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Abstract

In this thesis we address the implementation of collocationand Galerkin boundary element me-

thods (BEM) in two dimensions and the numerical evaluation of the arising nearly singular and

singular integrals. The focus is on methods that are based ona NURBS (non-uniform rational

b-splines) parametrization of the boundary, which we referto as NURBS-based methods. The

advantage of NURBS-based methods is that a geometric error is avoided, which is induced by

the boundary approximation in standard methods and diminishes the convergence of BEM.

The first part of this thesis is devoted to the derivation of new, stable algorithms for the accurate

and efficient numerical evaluation of the arising integrals. By exploiting the special structure

of the NURBS parametrization and by interpolating parts of the kernel functions by Legendre

polynomials, we are able to evaluate the boundary integral operators in a stable way. Apart from

weakly singular boundary integral operators, our algorithm can also be applied to singular and

hypersingular boundary integral operators.

The singular integrals arising in the assembly of the Galerkin matrices are regularized with coor-

dinate transformations and evaluated with adapted quadrature rules. For all arising integrals, an

exponential convergence of the error is proven and rigorouserror bounds are derived. We use

these bounds for the estimation of the consistency errors and the a priori computation of the

quadrature orders for Galerkin methods.

The algorithms for the numerical integration are used for the implementation of NURBS-based

methods in the second part of this dissertation. Our implementation is the first, which is known

to us, that can be used for solving boundary integral equations arising from Laplace, Lamé, and

Helmholtz problems with collocation and Galerkin methods on exact boundary parametrizati-

ons. Furthermore, it allows the use of different basis functions. The final numerical experiments

show that even for high degrees (p ≤ 128) of the polynomial basis functions accurate results are

obtained and practice-relevant problem can be efficiently solved.





Kurzzusammenfassung

Diese Arbeit beschäftigt sich mit der Implementierung derKollokations- und Galerkin-Rand-

elementmethode (BEM) in zwei Dimensionen sowie der numerischen Berechnung der auftre-

tenden fast-singulären und singulären Integrale. Der Fokus liegt dabei auf Methoden, die auf

einer NURBS (nicht-uniforme, rationale B-Splines) Parametrisierung des Randes basieren, kurz

NURBS-basierte Methoden. Der Vorteil von NURBS-basiertenMethoden liegt in der Vermei-

dung des geometrischen Fehlers, der bei Standardmethoden durch die Randapproximation ver-

ursacht wird und die hohe Genauigkeit der BEM beeinträchtigt.

Im ersten Teil der Arbeit werden neue, stabile Algorithmen für die genaue und effiziente nume-

rische Auswertung der auftretenden Integrale entwickelt.Indem wir die spezielle Struktur der

NURBS Parametrisierung ausnutzen und Teile der Kernfunktion mit Legendre Polynomen inter-

polieren, ermöglichen wir die stabile Auswertung der Randintegraloperatoren mit hoher Genau-

igkeit für alle Auswertungspunkte. Neben schwachsingul¨aren Randintegraloperatoren können

diese Algorithmen auch für die Auswertung von singulärenund hypersingulären Randintegral-

operatoren verwendet werden.

Die singulären Integrale, die bei der Berechnung der Galerkinmatrizen auftreten, werden durch

Koordinatentransformation regularisiert und mit angepassten Quadraturformeln ausgewertet. Für

alle auftretenden Integrale wird eine exponentielle Konvergenz des Fehlers bewiesen und es wer-

den rigorose Fehlerschranken hergeleitet. Wir verwenden diese Fehlerschranken für die Abschät-

zung des Konsistenzfehlers und die a-priori Berechnung derQuadraturordnungen bei Galerkin-

Methoden.

Die Algorithmen zur numerischen Integration werden im zweiten Teil der Arbeit für die Imple-

mentierung NURBS-basierter Methoden verwendet. Unsere Implementierung ist die erste uns

bekannte, die für das Lösen von Laplace, Lamé und Helmholtz Problemen mit Kollokations-

und Galerkin-Verfahren auf exakten Randparametrisierungen verwendet werden kann und ver-

schiedene Basisfunktionen unterstützt. Die numerischenExperimente zeigen schließlich, dass

auch für hohe Polynomgrade (p ≤ 128) der polynomialen Basisfunktionen akkurate Ergebnisse

erzielt und praxisrelevante Probleme effizient gelöst werden können.
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Introduction

The boundary element method (BEM) is a modern numerical method for the solution of bound-

ary integral equations (BIEs) arising in various fields of engineering, such as potential theory,

solid mechanics, acoustics, and electromagnetics. As compared to other methods for the solu-

tion of these problems, it has several advantages, particularly the natural treatment of unbounded

domains. However, the implementation of BEM is very challenging, because singular and nearly

singular integrals have to be evaluated up to a high accuracy. Therefore, in order to exploit the

full potential of BEM, efficient algorithms for the accuratenumerical integration are required.

Boundary integral equations can be solved with different approaches. In Galerkin BEM, the

variational formulation of the BIE is solved in a discrete ansatz space. For collocation BEM, the

BIE is evaluated at a given number of collocation points. Both approaches give rise to a system

of linear equations, which is solved numerically.

There are several versions of BEM. Inh-versions, the unknown solution is approximated by

piecewise low-order polynomials, typically polynomials of order p = 0 or p = 1, on fine

boundary meshes. Inp-versions, high-order polynomials are used for the approximation of the

solution on coarse meshes. A combination ofh- andp-versions is calledhp-BEM. While uni-

form h-methods yield an algebraic convergence with respect to thedegrees of freedom, uniform

p-methods have twice the convergence rate as compared to uniform h-methods ([StSu91]) and

even show an exponential decay for smooth solutions. For certain types ofhp-methods, an ex-

ponential decay of the error can also be observed for non-smooth solutions [Heu96].

In most existing BEM implementations, the exact boundary isapproximated by piecewise poly-

nomials, typically of orderq = 1 (polygonal boundaries) or orderq = 2, which induces a

geometric error. However, on complicated geometries arising in industrial applications a signif-

icant loss of accuracy of the numerical solution is observed. In order to eliminate the geometric

error, non-uniform rational b-spline (NURBS) parametrizations of the boundary are used for

the computation, generally based on models developed usingcomputer-aided design (CAD)

software. To see the impact of the geometric error on high-order BEM and the importance of

NURBS-based methods, we consider the following simple example of a BIE on a circle.

iii



Introduction

Model Problem

We consider the BIE arising from the Laplace problem

−∆u(x) = 0, x ∈ Ω :=

{
z ∈ R

2 : ‖z‖2 <
1

4

}
,

u(x) = x31x
2
2, x ∈ Γ :=

{
z ∈ R

2 : ‖z‖2 =
1

4

}
.

The BIE is solved numerically with a Galerkin method by a uniform h-refinement with poly-

nomial degreesp = 1 or p = 2. The boundary is discretized by polynomial approximations

of ordersq = 1, 2 and by an exact NURBS parametrization, respectively. Figure 1 shows

the point-wise absolute error of the solution|u(x∗) − uh(x∗)| for the arbitrarily chosen point

x∗ = (0.135,−0.143) ∈ Ω over the degrees of freedomN as well as the convergence rates

indicated by the numbers in the triangles.

degrees of freedom
101 102 103
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so
lu
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ro
r

10-20

10-15

10-10

10-5
       2      

       4      

       7      
       5      

p = 1, q = 1
p = 1, NURBS
p = 2, q = 2
p = 2, NURBS

Figure 1: Absolute error|u(x∗) − uh(x
∗)| with x∗ = (0.135,−0.143) over the degrees

of freedomN for uniform h-methods with linear, quadratic, and exact boundary

parametrizations.

It can be seen that the convergence rates obtained with the exact boundary representation are

diminished by the geometric error resulting from the polynomial boundary approximations. Par-

ticularly, high-order boundary approximations with degree q = p + 1 are required to obtain the

full convergence rates of the Galerkin error.

While standard BEM is well understood from a theoretical andpractical point of view, there

are still several open questions for NURBS-based BEM. In this work, we discuss some of these

challenges including:

• Accurate and efficient numerical evaluation of integrals arising in high-order NURBS-

based BEM
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• Efficient and stable implementation of NURBS-based collocation and Galerkin BEM

In the course of this dissertation, we discuss both aspects in more detail and elaborate on the

progress made in these areas of NURBS-based BEM.

Numerical Integration for NURBS-Based BEM

The solution of the boundary integral equations with NURBS-based methods requires the eval-

uation of nearly singular and singular integrals, which exist as Cauchy principle values or in

the sense of Hadamard finite parts. As the Galerkin error decays exponentially with respect

to the degrees of freedom on geometrically gradedhp-meshes [Heu96], an exponential decay

of the evaluation error is needed in order to preserve the convergence of the Galerkin method.

Hence, the evaluation of the integrals arising in NURBS-based BEM is numerically challenging.

Common techniques for the evaluation of these integrals areanalytic approaches, semi-analytic

approaches, and quadrature formulae. For polygonal boundary representations, approaches

for the analytic integration of the nearly singular and singular integrals are presented in e.g.

[RS07, Ban13, Mai96, Mai97, ST99]. While these analytic methods avoid the introduction of

a consistency error and provide the possibility of an accurate evaluation of the nearly singular

and singular integrals, their field of application is limited to simple boundary representations.

Furthermore, the analytic integration leads to cancellation effects for small integration domains

and high-order basis functions. This problem is addressed in [Ban13], where algorithms for the

stable analytic integration for high-order basis functions via three-term-recurrence relations are

developed.

Semi-analytic approaches split the integrand into regularand singular parts using kernel ex-

pansions, see e.g. [Sau92, HS93, SlSl98, NWW+05] and the references therein. While the

regular parts are evaluated with quadrature rules, the singular and nearly singular integrals are

evaluated analytically. For the numerical integration with quadrature rules, composite rules

[Sch94], adapted quadrature rules, and coordinate transformations [SlSl98, Tel86, TM74, Duf82,

SaSch97] are used for the evaluation of the nearly singular and singular integrals. Although an

exponential decay of the quadrature error is achieved, all three approaches have limitations in

the case of nearly singular integrals. Composite rules require the exact knowledge regarding the

location of the nearly singular point, adapted quadrature rules cannot be pre-computed and are

inefficient, and coordinate transformations do not eliminate the dependence of the quadrature

error on the near singularity which still results in a slow exponential convergence of the quadra-

ture error.
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In this work, we develop algorithms for the accurate and efficient numerical integration for all

integrals arising in high-order NURBS-based BEM includinga priori estimates for the absolute

error.

The accurate evaluation of the boundary integral operatorsis based on the classification of the

evaluation points in far-field, near-field, and singular points. In implementing NURBS-enhanced

methods, we use the Legendre polynomials as basis functionsof the polynomial ansatz space,

allowing us to evaluate all far-field integrals for high-order basis functions. With a Legendre

expansion of the kernel function and the orthogonality of the Legendre polynomials, we prove

that the error and the complexity are independent of the polynomial degreep. For the near-field

and singular integrals, we use the knowledge of the (near) singularity for splitting the kernel

function into regular and (nearly) singular parts. With Legendre expansions of the regular parts,

the evaluation of the potentials can be reduced to the evaluation of the basic integrals defined in

[Ban13]. As compared to the existing semi-analyitc approaches, our method is stable even for

high-order Legendre expansions, since efficient and stablealgorithms for the analytic evaluation

of these basic integrals are presented in [Ban13]. Furthermore, we prove that the convergence

rate only depends on the boundary parametrization but is independent of the evaluation point.

As an example, we consider the evaluation of the integral

I(x) := − 1

2π

∫

Γ
log |x− y| dsy (1)

for Γ = {x ∈ R
2 : x = (r cos(θ), r sin(θ)), r = 0.25, θ ∈ (0, π/2)} and two near-field points

x(D) = 1+4D
4
√
2
· (1, 1) with different distancesD to the boundary. We compare our algorithm

with the evaluation with the cubic Telles transformation, which is introduced in [Tel86] and pro-

posed for evaluation of the boundary integral equations in [SBT+12].

Figure 2 shows the absolute error over the evaluation ordern. A significant improvement can

be observed. Particularly, the integral is evaluated up to double machine precision with order

n ≈ 20 for both points using our algorithm.

For the evaluation of the double integrals arising in Galerkin methods, we regularize the singu-

lar integrals with a coordinate transformation introducedin [Duf82] and proposed for the use

of three-dimensional BEM in [SaSch97]. In contrast to the approach of Sauter and Schwab

[SaSch97], which is used in many software packages such as BEM++ and HyENA, we regu-

larize the remaining weakly singular integrals with an adapted quadrature rule instead of using

composite rules. Our approach has the advantage that the convergence of the quadrature error

depends only on the boundary parametrization, while the convergence of composite rules de-

pends significantly on the grading parameters [Sch94]. For all arising integrals, we are able

to prove an exponential decay of the quadrature error and provide a complete consistency error

analysis. Using the consistency error estimates, the quadrature orders are computed a priori such

that the convergence rates of the Galerkin method are not diminished by the consistency errors.
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This is the foundation for an efficient implementation of Galerkin methods.

order n
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r
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n
|

10-20

10-15

10-10

10-5

100

O(ρ−n
i )

D = 10−1

D = 10−1, Telles
D = 10−5

D = 10−5, Telles

Figure 2: Absolute error plotted against the ordern for the evaluation of (1) with two evalua-

tion points with different distancesD to the boundary. Comparison of our near-field

algorithm based on Legendre expansions and the Telles transformation [Tel86].

Implementation of NURBS-Based BEM

There are a variety of software packages implementing collocation and Galerkin boundary ele-

ment methods, such as BEMLIB [Poz02], BEM++ [ŚBA+15], HILBERT [AEF+14], epsBEM

[BBF13, Ban13], and HyENA [MMR+14] to mention a few but not all. All software pack-

ages feature the solution of specific BIEs, boundary representations, and basis functions. Except

for the implementation of isogeometric collocation BEM [Sim12], these software packages im-

plement polynomial boundary approximations of ordersq ∈ {1, 2, 3} and polynomial basis

functions. While most software packages focus on low-orderBEM, high-order methods are

considered in epsBEM [BBF13] and by Maischak [Mai96] for Laplace, Lamé, and Helmholtz

equations on polygonal boundaries.

Thus far, there has been no software package able to implement the full spectrum of NURBS-

based BEM including isogeometric and NURBS-enhanced methods, and collocation and Galerkin

approaches for various partial differential equations. This is the second issue addressed in this

work. With the algorithms for the efficient and accurate evaluation of the integrals arising in

NURBS-based collocation and Galerkin methods, we develop ablack box software package

that implements NURBS-based BEM for two-dimensional Laplace, Lamé, and Helmholtz equa-

tions. By considering fundamental solutions of a general type we are able to incorporate other
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PDEs such as the Stokes equation. With the variability of ourimplementation, particularly the

use of different types of basis functions, we use the implementation to investigate several open

issues of collocation and Galerkin BEM. Specifically, we present numerical results concerning

the choice of the collocation points for high-order methodsand the effect of the high inter-

element regularity of the ansatz functions used in isogeometric methods.

A NURBS parametrization of the boundary serves as the basis for the efficient solution of PDEs

on complicated domains, allowing us to represent these domains with few degrees of freedoms.

The stability of our implementation of high-order NURBS-enhanced methods for polynomial

degreesp ≤ 128 is achieved by using the Legendre polynomials and their antiderivatives as

basis functions. Hence, our implementation permits us to compute highly accurate solutions

of pratice-relevant problems in potential theory, linear elasticity, and acoustic scattering. As an

example we consider two problems in linear elasticity (Figure 3) and acoustic scattering (Figure

4), respectively.

−5

−10

−15

−20

−25

Figure 3: NURBS parametrization of the boundary with control polygon and boundary con-

ditions (left) and shear energy density on displaced domain(right). The material co-

efficients correspond to plexiglass (E = 2900, ν = 0.4) and the displacement

is scaled by a factor of 500.

Figure 3 shows the solution of the mixed traction and displacement problem in linear elasticity,

which is computed by solving the Lamé equation with mixed boundary conditions. The work-

piece is fixed at the bottom side and the arrows indicate the applied traction. The right picture

shows the shear energy density on the displaced workpiece, which is computed with 21 elements

and polynomial degreep = 16.
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Figure 4 shows the scattering of an acoustic plane wave with wave numberκ = 10, which cor-

responds to the solution of the Helmholtz equation. The direction of the incoming plane wave as

well as the geometry of the obstacle are depicted in the left picture. The right picture shows the

total acoustic wave comprised of the incoming and the scattered wave. The solution is computed

with 12 elements and polynomial degreep = 32.

Figure 4: NURBS parametrization with control polygon and direction of incoming wave (left)

and total acoustic wave consisting of incoming and scattered wave with wave num-

berκ = 10 (right).

Outline

In the first chapter we introduce the function spaces, boundary integral operators, and boundary

integral equations for Laplace, Lamé, and Helmholtz equations. We also summarize the main

existing results for collocation and Galerkin methods, introduce the geometrically gradedhp-

meshes, and present standard a priori estimates for collocation and Galerkin methods.

The second chapter serves as foundation for the efficient implementation of NURBS-based

boundary element methods. After introducing orthogonal polynomials and reviewing their main

properties, we introduce quadrature rules for the numerical integration. The traditional method

for computing Gauss quadrature nodes and weights is the Golub-Welsh algorithm, which ex-

ploits the three term-recurrence relation satisfied by all real orthogonal polynomials. The relation

gives rise to a symmetric tridiagonal matrix, whose eigenvalues are the nodes of the quadrature

rule. The weights can be easily computed by the corresponding eigenvectors [GW69]. Besides

the Gauss-Legendre quadrature we also consider a Gauss quadrature with respect to a logarith-
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mic weight function, which we refer to as Gauss-Log quadrature. For the stable computation of

the nodes and weights of the Gauss-Log quadrature we use the modified Chebyshev algorithm

[Gau10] and modified moments, for which we derive explicit formulae [BF14]. Furthermore, we

derive error estimates for the Gauss quadrature rules, which are based on the remainder theory of

analytic functions [DR75]. While we present the standard error estimate for the Gauss-Legendre

quadrature, we also propose a new error bound for the Gauss-Log quadrature based on numeri-

cal experiments.

The ansatz spaces for NURBS-based boundary element methodsare presented in Chapter 3.

After defining NURBS curves and summarizing their basic properties, we introduce the basis

functions used for isogeometric and NURBS-enhanced methods. Furthermore, we discuss al-

gorithms used for different mesh refinement strategies including uniformh-, p-, and geometric

hp-refinements as well as the uniformk-refinement [HCB05]. At the end of this chapter, the reg-

ularity of NURBS curves is analyzed. Particularly, we explicitly compute the size of the largest

ellipse in which the NURBS parametrizations can be analytically extended. As the semi-axis

sums of these ellipses occur in the error estimates for Gaussquadrature rules, this information

is the foundation for an a priori error analysis in NURBS-based BEM.

Chapter 4 is concerned with the derivation of algorithms forthe efficient and accurate numerical

integration in NURBS-based BEM. We discuss the accurate evaluation of the boundary integral

operators for all evaluation pointsx ∈ R
2. Based on Legendre expansions of the kernel and

parts of the kernel, an exponential decay of the error with optimal rate is proven for regular,

nearly singular, and singular integrals. We also explore the assembly of the Galerkin matri-

ces. For the singular integrals, we combine the coordinate transformations introduced by Sauter

and Schwab [SaSch97] with the Gauss-Log quadrature and prove an exponential decay of the

quadrature error for all integrals. For NURBS-enhanced BEM, where Legendre polynomials are

chosen as ansatz functions, we deriveh- andp-asymptotic error estimates, which we use in the

subsequent consistency error analysis. Finally, we present formulae for the a priori computation

of the quadrature orders, which is the key for the efficient implementation of Galerkin methods.

Lastly, we present a black box software package implementing of NURBS-based BEM in Chap-

ter 5. For NURBS-enhanced collocation methods, we present numerical experiments for the

appropriate choice of the collocation points based on optimization problems. The effect of the

high inter-element regularity of the isogeometric ansatz functions is investigated for Galerkin

methods, particularly we present new results concerning uniform k-methods. The final nu-

merical experiments show the stability of our implementation for high-order NURBS-enhanced

methods withp ≤ 128. While also for low-order isogeometric methods accurate results are ob-
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tained, the implementation is restricted to moderate polynomial degrees due to the exponential

growth of the condition number of the system matrix with respect to the polynomial degree. On

geometrically gradedhp-meshes an exponential decay of the error can be observed forcolloca-

tion and Galerkin methods.

As a visual guide to the discussion that follows, Figure 5 shows an overview on the chapters

in this work and their relationships.

                 Chapter 1: 

Analytical Basics and Notation 

             Chapter 2: 

Orthogonal Polynomials and 

    Gauss Quadrature Rules

            Chapter 3: 

 High-Order NURBS-based 

Boundary Element Methods

                 Chapter 4: 

      Numerical Integration for  

High-Order NURBS-based BEM

                      Chapter 5: 

Implementation and Numerical Results

Figure 5: Overview on the chapters in this work and the relationships between the chapters.
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1. Analytical Basics and Notation

The notation and basic theoretical results used in this workare introduced in this chapter. The

first section is devoted to the definition of function spaces.In the second section we give a short

introduction to boundary integral equations before we apply the general results to the boundary

integral equations (BIE) arising from three partial differential equations (PDE), that we consider

throughout this work, namely the Laplace, the Lamé, and theHelmholtz equation. In the third

section, we introduce different boundary meshes and ansatzspaces. Finally, we discuss the

numerical solution of boundary integral equations using collocation and Galerkin methods.

1.1. Function spaces

For the definition of Lebesgue and Sobolev spaces for domainsand boundaries of domains, we

only state the main results and refer to [AF03] for a detaileddiscussion of Sobolev spaces.

Ω
−

Ω
+

Γ

νx

βz

Figure 1.1.: Lipschitz domainΩ− and its complementΩ+. The unit normal vector atx ∈ Γ

pointing fromΩ− to Ω+ is denoted byνx, the interior angle at each cornerz by βz.

Throughout this section we denote byΩ− ⊂ R
2 a bounded Lipschitz domain and byΓ ⊆ ∂Ω−

the boundary ofΩ− or a connected subset of the boundary∂Ω−. Furthermore, we introduce

the complement ofΩ− by Ω+ := R
2\Ω−. The boundary of a Lipschitz domain can locally be

represented by a Lipschitz continuous function andΩ− is locally only on one side ofΓ. This

implies thatΩ+ is an unbounded Lipschitz domain if it is connected. For a detailed definition

1



1. Analytical Basics and Notation

we refer to [SaSch04, McL00].

Let k ∈ N0, m ∈ N, Ω ∈ {Ω−,Ω+} be connected, andu : Ω → C
m. We writeu ∈ Ck(Ω)m

if each component ofu is k times continuously differentiable. Furthermore, we introduce the

spaceC∞(Ω)m of all infinitely differentiable functions by

C∞(Ω)m :=
⋂

k∈N0

Ck(Ω)m.

The space of allCk(Ω)m (k ∈ N0∪{∞}) functions with compact support is denoted byCk0 (Ω)m.

We define the Lebesgue spaceL1(Ω)m of all measurable and integrable functions, i.e.
∫

Ω
|ui(x)| dx <∞ ∀ i = 1, ...,m.

The space of all locally integrable functions is denoted byL1
loc(Ω)

m. We define the Lebesgue

spaceL2(Ω)m of all measurable functions, which satisfy
∫

Ω
|ui(x)|2 dx <∞ ∀ i = 1, ...,m.

The Lebesgue spaceL2(Ω)m equipped with theL2 scalar product

(u, v)L2(Ω)m :=

∫

Ω
u(x)

T
v(x) dx ∀u, v ∈ L2(Ω)m

is a Hilbert space. Furthermore, theL2 scalar product induces a norm onL2 as follows

‖u‖2L2(Ω)m := (u, u)L2(Ω)m .

The space of all locally integrableL2 functions is given by

L2
loc(Ω)

m := {u : Ω→ C
m measurable: u|K ∈ L2(K)m,∀K ⊆ Ω compact}.

We denote the space of all essentially bounded functions byL∞(Ω)m.

For singular functions, we introduce the Cauchy principle value and the Hadamard finite part.

Let aj ∈ C with Re aj ≥ 0 andaj 6= ak for j 6= k. If a functiong satisfies

g(ε) =

n∑

j=1

bj
εaj

+ bn+1 log ε+ bn+2 + o(1) for ε→ 0,

then the termbn+2 is called thefinite part of g(ε) asε → 0, i.e. f.p. limε→0 g(ε) = bn+2. If

no singular terms are present,b1 = ... = bn+1 = 0, andg exists as a limit, we call the limit the

Cauchy principle value, i.e. p.v. limε→0 g(ε) = bn+2.

Sobolev spaces on domains.For notational convenience, we restrict to scalar functions for

the introduction of Sobolev spaces. For vector valued functions we refer to [McL00, Chapter 3]

and add the superscript indexm to all function spaces. In order to define Sobolev spaces we first

introduce weak partial derivatives.
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1.1. Function spaces

Definition 1.1.1. We call u ∈ L1
loc(Ω) weakly differentiable if there exists a function∂iu ∈

L1
loc(Ω) (i = 1, 2) such that

(u, ∂iv)L2(Ω) = −(∂iu, v)L2(Ω) ∀ v ∈ C∞0 (Ω).

Remark 1.1.2. If u ∈ L2(Ω) has a weak derivative and ifu is differentiable on a subset ofΩ in

the classical sense, then the weak and the classical derivative coincide almost everywhere on the

subset. In the following we writeDk for thek-th (weak) derivative,∇u := (∂1u, ∂2u) for the

weak gradient, and(∇u,∇v)L2(Ω) = (∂1u, ∂1v)L2(Ω) + (∂2u, ∂2v)L2(Ω).

Definition 1.1.3. (i) We identify the Sobolev spaceH0(Ω) with the Lebesgue spaceL2(Ω).

Furthermore, we define

H1(Ω) := {u ∈ L2(Ω) : u is weakly differentiable with∇u ∈ L2(Ω)2},

which is equipped with the scalar product

(u, v)H1(Ω) := (u, v)L2(Ω) + (∇u,∇v)L2(Ω).

The scalar product induces a norm onH1(Ω) which is given by

‖u‖2H1(Ω) = (u, u)H1(Ω) = ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω).

Higher order Sobolev spaces are defined recursively fork ∈ N by

Hk(Ω) = {u ∈ L2(Ω) : u is weakly differentiable with∇u ∈ Hk−1(Ω)2}

and are associated with the scalar product and norm

(u, v)Hk(Ω) = (u, v)L2(Ω) + (∇u,∇v)Hk−1(Ω),

‖u‖2Hk(Ω) = (u, u)Hk(Ω) = ‖u‖2L2(Ω) + ‖∇u‖2Hk−1(Ω).

(ii) The space of all localHk functions is defined by

Hk
loc(Ω) := {u : Ω→ R measurable: u|K ∈ Hk(K),∀K ⊆ Ω compact}.

Theorem 1.1.4([BS08, Theorem 1.3.4]). For k ∈ N0, the spacesC∞(Ω) ∩Hk(Ω) andC∞(Ω)

are dense subspaces ofHk(Ω).

We define fractional order Sobolev spaces using the Sobolev-Slobodeckij semi-norm as follows.

Definition 1.1.5. (i) Let s ∈ (0, 1) andk ∈ N0. We define the scalar product

(u, v)Hs(Ω) :=

∫

Ω

∫

Ω

(u(x) − u(y))(v(x)− v(y))
|x− y|2+2s

dx dy,

3



1. Analytical Basics and Notation

which induces the Sobolev-Slobodeckij semi-norm

|u|2Hs(Ω) = (u, u)Hs(Ω).

The fractional order Sobolev spaceHk+s(Ω) is defined by

Hk+s(Ω) := {u ∈ Hk(Ω) : |Dku|Hs(Ω) <∞}.

A norm onHk+s(Ω) is induced by the scalar product

(u, v)Hk+s(Ω) := (u, v)Hk(Ω) + (Dku,Dkv)Hs(Ω).

(ii) We define the spacẽHk+s(Ω) as the closure ofC∞0 (Ω) in Hk+s(Rn).

Theorem 1.1.6([AF03, Theorem 3.5]). For k ≥ 0, Hk(Ω) equipped with the scalar product

(·, ·)Hk(Ω) is a Hilbert space.

Sobolev spaces with negative orders are defined as the dual spaces of the Sobolev spaces with

positive orders. The Riesz representation theorem leads tothe following definition of dual spaces

with the extendedL2 scalar product.

Definition 1.1.7. Fork ≥ 0, we denote bỹH−k(Ω) the dual space ofHk(Ω) with respect to the

extendedL2 scalar product〈·, ·〉H̃−k(Ω)×Hk(Ω). The norm onH̃−k(Ω) is given by the dual norm

‖u‖H̃−k(Ω) := sup
06=v∈Hk(Ω)

∣∣〈u, v〉H̃−k(Ω)×Hk(Ω)

∣∣
‖v‖Hk(Ω)

.

Similarly the spaceH−k(Ω) can be defined as the dual space ofH̃k(Ω)

Whenever it is clear which spaces are involved we write〈·, ·〉 for the extendedL2 scalar product.

Sobolev spaces on boundaries.Sobolev spaces on the boundary or a subset of the boundary are

defined through a local parametrization. The idea is to definethese spaces by Sobolev spaces

on the parameter domain and lifting up. We only state the mainfacts and refer to [SaSch04,

Chapter 2.4] for a detailed discussion.

For a Lipschitz domainΩ, the boundaryΓ can be locally parametrized by a Lipschitz-continuous

function, which allows the construction of Sobolev spacesHk(Γ) for k ≤ 1. For the construc-

tion of higher order Sobolev spaces smoother boundaries areneeded. For Lipschitz domains

Ω with a boundary that can be locally parametrized by a Höldercontinuous function of order

(k − 1, 1), shortCk domains, the Sobolev spacesHk(Γ) can be defined. Here, we are only

interested in the spaceHs(Γ), s ∈ [0, 1].

For the definition of the dual space of the Sobolev space we again use the Riesz representation

4



1.2. Boundary Integral Equations

theorem. Fors ∈ (0, 1), the spaceH−s(Γ) is defined as the dual space ofH̃s(Γ) and the norm

onH−s(Γ) as the dual norm

‖u‖H−s(Γ) := sup
06=v∈H̃s(Γ)

|〈u, v〉
H−s(Γ)×H̃s(Γ)

|
‖v‖

H̃s(Γ)

.

Here,〈·, ·〉H−s(Γ)×H̃s(Γ) denotes the extendedL2 scalar product.

Trace operators. For Lipschitz domainsΩ, we can define trace operators on Sobolev spaces

Hk(Ω) in order to obtain an analytic representation of Sobolev functions on the boundary.

Theorem 1.1.8([McL00, Theorems 3.37, 3.38]). LetΩ be a Lipschitz domain with boundaryΓ

ands ∈ (1/2, 3/2). There exists a linear bounded operatorγ0 : Hs(Ω)→ Hs−1/2(Γ) with

γ0u = u|Γ ∀u ∈ C∞(Ω).

Furthermore, we can define the one-sided trace operators byγ−0 : Hs(Ω−) → Hs−1/2(Γ) and

γ+0 : Hs(Ω+)→ Hs−1/2(Γ) .

Remark 1.1.9. With the previous theorem, the spaceH1/2(Γ) is characterized as the trace space

of H1(Ω), i.e.H1/2(Γ) = {γ0u : u ∈ H1(Ω)}.

We further introduce the co-normal derivative for a linear,second-order, and self-adjoint partial

differential operatorL with associated sesquilinear formb(·, ·) : H1(Ω) × H1(Ω) → C. Let

Hk
L(Ω) := {v ∈ Hk

loc : Lv ∈ L2
loc(Ω) in a weak sense}. The co-normal derivative can be

defined using Green’s first identity as follows.

Lemma 1.1.10([SaSch04, Theorem 2.2.7]). Let Ω ∈ {Ω−,Ω+} be a Lipschitz domain with

boundaryΓ. Then, the co-normal derivativeγ1 : H1
L(Ω)→ H−1/2(Γ) with

〈γ1u, γ0v〉 = σΩ

(
b(u, v)− 〈Lu, v〉H̃−1(Ω)×H1(Ω)

)
∀v ∈ H1

loc(Ω)

is continuous. Here, we setσΩ = 1 for interior domainsΩ = Ω− andσΩ = −1 for exterior

domainsΩ = Ω+.

For the one sided co-normal derivatives we writeγ+1 andγ−1 depending on the domainΩ+ and

Ω−, respectively.

1.2. Boundary Integral Equations

In order to apply the boundary element method to an elliptic partial differential equation (PDE),

the PDE has to be transformed into an equivalent boundary integral equation. This can be done

for all partial differential operators for which a fundamental solution can be calculated. While
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1. Analytical Basics and Notation

Ehrenpreis [Ehr54] proved the existence of a fundamental solution for all partial differential

operators with constant coefficients, they are not known explicitly for all PDEs. In this work

we are interested in the two-dimensional Laplace, Lamé, and Helmholtz operators, for which

the fundamental solutions are known explicitly and hence the boundary element method can be

applied.

In the remainder of this section, we denote byL an elliptic, linear, second-order, self-adjoint

partial differential operator and a fundamental solution of L by G(x, y) = G(x − y). Further,

we assume that the domainΩ ∈ {Ω−,Ω+}, in which the partial differential equation is solved,

is a connected Lipschitz domain, but may contain holes. The boundaryΓ is divided into the

Dirichlet boundaryΓD and the Neumann boundaryΓN with Γ = ΓD ∪ ΓN . We are interested

in solving the homogenous interior or exterior mixed problem

Lu = 0 in Ω±,

γ±0 u = ψD onΓD,

γ±1 u = ϕN onΓN .

(1.1)

We also consider the Dirichlet problem, i.e.Γ = ΓD and the Neumann problem, i.e.Γ = ΓN .

For exterior problems, the solution has to satisfy an appropriate radiation condition.

The main theorem is the representation theorem for the interior and exterior problems, which

states that the solution of (1.1) is uniquely determined by its Cauchy data, specifically the trace

and the co-normal derivative ofu.

Theorem 1.2.1(Interior representation formula, [SaSch04, Theorem 3.1.6]). For u ∈ H1(Ω−)

withLu = 0 there holds almost everywhere inΩ−

u(x) =

∫

Γ
G(x− y) γ−1 u(y) dsy −

∫

Γ
γ−1,yG(x− y) γ−0 u(y) dsy. (1.2)

A similar result can be stated for exterior Laplace and Helmholtz problems with an appropri-

ate condition at infinity, which is called the Sommerfeld radiation condition in the case of the

Helmholtz equation.

Theorem 1.2.2(Exterior representation formula, [CS85b, Lemma 3.5]). Let κ ∈ C andu ∈
H1(Ω+) with−∆u− κ2u = 0 and




u(x) = O(|x|−1/2), ∂u(x)

∂|x| − iκu = o(|x|−1/2), |x| → ∞, κ 6= 0

u(x) = a∞ + b∞
2π log |x|, |x| → ∞, a∞, b∞ ∈ C, κ = 0.

(1.3)

Then, there holds almost everywhere inΩ+ for κ 6= 0

u(x) = −
∫

Γ
G(x− y) γ+1 u(y) dsy +

∫

Γ
γ+1,yG(x− y) γ+0 u(y) dsy (1.4)

and forκ = 0

u(x) = −
∫

Γ
G(x− y) γ+1 u(y) dsy +

∫

Γ
γ+1,yG(x− y) γ+0 u(y) dsy + a∞. (1.5)
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1.2. Boundary Integral Equations

The two integral operators arising in the representation theorems are called thesingle layer

potential

(Ṽϕ)(x) :=
∫

Γ
G(x− y)ϕ(y) dsy x ∈ R

2\Γ,

which is well defined forϕ : Γ→ C
m, and thedouble layer potential

(K̃ψ)(x) :=
∫

Γ
γ1,yG(x− y)ψ(y) dsy x ∈ R

2\Γ,

which is well defined forψ : Γ→ C
m.

In the sequel, we state some important properties of the single and the double layer potentials,

but refer to [SaSch04, Chapter 3] and [McL00, Chapter 7] for adetailed analysis.

Theorem 1.2.3(Single layer potential). (i) The single layer potential is a linear bounded op-

erator withṼ : H−1/2(Γ)m → H1
loc(R

2)m and∀ϕ ∈ H−1/2(Γ)m there holds

L(Ṽϕ) = 0 weakly inR
2\Γ.

(ii) The tracesγ±0 Ṽ : H−1/2(Γ)m → H1/2(Γ)m andγ±1 Ṽ : H−1/2(Γ)m → H−1/2(Γ)m are

linear bounded operators and satisfy the jump relations

[[γ0Ṽϕ]] := γ+0 Ṽϕ− γ−0 Ṽϕ = 0,

[[γ1Ṽϕ]] := γ+1 Ṽϕ− γ−1 Ṽϕ = −ϕ.
(1.6)

We state a similar result for the double layer potential.

Theorem 1.2.4(Double layer potential). (i) The double layer potential is a linear bounded

operator withK̃ : H1/2(Γ)m → H1
loc(R

2)m ∩H1(Ω)m and∀ψ ∈ H1/2(Γ)m there holds

L(K̃ψ) = 0 weakly inR
2\Γ.

