cov(Bi) +

1

N

N∑
i=1

E[Cov(β̃in | Bi)] = T +
1

N

N∑
i=1

Sin. (5.19)

As in the iid case, we estimate Cov(Bi, β̃in) by means of its asymptotic equivalent T .
By (5.19), we set

T̂ := τ̂ − 1

N

N∑
i=1

Ŝin (5.20)

and by (5.15)

τ̂−1
i := ̂Cov(β̃in)−1 :=

(
T̂ + Ŝin

)−1
. (5.21)
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It remains to find estimators for the Sin.

ad Si. For the estimation of

Sin = E[Cov(β̃in | Bi)],

we use that the inverse Fisher information matrix is the asymptotic covariance matrix
of β̃in given Bi, cf. Theorem 3.5. Recall that we had

Ŝ =
1

N

N∑
l=1

F−1
n (β̃ln)

in the case of identically distributed clusters. Under the present setting, Fn also depends
on the cluster i through the weight and offset terms so we propose

Ŝi :=
1

N

N∑
l=1

F−1
in (β̃ln). (5.22)

The idea behind this choice is that F−1
in (Bi) is, conditional on Bi, also the asymptotic

covariance matrix of β̃in. See Theorem 3 in Fahrmeir and Kaufmann (1985). Since
B1, . . . , BN are iid,

1

N

N∑
l=1

F−1
in (Bl)

consistently estimates E[F−1
in (Bi)] as portfolio size N increases and (5.22) replaces the

Bl by β̃ln. The following lemma, which is also proved in Christiansen and Schinzinger
(2015), justifies this procedure.

Lemma 5.8. For all i and l = 1, . . . , N , Fin(Bl) and Fin(β̃ln) as well as F−1
in (Bl) and

F−1
in (β̃ln) are asymptotically equivalent in probability.

Proof. First we show that 1
nFin(Bl)− 1

nFin(β̃ln) converges in probability to zero. In
fact for ε > 0,

P
(∥∥∥∥ 1

n
Fin(Bl)−

1

n
Fin(β̃ln)

∥∥∥∥ > ε

)
= P

(∥∥∥∥ 1

n
Fin(Bl)−

1

n
Fin(β̃ln)

∥∥∥∥ > ε |Mln

)
P(Mln) + P

(∥∥∥∥ 1

n
Fin(Bl)−

1

n
Fin(β̃ln)

∥∥∥∥ > ε |M c
ln

)
P(M c

ln)

≤ P(Mln)

(
P
(∥∥∥∥ 1

n
Fin(Bl)−

1

n
Fin(β̃ln)

∥∥∥∥ > ε |Mln, β̃ln ∈ B
)
P(β̃ln ∈ B |Mln)

+ P
(∥∥∥∥ 1

n
Fin(Bl)−

1

n
Fin(β̃ln)

∥∥∥∥ > ε |Mln, β̃ln /∈ B
)
P(β̃ln /∈ B |Mln)

)
+ P(M c

ln).

By Lemma 5.4, Fin is Lipschitz continuous on B with a Lipschitz constant L > 0 that
neither depends on n nor i. Furthermore, on Mln,

β̃ln = Bl + (β̃ln −Bl)

with ‖β̃ln−Bl‖ ≤ δn√
n

. By (3.9), Bl almost surely lies in the interior of B, i.e. there exists

an η-neighborhood around Bl that is completely included in B. Thus, since δn√
n
→ 0,

P (β̃ln ∈ B |Mln)
n→∞−→ 1.
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Altogether, we have

P
(∥∥∥∥ 1

n
Fin(Bl)−

1

n
Fin(β̃ln)

∥∥∥∥ > ε

)
≤ P(Mln)

(
P
(
L
∥∥∥β̃ln −Bl∥∥∥ > ε |Mln, β̃ln ∈ B

)
P(β̃ln ∈ B |Mln) + P(β̃ln /∈ B |Mln)

)
+ P(M c

ln)
n→∞−→ 0.

On the other hand, the asymptote 1
nFin(Bl) almost surely converges to a positive definite

matrix Fi(Bl). The quotient ∥∥∥Fin(Bj)− Fin(β̃ln)
∥∥∥

‖Fin(Bj)‖
converges in probability to zero so that asymptotic equivalence follows. The proof for
the inverse sequences works similarly by using their uniform convergence on B, see
Lemma 4.3. �

We summarize the results in the following theorem, cf. Christiansen and Schinzinger
(2015).

Theorem 5.9. The structural parameters can be estimated as follows.

i) A weakly consistent estimator for E[β̃in] as both n → ∞ and N → ∞ is given
by (

N∑
i=1

Cov(β̃in)−1

)−1 N∑
i=1

Cov(β̃in)−1β̃in.

ii) The random matrix

Ŝi =
1

N

N∑
l=1

F−1
in (β̃ln)

is an asymptotically unbiased and weakly consistent estimator for Si as both
n→∞ and N →∞.

iii) Let τ̂ be the sample covariance matrix of (β̃i)
N
i=1. Then,

T̂ = τ̂ − 1

N

N∑
i=1

Ŝi

is an asymptotically unbiased and weakly consistent estimator of Cov(Bi, β̃in)−1

as both n→∞ and N →∞.
iv) A weakly consistent estimator of Cov(β̃in)−1 as both n → ∞ and N → ∞ is

given by

τ̂−1
i =

(
T̂ + Ŝi

)−1
.

v) The credibility matrix (5.13) can be estimated by

Âi = T̂ τ̂−1
i ,

which is a weakly consistent estimator as both n→∞ and N →∞.
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Proof. See also the proof of Theorem 3.12. �

Notice that the estimators proposed by Theorem 3.12 are particular cases of the
newly introduced ones and in fact, if the clusters are iid, the corresponding estimators will
agree. For instance, the weighted sample mean β̂0 will reduce to an ordinary sample mean
if the weights are identical. One exception are the estimators of the inverse covariance
matrices. Compared to (3.24), estimator (5.21) does not include the bias correction

term N−p−2
N−1 , which was motivated by the inverse Wishart distribution. By the nature

of structure (5.21), the desired asymptotic distribution is no longer provided. Finally,
the credibility formula can be evaluated by replacing its structural parameters by their
estimators, cf. Christiansen and Schinzinger (2015).

Corollary 5.10. The estimator

ˆ̂Bi = Âiβ̃in + (Ip − Âi)β̂0. (5.23)

is a weakly consistent estimator for the exact credibility estimator (5.12) as both n→∞
and N →∞.

Proof. The claim is a direct consequence of Theorem 5.9 and (5.14). �

For usage of the credibility formula in application, we again recommend slight modi-
fications. The inverse covariance matrices in (5.17) must be replaced by their estimators,
meaning that

β̂0 =

(
N∑
i=1

τ̂−1
i

)−1 N∑
i=1

τ̂−1
i β̃in, (5.24)

This structure can be differently interpreted by means of the credibility matrices Ai.

Since Âi = T̂ τ̂−1,

β̂0 =

(
N∑
i=1

τ̂−1

)−1

T̂−1
N∑
i=1

T̂ τ̂−1β̃in =

(
N∑
i=1

Âi

)−1 N∑
i=1

Âiβ̃in

follows. The right hand side is the credibility weighted sample mean. Furthermore, since
T̂ estimates Cov(Bi), it should be made positive semidefinite. The required steps have
been already introduced in Section 3.3.

5.4. Simulation study

The effort of considering the whole portfolio instead of a single cluster will be worth
if the improvement in terms of the mean squared errors is large, i.e. if

rMSEi =
E[‖B̂i −Bi‖2]

E[‖β̃i −Bi‖2]
(5.25)

is clearly smaller than 1. By definition of the credibility estimator, rMSEi ≤ 1 always
holds. Also recall that we used the simulated rMSE (3.32) for quantifying the credibility
estimator in Section 3.4.
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In the multidimensional credibility model, the rMSEi can be expressed as

rMSEi =
tr(AiSi)

tr(Si)
, (5.26)

see Bühlmann and Gisler (2005), Theorem 7.5. Indeed, (5.26) holds true in the present

case of CGLMs provided that E[β̃in] = E[Bi]. However, only the n-limit of the expecta-
tions agree. We conjecture that the asymptotic relations

E[‖B̂in −Bi‖2]
n∼ tr(AinSin),

E[‖β̃in −Bi‖2]
n∼ tr(Sin)

hold but a formal proof is missing. Nevertheless, we include the right hand side of (5.26)
in our empirical illustrations to study its behavior.

We evaluate the performance of the credibility estimators by means of the relative
gain in efficiencies ∑m

k=1 ‖
ˆ̂Bi(ωk)−Bi(ωk)‖2∑m

k=1 ‖β̃i(ωk)−Bi(ωk)‖2
, i = 1, . . . N. (5.27)

obtained as the ratio of the simulated mean squared errors (simulated rMSE). The
computation is based on m = 10000 scenarios denoted by ω1, . . . , ωm. Compared to
(3.32), quantity (5.27) is evaluated for all clusters individually. As we have already
motivated at the beginning of the chapter, typical forms of cluster specific effects are
nuisance parameters in a Binomial-CGLM and exposure terms in a Poisson-CGLM.
These cases will be examined more closely.

Binomial case. We consider a portfolio of N = 30 independent clusters each with
sample size n = 25. The distribution of the risk profiles and the structure of the covariate
vectors agree with those of Section 3.4. Specifically, the Bi are independently drawn from

a Normal distribution with mean vector
(
2 1

)′
and covariance matrix I2. The covariate

vectors are given by

Xij = Xj =
(
1 j

n

)
, j = 1, . . . , n.

Conditionally, given Bi, the Yij follow a Binomial distribution with success probability
characterized through the linear predictor XjBi via the logit-link. The weights wij in
(5.3) are equal to the number of trials which we choose as

wij = 10 + i

for all i and j.

Figure 5.1 shows the values of (5.27) for several constellations and estimators. The
top left plot belongs to the current case of N = 30 and includes the simulated rMSEs
for three different estimators. The solid line (1) represents our proposed credibility

estimator, i.e. T̂ is made positive semidefinite, τ̂−1 does not include the factor N−p−2
N−1

and β̂0 is the weighted sample mean (5.24). The dotted line (2) belongs to the credibility

estimator which involves the factor N−p−2
N−1 in τ̂−1. Line (3) uses the unweighted sample

mean of the PMLEs (3.23) for the estimation of the E[β̃i]. In addition, the dashed line
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represents ∑m
k=1 tr

(
Âi(ωk)Ŝi(ωk)

)
∑m

k=1 tr
(
Ŝi(ωk)

) (5.28)

that estimates the right hand side of (5.26). The credibility estimators perform well for
each cluster and we observe improvements in a range between 30% and 65%. Improve-
ments compared to the PMLE are especially large for clusters with small weights, i.e.
a small number of trials. The estimator (2) is slightly better for clusters with a small
number of trials wi but get worse as i and thus wi increase. The line (3) is hardly
visible since it is almost identical to (1) but there is a minor advantage for (1) in the

per thousand range. In fact, both estimators for E[β̃i] and also the credibility estima-

tors ˆ̂Bi do not show any noteworthy differences. However, it should be mentioned that
the weighted sample mean β̂0 has, as originally motivated, a lower variance in both of
its components. The last modification concerns T̂ and we strongly recommend to use
the positive semidefinite version of T̂ . The simulated mean squared errors without this
modification are extremely large, see bottom left plot in Figure 5.1. In the worst case it
reaches the value 15.40.