(ii) The tracesγ±0 K̃ : H1/2(Γ)m → H1/2(Γ)m and γ±1 K̃ : H1/2(Γ)m → H−1/2(Γ)m are

linear bounded operators and satisfy the jump relations

[[γ0K̃ψ]] := γ+0 K̃ψ − γ−0 K̃ψ = ψ,

[[γ1K̃ψ]] := γ+1 K̃ψ − γ−1 K̃ψ = 0.
(1.7)

In general, not the complete Cauchy dataϕ := γ1u andγ0u are known onΓ. While for Dirichlet

problems the traceγ0u onΓ is known (Dirichlet boundary conditions), the co-normal derivative

ϕ is given onΓ for Neumann problems (Neumann boundary conditions). For mixed problems

the trace is only known onΓD and the co-normal derivative is only known onΓN . In order

to compute the solutionu in Ω the missing Cauchy data have to be determined. Therefore, we
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1. Analytical Basics and Notation

derive integral equations by applying the trace operators to the representation formulas (1.2) and

(1.4) (or (1.5)), i.e.

γ0u = σΩ(γ0Ṽϕ− γ0K̃ψ) (1.8)

γ1u = σΩ(γ1Ṽϕ− γ1K̃ψ) (1.9)

or for the exterior Laplace problem

γ0u = −γ0Ṽϕ+ γ0K̃ψ + a∞ (1.10)

γ0u = −γ0Ṽϕ+ γ0K̃ψ + a∞. (1.11)

Here,σΩ is defined as in Lemma 1.1.10. The jump relations (1.6) and (1.7) motivate the defini-

tion of the following integral operators on the boundaryΓ:

• thesingle layer operator: V := γ−0 Ṽ ,

• thedouble layer operator: K := 1/2 + γ−0 K̃,

• theadjoint double layer operator: K′ := −1/2 + γ−1 Ṽ,

• thehypersingular integral operator: W := −γ−1 K̃.

Equations (1.6) and (1.7) directly imply

V = γ+0 Ṽ and K′ = 1/2 + γ+1 Ṽ

as well as

K = γ+0 K̃ − 1/2 and W = −γ+1 K̃.

Remark 1.2.5. The operatorsV andW are well-defined for allx ∈ Γ, whereas the operatorsK
andK′ are only defined almost everywhere onΓ, i.e. if Γ is differentiable in a neighborhood.

For a cornerx we denote byβ the interior angle (cf. Figure 1.1) and get the relations

(Kψ)(x) =
(
1− β

2π

)
ψ(x) + γ−0 K̃ψ(x),

(Kψ)(x) = − β

2π
ψ(x) + γ+0 K̃ψ(x),

and

(K′ϕ)(x) := − β

2π
ϕ(x) + γ−1 Ṽϕ(x),

(K′ϕ)(x) :=
(
1− β

2π

)
ϕ(x) + γ+1 Ṽϕ(x).

8



1.2. Boundary Integral Equations

An explicit representation of the integral operators and mapping properties are stated in the

following theorem.

Theorem 1.2.6([McL00, Theorems 7.1, 7.4]). (i) The boundary integral operators

V : H−1/2(Γ)m → H1/2(Γ)m, K : H1/2(Γ)m → H1/2(Γ)m,

K′ : H−1/2(Γ)m → H−1/2(Γ)m, W : H1/2(Γ)m → H−1/2(Γ)m

are linear and bounded.

(ii) For ϕ ∈ L∞(Γ)m we get

(Vϕ)(x) =
∫

Γ
G(x− y)ϕ(y) dsy .

Letx ∈ Γ andΓ beC2-regular in a neighborhood ofx. If we define

B(x, ε) := {y ∈ Γ : |x− y| < ε}, ε > 0,

then we have for allϕ ∈ H−1/2(Γ)m andψ ∈ H1/2(Γ)m

(Kψ)(x) = lim
ε→0

∫

Γ\B(x,ε)
γ1,yG(x− y)ψ(y) dsy,

(K′ϕ)(x) = lim
ε→0

∫

Γ\B(x,ε)
γ1,xG(x− y)ϕ(y) dsy ,

(Wψ)(x) = −f.p. lim
ε→0

∫

Γ\B(x,ε)
γ1,xγ1,yG(x− y)ψ(y) dsy .

By settingϕ := γ±1 u and definingσΩ as in Lemma 1.1.10, we rewrite Equations (1.8) and (1.9)

and obtain the Caldéron system

(
u

ϕ

)
=

(
1/2 − σΩK σΩV
σΩW 1/2 + σΩK′

)(
u

ϕ

)
(1.12)

and for exterior Laplace problems

(
u

ϕ

)
=

(
1/2 +K −V
−W 1/2 −K′

)(
u

ϕ

)
+

(
a∞

0

)
. (1.13)

In the sequel, we describe how the Caldéron system can be used to compute the missing Cauchy

data for Dirichlet, Neumann, and mixed problems. For simplicity, we omit the exterior Laplace

problem and remark that the constanta∞ has to be added to the appropriate integral equations.
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1. Analytical Basics and Notation

Dirichlet problem. If Dirichlet boundary conditions are imposed, i.e.u is given onΓD := Γ,

then the first equation of the Caldéron system can be used to compute the missing Neumann data

ϕ := γ±1 u. This leads to Symm’s integral equation

σΩVϕ = (1/2 + σΩK)u. (1.14)

We also consider (1.14) in a more general settingVϕ = f , f ∈ H1/2(Γ)m.

Neumann problem. For Neumann boundary conditions, i.e.ϕ := γ±1 u on ΓN := Γ, we

rearrange the second equation of the Caldéron system and obtain the hypersingular integral

equation

σΩWu = (1/2 − σΩK′)ϕ. (1.15)

In a general setting we will considerWu = f , f ∈ H−1/2(Γ)m.

Mixed problem. For mixed boundary value problems the boundary is split intoΓD andΓN

with Γ = ΓD ∪ ΓN and |ΓD| > 0. The Dirichlet datauD := γ±0 u|ΓD
is imposed onΓD and

extended toΓ by zero such thatuD ∈ H1/2(Γ). The Neumann dataϕN := γ±1 u|ΓN
is given on

ΓN and extended toΓ by zero such thatϕN ∈ H−1/2(Γ). The missing Cauchy data(uN , ϕD)

can be represented by

(
uN

ϕD

)
=

(
γ±0 u

γ±1 u

)
−
(
uD

ϕN

)

and are computed by rearranging the full Caldéron system asfollows

A
(
uN

ϕD

)
=

(
1

2
−A

)(
uD

ϕN

)
, A := σΩ

(
−K V
W K′

)
. (1.16)

The operatorA, called the Caldéron projector, maps the spaceH := H̃1/2(ΓN ) × H̃−1/2(ΓD)

to its dual spaceH′ := H̃1/2(ΓD)× H̃−1/2(ΓN ). The duality product ofH andH′ is given by

〈(uD, ϕN ), (uN , ϕD)〉H′×H := 〈ϕD, uD〉ΓD
+ 〈ϕN , uN 〉ΓN

,

where〈·, ·〉ΓD
and 〈·, ·〉ΓN

denote the extendedL2 scalar product onΓD andΓN . Further, a

norm onH can be defined by

‖(uN , ϕD)‖2H := ‖uN‖2H̃1/2(ΓN )
+ ‖ϕD‖2H−1/2(ΓD)

.
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1.3. BIEs for Elliptic Partial Differential Operators

1.3. BIEs for Elliptic Partial Differential Operators

In this section, we introduce boundary integral equations for the three partial differential opera-

tors that we consider in this work, namely the Laplace, the Lamé, and the Helmholtz operators.

We only summarize the main results, a detailed description and analysis of all three operators

can be found in [McL00, Chapters 8, 9 and 10]. For the Helmholtz equation we also refer to

[CK83, SaSch04], more details on Lamé problems are given in[Ste03].

Laplace equation. For a functionu : Ω± → R the Laplace operator is given byLu := −∆u.

The associated bilinear form is given byb(u, v) = 〈∇u,∇v〉 and the co-normal derivative co-

incides with the normal derivative, i.e.γ1u = ∂u/∂ν. Here,ν denotes the unit normal vector

pointing from the interior domainΩ− to the exterior domainΩ+, see Figure 1.1. A fundamental

solution is given by

G(x− y) = − 1

2π
log |x− y|.

Under the assumptions of Theorem 1.2.6 the integral operators V, K, K′, andW have the fol-

lowing explicit representations

(Vϕ)(x) = − 1

2π

∫

Γ
log |x− y|ϕ(y) dsy ,

(Kψ)(x) = 1

2π

∫

Γ

(x− y)T νy
|x− y|2 ψ(y) dsy,

(K′ϕ)(x) = − 1

2π

∫

Γ

(x− y)T νx
|x− y|2 ϕ(y) dsy

(Wψ)(x) = − 1

2π

(
−f.p.

∫

Γ

νTx νy
|x− y|2ψ(y) dsy +

∫

Γ

νTx (x− y) (x− y)T νy
|x− y|4 ψ(y) dsy

)
.

The next theorem summarizes important properties of the integral operators of the Laplace equa-

tion.

Theorem 1.3.1([McL00, Theorems 8.16, 8.20]). LetV,K,K′, andW be the integral operators

of the Laplace equation. The following statements hold.

(i) If the capacity ofΓ, capΓ, is smaller than one, the operatorV isH−1/2-elliptic, i.e. there

existsC > 0 such that

〈Vϕ,ϕ〉 ≥ C‖ϕ‖2
H−1/2(Γ)

∀ϕ ∈ H−1/2(Γ).

(ii) Let Γ1, ...,Γn denote the connected pieces of the boundaryΓ. The null space of the hyper-

singular operator is given bykerW = span{χ1, ..., χn}, where the indicator functionsχk

are defined by

χk =




1 onΓk

0 onΓ\Γk.

11



1. Analytical Basics and Notation

The operatorW is elliptic onH1/2
∗ (Γ) := {v ∈ H1/2(Γ) : 〈v,w〉 = 0 ∀w ∈ kerW},

i.e. there existsC > 0 such that

〈Wψ,ψ〉 ≥ C‖ψ‖2
H1/2(Γ)

∀ψ ∈ H1/2
∗ (Γ).

(iii) For all ψ1, ψ2 ∈ H1/2(Γ), there holds

〈Wψ1, ψ2〉 =
〈
V ∂ψ1

∂s
,
∂ψ2

∂s

〉
,

where ∂
∂s denotes the arc length derivative.

(iv) The operatorK′ is the adjoint of the double layer operatorK, i.e. 〈Kψ,ϕ〉 = 〈ψ,K′ϕ〉 for

all ϕ ∈ H−1/2(Γ), ψ ∈ H1/2(Γ).

For a definition of the capacity of the boundary we refer to [McL00, Theorem 8.15], [SlSp88],

and [Dij08], but we mention thatdiam(Ω−) < 1 implies capΓ < 1. Hence the ellipticity of the

single layer operator can be guaranteed by an appropriate scaling of the domain.

Lamé equation. The Lamé equation is a system of elliptic second order partial differential

equations, which describes problems in linear elasticity.

We denote byu : Ω− → R
2 the displacement field of an elastic medium. Furthermore, we

introduce the strain tensorE := 1
2

(
∇u+∇uT

)
∈ R

2×2 and the stress tensorσ ∈ R
2×2. For a

linear homogenous and isotropic elastic medium, the stain-stress relationship, known as Hook’s

law, reads

σ(u) = 2µE(u) + λdiv(u) I .

Here, we denote byI the two dimensional identity matrix and byλ, µ ∈ R the Lamé coefficients.

We assumeµ > 0 andλ + 2µ > 0 in order to obtain a strongly elliptic partial differential

operator.

In the state of equilibrium all forces add up to zero, i.e. there holds

div σ + f = 0,

where we denote byf : Ω→ R
2 the body force density and write

div σ :=

(
∂/∂x1 σ11 + ∂/∂x2 σ12

∂/∂x1 σ21 + ∂/∂x2 σ22

)
.

The Lamé equation is now given by

Lu := −µ∆u− (λ+ µ)∇(div u) = f in Ω−.

12



1.3. BIEs for Elliptic Partial Differential Operators

The associated bilinear form readsb(u, v) =
∫
Ω− tr(σ(u)TE(v)) dx. With the first Betty iden-

tity the explicit representation of the co-normal derivative can be derived, i.e.γ1u = σ(u) ν,

whereν denotes the unit normal vector as depicted in Figure 1.1. Hence, imposing Neumann

boundary conditions corresponds to fixing the traction in normal direction on the boundary.

An explicit representation of a fundamental solution of theLamé equation, the Kelvin matrix,

reads

G(x− y) = 1

4πµ(λ+ 2µ)

(
−(3µ + λ) log |x− y| I+(λ+ µ)

(x− y)(x− y)T
|x− y|2

)
. (1.17)

For the co-normal derivatives of the fundamental solution and the explicit representation of the

integral operatorsV, K, K′, andW we refer to Appendix A. We collect the main properties of

the integral operators of the Lamé equation in the next theorem.

Theorem 1.3.2([McL00, Theorem 10.7], [GS93, Appendix]). Let V, K, K′, andW be the

integral operators of the Laḿe equation.

(i) The single layer operatorV isH−1/2-elliptic, i.e. there existsC > 0 such that

〈Vϕ,ϕ〉 ≥ C‖ϕ‖2
H−1/2(Γ)2

∀ϕ ∈ H−1/2(Γ)2.

(ii) Let Ω− be simply connected. The null space of the hypersingular operator is given by

kerW = span{(1, 0), (0, 1), (x2 ,−x1) : x ∈ Γ}.

W is elliptic onH1/2
∗ (Γ)2 := {v ∈ H1/2(Γ)2 : 〈v,w〉 = 0 ∀w ∈ kerW}, i.e. there

existsC > 0 such that

〈Wψ,ψ〉 ≥ C‖ψ‖2
H1/2(Γ)2

∀ψ ∈ H1/2
∗ (Γ)2.

(iii) For all ψ1, ψ2 ∈ H1/2(Γ)2, we have the identity

〈Wψ1, ψ2〉 =
〈
V∗∂ψ1

∂s
,
∂ψ2

∂s

〉
,

where ∂
∂s denotes the arc length derivative and

(V∗ϕ)(x) = µ(µ+ λ)

π(λ+ 2µ)

∫

Γ

(
− log |x− y| I+(x− y)(x− y)T

|x− y|2
)
ϕ(y) dsy . (1.18)

(iv) The operatorK′ is the adjoint of the double layer operatorK, i.e. 〈Kψ,ϕ〉 = 〈ψ,K′ϕ〉 for

all ϕ ∈ H−1/2(Γ)2, ψ ∈ H1/2(Γ)2.

Physically, the null space of the hypersingular operator consists of all rigid body motions, i.e. the

translations inx1 andx2 direction and the rotation. Hence, the solution of the interior Neumann

13



1. Analytical Basics and Notation

problem is unique up to strain-free displacements that are comprised of the rigid body motions.

For multi-connected domains with holes, the null space is spanned by all rigid body motions of

each connected piece of the boundary.

Helmholtz equation. For acoustic wave propagation in a homogenous medium with speed

of soundc and damping coefficientγ the velocity potentialU satisfies, in the linearized theory,

the dissipative wave equation

∂2U

∂t2
+ γ

∂U

∂t
− c2∆U = 0. (1.19)

The space dependent partu : Ω → C of a time-harmonic solution of (1.19) with frequency

ω > 0 satisfies the Helmholtz equation

Lu := −∆u− κ2u = 0. (1.20)

Here,κ2 = ω(ω+iγ)
c2

∈ C\{0} is called the wave number, whereIm(κ) ≥ 0 corresponds to

damping andIm(κ) < 0 corresponds to excitation of the wave. Within this work, we consider

damped waves and hence chooseκ with Im(κ) ≥ 0. For κ ∈ R, the Helmholtz operator is

self-adjoint.

The sesquilinear form of the Helmholtz operator is given byb(u, v) = 〈∇u,∇v〉−
∫
Ω κ

2u v dx.

Green’s identity directly implies that the co-normal derivative is given byγ1u = ∂u/∂ν.

Before we state important properties of the integral operators, we first give a result for the solv-

ability of the interior and exterior Helmholtz problems. Therefore, we define the set of all interior

Dirichlet and Neumann eigenvalues of the Laplace operator by

MD := {λ ∈ C : ∃v ∈ H1(Ω−)\{0},−∆v = λv in Ω−, γ−0 v = 0 onΓ}, (1.21)

MN := {λ ∈ C : ∃v ∈ H1(Ω−)\{0},−∆v = λv in Ω−, γ−1 v = 0 onΓ}. (1.22)

Theorem 1.3.3(Interior Helmholtz problem, [CK83, Theorems 3.20, 3.24]). Letf ∈ H̃−1(Ω−).

(i) For g ∈ H1/2(Γ), the interior Dirichlet problem

−∆u− κ2u = f in Ω−, γ−0 u = g onΓ

has a unique solutionu ∈ H1(Ω−) if and only ifκ2 6∈MD.

(ii) For g ∈ H−1/2(Γ), the interior Neumann problem

−∆u− κ2u = f in Ω−, γ−1 u = g onΓ

has a unique solutionu ∈ H1(Ω−) if and only ifκ2 6∈MN .

14



1.3. BIEs for Elliptic Partial Differential Operators

Theorem 1.3.4(Exterior Helmholtz problem, [McL00, Theorem 9.11]). Let f ∈ H̃−1(Ω+)

have compact support.

(i) For g ∈ H1/2(Γ), the exterior Dirichlet problem

−∆u− κ2u = f in Ω+, γ+0 u = g onΓ

has a unique solutionu ∈ H1
loc(Ω

+), if the radiation condition(1.3) is satisfied.

(ii) For g ∈ H−1/2(Γ), the exterior Neumann problem

−∆u− κ2u = f in Ω+, γ+1 u = g onΓ

has a unique solutionu ∈ H1
loc(Ω

+), if the radiation condition(1.3) is satisfied.

An explicit representation of a fundamental solution of theHelmholtz equation is given by the

Hankel function

G(x− y) = i

4
H

(1)
0 (κ|x− y|).

The main properties of the Hankel function and the representation of all integral operators are

collected in Appendix A.

We state some important properties of the integral operators in the following theorem.

Theorem 1.3.5([SaSch04, Theorems 3.9.1, 3.9.8], [CS85b, Lemma 3.9]). LetV,K,K′, andW
be the integral operators of the Helmholtz equation. The following statements hold.

(i) The null space of the single layer operator is given by

kerV = {γ−1 v : −∆v = κ2v in Ω−, γ−0 v onΓ}.

The operatorV is invertible if and only ifκ2 6∈MD.

(ii) The single layer operator can be decomposed into an elliptic and a compact operator, i.e.

V = V0 + TV ,

whereV0 denotes the single layer operator of the Laplace problem andTV : H−1/2(Γ)→
H1/2(Γ) is compact.

(iii) There holdskerW = {γ−0 v : −∆v = κ2v in Ω−, γ−1 v onΓ} and hence the hypersingular

operator is invertible if and only ifκ2 6∈MN .

(iv) The hypersingular operator can be decomposed into an elliptic and a compact operator,

i.e.

W =W0 + TW ,

whereW0 denotes the hypersingular operator of the Laplace problem andTW : H1/2(Γ)→
H−1/2(Γ) is compact.
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(v) For all ψ1, ψ2 ∈ H1/2(Γ), there holds

〈Wψ1, ψ2〉 =
〈
V ∂ψ1

∂s
,
∂ψ2

∂s

〉
− κ2〈Vψ1ν, ψ2ν〉,

where ∂
∂s denotes the arc length derivative.

(vi) The operatorK′ is the adjoint of the double layer operatorK, i.e. 〈Kψ,ϕ〉 = 〈ψ,K′ϕ〉 for

all real-valued functionsϕ ∈ H−1/2(Γ), ψ ∈ H1/2(Γ).

Properties (ii) and (iv) imply thatV andW are Fredholm operators with index zero. This is used

for the proof of the existence of a unique solution in the subsequent sections.

Remark 1.3.6. For all wave numbersκ ∈ C\{0}, the existence of a unique solution of exterior

problems is guaranteed. Since the integral operatorsV andW are not invertible for all wave

numbers, the integral equations (1.14), (1.15), and (1.16)are not solvable and cannot be used for

the computation of the missing Cauchy data ifκ2 ∈MD or κ2 ∈MN .

To remedy this problem there are various different approaches, see [BW65, Pan65, Lei65,

BM71] to name a few but not all. We only state the approach by Brakhage and Werner [BW65]

for the exterior Dirichlet problem. The idea is to chooseη ∈ R such thatηRe(κ) > 0. For

x ∈ Ω+ andϕ := γ+1 u, we set

u = K̃ϕ− iηṼϕ.

It can be proven that the solutionu satisfies the Sommerfeld radiation condition andLu = 0 in

Ω+. The jump relations of the single and the double layer potentials yield the boundary integral

equation

(1/2 +K − iηV)ϕ = u. (1.23)

The invertibility of the operator1/2+K−iηV is proven in [BW65] if the boundaryΓ is globally

smooth. Hence, the missing Neumann data can be computed with(1.23). We stress that for non-

smooth boundaries the invertibility of the operator1/2 +K− iηV is still an open question. The

problem is that ifΓ is not smooth the potentials̃V andK̃ have different domains of definition.

However, we do not go into detail on alternative boundary integral formulations, but assume

κ2 6∈MD ∪MN throughout this work.

1.4. Triangulation and Discrete Spaces

In order to numerically solve the boundary integral equations introduced in Section 1.2, we

consider finite-dimensional subspaces of the involved Sobolev spaces.

Let Ω− ⊂ R
2 be a bounded Lipschitz domain with boundaryΓ and its complementΩ+ =

R
2\Ω−. Γ is divided into relative open and disjoint sub boundaries, i.e. the Dirichlet and
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Neumann boundary. We consider the casesΓ := ΓD (Dirichlet problem),Γ := ΓN (Neumann

problem) andΓ := ΓD ∪ ΓN (mixed problem). For the discretization of the boundary we

introduce a triangulation.

Definition 1.4.1. (i) A triangulationT is defined by

T :=

{
Ti, i = 1, ...,Ne, Γ =

Ne⋃

i=1

Ti, |Ti ∩ Tj | = 0 for i 6= j.

}
.

We refer toTi ∈ T as boundary elements and callNe = |T | the number of elements. If

the boundary is divided into the Dirichlet and Neumann boundaries, we assume that each

boundary elementT ∈ T either belongs toΓD or ΓN and introduce the triangulations of

the sub-boundaries by

TD := {T ∈ T : |T ∩ ΓD| > 0} and

TN := {T ∈ T : |T ∩ ΓN | > 0} .

In particular, we haveT = TD ∪ TN andTD ∩ TN = ∅.

(ii) For a given triangulation, we denote byMv the set of all element end-points, which we

call nodes, and byNv := |Mv | the number of nodes.

(iii) We assume that each boundary elementTi ∈ T is parametrized by a bijective Lipschitz-

continuous functionγi : [−1, 1]→ Ti with smooth inverse.

(iv) Let h ∈ L∞(Γ) be the mesh-width function withh|int(Ti) = |Ti| =: hi, where|Ti| denotes

the arc length of the elementTi. Further, we introduce the mesh-width ratio

σ(h) := max

{
hi
hj
, Ti, Tj ∈ T , Ti ∩ Tj 6= ∅

}
.

(v) Let p ∈ L∞(Γ) be the polynomial degree function withp|int(Ti) =: pi ∈ N0.

(vi) Let k ∈ L∞(Γ) be the regularity function withk(xj) =: kj ∈ Z with k(xj) ≥ 0,

xj ∈Mv.

We are now in the position to introduce the discrete ansatz spaces that we use for the implemen-

tation.

Definition 1.4.2. Let T , h ∈ L∞(Γ), p ∈ L∞(Γ), andk ∈ L∞(Γ) as defined in Definition

1.4.1. We denote the space of all functions that arekj times continuously differentiable at each

nodexj ∈Mv by Ck(Γ), j = 1, ...,Nv . The finite-dimensional ansatz spaces are defined by

S(T ,h,p,k) := {ϕ ∈ Ck−1(Γ) : ϕ|Ti ◦ γi ∈ Ppi([−1, 1]), i = 1, ...,Ne} (1.24)

R(T ,h,p,k) ⊂ {ϕ ∈ Ck−1(Γ) : ϕ|Ti ◦ γi ∈ Rpi([−1, 1]), i = 1, ...,Ne}. (1.25)
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1. Analytical Basics and Notation

Here,Pp andRp denote the space of all polynomials and rational functions with degreep ∈ N0,

respectively. We denote the dimension of the ansatz spaces by N .

Remark 1.4.3. The discrete spacesS(T ,h,p,0) ⊂ H−1/2(Γ) of globally discontinuous func-

tions andS(T ,h,p,1) ⊂ H1/2(Γ) of globally continuous functions are the spaces used for

classical Galerkin BEM on polygons. The spaceS(T ,h,p,p) is widely used for collocation

methods and the rational spaceR(T ,h,p,k) is used for isogeometric methods ( see Section

3.2).

We further introduce the ansatz spaceSσ
ϑ := S(Tϑ,hϑ,p

σ,k) with respect to a geometrically

gradedhp-mesh. Given a mesh grading parameterϑ ∈ (0, 1), the boundaryΓ is divided geomet-

rically towards a corner. In particular, we obtainhi/hj = ϑ for neighboring elementsTi andTj ,

whereTi is the element closer to the corner. The polynomials degree vectorpσ is constructed

as follows. At the smallest element near the corner we setp = 0 and increase the polynomial

degree linearly with slopeσ ∈ N. The two examples of a unit circle and a smoothened L-shaped

domain, that we consider within the scope of this work, are illustrated in Figure 1.2.

1.5. Collocation Methods

In this section we introduce collocation methods for solving the boundary integral equations

(1.14), (1.15), and (1.16). We first derive fully discrete formulations for the Dirichlet, Neumann,

and mixed problems and then go into detail on the existence ofa unique solution and a priori

error estimates.

1.5.1. Discrete Collocation BEM

The idea of collocation methods is, that the involved Sobolev spaces are substituted by finite-

dimensional subspaces and the integral equation is fulfilled at a discrete number of collocation

points.

Let Xℓ ⊂ H−1/2(Γ) andYℓ ⊂ H1/2(Γ) be two of the finite-dimensional ansatz spaces de-

fined in Definition 1.4.2 with bases{Φ1, ...,ΦN } and{Ψ1, ...,ΨM}. We denote byMC,X =

{x1, ..., xN } ⊂ Γ andMC,Y = {y1, ..., yM} ⊂ Γ the sets of collocation points with respect to

the spacesXℓ andYℓ.

Symm’s integral equation.Symm’s integral equation reads

σΩ(Vϕ)(x) = (σΩK + 1/2)u(x), u ∈ H1/2(Γ)

18



1.5. Collocation Methods

6

0

3

1

2

0

3

2

1

5

7

7

6

5

4

4

(a) Geometrichp-grid on the unit circle. The numbers indicate the

polynomial degree on each element.
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(b) Geometrichp-grid on the smoothened L-shaped domain. The num-

bers indicate the polynomial degree on each element.

Figure 1.2.: Examples of geometrichp-grid and polynomial degree vectors withϑ = 0.5 and

σ = 1, that can be used for geometrichp-refinements.
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with σΩ as in Lemma 1.1.10 or in the general setting

(Vϕ)(x) = f(x), f ∈ H1/2(Γ).

The discrete problem is then given by:

Findϕh ∈ Xℓ such that

σΩ(Vϕh)(xj) = (σΩK + 1/2)u(xj), j = 1, ...,N ,
(or (Vϕh)(xj) = f(xj), j = 1, ...,N .)

Projecting the Dirichlet data onYℓ, i.e. uh :=
∑M

k=1 ukΨk, and writingϕh =
∑N

k=1ϕkΦk we

obtain the system of linear equations

σΩVϕ = (σΩK+ 1/2 MX)u

(or Vϕ = f .)

Here,V := (Vjk)k,j=1,...,N with Vjk := (VΦk)(xj) andK := (Kjk)
k=1,...,M
j=1,...,N with Kjk :=

(KΨk)(xj) denote the collocation matrices of the single and the doublelayer operators and the

mass matrix is given byMX := (Mjk)
k=1,...,M
j=1,...,N andMjk := Ψk(xj). The entries of the right-

hand side vectorf are given byfj = f(xj), j = 1, ...,N .

The hypersingular integral equation. Recall that the hypersingular integral equation reads

σΩ(Wu)(x) = (1/2 − σΩK′)ϕ(x), ϕ = γ±1 u ∈ H−1/2(Γ)

or in the general setting

(Wu)(x) = f(x), f ∈ H−1/2(Γ).

The discrete problem is then given by:

Finduh ∈ Yℓ such that

σΩ(Wuh)(yj) = (1/2 − σΩK′)ϕ(yj), j = 1, ...,M,

(or (Wuh)(yj) = f(yj), j = 1, ...,M.)

Projecting the Neumann data onXℓ, i.e.ϕh :=
∑N

k=1ϕkΦk, and writinguh =
∑M

k=1 ukΨk we

obtain the system of linear equations

σΩWu = (1/2 MY − σΩA)ϕ

(or Wu = f .)

Here,W := (Wjk)k,j=1,...,M with Wjk := (WΨk)(yj) andA := (Ajk)
k=1,...,N
j=1,...,M with Ajk :=

(K′Φk)(yj) denote the collocation matrices of the hypersingular and the adjoint double layer

operators. The mass matrix is given byMY := (Mjk)
k=1,...,N
j=1,...,M andMjk := Φk(yj) and the

entries of the right-hand side vectorf by fj = f(yj), j = 1, ...,M.
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Remark 1.5.1. Since the null space of the hypersingular operator is non-trivial, appropriate

conditions have to be introduced in order to solve the discrete problem. Within the scope of this

work, we consider the hypersingular integral equation on anopen arc for the Laplace equation

and imply that the solutionuh vanishes at both endpoints.

Mixed problem. With the notation of Section 1.2 (paragraph mixed problem) the integral equa-

tion, which we solve for mixed boundary conditions reads

A
(
uN

ϕD

)
=

(
1

2
−A

)(
uD

ϕN

)
. (1.26)

We assumeMC,X ⊂ ΓD as well asMC,Y ⊂ ΓN . The ansatz space is given byYℓ,N×Xℓ,D ⊂ H.

With the notation of the previous two paragraphs we obtain the following discrete problem

σΩ

(
−KΓD×ΓN

VΓD×ΓD

WΓN×ΓN
AΓN×ΓD

)(
uN

ϕD

)
=

(
1

2

(
MX 0

0 MY

)
− σΩ

(
−K V

W A

))(
uD

ϕN

)
.

(1.27)

1.5.2. A Priori Error Analysis

In order to derive a priori estimates for all above considered integral equations simultaneously,

we consider the general problem

Au = f onΓ (1.28)

with a bijective Fredholm operatorA with index zero, i.e.A = A0 + K can be decomposed

into an elliptic and a compact operator. This assumption guarantees thatA satisfies the Gårding

inequality. We stress that the single layer and the hypersingular operator for Laplace, Lamé, and

Helmholtz problems are of this type, see Theorems 1.3.1, 1.3.2, and 1.3.5.

The following theorem states a result concerning the solvability of the discrete problem and

gives anh-asymptotic a priori error estimate for the numerical solution.

Theorem 1.5.2([AW83, Theorem 2.1.5]). Let Γ be analytic andp be uniform and odd, i.e.

p = 2j − 1 with j ∈ N. We choseα such thatA : Hj+α(Γ) → Hj−α(Γ) and the collocation

points to be the nodes, i.e.MC :=Mv withMv as defined in Definition 1.4.1 (ii).

Providedj − α < 1/2, the discrete problem

Auh(xk) = f(xk) ∀xk ∈MC . (1.29)

has a unique solutionuh ∈ S(T ,h,p,p) with

‖u− uh‖Hj+α(Γ) ≤ C inf
vh∈S(T ,h,p,p)

‖u− vh‖Hj+α(Γ). (1.30)
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If u ∈ Hs(Γ), j + α ≤ s ≤ α, then

‖u− uh‖Hj+α(Γ) ≤ Chs−j−α‖u‖Hs(Γ). (1.31)

with a constantC > 0.

Remark 1.5.3. (i) The proof of Theorem 1.5.2 is based on the derivation of anequivalent

Galerkin formulation on which the Céa Lemma can be applied.Using the well-known

approximation estimates for the spline spaceS(T ,h,p,p) the a priori estimate (1.31) is

obtained. The restrictionj − α < 1/2 arises since we requireS(T ,h,p,p) ⊂ Hj−α(Γ)

andAuh ∈ C(Γ).

(ii) The theorem requires strong assumptions, i.e. a smoothboundary, only odd degree basis

functions of highest regularity and collocation only at endpoints. Thus, it can only be

applied to a small class of problems.

However, similar results are proven in [SW85] for even degree basis functions where the

collocation points are chosen as element midpoints. In [CS85a] piecewise smooth bound-

aries are investigated. Using weighted Sobolev spaces estimates similar to (1.31) are de-

rived for lowest order basis functions, i.e.p = 0 andp = 1. In [Sch86, Dom03] theε

collocation method is introduced which allows to choose more general uniform collocation

points. In particular, convergence is proven for collocation points that are shifted byε > 0

and positioned between the end and mid points.

(iii) An open issue is the convergence and the a priori estimates for non-smooth splines, i.e.

for S(T ,h,p,k) andR(T ,h,p,k) with k < p. Further, it is not clear how to choose the

collocation points for the general caseS(T ,h,p,k), since more than one collocation point

has to be chosen on each element. We will address the optimal choice of the collocation

points in Chapter 5.

For Symm’s integral equation of Laplace problems on the slitΓ = (−1, 1), a p-asymptotic

estimate is given in [SlSt92]. Therefore, we introduce the Sobolev-type norms fors ∈ R by

‖u‖Ĥs(Γ) :=
(π
2

)1/2
(
1

2
|u0|2 +

∞∑

k=1

k2s|uk|2
)
,

whereuk, k ∈ N0 denote the coefficients of the Chebyshev expansion ofu. The spaceĤs(Γ)

is defined as the closure of the set of all polynomials with respect to this norm. Forω(x) =

(1− x2)−1/2 andv = ω u, a second Sobolev-type norm is defined by

‖v‖Hs
(Γ) := ‖u‖Ĥs(Γ).
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1.6. Galerkin Methods

Theorem 1.5.4([SlSt92, Theorem 2]). LetΓ = (−1, 1) andf ∈ Ĥt+1(Γ). For p ∈ N0, there

exists a solutionϕh ∈ ωPp of

(Vϕh)(xj) = f(xj), j = 1, ..., p,

wherexj denote the zeros of thep-th Chebyshev polynomial. Furthermore, ift > −1/2 and

t ≥ s, then for the exact solutionϕ ∈ Ht
(Γ), there holds

‖ϕ− ϕh‖Hs
(Γ) ≤ c p−min{t−s,t+1}‖f‖Ĥt+1(Γ).

Remark 1.5.5. A corresponding result is also proven for the hypersingularintegral equation on

the slit in [ES92]. Here, the basis functions are chosen to bethe Chebyshev polynomials of the

second kind and their zeros are chosen as the collocation points.

1.6. Galerkin Methods

Galerkin methods are another approach for solving the boundary integral equations derived in

Section 1.2. The first part of this section is devoted to the derivation of numerical schemes for

the solution of the boundary integral equations with a Galerkin method, while in the second part

we state important results for the a priori error estimation.

1.6.1. Discrete Galerkin BEM

Throughout this section letXℓ ⊂ H−1/2(Γ) andYℓ ⊂ H1/2(Γ) be two of the discrete spaces

introduced in Definition 1.4.2 with bases{Φ1, ...,ΦN } and{Ψ1, ...,ΨM}, respectively. We in-

vestigate the boundary integral equations (1.14), (1.15) and (1.16), separately.

Symm’s integral equation.Recall that Symm’s integral equation reads

σΩ(Vϕ)(x) = (σΩK + 1/2)u(x), u ∈ H1/2(Γ)

with σΩ as in Lemma 1.1.10 or in the general setting

(Vϕ)(x) = f(x), f ∈ H1/2(Γ).

The variational formulations are given by:

Foru ∈ H1/2(Γ) (or f ∈ H1/2(Γ)), findϕ ∈ H−1/2(Γ) such that

〈σΩVϕ, v〉 = 〈(σΩK + 1/2)u, v〉, ∀v ∈ H−1/2(Γ)

(or 〈Vϕ, v〉 = 〈f, v〉, ∀v ∈ H−1/2(Γ) ).
(1.32)
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1. Analytical Basics and Notation

We obtain a discrete problem by consideringXℓ ⊂ H−1/2(Γ) instead ofH−1/2(Γ) in (1.32):

Foru ∈ H1/2(Γ) (or f ∈ H1/2(Γ)), findϕh ∈ Xℓ such that

σΩ〈Vϕh,Φj〉 = 〈(σΩK+ 1/2)u,Φj〉, ∀j = 1, ...,N ,
(or 〈Vϕh,Φj〉 = 〈f,Φj〉, ∀j = 1, ...,N ).

(1.33)

In order to obtain a fully discretized problem, we project the Dirichlet data onYℓ, i.e. u =
∑M

k=1 ukΨk. Writing ϕh =
∑N

k=1ϕkΦk we get the systems of linear equations

σΩVϕ = (σΩK+ 1/2M)u

(or Vϕ = f ).

Here, the matricesV := (Vjk)j,k=1,...,N with Vjk := 〈VΦk,Φj〉 andK := (Kj,k)
j=1,...,N
k=1,...,M

with Kjk := 〈KΨk,Φj〉 denote the Galerkin matrices of the single and the double layer opera-

tors. The entries of the mass matrixM := (Mjk)
j=1,...,N
k=1,...,M are given byMjk := 〈Ψk,Φj〉. The

vectorf is defined byfk = 〈f,Φj〉, k = 1, ...,N .

The hypersingular integral equation. The hypersingular integral equation (1.15) reads

σΩ(Wu)(x) = (1/2 − σΩK′)ϕ(x), ϕ = γ±1 u ∈ H−1/2(Γ)

with σΩ as in Lemma 1.1.10 or in the general setting

(Wu)(x) = f(x), f ∈ H−1/2(Γ).

Since the hypersingular operatorW isH1/2
∗ -elliptic for the Laplace and the Lamé equation we

consider the variational formulation in this space. For Helmholtz problems we setH1/2
∗ (Γ) =

H1/2(Γ). We have:

Forϕ ∈ H−1/2(Γ) (or f ∈ H−1/2(Γ)), findu ∈ H1/2
∗ (Γ) such that

σΩ〈Wu, v〉 = 〈(1/2 − σΩK′)ϕ, v〉, ∀v ∈ H1/2
∗ (Γ)

(or 〈Wu, v〉 = 〈f, v〉, ∀v ∈ H1/2
∗ (Γ) ).

(1.34)

The formulation (1.34) is not straight-forward to use for the implementation and we therefore

introduce a modified sesquilinear form. Let{wj , j = 1, .., n} be a basis ofkerW. Then,

〈〈u, v〉〉W+S := 〈Wu, v〉 +
n∑

j=1

〈u,wj〉 〈v,wj〉.

The modified variational formulation reads:

Forϕ ∈ H−1/2(Γ) (or f ∈ H−1/2(Γ)), findu ∈ H1/2(Γ) such that

σΩ〈〈u, v〉〉W+S = 〈(1/2 − σΩK′)ϕ, v〉, ∀v ∈ H1/2(Γ)

(or 〈〈u, v〉〉W+S = 〈f, v〉, ∀v ∈ H1/2(Γ) ).
(1.35)

The next lemma states the equivalence of both variational formulations.
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1.6. Galerkin Methods

Lemma 1.6.1([Ste03]). A functionu ∈ H1/2(Γ) solves(1.34)if and only ifu solves(1.35).

We obtain a discrete problem by consideringYℓ ⊂ H1/2(Γ) instead ofH1/2(Γ) in (1.35):

Forϕ ∈ H−1/2(Γ) (or f ∈ H−1/2(Γ)), finduh ∈ Yℓ such that

σΩ〈〈uh,Ψj〉〉W+S = 〈(1/2 − σΩK′)ϕ,Ψj〉, ∀j = 1, ...,M,

(or 〈〈uh,Ψj〉〉W+S = 〈f,Ψj〉, ∀j = 1, ...,M ).
(1.36)

In order to obtain a fully discretized problem, we project the Neumann data onXℓ, i.e. ϕ =
∑N

k=1ϕkΦk. Writing uh =
∑M

k=1 ukΨk we get the systems of linear equations

(W + S)u = (1/2MT − σΩKT
)ϕ

(or (W + S)u = f ).

Here,K,M, andf are defined as in the previous paragraph. The matrixW := (Wjk)j,k=1,...,M

withWjk = 〈WΨk,Ψj〉 is the Galerkin matrix of the hypersingular operator andS := (Sjk)j,k=1,...,M

with Sjk :=
∑n

i=1〈Ψk, wi〉〈Ψj , wi〉 is the stabilization matrix.

Remark 1.6.2.The general solutioñuh of the hypersingular integral equation can be represented

by

ũh = uh +

n∑

j=1

aj wj .

whereuh solves Equation (1.36). To fix the constantsaj we require the scaling conditions

〈ũh, wj〉 = αj, whereαj are arbitrary but fixed. For benchmark examples, where the exact

solutionu is known, we chooseαj = 〈u,wj〉. If {wj , j = 1, .., n} is an orthogonal basis of

kerW we get

αj = 〈u,wj〉 = 〈ũh, wj〉 = aj 〈wj , wj〉

and henceaj =
〈u,wj〉
〈wj ,wj〉 . If the exact solution is not known we substituteu by Vϕ−Kuh.

The mixed problem. With the notation of Section 1.2 (paragraph mixed problem) the boundary

integral equation (1.16) for the mixed problem reads

A
(
uN

ϕD

)
=

(
1

2
−A

)(
uD

ϕN

)
. (1.37)

The variational formulation is given by

〈A(uN , ϕD), (v,w)〉H′×H = 〈(1/2 −A)(uD, ϕN ), (v,w)〉H′×H, ∀(v,w) ∈ H. (1.38)
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1. Analytical Basics and Notation

To discretize the variational formulation we proceed as in the previous two paragraphs. We

replace the spaceH by the ansatz spaceYℓ,N ×Xℓ,D ⊂ H, where the indices indicate that the

spaces are only defined onTN andTD, respectively. With the projections of the Dirichlet and

Neumann data on the ansatz space we obtain the following numerical scheme

Ã

(
ϕD

uN

)
=

(
1

2

(
0 M

MT 0

)
−A

)(
ϕN

uD

)
(1.39)

with

Ã := σΩ

(
VΓD×ΓD

−KΓD×ΓN

KT
ΓN×ΓD

WΓN×ΓN

)
and A := σΩ

(
V −K
KT W

)
.

The indices in the matrix̃A indicate that the Galerkin matrices are restricted to the basis func-

tions with support inΓD andΓN , respectively.

1.6.2. A Priori Error Analysis

In this section we state a priori error estimates for the discrete solution obtained by solving the

variational formulations (1.32), (1.35) and (1.38). We start with stating two results for the unique

solvability of the variational formulations in the generalHilbert space framework.

Let X be a Hilbert space with its dualX ′ andf ∈ X ′. We further assume that the linear and

bounded operatorA : X → X ′ can be decomposed in an elliptic and a compact operator, i.e.

A = A0 + T . We consider the variational formulation

a(u, v) := 〈A0u, v〉 + 〈Tu, v〉 = 〈f, v〉 ∀v ∈ X. (1.40)

For ℓ ∈ N, we introduce a sequence of finite dimensional subspacesXℓ ⊂ X with Xℓ ⊂ Xℓ+1,

dimXℓ →∞ for ℓ→∞, and
⋃

ℓ∈NXℓ
‖·‖X

= X. The discrete variational formulation reads

a(uℓ, vℓ) := 〈A0uℓ, vℓ〉+ 〈Tuℓ, vℓ〉 = 〈f, vℓ〉 ∀vℓ ∈ Xℓ. (1.41)

The next theorem gives the existence and the quasi-optimality of a unique solution.

Theorem 1.6.3([SaSch04, Theorem 4.2.9]). If the sesquilinear form corresponding toA0 is

X-elliptic anda is injective, i.e.

〈A0u, v〉+ 〈Tu, v〉 = 0 ∀v ∈ X\{0} ⇒ u = 0,

then(1.40)has a unique solutionu ∈ X for all f ∈ X ′. Furthermore, there existsℓ0 ∈ N, such

that the discrete variational formulation(1.41)has a unique solutionuℓ ∈ Xℓ for all ℓ ≥ ℓ0.

For ℓ ≥ ℓ0 the solutionsuℓ converge quasi-optimal tou, i.e.

‖u− uℓ‖X ≤ C min
uℓ∈Xℓ

‖u− vℓ‖X . (1.42)
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1.6. Galerkin Methods

In practice, the variational formulation (1.41) cannot be solved exactly, since quadrature rules

are applied to numerically evaluate the arising integrals.Therefore, we solve the perturbed

variational formulation

ã(uℓ, vℓ) := 〈Ã0uℓ, vℓ〉+ 〈T̃ uℓ, vℓ〉 = 〈f̃ , vℓ〉 ∀vℓ ∈ Xℓ. (1.43)

Before we state the next theorem, called Strang’s Lemma, that takes the approximation error

into consideration, we introduce a second stronger norm‖ · ‖U onX, i.e. ‖uℓ‖X ≤ C‖uℓ‖U for

all uℓ ∈ Xℓ.

Theorem 1.6.4([SaSch04, Theorem 4.2.1]). Let the sesquilinear form corresponding toA0 be

X-elliptic and

〈A0u, v〉+ 〈Tu, v〉 = 0 ∀v ∈ X\{0} ⇒ u = 0.

If the sesquilinear form̃a satisfies the stability condition

‖a(uℓ, vℓ)− ã(uℓ, vℓ)‖ ≤ C̃‖uℓ‖X ‖vℓ‖X ∀uℓ, vℓ ∈ Xℓ

and the consistency condition with respect to the stronger norm ‖ · ‖U

‖a(uℓ, vℓ)− ã(uℓ, vℓ)‖ ≤ Cℓ‖uℓ‖U ‖vℓ‖X ∀uℓ, vℓ ∈ Xℓ,

then there existsℓ0 ∈ N such that for allℓ ≥ ℓ0 the perturbed formulation(1.43) is stable and

has a unique solutioñuℓ ∈ Xℓ which satisfies

‖u− ũℓ‖X .

{
inf

wℓ∈Xℓ

(‖u− wℓ‖X + Cℓ ‖wℓ‖U ) + sup
06=vℓ∈Xℓ

|〈f, vh〉 − 〈f̃ , vh〉|
‖vh‖X

}
. (1.44)

We stress that the two theorems stated above can be applied tothe integral equations (1.32),

(1.35) and (1.38) for Laplace, Lamé, and Helmholtz equations under the assumptions of Theo-

rems 1.3.1, 1.3.2, and 1.3.5. This guarantees the unique solvability and the quasi-optimality of

the Galerkin solution for sufficiently largeℓ.

We obtain a priori error estimates by analyzing the approximation properties of the discrete

ansatz spaces. The following result for the mixed problem isproven for the Laplace equation on

polygonal domains with uniform polynomial degreesp on quasi-uniform meshes.

Theorem 1.6.5([StSu91, Theorem 3.5]). LetΩ ⊂ R
2 be a polygonal domain,(uN , ϕD) ∈ H

be the solution of(1.38)for uD ∈ Hs(ΓD) andϕN ∈ Hs−1(ΓN ). Furthermore, let(uh, ϕh) ∈
Xℓ := S(T ,h,p,1)×S(T ,h,p,0) be the numerical solution of(1.39). Then, forp ∈ N large

enough,h > 0 small enough, ands large enough and for allε > 0, there existsC = C(ε)

independent ofh andp such that

‖uN − uh‖H̃1/2(ΓN ) + ‖ϕD − ϕh‖H̃−1/2(ΓN ) ≤ C h
α p−2α+ε(‖uD‖Hs(ΓD) + ‖ϕN‖Hs−1(ΓN )).

Here,α = min
{

π
βj
, j = 1, ...,Nv

}
whereβj denote the interior angles of the domainΩ.
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1. Analytical Basics and Notation

Remark 1.6.6. (i) Similar estimates hold for Symm’s integral equation (1.32) and the hyper-

singular integral equation (1.35), see [StSu91, Theorem 3.5] and [GH06, Theorem 4.2].

(ii) The proof is based on the fact that the exact solution behaves likexα near the corners of

the domain, whereα depends on the interior angle at the corner. Then, the approximation

properties of the discrete ansatz space are used to obtain the a priori error estimate.

(iii) With the same techniques, regularity results for the solution for Lamé and Helmholtz prob-

lems are proven in [StSu89], [HSW85] and [SW84]. Hence, similar estimates are obtained

for these problems.

(iv) The results can be generalized to Lipschitz domains by mapping the line segments to

curved elements with a smooth mapping.

The previous theorem shows that increasing the polynomial degree uniformly yields twice the

convergence rate as compared to refining the mesh uniformly.With geometrically graded meshes,

that are introduced in Section 1.4, exponential convergence is proven in [Heu96].

Theorem 1.6.7([Heu96]). Let Tϑ be a geometric mesh with corresponding linear polynomial

degree vectorpσ. Further, let the right-hand side in(1.32)be piecewise analytic and have a

polynomial behavior in the corners ofΓ. If ϕ ∈ H−1/2(Γ) is the solution of Symm’s integral

equation(1.32)andϕh ∈ Sσ
ϑ = S(Tϑ,hϑ,p

σ,0) is the discrete solution of(1.33), then there

holds

‖ϕ− ϕh‖H−1/2(Γ) ≤ C e−b
√
N .

Here,N := dimSσ
ϑ andC andb only depend on the grading parametersϑ andσ but not onN .

Remark 1.6.8. Similar results are proven for the hypersingular integral equation in [Heu96].
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Quadrature Rules

For the implementation of high-order BEM, efficient and accurate algorithms for numerical in-

tegration are essential. While there are analytical approaches for the computation of the relevant

integrals, such as in [Ban13], these approaches require knowledge of the kernel functions and

are limited to a polygonal boundary approximation. Since weprovide a black box software

package, which allows for the computation for general kernels and boundaries, these analytical

approaches cannot be used. Hence, we mainly use Gauss quadrature rules for the assembly of

the collocation and Galerkin matrices. Besides the Gauss-Legendre quadrature, we also use a

Gauss quadrature rule with respect to a logarithmic weight function, which we refer to as Gauss-

Log quadrature. Within this chapter consisting of three sections we explore these two types of

Gauss quadrature rules.

The first section is devoted to orthogonal polynomials, which are closely related to Gauss

quadrature rules. Besides general orthogonal polynomials, we also consider special orthogo-

nal polynomials. Specifically the Legendre polynomials andtheir antiderivatives known as the

Lobatto shape functions are introduced, as we choose these polynomials as basis functions for

the polynomial ansatz spaces of NURBS-enhanced methods.

In the next section, we introduce Gauss quadrature rules. Inorder to evaluate the arising integrals

up to a set level of accuracy, the nodes and weights have to be computed up to the same level

of accuracy. Since the problem of computing the weights and nodes is generally ill-conditioned,

the implementation for high quadrature orders is not straight-forward. We present an approach

based on the ideas of [Gau10] that allows for the accurate computation of nodes and weights for

the Gauss-Legendre and Gauss-Log quadrature up to 16 significant digits even for high orders.

By computing the entries in the Galerkin or collocation matrices with quadrature rules, a con-

sistency error is induced. In order to control the consistency error, such that the convergence

rates of the high-order collocation or Galerkin methods arenot spoiled, rigorous and sharp error

bounds for the quadrature error are needed. While sharp bounds for the Gauss-Legendre quadra-

ture rules are already known, we derive a new estimate for theGauss-Log quadrature.
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2. Orthogonal Polynomials and Gauss Quadrature Rules

Ellipses. In the subsequent sections, we will see that confocal ellipses with focii±1 play an

important role in the estimation of the quadrature error. The definition of these ellipses is moti-

vated by a conformal mapping, specifically the Joukowski transform. The Joukowski transform

maps the exterior of concentric circles with radius greaterthan one to the exterior of ellipses

with focii ±1. The transform is given by

J : {w ∈ C : |w| > 1} → C\[−1, 1]

w 7→ 1

2

(
w +

1

w

)
.

The inverse of the Joukowski transform is given by

J−1 : C\[−1, 1]→ {w ∈ C : |w| > 1}
z 7→ z +

√
z2 − 1.

We choose the branch of the square root that yieldsJ−1(∞) =∞. Figure 2.1 shows an example

of J . With the Joukowski transform we define complex ellipses with focii ±1 as follows.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Figure 2.1.: Circular grid (left) mapped to elliptical grid(right) with the conformal Joukowski

transfromJ .

Definition 2.0.9. Forρ > 1, we define the open ellipse with focii±1 and semi-axis sumρ by

Eρ :=
{
z =

1

2

(
w +

1

w

)
: w = r · eiϕ, r ∈ (1, ρ), ϕ ∈ [0, 2π)

}
∪ [−1, 1].

We denote the real semi-axis bya and the imaginary semi-axis byb with

a =
1

2
(ρ+ ρ−1) and b =

1

2
(ρ− ρ−1).

Remark 2.0.10. The following identities are directly obtained from Definition 2.0.9.

(i) There holds the following relationship betweenz ∈ ∂Eρ and the real semi-axisa:

a =
|z + 1|+ |z − 1|

2
.
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2.1. Orthogonal Polynomials

(ii) The circumference of the ellipseEρ is bounded by

ℓ(Eρ) < π(ρ+ ρ−1),

see e.g. [DR75] Equation (4.6.1.11).

2.1. Orthogonal Polynomials

Throughout this section, we denote byω ∈ C((−1, 1)) a positive weight function, i.e.ω(x) > 0

for x ∈ (−1, 1). With the weight function we define a scalar product forf, g ∈ C([−1, 1]) by

(f, g)ω :=

∫ 1

−1
f(x) g(x)ω(x) dx.

The scalar product induces a norm by‖f‖2ω := (f, f)ω. The moments associated to the weight

function ω are defined byµk := (xk, 1)ω, k ∈ N0. In the following definition we introduce

orthogonal polynomials.

Definition 2.1.1. Let (pn)n∈N0 be a sequence of polynomials with exact degreen andω be a

positive weight function.

(i) (pn)n∈N0 is called monic if the leading coefficient of all polynomialsequals one, i.e.

pn(x) = xn +
n−1∑

k=0

akx
k.

(ii) (pn)n∈N0 is called orthogonal with respect toω, if

(pn, pm)ω = ‖pn‖2ω δnm,

whereδnm denotes the Kronecker delta.

(iii) We denote monic orthogonal polynomials with respect to the weight functionω byπn(x, ω).

If it is clear which weight function is involved we only writeπn(x).

The existence and the uniqueness of monic orthogonal polynomials is stated in the following

theorem.

Theorem 2.1.2([Gau10, Theorem 1.6]). For every positive weighted scalar product, there exists

a unique sequence(πn)n∈N0 of monic orthogonal polynomials.

Remark 2.1.3. The uniqueness of orthogonal polynomials(pn)n∈N0 is also preserved if we

substitute the assumption that(pn)n∈N0 are monic by the propertypn(1) = 1 for all n ∈ N0.

Some useful properties of orthogonal polynomials are collected in the following lemma.
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2. Orthogonal Polynomials and Gauss Quadrature Rules

Lemma 2.1.4([Gau10]). Letω be a positive weight function,(pn)n∈N0 be the orthogonal, and

(πn)n∈N0 be the monic orthogonal polynomials with respect to the weighted scalar product.

(i) (pn)n∈N0 are linearly independent and hence forn ∈ N0 the set{p0, ..., pn} forms a basis

ofPn.

(ii) For all n ∈ N, the zeros ofpn are real, disjoint, and located in(−1, 1). Between two zeros

of pn there is at least one zero ofpm,m > n.

(iii) (πn)n∈N0 satisfy the following three-term recurrence relation

πk+1(x) = (x− αk)πk(x)− βk πk−1(x) k ∈ N0,

π−1(x) = 0, π0(x) = 1
(2.1)

with

αk =
(xπk, πk)ω
(πk, πk)ω

, k ∈ N0, (2.2)

βk =
(πk, πk)ω

(πk−1, πk−1)ω
, k ∈ N. (2.3)

Remark 2.1.5. Although β0 can be chosen arbitrarily sinceπ−1(x) = 0, we defineβ0 :=

(π0, π0)ω, which is used for the computation of Gauss quadrature rulesin the subsequent section.

Apart from orthogonal polynomials we are also interested inthe associated functions of the

second kind.

Definition 2.1.6. For n ∈ N0, we define the associated functions of the second kind ofπn on

C\[−1, 1] by

ρn(z) :=

∫ 1

−1

πn(x)

z − x ω(x) dx.

The next lemma states some important properties ofρn.

Lemma 2.1.7([Gau81]). The associated functionsρn of the second kind are analytic onC\[−1, 1]
and satisfy the same three-term recurrence relation(2.1)as the orthogonal polynomials with ini-

tial valueρ−1(z) = 1.

Legendre polynomials and Lobatto shape functions.The Legendre polynomials and the Lo-

batto shape functions are introduced as special orthogonalpolynomials and their antiderivatives.

We start by giving a definition of the Legendre polynomials and state some properties.

Definition 2.1.8. For z ∈ C andk ∈ N0, the Legendre polynomialsPk(z) are the uniquely

determined orthogonal polynomials with respect to the weight functionω(x) = 1 with Pk(1) =

1, i.e. ∫ 1

−1
Pj(x)Pk(x) dx = ‖Pk‖2ω δjk.
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2.1. Orthogonal Polynomials

Lemma 2.1.9. For k ∈ N0, the Legendre polynomials have the following properties.

(i) (Recurrence Relation) For z ∈ C andk ∈ N, the Legendre polynomials satisfy

(k + 1)Pk+1(z) = (2k + 1)z Pk(z) − kPk−1(z)

P0(z) = 1, P1(z) = z.
(2.4)

(ii) (Symmetry) For x ∈ [−1, 1], there holdsPk(−x) = (−1)kPk(x). Specifically, the values

at the end points are given byPk(−1) = (−1)k andPk(1) = 1.

(iii) ( Norm) For the weighted norm, there holds

‖Pk‖2ω =
2

2k + 1
.

(iv) (Antiderivative ) For k ≥ 1, the antiderivative of the Legendre polynomials is given by

∫ x

−1
Pk(t) dt =

Pk+1(x)− Pk−1(x)

2k + 1
.

(v) (Maximum on Eρ) For ρ > 1, the Legendre polynomials fulfill

max
z∈Eρ
|Pk(z)| ≤ ρk. (2.5)

Proof. The first statement is a direct consequence of the recurrencerelation (2.1) for the monic

orthogonal polynomials and (ii) is obtained by the symmetryof the weight functionω(x) =

ω(−x). Property (iii) is proven in [Mac67, p. 86]. With the recurrence relation for the derivative

P ′
k+1(x) − P ′

k−1(x) = (2k + 1)Pk(x), k ≥ 1, which is proven in [Mac67, p. 91], we get (iv).

The upper bound (v) is proven in [SaSch97, Proposition 15].

We define the Lobatto shape functions as antiderivatives of the Legendre polynomials. They

differ from the similar shape functions in [BS91] just by a scaling factor.

Definition 2.1.10. Fork ∈ N with k ≥ 3 andx ∈ [−1, 1], we define

N1(x) :=
1− x
2

, N2(x) :=
1 + x

2
,

Nk(x) :=

∫ x

−1
Pk−2(t) dt.

Forz ∈ C, we defineNk(z) as the unique analytic extension ofNk(x).

The next lemma summarizes some important properties, that are a direct consequence of the

properties of the Legendre polynomials.

Lemma 2.1.11.Letx ∈ [−1, 1]. The Lobatto shape functions satisfy the following properties.
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(i) (Relation to Legendre polynomials) For k ≥ 3, there holds

Nk(x) =
1

2k − 3
(Pk−1(x)− Pk−3(x)).

(ii) (Recurrence relation) For k ≥ 4, the three-term recurrence relation is given by

kNk+1(x) = (2k − 3)xNk(x)− (k − 3)Nk−1(x)

N3(x) =
1

2
(x2 − 1), N4(x) =

1

2
x (x2 − 1).

(2.6)

(iii) ( Values at±1) For k ≥ 3, there holdsNk(±1) = 0.

Proof. Lemma 2.1.9 (iv) implies part (i). The recurrence relation (ii) is a consequence of (i) and

the recurrence relation of the Legendre polynomials. The third property follows from (i) and

Lemma 2.1.9 (ii).

2.2. Gauss Quadrature Rules

Gauss quadrature rules, i.e. rules of the type
∫ 1

−1
f(x)ω(x) dx =

n∑

k=1

ωkf(xk) +Rn(f), (2.7)

are introduced for example in [DR75] for numerical integration. Here,n ∈ N is the order of

the quadrature rule, the nodesxk, k = 1, ..., n, are the zeros of then-th monic orthogonal

polynomialπn associated with the positive weight functionω and the weightsωk are given by

ωk = −kn+1

kn

1

πn+1(xk)πn′(xk)
. (2.8)

By Rn(f) we denote the remainder of the Gauss quadrature rule. Withinthe scope of this work

we consider Gauss quadrature rules for two different weightfunctions defined on(−1, 1):

• the Gauss-Legendre quadrature rule withωLeg(x) := 1,

• the Gauss-Log quadrature withωLog(x) := − log x+1
2 .

In this section we address two main points. The first point is the computation of the weights

and nodes of the quadrature rule. For the accurate numericalintegration the nodes and weights

have to be computed up to machine precision for large integers n. In order to avoid that round-

off errors affect the first 16 significant digits, Maple is used for the implementation, which

allows computations with multiple precision arithmetic. Second, we state sharp and reliable

error bounds for the absolute quadrature error, which are used to control the consistency error

induced by numerical integration. While for Gauss-Legendre rules the computation of weights

and nodes as well as sharp error bounds are well known, there are no corresponding results for

Gauss-Log rules. In the remainder of this section, we first describe the computation of both

Gauss rules before we give sharp error bounds for the absolute quadrature error.
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2.2. Gauss Quadrature Rules

2.2.1. Computation of Gauss Quadrature Rules

If the coefficientsαk andβk in (2.1) of the orthogonal polynomials associated to the weight

functionω are known, the nodes and weights of the related Gauss rule canbe computed with an

algorithm presented in [GW69]. It is proven that the nodesxk are the eigenvalues of the matrix

Jn with

Jn :=




α0
√
β1 0

√
β1 α1

√
β2

√
β2 α2

. . .
. . . . . .

√
βn−1

0
√
βn−1 αn−1




∈ R
n×n, (2.9)

(see for example [Gau10]). The corresponding weights can becomputed from the eigenvectors

of Jn. If we denote byv1, ..., vn an orthonormal system of eigenvectors, the weights are given

by ωk = v2k,1 [GW69]. However, the eigenvectors do not have to be computedexplicitly, since

the weights have the following representation.

Lemma 2.2.1([Gau10, Theorem 1.31]). The weights satisfy

ωk =




n−1∑

j=0

π̃j(xk)
2




−1

, k = 1, ..., n. (2.10)

Here, the orthonormal polynomials̃πk are defined by the recurrence

π̃k+1(x) = (x− αk)
π̃k(x)√
βk+1

− βk
π̃k−1(x)√
βk+1βk

,

π̃−1(x) = 0, π̃0(x) =
1√
β0
.

(2.11)

Listing 2.1 shows a Maple code for the computation of the weights with (2.10). The procedure

compWeigth requires the zerosxi of πn and the vectorsak andbk containingαk and
√
βk, re-

spectively, as input parameters and returns the vectorw containing the weights. The orthogonal

polynomialsπ̃j are evaluated efficiently with the three-term recurrence relation (2.11).

Listing 2.1: Maple code for the computation of the weights for Gauss quadrature rules.

1 compWeights:=proc(xi::Vector , ak::Vector,sbk::Vector)::Vector;

2 # xi -> vector of roots of n-th orthogonal polynomial

3 # ak -> vector of first coefficient of three-term recurrence

4 # sbk -> vector of square roots of second coefficient of

5 # three-term recurrence
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2. Orthogonal Polynomials and Gauss Quadrature Rules

6

7 local j,k,n,w,p0 ,p1 ,p2 ,tmp;

8 n:=Dimension(xi):

9 w:=Vector (1..n,0);

10 for k from 1 to n do

11 p0:=1 / sbk[1];

12 tmp:=p0*p0;

13 if n>1 then

14 p1:= (xi[k]-ak[1])*p0 / sbk[2];

15 for j from 1 to n-1 do

16 p2:=((xi[k]-ak[j+1])*p1-sbk[j+1]*p0) / sbk[j+2];

17 tmp := tmp+p2*p2;

18 p0:=p1;

19 p1:=p2;

20 end do;

21 end if;

22 w[k]:=1 / tmp;

23 end do;

For the Gauss-Legendre quadrature rule with weight function ωLeg, the coefficients of the monic

orthogonal polynomials are given by

αk = 0, βk =




2, k = 0

1
4−k−2 , k ≥ 1.

Thus, the quadrature rule can be computed with (2.9) and (2.10). Listing 2.2 shows an excerpt

of the Maple script for the computation of the Gauss-Legendre quadrature rule. After having

computed the coefficientsαk andβk of the orthogonal polynomials (line 1), the symmetric tridi-

agonal Jacobi matrixJn is assembled (lines 2-13). The nodes and weights are obtained by

computing the eigenvalues ofJn and calling the procedurecompWeights from Listing 2.1.

Listing 2.2: Excerpt of a Maple code for the computation of the Gauss-Legendre quadrature rule.

1 A := coeffLegendre(n, a, b):

2 for j to RowDimension(A) do

3 A[j, 2] := sqrt(A[j, 2]):

4 end do:

5 if n = 1 then

6 Jn := A[1, 1]:

7 else

8 Jn := Matrix ([ convert(A(2 .. n, 2), list),
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9 convert(A(1 .. n, 1), list),

10 convert(A(2 .. n, 2), list)],

11 shape = band[1, 1], scan = band[1, 1],

12 shape = symmetric):

13 end if:

14 EW := Eigenvalues(Jn):

15 W := compWeights(EW , A[1 .. n, 1], A[1 .. n+1, 2]):

For thelog-weight functionωLog, the coefficientsαk andβk of the orthogonal polynomials have

to be computed recursively. In [Che59] an algorithm is presented, the so-called Chebyshev al-

gorithm, that can be used to compute the coefficientsαk andβk via the momentsµk. However,

the problem of computing the coefficients by the moments is ill-conditioned forωLog and com-

putations are only possible for small integersn.

To remedy this problem we introduce modified moments and use amodification of the Cheby-

shev algorithm, which is presented in [Gau10, Algorithm 2.1]. The modified moments with

respect to the scaled Legendre polynomialsP̃k(x) :=
2n(n!)2

(2n)! Pk(x) are defined by

mk :=
(
P̃k, 1

)
ωLog

, k = 0, ..., n. (2.12)

Remark 2.2.2. For the definition of the modified momentsmk also other sets of monic poly-

nomials can be used, as long as they satisfy a three-term recurrence relation of the form (2.1)

with known coefficientsαk andβk. Our choice of the scaled Legendre polynomials is motivated

by two facts. First, orthogonal polynomials have good stability properties in many practical ap-

plications and hence we expect to obtain a well-conditionedproblem. Second, there are closed

formulas for the modified moments, which are given in the subsequent theorem.

Theorem 2.2.3([BF14]). Let α, β > −1, n ∈ N0 andP (α,β)
n denote the Jacobi polynomials.

Then, forn = 0

∫ 1

−1
(1− t)α(1 + t)β log

(
1 + t

2

)
P

(α,β)
0 (t) dt

= −2α+β+1Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)

(
ψ(α + β + 2)− ψ(β + 1)

) (2.13)

and forn > 0 ∫ 1

−1
(1− t)α(1 + t)β log

(
1 + t

2

)
P (α,β)
n (t) dt

= (−1)n−12α+β+1Γ(n+ α+ 1)Γ(β + 1)

n Γ(n+ α+ β + 2)
.

(2.14)

Here, we denote byΓ(x) the gamma function, and byψ(x) := d
dx ln(Γ(x)) the digamma func-

tion.
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Remark 2.2.4. Theorem 2.2.3 can be used to compute the modified moments

m
(α,β)
k :=

(
P̃

(α,β)
k , 1

)
ω
(α,β)
Log

with respect to the scaled Jacobi polynomials

P̃ (α,β)
n (x) = 2n

Γ(n+ 1)Γ(n + α+ β + 1)

Γ(2n+ α+ β + 1)
P (α,β)
n (x)

for the more general weight function

ω
(α,β)
Log (x) = −(1− x)α(1 + x)β log

(
1 + x

2

)
, α, β > −1.

Forα = β = 0, the general case reduces to the modified moments (2.12).

Listing 2.3: Maple code for the computation of the modified momentsm(α,β)
k

1 modMom := proc (n::integer , a::numeric , b::numeric)::Vector;

2 local k, m, tmp;

3 m := Vector (1 .. n+1, 0);

4 tmp := 2^(a+b+1)*GAMMA(a+1)*GAMMA(b+1)/GAMMA(a+b+2);

5 m[1] := tmp*(Psi(a+b+2)-Psi(b+1));

6 m[2] := -2*tmp*(a+1)/(a+b+2)^2;

7 for k from 2 to n do

8 m[k+1] := -2*m[k]*(a+b+k)*(k-1)*(a+k) /

9 ((a+b+k+1)*(a+b+2*k-1)*(a+b+2*k));

10 end do;

11 m;

12 end proc:

Listing 2.3 shows a Maple code for the computation of the modified momentsm(α,β)
k with the

formulas given in Theorem 2.2.3. In order to save computational time, the modified moments

are computed recursively. Fork ≥ 2, there holds

m
(α,β)
k = (−1)k−12k+α+β+1Γ(k + 1)Γ(k + α+ β + 1)

Γ(2k + α+ β + 1)

Γ(k + α+ 1)Γ(β + 1)

k Γ(k + α+ β + 2)

= (−1)k−12k+α+β+1 kΓ(k) (k + α+ β) Γ(k + α+ β)

(2k + α+ β)(2k + α+ β − 1) Γ(2k + α+ β − 1)

· (k + α) Γ(k + α) Γ(β + 1)

k (k + α+ β + 1)Γ(k + α+ β + 1)

= −m(α,β)
k−1

2 (k − 1)(k + α+ β)(k + α)

(2k + α+ β)(2k + α+ β − 1)(k + α+ β + 1)
,

where we used the functional equation of the gamma function,i.e. xΓ(x) = Γ(x+ 1).

Listing 2.4 shows a Maple code for the computation of the coefficientsαk andβk of the or-

thogonal polynomials with respect to the weight functionω(α,β)
Log . The modified Chebyshev
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algorithmmodifiedChebyshev, which is implemented in [Gau06], computes the coefficients

{αk, βk}k=0,...,n using the modified moments{m(α,β)
k }k=0,...,2n+1 and the coefficients{ak, bk}k=0,...,2n

of the scaled Jacobi polynomials̃P (α,β)
k . The coefficients are computed in the procedurecoeffJacobi

according to the following formulas

ak =
β2 − α2

(2k + α+ β)(2k + α+ β + 2)
, k ∈ N0,

b0 =
2α+β+1Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
,

bk =
4k(k + α)(k + β)(k + α+ β)

(2k + α+ β)2(2k + α+ β + 1)(2k + α+ β − 1)
, k ≥ 1.

Listing 2.4: Computation of the coefficientsαk andβk for the log-weight function.

1 m := modMom (2*n+1, a, b):

2 ab := coeffJacobi(2*n, a, b):

3 A := modifiedChebyshev(m, ab[1], ab[2]):

Replacing the first line in Listing 2.2 by the code of Listing 2.4 the Gauss-Log rule can be

computed efficiently and stable even for large integersn. Table 2.1 shows the computational

times for the computation of Gauss-Log quadrature rules, where the nodes and weights are

computed up to an accuracy of 16 significant digits. For all computations 36 digits are used.

We see that our implementation allows the computation of theGauss-Log rule of ordern =

2048 in approximately2.5 minutes. Further, the overall computational time is dominated by the

computation of the eigenvalues, the time for computing the modified moments is negligible.

2.2.2. Error Bounds for Gauss Quadrature Rules

In order to control the consistency error, which is induced by the numerical integration in BEM,

it is of main importance to have a computable, sharp, and reliable estimate for the quadrature

error. For(2n)-times continuously differentiable functions the following representation of the

remainder can be proven.

Theorem 2.2.5([Gau10, Theorem 1.48]). Let n ∈ N, f ∈ C2n([−1, 1]) and (πn)n∈N0 be the

monic orthogonal polynomials corresponding to the positive weight functionω. Then

Rn(f) =
f (2n)(ξ)

(2n)!
‖πn‖2ω, ξ ∈ (−1, 1). (2.15)

Remark 2.2.6. (i) Equation (2.15) implies that then-th order Gauss quadrature rule is exact

for all polynomials of degree2n− 1. Among all interpolatory quadrature rules of ordern

this is optimal.
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ordern
computational time [s]

mod. momentsmk mod. Cheb. alg. nodesxk weightsωk

64 0.046 0.050 0.057 0.054

128 0.005 0.130 0.222 0.090

256 0.005 0.424 0.846 0.404

512 0.008 1.744 3.245 1.805

1024 0.013 6.806 15.182 7.159

2048 0.111 28.812 87.092 30.876

Table 2.1.: Computational times in seconds for the computation of Gauss-Log quadrature rules

with Maple. The nodes and weights are computed up to an accuracy of 16 significant

digits. All computations are performed on a desktop computer with a 3.5 GHz Intel

Core i7 processor, 32GB DDR3 RAM and OSX 10.9.5 operating system.

(ii) Estimating the expressionmaxξ∈(−1,1) |f (2n)(ξ)| we obtain an upper bound for the quadra-

ture error. However, the bound requires knowledge of high-order derivatives of the inte-

grand, which is not provided for the application to BEM. In the sequel, we thus derive

derivative-free error bounds for analytic integrands.

Throughout this section, we denote byf an analytic function on the domainD ⊂ C contain-

ing [−1, 1] in its interior. Based on the Cauchy integral theorem the following derivative-free

representation of the remainder is given in [Gau10].

Theorem 2.2.7([Gau10, Theorem 2.48]). Let n ∈ N, ω be a positive weight function andC

be a contour inD with positive orientation that encircles the real interval[−1, 1]. Then, the

remainder can be expressed by

Rn(f) =
1

2πi

∮

C
Kn(z) f(z) dz. (2.16)

Here, the kernelKn is given by

Kn(z) :=
ρn(z)

πn(z)
. (2.17)

With Theorem 2.2.7 we obtain the error bound

|Rn(f)| =
ℓ(C)

2π
max
z∈C
|Kn(z)| max

z∈C
|f(z)|, (2.18)

whereℓ(C) denotes the length of the contourC.