The top right and bottom right plots in Figure 5.1 are the analogs of the left ones
for the case N = 60. Estimation of the structural parameters should be more accurate
and in fact, the simulated rMSEs of the first 30 clusters have improved by around 5%.

Furthermore, the distance to (5.28) has decreased and tr(AiSi)
tr(Si)

seems to be a good ap-

proximation for the theoretical rMSE. When we take a look at the modified estimators
in the bottom right plot, we observe the same behavior like in the case N = 30. Esti-
mators (2) and (3) are almost identical to (1) but a non positive semidefinite T̂ should
be avoided, see bottom right plot.

Poisson case. Next, we consider a Poisson-CGLM with N = 30 and n = 25. The
assumptions on the Bi and the Xij remain the same as for the Binomial case. We study
the effect of different exposure terms Eij , which we choose as

Eij = i,

and the resulting offsets logEij . The linear predictor for the log-Poisson parameters
are thus given by logEij + XjBi, for all i and j. The calculated values of (5.27) are
presented in Figure 5.2. The top left figure shows the simulated (lines (2) and (3)) and
theoretical values (dashed line) of the ratio of the mean squared errors. As one would
intuitively expect, the smaller the exposure terms the more powerful are the credibility
estimations. For cluster i = 1, which has offsets log 1 = 0, the rMSE is about 88% and
matches with that of the setting (n,N) = (25, 30) in Table 3.1. With increasing exposure,
the advantage rapidly decreases from 12% down to about 1%. Compared to the Binomial
case, the gap between the simulated rMSE and the approximated theoretical rMSE is
small. A possible explanation might be the improved estimation of the conditional
covariance matrix Cov(β̃in | Bi), which has been discussed in Section 4.1. Further
estimators have been also considered. The dotted line, which is numbered as (3), belongs

to the credibility estimator that uses the non-weighted sample mean instead of β̂0. Again,
the non-weighted sample mean is very close to the weighted sample mean and therefore
leads to almost identical values of the rMSE. That is why line (3) is practically invisible.
Nevertheless, the weighted sample mean has a lower empirical variance. The bottom
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Figure 5.1. Plots of the rMSE for a Binomial-CGLM with N = 30
(top and bottom left) and N = 60 (top and bottom right). The lines
correspond to the following estimators.

simulated rMSE (1): The proposed credibility estimator with positive

semidefinite T̂ , τ̂−1 without factor N−p−2
N−1 and weighted sample mean β̂0.

simulated rMSE (2): The credibility estimator using N−p−2
N−1 τ̂−1 instead.

simulated rMSE (3): The credibility estimator using the unweighted
sample mean instead.

simulated rMSE (4): The credibility estimator using a non positive

semidefinite T̂ instead.
theoretical rMSE : (5.28)

left plot shows (5.27) for estimator (2) which involves the additional factor N−p−2
N−1 .

Unlike the Binomial case, the results now clearly differ. High exposure clusters are
evaluated as highly credible and their estimated credibility matrices Âi are close to the
identity matrix. The credibility matrix used by estimator (2) is N−p−2

N−1 Âi and falsely
classifies cluster i to be less credible. That explains the monotone increasing structure
of (2). Finally, concerning T̂ , T̂ was always positive semidefinite in each of the 10000
simulations. The analog plots on the right hand side of Figure 5.2 belong to the portfolio
extended to N = 60. Credibility estimators perform slightly better but the overall
behavior is the same as for the case N = 30.
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Figure 5.2. Plots of the rMSE for a Poisson-CGLM with N = 30
(top and bottom left) and N = 60 (top and bottom right). The lines
correspond to the following estimators.

simulated rMSE (1): The proposed credibility estimator with positive

semidefinite T̂ , τ̂−1 without factor N−p−2
N−1 and weighted sample mean β̂0.

simulated rMSE (2): The credibility estimator using N−p−2
N−1 τ̂−1 instead.

simulated rMSE (3): The credibility estimator using the unweighted
sample mean instead.

theoretical rMSE : (5.28)

The case with clusters of different sample sizes ni, i = 1, . . . , N , leads to similar
results: Clusters with small sample sizes show greater improvements when the credibility
estimator is used but the advantages vanish as the ni grow. We therefore abstain from
presenting further plots.



CHAPTER 6

Application to mortality data

This chapter deals with actuarial applications of a CGLM and in particular, we will
study mortality data, which is for instance used for pricing life insurance products. We
will discuss the advantages and possible difficulties of credibility models on the basis of
the constructed model.

6.1. The model

We first give a short introduction to mortality models for single countries. An exten-
sion to models for multiple countries using the CGLM framework will follow. We observe
mortality statistics for people of ages x = x1, . . . , xm with m being the number of age
groups. The data are taken from calendar years numbered consecutively from t = 1 to T .
For each age x and year t, the Human-Mortality-Database (2014) provides death counts
Dx(t) as well as the initial exposure-to-risk Ex(t). As we have already motivated, Pois-
son models and Poisson-GLMs are the typical tools for studying counted data and this
also applies for the current case of mortality data. For instance, the Cairns-Blake-Dowd
model (CBD model) by Cairns et al. (2006) is a Poisson model with the structure

logE[Dx(t)] = logEx(t) + κ1(t) + κ2(t)(x− x̄) (6.1)

for x = x1, . . . , xm and t = 1, . . . , T . The two κ-terms denote the age independent and
age dependent period effects respectively. The latter describes the impact of linear age
effects, where x̄ = 1

2(x1 + xm) is the central age in fit. Model (6.1) can be also written
in form of a GLM by choosing the GLM parameter

β =
(
κ1(1) . . . κ1(T ) κ2(1) . . . κ2(T )

)′ ∈ R2T

and the design matrix X = (X(1), X(2)) ∈ RmT,2T with

X(1) = IT ⊗ 1m = IT ⊗

1
...
1

 and X(2) = IT ⊗

x1 − x̄
...

xm − x̄

 . (6.2)

Recall that the Kronecker product of matrices G = (gij) ∈ Ra,b and H ∈ Rc,d is given by

G⊗H =

g11H . . . g1bH
...

. . .
...

ga1H . . . gabH

 ∈ Rac,bd.

It is easy to check that the linear predictor with offset logEx(t) represents the right hand
side of (6.1). The GLM can now be solved for the unknown period parameters κ1(t) and
κ2(t). Further mortality models are for instance the polynomial model introduced by
Hatzopoulos and Haberman (2009) and the age-period-cohort model (APC model) by
Osmond (1985). The polynomial model extends the CBD model (6.1) by incorporating

83
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orthonormal polynomials of higher orders in the covariate vectors. A different approach
is followed by the APC model which is given by

logE[Dx(t)] = logEx(t) + βx + κt + γt−x.

It includes, as the name suggests, age effects βx, period effects κt and cohort effects γt−x
and all effects do not interact. Both models can be expressed as a GLM by choosing
proper design matrices. See Currie (2013) and Appelt (2014) for details and further
models.

More and more research papers study models for multiple countries instead of the
just presented single country models. A particular example is that of Hatzopoulos and
Haberman (2013) which is an extension of the polynomial model and also of the CBD
model as its special case. Consider a portfolio of countries labeled i = 1, . . . , N and
denote by Dix(t) and Eix(t) the data for country i. An aggregate mortality statistics is
created by summing over all i, i.e.

D•x(t) :=
N∑
i=1

Dix(t) and E•x(t) :=
N∑
i=1

Eix(t),

and they are assumed to satisfy (6.1) such that

logE[D•x(t)] = logE•x(t) + κ•1(t) + κ•2(t)(x− x̄).

Given the estimators κ̂•1(t) and κ̂•2(t), the N individual models

logE[Dix(t)] = logEix(t) + (κ•1(t) + κi1(t)) + (κ•2(t) + κi2(t)) (x− x̄). (6.3)

are considered. In this stage of fit, estimation proposed by Hatzopoulos and Haberman
(2013) accounts for the number of parameters in the model such that some κ̂ik(t) are
set to zero. The final model (6.3) allows coherent mortality forecasts with a common
mortality trend for all countries and is therefore of great interest for insurance companies
with a worldwide portfolio. Coherent forecasts can be achieved by extrapolating κ̂i1(t)
and κ̂i2(t) with zero-drift processes. However, the advantage for companies acting only
on a national level is not clear. This is exactly where CGLMs come into play since they
target to improve estimation for single countries, especially for small ones.

We adjust the CBD model (6.1) to fit into the credibility framework described by
(W1) to (W3) in Section 5.2. The observed death counts are assumed to be drawn from
random variables Dix(t) that, conditionally on Bi, follow a Poisson distribution. The
linear predictor is given by

logE[Dix(t) | Bi] = logEix(t) +Ki1(t) +Ki2(t)(x− x̄), (6.4)

where the first T entries of Bi correspond to the process Ki1 = (Ki1(t))Tt=1 and the last
T to Ki2 = (Ki2(t))Tt=1. We can reformulate structure (6.4) like (5.4) by using the design

matrix X = (X(1), X(2)) as defined in (6.2).

6.2. The fit

Our portfolio consists of N = 36 countries which are Australia, Austria, Belarus,
Belgium, Bulgaria, Canada, Czech, Denmark, Estonia, Finland, France, East Germany,
West Germany, Hungary, Iceland, Ireland, Italy, Japan, Latvia, Lithuania, Luxembourg,
Netherlands, New Zealand, Norway, Poland, Portugal, Russia, Slovakia, Scotland, Spain,
Sweden, Switzerland, Taiwan, UK, USA and Ukraine. These are all countries of the
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Human-Mortality-Database (2014) for which data is available from 1980 on or earlier.
This is the reason why Germany is separately considered in its eastern and western part.
We fit the CBD model for the ages 30 to 90 and the calender years 1980 to 2000, thus
m = 31 and T = 21. The data for the years 2001 to 2009 are used later on for model
validation. First, individual maximum likelihood estimators are obtained by fitting the
conditional model, which is (6.1), separately for all countries. In doing so, we use the
normed design matrix (

X(1)

‖X(1)‖
X(2)

‖X(2)‖

)
to make the two period effects comparable. The estimators are then combined to the
credibility estimators according to formula (5.23). We are especially interested in the
countries where the credibility estimates clearly differ from the conditional maximum
likelihood estimates. The top left plot in Figure 6.1 shows the quadratic deviations

‖ ˆ̂Bi−β̂i‖2. We take a closer look at Finland as its estimators record the largest deviation.
Its estimators for Ki1(t), t = 1, . . . , T , as well as the corresponding components of the

collective estimator β̂0 are presented in the top right plot. Contrary to the expectation,
the credibility estimator produces a wild zigzag line.