Remark 2.2.8. The bound (2.18) significantly depends on the contourC. In the literature, see

e.g. [Gau10, Gau92, Sch97, GV83], there are used two classesof contours, concentric circles
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and confocal ellipses. For the application to BEM there occur meromorphic integrands that may

contain poles near the interval[−1, 1]. Therefore, we derive estimates with respect to confocal

ellipses, i.e.C := ∂Eρ with Eρ as defined in Definition 2.0.9, as the poles can be avoided by

choosingρ > 1 sufficiently small.

While the second maximum in (2.18) depends on the integrandf , the first maximum only de-

pends on the quadrature rule. Hence, general error bounds for the quadrature rule are obtained

by deriving estimates formaxz∈∂Eρ |Kn(z)|. Contour plots of the kernelsKn for the weight

functionsωLeg andωLog are given in Figure 2.2.
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(a) Gauss-Legendre weight functionωLeg.
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(b) Gauss-Log weight functionωLog.

Figure 2.2.: Contour plot of the kernelKn for n = 8 for different weight functions.

The following lemma collects some useful properties of the kernel.

Lemma 2.2.9. Letn ∈ N, ω be a positive weight function andKn as defined in(2.17). Then,

the following properties hold.

(i) Kn is analytic onC\[−1, 1] and hasn simple poles in(−1, 1).

(ii) For z →∞ there holds

Kn(z) = O(z−2n−1). (2.19)

Proof. The first property is a direct consequence of Lemma 2.1.4 (ii), the second statement is

proven in [Gau10, Equation (1.3.43)].

With property (ii) in the above lemma, we have an asymptotic estimate of the kernel for general

weight functions on large ellipses. However, we are also interested in reliable error bounds and

41



2. Orthogonal Polynomials and Gauss Quadrature Rules

thus in the behavior of the kernel for small ellipses. We therefore analyze the kernelKn with

respect to the weight functionsωLeg andωLog more closely. For the Gauss-Legendre weight

functionωLeg we have the following result.

Lemma 2.2.10([DR75, Equation (4.6.1.10)]). Let n ∈ N be sufficient large andKn be the

kernel associated toωLeg. Then, there holds

Kn(z) ∼=
2π

(
z + (z2 − 1)1/2

)2n+1 , (2.20)

where the symbol ”∼=” means that the quotient of the left-hand and the right-handside ap-

proaches to one forn→∞.

With the asymptotic estimate (2.20), the well-known error bound for the Gauss-Legendre quadra-

ture is a direct consequence.

Theorem 2.2.11.Letn ∈ N be sufficiently large,ρ > 1 andf be analytic inEρ. Then, the error

of then-th order Gauss-Legendre quadrature rule is bounded by

|Rn(f)| ≤
π(ρ̃+ ρ̃−1)

ρ̃2n+1
max
z∈∂Eρ̃

|f(z)|, 1 < ρ̃ < ρ. (2.21)

Proof. For z ∈ ∂Eρ̃ we have|z + (z2 − 1)1/2| = ρ̃. With (2.20) and the inequalityℓ(Eρ̃) <
π(ρ̃+ ρ̃−1) we conclude the proof.

Remark 2.2.12. (i) Theorem 2.2.11 shows that the Gauss-Legendre quadrature converges ex-

ponentially with respect to the quadrature order for analytic integrands.

(ii) The asymptotic estimate of the kernel (2.20) yields a sharp error bound, provided the sec-

ond maximum in (2.18) can be estimated sharply.

(iii) The optimal bound is obtained by

|Rn(f)| ≤ inf
1<ρ̃<ρ

(
π(ρ̃+ ρ̃−1)

ρ̃2n+1
max
z∈∂Eρ̃

|f(z)|
)
.

However, computing the optimal error bound for the a priori determination of the quadra-

ture error is inefficient and hence generally omitted. Furthermore, for controlling the con-

sistency error induced by the quadrature rules for Galerkinor collocation methods, we are

mainly interested in the asymptotic behavior of the quadrature error. Hence, we choose

ρ̃→ ρ althoughlimρ̃→ρmaxz∈∂Eρ̃ |f(z)| may tend to infinity, iff contains a pole on∂Eρ.

We now investigate the kernel, which is associated to the weight functionωLog. Since there are

no closed formulas for the kernel, and hence no asymptotic estimates, we start by investigating
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the behavior ofK1 on confocal ellipses. The first coefficientα0 of the three-term recurrence

relation is given by

α0 =
(t π0, π0)ωLog

(π0, π0)ωLog

= −1

2

and hence

π1(z) = z − α0 = z +
1

2

ρ1(z) = −
∫ 1

−1

t+ 1/2

z − t log

(
1 + t

2

)
dt =

(
z +

1

2

)
dilog

(
z − 1

z + 1

)
− 2.

(2.22)

Remark 2.2.13. The di-logarithm is defined by

dilog(z) =

∫ z

1

log t

1− t dt.

Note the following relationship to the poly-logarithmdilog(z) = Li2(1− z).

With (2.22) we get

K1(z) = dilog

(
z − 1

z + 1

)
− 2

z + 1
2

.

We see thatK1 has singularities forz = −1 and z = −1
2 . Since the algebraic singularity

z = −1
2 is stronger, the maximum value ofK1 near the real interval[−1, 1] is located in the

vicinity of −1
2 . On ellipsesEρ, i.e. z := z(ϕ) = 1

2

(
ρeiϕ + ρ−1e−iϕ

)
, this yields

argmaxϕ∈[0,2π) |K1(z(ϕ))| → arccos

(
−1

2

)
=

2

3
π, asρ→ 1.

For large values ofρ the value ofK1 is determined by thedilog-term. Hence, the maximum of

the kernel is attained on the negative real axis for sufficient largeρ, i.e.

argmaxϕ∈[0,2π) |K1(z(ϕ))| = π.

Figure 2.3 (a) shows the values of|K1(z(ϕ))| overϕ on different ellipsesEρ. We see that the

behavior of the kernel coincides with our theoretical considerations, i.e. for smallρ ≈ 1 the

maximum is attained forϕ ≈ 2
3π and due to the symmetry with respect to the real axis at

ϕ ≈ 4
3π.

Similar results are also obtained for the higher order kernels Kn, n > 1. Figure 2.3 (b) shows

the results forn = 3. We see that for smallρ we have peaks that correspond to the zeros

−1 < x0 < ... < xn < 1 of πn. In particular, the maximal peak ofKn is located in the

neighborhood of the zerox0 closest to−1. Lemma 2.1.4 (ii) implies thatx0 → −1 asn → ∞
and hence the maximum value of the kernel is attained atϕ ≈ π for sufficiently largen and

smallρ. For large values ofρ, the numerical examples indicate that the maximum is attained for
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(b) Kernel forn = 3.

Figure 2.3.: Kernel|Kn(z(ϕ))| with z(ϕ) = 1
2

(
ρeiϕ + ρ−1e−iϕ

)
overϕ for different values of

ρ > 1.

ϕ = π.

Since we do not know an analytical result for the maximum of the kernel forn ≥ 1, we derive an

upper bound based on numerical experiments. In order to obtain a simple bound for the kernel,

we choose the following approach:

max
z∈Eρ
|Kn(z)| ≤

c

(ρ− 1)(ρ+ 1)ρ2n−1
, c > 0. (2.23)

We note that the bound (2.23) describes the behavior of the kernel that is observed in Figure 2.3.

In particular, the singularity of the kernel atx0, which is relevant for the maximum value of the

kernel onEρ, is considered in the bound by the term(ρ− 1)−1. Furthermore, for large values of
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2.2. Gauss Quadrature Rules

ρ the bound behaves likeO(ρ−2n−1), which with coincides the behavior that is proven for the

kernel in (2.19).

Remark 2.2.14. For the subsequent numerical experiments, the associated functions of the sec-

ond kindρn have to be evaluated for large ordern. Althoughρn satisfies the same three-term

recurrence relation asπn, the recurrence is unstable forρn and hence inappropriate for the eval-

uation.

The instability can be explained by minimal solutions. A solution fn of a difference equation

yk+1 = (z − αk)yk − βkyk−1, k ∈ N0, is said to be minimal if

lim
n→∞

fn
yn
→ 0

for all linearly independent solutionsyn of the difference equation. In [Gau10, Theorem 1.43],

it is proven thatρn is a minimal solution of the recurrence relation (2.1) forz ∈ C\[−1, 1].
For the evaluation of minimal solutions a stable algorithm based on continued fractions is given

in [Gau81] and a MATLAB code is provided by [Gau06], which is used for the numerical exper-

iments in the remainder of this section.

In order to obtain an explicit upper bound for the kernel, we determinec numerically. Therefore,

we define

cn(ρ) := max
z∈Eρ
|Kn(z)| (ρ − 1)(ρ+ 1)ρ2n−1

and investigate the dependency ofcn(ρ) onρ andn. We start by investigatingcn(ρ) with respect

to ρ. The results are illustrated in Figure 2.4, wherecn(ρ) is plotted againstρ. For the test case

we chooseρ ≥ 1.01 andn ≤ 512, which covers most practical applications. Both plots in

1 2 3 4 5
0

1

2

3

4

5

6

7

8

ρ

c n
(ρ

)

0 20 40 60 80 100
2.6

2.8

3

3.2

3.4

3.6

3.8

4

ρ

c n
(ρ

)

Figure 2.4.:cn(ρ) overρ for n ≤ 512, small values ofρ (left) and large values ofρ (right).

Figure 2.4 show that for alln ≤ 512, cn(ρ) behaves similarly. It reaches the maximum point for

ρ ∈ [1, 2] and stabilizes for large values ofρ. In particular,cn(ρ) is bounded for all values ofn
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2. Orthogonal Polynomials and Gauss Quadrature Rules

and
maxρ>1.01 cn(ρ)

minρ>1.01 cn(ρ)
< 8,

which means that the bound ofKn overestimates the real value at most by a factor of8.

In the next step we investigate the dependency ofmaxρ>1.01 cn(ρ) on n. The results are illus-

trated in Figure 2.5. We see thatmaxρ>1.01 cn(ρ) is bounded for all values ofn and remains
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Figure 2.5.:maxρ∈[1.01,100] cn(ρ) overn.

constant for large values ofn. Thus, by choosingc = 8 in (2.23) we obtain a reliable bound for

the kernelKn, n < 2048. The resulting error bound is given in the next ”theorem”.

”Theorem” 2.2.15. Letρ > 1 andf be analytic inEρ. Then, the error of then-th order Gauss-

Log quadrature rule is bounded by

|Rn(f)| ≤ 4
(ρ̃2 + 1)

(ρ̃2 − 1)
ρ̃−2n max

z∈∂Eρ̃
|f(z)|, 1 < ρ̃ < ρ. (2.24)

Proof. With (2.18), (2.23) and1 < ρ̃ < ρ there holds

|Rn(f)| =
ℓ(Eρ̃)
2π

max
z∈∂Eρ̃

|Kn(z)| max
z∈∂Eρ̃

|f(z)|

≤ 8π(ρ̃+ ρ̃−1)

2π(ρ̃− 1)(ρ̃+ 1)ρ̃2n−1
max
z∈∂Eρ̃

|f(z)|

= 4
(ρ̃2 + 1)

(ρ̃2 − 1)
ρ̃−2n max

z∈∂Eρ̃
|f(z)|.

Remark 2.2.16. The numerical experiments indicate that the bound in Theorem 2.2.15 is reli-

able for allρ > 1.01 andn ≤ 2048. However, Figure 2.4 shows that the error may by over-

estimated by a factor of 8 in some cases. Better bounds can be obtained by further parameter
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2.2. Gauss Quadrature Rules

optimization with respect toρ andn. Since the constant in (2.24) is only included logarithmi-

cally in the consistency estimates for BEM, we use the simplebound (2.24) for our application.

For the computation of the Galerkin entries, we also apply tensor quadrature rules. Therefore,

we generalize the results of Theorems 2.2.11 and 2.2.15.

Theorem 2.2.17.Let n := (n1, n2) ∈ N
2, ω(i) ∈ {ωLeg, ωLog}, and x(i)k and ω(i)

k be the

nodes and weights with respect to the weight functionω(i), i ∈ {1, 2}. Furthermore, the tensor

quadrature rule is given by
∫ 1

−1

∫ 1

−1
f(x, y) ω1(x)dx ω2(y)dy =

n1∑

j=1

ω
(1)
j

n2∑

k=1

ω
(2)
k f(x

(1)
j , x

(2)
k ) +Rn(f).

If f(·, y) is analytic onEρ1 for all y ∈ [−1, 1] and iff(x, ·) is analytic onEρ2 for all x ∈ [−1, 1],
ρ1, ρ2 > 1, then there holds

|Rn(f)| ≤ µ(1)0 max
x∈[−1,1]

Cω(2)(ρ2, n2, f(x, ·)) + µ
(2)
0 max

y∈[−1,1]
Cω(1)(ρ1, n1, f(·, y)).

Here, we denote byµ(i)0 the zeroth moment with respect toω(i) and byCω(i)(ρi, ni, f) the bound

for the remainder of theni-th order Gauss quadrature rule with respect toω(i), which is given

in Theorems 2.2.11 and 2.2.15, respectively.

Proof. The proof is based on the idea of [SaSch97, Proposition 14]. We have

Rn(f) =

∫ 1

−1

∫ 1

−1
f(x, y) ω(1)(x)dx ω(2)(y)dy −

n1∑

j=1

ω
(1)
j

n2∑

k=1

ω
(2)
k f(x

(1)
j , x

(2)
k )

=

∫ 1

−1

∫ 1

−1
f(x, y) ω(1)(x)dx ω(2)(y)dy −

∫ 1

−1

n2∑

k=1

ω
(2)
k f(x, x

(2)
k )ω(1)(x)dx

+

∫ 1

−1

n2∑

k=1

ω
(2)
k f(x, x

(2)
k )ω(1)(x)dx −

n1∑

j=1

ω
(1)
j

n2∑

k=1

ω
(2)
k f(x

(1)
j , x

(2)
k ).

Applying the triangle inequality we get

|Rn(f)| ≤
∣∣∣∣∣

∫ 1

−1

∫ 1

−1
f(x, y) ω(1)(x)dx ω(2)(y)dy −

∫ 1

−1

n2∑

k=1

ω
(2)
k f(x, x

(2)
k )ω(1)(x)dx

∣∣∣∣∣

+

∣∣∣∣∣∣

∫ 1

−1

n2∑

k=1

ω
(2)
k f(x, x

(2)
k )ω(1)(x)dx−

n1∑

j=1

ω
(1)
j

n2∑

k=1

ω
(2)
k f(x

(1)
j , x

(2)
k )

∣∣∣∣∣∣

≤
∣∣∣∣∣

∫ 1

−1

[∫ 1

−1
f(x, y)ω(2)(y)dy −

n2∑

k=1

ω
(2)
k f(x, x

(2)
k )

]
ω(1)(x)dx

∣∣∣∣∣

+

∣∣∣∣∣∣

n2∑

k=1

ω
(2)
k



∫ 1

−1
f(x, x

(2)
k )ω(1)(x)dx −

n1∑

j=1

ω
(1)
j f(x

(1)
j , x

(2)
k )



∣∣∣∣∣∣

≤ µ(1)0 max
x∈[−1,1]

|R(2)
n2

(f(x, ·))| + µ
(2)
0 max

y∈[−1,1]
|R(1)

n1
(f(·, y))|.
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2. Orthogonal Polynomials and Gauss Quadrature Rules

Here,R(1)
n andR(2)

n denote the remainders for the integration with respect tox andy, respec-

tively. Since the integrandf is analytic on[−1, 1]×Eρ2 andEρ1×[−1, 1] we can apply Theorems

2.2.11 and 2.2.15, which completes the proof.
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3. High-Order NURBS-Based Boundary

Element Methods

Discrete ansatz spaces arise when solving the boundary integral equations introduced in Sec-

tion 1.2. In standard BEM implementations, e.g. [BBF13, AEF+14, ŚBA+15], the boundary

Γ is approximated by a polygonΓh and piecewise polynomial basis functions are chosen for

the ansatz space. For high-order collocation or Galerkin methods, which use ansatz functions

with high polynomial degrees, the geometric error induced by the boundary approximation di-

minishes the convergence rates. In order to preserve the optimal convergence rates there are

different approaches depending on the choice of the bases used for the boundary representation

and the ansatz space. Throughout this work, we consider three approaches,isoparametric, iso-

geometric andNURBS-enhancedmethods. These three approaches and their dependency on

the functions chosen for the boundary parametrization and ansatz space are summarized in Table

3.1.

ansatz space

polynomial NURBS

boundary param.
polynomial isoparametric

NURBS NURBS-enhanced isogeometric

Table 3.1.: Different versions of BEM depending on the choice of the basis functions used for

the boundary parametrization and the ansatz space.

Isoparametric methods, which were introduced in [Zie71], approximate theboundaryΓ by the

same polynomial basis functions that are used for the ansatzspace. While the geometrical error

decays with the same order as the collocation or Galerkin error for the hypersingular integral

equation, the convergence rates are in general diminished by the geometrical error for Symm’s

integral equation.

Isogeometricanalysis, first introduced in [HCB05], extends the idea of isoparametric methods

by using a common basis for the boundary parametrization andthe ansatz space without induc-

ing a geometrical error. In practice, the geometry is designed in computer-aided design (CAD)
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3. High-Order NURBS-Based Boundary Element Methods

software and represented with NURBS basis functions. Therefore, the same NURBS basis is

also used for the ansatz space, which in general results in a rational ansatz space.

The new isogeometric approach has several advantages as compared to conventional methods.

While in conventional methods the exact representation of the geometry is approximated by

piecewise polynomial meshes, this mesh generation processis eliminated in isogeometric anal-

ysis by directly using the CAD representation of the geometry. It is mentioned in [HCB05] that

mesh generation takes a huge amount of the overall simulation process, hence the simulation

time is significantly reduced in isogeometric methods. Moreover, no communication with CAD

is required for repeated mesh refinement, since the exact mesh can be directly refined using

simple algorithms available for NURBS. Another advantage is that besides the classicalh- and

p-refinements, where the triangulation is refined and the polynomial degree of the basis functions

is increased, new refinement algorithms are developed basedon the variable global regularity of

the NURBS basis functions.

Although isogeometric analysis has found many applications to the finite element method (FEM),

see e.g. [CHB09, WFC08, BH08, BCZ+06, BBH+10, CRB+06], the most suitable method for

isogeometric analysis is BEM. Usually, the geometry is defined by its surface parametrization in

CAD and a volume mesh has to be generated for the application to finite elements. Since BEM

requires the discretization of only the domain’s boundary,no additional volume mesh has to be

generated. However, the application of isogeometric analysis to BEM has been investigated only

very recently in e.g. [SSE+13, SBT+12, FGP15].

Finally, we also consider theNURBS-enhancedapproach, which was introduced for FEM in

[SFH08] and further examined in [SFH11]. NURBS-enhanced methods combine the classical

methods with the idea of eliminating the geometrical error as done in isogeometric methods.

While the geometry is represented exactly using NURBS curves, a polynomial basis is chosen

for the ansatz space. Hence, the advantages of isogeometricmethods - i.e. the absence of a

geometrical error, the elimination of the mesh generation process as well as the elimination of

the communication with CAD during the mesh refinement process - are transferred to NURBS-

enhanced methods.

The original idea of NURBS-enhanced FEM was to preserve the efficiency of conventional FEM

implementations by using the standard integration for the polynomial ansatz functions on interior

elements. While for the application to BEM there is generally no gain in efficiency as compared

to isogeometric methods, stability properties are enhanced for high-order methods, specifically

by using Legendre polynomials and their antiderivatives asbasis functions for the polynomial

ansatz space.

Since both isogeometric and NURBS-enhanced methods are based on a NURBS representation

of the boundary, we refer to both methods as NURBS-based methods within the scope of this

work. In order to define the bases for the discrete ansatz spaces of NURBS-based BEM, we first
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3.1. Non-Uniform Rational B-Splines

introduce NURBS curves used for the boundary parametrization. We then introduce the discrete

ansatz spaces used for the implementation and conclude thischapter by describing different

strategies of mesh refinement.

3.1. Non-Uniform Rational B-Splines

For the introduction of NURBS, we are guided by [PT97] and [Far99]. We only state the main

properties of the NURBS basis functions and curves as well asfundamental algorithms used for

mesh refinement.

Definition 3.1.1. Let q, n ∈ N0.

(i) For −1 = ξ0 ≤ · · · ≤ ξn+q = 1, we introduce a non-uniform knot vectorΞ :=

{ξ0, ..., ξn+q}, which we call open ifξ0 = ... = ξq and ξn−1 = ... = ξn+q. Further,

we define the unique knot vector̃Ξ = {ζ0, ..., ζm} with ζ0 < ... < ζm and associate with

each unique knotζj a multiplicity rj such that

Ξ = {ζ0, ..., ζ0︸ ︷︷ ︸
r0 times

, ..., ζm, ..., ζm︸ ︷︷ ︸
rm times

}.

In particular, we have
∑m

j=0 rj = n + q + 1. We assumerj ≤ q + 1 and refer toζj as

nodes,j = 1, ...,m.

(ii) For i = 0, ..., n + q andξ ∈ [−1, 1], we define the b-spline basis functions recursively by

Bi,0(ξ) :=




1, ξi ≤ ξ < ξi+1

0, else.

Bi,q(ξ) :=
ξ − ξi
ξi+q − ξi

Bi,q−1(ξ) +
ξi+q+1 − ξ
ξi+q+1 − ξi+1

Bi+1,q−1(ξ). (3.1)

(iii) Let ωk > 0, k = 0, ..., n, be positive weights. We define the weight functionω by

ω(ξ) :=
n∑

k=0

ωk Bk,q(ξ)

and the NURBS basis functions by

Rk,q(ξ) :=
ωk

ω(ξ)
Bk,q(ξ).

(iv) For control pointsQk ∈ R
2, k = 0, ..., n, we define the NURBS curve by

γ : [−1, 1]→ R
2

ξ 7→ γ(ξ) :=

n∑

k=0

Rk,q(ξ) Qk.
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3. High-Order NURBS-Based Boundary Element Methods

Remark 3.1.2. Most common geometries like circles, ellipses, and conics can be represented

exactly using NURBS curves (see e.g. [PT97] Chapter 7). Hence, in many computer aided

design (CAD) software programs NURBS curves are used for theinternal representation of the

geometries.

Example 3.1.3.The NURBS parametrization of a quarter circle with degreeq = 2 is given by

Ξ = {−1,−1,−1, 1, 1, 1}

{ωk}k=0,...,2 =

{
1,

1√
2
, 1

}

{Qk}k=0,...,2 = {(0, 0), (1, 1), (0, 1)}.

(3.2)

The unit circle can be parametrized by concatenating four quarter circles. We obtain

Ξ =

{
−1,−1,−1,−1

2
,−1

2
, 0, 0,

1

2
,
1

2
, 1, 1, 1

}

{ωk}k=0,...,8 =

{
1,

1√
2
, 1,

1√
2
, 1,

1√
2
, 1,

1√
2
, 1

}
(3.3)

{Qk}k=0,...,8 = {(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1), (1, 0)}.
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Figure 3.1.: NURBS parametrization of the unit circle with control polygon (left) and corre-

sponding rational basis functions (right).

The following lemma collects some useful properties of NURBS and b-spline basis functions

and curves.

Lemma 3.1.4. With the notation of Definition 3.1.1 the following properties hold.

(i) The b-spline and NURBS basis functions form a partition of unity, i.e.
∑n

k=0 Bk,q(ξ) =
∑n

k=0Rk,q(ξ) = 1 for ξ ∈ [−1, 1].
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3.1. Non-Uniform Rational B-Splines

(ii) The b-spline and NURBS basis functions have local support, i.e. suppBk,q = suppRk,q =

[ξk, ξk+q+1).

(iii) The b-spline and NURBS basis functions areq− rj times continuously differentiable atζj,

j = 0, ...,m.

(iv) The b-spline basis functionsBk,q, k = 0, ..., n, form a basis of the space of all piecewise

polynomials of degreeq, which areq − rj times continuously differentiable atζj, j =

0, ...,m.

(v) The derivative of the b-spline basis functions is given by

B′k,q = q

( Bi,q−1

ξk+q − ξk
− Bi+1,q−1

ξk+q+1 − ξk+1

)
.

(vi) If ω0 = ... = ωn = 1, thenω(ξ) ≡ 1 and the NURBS basis functions reduce to the b-spline

basis functions.

(vii) At all nodesζj the NURBS curveγ is q − rj times continuously differentiable.

(viii) Both components ofγ|[ζj ,ζj+1] (j = 0, ...,m) are rational functions of degreeq with non-

vanishing denominator.

(ix) Letωmin = mink=0,...,n ωk andωmax = maxk=0,...,n ωk. The derivative is bounded by

max
ξ∈[−1,1]

|γ̇(ξ)| ≤ n

(
ωmax

ωmin

)2

max
0<j≤n

‖Qj −Qj−1‖
ξj+q−1 − ξj−1

.

Proof. A proof of (i)-(viii) is given in [PT97] and the estimate in (ix) is proven in [Far99, page

164].

In the following we introduce some basic geometric algorithms, which we will use for mesh

refinement in Section 3.3. A detailed derivation of all algorithms is given in [PT97, Chapter 5].

Let γ(t) =
∑n

k=0Rk,q(t)Qk be aq-th degree NURBS curve associated with the open knot

vectorΞ, weightsωk and control pointsQk := (q
(1)
k , q

(2)
k ). The two dimensional NURBS curve

is projected in the three dimensional space by defining the weighted control points

Qω
k := (ωk q

(1)
k , ωk q

(2)
k , ωk) (3.4)

and setting

γω(t) :=

n∑

k=0

Bk,p(t)Qω
k .

All subsequently presented algorithms only use the three-dimensional projectionγω(t) of γ(t).
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Knot Insertion. Knot insertion is a fundamental algorithm that can be used for subdividing

NURBS curves and changing the regularity of the NURBS basis functions. Additional knots are

inserted into the knot vectorΞ without changing the curve parametrically or geometrically.

Inserting the knotξ ∈ [ξk, ξk+1) into Ξ we obtain the new knot vector

Ξ̂ := {ξ0, ..., ξk, ξ, ξk+1, ..., ξn+p}.

Hence, the number of NURBS basis functions associated toΞ̂ is increased by one, i.e. the

NURBS curve has a representation

γω(t) =
n+1∑

j=0

B̂j,qQ̂ω̂
j .

The new weighted control pointŝQω̂
j , j = 0, ..., n + 1, can be computed by

Q̂ω̂
j = αjQ

ω
j + (1− αj)Q

ω
j−1 (3.5)

with

αj =





1, j ≤ k − p
ξ−ξj

ξj+p−ξj
, k − p+ 1 ≤ j ≤ k

0, j ≥ k + 1.

Hence, inserting a knot into the knot vector changes the basis representing the curve but not the

curve itself. This implies, that the continuity of the curveremains unchanged while due to prop-

erty (iii) in Lemma 3.1.4 the continuity of the basis functions is reduced by inserting additional

knots in the knot vector. Therefore, the knot insertion algorithm allows to control the regularity

of the basis functions without changing the regularity of the curve.

Furthermore, repeating an existing knot until its multiplicity equalsq + 1 splits the curve. Re-

peating this procedure for all interior knots yields a rational Bezier splitting of the NURBS curve.

Knot Removal. Knot removal is the inverse process of knot insertion. An interior nodeζ ∈ Ξ

with multiplicity r is called removable if the curveγω is p− r + 1 times continuously differen-

tiable inζ, i.e. additional regularity of the curve is assumed.

Let ζ ∈ Ξ̃ be a removable node with multiplicityr > 1 andk ∈ {0, ..., n+ q} be the index with

ζ = ξk 6= ξk+1. The new weighted control pointŝQω̂
k can be computed by

Q̂ω̂
i =

Qω
i − (1− αi)Q

ω
i−1

αi
k − q ≤ i ≤ 1

2
(2k − q − r − 1),

Q̂ω̂
j =

Qω
j − (1− αj)Q

ω
j−1

αj

1

2
(2k − q − r + 2) ≤ j ≤ k − r
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with αℓ :=
ξk−ξℓ

ξℓ+q+1−ξℓ
. Again, the curve is neither changed geometrically nor parametrically but

the regularity of the basis functions atζ is increased by one.

Degree Elevation.Elevating the degree of a curve bys ∈ N without changing the curve geo-

metrically or parametrically is called degree elevation, i.e.

γω(t) =

n̂∑

j=0

B̂j,q+sQ̂
ω̂
j .

Since the curve is not changed parametrically, the continuity of the curve at the nodesζ ∈ Ξ̃ has

to remain unchanged. Property (vii) in Lemma 3.1.4 implies that the multiplicity of each knot

in the knot vector has to be increased bys, i.e.

Ξ̂ = {ξ̂0, ..., ξ̂n+q+s(m+1)} := {ζ0, ..., ζ0︸ ︷︷ ︸
r0+s times

, ..., ζm, ..., ζm︸ ︷︷ ︸
rm+s times

}.

For the computation of the new weights and control points Algorithm 3.1 can be used, which is

introduced in [PT97, Chapter 5.5].

Algorithm 3.1 Computation of new control points and weights for degree elevation

INPUT: q-th degree NURBS curve defined byΞ,Qk andωk, k = 1, ..., n.

OUTPUT: (q + s)-th degree NURBS curve defined byΞ̂, Q̂k andω̂k, k = 1, ..., n + sm.

1: Extract the Bezier segments of the curve by repeating all interior knots(q + 1) times using

the knot insertion algorithm.

2: Degree elevate each Bezier segment.

3: Remove all interior knots until̂rj = rj + s using the knot removal algorithm.

3.2. Discrete Ansatz Spaces

Let Ω ⊂ R
2 be a Lipschitz domain with boundaryΓ := ∂Ω. We introduce a triangulation and

its parametrization in the following definition.

Definition 3.2.1. (i) LetNe ∈ N andγ : [−1, 1]→ Γ be theq-th degree NURBS parametriza-

tion of Γ with open knot vector

Ξ = {ζ0, ..., ζ0︸ ︷︷ ︸
r0 times

, ..., ζNe , ..., ζNe︸ ︷︷ ︸
rNe times

},

weightsωk, and control pointsQk, k = 0, ..., n, as given in Definition 3.1.1. Fori =

1, ...,Ne, we introduce boundary elementsTi := γ([ζi−1, ζi]), which form a triangulation

T = {Ti, i = 1, ..,Ne} of Γ as in Definition 1.4.1.
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3. High-Order NURBS-Based Boundary Element Methods

(ii) We denote the number of vertices of the triangulationT byNv.

(iii) For each elementTi ∈ T , i = 1, ...,Ne, we define its local parametrization by

γi : [−1, 1]→ Ti

t 7→ γi(t) := γ

(
(t+ 1)(ζi − ζi−1)

2
+ ζi−1

)
.

(iv) Let h ∈ L∞(Γ) be the mesh width function withh|int(Ti) = |Ti| =: hi, where|Ti| :=∫ ζi
ζi−1
|γ̇(t)| dt denotes the arc length of the elementTi. Further, we introduce the mesh-

width ratio

σ(h) := max

{
hi
hj
, Ti, Tj ∈ T , Ti ∩ Tj 6= ∅

}
.

(v) Letp ∈ L∞(Γ) be the polynomial degree function withp|Ti =: pi ∈ N0. If the polynomial

degree function is uniform, i.e.p1 = ... = pNe , we writep = p.

(vi) Let k ∈ L∞(Γ) be the regularity function withk|Ti = q − ri + 1.

Remark 3.2.2. Throughout this work, we assume that eitherΓ ⊂ R
2 is an open arc orΓ is

closed andNe > 1. This assumption implies that the local parametrizationsγi, i = 1, ..,Ne, are

bijective.

Now we are in the position to introduce the bases for the different ansatz spaces. We start

with the isoparametric and isogeometric ansatz spaces, where we use transformed b-spline and

NURBS basis functions.

Definition 3.2.3. Letγ be the NURBS parametrization ofΓ as given in Definition 3.2.1. Further,

let R̃k := Rk,q ◦ γ−1, k = 0, ..., n, whereRk,q are the NURBS basis functions of degreeq

defined by the same knot vector and weights that are used forγ. We define the rational ansatz

space by

R(T ,h, q,k) := span
{
R̃k, k = 0, ..., n

}
. (3.6)

Remark 3.2.4. (i) The ansatz space for isoparametric methods is obtained by setting all weights

ωk=1, k = 0, ..., n. Then, the rational ansatz spaceR(T ,h, q,k) changes over the poly-

nomial ansatz spaceS(T ,h, q,k) introduced in Section 1.4.

(ii) Using NURBS and b-spline basis functions, respectively, allows for the easy construction

of ansatz spaces with variable and high-order global regularity. Therefore, b-spline basis

functions are often used for collocation methods, where thehigh-order regularity is needed

in the theoretical analysis.

For the construction of the ansatz spaces for NURBS-enhanced methods, we use transformed

Legendre polynomials and Lobatto shape functions.
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3.2. Discrete Ansatz Spaces

Definition 3.2.5. Let T andγ be defined as in Definition 3.2.1.

(i) For i = 1, ...,Ne, we defineP̃ (i)
k := Pk ◦ γ−1

i , k ∈ N0, andÑ (i)
k := Nk ◦ γ−1

i , k ∈ N,

wherePk andNk are the Legendre polynomials and Lobatto shape functions asdefined in

Definitions 2.1.8 and 2.1.10, respectively.

(ii) The basis of the ansatz spaceS(T ,h,p,0) is given by

Ne⋃

i=1

{
P̃

(i)
0 , ..., P̃ (i)

pi

}
(3.7)

and the basis of the ansatz spaceS(T ,h,p,1) is given by

{H̃1, ..., H̃Nv} ∪
(Ne⋃

i=1

{
Ñ

(i)
3 , ..., Ñ

(i)
pi+1

}
)
, (3.8)

whereH̃j ◦γ ∈ P1([−1, 1]) with H̃j(γ(ζk)) = δjk denote the hat functions,j = 1, ...,Nv .

Remark 3.2.6. (i) In [Heu92] and [HS96] the condition number of the single layer Galerkin

matrix for polygonal boundaries is analyzed. In particular, it is proven that taking the

Legendre basis as defined in (3.7) yields condition numbers of orderO(pα) with α = 3.

The numerical results presented in [Ban13] indicate that the condition number only grows

linearly inp if a diagonal scaling is applied to the Galerkin matrix. Similar results are also

observed in our numerical examples for curved boundaries inthe later chapters.

(ii) Although the Legendre polynomials and the Lobatto shape function yield good condition

numbers in the Galerkin matrix, it is difficult to construct ansatz spaces with higher global

regularity. Hence, these basis functions are only used for the ansatz spacesS(T ,h,p,0)
andS(T ,h,p,1).

(iii) Since Lamé problems are two-dimensional problems the ansatz spaces are defined by the

tensor productXℓ×Xℓ, whereXℓ = {Φk, k = 1, ...,N} denotes one of the above defined

ansatz spaces. The basis of the tensor product space is then given by{(Φk, 0), (0,Φk), k =

1, ...,N}.

Example 3.2.7. Let Γ be an open arc parametrized by the NURBS curve with degreeq = 2,

knot vectorΞ = [−1,−1,−1,−0.5, 0, 0, 1, 1, 1], weights{ωk}k=0,...,5 = {1, 2, 1, 0.5, 1, 3} and

control points{Qk}k=0,...,5 = {(1, 0), (2, 2), (3,−1), (5, 2.5), (6, 2), (7, 0)}. The polynomial

degree vector is given byp = [1, 3, 2]. The NURBS curve with control polygon and the basis

functions of the three ansatz spacesR(T ,h, q,k), S(T ,h,p,0) andS(T ,h,p,1) are depicted

in the Figures 3.2 and 3.3.
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3. High-Order NURBS-Based Boundary Element Methods

1 2 3 4 5 6 7
−1

0

1

2

3

Figure 3.2.: NURBS curve as defined in Example 3.2.7 with control polygon (dashed).

In the remainder of this section, we derive some important properties of the NURBS parametriza-

tionsγi that are used for the implementation of collocation and Galerkin methods. In particular,

we proof that the local parametrizations are analytically extendable and determine their domain

of analyticity.

Lemma 3.2.8. For ρ > 1, let Eρ denote the ellipse with focii±1 as defined in Definition 2.0.9.

(i) γi : [−1, 1]→ Ti is bijective and there existsαi > 0, such that for alls, t ∈ [−1, 1]

α−1
i < min

ξ∈[−1,1]

∣∣γ̇i(ξ)
∣∣ ≤

∣∣γi(t)− γi(s)
∣∣

|t− s| ≤ max
ξ∈[−1,1]

∣∣γ̇i(ξ)
∣∣ < αi.

(ii) For a sufficiently small arc lengthhi, we get

hi
2
≤ max

ξ∈[−1,1]

∣∣γ̇i(ξ)
∣∣ ≤ q

ωmax

ωmin
hi.

(iii) There existsρ1 > 1 such that both components ofγi are analytically extendable to the

complex ellipseEρ1 with semi-axis sumρ1.

(iv) There existsρ2 > 1 such that|γ̇i| is analytically extendable to the complex ellipseEρ2 with

semi-axis sumρ2.