The reason behind is the sample covariance matrix τ̂ , which appears in estimator
(5.21) in form of

τ̂−1
i = ̂Cov(β̃i)−1 =

(
T̂ + Ŝi

)−1
=

(
τ̂ − 1

N

N∑
l=1

Ŝl + Ŝi

)−1

.

It may happen like in the case of iid clusters that

Ŝi =
1

N

N∑
l=1

Ŝl (6.5)

such that τ̂−1
i = τ̂−1. But since N = 36 < 42 = p, τ̂ is not of full rank and cannot

be inverted. In fact for Finland, the left and right hand side matrices of (6.5) are very
close to each other, i.e. cluster Finland contains an average amount of information.
The resulting matrix T̂ + Ŝi has an eigenvalue 10−4, which is the closest eigenvalue to

zero even under all countries in fit. Although the inverse matrix τ̂−1
i exists, its condition

number ‖τ̂−1
i ‖‖T̂+Ŝi‖ is very large. Such matrices are called ill-conditioned and typically

have entries of different scales within the same row or column. The fact that τ̂−1
i is ill-

conditioned is also strongly connected to the model structure (6.4). Since no assumption

about the dependence structure of Ki1 and Ki2 is made, Cov(β̃i) has a block structure
with non-zero off diagonal blocks. Structure (5.23) of the credibility formula then allows
the credibility estimator for Ki1 to depend on the individual estimator for Ki2, too.
However, empirical evidence shows that the processes Ki1 and Ki2 are independent.

We refit the credibility CBD model under this additional independence assumption,
i.e. we assume that the first T and last T components of

Bi =
(
Ki1(1) . . . Ki1(T ) Ki2(1) . . . Ki2(T )

)′
are independent. Now, credibility estimators are calculated separately for Ki1 and Ki2 by
applying the credibility formula only to the corresponding components of β̂i. Separating
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Figure 6.1. Several plots for the credibility CBD model: The plots on
the left show the quadratic deviations between the credibility and ML
estimators without (top left) and with (bottom left) the independence
assumption of Ki1 and Ki2. The top right plot presents the estimators
for Ki1 of Finland without the independence assumption and the bottom
right one belongs to those of Iceland under the independence assumption.

the procedure also avoids the issue N < p since we now have p = T = 21. The final
credibility matrices Âi for Bi have a block diagonal structure

Âi =

(
Âi1 0

0 Âi2

)
,

where Âi1 and Âi2 are the credibility matrices of Ki1 and Ki2 respectively. The bottom

left plot in Figure 6.1 shows the quadratic deviations between ˆ̂Bi and β̂i. No longer
Finland but Iceland and Luxembourg clearly stand out. Since these two countries have
the smallest population of all N countries in the fit the result is natural and coincides
with the propose of credibility estimation. The bottom right plot of Figure 6.1 displays
the estimators for Ki1 of Iceland. The estimators for Ki2 are not shown since they almost
agree for all countries in the fit.
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6.3. Benefits of credibility estimation

Let K̂
(cred)
i1 (t) and K̂

(ML)
i1 (t), t = 1, . . . , T , be the estimators for the age-independent

period effects. We already know that the credibility estimator is more favorable than
the MLE in context of the mean squared error. This property reflects in form of

smoother paths of (K̂
(cred)
i1 (t))Tt=1 whereas the MLEs better fit the particular realization

but tend to overfit the data. We use the sample standard deviation of the innovations
(K̂i1(t+ 1)− K̂i1(t))T−1

t=1 to measure the smoothness of both estimated paths. The calcu-
lated values are presented in Figure 6.2 and we have an relative improvement by about
9% on average. The largest improvements can be observed for Iceland (i = 15) and
Luxembourg (i = 21) with values 41% and 47% respectively.

Period effects with smooth paths are indeed a high desired property in estimating
and forecasting mortality and several papers explicitly target for such models. Currie
et al. (2004), for example, uses a Poisson-GLM with a penalty term incorporated in the
likelihood function. The penalty has the structure

λ

T−1∑
t=2

(βt−1 − 2βt + βt+1)2, (6.6)

where βt is the regression coefficient for year t, and accounts for smoothness over adjacent
calender years. A smoothing parameters λ > 0 has to be specified by the user. Russolillo
et al. (2011), on the other hand, considers a multi-country model for the three-way array
of log death rates logmix(t) = logDix(t)− logEix(t) for country i, agex and year t. The
array is decomposed into its first principal components βx, γi and κ(t) such that

logmix(t) = αix + βxγiκ(t) + εix(t) (6.7)

with centering term αix and modeling error εix(t). The country specific period effects
(γiκ(t))Tt=1 can be interpreted as being perfectly smoothed over all countries since ir-
regularities may only appear in either all or none of the countries. A smoothing over
calender years does not take place. Our credibility model incorporates smoothing in both
dimensions, calender year and country. Individual paths of period effects are mixed with
the path of the portfolio and more precisely for t = 1, . . . , T ,

K̂
(cred)
i1 (t) = K̂

(col)
i1 (t) +

T∑
s=1

Âi1(t, s)
(
K̂

(MLE)
i1 (s)− K̂(col)

i1 (s)
)

with K̂
(col)
i1 (t) being the corresponding component of the collective estimator β̂0. Of

course, the structure itself does not ensure smoothness but the property naturally follows
from the credibility weights Âi1, which are optimally chosen. Unlike model (6.7), peaks in
country specific period effects may remain if these are evaluated to be credible. Figure 6.3
shows the first four rows of ÂIceland,1 in order to provide clarity about the smoothing
procedure. The maximum weight is always allocated to the current years, i.e. t = 1, . . . , 4
respectively, and weights decrease to zero as the time lag increases in both directions
(positive and negative). Moreover, compared to (6.6), there is no smoothness parameter
involved and the “degree of smoothness” naturally results from the constellation of the
data.

Example 6.1 (Credibility CBD model for high ages). Figure 6.4 belongs to the
credibility CBD model fitted to the ages 90 to 100, years 1980 to 2000 and the same
portfolio of countries. The two plots show credibility and ML estimators for Ki1 of
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Figure 6.3. The credibility weights of the first four years for Iceland.

Iceland (left) and Luxembourg (right). Since we have less age groups in fit and also
with smaller exposure terms, the credibility estimators are expected to profit more from
the other clusters. In fact, the mentioned smoothing effect is visible more clearly. An
interesting behavior can be observed for Iceland in year 1983, when none of its three 100
years old citizens died. The MLE is strongly affected and exhibits a downward peak.
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Figure 6.4. The credibility CBD model for high ages, estimators for
Ki1 of Iceland (left) and Luxembourg (right).

The same incidence happens in Luxembourg, 1984. In that year, every 22 of the 96
years old people survived. If we look at the collective estimates (line beta0) for the years
1983 and 1984 we cannot recognize any unusual downward movements. The credibility
estimators successfully smooth these peaks out.

6.4. Consequences for mortality forecasting

Finally, we study the estimation results for the ages 30 to 90 by means of the remain-
ing life expectancies at age 30. We assume that these are outcomes of ARIMA processes
with Gaussian white noise and use the Box-Jenkins methodology to find the best fits.
The ARIMA orders (p, d, q) with p, q ∈ {0, 1, 2} and d ∈ {0, 1} are considered and eval-
uated via the AICc. Details on the methodology follow in Section 7.3 and the focus
at this point is on the resulting forecasts. Since the path obtained from the credibility
estimators is more smooth, we expect different estimators for the ARIMA parameters
and even different ARIMA orders are possible. This is indeed the case as Table 6.1
shows. The future mortality tables are then constructed from the point forecasts of the
ARIMA processes and period life expectancies directly follow. See Chapter 8 for the
explicit formulas. The forecast life expectancies together with those calculated from
the observed mortality tables are presented in Figure 6.5 (left). One can immediately
recognize that the observed life expectancies of the validation years are much better ap-
proximated by the forecasts produced by the credibility estimators. To be more precise,
the quadratic deviations to the observed values equal 0.451 whereas the MLE-forecasts
deviate by 1.350. Furthermore, we study the impact of different variances of the Gauss-
ian error terms, see last columns in Table 6.1. We calculate 95% confidence intervals
of period life expectancies for the years 2001 to 2009 and check whether they include
the observed values. The results are shown in the right plot of Figure 6.5. Since the
estimated variance for Ki1 is much smaller in the credibility case, we obtain narrower
confidence intervals (solid lines compared to dashed lines). Nevertheless, the observed
life expectancies (dotted line) are fully contained.



90 6. APPLICATION TO MORTALITY DATA

data order (p, d, q) AR1 MA1 MA2 intercept σ2

K̂
(cred)
i1 (0, 1, 1) - −1 - −0.666 0.664

K̂
(ML)
i1 (0, 1, 2) - −1.975 1 −0.663 1.089

K̂
(cred)
i2 (1, 0, 0) 0.454 - - 62.416 6.235

K̂
(ML)
i2 (1, 0, 0) 0.451 - - 62.416 6.279

Table 6.1. Parameter estimates for Ki1 and Ki2.
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Figure 6.5. Forecasts of period life expectancies, point predictions (left)
and confidence intervals (right).

6.5. Selection of the cluster structure

An important basis for credibility estimation is the structure of the underlying data
set. The learning effect, which appeared as a smoothing effect in context of mortality
estimation, is the essential component in estimation. While it is also a relevant informa-
tion that a cluster is fully credible, the resulting estimator equals the individual MLE
and does not justify the increased model complexity. The credibility formula (5.14)
involves additional parameters and one needs to find the right balance between model
complexity and model fit. In particular, the learning effect must be clearly evident. To
clarify the importance of the cluster structure, recall the mortality setting where clusters
were the countries in fit. We could increase the number of countries N by considering
the countries of United Kingdom (UK) separately. The Human Mortality Database has
indeed individual data for England & Wales, Scotland and Northern Ireland. Even finer
regional partitions, not necessarily of UK, are conceivable as long as data is available.
Increasing the portfolio size would improve the estimation of the structural parameters
but additional parameters have to be estimated, too. Moreover, if the partitions are very
similar, the separation will not provide any new insights. Choosing the proper cluster
structure thus needs special attention.

Let (Bi, Yi), i = 1, . . . , N , be a portfolio of N independent clusters. Furthermore,

let (Bi, Yi), i = 1, . . . , (N − 1) + Ñ with Ñ ≥ 2, be the same portfolio where a particular

cluster is finer partitioned into Ñ clusters that are without loss of generality numbered
i = 1, . . . , Ñ . For example, partitioning UK into the Ñ = 3 mentioned countries would
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increase the mortality portfolio by two clusters. In order to ensure that the new clusters
contribute to the learning effect of the credibility estimator, their realizations of Bi has
to differ significantly from each other. Otherwise their conditional distributions agree
(apart from known weights and offset terms) and there is no need to distinguish between
these clusters. Thus, the hypothesis is

Θ0 =


B1

...
BÑ

 =

1
...
1

⊗ β : β ∈ Rp

 (6.8)

and the aim of this section is to develop a test procedure for Θ0. For the particular
example of UK in the credibility CBD model, the death counts and exposure terms of
the three countries sum to these of UK respectively. If Θ0 holds, the conditional Poisson
rates E[Dix(t)|Bi], i = 1, . . . , 3, will also add up to the UK rates but this identity is in
general not satisfied under the alternative hypothesis. The Bi contain country/region
specific effects which are not reflected in the aggregate model that is UK. The test for
Θ0 is based on the MLEs β̂i which contain the essential information about the clusters.
Intuitively, we will reject Θ0 if the deviation

Ñ∑
i=1

‖β̂i − β̂‖2

from an estimator β̂ of β is large. In fact, this expression can be extended to a X 2-test.

We begin with some preliminary results. Let Z1, . . . , ZN be iid random variables
with Z1 ∼ N (0, 1). It is a known fact that

N∑
i=1

Z2
i ∼ X 2(N), (6.9)

where X 2(N) denotes a chi-squared distribution with N degrees of freedom. Considering
Z = (Z1, . . . , ZN ) as a multivariate Normal variable, i.e. Z ∼ N (0, IN ), allows us to write

‖Z‖2 = Z ′Z =

N∑
i=1

Z2
i ∼ X 2(N). (6.10)

Similarly, relation (6.9) can be extended to multivariate Normal random variables as
Pearson (1900) shows.

Theorem 6.2 (Pearson, 1900). Let Z1, . . . , ZN be independent random vectors with
Zi ∼ N (µi,Σi), where µi ∈ Rp and Σi ∈ Rp,p denote the mean vectors and covariance
matrices respectively. Then, if the Σi are invertible,

N∑
i=1

(Zi − µi)′Σ−1
i (Zi − µi) ∼ X 2(Np).

Alternative proof. Pearson’s original proof shows the identity of the distribution
functions. We present a more probabilistic approach instead. Fix 1 ≤ i ≤ N . We show
that

(Zi − µi)′Σ−1
i (Zi − µi) ∼ X 2(p). (6.11)
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Then, the claim immediately follows by the additivity of the chi-squared distribution.
By (6.10), it suffices to find a W ∼ N (0, IN ) such that

(Zi − µi)′Σ−1
i (Zi − µi)

d
= W ′W.

Since Σi is a covariance matrix, it is orthogonally diagonalizable with transformation

P ′ΣiP = Λ, (6.12)

where Λ is a diagonal matrix with positive diagonal entries. Let Q = P ′Λ−1/2P and
choose

W = Q(Zi − µi).
As QΣiQ

′ = Ip, W follows a multivariate standard Normal distribution and furthermore
by (6.12),

W ′W = (Zi − µi)′P ′Λ−1/2PP ′Λ−1/2P (Zi − µi)
= (Zi − µi)′Σ−1

i (Zi − µi)
and the claim follows. �

A common technique in chi-squared tests for univariate samples (Z1, . . . , Zn) is to
use the sample mean Z̄ instead of the unknown mean µ. Then,

N∑
i=1

(
Zi − Z̄

)2 ∼ X 2(N − 1), (6.13)

i.e. the replacement costs one degree of freedom. An analogue result holds in the multi-
variate case, where we lose one degree of freedom in each of the p components.

Theorem 6.3 (Cochran, 1934). Let Zi ∼ N (µ, Ip), i = 1, . . . , N , be iid p-variate
Normal vectors. Then,

N∑
i=1

(
Zi − Z̄

)′ (
Zi − Z̄

)
∼ X 2((N − 1)p),

where Z̄ =
(
Z̄ ′1, . . . , Z̄

′
p

)′
is the sample mean vector.

The two results can now be used to construct a X 2-test for the sub-portfolio of parti-

tions (Bi, Yi)
Ñ
i=1. Under Θ0, each cluster follows a GLM with unknown GLM parameter

β. Their MLEs β̂in are asymptotically Normal distributed, such that for large enough n

β̂in ∼ N (β, Fin(β̂in)).

Theorem 6.2 and Theorem 6.3 directly imply the following corollary.

Corollary 6.4 (X 2-test). Let
¯̂
β be the sample mean of β̂1, . . . , β̂Ñ . The expression

D =

Ñ∑
i=1

(
β̂i − ¯̂

β
)′
F−1
in (β̂i)

(
β̂i − ¯̂

β
)

is asymptotically chi-squared distributed with (Ñ − 1)p degrees of freedom.

The hypothesis Θ0 will be rejected with significance (1−α) ∈ (0, 1) if D exceeds the

α-quantile of a X 2((Ñ − 1)p)-distribution.
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Example 6.5 (United Kingdoms). The quantity D for the Ñ = 3 countries England
& Wales, Scotland and Northern Ireland is given by

D = 48.856

whereas the 5% quantile of a X 2(2p), p = 21, is given by 106.395. Hence, the hypothesis
Θ0 is not rejected and we keep UK in the portfolio. In fact, using the extended portfolio
does not change the credibility estimation for Iceland. The quadratic deviation between

the two credibility estimators is 0.009 on the scale ‖ ˆ̂B
(N=36)
Iceland ‖

2 = 682348.

6.6. Conclusion

We have now intensively dealt with the application to mortality data but CGLMs are
generally suitable for a wide range of actuarial problems. From a pure theoretical point
of view, every GLM can be extended to a CGLM as far as data is available. However, if
the portfolio structure is not naturally given like in the case of mortality data, the data
has to be first partitioned into N clusters. In order to ensure that the sample covariance
matrix is of full rank, it must hold that N ≥ p. Furthermore, it is not guaranteed that
the MLEs β̂i, i = 1, . . . , N , of the resulting clusters can be uniquely determined. This,
for instance, applies for categorical covariates, where the design matrix Xi will contain
a column full of zeros if the corresponding category is not observed within cluster i.

Once a CGLM is applicable, it improves conventional estimators not only in theory
but also in practice. The benefit of credibility estimation is especially large, if a cluster
contains only a little statistical information in terms of population size or death counts
close to zero. An improved mean squared error reflected in form of a learning effect which
produced smoother paths. Although it was not observable in our analysis, this learning
effect could have also worked into the other direction. More precisely, peaks or humps
appearing in the path of the collective estimator can be added to individual paths if the
calculated credibilities force to do so. In any case, the credibility paths for the CBD
model look reasonable and also the forecasts make sense. The model actually delivers
useful results for Iceland and Luxembourg. In addition, most of the countries were
evaluated as being highly credible, which is as well an important discovery. We conclude
that CGLM is a highly promising model. Further investigation besides mortality data
was unfortunately limited due to the lack of suitable data.
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Evolutionary Credibility models of
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CHAPTER 7

A credibility model for mortality projection

The content of this and the upcoming chapter is also presented in Schinzinger et al.
(2014) in a more demographic context. The present thesis picks up the ideas and method-
ologies of that paper but concentrates more on the mathematical aspects. Empirical il-
lustration on the basis of Belgian mortality data is identical to Schinzinger et al. (2014).

7.1. Evolutionary credibility models

A particular risk (Yt,∆t)
T
t=1 with a w-variate observation process (Yt) and a v-variate

risk profile process (∆t) on some probability space (Ω,F ,P) is considered. This corre-
sponds to a portfolio (Yi, Bi)

N
i=1 of the previous credibility models but notation differs

to have a clear distinction between the models. The unobservable process (∆t) follows
a known dynamics and the premiums E[Yt | ∆t] change with the passage of time. The
aim is to predict future ∆T+k or E[YT+k | ∆T+k], k ∈ N, by means of past observations.
In this connection, one defines for t ≥ s

µt|s := Pro (∆t | L(1, Y1, . . . , Ys)) , (7.1)

where

L(1, Y1, . . . , Ys) =

{
a+

N∑
k=1

AkYk : a ∈ Rv, Ak ∈ Rv,w
}
,

and the corresponding error covariance matrix

Qt|s := E
[
(∆t − µt|s)(∆t − µt|s)′

]
. (7.2)

The Yt are required to be square integrable so that these quantities are all well-defined.
Then, µt|s is the best linear predictor of ∆t in terms of all components of 1, Y1, . . . , Ys.
Unlike in the previous credibility models, the ∆t are not necessarily independent. More
precisely, (Yt,∆t) is assumed to have a state-space representation of the form

∆t+1 = F∆t + Vt, (7.3)

Yt = G∆t +Wt (7.4)

with F ∈ Rv,v, G ∈ Rw,v and white noise processes (Vt) and (Wt). The two white noise
processes are serially uncorrelated and also uncorrelated with each other. Their joint
covariance matrix thus has the structure

Cov

((
Vt
Wt

)
,

(
Vs
Ws

))
=

(
Q 0
0 R

)
, (7.5)

Q ∈ Rv,v and R ∈ Rw,w, if t = s and zero else. Under these assumptions, the credibility
estimators µT+k|T for ∆T+k can be calculated in a recursive way.

97
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Theorem 7.1. Assume that (7.3) to (7.5) hold. Starting with the initial values

µ1|0 = E[∆1],

Q1|0 = Cov(∆1) = Q,

we have the following recursion formula. Provided an additional observation Yt, (7.1)
and (7.2) are recursively given by

µt|t = µt|t−1 +At(Yt −Gµt|t−1),

Qt|t = (Iv −AtG)Qt|t−1

with a (v × w)-credibility matrix

At = Qt|t−1G
′ (GQt|t−1G

′ +R
)−1

.

The movements from t to t+ 1 are given by

µt+1|t = Fµt|t,

Qt+1|t = FQt|tF
′ +Q.