Proof. (i) With Remark 3.2.2 andTi ∈ T , and sinceΩ is a Lipschitz domain there exists a

bi-Lipschitz continuous parametrization, which implies (i).

(ii) For the first inequality, we obtain

hi
2

=
1

2

∫ 1

−1
|γ̇i(t)| dt ≤ max

ξ∈[−1,1]

∣∣γ̇i(ξ)
∣∣.

For the second inequality, we assume a rational Bezier representation with control points

Q̃k and weights̃ωk of γi, which can be obtained by inserting the knotsζi−1 andζi up to

58
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arc length
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(a) NURBS basis functions̃Rk, k = 0, ..., 5.

arc length
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(b) Legendre basis functions̃P (i)
k , i = 1, ..., 4, k = 0, ..., pi.

arc length
0 2 4 6 8 10

-1

-0.5

0

0.5

1

(c) Lobatto basis functions̃N (i)
k ,i = 1, ..., 4, k = 3, ..., pi + 1, and hat functions

H̃k, k = 1, ..., 4, respectively.

Figure 3.3.: Basis functions of the ansatz spaces in Definitions 3.2.3 and 3.2.5 plotted over the

arc length of the boundary. The vertical bars on the x-axes denote the multiplicity

of the knot in the knot vector.

59



3. High-Order NURBS-Based Boundary Element Methods

multiplicity q + 1. In [PK94] it is proven that̃Qk = γi(ξk) +O(h2). Hence, we get with

Lemma 3.1.4 (ix)

max
ξ∈[−1,1]

∣∣γ̇i(ξ)
∣∣ ≤ qωmax

ωmin
max

0≤k,j<n
‖Q̃k − Q̃j‖

≤ qωmax

ωmin
max
0≤k<q

‖γi(ξk)− γi(ξj)‖+O(h2i )

≤ qωmax

ωmin
hi +O(h2i ).

For sufficiently smallhi we getmaxξ∈[−1,1]

∣∣γ̇i(ξ)
∣∣ ≤ q ωmax

ωmin
hi.

(iii) Due to (viii) in Lemma 3.1.4 both components ofγi are rational functions with poles

zj ∈ C\[−1, 1] (j = 1, ..., q). Thus, there existsρ1 > 1 such thatzj 6∈ Eρ1 and henceγi

can be analytically extended toEρ1 .

(iv) Since both components ofγi are analytically extendable toEρ1 , both components oḟγi are

analytically extendable toEρ1.

Let f(t) := [γ̇i,1(t)]
2 + [γ̇i,2(t)]

2. Then,f is an analytic function onEρ1 and with (i) we

getf(t) 6= 0 for all t ∈ [−1, 1]. Due to the continuity off there exists1 < ρ2 ≤ ρ1 with

f(t) 6= 0 for t ∈ Eρ2 . With [FB06, Theorem II.2.9] there exists a holomorphic function

h : Eρ2 → C with h2 = f on Eρ2 . The holomorphic functionh is the unique analytic

extension of|γ̇i|, sinceh(t) = |γ̇i(t)| for t ∈ [−1, 1] ([FB06], Theorem III.3.2]).

Definition 3.2.9. Let i = 1, ...,Ne andγi be the local parametrization ofTi. We denote by

Eρi the ellipse with maximum semi-axis sumρi as defined in Definition 2.0.9, in which both

components ofγi and
∣∣γ̇i
∣∣ are analytically extendable. Further, we identifyγi and|γ̇i| by their

analytic extensions if no ambiguity occurs.

Proposition 3.2.10. The derivativeγ̇ of a q-th degree NURBS parametrization is a piecewise

rational function with numerator of degree2(q − 1).

Proof. DefiningP (t) :=
∑n

k=0 Bk,q(t)ωk Qk we have

γ̇(t) =
ω(t)P ′(t)− ω′(t)P (t)

ω(t)2
.

The derivative of the b-spline polynomials is given byB′k,q(t) = q
(Bk,q−1(t)

ξk+q−ξk
− Bk+1,q−1(t)

ξk+q+1−ξk+1

)
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3.2. Discrete Ansatz Spaces

(Lemma 3.1.4 (v)). Therefore, we get

ω(t)P ′(t)− ω′(t)P (t) = q
n∑

k=0

n∑

j=0

ωkωj Qk

(Bk,q−1(t)

ξk+q − ξk
− Bk+1,q−1(t)

ξk+q+1 − ξk+1

)
Bj,q(t)

− q
n∑

k=0

n∑

j=0

ωkωj Qj

(Bk,q−1(t)

ξk+q − ξk
− Bk+1,q−1(t)

ξk+q+1 − ξk+1

)
Bj,q(t)

= q

n∑

k=0

n∑

j=0

ωkωj (Qk −Qj)

( Bk,q−1(t)

ξk+q − ξk
− Bk+1,q−1(t)

ξk+q+1 − ξk+1

)
Bj,q(t)

=: q
n∑

k=0

n∑

j=0

αj,k

(Bk,q−1(t)

ξk+q − ξk
− Bk+1,q−1

ξk+q+1 − ξk+1(t)

)
Bj,q(t)

with αjk := ωkωj (Qk −Qj). Sinceαjk = −αkj we have

ω(t)P ′(t)− ω′(t)P (t)

= q

n∑

k=0

n∑

j=k+1

αj,k

[(Bk,q−1(t)

ξk+q − ξk
− Bk+1,q−1(t)

ξk+q+1 − ξk+1

)
Bj,q(t)

−
(Bj,q−1(t)

ξj+q − ξj
− Bj+1,q−1(t)

ξj+q+1 − ξj+1

)
Bk,q(t)

]
.

Applying the recurrence relation (3.1) we get
( Bk,q−1(t)

ξk+q − ξk
− Bk+1,q−1(t)

ξk+q+1 − ξk+1

)
Bj,q(t)−

(Bj,q−1(t)

ξj+q − ξj
− Bj+1,q−1(t)

ξj+q+1 − ξj+1

)
Bk,q(t)

=

( Bk,q−1(t)

ξk+q − ξk
− Bk+1,q−1(t)

ξk+q+1 − ξk+1

) (
t− ξj

ξj+q − ξj
Bj,q−1(t) +

ξj+q+1 − t
ξj+q+1 − ξj+1

Bj+1,q−1(t)

)

−
(Bj,q−1(t)

ξj+q − ξj
− Bj+1,q−1(t)

ξj+q+1 − ξj+1

) (
t− ξk

ξk+q − ξk
Bk,q−1(t) +

ξk+q+1 − t
ξk+q+1 − ξk+1

Bk+1,q−1(t)

)

=

(Bk,p−1(t)

ξk+q − ξk
− Bk+1,q−1(t)

ξk+q+1 − ξk+1

) (
− ξj
ξj+q − ξj

Bj,q−1(t) +
ξj+q+1

ξj+q+1 − ξj+1
Bj+1,q−1(t)

)

−
(Bj,q−1(t)

ξj+q − ξj
− Bj+1,q−1(t)

ξj+q+1 − ξj+1

) (
− ξk
ξk+q − ξk

Bk,q−1(t) +
ξk+q+1

ξk+q+1 − ξk+1
Bk+1,q−1(t)

)
.

Finally, we obtainω(t)P ′(t)− ω′(t)P (t) ∈ P2(q−1)([−1, 1]).

Remark 3.2.11(Computation of the domain of analyticity). As we see in the subsequent chap-

ters it is necessary to explicitly determine the domain of analyticity of the local parametriza-

tion γi. In particular, we compute the semi-axis sumρi as defined in Definition 3.2.9 in order

to obtain accurate error bounds for the quadrature rules. According to the proof of Lemma

3.2.8 (ii) and (iii) we have to compute the complex zeros and the poles of the rational func-

tion f(z) := [γ̇i,1(z)]
2 + [γ̇i,2(z)]

2. If we denote the numerator ofγ̇i by g = (g1, g2) and the

denominator byωi we have

f(z) =
g1(z)

2 + g2(z)
2

ωi(z)4
.
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3. High-Order NURBS-Based Boundary Element Methods

The poles off(z) correspond to the roots ofωi(z). Sinceωi(z) is a polynomial of orderq we

have closed formulas only forq ≤ 4 and for higher order splines we can compute the roots

numerically, e.g. via an eigenvalue problem.

Since the numerator off is a polynomial with real coefficients, the rootsζj, j = 1, ..., 4q − 2,

are complex conjugate. In order to determine the semi-axis sum ρi, we only have to compute

one zero of the complex conjugate pairs. Therefore, we write

g1(z)
2 + g2(z)

2 =
[
g1(z) + i g2(z)

][
g1(z)− i g2(z)

]
.

Since the coefficients ofgk, k ∈ {1, 2}, are real, we have

g1(z) + i g2(z) = g1
(
z
)
− i g2

(
z
)
.

This implies that ifζj is a zero ofg1(z) + i g2(z), thenζj is a zero ofg1(z)− i g2(z). Thus, it is

sufficient to compute the complex roots of the polynomialg1(z) + i g2(z). Due to Proposition

3.2.10 we compute the roots of a2(q − 1)-th degree polynomial and analytic formulas for the

roots are given forq ≤ 3.

LetM denote the set of all roots and poles off . According to Remark 2.0.10 (i) the real semi-

axis ofEρi is given by

a = min
zk∈M

|zk + 1|+ |zk − 1|
2

and finallyρi = a+
√
a2 − 1.

The following lemma gives an estimate for the maximum value of |γ̇i(z)| on confocal ellipses

lying in the domain of analyticity.

Lemma 3.2.12.Let 1 < ρ < ρi anda, ai > 1 denote the real semi axis of the ellipsesEρ and

Eρi . Then, there holds

max
z∈∂Eρ

∣∣ |γ̇i(z)|
∣∣ ≤ (ai + a)2(q−1)

(ai − a)2q
(ai − 1)2q

(ai + 1)2(q−1)
max

z∈[−1,1]
|γ̇i(z)| =: c hi.

Proof. Due to the definition of the ellipseEρi , γ̇i(z) contains no roots and poles inEρi . However,

at least one root or pole is located in∂Eρi . In the worst case, we have a root of multiplicity

2(q − 1) (degree of the numerator ofγ̇i) located at−ai and simultaneously a pole of order2q

(degree of the denominator ofγ̇i) located atai. In this case ,|γ̇i(z)| behaves like(ai+a)2(q−1)

(ai−a)2q . If

the maximum on[−1, 1] is attained at the right end, we obtain the upper bound

max
z∈∂Eρ

∣∣ |γ̇i(z)|
∣∣ ≤ (ai + a)2(q−1)

(ai − a)2q
(ai − 1)2q

(ai + 1)2(q−1)
max

z∈[−1,1]
|γ̇i(z)| =: c hi.

Here, we applied Lemma 3.2.8 in the last step.

Remark 3.2.13.The estimate in Lemma 3.2.12 is a worst case estimate. While there are bound-

ary parametrizations for which the estimate is sharp, the estimate is generally very coarse.

62



3.3. Boundary Meshes and Refinement

3.3. Boundary Meshes and Refinement

We construct a sequence of discrete ansatz spacesS(Tℓ,hℓ,pℓ,kℓ) andR(Tℓ,hℓ, qℓ,kℓ), ℓ ∈ N,

during the mesh refinement process. In order to increase the dimension of the discrete ansatz

spaces, there are different types of mesh refinements. Besides the classicalh- andp-refinement,

we also consider the uniformk-refinement for the isogeometric ansatz spaceR(Tℓ,hℓ, qℓ,kℓ),

which is originally introduced in [HCB05] and [CHR07]. Furthermore, we go into detail on the

construction of geometrically graded meshes on the unit circle and a round L-shaped domain,

which are introduced in Section 1.4.

Uniform h-refinement. In uniform h-methods we refine the boundary meshT uniformly by

splitting each elementT ∈ T into two sonsT ′ andT ′′. For NURBS-enhanced methods both

sons inherit the polynomial degreep of T .

For the splitting of elements, a new knot is inserted in each knot interval of the knot vectorΞℓ,

i.e.

Ξℓ = {ξ0, ..., ξn+q} → Ξℓ+1 = {ξ0, ..., ξn+q+Ne
}.

The new control points and weights are computed using the knot insertion algorithm introduced

in Section 3.1 such that the curves are neither changed geometrically nor parametrically.

Remark 3.3.1. Since the parametrization remains unchanged by using the knot insertion al-

gorithm, the domain of analyticity of the new local parametrizations can directly be computed

without solving the root finding problem described in Remark3.2.11 in the following way:

Let γi be the local parametrization ofTi andMi denote the set of all roots and poles ofγ̇i

as introduced in Remark 3.2.11. Refining the mesh by inserting ζ into [ζi, ζi+1] the local

parametrizationγ(ℓ)i andγ(r)i of the new elementsT (ℓ)
i andT (r)

i with γ(ℓ)i ([−1, 1]) = T
(ℓ)
i and

γ
(r)
i ([−1, 1]) = T

(r)
i can be represented by

γ
(ℓ)
i (t) := γi

(
(t+ 1)(ζ − ζi)
ζi+1 − ζi

− 1

)

γ
(r)
i (t) := γi

(
(t− 1)(ζi+1 − ζ)

ζi+1 − ζi
+ 1

)
.

Hence, withz ∈Mi, z(ℓ) ∈M (ℓ)
i andz(r) ∈M (r)

i we have the following relationship

z(ℓ) =
ζi+1 − ζi
ζ − ζi

z +
ζi+1 − ζ
ζ − ζi

z(r) =
ζi+1 − ζi
ζi+1 − ζ

z +
ζi − ζ
ζi+1 − ζ

.

The semi-axis sumsρ(ℓ)i andρ(r)i can be computed with the setsM (ℓ)
i andM (r)

i as in Remark

3.2.11.
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3. High-Order NURBS-Based Boundary Element Methods

An open issue inh-refinement is how to choose the new knots. The easiest way is to half each

element such that a uniform mesh is created during the refinement process and the mesh-width

ratioσ(h) is not blowing up. However, since the parametrization not only depends on the control

points but also on the weights, refining the knot vector uniformly does not refine the boundary

mesh uniformly. An approach based on point inversion for approximately halving the element

size is presented in [HCB05]. The idea is to compute the pointP := 1
2 (γ(ζk) + γ(ζk+1)) and

determineξ such thatξ = argmint∈[−1,1]‖γ(t) − P‖.
As it is proven in Remark 3.3.1, the smoothness of the parametrization depends on the knot that

is inserted. Hence, another strategy is to choose the knot sothat the smoothness of the resulting

local parametrization is optimally increased, i.e.

ξ := arg max
t∈[ζi,ζi−1]

min{ρ′i(t), ρ′′i (t)}.

This strategy of choosingξ has the advantage that the order of the quadrature rules usedfor

the numerical integration is decreased. Although the mesh width ratioσ(h) remains bounded

during the mesh refinement using this strategy, we obtain no uniform mesh.

Uniform p-refinement. We increase the discrete ansatz space by uniformly increasing the de-

gree of the basis functions, i.e.pℓ → pℓ+1 = 2pℓ + 1 for NURBS-enhanced methods and

qℓ → qℓ+1 = qℓ + 1 for isogeometric methods. Hence, for NURBS-enhanced methods we do

not change the boundary parametrization since the basis of the ansatz space is independent of

the basis used for the boundary approximation. For isogeometric and isoparametric methods we

increase the degree of the NURBS basis functions that are also used for the boundary approx-

imation. In order to compute the new control points and weights without changing the curves

geometrically or parametrically, the degree elevation Algorithm 3.1 is used. Hence, the dimen-

sion of the ansatz space is increase byNv.

Since only the NURBS basis functions and the control points but not the parametrization itself

are changed, the domain of analyticity of the local parametrization remains unchanged both for

NURBS-enhanced and isogeometric methods.

Uniform k-refinement. The idea ofk-refinement, which has no analogue in classical BEM,

is that the global regularity of the basis functions can be controlled by the multiplicity of the in-

terior knots in the open knot vectorΞℓ. In order to increase the regularity of the basis functions

we assume that the boundary is smooth enough such that no geometrical error is induced by

increasing the regularity of the basis. Further, the knot vectorΞℓ is required to contain interior

knots. If there are no interior knots, the basis function already haveC∞-regularity and uniform

k-refinement corresponds to uniformp-refinement. We proceed as in Algorithm 3.2. After the

degree elevation in the first step the regularity of the basisfunctions is unchanged, i.e. the basis
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3.3. Boundary Meshes and Refinement

Algorithm 3.2 Uniform k-refinement

INPUT: q-th degree NURBS curve defined byΞℓ,Qℓ
k andωℓ

k, k = 0, ..., n.

OUTPUT: (q + 1)-th degree NURBS curve defined byΞℓ+1,Q
ℓ+1
k andωℓ

k, k = 0, ..., n + 1.

1: Degree elevate the curve using Algorithm 3.1.

2: Remove all interior knots in the knot vector one time:

Ξℓ = {ζ0, ..., ζ0︸ ︷︷ ︸
r0 times

, ..., ζNe , ..., ζNe︸ ︷︷ ︸
rNe times

}

→ Ξℓ+1 = {ζ0, ..., ζ0︸ ︷︷ ︸
r0+1 times

, ζ1, ..., ζ1︸ ︷︷ ︸
r1 times

..., ζNe−1, ..., ζNe−1︸ ︷︷ ︸
rNe−1 times

, ζNe , ..., ζNe︸ ︷︷ ︸
rNe+1 times

}

Compute the corresponding control points and weights with the knot removal algorithm.

functions areq + 1 − (rk + 1) = q − rk times continuously differentiable atζk. Removing all

interior knots one time yields(q − rk + 1) regularity at the interior nodeζk.

The dimension of the resulting ansatz space is given by

dimR(Tℓ+1,hℓ+1, qℓ+1,kℓ+1) = dimR(Tℓ,hℓ, qℓ,kℓ) + 1.

A comparison of the basis functions obtained by uniformp- andk-refinements is given in Figure

3.4.

Geometrichp-refinement. The geometrically gradedhp-meshes, which are introduced in Sec-

tion 1.4, are created using the knot insertion algorithm. Weconsider the unit circleΓ := {x ∈
R
2 : ‖x‖2 = 1}, the procedure for the L-shaped domain is similar.

Form ∈ N andϑ ∈ (0, 1), we define a geometrically graded mesh on the parameter domain

by Ξ = {−1,−1,−1,−xm, ...,−x1,−0.5,−0.5, 0, 0, 0.5, 0.5, x1 , ..., xm, 1, 1, 1} with xk =

1 − ϑk

2 , k = 1, ...,m. The control points and weights of the parametrization are computed by

inserting the knots±xk, k = 1, ...,m, into the initial knot vectorΞ, which is defined in Example

3.1.3. Due to the symmetry of the weights in the initial mesh,we obtainhi/hj = ϑ for all

neighboring elementsTi andTj , whereTi is closer to the singularity.

In the end of this section, we proof that the different mesh refinements introduced above produce

a nested sequence of ansatz spaces. This property is a necessary assumption for the a priori es-

timates stated in Section 1.6.2. While this is clear for the polynomial ansatz spaces, for general

rational ansatz spaces this assumption is not satisfied.
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(a) Basis functions for uniformp-refinement.
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(b) Basis functions for uniformk-refinement.

Figure 3.4.: Comparison of uniformp- and k-refinements. The initial knot vector and the

weights are given byΞ = {−1,−1,−0.5, 0.5, 1, 1} andω1 = ω2 = ω3 = ω4 = 1.
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Lemma 3.3.2. LetRℓ(Tℓ,hℓ, qℓ kℓ), ℓ ∈ N, be the sequence of NURBS ansatz spaces as de-

fined in Definition 3.2.3 which are created by uniformh- or p-refinement. Then, there holds

Rℓ(Tℓ,hℓ, qℓ,kℓ) ⊂ Rℓ+1(Tℓ+1,hℓ+1, qℓ+1,kℓ+1).

Proof. Due to the definition of the NURBS basis functions we obtain for f ∈ Rℓ(Tℓ,hℓ, qℓ,kℓ)

f(t) =
1

ωℓ(t)
f̃(t)

with the weight functionωℓ andf̃ ∈ Sℓ(Tℓ,hℓ, qℓ,kℓ). For all introduced mesh refinements the

weights are computed such thatωℓ = ωℓ+1. WithSℓ(Tℓ,hℓ, qℓ,kℓ) ⊂ Sℓ+1(Tℓ+1,hℓ+1, qℓ+1,kℓ+1)

we obtain thatf ∈ Rℓ+1(Tℓ+1,hℓ+1, qℓ+1,kℓ+1).

Remark 3.3.3. The sequence of ansatz spaces produced by uniformk-refinement is not nested.

Hence, Theorem 1.6.3 cannot be applied and convergence and quasi-optimality fork-refinement

is still an open question.
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4. Numerical Integration for High-Order

NURBS-Based BEM

The efficient evaluation of the arising integrals in NURBS-based boundary element methods is

numerically challenging. First, the boundary is parametrized by arbitrary NURBS curves, there-

fore the use of analytic formulae for the numerical integration is not possible. Hence, the arising

integrals have to be evaluated approximately, which induces a consistency error. Second, besides

regular integrals also singular and nearly singular integrals have to be evaluated accurately for

high-order basis functions. Theorem 1.6.7 states that the Galerkin error decays exponentially

with respect to the degrees of freedom on geometrically graded meshes. The numerical results

in Chapter 5 show a similar decay for collocation methods. Inorder to obtain algorithms for the

numerical integration with algebraic complexity, that preserve the exponential convergence of

the collocation and the Galerkin errors, the quadrature error has to decay exponentially for all

integrals, too.

This chapter is organized as follows. The first section givesan overview on existing approaches

for the numerical evaluation of integrals arising in BEM.

In the second section, we discuss the evaluation of the boundary integral operators, that are in-

troduced in Section 1.2. We derive evaluation schemes that can be applied to the evaluation of

all boundary integral operators of Laplace, Lamé, and Helmholtz problems for general NURBS

boundary parametrizations and for all discrete ansatz spaces introduced in Section 3.2. In the

case of NURBS-enhanced methods we also present algorithms that are efficient for high degrees

of the polynomial basis functions. For all algorithms, we proof an exponential decay of the

approximation errors with respect to the evaluation order.In particular, we show that the con-

vergence rates are optimal in the sense that they only dependon the smoothness of the boundary

parametrization but not on the kernel function and the evaluation point. While the error estimates

presented are in generalh-asymptotic estimates, for NURBS-enhanced methods, we addition-

ally give estimates that are explicit in the polynomial degreep of the basis functions and can be

used for uniformp- andhp- methods.

We discuss the assembly of the Galerkin matrices that are introduced in Section 1.6.1 in the last

part of this chapter. Therefore, we present algorithms for the evaluation of the arising double
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4. Numerical Integration for High-Order NURBS-Based BEM

integrals that converge exponentially with respect to the evaluation order for general boundary

parametrizations and all considered ansatz spaces. For theregularization of the singular inte-

grands coordinate transforms are introduced. The remaining logarithmic singularity is evaluated

with the Gauss-Log quadrature that is introduced in Section2.2. Further, we give error estimates

for the evaluation of all integrals that are explicit in the mesh sizeh, and for NURBS-enhanced

methods also explicit in the polynomial degreep. In the end of this section, we derive a re-

lationship of the absolute evaluation error and the inducedconsistency error. Combining this

relationship and the error estimates, we are able to give a priori estimates for the evaluation or-

der for all integral operators, such that the consistency error does not deteriorate the convergence

rates of the Galerkin method.

4.1. Existing Approaches for the Numerical Integration in BEM

For the evaluation of integrals arising in BEM, there are three different types of approaches:

analytic approaches for the exact integration,numerical approaches that use quadrature rules

for the approximate integration, andsemi-analytic approaches. In the following we give an

overview on the different approaches. This overview is by nomeans complete.

Analytic formulae are often used for the evaluation of singular and nearly singular integrals,

since the integrals can be evaluated exactly without any further regularization. However, in order

to be able to derive analytic formulae, knowledge on the kernel function and a simple boundary

parametrization is required, which limits the field of applications. For polygonal boundaries and

polynomial basis functions, analytic approaches for the numerical integration are presented in

e.g. [RS07, Ban13, Mai96, Mai97, ST99]. While in [RS07] analytic formulae for the evaluation

of the Galerkin entries arising in lowest order BEM for Laplace and Lamé problems are given,

the works of Maischak and Bantle focus on high-order BEM. Therefore, the evaluation of the

arising integrals is reduced to the evaluation of some elementary integrals, for which analytic

formulae can be derived. In [Ban13], the evaluation of the boundary integral operators and the

assembly of the Galerkin matrices for the Laplace problem are reduced to the evaluation of the

modified associated Legendre functions of second kind and their antiderivatives. Further, the ef-

ficient and stable evaluation for high orders with recurrence relations is discussed. This approach

can also be extended to Lamé and Helmholtz problems. In [Mai96, Mai97], a similar approach

for all three partial differential operators is presented for two- and three-dimensional BEM. As

compared to the approach of [Ban13] the elementary integrals are defined via monomials instead

of Legendre polynomials. Due to the arising cancellation effects multiple precision libraries are

used for the evaluation.
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The idea ofsemi-analytic approachesis to extend the field of application of the analytic for-

mulae by interpolation of the kernel functions and approximation of the curved boundaries by

affine elements. The arising singular and nearly singular integrals are then evaluated analyti-

cally or with a combination of analytic formulae and quadrature rules. In [Sau92, HS93, SlSl98,

NWW+05, GG90, GKR+92], semi-analytic approaches for the evaluation of the Galerkin en-

tries are presented for piecewise smooth boundaries and general kernel functions. Besides the

expansion of the kernel and the interpolation of the curved boundary elements, coordinate trans-

formations are introduced for the regularization of the singularities. The resulting integrals are

then evaluated semi-analytically. However, for high-order kernel expansions and basis functions

these methods become inefficient and cancellation effects arise in the analytic evaluation of the

integrals [ST99].

For thenumerical integration with Gauss quadrature rules, the absolute quadrature errorde-

cays exponentially with respect to the quadrature order foranalytic integrands, see Theorems

2.2.11 and 2.2.15. Furthermore, quadrature rules can be applied to all regular integrands with-

out any additional knowledge on the kernel function and the boundary parametrization and have

hence a wide field of application. However, it is proven in [LR84] that the quadrature error only

decays algebraically for weakly singular integrals, for strongly singular integrals the quadrature

rules do not converge at all. For the efficient numerical evaluation of singular integrals, there are

basically three different methods: the evaluation with adapted quadrature rules, the application

of composite rules, and the regularization of the integrandwith coordinate transformations.

Adapted quadrature rules are special quadrature rules, where the weak singularity of the inte-

grand is considered to be the weight function of the quadrature rule and an exponential decay of

the error is achieved. If the quadrature rules can be calculated a priori, the application of adapted

quadrature rules provides an efficient possibility for the evaluation of weakly singular integrals.

In particular, for the logarithmic singularities, which typically arises in twodimensional bound-

ary element methods, the Gauss-Log quadrature rules, whichare introduced in Section 2.2, can

be used.

The idea of composite rules, which are presented in [Sch94],is to introduce a mesh, that is

geometrically graded towards the singularity. On each interval of the mesh a Gauss-Legendre

quadrature of variable order is applied, i.e. the lowest order is chosen on the interval closest

to the singularity and the order increases linearly for increasing distance to the singularity. In

[Sch94] an exponential convergence is proven for a wide class of singular integrands. However,

the factor of the exponential convergence significantly depends on the grading parameters and

optimal parameters that yield a fast exponential convergence cannot be determined for general

integrands.

By applying appropriate coordinate transformations, singular integrands are regularized, since

71



4. Numerical Integration for High-Order NURBS-Based BEM

the singularity is cancelled out by the Jacobian determinant of the transformation. In [Duf82],

a coordinate transformation, called Duffy transformation, for the integration over a triangle is

given, which regularizes integrands containing algebraiccorner singularities. Amongst oth-

ers, this coordinate transformation is used in [SaSch97], where quadrature rules for the three-

dimensional Galerkin BEM with general kernel functions andgeneral piecewise smooth bound-

ary parametrizations are presented. The Duffy transformation and a subsequent composite rule

are applied to the integrand and exponential convergence for a general class of kernel functions

is proven. These quadrature rules are widely used in three-dimensional boundary element im-

plementations, see e.g. [HK12,ŚBA+15, MMR+14].

While the singular case can be treated efficiently with quadrature rules, the nearly singular case

is numerically challenging, since the application of quadrature rules yields a very slow exponen-

tial, almost algebraic convergence. In two-dimensional BEM, the nearly singular integrands are

of the type

f(x) log(x2 + c2) and
f(x)

x2 + c2
(4.1)

with c≪ 1. Constructing adapted quadrature rules is inefficient, since the nodes and weights de-

pend onc and cannot be pre-computed. For the application of composite rules, which also yield

exponential convergence depending on the grading parameters, c has to be known explicitly.

In the setting of NURBS-based BEM this is equivalent to computing the point on the NURBS

curve which is closest to the evaluation point by the point inversion algorithm. This is generally

inefficient.

In [SlSl98, Tel86, TM74] different types of coordinate transforms for the regularization of in-

tegrands of type (4.1) are given. Besides the power and the Telles ([Tel86]) transformation,

which are polynomial transformations, also trigonometriccoordinates transformations (tan-

transformation, [SlSl98]) and double exponential formulae (tanh-sinh-transformations [TM74])

are presented. While the near singularity is not cancelled out, the domain of analyticity is in-

creased by the coordinate transforms, which yields an acceleration of the convergence speed if a

Gauss-Legendre quadrature is applied. This is depicted forthe power transformationg(t) = t2

in Figure 4.1, where it is shown that the ellipsesEρ contained in the domain of analyticity of the

transformed integrand (blue) are significantly larger thanthe ellipses contained in the domain

of analyticity of the original integrand. A comparison of all mentioned coordinate transforma-

tions is illustrated in Figure 4.2, where a significant acceleration of the convergence speed can

be observed. However, the application of coordinate transforms has two drawbacks. First, the

coordinate transformations require the knowledge ofc, which affects the efficiency. Second,

the convergence speed depends onc, which still yields a slow exponential convergence for very

smallc.
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Figure 4.1.: EllipsesEρ contained in the domain of analyticity of the original integrand (red),

and of the transformed integrand (blue) for the power transformationg(t) = t2 and

c = 0.1. The black dots denote the singularities of the integrand.
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Figure 4.2.: Absolute error|Rn| over quadrature ordern for different coordinate transformation

applied to the logarithmic integrand of type (4.1) withc = 0.01 and logarithmically

scaledy-axis.

For the evaluation of the boundary integral operators, we derive a semi-analytic approach, where

the singularities and the near singularities are extractedof the integrand and integrated analyti-

cally. While the above mentioned semi-analytic approachesbecome unstable for high order ex-

pansions, our algorithm is numerically stable even for highinterpolation orders. This is achieved

by exploiting the general structure of NURBS curves, which allows to reduce the evaluation of

the boundary integral operators to the evaluation of elementary integrals discussed in [Ban13].

These integrals can be evaluated in an efficient and stable way for high orders.

For the assembly of the Galerkin matrices, we introduce coordinate transformations for the reg-

ularization of the singular integrands, which are similar to the coordinate transformations pre-
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sented in [SaSch97] for three-dimensional BEM. However, instead of using composite rules for

the integration of the remaining singular integrals, we evaluate the integrals containing a loga-

rithmic singularity with a Gauss-Log quadrature. This yields a fast exponential convergence for

these integrals and polynomial integrands are integrated exactly.

4.2. Evaluation of Boundary Integral Operators

Apart from the assembly of the collocation matricesV, K, A, andW introduced in Section

1.5.1, the potentials̃V, K̃ and their co-normal derivatives have to be evaluated for thecompu-

tation of the solution and its co-normal derivative within the domainΩ. Hence, we discuss the

evaluation of the integral operators for allx ∈ R
2, which covers both cases.

Depending on the ansatz space, we have basis functions with local support, i.e.P̃ (i)
k andÑ (i)

k ,

and basis functions whose support contains more than one element, i.e.H̃k andR̃k. Since the

basis function with non-local support have reduced regularity at the element edges, see Lemma

3.1.4 (ii), we split the integration at all element edges andadd up the local contributions. For

Ti ∈ T andx ∈ R
2, we investigate the evaluation of

A
(i)
k (x) :=

∫

Ti

K̃(x− y)Φ(i)
k (y) dsy, k = 0, ..., pi. (4.2)

Here, we denote byΦ(i)
k the non-vanishing basis functions onTi of one of the discrete spaces

introduced in Definitions 3.2.3 and 3.2.5, and byK̃(x − y) the kernel function of the integral

operator. We assume the following representation of the kernel

K̃(x− y) := g−1(x− y) + g0(x− y) log |x− y|+
N∑

ℓ=1

gℓ(x− y) |x− y|−2ℓ (4.3)

with functionsgℓ, ℓ ≥ −1, that are analytic onC.

Remark 4.2.1. The fundamental solutions of Laplace, Lamé, and Helmholtzequations and their

co-normal derivatives are of the form (4.3). For an explicitrepresentation of all kernel functions

and the corresponding representations of the functionsgℓ we refer to Appendix A.

Plugging in the local parametrization ofTi we get withK(x, t) := K̃(x− γi(t))

A
(i)
k (x) :=

∫ 1

−1
K(x, t)Φk(t) |γ̇i(t)| dt.

Since the regularity of the kernel functionK has a big impact on the numerical integration, we

first analyzeK, before we go into detail on the evaluation ofA
(i)
k (x).

The representation (4.3) ofK implies thatK is weakly singular and singular ifx ∈ Ti, while

K is regular forx 6∈ Ti. However, also in the regular case the domain of analyticityof K

significantly depends on the parametrizationγi and the mutual location ofx andTi, which is

proven in the subsequent lemma.
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Lemma 4.2.2. Let x 6∈ Ti, D := dist{Ti, x} > 0 and Eρi as defined in Definition 3.2.9.

Then, the kernel functionK(x, t) is analytically extendable onEρi ∩ Eρ1 with real semi-axis

a1 = 1 + c D
hi

. The constantc > 0 is independent ofhi and D, but still depends on the

parametrizationγi.

Proof. By assumption, the functionsgℓ(z), ℓ = −1, ..., N , in representation (4.3) are analytic

for z ∈ C andγi is analytically extendable onEρi . Hence,gℓ(x− γi(t)) is analytic fort ∈ Eρi .
Let f(t) := (x1− γi,1(t))2 +(x2− γi,2(t))2. Sincef is analytic onEρi andf(t) = |x− γi(t)|2

on [−1, 1], f is the unique analytic extension of|x− γi(t)|2 onEρi . Hence,log(f) andf−ℓ are

analytic onEρ1 ∩Eρi , whereρ1 > 1 is chosen such thatf(t) > 0 for all t ∈ Eρ1 . Sincef(t) ≥ D
for t ∈ [−1, 1], the real semi-axisa1 of Eρ1 is given by

a1 = 1 +
D

maxz∈Eρ̃ |γ̇i(z)|

with 1 < ρ1 ≤ ρ̃ < ρi. With Lemma 3.2.12 we havemaxz∈Eρ̃ |γ̇i(z)| ≤ c̃ hi and conclude the

proof.

Lemma 4.2.2 motivates, that besides the singular case withx ∈ Ti, we also differentiate the

near-field case, in which the domain of analyticity of the kernel is spoiled byx (ρ1 < ρi), and

the far-field case, in which the size of the domain of analyticity of the kernel does not depend on

x (ρ1 ≥ ρi).
The proof of Lemma 4.2.2 shows that the estimate is a worst case estimate and generally pes-

simistic. Therefore, we are interested in the computation of the maximum ellipse contained in

the domain of analyticity. Since the domain of analyticity of the kernel is limited by the zeros of

the analytic function|x− γi(t)|2, we state the following result concerning the position of these

zeros.

Lemma 4.2.3. LetTi ∈ T , γi be its parametrization andx ∈ R
2\Ti. Then, there exists at most

one pair of complex conjugate numbersz, z ∈ Eρi with |x−γi(z)|2 = |x−γi(z)|2 = 0. Further,

the zerosz and z have multiplicity one if they exist. (Ifz is real, z = z and we have one zero

with multiplicity two).

Proof. It is proven in Lemma 4.2.2 thatf(z) = |x − γi(z)|2 is analytically extendable toEρi .
By analogy to Remark 3.2.11 we write

|x− γi(z)|2 =
[
(x1 − γi,1(z)) + i (x2 − γi,2(z))

][
(x1 − γi,1(z))− i (x2 − γi,2(z))

]
.

Sincex ∈ R
2 andγi has real coefficients, we have the following property: Ifz1 is a zero of

[
(x1 − γi,1(z)) + i (x2 − γi,2(z))

]
, thenz1 is a zero of

[
(x1 − γi,1(z)) − i (x2 − γi,2(z))

]
and

vice versa. Therefore, it is sufficient to show thatg(z) :=
[
(x1− γi,1(z))+ i (x2− γi,2(z))

]
has
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at most one zero inEρi .
There holds

g′(z) = −γ̇i,1(z)− i γ̇i,2(z).

Due to Remark 3.2.11g′(z) 6= 0 on Eρi and with [Jae99, Section 3.4]g is locally injective on

Eρi . This implies that there exists at most one zero, i.e.0 = g(z1) = g(z2) ⇒ z1 = z2. Since

g′ does not vanish onEρi , the zero has multiplicity one if it exists.

With the result of the previous lemmas we now introduce the following classification for the

evaluation pointx.

Definition 4.2.4. For x ∈ R
2, let zj ∈ C, j = 1, ..., qi, denote the zeros of|x − γ̇i(z)|2. We

define

(i) the set of all far-field pointsMf by

Mf := {x ∈ R
2 : zj 6∈ Eρi , j = 1, ..., qi},

(ii) the set of all near-field pointsMn by

Mn := {x ∈ R
2 : ∃ zj ∈ Eρi\[−1, 1]},

(iii) and the set of all singular pointsMs by

Ms := {x ∈ R
2 : ∃ zj ∈ [−1, 1]} = Ti.

Remark 4.2.5. (i) In order to classify the evaluation pointsx, the zeroszj of |x − γi(z)|2

have to be computed explicitly. As it is shown in the proof of Lemma 4.2.3, it is sufficient

to compute the zeros of the complex polynomial

g(z) := ωi(z) [(x1 − γi,1(z)) + i (x2 − γi,2(z))]

with the same degreeqi as the parametrization. Here, we denote byωi the denominator

of γi. Thus, there are closed formulae forqi ≤ 4, which are the most common cases,

and for higher order parametrizations, the zeros can be calculated numerically, e.g. via an

eigenvalue problem.

(ii) In the standard implementation, the dependency of the regularity of the kernel on the

parametrizationγi is ignored for the classification of far-field points. The criterion, which

is used in e.g. [NWW+05, ST99], is the ratio of the distanceD > 0 and the arc lengthhi,

i.e.

x ∈Mf , if D > εhi for a given toleranceε > 0. (4.4)
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The representation ofa1 in Lemma 4.2.2 implies, that this criterion works well for large

distancesD, since in this case the size of the domain of analyticity of the kernel is dom-

inated byD. However, for small distances, the regularity is mainly determined by the

derivative of the parametrization, which may be non-smoothfor general NURBS curves.

Hence, the dependency on the parametrization cannot be ignored for NURBS curves, if

reliable statements concerning the regularity of the kernel are needed. This is also ex-

emplified in Figure 4.3, which shows the domain of analyticity and the set of all far-field

points for the quarter circle as defined in Example 3.1.3.

(iii) Comparing the complexity of computing the distanceD with the complexity of computing

the zeroszj, we obtain the following result.

For the computation of the distanceD, the parametert0 := argmint∈[−1,1] |x−γi(t)| has to

be computed explicitly. This is equivalent to the computation of the roots of a polynomial

with degree3qi− 1, see e.g. [CZS+07]. Hence, the computation of the zeroszj according

to (i) is more efficient. Furthermore, we will see in the subsequent sections that in the

near-field and the singular case the additional informationof the rootzj ∈ Eρi is not only

used for the classification of the evaluation points, but also for the regularization of the

integrals.
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Figure 4.3.: Semi-axis sum of the largest ellipse containedin the domain of analyticity of the

kernel (left) and setMf of all far-field points (right) for the quarter circleTi, which

is parametrized by the NURBS curve defined in Example 3.1.3.

Algorithm 4.1 shows the classification of the evaluation pointsxℓ, ℓ = 1, ..., n. We additionally

introduce a toleranceε ∈ (0, 1] for the classification, as for parametrizationsγi containing a

pole on∂Eρi there exist many evaluation points for which the zeroszj are located closely to this

pole. For these points the far-field algorithm with almost optimal convergence is more efficient
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as the near-field evaluation with optimal convergence. Choosing ε < 1 classifies these points

as far-field points, specifically settingε = 0 in Algorithm 4.1 corresponds to the classification

of all points as far-field points. Having computed the zeroszj of |xℓ − γi(t)|2, we determine

the real semi-axisa of the maximum ellipse that does not contain any zerozj. Fora = 1 there

exists a zerozj ∈ [−1, 1] and we are hence in the singular case, for1 < a < ε
(
1+ρ2i
2ρi
− 1
)
+ 1

we are in the near-field case, since1+ρ2i
2ρi

corresponds to the real semi-axis ofEρi .
In the remainder of this section we discuss the evaluation ofthe integralsA(i)

k (x) for all three

cases, separately.

Algorithm 4.1 Algorithm for the Classification of the Evaluation Points

INPUT: Evaluation pointsxℓ, ℓ = 1, ..., n, semi-axis sumρi > 1 of γi, and toleranceε ∈ (0, 1].

OUTPUT: The setsMf ,Mn andMs of far-field, near-field and singular points.

1: for ℓ from 1 to n do

2: Compute the zerosz1, ..., zqi of |xℓ − γi(t)|2 according to Remark 4.2.5 (i)

3: Computea = minj=1,...,qi
|zj+1|+|zj−1|

2

4: if a = 1 then

5: xℓ ∈Ms.

6: end if

7: if 1 < a < ε
(
1+ρ2i
2ρi
− 1
)
+ 1 then

8: xℓ ∈Mn.

9: else

10: xℓ ∈Mf .

11: end if

12: end for

4.2.1. Far-field Case

We assume that the kernel function is analytic onEρi . If ε < 1 is chosen for the classification,ρi

has to be substituted byρi,ε := ε(ai − 1) + 1 +
√
ε2(ai − 1)2 + 2ε(ai − 1), whereai denotes

the real sexi-axis ofEρi . For the evaluation ofA(i)
k (x) with the Gauss-Legendre quadrature, an

exponential convergence of the absolute quadrature error is proven in the subsequent lemma.

Lemma 4.2.6. Let Ti ∈ T , γi denote its parametrization andx ∈ Mf . The absolute error

|Rn(x)| for the evaluation ofA(i)
k (x) with a Gauss-Legendre quadrature rule of ordern ∈ N is

bounded by

|Rn(x)| ≤ c hi ρ−2n−1, 1 < ρ < ρi, (4.5)
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with a constantc > 0 independent ofhi, but still depending onγi and the basis functionsΦk.

Proof. Sincex ∈ Mf , the kernel and hence the integrand is analytic onEρi and we can apply

Theorem 2.2.11. With Lemma 3.2.12, there holds for1 < ρ < ρi

max
z∈Eρ

∣∣K(γi(t), x) |γ̇i(z)|
∣∣ ≤ c1 hi (4.6)

with c1 > 0 independent ofhi. Since the kernel function and the basis functions are bounded,

we obtain (4.5).

Remark 4.2.7. For the Legendre polynomials,Φk := Pk, and the Lobatto shape functions,

Φk := Nk, we apply the estimates given in Lemma 2.1.9 (vi) and 2.1.11 (iv) and obtain

|Rn(x)| ≤ c̃ hi ρ−2n+k−1, 1 < ρ < ρi.

Here, the constant̃c is also independent of the polynomial degreek.

The Gauss-Legendre quadrature yields a fast exponential convergence of the quadrature error

for the general representation of the kernel (4.3) and all types of basis functions. This allows

the easy implementation in the far-field case. However, for both NURBS-enhanced and isogeo-

metric methods we propose two alternative approaches with less complexity as compared to the

Gauss-Legendre quadrature. Both approaches are based on the interpolation of the kernel and

exploit the properties of the basis functions.

NURBS-enhanced methods.For simplicity, we restrict to consider the caseΦk = Pk, cor-

responding results for the Lobatto shape functions are obtained in a similar way. LetIn(x, t)

denote then-th degree Legendre expansion ofK(x, t) |γ̇i(t)|, i.e.

K(x, t) |γ̇i(t)| ≈ In(x, t) :=
n∑

µ=0

αµ(x)Pµ(t). (4.7)

Plugging in the interpolation polynomial we obtain for allk = 0, ..., pi

∫ 1

−1
K(x, t) |γ̇i(t)|Pk(t) dt ≈

n∑

µ=0

αµ(x)

∫ 1

−1
Pµ(t)Pk(t) dt

=





2
2k+1αk(x), n ≥ k
0, otherwise.

Here, we used the orthogonality of the Legendre polynomialswith respect to theL2 scalar prod-

uct in the last step. Computing the coefficientsαµ(x), µ = 0, ..., n, we can evaluate all integrals
{
A

(i)
k (x)

}
k=0,...,pi

, simultaneously. For directly computing the interpolation polynomial in the

Legendre representation,O(n2) operations are needed. Therefore, we follow the algorithm
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given in [AR91], which only has a complexity ofO(n log n). A Pseudo-code is given in Algo-

rithm 4.2.

The coefficientsαµ := αµ(x), µ = 0, ..., n, are computed in three steps. First, we evaluate the

functionf at the zeros of the(n+1)-th Chebyshev polynomial and obtain the vectorf ∈ R
n+1.

Second, we apply the discrete cosine transform tof , see [RY90], and obtain the coefficientsα̃µ

with respect to the Chebyshev basis. In the third step, we apply a basis transformation, which

corresponds to a matrix-vector multiplication. The exact coefficient matrixM is given by

Mij :=





1, if i = j = 0
√
π

2Λ(i) , if 0 < i = j < n

−j(i+1/2)
(j+i+1)(j−i)Λ

(
j−i−2

2

)
Λ
(
j+i+1

2

)
if 0 ≤ i < j < n andi+ j even

0, otherwise

(4.8)

with

Λ(z) :=
Γ(z + 1/2)

Γ(z + 1)
.

A proof can be found in [AR91, Section 2.3]. Further, the authors present an algorithm of linear

complexity that calculates the matrix-vector product by approximating the coefficient matrix up

to a given toleranceε > 0 by anH2-matrix.

Algorithm 4.2 Algorithm for the Computation of the Legendre Interpolation

INPUT: Functionf , ordern.

OUTPUT: Vectora ∈ R
n+1 containing the coefficientsαµ, µ = 0, ..., n.

1: Evaluatef at tµ = cos
(
(µ+1/2) π

n+1

)
, µ = 0, ..., n

f ← f(t).

2: Apply discrete cosine transformation tof

ã← dct(f).

3: Transform the coefficients to Legendre basis

a←Mã.

Remark 4.2.8. With the algorithm presented in [AR91] we have an overall complexity of

O(n log n). However, the linear complexity of theH2-matrix approach for the basis trans-

formation is dominated by the constant and is only profitablefor high interpolation ordersn.

The next lemma gives an upper bound for the absolute error arising in the evaluationA(i)
k (x) by

interpolation.
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Lemma 4.2.9. Letn ∈ N, x ∈Mf , In(x, t) as defined in(4.7)and

|Rn(x)| :=
∣∣∣∣A

(i)
k (x)−

∫ 1

−1
In(x, t)Pk(t) dt

∣∣∣∣

denote the absolute error for the evaluation ofA
(i)
k (x). Then, there existsc > 0 independent of

hi such that

|Rn(x)| ≤ chi
1

(ρ− 1)ρn+1
max
z∈∂Eρ

|K(x, z)|, 1 < ρ < ρi. (4.9)

Proof. Recall thatK(x, t)|γ̇i(t)| is analytic onEρi ⊃ [−1, 1]. In particular, the kernel is con-

tinuous on[−1, 1] and hence we can represent the kernel by a Chebyshev series, see [Riv90,

Theorem 3.4]. There holds

K(x, t)|γ̇i(t)| =
∞∑

µ=0

α̃µ(x)Tµ(t), (4.10)

where the coefficients̃αµ are bounded by

|α̃µ(x)| ≤ 2 max
z∈∂Eρ

∣∣K(x, z)|γ̇i(z)|
∣∣ ρ−µ, 1 < ρ < ρi.

A proof is given in [Riv90, Theorem 3.8]. Withmaxz∈∂Eρ
∣∣ |γ̇i(z)|

∣∣ ≤ c̃ hi and (4.10), the

interpolation error

|En(x)| := max
t∈[−1,1]

∣∣∣∣∣∣
K(x, t)|γ̇i(t)| −

n∑

µ=0

α̃µ(x)Tµ(t)

∣∣∣∣∣∣

≤
∞∑

µ=n+1

|α̃µ(x)| ≤ 2 c̃
hi

(ρ− 1) ρn+1
max
z∈∂Eρ

∣∣K(x, z)
∣∣. (4.11)

where we used|Tµ(t)| ≤ 1. With the Hölder inequality, we get

|Rn(x)| ≤ |En(x)|
∫ 1

−1
|Pk(t)| dt ≤ 4 c̃

hi
(ρ− 1) ρn+1

max
z∈∂Eρ

∣∣K(x, z)
∣∣.

Remark 4.2.10. (i) The method based on the interpolation of the kernel has two advantages

as compared to the Gauss-Legendre quadrature, if ansatz functions with large polynomial

degrees are considered. First, Lemma 4.2.9 shows that the remainder|Rn(x)| does not

depend on the polynomial degreepi of the basis functions, since only the kernel is in-

terpolated in (4.7). For high-order methods with a large polynomial degreepi, a small

number of interpolation pointsn ≪ pi suffices, since the kernel is smooth in the far-field

case. For the Gauss-Legendre quadrature Lemma 4.2.6 implies, that the quadrature order

n > pi−1
2 is needed in order to reduce the quadrature error. The secondadvantage is, that
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also the complexity for the evaluation of
{
A

(i)
k

}
k=0,...,pi

is independent ofpi, since all inte-

grals are evaluated simultaneously by using the orthogonality of the Legendre polynomials.

In particular, the complexity ofO(n pi) of the Gauss-Legendre quadrature is reduced to

O(n log n), where the interpolation order is smaller as compared to thequadrature order.

Hence, the interpolation method shows to be very efficient for uniformp- andhp-refinements.

(ii) Since the Lobatto shape functions are closely related to the Legendre polynomials, see

Lemma 2.1.11 (i), the method introduced above can also be generalized toΦk = Nk.

Isogeometric methods.For the numerical integration in isogeometric FEM, quadrature rules

are constructed that exactly integrate all basis functionsof the NURBS ansatz space, see e.g.

[ACH+12]. As compared to the Gauss-Legendre quadrature, less function evaluations are needed

if the basis functions have a high inter-element regularity.

We extend this approach to the application to BEM by considering a patchP ⊂ T that may

contain more than one element. LetΦℓ ∈ S(P,h|P , q,k|P ), ℓ = 1, ...,m, denote all non-

vanishing b-spline basis functions on the patchP. Furthermore, we assume that the patchP
is parametrized by aC∞-regular b-spline curveγP and thatx ∈ R

2 is a far-field point for the

whole patch. By analogy to (4.7), we denote byIn(x, t) the interpolation polynomial of the

kernel and the parametrization of the patch, i.e.

K(x, t) |γ̇P (t)| ≈ In(x, t)

with K(x, t) := K̃(x, γP (t)). Plugging in the interpolation polynomial, we obtain

∫ 1

−1
K(x, t)|γ̇P (t)|Φℓ(t) dt ≈

n∑

µ=0

αµ

∫ 1

−1
Pµ(t)Φℓ(t) dt.

SincePµ(t)Φℓ(t) ∈ S(P,h|P , q + n,k|P), µ = 0, ..., n andℓ = 1, ...,m, a quadrature rule that

exactly integrates all functions inS(P,h|P , q + n,k|P) can be used for the exact evaluation of

the integral on the right-hand side. If the basis functions have uniform regularityk ≥ 0, the

optimal interpolatory quadrature rule, which is also called generalized Gauss rule, is of order

N := ⌈dimS(P,h|P , q + n,k|P)/2⌉, i.e.

∫ 1

−1
f(t) dt =

N∑

k=1

ωif(ti), ∀f ∈ S(P,h|P , q + n,k|P).

Remark 4.2.11. (i) For the exact integration with the Gauss-Legendre quadrature,|P|(q+n+1)
2

function evaluations are needed, where we denote by|P| the number of elements contained

in the patch.

The spaceS(P,h|P , q+n,k|P) is spanned by b-splines defined on a periodic knot vector,

i.e. there holdsdimS(P,h|P , q + n,k|P) = |P|(n+ q− k)− k− 1. Hence, the order of
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the optimal interpolatory quadrature rule depends on the regularity of the basis functions.

While for discontinuous basis functions the same order
⌈
|P|(n+q+1)

2

⌉
as for the Gauss-

Legendre quadrature is needed, only
⌈
|P|(n+1)−q

2

⌉
function evaluations are needed for the

basis functions with maximum regularity.

(ii) The main issue of this approach is the computation of thenodes and weights of the optimal

quadrature rules. While in [MRW96] the existence and uniqueness of generalized Gauss

rules is proven for special families of functions, so-called Chebyshev systems, this result

cannot be applied to the B-spline basis. Hence, existence and uniqueness of the quadrature

rule in the general case are still an open question.

(iii) The computation of the generalized Gauss rule corresponds to the solution of a non-linear

problem. Hence, the nodes and weights have to be computed a priori, which limits the

fields of application to some special cases, i.e. uniform knot vectors with the same multi-

plicity of all interior knots. In [ACH+12], an algorithm based on the Newton iteration for

uniform periodic and open knot vectors is presented.

4.2.2. Near-Field Case

The near-field case is the numerically most challenging case, since for small distancesD :=

dist{Ti, x} the kernel is nearly singular. While for singular integralsthe singularity can be

cancelled out by coordinate transforms or adapted quadrature rules can be applied, it is not

possible to find similar coordinate transforms and quadrature rules independent of the evaluation

pointx in the nearly singular case.

We propose a semi-analytic approach, which is based on the analytic integration introduced in

[Ban13, Section 2.3]. Therefore, we define the modified associated Legendre functions.

Definition 4.2.12([Ban13, Definition 2.3.1]). (i) For z ∈ C\(−∞, 1], we define

Q̃−1
k (z) :=

∫ 1

−1
Pk(t) log(z − t) dt

and forx ∈ (−∞, 1] we define

Q̃−1
k (x) :=

1

2
lim
ε→0

(
Q̃−1

k (x+ ε i) + Q̃−1
k (x− ε i)

)
.

(ii) For m ∈ N0 andz ∈ C\(−1, 1), we define

Q̃m
k (z) :=

∫ 1

−1

Pk(t)

(z − t)m+1
dt

and forx ∈ [−1, 1] we define

Q̃m
k (x) :=

1

2
lim
ε→0

(
Q̃m

k (x+ ε i) + Q̃m
k (x− ε i)

)
.
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Remark 4.2.13. (i) The accurate and efficient evaluation of the integralsQ̃m
k (z) is discussed

in [Ban13] for allz ∈ C\{−1, 1}. Therefore, the following recurrence relation is derived

(k −m+ 1)Q̃m
k+1(z) = (2k + 1) z Q̃m

k (z)− (k +m) Q̃m
k−1(z), m, k ∈ N. (4.12)

With this recurrence relation and Gautschi’s continued fraction algorithm all integrals can

be evaluated up to double machine precision for large valuesof k in an efficient way.

(ii) The definition of the modified associated Legendre functions can be extended toz ∈
{−1, 1} in the sense of the Hadamard finite part. With a modification ofthe recurrence

relation (4.12), where the coefficients of the infinite algebraic terms have to be considered

separately,̃Qm
k (±1) can also be evaluated in an efficient and accurate way for highorders

k.

In the following, we reduce the evaluation ofA(i)
k (x) to the computation of the modified associ-

ated Legendre functions by interpolation. Since the domainof analyticity of the kernel is limited

by the complex conjugate zeros of|x− γi(t)|2, see Lemmas 4.2.2 and 4.2.3, the interpolation of

the whole kernel only yields very slow convergence of the interpolation error. Hence, we split

the kernel functionK into regular and nearly singular parts and only interpolatethe regular parts.

Definition 4.2.14. ForTi ∈ T with its parametrizationγi andx ∈ Mn, we denote byzx ∈ Eρi
one of the complex conjugate zeros of|x− γi(t)|2.

The following proposition is a direct consequence of Lemmas4.2.2 and 4.2.3.

Proposition 4.2.15.Letx ∈ Mn andγi be the parametrization ofTi ∈ T as defined in Defini-

tion 3.2.1. Then, the function

f(t) :=
|x− γi(t)|2
|t− zx|2

is analytic onEρi and0 6∈ f(Eρi).

Using the result of the previous lemma, we now split the kernel functionK(x, t) in regular and

nearly singular parts:

K(x, t) = g−1(x− γi(t)) + g0(x− γi(t)) log |x− γi(t)|2 +
N∑

ℓ=1

gℓ(x− γi(t)) |x − γi(t)|−2ℓ

= g−1(x− γi(t)) + g0(x− γi(t)) log
|x− γi(t)|2
|zx − t|2

+ g0(x− γi(t)) log |zx − t|2

+

N∑

ℓ=1

(
gℓ(x− γi(t))

|zx − t|2ℓ
|x− γi(t)|2ℓ

)
1

|zx − t|2ℓ

=: f−1(x− γi(t)) + f0(x− γi(t)) log |zx − t|2 +
N∑

ℓ=1

fℓ(x− γi(t))
1

|zx − t|2ℓ
.

(4.13)
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With Proposition 4.2.15 the functionsfℓ, ℓ = −1, ..., N , are analytic onEρi . The integral

corresponding tof−1 can be evaluated efficiently as in the far-field case. The nearly singular

integrals are given by

I0(x) :=

∫ 1

−1
f0(x− γi(t)) log |t− zx|2 |γ̇i(t)| Φk(t) dt,

Iℓ(x) :=

∫ 1

−1
fℓ(x− γi(t))

1

|t− zx|2ℓ
|γ̇i(t)| Φk(t) dt, ℓ = 1, ..., N.

(4.14)

For the computation of the nearly singular integrals we needthe following preliminary lemma.

Lemma 4.2.16.Let ℓ ∈ N, t ∈ R andz ∈ C\R. Then, there holds

1

(z − t)ℓ(z − t)ℓ =

ℓ∑

µ=1

̺µ(z)

(
1

(z − t)µ + (−1)µ 1

(z − t)µ
)
. (4.15)

Proof. We proof the statement by induction overℓ. Forℓ = 1 we have

1

(z − t)(z − t) = − 1

2 Im(z) i

(
1

z − t −
1

z − t

)
(4.16)

and hence (4.15) holds. If we assume that (4.15) holds for(ℓ− 1), we get with (4.16)

1

(z − t)ℓ(z − t)ℓ =
1

(z − t)(z − t)
ℓ−1∑

µ=1

̺µ(z)

(
1

(z − t)µ + (−1)µ 1

(z − t)µ
)

= − 1

2 Im(z) i

(
1

z − t −
1

z − t

) ℓ−1∑

µ=1

̺µ(z)

(
1

(z − t)µ + (−1)µ 1

(z − t)µ
)

=
ℓ−1∑

µ=1

(
− ̺µ(z)

2 Im(z) i

)(
1

(z − t)µ+1
+ (−1)µ+1 1

(z − t)µ+1

)

+
ℓ−1∑

µ=1

(
− ̺µ(z)

2 Im(z) i

)(
(−1)µ 1

(z − t)µ(z − t) −
1

(z − t)(z − t)µ
)
. (4.17)

Investigating the expressions in the second sum we obtain byapplying (4.16) recursively

1

(z − t)µ(z − t) = − 1

2 Im(z) i

(
1

z − t −
1

z − t

)
1

(z − t)µ−1

= − 1

2 Im(z) i

(
− 1

(z − t)µ +
1

(z − t)(z − t)µ−1

)

= · · · =
µ∑

k=1

(
− 1

2 Im(z) i

)µ−k+1 1

(z − t)k

and with similar arguments

1

(z − t)(z − t)µ = · · · = −
µ∑

k=1

(
1

2 Im(z) i

)µ−k+1 1

(z − t)k .
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Hence, the second sum in (4.17) can be written as
ℓ−1∑

µ=1

(
− ̺µ(z)

2 Im(z) i

)(
(−1)µ 1

(z − t)µ(z − t) −
1

(z − t)(z − t)µ
)

=
ℓ−1∑

µ=1

(
− ̺µ(z)

2 Im(z) i

) µ∑

k=1

(
1

2 Im(z) i

)µ−k+1( 1

(z − t)k + (−1)k 1

(z − t)k
)

=

ℓ−1∑

µ=1


−

ℓ−1∑

k=µ

̺k(z)

(2 Im(z) i)k−µ+2



(

1

(z − t)µ + (−1)µ 1

(z − t)µ
)
.

Finally, we get

1

(z − t)ℓ(z − t)ℓ =

ℓ−1∑

µ=1

(
− ̺µ(z)

2 Im(z) i

)(
1

(z − t)µ+1
+ (−1)µ+1 1

(z − t)µ+1

)

+

ℓ−1∑

µ=1


−

ℓ−1∑

k=µ

̺k(z)

(2 Im(z) i)k−µ+2



(

1

(z − t)µ + (−1)µ 1

(z − t)µ
)

=

ℓ∑

µ=1

̺∗µ

(
1

(z − t)µ + (−1)µ 1

(z − t)µ
)

with

̺∗µ :=





−∑ℓ−1
k=1

̺k(z)
(2 Im(z) i)k+1 , µ = 1

−
(

̺µ−1(z)
2 Im(z) i +

∑ℓ−1
k=µ

̺k(z)
(2 Im(z) i)k−µ+2

)
, µ = 2, ..., ℓ − 1

− ̺ℓ−1

2 Im(z) i , µ = ℓ.

(4.18)

Remark 4.2.17.Forµ = 1, ..., ℓ, the coefficients̺ µ in Lemma 4.2.16 satisfy|̺µ| = O(Im(z)2ℓ−µ).

For ℓ = 1 this is proven by Equation (4.16), forℓ > 1 the statement follows by induction and

the representation (4.18) of̺∗µ.

For the numerical evaluation of the nearly singular integrals (4.14), we expand the regular parts

of the integrand into a Legendre sum, i.e. forn ∈ N we get

fℓ(x− γi(t)) |γ̇i(t)|Φk(t) ≈
n∑

µ=0

α(ℓ)
µ Pµ(t). (4.19)

The coefficientsα(ℓ)
µ := α

(ℓ)
µ (x) of the Legendre expansion are computed with Algorithm 4.2.

Plugging in the interpolation polynomial, we can reduce theevaluation of the critical integrals

to the computation of modified associated Legendre functions as follows:

I0(x) ≈
n∑

µ=0

α(0)
µ

∫ 1

−1
Pµ(t) log |zx − t|2 dt =

n∑

µ=0

α(0)
µ

∫ 1

−1
Pµ(t) log(zx − t)(zx − t) dt

= 2

n∑

µ=0

α(0)
µ Re(Q̃−1

µ (zx)). (4.20)
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For the algebraic terms withℓ = 1, ..., N we distinguish between real values ofzx and complex

values ofzx. Forzx ∈ R\[−1, 1], we have

Iℓ(x) ≈
n∑

µ=0

α(ℓ)
µ

∫ 1

−1
Pµ(t)

1

|zx − t|2ℓ
dt =

n∑

µ=0

α(ℓ)
µ Q̃2ℓ−1

µ (zx). (4.21)

For complexzx ∈ C\R, we apply the partial fraction decomposition (4.15) and obtain

Iℓ(x) ≈
n∑

µ=0

α(ℓ)
µ

∫ 1

−1
Pµ(t)

1

|zx − t|2ℓ
dt

=

n∑

µ=0

α(ℓ)
µ

ℓ∑

j=1

̺j(zx)

∫ 1

−1
Pµ(t)

(
1

(zx − t)j
+ (−1)j 1

(zx − t)j
)
dt (4.22)

For even integersj, we get

∫ 1

−1
Pµ(t)

(
1

(zx − t)j
+

1

(zx − t)j
)
dt = 2 Re

(
Q̃j−1

µ (zx)
)

and for odd integersj we obtain

∫ 1

−1
Pµ(t)

(
1

(zx − t)j
− 1

(zx − t)j
)
dt = 2i Im

(
Q̃j−1

µ (zx)
)
,

which yields

Iℓ(x) ≈ 2
n∑

µ=0

α(ℓ)
µ




ℓ∑

j=1, j odd

i ̺j(zx) Im
(
Q̃j−1

µ (zx)
)
+

ℓ∑

j=1, j even

̺ℓ(zx) Re
(
Q̃j−1

µ (zx)
)

 .

While the modified associated Legendre functionsQ̃j
k can be evaluated exactly (up to 15 sig-

nificant digits, see [Ban13]), it remains to investigate theerror, which is introduced by the in-

terpolation. The following Lemma gives an upper bound for the overall error of the evaluation

according to (4.20), (4.21), and (4.22).

Lemma 4.2.18. Let γi be the parametrization ofTi ∈ T , x ∈ Mn be a near-field point and

zx as defined in Definition 4.2.14. Forn ∈ N, the remainder
∣∣R(ℓ)

n (x)
∣∣ of the evaluation of the

integrals(4.14)according to(4.20), (4.21), and(4.22)is bounded by

∣∣R(ℓ)
n (x)

∣∣ ≤ c cℓ(x)hi
1

ρ− 1
ρ−n−1, 1 < ρ < ρi. (4.23)

The constantc is independent ofhi but still depending on the basis functionsΦk, and

cℓ(x) :=





∫ 1
−1

∣∣ log |zx − t|
∣∣ dt, ℓ = 0

∫ 1
−1

1
|zx−t|2ℓ dt, ℓ > 0.
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Proof. Due to Proposition 4.2.15 for allℓ = 0, ..., N , the interpolants are analytic onEρi . With

the same arguments as in the proof of Lemma 4.2.9 and1 < ρ < ρi, the interpolation error

|E(ℓ)
n (x)| of the Legendre sum (4.19) is bounded by

|E(ℓ)
n (x)| := max

t∈[−1,1]

∣∣∣∣∣fℓ(x− γi(t)) |γ̇i(t)|Φk(t) −
n∑

ι=0

α(ℓ)
µ Pµ(t)

∣∣∣∣∣ ≤ c hi
1

ρ− 1
ρ−n−1

with c > 0 independent ofhi and the distanceD. Applying the Hölder inequality we get for

ℓ = 0

∣∣R(0)
n (x)

∣∣ ≤ |E(0)
n (x)|

∫ 1

−1

∣∣ log |t− zx|
∣∣ dt

≤ c hi
1

ρ− 1
ρ−n−1

∫ 1

−1

∣∣ log |t− zx|
∣∣ dt

and

∣∣R(ℓ)
n (x)

∣∣ ≤ |E(ℓ)
n (x)|

∫ 1

−1

1

|t− zx|2ℓ
dt

≤ c hi
1

ρ− 1
ρ−n−1

∫ 1

−1

1

|t− zx|2ℓ
dt.

Corollary 4.2.19. For x ∈Mn, the absolute error|Rn(x)| of the evaluation ofA(i)
k (x) accord-

ing to (4.20), (4.21), and(4.22)is bounded by

|Rn(x)| ≤ c̃(x)hi
1

ρ− 1
ρ−n−1, 1 < ρ < ρi. (4.24)

Remark 4.2.20. For the Legendre polynomials,Φk = Pk, and the Lobatto shape functions,

Φk = Nk, we apply the estimates given in Lemma 2.1.9 (vi) and 2.1.11 (iv) and obtain

|Rn(x)| ≤ c̃ hi
1

ρ− 1
ρ−n+k−1, 1 < ρ < ρi.

Here, the constant̃c is independent ofhi and the polynomial degreek.

Remark 4.2.21. (i) For the evaluation ofA(i)
k (x) in the near-field case, the remainder|Rn(x)|

asymptotically behaves likeO(ρ−n−1) with a convergence factor1 < ρ < ρi only depend-

ing on the boundary parametrization but not on the evaluation pointx. This yields a fast

decay of the absolute error even for small distancesD. However, the constantcℓ(x) in

(4.23) depends on the evaluation pointx. Remark 4.2.17 implies thatcℓ(x) = O(D−2ℓ+1)

asD → 0.

(ii) For NURBS-enhanced methods, the complexity for the evaluation of
{
A

(i)
k

}
k=0,...,pi

with

n interpolation points isO(pi n log n), since the basis functionsΦk are also interpolated in
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4.2. Evaluation of Boundary Integral Operators

(4.19), Furthermore, the bound (4.24) for|Rn(x)| depends on the polynomial degree of the

basis functions. Hence, the advantage that the complexity and the decay of the remainder

are independent ofpi, which we obtain in the far-field case, cannot be transferredto the

near-field case.

(iii) As compared to the Gauss-Legendre quadrature, the interpolation generally only yields

half the convergence rate with respect to the ordern. However, since we only interpo-

late the regular parts of the kernel and integrate the nearlysingular parts analytically, the

interpolation order is much smaller than the quadrature order, when a Gauss-Legendre

quadrature is applied for the evaluation ofA(i)
k (x). We will see in Section 5.2.2 that the

convergence of the Gauss-Legendre quadrature rules is evenslower if the integrand is ad-

ditionally regularized with coordinate transforms.

(iv) For the single layer operator of the Laplace equation, there holdsg0(x − y) = − 1
2π and

gℓ(x − y) = 0, ℓ ∈ N. Hence, the coefficientsα(ℓ)
µ in (4.19) are independent of the

evaluation pointx and the Legendre expansion of the kernel only has to be computed once

for all evaluation points. However, this does not apply to the single layer operator of the

Lamé and Helmholtz equations and double layer operators ofall three PDEs.

4.2.3. Identical Case

Let x ∈ Ti andzx ∈ [−1, 1] as defined in Definition 4.2.14. The modified associated Legendre

functionsQ̃m
k (z) are also defined on[−1, 1] in the sense of the Cauchy principle values and the

Hadamard finite parts, see Definition 4.2.12. Furthermore, efficient algorithms for the evaluation

are given in [Ban13]. Hence, we can proceed as in the near-field case for the evaluation of

A
(i)
k (x). All results concerning the complexity and the absolute error remain valid, expect for

the constantcℓ in Lemma 4.2.18, which changes to

cℓ(x) :=




p.v.

∫ 1
−1

∣∣ log |zx − t|
∣∣ dt, ℓ = 0

f.p.
∫ 1
−1

1
|zx−t|2ℓ dt, ℓ > 0.

Remark 4.2.22. Since the nearly singular and singular cases do not have to bedistinguished

and all type of singularities are evaluated in a similar way,we obtain a simple implementation

for all kernel functions of the general type (4.26). However, for some special cases there are

also alternative methods for the evaluation of the nearly singular integralsIℓ(x), ℓ = 0, ..., N as

defined in (4.14), which we present in the following.

(i) For the integralI0 containing the logarithmic singularity, i.e.

I0(x) =

∫ 1

−1
f0(x− γi(t)) log |t− zx|2 |γ̇i(t)| Φk(t) dt =:

∫ 1

−1
f̃(t) log |t− zx| dt
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4. Numerical Integration for High-Order NURBS-Based BEM

the Gauss-Log quadrature, which is introduced in Section 2.2, can be used for the evalu-

ation. For this purpose, we split the integration atzx and apply affine transforms to the

resulting integrals, such that the logarithmic singularity is located at -1. We get

I0(x) = log(1− zx)
1− zx

2

∫ 1

−1
f̃

(
1− zx

2
t+

1 + zx
2

)
dt

+ log(1 + zx)
1 + zx

2

∫ 1

−1
f̃

(
−1 + zx

2
t− 1− zx

2

)
dt

+

∫ 1

−1
log

(
1 + t

2

)[
f̃

(
1− zx

2
t+

1 + zx
2

)
+ f̃

(
−1 + zx

2
t− 1− zx

2

)]
dt.

The first two integrals can be evaluated as in the far-field case, while the third integral

is evaluated with a Gauss-Log quadrature. Since the function f̃ in analytic onEρi , The-

orem 2.2.15 implies that the absolute quadrature error for the third integral decays with

O(ρ−2n−1
i ), which is twice the convergence rate with respect to the order n as compared

to the interpolation approach. Furthermore, the complexity for the evaluation reduces from

O(n log n) of the interpolation toO(n) for the Gauss-Log quadrature.

(ii) For the evaluation ofI1(x), the approach presented in [GC87] can be used when addition-

ally assuming thatf1(x− γi(t)) = (zx − t)f̂1(x− γi(t)) with f̂1(zx − γi(t)) 6= 0. This is

satisfied for the double layer operators of Laplace, Lamé and Helmholtz equations. Hence,

we get

p.v. I1(x) = p.v.

∫ 1

−1
f̂1(x− γi(t)) |γ̇i(t)| Φk(t)

1

zx − t
dt =: p.v.

∫ 1

−1
f̃(t)

1

zx − t
dt.

There holds

p.v. I1(x) =

∫ 1

−1

f̃(t)− f̃(zx)
zx − t

dt+ p.v.

∫ 1

−1

f̃(zx)

zx − t
dt

=

∫ 1

−1

f̃(t)− f̃(zx)
zx − t

dt+ f̃(zx) log
zx − 1

zx + 1
.

Since the first integrand is analytic onEρi the Gauss-Legendre quadrature yields exponen-

tial convergence with twice the convergence rate as compared to the interpolation method

if the integrand is evaluated appropriately atzx.

(iii) A similar algorithm for the evaluation of the hypersingular integralsIℓ, ℓ > 1, is pre-

sented in [PA92]. Here, higher order Taylor expansions off are used for the semi-analytic
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evaluation, i.e. forℓ = 2 with f̃(zx) 6= 0 andf̃ ′(zx) 6= 0

f.p. I2(x) = f.p.

∫ 1

−1

f̃(t)− f̃(zx)− f̃ ′(zx)(zx − t)
(zx − t)2

dt

+ f.p.

∫ 1

−1

f̃(zx)

(zx − t)2
dt+ p.v.

∫ 1

−1

f̃ ′(zx)
zx − t

dt

=

∫ 1

−1

f̃(t)− f̃(zx)− f̃ ′(zx)(zx − t)
(zx − t)2

dt+ f̃(zx)
2

z2x − 1
+ f̃ ′(zx) log

zx − 1

zx + 1
.