Proof. See (Bühlmann and Gisler, 2005, Theorem 10.3). �

The credibility estimator µT+1|T results by iterating this procedure for t = 1, . . . , T .
Finally, µT+k|T and the credibility estimator for E[YT+k | ∆T+k] = G∆T+k are given by

µT+k|T = F k−1µT+1|T ,

Pro (G∆T+k | L(1, Y1, . . . , YT )) = GµT+k|T

respectively. Theorem 7.1 is also known as the Kalman recursion or the Kalman filter
algorithm, cf. Brockwell and Davis (2006), and is implemented in the statistical software
R.

7.2. Mortality improvement rates

Age-specific improvement rates. We assume that we observe age-specific mor-
tality statistics over an age range of x1 to xn. Here, n is the number of age groups
included in the analysis. The mortality data relates to calendar years 1 to T , and we are
now at the beginning of the year T+1. For each age x = x1, . . . , xn and year t = 1, . . . , T ,
we calculate the crude death rate mx(t) as the ratio of the number of deaths over the
initial exposure-to-risk. Our aim is to project future rates mx(T + 1),mx(T + 2), . . .
from the observed rates mx(1), . . . ,mx(T ).

Our proposed evolutionary credibility model is based on log mortality rate changes
rather than levels. Specifically, define

rxt := logmx(t)− logmx(t− 1)

as the log improvement rate in mortality at age x from year t − 1 to year t. Then, we
decompose rxt into

rxt = βx∆t + εxt (7.6)

where ∆t is Normal distributed with mean δ and variance σ2
∆, written ∆t ∼ N (δ, σ2

∆).
We assume that ∆t appearing in (7.6) obeys some time series model and the error terms
εxt are independent with εxt ∼ N (0, σ2

ε ). Furthermore, the errors εxt are supposed to be
independent from the time factor ∆ = (∆t)t∈N.
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By interpreting the latent random variables ∆t as a risk profile process, our model
(7.6) has the natural form of an evolutionary credibility model with (rx1t, . . . , rxnt)

′ being
an xn-variate observation process. Conditional on ∆t, the mortality improvement rates
(rxt)

xn
x=x1 are independent for fixed t, but without conditioning on ∆t, they are serially

correlated. Credibility estimation of future mortality rates depend on past observation
through the recursive credibility formula. In the particular setting of Normal error terms,
we even obtain a predictive distribution, see Section 8.1. The primary reason for the
Normal assumption is to determine the dynamics of ∆. We will in particular use a like-
lihood based information criterion to perform an ARMA model selection procedure and
this requires the specification of the underlying distribution. Notice that the recursive
credibility formula is only based on structures (7.3) to (7.5) and abstains from further
distributional conditions.

The time factor ∆ reflects the general variation of mortality. The non-negative
parameters βx measure the sensitivity of mortality at age x with respect to calendar
time. As the specification (7.6) is not identifiable, some constraints are needed. This is
why we adopt in the remainder the standard constraint

xn∑
x=x1

βx = 1. (7.7)

Considering (7.6) and the assumptions made so far, we see that the correlation of mor-
tality improvements at different ages

corr(rx1t, rx2t) =
βx1βx2σ

2
∆√

β2
x1σ

2
∆ + σ2

ε

√
β2
x2σ

2
∆ + σ2

ε

,

covers the entire range [0, 1] when σ2
∆ and σ2

ε vary.

Aggregate mortality improvement rates. If we sum the age-specific mortality
improvement rates, the coefficients βx disappear because they add up to 1 according to
(7.7). More precisely, we define the aggregate errors

ε•t :=

xn∑
x=x1

εxt,

which obey a Normal distribution with zero mean and variance

σ2
• := nσ2

ε .

Aggregate errors are mutually independent and independent of ∆t. Considering (7.7),
summing over x the identity (7.6) gives

r•t :=

xn∑
x=x1

rxt = ∆t + ε•t (7.8)

and it immediately follows that r•t ∼ N (δ, σ2
∆ + σ2

•). In the empirical illustrations, we
first consider the observed r•1, . . . , r•T and we fit model (7.8). The advantage of this
approach is that we are allowed to study the dynamics of ∆t describing improvement
rates from the aggregate (7.8) involving the global improvement r•t and not the detailed
age structure βx.
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Covariance structure. The stochastic process ∆ = (∆t)t∈N is assumed to be sta-
tionary Gaussian. The random vector (∆1, . . . ,∆T )′ thus obeys the multivariate Normal
distribution with mean vector

δ1T = (δ, . . . , δ)′,

where 1T = (1, . . . , 1)′ ∈ RT , and covariance matrix of the following Toeplitz form:

Cov(∆t,∆s) = ρ|t−s|σ
2
∆ (7.9)

for correlation parameters ρh ∈ [−1, 1], h = 1, 2, . . ., and ρ0 = 1. In matrix notation
(7.9) reads

σ2
∆CT = σ2

∆


1 ρ1 . . . ρT−1

ρ1 1
. . .

...
...

. . .
. . . ρ1

ρT−1 . . . ρ1 1

 (7.10)

with correlation matrix CT ∈ RT,T . Note that the specification (7.9) has been also
proposed by Sundt (1981) in a credibility context with an autoregressive structure, i.e.
assuming

ρh = ρh, h ∈ N, (7.11)

for some correlation parameter ρ ∈ [−1, 1].

The model specification (7.8) directly implies that (r•1, . . . , r•T )′ is multivariate Nor-
mal with mean vector

δ1T = (δ, . . . , δ)′ (7.12)

and covariance matrix

σ2
•IT + σ2

∆CT . (7.13)

In (7.13), IT denotes the T×T identity matrix. However, the covariance structure (7.13)
may not be identifiable or in other words, not one-to-one with respect to its variance
parameters. Let us make this point clear in the following example.

Example 7.2. Assume that the time factor ∆ obeys the MA(1)-process

∆t = Zt + θZt−1

with independent innovation terms Zt ∼ N (0, σ2
Z). Then, as

Var(∆t) = (1 + θ2)σ2
Z = σ2

∆,

we see that σ2
∆ is implicitly given through the error variance σ2

Z and the MA-parameter
θ. Moreover,

Cov(∆t−1,∆t) = θσ2
Z =

θ

1 + θ2
σ2

∆

so that

ρh =

{
θ

1+θ2
if h = 1,

0 if h ≥ 2.

If we replace σ2
∆ by σ̃2

∆, the triples (θ, σ2
∆, σ

2
•) and (θ̃, σ̃2

∆, σ̃
2
•) with

σ̃2
• = σ2

• + σ2
∆ − σ̃2

∆
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and θ̃ as the solution of
θ̃

1 + θ̃2
=

θ

1 + θ2

σ2
∆

σ̃2
∆

will produce the same covariance matrix (7.13) provided that σ̃2
• > 0. In fact, it is easy

to verify that

Cov(r•t−1, r•t) = Cov(∆t−1,∆t) =
θ̃

1 + θ̃2
σ̃2

∆ =
θ

1 + θ2
σ2

∆

and

Cov(r•t, r•t) = σ̃2
• + σ̃2

∆ =
(
σ2
• + σ2

∆ − σ̃2
∆

)
+ σ̃2

∆ = σ2
• + σ2

∆.

There may exist identifiable ARMA specifications for the time factor ∆. However,
it is not clear whether such specifications appropriately explain the true dynamics of
r•. In order to solve the identifiability issue, we now consider both genders together, as
explained next.

Gender-combined mortality improvement factors. Instead of considering males
and females separately, we now integrate both gender-specific improvement rates into
a single model. In addition to ensuring identifiability of the covariance structure, this
approach also enforces consistency between genders. In insurance applications, it allows
the actuary to evaluate potential diversification benefits between male and female future
mortality improvements.

Our model specification is as follows. Let r
(m)
xt denote the mortality improvement

rates for males and let r
(f)
xt denote the corresponding mortality improvement rates for

females from the same country. We now assume that the model (7.6) applies to both
genders, i.e. that

r
(i)
xt = β(i)

x ∆
(i)
t + ε

(i)
xt for i ∈ {m, f} (7.14)

holds with a certain dependence structure between the two ∆(i)-processes specified later

on. The parameters β
(i)
x add up to 1 for each i ∈ {m, f} in accordance with (7.7).

Furthermore, the error terms ε
(i)
xt in (7.14) are assumed to be mutually independent with

distribution N (0, σ2
iε). The corresponding aggregate structure is then given by

r
(i)
•t = ∆

(i)
t + ε

(i)
•t for i ∈ {m, f}, (7.15)

where ∆
(i)
t ∼ N (δi, σ

2
i∆).

State-space representation. We consider the multivariate process

r•t =

(
r

(m)
•t
r

(f)
•t

)
=

(
∆

(m)
t

∆
(f)
t

)
+

(
ε
(m)
•t
ε
(f)
•t

)
in state-space form in order to express it as an evolutionary credibility model. Both
time factors ∆(m) and ∆(f) are supposed to obey some autoregressive moving average
(ARMA) dynamics. Common state-space representations of ARMA processes can be
easily extended to that of (r•t). First, consider (Yt) following an ARMA(p, q) pro-
cess with autoregressive (AR) parameters φ1, . . . , φp, moving average (MA) parameters
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θ1, . . . , θq and innovations Zt. Let d = max{p, q+1} and set φk = 0 for k > p and θk = 0
for k > q. Hamilton (1994) showed that we can represent Yt as

Yt =
(
1 θ1 · · · θd−1

)


Xt

Xt−1
...

Xt−d+1


with state equation

Xt

Xt−1
...

Xt−d+1

 =


φ1 · · · φd−1 φd
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0



Xt−1

Xt−2
...

Xt−d

+


Zt
0
...
0


Let us now extend this representation to r•t. To this end, define

d := max{pm, qm + 1, pf , qf + 1},

where (pi, qi) is the ARMA order of ∆(i). The gender specific ARMA parameters are
denoted by an additional superscript (i). Then, we have observation equation

(
r

(m)
•t
r

(f)
•t

)
−
(
δm
δf

)
=

(
1 θ

(m)
1 · · · θ

(m)
d−1 0 0 · · · 0

0 0 · · · 0 1 θ
(f)
1 · · · θ

(f)
d−1

)


X
(m)
t
...

X
(m)
t−d+1

X
(f)
t
...

X
(f)
t−d+1


+

(
ε
(m)
•t
ε
(f)
•t

)

=: GXt +W t (7.16)

with state equation



X
(m)
t
...

X
(m)
t−d+1

X
(f)
t
...

X
(f)
t−d+1


=



φ
(m)
1 · · · φ

(m)
d−1 φ

(m)
d 0 · · · 0 0

1 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

...
...

...
0 · · · 1 0 0 · · · 0 0

0 · · · 0 0 φ
(f)
1 · · · φ

(f)
d−1 φ

(f)
d

0 · · · 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 · · · 0 0 0 · · · 1 0





X
(m)
t−1
...

X
(m)
t−d

X
(f)
t−1
...

X
(f)
t−d


+



Z
(m)
t

0
...
0

Z
(f)
t

0
...
0


.

=: FXt−1 + V t. (7.17)

From a strict formal point of view, the process (Xt) is the actual ∆-process in sense of
the model structure (7.3) and (7.4). In terms of our model structure (7.15), we have(

∆
(m)
t

∆
(f)
t

)
= GXt +

(
δm
δf

)
and this allows a more natural interpretation of the state process. Equations (7.16) and

(7.17) combine the state-space representations of ∆(m) and ∆(f) to a joint structure
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and dependencies between the gender stem from the innovation errors Z
(i)
t ∼ N (0, σ2

iZ).
They are correlated through a gender correlation parameter γ ∈ [−1, 1], i.e.

Cov
(
Z

(m)
t , Z

(f)
t

)
= γ

√
σ2
mZσ

2
fZ .

This defines the covariance matrix of the random vector (V ′t,W
′
t)
′ as(

Q 0
0 R

)
,

where

Q :=



σ2
mZ 0 · · · 0 γ

√
σ2
mZσ

2
fZ 0 · · · 0

0 0 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 0

γ
√
σ2
mZσ

2
fZ 0 · · · 0 σ2

fZ 0 · · · 0

0 0 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 0


, (7.18)

R :=

(
σ2
m• 0
0 σ2

f•

)
. (7.19)

Equations (7.16) to (7.19) define the joint state space representation of our credibility
model and this model has been also proposed by Schinzinger et al. (2014). The model
is kept general and allows for different degrees of homogeneity between the genders. A
higher degree of homogeneity can be achieved by making one or more of the following
simplifying assumptions.

(S1) ∆(m) and ∆(f) are ARMA processes of the same order (p, q) and share the
common ARMA parameters φ1, . . . , φp and θ1, . . . , θq.

(S2) The gender correlation parameter is given by γ = 1.
(S3) The parameters δi, σ

2
i∆ (or equivalently σ2

iZ), σ2
i• do not depend on the gender

i.

All these assumptions can be easily incorporated into the above state-space represen-

tation. Activating all of them leads to the particular case ∆
(m)
t = ∆

(f)
t in which the

mortality improvement factors applying to males and females are both functions of a
single ∆t, i.e.

r
(i)
xt = β(i)

x ∆t + ε
(i)
xt , i ∈ {m, f}. (7.20)

This case is of particular interest as Carter and Lee (1992) suggested to use the same
time index for both genders. To avoid long-run divergence in gender-specific mortality
forecasts, Li and Lee (2005) further proposed to use the same βx for all groups. Here,

we nevertheless allow for gender-specific sensitivities β
(i)
x and leave the final decision to

the user.

Specifying the joint dynamics of (r
(m)
•t , r

(f)
•t ) now solves the identifiability issue.
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Lemma 7.3. Assume that (S1) holds, i.e. we have gender common ARMA parameters.

Furthermore, suppose that the ∆(i) are causal. Then,

Cov(∆
(m)
t ,∆(f)

s ) = γρ|t−s|σ
2
∆, (7.21)

where

σ2
∆ =

√
σ2
m∆σ

2
f∆

and ρh given through the gender individual covariance structure (7.9).

Proof. First assume that both ∆(i) follow a MA(q) process with parameters θ0, . . . , θq
with θ0 = 1. Then, for h ∈ N and h ≤ q, the covariance structure (7.18) of the innovation
terms yields that

Cov
(

∆
(i)
t+h,∆

(i)
t

)
= Cov

 q∑
j=0

θjZ
(i)
t+h−j ,

q∑
j=0

θjZ
(i)
t−j


=

q∑
j=0

q∑
k=0

θjθk Cov
(
Z

(i)
t+h−j , Z

(i)
t−k

)

=

q−h∑
j=0

q∑
k=0

θj+hθk Cov(Z
(i)
t−j , Z

(i)
t−k)

=

q−h∑
j=0

θj+hθj

σ2
iZ

Taking h = 0 gives

σ2
i∆ = Var

(
∆

(i)
t

)
=

 q∑
j=0

θ2
j

σ2
iZ

and therefore by Cov(∆
(i)
t+h,∆

(i)
t ) = ρhσ

2
i∆,

ρh =

q−h∑
j=0

θj+hθj

 q∑
j=0

θ2
j

−1

.

Similarly, since Cov(Z
(m)
t , Z

(f)
t ) = γ

√
σ2
mZσ

2
fZ ,

Cov
(

∆
(m)
t+h,∆

(f)
t

)
=

q−h∑
j=0

q∑
k=0

θj+hθk Cov(Z
(m)
t−j , Z

(f)
t−k)

= γ

q−h∑
j=0

θj+hθj

√σ2
mZσ

2
fZ

= γ

q−h∑
j=0

θj+hθj

 q∑
j=0

θ2
j

−1
√√√√√
 q∑
j=0

θ2
j

σ2
mZ

 q∑
j=0

θ2
j

σ2
fZ

= γρhσ
2
∆.
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The case (−h) ∈ N works in the same way such that (7.21) holds for any MA(q) process.

The result can be generalized using the moving average representation of ARMA(p, q)

models. Since the ∆(i) are causal, there exist constants ψj ∈ R, j ∈ N, with
∑∞

j=0 |ψj | <∞
such that

∆
(i)
t − δi =

∞∑
j=0

ψjZ
(i)
t−j (7.22)

almost surely and in L2. See Brockwell and Davis (2006) for details. Thus, (7.21) follows
by taking q →∞ and replacing θj by ψj in the above calculations. �

Rewriting (7.21) in matrix notation, the covariance matrix between the vectors

(∆
(m)
1 , . . . ,∆

(m)
T )′ and (∆

(f)
1 , . . . ,∆

(f)
T )′ is γσ2

∆CT , where CT has been defined in (7.10).
The structure directly follows from Lemma 7.3. Then, the gender-combined random
vector

r• = (r
(m)
•1 , . . . , r

(m)
•T , r

(f)
•1 , . . . , r

(f)
•T )′. (7.23)

of past observed aggregate improvement rates is multivariate Normal with mean vector

δ• = (δm, . . . , δm, δf , . . . , δf )′ (7.24)

and covariance matrix

Σ• =

(
σ2
m•IT + σ2

m∆CT γσ2
∆CT

γσ2
∆CT σ2

f•IT + σ2
f∆CT

)
. (7.25)

The additional parameter γ now solves the identifiability problem of Σ• and the variance
parameters.

Theorem 7.4. In addition to the conditions of Lemma 7.3, assume that the ARMA
order (p, q) satisfies T − 1 > p + q. If γ 6= 0, then Σ• is uniquely determined by the

model parameters, i.e Σ• = Σ̃• implies

(σ2
m•, σ

2
f•, σ

2
m∆, σ

2
f∆, γ, ρ1, . . . , ρp) = (σ̃2

m•, σ̃
2
f•, σ̃

2
m∆, σ̃

2
f∆, γ̃, ρ̃1, . . . , ρ̃p)

where Σ̃• is the covariance matrix corresponding to the alternative parameters.

Proof. Assume that Σ• = Σ̃• and recall structure (7.10) of the correlation matrix CT .
The structure of the diagonal block matrices of (7.25) implies that

σ2
i∆ρh = σ̃2

i∆ρ̃h (7.26)

for i ∈ {m, f} and h = 1, . . . , T − 1. The ρh and ρ̃h are the entries of CT and C̃T re-
spectively. Multiplying (7.26) for males and females and taking the square roots provide
the identities √

σ2
m∆σ

2
f∆ρh =

√
σ̃2
m∆σ̃

2
f∆ρ̃h, (7.27)

h = 1, . . . , T − 1. On the other hand, also the off diagonal matrices γσ2
∆CT and γ̃σ̃2

∆C̃T

agree. Therefore,

γ
√
σ2
m∆σ

2
f∆ρh = γ̃

√
σ̃2
m∆σ̃

2
f∆ρ̃h,

h = 1, . . . , T − 1, and it follows from (7.27) and γ 6= 0 6= γ̃ that γ = γ̃. The condition
T − 1 > p + q enures that ρh1 6= ρh2 and ρ̃h1 6= ρ̃h2 for some h1 6= h2. The identities of
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the further parameters follow step by step. Considering the diagonal entries of γσ2
∆CT

and its counterpart, we obtain

γ
√
σ2
m∆σ

2
f∆ = γ̃

√
σ̃2
m∆σ̃

2
f∆

Since γ = γ̃, √
σ2
m∆σ

2
f∆ =

√
σ̃2
m∆σ̃

2
f∆

holds, which in turn proves

ρh = ρ̃h, h = 1, . . . , T − 1, (7.28)

using (7.27). Relation (7.26) then provides

σ2
i∆ = σ̃2

i∆, i ∈ {m, f}

and σ2
i• = σ̃2

i• follows from

σ2
i• + σ2

i∆ = σ̃2
i• + σ̃2

i∆,

which are the diagonal entries of σ2
i•IT + σ2

i∆CT and that of the alternative parameters
respectively. �

Both results rely on the simplifying assumption (S1) which is indeed justified by the
upcoming empirical below. Therefore, we do not provide a general covariance structure
for the case that ARMA dynamics for males and females differ.

7.3. Application to Belgian mortality data

Presentation of the data. We consider mortality data for Belgian males and fe-
males available from Statistics Belgium (http://statbel.fgov.be/). Many insurance
applications consider ages after retirement to study various issues about pension bene-
fits. The data set considered here thus consists of ages x1 = 65 to xn = 99 (n = 35)
observed in the time period from 1970 to 2010. Observations before 1970 are not in-
cluded since there is a structural break in the 70s as documented in Coelho and Nunes
(2011). Thus, t = 1 corresponds to the mortality improvement from calendar year 1970
to 1971 whereas T corresponds to that from 2009 to 2010. In a later stage of our anal-
ysis, we supplement these observations with calendar years 2011 and 2012 to study the
robustness over successive forecasts. However, notice that the model selection procedure
is generally applicable for any choices of ages and years in fit.

Figure 7.1 displays the observed age-aggregated mortality improvements r
(i)
•t for

males and females. Both series appear to be strongly correlated. Mortality statistics

depicted in Figure 7.1 indicate negative correlation between r
(i)
•t and r

(i)
•t+1. This property

is a consequence of the typical zigzag pattern, i.e. large improvements in mortality rates
are followed by small improvements (or even declines) and vice verse. This apparent

behavior also rules out time-invariant random effects in (7.6), i.e. ∆
(i)
t = ∆(i) for all

t ∈ N, as this specification implies Cov(r
(i)
•t , r

(i)
•s ) = Var(∆(i)) > 0 for all t 6= s. Hence,

∆
(i)
t = ∆(i) constraints r

(i)
•t and r

(i)
•s to be positively correlated among all years t and s

which contradicts empirical evidence in Figure 7.1
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Figure 7.1. Age-aggregated mortality improvements r
(m)
•t for Belgian

males and r
(f)
•t for females.