4.3. Computation of Galerkin Entries

In this section we discuss the assembly of the Galerkin matricesV, K, andW that are intro-

duced in Section 1.6.1. For the evaluation of the arising double integrals, we split the integration

at all element edges. For the non-local basis functions, we add up the local contributions. For a

fixed element combination of boundary elementsTi, Tj ∈ T , we have to evaluate the integrals

A
(i,j)
k,ℓ :=

∫

Ti

Φ
(i)
k (x)

∫

Tj

Ψ
(j)
ℓ (y)K̃(x− y) dsy dsx. (4.25)

Here, we denote byΦ(i)
k andΨ(j)

ℓ the basis functions of the discrete ansatz spaces as defined in

Definitions 3.2.3 and 3.2.5. The kernel functioñK is of the type

K̃(x− y) = g0(x− y) + g1(x− y) log |x− y|

+ g2(x− y)
(x− y)T νy
|x− y|2 + g3(x− y)

(x− y)T τy
|x− y|2 ,

(4.26)

where we denote byνy and τy the outer unit normal and tangential vectors aty ∈ Γ. Fur-

thermore, we assume that the functionsgn(z), n = 0, ..., 3, are analytic onz ∈ C\{0} and

analytically extendable toz = 0 andg3(x− y) = g3(y − x).

Remark 4.3.1. The entries ofV andK of the Laplace, Lamé and Helmholtz operators are of the

form (4.25) with kernel functions (4.26), see Appendix A. For the assembly ofW, we use the

relationship between the hypersingular and the single layer operator, see Theorems 1.3.1 (iii),

1.3.2 (iii), and 1.3.5 (v). Hence, the Galerkin matrices forall partial differential operators are

included in the subsequent analysis.

Plugging in the local parametrizations ofTi andTj , which are defined in Definition 3.2.1, we

obtain withK(s, t) := K̃(γi(s)− γj(t))

A
(i,j)
k,ℓ :=

∫ 1

−1

∫ 1

−1
Φk(s)Ψℓ(t)K(s, t) |γ̇i(s)| |γ̇j(t)| dt ds. (4.27)

Since the kernel function contains singularities ifTi andTj have common points, we differentiate

the following cases:
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4. Numerical Integration for High-Order NURBS-Based BEM

• far-field elements:Ti ∩ Tj = ∅, i.e.D := dist{Ti, Tj} > 0.

• neighboring elements:Ti ∩ Tj 6= ∅ and|Ti ∩ Tj| = 0, i.e. the elements have one common

node.

• identical elements:Ti = Tj .

In the remainder of this section, we discuss the evaluation of the double integrals in (4.27) and

give error estimates for the absolute error. For all three cases, we proof that the absolute error

decays exponentially with respect to the function evaluations. This is fundamental for high-

order methods that yield an exponential decay of the Galerkin error. The last part of this section

is devoted to the derivation of a priori estimates for the quadrature orders by estimating the

consistency error induced by numerical integration.

4.3.1. Far-field Elements

Throughout this section, we denote byD > 0 the minimal distance of the elementsTi andTj .

Since the kernel is regular in this setting, the tensor Gauss-Legendre quadrature yields an expo-

nential decay of the quadrature error and is hence the intuitive choice for the evaluation. After

having proven an explicit bound for the quadrature error, wealso propose alternative algorithms

for the numerical integration in NURBS-enhanced methods.

We start with proving the analyticity of the kernel function.

Lemma 4.3.2.Lethi, hj denote the arc lengths ofTi, Tj , andEρi , Eρj be as defined in Definition

3.2.9.

(i) For all t ∈ [−1, 1], the kernelK(s, t) is real analytic on[−1, 1] with respect tos and admits

an analytic extension toEρ1 ∩Eρi , whereEρ1 is defined by its real semi-axisa1 = 1+ ci
D
hi

.

(ii) For all s ∈ [−1, 1], the kernelK(s, t) is real analytic on[−1, 1] with respect tot and admits

an analytic extension toEρ2 ∩Eρj , whereEρ2 is defined by its real semi-axisa2 = 1+ cj
D
hj

.

The constantsci and cj only depend on the parametrizationsγi and γj , respectively, but are

independent ofhi andhj .

Proof. Let t ∈ [−1, 1] be fixed. Settingx := γj(t), Lemma 4.2.2 implies thatK(s, t) is analyti-

cally extendable onEρi ∩Eρ1 with real semi-axisa1 = 1+ ci
Dt
hi

andDt := dist{γj(t), Ti} > 0.

With D = mint∈[−1,1]Dt we obtain (i). Statement (ii) can be proven analogously.

Remark 4.3.3. The previous lemma shows that the regularity of the kernel depends on the ratio

of the distance and the arc length of the elements. Dependingon the position ofTi andTj the

maximum domains of analyticityEρi andEρj , respectively, may be decreased. This is the main
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difference to the far-field case for the evaluation of the integral operators discussed in Section

4.2, where the maximum regularity of the kernel is guaranteed for all far-field points.

The following lemma gives an estimate for the absolute errorof the Gauss-Legendre quadrature.

Lemma 4.3.4. Let n := (n1, n2) ∈ N
2 andρ1, ρ2 > 1 such that the domains∂Eρ1 × [−1, 1]

and [−1, 1]× ∂Eρ2 are contained in the domain of analyticity of the kernelK. Furthermore, we

denote by|Rn| the absolute quadrature error of the tensor Gauss-Legendrequadrature of order

n for the integral(4.25).

Then, there exist constantsC1, C2 > 0 depending on the distance, the parametrizationsγi and

γj and the basis functions, but independent ofhi andhj such that

|Rn| ≤ hi hj
(
C1 ρ

−2n1−1
1 + C2 ρ

−2n2−1
2

)
. (4.28)

Proof. With Lemma 4.3.2 and the analyticity of the basis functions,the integrand is analytic on

Eρ1 × [−1, 1] and[−1, 1] × Eρ2 and we thus apply Theorem 2.2.17. In order to obtain (4.28) it

remains to estimates the maximum of the integrand on the domains of analyticity. For the kernel

function, there holds

max
(s,t)∈∂Eρ1×[−1,1]

|K(s, t)| ≤ α0 + α1 | logD|+ α2
1

D

max
(s,t)∈[−1,1]×∂Eρ2

|K(s, t)| ≤ β0 + β1 | logD|+ β2
1

D
.

The constantsαk, βk > 0, k = 0, 1, 2, depend on the coefficient functionsgn and the parametriza-

tions but are independent of the distanceD and the arc lengthshi andhj of the elements. The

maximum value of the basis functions on∂Eρ1 and∂Eρ2 is bounded and independent ofhi and

hj . With Lemma 3.2.12 we get

max
z∈∂Eρ1

|γ̇i(z)| ≤ chi and max
z∈∂Eρ2

|γ̇j(z)| ≤ chj

and conclude the proof.

Corollary 4.3.5. For the Legendre polynomials, i.e.Φk = Pk andΨℓ = Pℓ, and the Lobatto

shape functions, i.e.Φk = Nk andΨℓ = Nℓ, there holds

|Rn| ≤ hi hj
(
C1 ρ

−2n1+k−1
1 + C2 ρ

−2n2+ℓ−1
2

)
,

where the constantsC1 andC2 only dependent on the parametrizationsγi andγj and the dis-

tance of the elements, but are independent of the polynomialdegreesk andℓ.

Proof. Follows directly from the estimates given in Lemmas 2.1.9 (vi) and 2.1.11 (iv).
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NURBS-ehanced methods.For the Legendre and the Lobatto bases, we generalize the ap-

proach of expanding the kernel into a Legendre series, whichis introduced in Section 4.2 for

the evaluation of the boundary integral operators. By taking advantage of the smoothness of the

kernel for far-field elements and the orthogonality of the Legendre polynomials and the Lobatto

shape functions, we obtain a complexity for the evaluation of A(i,j)
k,ℓ , k, ℓ = 1, ..., p, that is inde-

pendent of the polynomial degreep.

For simplicity, we only describe the interpolation for the Legendre basis, i.e.Φk := Pk and

Ψℓ := Pℓ. Let the tensor Legendre expansion be given by

K(s, t)|γ̇i(s)| |γ̇j(t)| ≈ In(s, t) :=
n1∑

µ=0

n2∑

ν=0

αµνPµ(s)Pν(t). (4.29)

Plugging in the Legendre expansion we obtain

∫ 1

−1
Pk(s)

∫ 1

−1
Pℓ(t)K(s, t) |γ̇i(s)| |γ̇j(t)| dt ds

≈
n1∑

µ=0

n2∑

ν=0

αµν

∫ 1

−1
Pµ(s)Pk(s) ds

∫ 1

−1
Pν(t)Pℓ(t) dt

=




αkℓ

4
(2k+1)(2ℓ+1) , k ≤ n1 and j ≤ n2

0, otherwise.
(4.30)

Hence, for evaluating all integralsA(i,j)
k,ℓ , k, ℓ = 0, ..., p, simultaneously we only have to compute

the coefficients of the Legendre expansion. Similarly to Algorithm 4.2 for the one-dimensional

case, we compute the coefficients in two steps. First, we compute the coefficients̃αµν with

respect to the Chebyshev basis. Therefore, we evaluateK(s, t) |γ̇i(s)| |γ̇j(t)| at

(sν , tµ), ν = 1, ..., n1 and µ = 1, ..., n2,

wheresν andtµ denote the zeros of the(n1 + 1)-th and(n2 + 1)-th Chebyshev polynomials,

respectively. We then apply the discrete cosine transform on the rows and columns.

Second, the basis transformation to the Legendre polynomials is realized by the multiplication

of the coefficient matrix with the transformation matrixM defined in (4.8) from the left and

right.

Remark 4.3.6(Complexity). Forn := n1 = n2, we have an overall complexity ofO(n2 log n):
The two-dimensional discrete cosine transform has a complexity of O(n2 log n), since the dis-

crete cosine transform is applied two times to a(n× n)-matrix. The basis transformation to the
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Legendre basis corresponds to two matrix-matrix multiplications. If the algorithm of [AR91] is

used for theH2-matrix approximation of the transformation matrix, we also obtain a complexity

of O(n2).
As compared to the tensor Gauss-Legendre quadrature we can reduce the complexity from

O(n3) to O(n2 log n). Furthermore, the interpolation order only depends on the smoothness

of the kernel and the boundary parametrization and is independent of the polynomial degreep.

Hence, the interpolation approach becomes very efficient for the uniformp-refinement, i.e. if

the kernel is smooth and the polynomial degrees of the basis functions are large.

The following Lemma gives an estimate for the absolute evaluation error.

Lemma 4.3.7. Let Ti, Tj ∈ T with D = dist{Ti, Tj} > 0 and ρ1, ρ2 > 1 such that the

expressionK(s, t) |γ̇i(s)| |γ̇j(t)| is analytically extendable onEρ1 × Eρ2 . For n ∈ N
2, let In be

the Legendre sum as defined in(4.29). If we denote by|Rn| the absolute error of the evaluation

of the double integral(4.25)according to(4.30), then there holds

|Rn| ≤ Chi hj max
(s,t)∈∂Eρ1×∂Eρ2

|K(s, t)|
(

1

(ρ1 − 1) ρn1+1
1

+
1

(ρ2 − 1) ρn2+1
2

)
.

Proof. Let
∑n1

µ=0 αµ(t)Pµ(s) denote the Legendre expansion ofK(s, t) |γ̇i(s)| |γ̇j(t)| with re-

spect tos. Then, we obtain for the interpolation error ofIn

∣∣∣∣K(s, t) |γ̇i(s)| |γ̇j(t)| − In
∣∣∣∣ ≤

∣∣∣∣∣∣
K(s, t) |γ̇i(s)| |γ̇j(t)| −

n1∑

µ=0

αµ(t)Pµ(s)

∣∣∣∣∣∣

+

∣∣∣∣∣∣

n1∑

µ=0

αµ(t)Pµ(s)− In

∣∣∣∣∣∣
.

By analogy to the proof of Lemma 4.2.9 we obtain for the first term
∣∣∣∣∣∣
K(s, t) |γ̇i(s)| |γ̇j(t)| −

n1∑

µ=0

αµ(t)Pµ(s)

∣∣∣∣∣∣
≤ c̃1

hihj

(ρ1 − 1) ρn1+1
1

max
(s,t)∈∂Eρ1×∂Eρ2

∣∣K(s, t)
∣∣.

For the second term we get with (4.11)
∣∣∣∣∣∣

n1∑

µ=0

αµ(t)Pµ(s)− In

∣∣∣∣∣∣
=

∣∣∣∣∣∣

n1∑

µ=0

(
αµ(t)−

n2∑

ν=0

αµ,νPν(t)

)
Pµ(s)

∣∣∣∣∣∣

≤ max
t∈∂Eρ2

|αµ(t)|
1

(ρ2 − 1) ρn2+1
2

n1∑

µ=0

|Pµ(s)|

≤ (n1 + 1) max
(s,t)∈∂Eρ1×∂Eρ2

∣∣K(s, t) |γ̇i(s)| |γ̇j(t)|
∣∣ 1

(ρ2 − 1) ρn2+1
2

≤ c̃2 (n1 + 1) max
(s,t)∈∂Eρ1×∂Eρ2

∣∣K(s, t)| hi hj

(ρ2 − 1) ρn2+1
2

.
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With

|Rn| ≤ 4

∣∣∣∣K(s, t) |γ̇i(s)| |γ̇j(t)| − In
∣∣∣∣

we conclude the proof.

Remark 4.3.8. (i) In [Heu96] and [Ban13], it is observed that the entries inthe far-field block

A
(i,j)
k,ℓ decay rapidly with respect to the polynomial degreesk andℓ of the Legendre polyno-

mials. For the implementation, the small entries, that do not significantly affect the overall

error, are simply neglected. This yields a data compressionscheme for the far-field blocks.

The interpolation approach presented above yields a similar compression scheme, since

small entries are automatically neglected by exploiting the orthogonality of the Legendre

polynomials.

(ii) As compared to the Gauss-Legendre quadrature, the convergence is slower, since the kernel

K has to be analytically extendable inEρ1×Eρ2 as compared toEρ1× [−1, 1] and[−1, 1]×
Eρ2 , respectively. Hence, the semi-axis sumsρ1 andρ2 cannot be estimated by the formulas

given in Lemma 4.3.2 and the computation is in general expensive.

4.3.2. Neighboring elements

Let Ti, Tj ∈ T be neighboring elements that have one common node. Without loss of gener-

ality we assume that the local parametrizations ofTi andTj satisfyγj(1) = γi(−1), the case

γj(−1) = γi(1) can be treated analogously. Plugging in the local parametrizations into the

representation of the kernel function (4.26) we get

K(s, t) = g0
(
γi(s)− γj(t)

)
+ g1

(
γi(s)− γj(t)

)
log
∣∣γi(s)− γj(t)

∣∣

+ g2
(
γi(s)− γj(t)

)(γi(s)− γj(t)
)T
νj(t)∣∣γi(s)− γj(t)
∣∣2

+ g3
(
γi(s)− γj(t)

)(γi(s)− γj(t)
)T
τj(t)∣∣γi(s)− γj(t)
∣∣2 ,

(4.31)

which implies that the kernelK(s, t) has algebraic and logarithmic corner singularities at(s, t) =

(−1, 1). Thus, the integrand has to be regularized in order to achieve an exponential decay of the

evaluation error. Therefore, we first introduce a coordinate transformation, discuss the evaluation

of the integral (4.25) with quadrature rules, and proof the exponential decay of the quadrature

errors. Finally, we derive analytic formulas for the evaluation of (4.25) for NURBS-enhanced

methods and linear boundary parametrizations.
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4.3. Computation of Galerkin Entries

For the regularization of the integrand we introduce the following coordinate transformation:

∫ 1

−1

∫ 1

−1
f(s, t) ds dt =

∫ 1

−1

∫ 1

−1
f

(
−v, 1− (1 + u)(1− v)

2

)
1− v
2

ds dt

+

∫ 1

−1

∫ 1

−1
f

(
(1 + u)(1− v)

2
− 1, v

)
1− v
2

ds dt.

(4.32)

Figure 4.3.2 shows a geometrical interpretation of the transform. In the first step, the integration

domain is split along the diagonal going through the singular vertex. Second, both triangles are

transformed to the unit square by a transformation, which issimilar to the one introduced in

[Duf82] for the regularization of vertex singularities andcalled Duffy transformation. In the last

step, the first square is reflected with respect to the diagonal such that the top edge is the singular

edge. For both transformations, the Jacobian determinant is given by1−v
2 , which implies (4.32).

x(s, t) = s

y(s, t) = 1−
(1 + s)(1− t)

2

x(s, t) =
(1 + s)(1− t)

2
− 1

y(s, t) = t

s(u, v) = −v
1

2
t(u, v) = −u

s(u, v) = u
1

2
t(u, v) = v

Figure 4.4.: Coordinate transformation for neighboring elements. The red corner and edges in-

dicate the singularity.

Remark 4.3.9. The transformation given in (4.32) is specially designed for the regularization of

algebraic singularities of order one. We will show in the sequel, that the Jacobian determinant
1−v
2 cancels out the algebraic singularities in the kernel function and we obtain regular expres-

sions. However, the logarithmic term multiplied with the Jacobian determinant is continuously

extendable to the top edgev = 1, but not real analytic. In [LR84] it is proven that the Gauss-

Legendre quadrature yields an algebraic convergence for these types of integrands. Hence, the

logarithmic term has to be treated separately.
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4. Numerical Integration for High-Order NURBS-Based BEM

Since the algebraic terms in the representation are regularafter the transformation, we apply a

tensor Gauss-Legendre quadrature. For the integration of the logarithmic term arising from the

lower triangle, we additionally introduce the following splitting

log

∣∣∣∣γi
(
(1 + u)(1 − v)

2
− 1

)
− γj (v)

∣∣∣∣

= log



2
∣∣γi
(
(1+u)(1−v)

2 − 1
)
− γj(v)

∣∣

1− v


+ log

(
1− v
2

)
.

(4.33)

A similar splitting is also introduced for the upper triangle. We will prove that the first term

in (4.33) is regular and can be evaluated with a tensor Gauss-Legendre quadrature. The second

term contains the logarithmic singularity and the corresponding integral has to be evaluated with

a combination of Gauss-Legendre quadrature with respect tou and a Gauss-Log quadrature with

respect tov. Overall, we have to evaluate four integrals.

Remark 4.3.10. A similar coordinate transformation is also introduced in [SaSch97] for the

Galerkin entries in three-dimensional BEM. In contrast to our approach of evaluating the weakly

singular integrals with adapted quadrature rules, a composite rule is applied in order to achieve

an exponential decay of the quadrature error.

In the following, we analyze the regularity of the transformed kernel function and then derive

estimates for the quadrature errors. In particular, we prove an exponential decay of the quadra-

ture error for all four integrals. For the subsequent analysis of the kernel, we only consider the

two integrals arising from the lower triangle, the same arguments also apply to the two integrals

coming from the upper triangle.

For notational convenience we define

K

(
(1 + u)(1 − v)

2
− 1, v

)
=: K̂1(u, v) + K̂2(u, v) log

(
1− v
2

)
, (4.34)

whereK̂1(u, v) contains all terms of the transformed kernel that are evaluated with a Gauss-

Legendre quadrature.

Proposition 4.3.11. Let θ(u, v) := (1+u)(1−v)
2 − 1 and Eρ as defined in Definition 2.0.9 with

ρ > 1. Then, we obtain

θ(Eρ, [−1, 1]) ⊂ Eρ and θ([−1, 1], Eρ) ⊂ Eρ.

Proof. Let a be the real semi-axis ofEρ, u ∈ Eρ andv ∈ [−1, 1]. Sinceθ(u, v) = 1−v
2 u− 1+v

2 ,

f corresponds to a scaling ofEρ with a scaling factor1−v
2 ≤ 1 and a subsequent translation in

the direction of the real axis by−1+v
2 ≤ 0. Hence, it suffices to show thatθ(−a, v) ∈ Eρ for all

v ∈ [−1, 1]. We getθ(−a, v) = −1−v
2 a − 1+v

2 > −a sincea > 1. The second statement can

be proven with similar arguments.
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4.3. Computation of Galerkin Entries

We now estimate the domain, in which the kernel(1− v)K̂1 is analytically extendable.

Lemma 4.3.12.Let K̂1(u, v) be as defined in(4.34).

(i) For all v ∈ [−1, 1], the term(1 − v) K̂1(u, v) is real analytic on[−1, 1] with respect tou

and admits an analytic extension toEρ1 ∩ Eρi with real semi axisa1 = 1 + c1
D
hi

.

(ii) For all u ∈ [−1, 1], the term(1 − v) K̂1(u, v) is real analytic on[−1, 1] with respect

to v and admits an analytic extension toEρ2 ∩ Eρi ∩ Eρj with real semi axisa2 = 1 +

c2
D

max{hi,hj} .

The constantsc1, c2 > 0 only depend on the parametrizationsγi andγj, the constantD > 0

depends on the angle between the elementsTi andTj .

Proof. Due to Definition 3.2.9γi andγj are analytically extendable toEρi andEρj , respectively.

Proposition 4.3.11 implies thatγi
(
(1+u)(1−v)

2 − 1
)

is analytically extendable to[−1, 1] × Eρi
andEρi × [−1, 1]. Further, the expression

γi

(
(1 + u)(1 − v)

2
− 1

)
− γj (v)

and by assumption the coefficient functions

gµ

(
γi

(
(1 + u)(1 − v)

2
− 1

)
− γj (v)

)
, µ = 0, ..., 3,

are analytically extendable to[−1, 1] ×
(
Eρi ∩ Eρj

)
andEρi × [−1, 1]. Hence, it remains to

investigate the logarithmic and the algebraic terms in the representation (4.26) of the kernel. We

first proof that these terms are real analytic on[−1, 1]2 and then estimate the ellipse, in which

these terms can be analytically extended.

The Taylor expansion ofγi at−1 and ofγj at1 is given by

γi

(
(1 + u)(1− v)

2
− 1

)
− γj (v) = γ̇i(−1)

(1 + u)(1 − v)
2

+O
(
(1 + u)2(1− v)2

4

)

− γ̇j(1)(v − 1)−O
(
(v − 1)2

)

= (1− v)
(
γ̇i(−1)

(1 + u)

2
+ γ̇j(1) +O (1− v)

)

=: (1− v)h(u, v). (4.35)

Plugging in the Taylor expansion (4.35) we obtain for the algebraic terms of the kernel multiplied

with the Jacobian determinant1−v
2

1− v
2

(
γi

(
(1+u)(1−v)

2 − 1
)
− γj (v)

)T
νj(v)

∣∣∣γi
(
(1+u)(1−v)

2 − 1
)
− γj (v)

∣∣∣
2 =

h(u, v)T νj(v)

2 |h(u, v)|2 (4.36)
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and

1− v
2

(
γi

(
(1+u)(1−v)

2 − 1
)
− γj (v)

)T
τj(v)

∣∣∣γi
(
(1+u)(1−v)

2 − 1
)
− γj (v)

∣∣∣
2 =

h(u, v)T τj(v)

2 |h(u, v)|2 . (4.37)

Further, we get for the logarithmic term

log

∣∣∣γi
(
(1+u)(1−v)

2 − 1
)
− γj (v)

∣∣∣
1− v = log |h(u, v)|. (4.38)

The functionh(u, v) does not vanish on[−1, 1]2, sinceh(u, 1) = γ̇i(−1) (1+u)
2 + γ̇j(1) = 0

if and only if the angle between both elementsTi andTj vanishes, which is not possible for

Lipschitz boundaries.

Therefore, all three terms (4.36), (4.37) and (4.38) are real analytic on[−1, 1]2 and there exists

ρ1, ρ2 > 1 such that they are analytically extendable onEρ1 × [−1, 1] and[−1, 1]× Eρ2 .

In the sequel we proof the representation of both real semi-axesa1 anda2. Let

D := min
u∈[−1,1]

min
v∈[−1,1]

|h(u, v)| > 0. (4.39)

(i) Let v ∈ [−1, 1] be fixed. There holds

∂

∂u
h(u, v) =

1−v
2 γ̇i

(
(1+u)(1−v)

2 − 1
)

1− v =
γ̇i

(
(1+u)(1−v)

2 − 1
)

2
.

With Lemma 3.2.12 we get ∣∣∣∣
∂

∂u
h(u, v)

∣∣∣∣ ≤
c hi
2
.

Hence,|h(u, v)| > 0 for all u ∈ Eρ1 with real semi-axisa1 = 1 + 2
c

D
hi

, which implies the

analyticity of the kernel onEρ1 ∩ Eρi with respect tou.

(ii) Let u ∈ [−1, 1] be fixed. Since forv 6∈ [−1, 1]

|h(u, v)| = 0⇔ |f(v)| :=
∣∣∣∣γi
(
(1 + u)(1 − v)

2
− 1

)
− γj (v)

∣∣∣∣ = 0

we restrict to investigatef . There holds

∂

∂v
f(v) = −1 + u

2
γ̇i

(
(1 + u)(1− v)

2
− 1

)
− γ̇j (v) ,

which implies that
∣∣∣∣
∂

∂v
f(v)

∣∣∣∣ ≤ 2ci hi + cj hj .

Here, we applied Lemma 3.2.12. Hence,|h(u, v)| > 0 for all v ∈ Eρ2 with real semi-axis

a2 = 1 + D
2ci hi+cj hj

, which implies the analyticity of the kernel onEρ2 ∩ Eρi ∩ Eρj with

respect tov.
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Remark 4.3.13. (i) The proof of Lemma 4.3.12 shows, that the maximum domain of analyt-

icity may be decreased by the zeros of

γi

(
(1+u)(1−v)

2 − 1
)
− γj(v)

1− v . (4.40)

According to Lemma 4.2.3, for all fixedv ∈ [−1, 1] there exists at most one pair of com-

plex conjugate zerosz(v) ∈ Eρi with respect tou. Depending on the angle between both

elements and the ratio of the arc lengths, the zerosz(v) may be positioned close to the

interval[−1, 1], which results in a small domain of analyticity of the integrand. This fact is

exemplified in Figure 4.5. For the evaluation of the corresponding integrals with a Gauss-

Legendre quadrature, we hence expect a slow exponential convergence.

Althoughz(v) can be computed for allv ∈ [−1, 1], it is generally not possible to derive an

explicit representation ofz(v). Hence, we cannot regularize the integrand as it is done for

the evaluation of the boundary integral operators in the near-field case in Section 4.2.

(ii) The estimate for the semi axis sumsρ1 andρ2 are worst case estimates and hence in general

coarse. The numerical examples in Chapter 5 will show, thatρ1 andρ2 are smaller than

the actual semi axis sums of the domains of analyticity. However, Lemma 4.3.12 gives a

reliable and computable bound for the domain of analyticity.

-1 -0.5 0 0.5 1

0

0.5

1

-2 0 2
-3

-2

-1

0

1

2

3

z(v)

Eρ1

Eρi

π

10

Figure 4.5.: Neighboring ElementsTi and Tj with interior angleπ/10 parametrized by the

NURBS curves defined in Example 3.1.3 (left figure). The rightfigure showsEρi
(blue), the maximum ellipseEρ1 in which the expression (4.40) is analytic with re-

spect tou (black dashed), and the zerosz(v) of (4.40) forv ∈ [−1, 1] (red).

Now we are in the position to derive estimates for the quadrature errors.
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4. Numerical Integration for High-Order NURBS-Based BEM

Lemma 4.3.14. Let n ∈ N
2 and ρ1, ρ2 > 1 be the semi-axis sums ofEρ1 and Eρ2 such that

1−v
2 K̂1(u, v) is analytically extendable onEρ1 × [−1, 1] and [−1, 1] × Eρ2 . Further, let |Rn|

denote the absolute quadrature error of the Gauss-Legendrequadrature rule applied to the in-

tegral

∫
1

−1

∫
1

−1

1− v
2

K̂1(u, v)Φk

(
(1 + u)(1− v)

2
− 1

)
Ψℓ(v)

∣∣∣∣γ̇i
(
(1 + u)(1− v)

2
− 1

)∣∣∣∣ |γ̇j(v)| du dv.

Then, there holds

|Rn| ≤ hi hj

(
C1ρ

−2n1−1
1 + C2 ρ

−2n2−1
2

)
(4.41)

with constantsC1, C2 > 0 depending on the basis function, the parametrizationsγi andγj , but

independent ofhi andhj .

Proof. Since the basis functionsΦk andΨℓ and the parametrizationsγi andγj are analytic, the

kernel and hence the whole integrand is analytic onEρ1× [−1, 1] and[−1, 1]×Eρ2 , respectively.

In order to apply Theorem 2.2.17, it remains to estimate the maximum value of the integrand on

the domains of analyticity.

Let h(u, v) be defined as in (4.35) andD = max(u,v)∈[−1,1]2 |h(u, v)|. With the Cauchy-

Schwartz inequality we obtain

|h(u, v)T νj(v)|
|h(u, v)|2 ≤ 1

|h(u, v)|
|h(u, v)T τj(v)|
|h(u, v)|2 ≤ 1

|h(u, v)| .

Hence, the kernel can be bounded by

max
(u,v)∈[−1,1]×∂Eρ2

∣∣∣∣
1− v
2

K̂1(u, v)

∣∣∣∣ ≤ α1| logD|+ α2
1

D
, (4.42)

where the constantsα1 > 0 andα2 > 0 depend on the parametrizationsγi andγj. With Lemma

3.2.12 we get

max
(u,v)∈[−1,1]×∂Eρ2

∣∣∣∣γ̇i
(
(1 + u)(1− v)

2
− 1

)∣∣∣∣ ≤ α3 hi

max
(u,v)∈[−1,1]×∂Eρ2

|γ̇j (v)| ≤ α4 hj.
(4.43)

Similar estimates to (4.42) and (4.43) can be proven on∂Eρ1 × [−1, 1].
With Theorem 2.2.17 there exist constantsC1 andC2 independent ofhi andhj , but depending

onγi, γj , andD, such that

|Rn| ≤ hi hj

(
C1 ρ

−2n1−1
1 + C2 ρ

−2n2−1
2

)
.
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For the integral corresponding to the second term in (4.34),which is evaluated with a combina-

tion of Gauss-Legendre and Gauss-Log quadratures, the nextlemma gives an upper bound for

the quadrature error.

Lemma 4.3.15.Letn ∈ N
2 andρi, ρj > 1 as defined in Definition 3.2.9 and1 < ρ1 < ρi and

1 < ρ2 < min{ρi, ρj}. Further, let|Rn| denote the absolute error of the Gauss-Legendre and

Gauss-Log quadrature rules applied to the integral

∫ 1

−1
log

(
1− v
2

) ∫ 1

−1

1− v
2

K̂2(u, v)Φk

(
(1 + u)(1− v)

2
− 1

)
Ψℓ(v)

∣∣∣∣γ̇i
(
(1 + u)(1− v)

2
− 1

)∣∣∣∣ |γ̇j(v)| du dv.

Then, there holds

|Rn| ≤ hi hj

(
C1ρ

−2n1−1
1 + C2 ρ

−2n2−1
2

)
(4.44)

with constantsC1, C2 > 0 depending of the parametrizationsγ1 andγj, but independent ofhi

andhj .

Proof. Let ω(v) := log
(
1−v
2

)
be the weight function of the Gauss-Log quadrature rule inv-

direction.

By assumptionK̂2(u, v) = g1

(
γi

(
(1+u)(1−v)

2 − 1
)
− γj(v)

)
is analytically extendable on

Eρ1 × [−1, 1] and [−1, 1] × Eρ2. Since the basis functions and the local parametrizations are

also analytic on these domains, the whole integrand (exceptfor the weight functionω) is ana-

lytic and Theorem 2.2.17 can be applied. With (4.43) and the boundedness of the basis functions

andK̂2(u, v), we obtain

|Rn| ≤ hi hj

(
C1ρ

−2n1−1
1 + C2 ρ

−2n2−1
2

)

and conclude the proof.

Corollary 4.3.16. For the polynomial basis functions used for NURBS-enhancedBEM, we ob-

tain for (4.41)and (4.44)

|Rn| ≤ hi hj

(
C̃1ρ

−2n1+k−1
1 + C̃2ρ

−2n2+k+ℓ−1
2

)
.

Here, the constants̃C1, C̃2 are also independent of the polynomial degreesk andℓ of the basis

functions.

Proof. The statement follows directly from the estimates given in Lemmas 2.1.9 (vi) and 2.1.11

(iv).
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NURBS-Enhanced BEM.For neighboring elementsTi andTj with affine parametrizations and

polynomial basis functions, we present an analytic method for the computation of the Galerkin

entries based on the coordinate transformation introducedabove, which provides an alternative

to the evaluation presented in [Ban13]. We exploit the fact that for affine parametrizations we can

split the kernel function into terms ofu andv. Therefore, the integral can be split in a singular

integral, a nearly singular integral and a regular integral, which can be treated separately.

For simplicity, we only consider the logarithmic part in therepresentation of the kernel function,

i.e.

Ik,ℓ :=
|Ti| |Tj |

4

∫ 1

−1

∫ 1

−1
log

∣∣∣∣γi
(
(1 + u)(1 − v)

2
− 1

)
− γj(v)

∣∣∣∣

Pk

(
(1 + u)(1 − v)

2
− 1

)
Pℓ(v)

1− v
2

dudv.

For linear elements, we obtain with the Taylor expansion (4.35)

γi

(
(1 + u)(1− v)

2
− 1

)
− γj(v) = (1− v)

(
γ̇i(−1)

1 + u

2
+ γ̇j(1)

)
. (4.45)

Therefore, we get

∣∣∣∣γi
(
(1 + u)(1 − v)

2
− 1

)
− γj(v)

∣∣∣∣
2

= (1− v)2
( |γ̇i(−1)|2

4
(1 + u)2 + (1 + u)γ̇i(−1)T γ̇j(1) + |γ̇j(1)|2

)

= |γ̇i(−1)|2
(1− v)2

4
(z − u)(z − u),

where the complex zeroz is given by

z =
−γ̇i(−1)T γ̇j(1)−

√
(γ̇i(−1)T γ̇j(1))2 − |γ̇i(−1)|2 |γ̇j(1)|2
1/2 |γ̇i(−1)|2

− 1

=
−2 γ̇i(−1)T γ̇j(1) − 2i (γ̇i(−1)× γ̇j(1))

|γ̇i(−1)|2
− 1. (4.46)

Remark 4.3.17. The representation (4.46) ofz shows, that for collinear elementsTi andTj

there holdsz ∈ R. Furthermore, if the angle between both elements vanishes and |Tj | ≤ |Ti|
thenz ∈ [−1, 1], i.e. for identical elements withγi(s) = γj(−s) we obtainz = 1. Hence,

apart from the singular edgev = −1 we obtain a second singular edgeu = 1 in the integration

domain.

104



4.3. Computation of Galerkin Entries

Splitting the logarithmic term, we obtain forIk,ℓ

Ik,ℓ =
|Ti| |Tj |

4

(
log
(
|γ̇i(−1)|2

) ∫ 1

−1

∫ 1

−1
Pk

(
(1 + u)(1− v)

2
− 1

)
Pℓ(v)

1− v
2

dudv

+ 2

∫ 1

−1

∫ 1

−1
log

(
1− v
2

)
Pk

(
(1 + u)(1− v)

2
− 1

)
Pℓ(v)

1− v
2

dudv

+

∫ 1

−1

∫ 1

−1
log ((z − u)(z − u)) Pk

(
(1 + u)(1− v)

2
− 1

)
Pℓ(v)

1− v
2

dudv

)

=:
|Ti| |Tj |

4

(
I
(1)
k,ℓ + 2 I

(2)
k,ℓ + I

(3)
k,ℓ

)
.

While the first integralI(1)k,ℓ is regular, the second integralI(2)k,ℓ contains the logarithmic singu-

larity. The last integralI(3)k,ℓ contains the nearly singular part, which is responsible forthe slow

convergence of quadrature rules ifz is positioned close to the interval[−1, 1].
We discuss the evaluation of all three integrals separatelyand start with deriving analytic formu-

las forI(1)k,ℓ in the next lemma.

Lemma 4.3.18.For k, ℓ ∈ N0, there holds
∫ 1

−1

∫ 1

−1
Pk

(
(1 + u)(1 − v)

2
− 1

)
Pℓ(v)

1− v
2

dudv

=




2, k = ℓ = 0

(−1)k+1
(
δk,ℓ−1

2
(2k+1)(2k+3) − δk,ℓ+1

2
(2ℓ+1)(2ℓ+3)

)
, k ≥ 1, ℓ ≥ 1

For the second integral, we apply a Gauss-Log quadrature inv and a Gauss-Legendre quadrature

in u. SincePk

(
(1+u)(1−v)

2 − 1
)
Pℓ(v)

1−v
2 ∈ Pk([−1, 1]) with respect tou and

Pk

(
(1+u)(1−v)

2 − 1
)
Pℓ(v)

1−v
2 ∈ Pk+ℓ+1([−1, 1]) with respect tov, we choose the quadrature

order according ton =
(
⌈k+1

2 ⌉, ⌈k+ℓ
2 + 1⌉

)
, such thatI(2)k,ℓ is integrated exactly.

For the third integral, we write

Pk

(
(1 + u)(1− v)

2
− 1

)
=

k∑

µ=0

α(k)
µ (v)Pµ(u).

The coefficients can be computed with the discrete cosine transform according to Algorithm 4.2.