Model assumptions. First, we check whether the Belgian data satisfies the model
assumptions specified in Section 7. Specifically, we investigate whether the data agree
with the assumptions of Normality and stationarity in the age-aggregate model (7.8).

We test both r
(m)
•t and r

(f)
•t for Normality using the Shapiro-Wilk test. The p-values

for both genders are 0.0038 and 0.0036 so that the hypotheses of Normal distribution
are rejected. However, if we omit the observations with the largest deviation from the
sample mean in both series, we get the p-values 0.5752 and 0.2281 respectively. The
hypotheses cannot be rejected. The Q-Q plots in Figure 7.3 confirm this observation.
Concerning stationarity, the augmented Dickey-Fuller test provides small p-values for
the hypothesis of non-stationarity. The calculated p-values are 0.023 and 0.01037 for
males and females respectively, where the lag has been chosen as (T − 1)1/3. Thus, the
hypothesis of non-stationarity is rejected for both genders.

Model selection. As our models are fully specified, with Normal distributed com-
ponents, the maximum likelihood approach is expected to deliver accurate estimations.
As motivated, we first fit the age-aggregate model to study period and age-effects sep-
arately. Let r• gather the observed aggregate improvement rates as defined in (7.23).
The log-likelihood function

logL = −1

2
log |Σ•| −

1

2
(r• − δ•) Σ−1

• (r• − δ•)′ (7.29)

of a 2T -variate Normal distribution with mean vector δ• and covariance matrix Σ• has
to be maximized with respect to the model parameters. Notice that the input variables
for the optimization are the ARMA parameters and the innovation variances σ2

iZ rather
than the correlation parameters ρh and the variance terms σ2

i∆. The latter quantities
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Figure 7.2. Normal Q-Q plots of the age-aggregated mortality improve-
ment rates.

can be deduced from the input variables using the identities

ρh =

∑∞
j=0 ψjψj+k∑∞
j=0 ψ

2
j

(7.30)

and

σ2
i∆ = σ2

iZ

∞∑
j=0

ψ2
j ,

where (ψj)j∈N comes from the corresponding MA(∞)-representation, see (Brockwell
and Davis, 2006, Section 3.3). The actual evaluation of the log-likelihood function is
performed with the FKF-package in R. Instead of (7.29), the likelihood is calculated by
means of the fitted residuals (

ε
(m)
•t
ε
(f)
•t

)
=

(
r

(m)
•t − r̂

(m)
•t

r
(f)
•t − r̂

(f)
•t

)
,

where r̂
(i)
•t are the best predictions obtained by the Kalman filter. This method avoids the

computation and the inversion of the huge covariance matrix Σ. Its implementation only
requires the specification of a state-space representation instead of manually defining Σ.

The model selection procedure then follows a backward approach. We start from a
first model allowing for dynamics specific to each gender and we simplify it by activating
the assumptions (S1) to (S3) step by step. Each time, we evaluate the candidate model
by using the Akaike information criterion with correction for finite samples (AICc).
Recall that

AICc = −2 logL+ 2k +
2k(k + 1)

T − k − 1
,
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δm δf σ2
m∆ σ2

f∆ σ2
m• σ2

f• φ1 θ1 γ

Model 3, MA(1) −0.504 −0.605 2.139 1.812 0.347 10−7 - −0.459 1
Model 5, ARMA(1,1) −0.554 1.920 0.180 0.429 −0.999 1

Table 7.1. Parameter estimates for Models 3 and 5.

where k is the dimension of the parameter space.

Model 1. We first fit ARMA models for both genders separately, i.e. we model

(r
(m)
•1 , . . . , r

(m)
•T ) and (r

(f)
•1 , . . . , r

(f)
•T ) in isolation following the Box-Jenkins methodology.

Although the marginal models face the identifiability problem described earlier and
maximum likelihood estimates are not unique, the AICc values can still be taken for
comparison. We restrict our analysis to ARMA(p, q) models with 0 ≤ p + q ≤ 5. This
also covers the previously mentioned AR(1) structure characterized by the exponentially-
decaying correlations (7.11). Models of higher orders are not shown here since additional
parameters were not significant and the corresponding AICc values did not show any
improvement over those of the lower-order ARMA models.
Minimum AICc values are attained at ARMA(1,1) for males and MA(1) for females.
The joint likelihood under the gender-combined structure yields an AICc of 228.5117.

Model 2, (S1). Let us now assume that r
(m)
•t and r

(f)
•t follow the same ARMA(p, q)

dynamics with common ARMA parameters, i.e. that (S1) holds. Several ARMA models
are tested by maximizing the likelihood of the joint series of gender-specific aggregate
improvement factors, correlated through the γ parameter. It turns out that the MA(1)
structure is optimal, with an AICc of 221.5098 outperforming the preceding 228.5117.

Model 3, (S1) and (S2). As the estimated γ in Model 2 appears to be close to 1, we
now consider a fixed gender-correlation parameter γ = 1. The optimal model is again
MA(1) and setting γ = 1 impacts on AICc, which changes from 221.5098 to 218.5918.
The estimated model is described in Table 7.1.

Model 4, (S1) and (S3). Now, Model 2 is fitted with gender-common parameters δ,
σ2

∆ and σ2
•. The optimal AICc value of 220.9682 then corresponds to the ARMA(1,1)

model.

Model 5, (S1) to (S3). We now set γ equal to 1 in Model 4 so that (7.20) holds.
The ARMA(1,1) model fits best with an AICc of 218.3188. The estimations of model
parameters are displayed in Table 7.1.

Model validation. Models 3 and 5 are the AICc-best models. We compare them by
checking their fitted residuals obtained through the Kalman filter specified by the state-
space representation (7.16) to (7.19). The fitted residuals are viewed as realizations of

ε
(i)
•t and are tested for Normality, independence and stationarity. For that purpose, we

use the Shapiro-Wilk test, the Box-Ljung test and the ADF-test respectively. The results
are given in Table 7.2. The second hypothesis “Normality∗” describes the Shapiro-Wilk
test, where the absolutely largest residuals were left out. All of the three properties
hold when taking a significance level of 0.1. Therefore, we decide to proceed with both
models.
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Model 3, MA(1) Model 5, ARMA(1,1)
Hypothesis m f m f

Normality 10−4 0.1324 10−4 0.2129
Normality∗ 0.5581 - 0.5819 -
Independence 0.7976 0.3647 0.7488 0.6278
Non-stationarity 0.0103 0.0623 0.0584 0.0851

Table 7.2. p-values for various tests

7.4. Comparison with the Lee-Carter model

Table 7.3 demonstrates estimates for the age-aggregate mortality improvement model
implicitly given by the Lee-Carter model. Recall that in the Lee-Carter framework, the

log death rates logm
(i)
x (t), i ∈ {m, f}, are decomposed by a principal component analysis

into α
(i)
x + β

(i)
x κ

(i)
t where the time factor κ

(i)
t obeys an ARIMA dynamics. Therefore,

xn∑
x=x1

(
logm(i)

x (t)− logm(i)
x (t− 1)

)
=

xn∑
x=x1

β(i)
x (κ

(i)
t − κ

(i)
t−1) = κ

(i)
t − κ

(i)
t−1

for i ∈ {m, f}. As in the majority of empirical studies conducted with the Lee-Carter

model, we assume that κ
(i)
t obeys the random walk with drift model

κ
(i)
t − κ

(i)
t−1 = δiκ + S

(i)
t

with independent error components S
(i)
t ∼ N (0, σ2

iκ). Furthermore, the residual variance
between the observed and fitted model is denoted by σ2

i◦ which is the analog term to σ2
i•

in our model. Even though both models are based on a similar structure, the differences
in the estimated values are remarkable. Drift parameters clearly vary from those of the
Lee-Carter model. What is even more important is how the total variances σ2

i•+σ
2
i∆ and

σ2
i◦ + σ2

iκ are allocated in the two models. While the Lee-Carter mortality improvement
model gives more weight to the measurement variance σ2

i◦, the innovation variance σ2
i∆

is dominating in our model. Notice that the innovation error affects all ages through the

sensitivity factor β
(i)
x .

7.5. Age-specific structure

Given the parameters of the age-aggregate model, we can calibrate the age-specific

coefficients β
(i)
x and the residual variances σ2

iε appearing in the age-specific model (7.14),
which was

r
(i)
xt = β(i)

x ∆
(i)
t + ε

(i)
xt .

Notice that for each age x, the random vector (r
(i)
x1 , . . . , r

(i)
xT ) is multivariate Normal with

mean vector

β(i)
x δi1T = (β(i)

x δi, . . . , β
(i)
x δi)

′

and covariance matrix

σ2
iεIT + β2

xσ
2
i∆CT .
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Model 3, MA(1) Model 5, ARMA(1,1) Lee-Carter
male male male

δi −0.504 −0.554 −0.434
σ2
i∆ 2.139 1.920 0.330
σ2
i• 0.347 0.180 1.7904

female female female

δi −0.605 −0.554 −0.522
σ2
i∆ 1.812 1.920 0.6637
σ2
i• 10−7 0.180 0.6994

Table 7.3. Estimated mean and variance parameters. For the Lee-
Carter models, the values are the estimates for δiκ, σ2

iκ and σ2
i◦ respec-

tively.

The corresponding Normal log-likelihood function can thus be maximized with respect

to the mean β
(i)
x δi for each age x separately, which gives

β̂
(i)
x δi =

1

T

T∑
t=1

r
(i)
xt .

As the analysis of the aggregate mortality improvement rates r
(m)
•t and r

(f)
•t gives

δ̂i =
1

T

T∑
t=1

r
(i)
•t ,

we finally choose a plug-in estimator for β
(i)
x = β

(i)
x δi
δi

as

β̂(i)
x =

(
T∑
t=1

r
(i)
•t

)−1 T∑
t=1

r
(i)
xt , (7.31)

which add up to 1. Hence, constraint (7.7) is satisfied. The estimated parameters are
displayed in Figure 7.3 together with their smoothing splines.

For σ2
iε = 1

nσ
2
i•, we choose

σ̂2
iε =

1

n
σ̂2
i•. (7.32)
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CHAPTER 8

Mortality forecasting

8.1. Predictive distribution

In this section, we assume that ∆(m) and ∆(f) are ARMA processes of the same
order with gender-specific parameters δi, σ

2
i∆ and σ2

i•. This corresponds to assumption
(S1), i.e. Model 2 in Section 7.3. The predictive distributions for Models 3 to 5 are then
easily obtained by making the parameters gender-common and/or setting γ to 1. Model
1 is not of practical importance.

In applications, we are interested in the prediction of the future k years(
∆

(m)
T+1, . . . ,∆

(m)
T+k,∆

(f)
T+1, . . . ,∆

(f)
T+k

)
given the past observed aggregate mortality improvement factors (r

(m)
•1 , . . . , r

(m)
•T , r

(f)
•1 , . . . , r

(f)
•T ).

Their credibility estimators follows from the recursive formula presented in Theorem 7.1.
Since we have a full parametric model, we can even specify the predictive distribution.
The main tool is the following famous result, which can be found, for example, in Giri
(1977).

Lemma 8.1. Let Ni ∼ N (µi,Σi), i = 1, 2, with Cov(Y1, Y2) = Σ12. Then, conditional
on Y2 = y2, Y1 follows a Normal distribution with mean vector

µ1 + Σ12Σ−1
2 (y2 − µ2)

and covariance matrix

Σ1 − Σ12Σ−1
2 Σ′12.

In order to apply Lemma 8.1, we require the distribution of the random vector(
r

(m)
•1 , . . . , r

(m)
•T , r

(f)
•1 , . . . , r

(f)
•T ,∆

(m)
T+1, . . . ,∆

(m)
T+k,∆

(f)
T+1, . . . ,∆

(f)
T+k

)
(8.1)

gathering past aggregate mortality improvement factors and future time indices. The T×
k correlation matrix CT,k of the past (∆

(i)
1 , . . . ,∆

(i)
T ) and the future (∆

(i)
T+1, . . . ,∆

(i)
T+k)

up to horizon T + k is given by

CT,k =


ρT ρT+1 . . . ρT+k−1

ρT−1 ρT . . . ρT+k−2
...

... . . .
...

ρ1 ρ2 . . . ρk

 .

The (t, l)-th entry inCT,k is corr(∆
(i)
t ,∆

(i)
T+l) = ρT+l−t and can be calculated by equation

(7.30).

113
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Further, define Ck,T = C ′T,k. The random vector (8.1) is multivariate Normal with
mean vector δ12T+2k and covariance matrix

σ2
m•IT + σ2

m∆CT γσ2
∆CT σ2

m∆CT,k γσ2
∆CT,k

γσ2
∆CT σ2

f•IT + σ2
f∆CT γσ2

∆CT,k σ2
f∆CT,k

σ2
m∆Ck,T γσ2

∆Ck,T σ2
m∆Ck γσ2

∆Ck

γσ2
∆Ck,T σ2

f∆Ck,T γσ2
∆Ck σ2

f∆Ck


and Lemma 8.1 can now be applied.

Theorem 8.2. The predictive distribution for (∆
(m)
T+1, . . . ,∆

(m)
T+k,∆

(f)
T+1, . . . ,∆

(f)
T+k) given

(r
(m)
•1 , . . . , r

(m)
•T , r

(f)
•1 , . . . , r

(f)
•T ) is multivariate Normal with mean vector(

δm1k
δf1k

)
+

(
σ2
m∆Ck,T γσ2

∆Ck,T

γσ2
∆Ck,T σ2

f∆Ck,T

)
(
σ2
m•IT + σ2

m∆CT γσ2
∆CT

γσ2
∆CT σ2

f•IT + σ2
f∆CT

)−1
(
r

(m)
• − δm1T

r
(f)
• − δf1T

)
(8.2)

and covariance matrix(
σ2
m∆Ck γσ2

∆Ck

γσ2
∆Ck σ2

f∆Ck

)
−
(
σ2
m∆Ck,T γσ2

∆Ck,T

γσ2
∆Ck,T σ2

f∆Ck,T

)
(
σ2
m•IT + σ2

m∆CT γσ2
∆CT

γσ2
∆CT σ2

f•IT + σ2
f∆CT

)−1(
σ2
m∆CT,k γσ2

∆CT,k

γσ2
∆CT,k σ2

f∆CT,k

)
. (8.3)

Furthermore, (8.2) is also the credibility estimator for (∆
(m)
T+1, . . . ,∆

(m)
T+k,∆

(f)
T+1, . . . ,∆

(f)
T+k).

Proof. We only have to prove the second claim. Since (8.2) equals

E
[(

∆
(m)
T+1, . . . ,∆

(m)
T+k,∆

(f)
T+1, . . . ,∆

(f)
T+k

)∣∣∣ r(m)
•1 , . . . , r

(m)
•T , r

(f)
•1 , . . . , r

(f)
•T

]
,

it is the Bayes estimator for the future ∆-variables. Furthermore, it is also an affine
function of r•, i.e. a particular element of the Hilbert space L(1, r•1, . . . , r•T ), so that
(8.2) is exactly the credibility estimator. �

Given the predictive distribution for the future ∆
(i)
T+k, one can obtain forecasts for

the future death rates m
(i)
x,T+k and the corresponding one-year death probabilities q

(i)
x,T+k.

Precisely, by iterating the relationship

m(i)
x (t) = m(i)

x (t− 1) exp
(
β(i)
x ∆

(i)
t + ε

(i)
xt

)
,

we get

m(i)
x (T + k) = m(i)

x (T ) exp

 k∑
j=1

(
β(i)
x ∆

(i)
T+j + ε

(i)
x,T+j

) . (8.4)

We can use the credibility estimators to get point predictions of m
(i)
x (T + k),

m̂(i)
x (T + k) = m(i)

x (T ) exp

 k∑
j=1

β̂(i)
x E

[
∆

(i)
T+j | r

(m)
•1 , . . . , r

(m)
•T , r

(f)
•1 , . . . , r

(f)
•T

] . (8.5)
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Paths of future m
(i)
x (T +k) can be simulated by (8.4). The corresponding one-year death

probabilities q
(i)
x,T+k and one-year survival probabilities p

(i)
x,T+k are easily obtained from

q
(i)
x,T+k = 1− p(i)

x,T+k = 1− exp
(
−m(i)

x (T + k)
)
.

Any quantity of interest can then be computed from these life tables.

8.2. Period life expectancies

We illustrate the forecasts of our mortality model on the basis of period life expectan-

cies. Using the predictive distribution (8.2)-(8.3) of the future ∆
(i)
T+k and the procedure

described above, predictions for future mortality rates are derived. The predicted period
life expectancy ê65(T + k) at age 65 in calendar year T + k can then be calculated using
the formula

ê65(T + k) =
1

2
+
∑
j≥1

j−1∏
l=0

p̂65+l,T+k. (8.6)

The predicted mortality improvements are applied on the last observation m
(i)
x (2010).

Table 8.1 shows point predictions ê65(2050) using formula (8.5) and also the point fore-
casts obtained by the Lee-Carter model are shown for comparison. We see that smooth-

ing the estimated age effects β
(i)
x has little impact on the life expectancy. Considering

the Lee-Carter forecast, applying the mortality reduction factors to the last observations
mx(2010) greatly affects the projected e65(T + k). In the remainder, all calculations are

done with smoothed β
(i)
x and Lee-Carter forecasts use m

(i)
x (T ) as an initial value instead

of the offsets α
(i)
x . In this case, the forecasts roughly agree.

Next, e65(2050) has been calculated for 3000 scenarios of simulated life tables for

year 2050. To stress the role of the age-common processes ∆
(i)
t and their Lee-Carter

counterparts (κ
(i)
t − κ

(i)
t−1), the noise terms in both models have been set to zero. The

empirical standard deviations of the simulated e65(2050) are listed in Table 8.2. Although

∆
(i)
t have larger standard deviations than their Lee-Carter counterparts, the opposite is

the case for the life expectancies. This might be counter-intuitive at first sight but it
is a consequence of the underlying ARMA structure. As the estimated autocorrelation

function of the time index is negative for lags of size one, large deviations of ∆
(i)
t are likely

to be followed by ∆
(i)
t+1 going into the opposite direction. By (8.4), the deviations cancel

out. On the other hand, mortality improvements are independent under the Lee-Carter
model. Thus, outliers remain and strongly impact the future life expectancy.

8.3. Robustness over successive forecasts

To conclude, let us show that the model proposed in the present thesis solves the
robustness issue mentioned in the introduction, when applied sequentially over the years.
To this end, we fit the model using data up to 2010 and update the predictive distribution
by using data up to years 2011 and 2012. This provides three forecasts of future mortality
that we compare together as well as to the Lee-Carter forecasts and the three official
forecasts published by Statistics Belgium over the same period. As Table 8.3 shows,
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Mo.3, MA(1) Mo.3, MA(1) Mo.5, ARMA(1,1) Mo.5, ARMA(1,1)
smoothed βx smoothed βx

male 22.2386 22.2610 22.5540 22.5793
female 25.7778 25.7691 25.3981 25.4147

Lee-Carter Lee-Carter
with mx(2010) with αx

male 21.9329 19.5003
female 25.3079 23.2666

Table 8.1. Point forecasts of period life expectancy in 2050

Mo.3, MA(1) Mo.5, ARMA(1,1) Lee-Carter

Male 0.9193 0.2848 0.7140
Female 0.6797 0.2425 0.8117

Table 8.2. Standard deviations of simulated life expectancies

Mo.3, MA(1) Mo.5, ARMA(1,1) Lee-Carter Official
male male male male

up to 2012 22.29 22.63 21.86 23.04
up to 2011 22.38 22.64 22.12 23.21
up to 2010 22.26 22.57 21.93 22.91

Mo.3, MA(1) Mo.5, ARMA(1,1) Lee-Carter Official
female female female female

up to 2012 25.71 25.41 25.16 25.12
up to 2011 25.84 25.43 25.41 25.29
up to 2010 25.79 25.40 25.30 25.00

Table 8.3. Predicted period life expectancies in year 2050 for different
observation periods.

our estimates are more stable than the other two. This is again a consequence of the
underlying ARMA structure, i.e. mortality improvements not being independent in time.

This effect is further illustrated in Figure 8.1. We have displayed there the forecasts
for e65(T + 1), . . . , e65(2015) with T = 2010, 2011 and 2012, starting from the latest
available e65(T ). It can be clearly seen that differences in the initial values are stabilized
over time for our model, whereas forecasts by Lee-Carter are just straight lines starting
from the different initial values.
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Figure 8.1. Comparison of predicted paths of period life expectancies.
From top to bottom, we compare predictions of Model 3, MA(1), to Lee-
Carter, Model 5, ARMA(1,1), to Lee-Carter and Model 5, ARMA(1,1),
to Statistics Belgium. The three consecutive lines are based on data up
to 2010, 2011 and 2012 respectively.
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fertigt habe und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie
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