Plugging in the Legendre expansion we obtain

I
(3)
k,ℓ =

k∑

µ=0

∫ 1

−1
α(k)
µ (v)Pℓ(v)

1− v
2

dv

∫ 1

−1
log ((z − u)(z − u)) Pµ (u) du

= 2

k∑

µ=0

∫ 1

−1
α(k)
µ (v)Pℓ(v)

1− v
2

dv Re

(∫ 1

−1
log (z − u) Pµ (u) du

)

= 2

k∑

µ=0

∫ 1

−1
α(k)
µ (v)Pℓ(v)

1− v
2

dv Re
(
Q̃−1

µ (z)
)
,
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where the modified associated Legendre functions of second kind Q̃−1
µ (z) are defined as in

Definition 4.2.12.

Remark 4.3.19. (i) Only the third integralI(3)k,ℓ depends on the mutual position ofTi and

Tj and has to be computed for all combinations of neighboring elements. However, the

integralsI(1)k,ℓ andI(2)k,ℓ only depend on the basis functions and can be precomputed once for

the maximum polynomial degree.

(ii) The functionsQ̃−1
µ (z) are also defined forz ∈ C\{−1, 1} and can be extended toz = ±1

in the sense of the Hadamard finite parts. Therefore, the caseof identical elements can be

treated similarly and has not to be distinguished for this special setting of linear elements.

(iii) This approach can also be extended to the algebraic terms of the kernel function, by ap-

plying the partial fraction decomposition proven in Lemma 4.2.16. Here, the algebraic

singularity is cancelled out by the Jacobi determinant of the transformation and only the

nearly singular integral has to be evaluated.

4.3.3. Identical Elements

In the case of identical elementsTi = Tj with γi = γj, the kernel has an edge singularity on

the diagonal, i.e. fors = t. In order to regularize the integrand we introduce the following

transformation:
∫ 1

−1

∫ 1

−1
f(s, t) ds dt =

∫ 1

−1

∫ 1

−1
f

(
θ1(u, v), θ2(u, v)

)
1− v
2

du dv

+

∫ 1

−1

∫ 1

−1
f

(
θ2(u, v), θ1(u, v)

)
1− v
2

du dv.

(4.47)

with

θ1(u, v) :=
(1 + u)(1 − v)

2
− 1 and θ2(u, v) = 1− (1− u)(1 − v)

2
. (4.48)

Figure 4.6 shows the geometrical interpretation of the transformation. In the first step the in-

tegration domain is rotated and split along the singular diagonal. Second, both triangles are

transformed to the unit square by a transformation, which issimilar to the one introduced in

[Duf82]. In the last step, the second square is flipped horizontal such that the bottom edge is

the singular edge. For both transformations, the Jacobian determinant is given by1−v
2 which

implies (4.47).

Remark 4.3.20.While for neighboring elements the Jacobian determinant ofthe transformation

cancels out the algebraic singularities, this is not true for the transformation introduced in (4.48).

However, we will proof in the sequel that this transformation also regularizes the algebraic edge
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x(s, t) = s− t
b

2

y(s, t) = s+ t
a

2

x(s, t) = s− t
b

2

y(s, t) = s+ t
a

2

s(a, b) =
a(1− b)

2

t(a, b) =
1 + b

2

s(a, b) =
a(1 + b)

2

t(a, b) =
b− 1

2

a(u, v) = u
1

2

b(u, v) = v
1

2

a(u, v) = u
1

2

b(u, v) = −v
1

2

Figure 4.6.: Coordinate transformation for identical elements. The singular edges are depicted

in red.

singularity of the kernelK, whereby the singular parts are cancelled out by adding up both

integrands. For the logarithmic singularity, we proceed similarly to the case of neighboring

elements and introduce the following splitting for the transformation of the upper triangle

log |γi (θ1(u, v)) − γi (θ2(u, v))| = log
2 |γi (θ1(u, v)) − γi (θ2(u, v))|

v + 1

+ log

(
v + 1

2

)
.

(4.49)

A similar splitting is introduced for the lower triangle. Weprove that the first part is regular

while the second part contains the logarithmic singularity.

The regular parts of the kernel function, i.e. the algebraicterms in (4.26) as well as the first

logarithmic term in (4.49), are evaluated by a tensor Gauss-Legendre quadrature. The second

term in (4.49) is evaluated with a combination of Gauss-Legendre quadrature inu and a Gauss-

Log quadrature inv, where the logarithmic singularity is considered to be the weight function.

For notational convenience we define

K

(
θ1(u, v), θ2(u, v)

)
=: K̂

(1)
1 (u, v) + K̂

(1)
2 (u, v) log

(
1 + v

2

)
,

K

(
θ2(u, v), θ1(u, v)

)
=: K̂

(2)
1 (u, v) + K̂

(2)
2 (u, v) log

(
1 + v

2

)
,

(4.50)

where K̂(1)
1 (u, v) and K̂(2)

1 (u, v) contain the parts of the kernel that are evaluated with the

Gauss-Legendre quadrature.
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In the remainder of this section, we proof the analyticity ofthe integrand for identical elements

and derive upper bounds for the quadrature errors. In particular, we prove the exponential decay

of the quadrature error with respect to the quadrature order. Therefore, we need the following

preliminary result.

Proposition 4.3.21.LetEρ denote the ellipse with semi axis sumρ > 1 as defined in Definition

2.0.9 andθ1 andθ2 as defined in(4.48). Then, there holds

θ1([−1, 1], Eρ) ⊂ Eρ, θ1(Eρ, [−1, 1]) ⊂ Eρ

and

θ2([−1, 1], Eρ) ⊂ Eρ, θ2(Eρ, [−1, 1]) ⊂ Eρ.

Proof. The statements can be proven with similar arguments as used in the proof of Proposition

4.3.11.

Lemma 4.3.22.LetEρi as defined in Definition 3.2.9 and̂K(1)
1 (u, v) andK̂(2)

1 (u, v) as defined

in (4.50). Then,K̂(1)
1 (u, v) andK̂(2)

1 (u, v) are analytically extendable to[−1, 1]× (Eρi\{−1})
andEρi × (−1, 1] and contain a simple pole forv = −1.

Proof. We only proof the statement for̂K(1)
1 (u, v), the proof forK̂(2)

1 (u, v) is similar.

Due to Definition 3.2.9γi is analytically extendable toEρi . Proposition 4.3.21 implies that

γi (θ1(u, v)) andγi (θ2(u, v)) are analytically extendable to[−1, 1] × Eρi andEρi × [−1, 1].
Since, by assumption, the coefficient functionsgµ, µ = 0, ..., 3, in (4.26) are analytic, the ex-

pression

gµ
(
γi (θ1(u, v)) − γi (θ2(u, v))

)
, µ = 0, ..., 3,

is analytically extendable to[−1, 1]×Eρi andEρi × [−1, 1]. Hence, it remains to investigate the

logarithmic and the algebraic terms in the representation (4.26) of the kernel.

Due to Lemma 4.2.3γi is injective onEρi . Hence, for fixed(s, t) ∈ [−1, 1] × Eρi and(s, t) ∈
Eρi × [−1, 1], γi(s)− γi(t) = 0 if and only if s = t. Plugging in the transformation we get

θ1(u, v) = θ2(u, v)⇔ v = −1.

Hence, the logarithmic term in the splitting (4.49)

log

( |γi(θ1(u, v)) − γi(θ2(u, v))|
|1 + v|

)

is analytically extendable onEρi × [−1, 1] and[−1, 1] × Eρi . The algebraic terms

(
γi(θ1(u, v)) − γi(θ2(u, v))

)T
νi
(
θ2(u, v)

)
∣∣γi(θ1(u, v)) − γi(θ2(u, v))

∣∣2 and

(
γi(θ1(u, v)) − γi(θ2(u, v))

)T
τi
(
θ2(u, v)

)
∣∣γi(θ1(u, v)) − γi(θ2(u, v))

∣∣2
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contain a pole forv = −1. With the Taylor series ofγi(s) att and plugging in the transformation

(4.48), we obtain

γi(θ1(u, v)) − γi(θ2(u, v)) = (v + 1)
(
γ̇i
(
θ2(u, v)

)
+ γ̈i

(
θ2(u, v)

)
(v + 1) +O

(
(v + 1)2

))
.

Plugging in the Taylor series, the algebraic terms read
(
γi(θ1(u, v)) − γi(θ2(u, v))

)T
νi
(
θ2(u, v)

)
∣∣γi(θ1(u, v)) − γi(θ2(u, v))

∣∣2 =

(
γ̈i
(
θ2(u, v)

)
+O(v + 1)

)T
νi
(
θ2(u, v)

)
∣∣γ̇i
(
θ2(u, v)

)
+O(v + 1)

∣∣2

and
(
γi(θ1(u, v)) − γi(θ2(u, v))

)T
τi
(
θ2(u, v)

)
∣∣γi(θ1(u, v)) − γi(θ2(u, v))

∣∣2 =
1

v + 1

(
γ̇i
(
θ2(u, v)

)
+O(v + 1)

)T
τi
(
θ2(u, v)

)
∣∣γ̇i
(
θ2(u, v)

)
+O(v + 1)

∣∣2 .

Note that we useγi(t)T νi(t) = 0 for the first term. Hence,̂K1(u, v) contains a simple pole for

v = −1.

Corollary 4.3.23. The expression̂K(1)
1 (u, v) + K̂

(2)
1 (u, v) is analytically extendable toEρi ×

[−1, 1] and [−1, 1]× Eρi .

Proof. Due to the proof of Lemma 4.3.22 we only investigate the term of K̂(1)
1 (u, v)+K̂

(2)
1 (u, v),

which contains the algebraic singularity, i.e.

f(u, v) :=
1

v + 1

(
g3(θ1(u, v)− θ2(u, v))

(
γ̇i
(
θ2(u, v)

)
+O(v + 1)

)T
τi
(
θ2(u, v)

)
∣∣γ̇i
(
θ2(u, v)

)
+O(v + 1)

∣∣2

+g3(θ2(u, v)− θ1(u, v))
(
− γ̇i

(
θ2(u, v)

)
−O(v + 1)

)T
τi
(
θ1(u, v)

)
∣∣γ̇i
(
θ1(u, v)

)
+O(v + 1)

∣∣2

)
.

=
g3(θ1(u, v) − θ2(u, v))

v + 1

((
γ̇i
(
θ2(u, v)

)
+O(v + 1)

)T (
τi
(
θ2(u, v)

)
− τi

(
θ1(u, v)

))
∣∣γ̇i
(
θ2(u, v)

)
+O(v + 1)

∣∣2

)
,

where we used the symmetry property ofg3. Sinceθ1(u,−1) = θ2(u,−1) = u, the term in

brackets vanishes asv → −1 and hencelimv→−1 f(u, v) <∞.

We are now in the position to give an estimate for the integralthat is evaluated with the tensor

Gauss-Legendre quadrature.

Lemma 4.3.24. Let n ∈ N
2, Eρi as defined in Definition 3.2.9,1 < ρ < ρi, andΦk andΨℓ

denote the basis functions introduced in Definitions 3.2.3 and 3.2.5. Further, letK̂(1)
1 (u, v) and

K̂
(2)
1 (u, v) be as defined in(4.50)and |Rn| denote the absolute error of then-th order Gauss-

Legendre quadrature applied to the integral
∫ 1

−1

∫ 1

−1

[
K̂

(1)
1 (u, v)Φk(θ1(u, v))Ψℓ(θ2(u, v))

+K̂
(2)
1 (u, v)Φk(θ2(u, v))Ψℓ(θ1(u, v))

]
|γ̇i(θ1(u, v))| |γ̇i(θ2(u, v))|

1− v
2

du dv.
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Then, there exist constantsC1, C2 > 0 independent ofhi such that

|Rn| ≤ h2i
(
C1 ρ

−2n1−1 + C2 ρ
−2n2−1

)
. (4.51)

Proof. With Lemma 4.3.22 and Corollary 4.3.23 and the analyticity of the basis functions, the

integrand is analytic on[−1, 1]×Eρ andEρ× [−1, 1], respectively. Since the basis functionsΦk

andΨℓ and the termŝK(1)
1 andK̂(2)

1 are bounded on[−1, 1] × Eρ andEρ × [−1, 1], we obtain

with Lemma 3.2.12 that the integrand is bounded byC1 h
2
i on ∂Eρ × [−1, 1] and byC2 h

2
i on

[−1, 1] × ∂Eρ. Here,C1, C2 > 0 are independent ofhi. With Theorem 2.2.17 we obtain

|Rn| ≤ h2i
(
C1 ρ

−2n1−1 + C2 ρ
−2n2−1

)
.

For the integrals evaluated with the Gauss-Legendre and theGauss-Log quadrature, the next

Lemma gives an estimate for the absolute error.

Lemma 4.3.25. Let n ∈ N
2, Eρi as defined in Definition 3.2.9,1 < ρ < ρi, andΦk andΨℓ

denote the basis functions introduced in Definitions 3.2.3 and 3.2.5. Further, letK̂(1)
2 (u, v)

and K̂(2)
2 (u, v) be as defined in(4.50) and |Rn| denote the absolute error of then1-th order

Gauss-Legendre quadrature inu and then2-th order Gauss-Log quadrature inv applied to

∫ 1

−1

∫ 1

−1

[
K̂

(1)
2 (u, v)Φk(θ1(u, v))Ψℓ(θ2(u, v)) + K̂

(2)
2 (u, v)Φk(θ2(u, v))Ψℓ(θ1(u, v))

]

|γ̇i(θ1(u, v))| |γ̇i(θ2(u, v))|
1− v
2

log

(
1 + v

2

)
du dv.

Then, there existC1, C2 > 0 independent ofhi such that

|Rn| ≤ h2i
(
C1 ρ

−2n1−1 + C2 ρ
−2n2−1

)
. (4.52)

Proof. For the Gauss-Log quadrature the weight function is given byω(x) = log
(
1+v
2

)
. By

assumption the expressions

K̂
(1)
2 (u, v) = g1 (γi(θ1(u, v)) − γi(θ2(u, v)))

K̂
(2)
2 (u, v) = g1 (γi(θ2(u, v)) − γi(θ1(u, v)))

and thus the integrand (except for thelog-term) are analytic and bounded onEρ × [−1, 1] and

[−1, 1] × Eρ. With Lemma 3.2.12 and Theorem 2.2.17 we obtain

|Rn| ≤ h2i
(
C1 ρ

−2n1−1 + C2 ρ
−2n2−1

)
.
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Corollary 4.3.26. For the polynomial basis functions used for NURBS-enhancedBEM, we ob-

tain for (4.51)and (4.52)

|Rn| ≤ h2i
(
C̃1 ρ

−2n1+k+ℓ−1 + C̃2 ρ
−2n2+k+ℓ−1

)
.

Here, the constants̃C1, C̃2 are also independent of the polynomial degreesk andℓ of the basis

functions.

Proof. The statement directly follows by the estimates given in Lemmas 2.1.9 (vi) and 2.1.11

(iv).

4.3.4. Consistency Error Analysis

After having discussed the computation of the Galerkin entries via interpolation and quadrature

rules, we investigate the effect of the absolute errors in the Galerkin matrices on the consistency

error in Strang’s Lemma 1.6.4. We then give a priori estimates for the interpolation and quadra-

ture orders, such that the induced consistency errors do notspoil the convergence rates of the

Galerkin methods.

In the general framework of Section 1.6 we consider a HilbertspaceX with its dualX ′, f ∈ X ′

and a linear and bounded operatorA : X → X ′. We denote byXℓ ⊂ X one of the discrete

ansatz spaces as defined in Definitions 3.2.3 and 3.2.5, and by{Φ1, ...,ΦN } a basis ofXℓ. The

discrete variational formulation is given by

a(uh, vh) := 〈Auh, vh〉 = 〈f, vh〉 ∀vh ∈ Xℓ.

Let I = {1, ...,N} be the set of all degrees of freedom. Writinguh =
∑N

k=1 ukΦk and

vh =
∑N

k=1 vkΦk, we obtain

a(uh, vh) =
∑

j,k∈I
ujAj,kvk = uTAv. (4.53)

Here,A denotes the Galerkin Matrix of the integral operatorA, which is defined for all consid-

ered integral operators in Section 1.6.1. In a similar way weobtain for the perturbed sesquilinear

form ã(uh, vh)

ã(uh, vh) =
∑

j,k∈I
ujÃj,kvk = uT Ãv, (4.54)

whereÃ denotes the numerically computed Galerkin matrix. Strang’s Lemma 1.6.4 implies that

the consistency error, which is induced by the perturbed sesquilinear formã, is given by

sup
uh,vh∈Xℓ

|a(uh, vh)− ã(uh, vh)|
‖uh‖U ‖vh‖X

,
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where‖ · ‖U is a stronger norm onX, i.e. ‖uh‖U ≤ C‖uh‖X for all uh ∈ Xℓ. The consistency

error induced by the right-hand side is given by

sup
vh∈Xℓ

|〈f, vh〉 − 〈f̃ , vh〉|
‖vh‖X

,

Remark 4.3.27. (i) For the solution of Symm’s integral equation (1.33), theoperatorA := V
is the single layer operator. The Hilbert space involved isX = H−1/2(Γ), and the norm is

given by‖ · ‖X := ‖ · ‖H−1/2(Γ). Since all discrete ansatz spaces considered in this work

are subsets ofL2(Γ) we can choose theL2 norm as stronger norm, i.e.‖ · ‖U := ‖ · ‖L2(Γ).

For the hypersingular integral equation, the operatorA :=W is the hypersingular integral

operator. Since the variational formulation (1.36) is posed in X := H1/2(Γ) we choose

‖ · ‖X = ‖ · ‖U = ‖ · ‖H1/2(Γ).

(ii) Throughout this section, we assumep > 0.

Before we start with estimating the consistency error for Symm’s and the hypersingular integral

equation, we first state some preliminary results. In particular, foruh ∈ Xℓ we state an inverse-

type inequality and proof the equivalence of theℓ2 norm of its coefficient vectoru and theL2

norm.

The following lemma states an inverse-type inequality for the polynomial ansatz spaces. For the

rational ansatz-spaces a corresponding result is still open.

Lemma 4.3.28([Geo07, Theorem 3.9]). Let Xℓ be a polynomial ansatz space,0 < s < 1,

−∞ < α < α <∞ and−∞ < β < β <∞. Then, there holds
∥∥∥∥
hs+α

p2s+β
uh

∥∥∥∥
L2(Γ)

.

∥∥∥∥
hα

pβ
uh

∥∥∥∥
H−s(Γ)

, ∀uh ∈ Xℓ (4.55)

uniformly inα ∈ [α,α] andβ ∈ [β, β].

The following lemma, which is is proven in [SaSch04, Corollary 5.3.28], shows the equivalence

of theL2 norm and theℓ2 norm‖ · ‖2 of the coefficient vector. The proof is cited here, as it is

used to derive further estimates for the Legendre and Lobatto basis functions.

Lemma 4.3.29.LetTi ∈ T andγi be its NURBS parametrization,ITi := {k ∈ I : | suppΦk ∩
Ti| > 0} and |ITi | denote the cardinality ofITi . Further, letuTi be the local coefficient vector

of uh ∈ Xℓ onTi. If maxT∈T |IT | <∞ and the eigenvaluesλ of

M :=

(∫ 1

−1
(Φk ◦ γi)(t) (Φj ◦ γi)(t) dt

)

k,j∈ITi

satisfy0 < λmin ≤ λ ≤ λmax <∞, then there holds

c‖uh‖L2(Ti) ≤ h
1/2
i ‖uTi‖2 ≤ C‖uh‖L2(Ti), ∀uh ∈ Xℓ. (4.56)
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The constantsc > 0 andC > 0 are independent ofhi but still depending on the degree of the

basis functions.

Proof. Foruh|Ti :=
∑

k∈ITi
u
(Ti)
k Φk, we obtain

‖uh‖2L2(Ti)
=

∫

Ti


∑

k∈ITi

u
(Ti)
k Φk(x)




2

dx =

∫ 1

−1


∑

k∈ITi

u
(Ti)
k (Φk ◦ γi)(t)




2

|γ̇i(t)| dt.

With Lemma 3.2.12 and the definition of the matrixM we obtain

‖uh‖2L2(Ti)
≥ c̃hi uT

Ti
MuTi ≥ c̃hi λmin‖uTi‖22.

‖uh‖2L2(Ti)
≤ C̃hi uT

Ti
MuTi ≤ C̃hi λmax‖uTi‖22.

Remark 4.3.30. The lemma stated above can be applied to all sets of bases thatare considered

in this work. Since the polynomial basis functions (Legendre, Lobatto and b-splines basis func-

tions) form a basis onPpi([−1, 1]) and theL2 scalar product is a scalar product onPpi([−1, 1]),
the matrixM is positive definite for these bases. For the NURBS basis functions we write
∫ 1

−1
Rk

(
t+ 1

2
(ζj−1 − ζj) + ζj−1

)
Rj

(
t+ 1

2
(ζj−1 − ζj) + ζj−1

)
dt

=

∫ 1

−1
ωkBk

(
t+ 1

2
(ζj−1 − ζj) + ζj−1

)
ωjBj

(
t+ 1

2
(ζj−1 − ζj) + ζj−1

)
1

(ω(t))2
dt

=: (ωkBk, ωjBj)L2
ω(−1,1),

whereωj, ωk denote the weights andω(x) denotes the weight functions of the NURBS basis

functions. Since(ω(x))2 > 0 we have a weighted scalar product(ωkBk, ωjBj)L2
ω(−1,1) on

Ppi([−1, 1]), which yields the positivity ofM for the NURBS basis functions.

While the constants in Lemma 4.3.29 are independent of the arc lengthhi, the eigenvaluesλmin

andλmax of M still depend on the polynomial degreepi of the basis functions. In order to obtain

consistency estimates for uniformp- andhp-refinements for NURBS-enhanced BEM, we have

to determine the dependency onpi explicitly. A corresponding result is stated in the following

corollary.

Corollary 4.3.31. For the ansatz spaceS(T ,h,p,0) spanned by the Legendre basis we obtain

c‖uh‖L2(Ti) ≤ h
1/2
i ‖uTi‖2 ≤ C p

1/2
i ‖uh‖L2(Ti), ∀uh ∈ Xℓ. (4.57)

The constants are independent ofhi andpi. For the discrete ansatz spaceS(T ,h,p,1) spanned

by the Lobatto basis, we get the following estimate

c ‖uh‖L2(Ti) ≤ h
1/2
i ‖uTi‖2 ≤ C p

5/2
i ‖uh‖L2(Ti), ∀uh ∈ Xℓ (4.58)

with c, C independent ofhi andpi.
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Proof. Since the independency of the constants ofhi is already proven in Lemma 4.3.29, we

only need to proof the independency ofpi. Due to the orthogonality of the Legendre polynomials

we obtain

M :=

(∫ 1

−1
Pk(t)Pj(t) dt

)

k,j=0,...,pi

= diag

(
2

2k + 1
, k = 0, ..., pi

)
.

Hence, the minimum and maximum eigenvalues ofM are given byλmin = 2
2pi+1 = O(p−1

i )

andλmax = 2, which directly implies the first inequality.

For the Lobatto shape functions, we first prove an inequalityin theH1 norm and then apply an

estimate between theH1 andL2 norms. With the relationship (i) in Lemma 2.1.11, we obtain

for the Lobatto shape functions

M :=




2
3

1
3 −1

3
1
15 0 . . . 0

1
3

2
3 −1

3 − 1
15 0 . . . 0

−1
3 −1

3 ∗ 0 ∗ 0
1
15 − 1

15 0 ∗ 0 ∗
0 0 ∗ 0 ∗ 0 ∗
...

... ∗ 0 ∗ 0

0 0 0 ∗ 0 ∗




,

︸ ︷︷ ︸
M̃

where the matrix̃M is given by

M̃j,k =
4

(2k + 3)(2k + 1)(2k − 1)
δj,k

− 2

(2k + 5)(2k + 3)(2k + 1)
δj,k+2 −

2

(2k + 1)(2k − 1)(2k − 3)
δj,k−2.

Furthermore, we define the matrixA by

A :=

(∫ 1

−1
N ′

j(t)N
′
k(t) dt

)

j,k=1,...,pi+1

.

With the definition of the Lobatto shape functions and the orthogonality of the Legendre poly-

nomials, we get

A :=




1
2 −1

2 0 . . . 0

−1
2

1
2 0 . . . 0

0 0 ∗ 0
...

... ∗
0 0 0 ∗




,

︸ ︷︷ ︸
Ã
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with Ãj,k = diag
(

2
2k+1

)
. Foruh ∈ S(T ,h,p,1) we get

‖uh‖2H1(Ti)
= ‖uh‖2L2(Ti)

+ ‖u′h‖2L2(Ti)
≥ λmin‖u‖22 (4.59)

‖uh‖2H1(Ti)
= ‖uh‖2L2(Ti)

+ ‖u′h‖2L2(Ti)
≤ λmax‖u‖22. (4.60)

Here,λmin andλmax denote the minimum and maximum eigenvalues of(A + M). Applying

Gershgorin’s Theorem [Sch88] we can estimate the minimum eigenvalue by

λmin ≥ min

{
3

5
,
26

105
,

4 + 2(2pi + 3)(2pi − 1)

(2pi + 3)(2pi + 1)(2pi − 1)
− 2

(2pi + 1)(2pi − 1)(2pi − 3)

}

= O(p−1
i ) (4.61)

and the maximum eigenvalue by

λmax ≤ max

{
26

15
,
34

21
,

4 + 2(2pi + 3)(2pi − 1)

(2pi + 3)(2pi + 1)(2pi − 1)
+

2

(2pi + 1)(2pi − 1)(2pi − 3)

}

≤ 2. (4.62)

With Equations (4.59), (4.61), and the inverse inequality proven in [Geo07, Theorem 3.3], we

get

‖u‖2 ≤ C̃p1/2i ‖uh‖H1(Ti) ≤ Cp
5/2
i ‖uh‖L2(Ti).

With Equations (4.60), (4.62), and the Poincaré inequality ‖u′h‖L2(Ti) ≥ c‖uh‖L2(Ti), which is

proven in [Sch98, Theorem A.25], we get

‖u‖2 ≥ c̃‖uh‖H1(Ti) ≥ c‖uh‖L2(Ti).

Both constantsc, C > 0 are independent ofpi.

We are now in the position to give an estimate of the consistency error for Symm’s and the hy-

persingular integral equations, where we restrict to the polynomial ansatz spacesS(T ,h,p,k).

Symm’s integral equation. The following lemma gives an estimate how the absolute quadra-

ture error in the Galerkin matrix of the single layer operator affects the consistency error of the

sesquilinear form.

Lemma 4.3.32. If the absolute error in the Galerkin entries of the single layer operatorV is

bounded by

|Vjk − Ṽjk| ≤ ε h
1/2
j hk, j, k ∈ I,

then the induced consistency error of the sesquilinear formis bounded by

|a(uh, vh)− ã(uh, vh)|
‖uh‖L2(Γ) ‖vh‖H−1/2(Γ)

. N ε.

The constant is independent ofh but still depending onp.
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4. Numerical Integration for High-Order NURBS-Based BEM

Proof. With the Cauchy-Schwartz inequality we obtain

|a(uh, vh)− ã(uh, vh)| ≤ ε
∑

j∈I
h
1/2
j |uj |

∑

k∈I
hk|vk|

≤ ε


∑

j∈I
hj|uj |2




1/2(
∑

k∈I
h2k|vk|2

)1/2

|I|. (4.63)

With Lemma 4.3.29 we obtain for the first sum in (4.63)

∑

j∈I
hj |uj |2 =

∑

Ti∈T
hi
∑

k∈ITi

|uk|2

.
∑

Ti∈T
‖uh‖2L2(Ti)

= ‖uh‖2L2(Γ).

For the second sum in (4.63) we additionally apply the inverse inequality (4.55) and obtain

∑

k∈I
h2k|vk|2 .

∑

Ti∈T
hi‖vh‖2L2(Ti)

=
∑

Ti∈T
‖h1/2i vh‖2L2(Ti)

= ‖h1/2vh‖2L2(Γ) . ‖vh‖2H−1/2(Γ)
. (4.64)

Hence, we get
|a(uh, vh)− ã(uh, vh)|
‖uh‖L2(Γ) ‖vh‖H−1/2(Γ)

. N ε.

Corollary 4.3.33. If the absolute error in the Galerkin entries of the single layer operatorV

with respect to the Legendre basis is bounded by

|Vjk − Ṽjk| ≤ ε h
1/2
j p

−1/2
j hk p

−3/2
k , j, k ∈ I,

then the induced consistency error of the sesquilinear formis given by

|a(uh, vh)− ã(uh, vh)|
‖uh‖L2(Γ) ‖vh‖H−1/2(Γ)

. N ε.

The constant is independent ofh andp.

Proof. With Corollary 4.3.31 and the inverse estimate (4.55) we obtain

∑

j∈I
hj p

−1
j |uj |2 =

∑

Ti∈T
hi p

−1
i

∑

k∈ITi

|uk|2

.
∑

Ti∈T
‖uh‖2L2(Ti)

= ‖vh‖2L2(Γ)
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and

∑

k∈I
h2k p

−3
k |vk|2 =

∑

Ti∈T
h2i p

−3
i

∑

k∈ITi

|vk|2

.
∑

Ti∈T
hi p

−2
i ‖vh‖2L2(Ti)

=
∑

Ti∈T

∥∥∥∥∥
h
1/2
i

pi
vh

∥∥∥∥∥

2

L2(Ti)

=

∥∥∥∥∥
h1/2

p
vh

∥∥∥∥∥

2

L2(Γ)

. ‖vh‖2H−1/2(Γ)
. (4.65)

The next lemma states a relationship of the absolute error ofthe Galerkin matrix of the double

layer operator and the consistency error induced by the right-hand side. LetuD ∈ Yℓ ⊂ H1/2(Γ)

denote the discretized Dirichlet datum,{Ψ1, ...,ΨM} denote a basis ofYℓ, andJ = {1, ...,M}
denote an index set.

Lemma 4.3.34. If the absolute error in the Galerkin entries of the double layer operatorK is

bounded by

|Kjk − K̃jk| ≤ εhj h
1/2
k , j ∈ I, k ∈ J ,

then the induced consistency error of the right-hand sidef := (K + 1
2)uD in Symm’s integral

equation is bounded by

|〈f, vh〉 − 〈f̃ , vh〉|
‖vh‖H−1/2(Γ)

. N 1/2M1/2 ε ‖uD‖L2(Γ).

The constant is independent ofh but still depending onp.

Proof. For all vh ∈ Xℓ, there holds

|〈f, vh〉 − 〈f̃ , vh〉| = |vT (K− K̃)uD| ≤ ε
∑

j∈I
|vj |hj

∑

k∈J
|uD,k|h1/2k

≤ εN 1/2M1/2


∑

j∈I
|vj |2 h2j




1/2 (
∑

k∈J
|uD,k|2 hk

)1/2

. (4.66)

With (4.64) we obtain for the first sum in (4.66)

∑

j∈I
h2j |vj |2 . ‖vh‖2H−1/2(Γ)

.

Applying Lemma 4.3.29 on the second sum in (4.66), we finally obtain

|〈f, vh〉 − 〈f̃ , vh〉| ≤ εN 1/2M1/2 ‖vh‖H−1/2(Γ) ‖uD‖L2(Γ).
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Corollary 4.3.35. If the absolute error in the Galerkin entries of the double layer operatorK

with respect to the Legendre basis forXℓ and the Lobatto basis forYℓ is bounded by

|Kjk − K̃jk| ≤ εhj h
1/2
k p

−3/2
j p

−5/2
k , j ∈ I, k ∈ J ,

then the induced consistency error of the right-hand sidef := (K + 1
2)uD in Symm’s integral

equation is bounded by

|〈f, vh〉 − 〈f̃ , vh〉|
‖vh‖H−1/2(Γ)

. N 1/2M1/2 ε ‖uD‖L2(Γ).

The constant is independent ofh but still depending onp.

Proof. With (4.65) we obtain for the first sum in (4.66)

∑

j∈I
h2j p

−3
j |vj |2 . ‖vh‖2H−1/2(Γ)

.

With Corollary 4.3.31 the second sum of (4.66) simplifies to

∑

k∈J
hk p

−5
k |uD,k|2 =

∑

Ti∈T
hi p

−5
i

∑

k∈JTi

|uD,k|2

.
∑

Ti∈T
‖uD‖2L2(Ti)

= ‖uD‖2L2(Γ) .

The hypersingular integral equation. The effect of the perturbations in the Galerkin matrix

of the hypersingular operator on the consistency error induced by the sesquilinear form in the

hypersingular integral equation is estimated in the next lemma.

Lemma 4.3.36. If the absolute error in the Galerkin entries of the hypersingular operatorW

is bounded by

|Wjk − W̃jk| ≤ ε, j, k ∈ I,

then the induced consistency error of the sesquilinear formis given by

|a(uh, vh)− ã(uh, vh)|
‖uh‖H1/2(Γ) ‖vh‖H1/2(Γ)

. N ε.

The constant is independent ofh but still depending onp.

Proof. With the Cauchy-Schwartz inequality we obtain

|a(uh, vh)− ã(uh, vh)| ≤ ε
∑

j∈I
|uj |

∑

k∈I
|vk|

≤ ε


∑

j∈I
|uj|2




1/2(
∑

k∈I
|vk|2

)1/2

|I|. (4.67)
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With Lemma 4.3.29 we obtain for the first sum of (4.67)

∑

j∈I
|uj |2 =

∑

Ti∈T

∑

k∈ITi

|uk|2

.
∑

Ti∈T
h−1
i ‖uh‖2L2(Ti)

=
∑

Ti∈T
‖h−1/2

i uh‖2L2(Ti)

= ‖h−1/2uh‖2L2(Γ) . ‖uh‖2H1/2(Γ)
. (4.68)

Applying the same arguments to the second sum of (4.67), we get

|a(uh, vh)− ã(uh, vh)|
‖uh‖H1/2(Γ) ‖vh‖H1/2(Γ)

. N ε.

Corollary 4.3.37. If the absolute error in the Galerkin entries of the hypersingular operatorW

with respect to the Lobatto basis functions is bounded by

|Wjk − W̃jk| ≤ ε p
−3/2
j p

−3/2
k , j, k ∈ I,

then the induced consistency error of the sesquilinear formis given by

|a(uh, vh)− ã(uh, vh)|
‖uh‖H1/2(Γ) ‖vh‖H1/2(Γ)

. N ε.

The constant is independent ofh andp.

Proof. With Corollary 4.3.31, we obtain similarly to Equation (4.68)

∑

j∈I
p−3
j |uj |2 =

∑

Ti∈T
p−3
i

∑

k∈ITi

|uk|2

.
∑

Ti∈T

p2i
hi
‖uh‖2L2(Ti)

=
∑

Ti∈T

∥∥∥∥∥
pi

h
1/2
i

uh

∥∥∥∥∥

2

L2(Ti)

=
∥∥∥ p

h1/2
uh

∥∥∥
2

L2(Γ)
. ‖uh‖2H1/2(Γ)

, (4.69)

with a constant independent ofh andp.

For the investigation of the consistency error induced by the right-hand side of the hypersingular

integral operator, we define the discrete spaceYℓ ⊂ H−1/2(Γ) with basis{Ψ1, ...,ΨM} and

corresponding index setJ := {1, ...,M}.

Lemma 4.3.38.Letϕ ∈ Yℓ denote the discretized Neumann datum. If the absolute errorin the

Galerkin entries of the double layer operatorK is bounded by

|Kjk − K̃jk| ≤ εh
1/2
j , j, k ∈ I,
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then the induced consistency error of the right-hand sidef := (12M −KT )ϕ in the hypersin-

gular integral equation is bounded by

|〈f, vh〉 − 〈f̃ , vh〉|
‖vh‖H1/2(Γ)

. N 1/2M1/2 ε ‖ϕ‖L2(Γ).

The constant is independent ofh but still depending onp.

Proof. For all vh ∈ Xℓ, there holds

|〈f, vh〉 − 〈f̃ , vh〉| = |vT (KT − K̃T )ϕ| ≤ ε
∑

j∈J
|ϕj |h1/2j

∑

k∈I
|vk|

≤ εN 1/2M1/2


∑

j∈J
|ϕj|2 hj




1/2 (
∑

k∈I
|vk|2

)1/2

.

With similar arguments as in (4.68) we get
∑

k∈I
|vk|2 . ‖vh‖2H1/2(Γ)

.

Further, Lemma 4.3.29 yields ∑

j∈J
|ϕj|2 hj . ‖ϕ‖2L2(Γ)

and we finally get

|〈f, vh〉 − 〈f̃ , vh〉| ≤ εN 1/2M1/2 ‖vh‖H1/2(Γ) ‖ϕ‖L2(Γ).

Corollary 4.3.39. If the absolute error in the Galerkin entries of the double layer operatorK

with respect to the Legendre basisΦk = Pk and the Lobatto basisΨj = Nj is bounded by

|Kjk − K̃jk| ≤ εh
1/2
j p

−1/2
j p

−3/2
k , j ∈ I, k ∈ J ,

then the induced consistency error of the right-hand sidef := (1/2M −K′)ϕ in the hypersin-

gular integral equation is bounded by

|〈f, vh〉 − 〈f̃ , vh〉|
‖vh‖H−1/2(Γ)

. N 1/2M1/2 ε ‖ϕ‖L2(Γ).

The constant is independent ofh andp.

Proof. Corollary 4.3.31 implies that
∑

j∈J
hj p

−1
j |ϕj |2 . ‖ϕ‖2L2(Γ)

and with Equation (4.69) we get
∑

k∈I
p−3
k |vk|2 . ‖vh‖2H1/2(Γ)

.
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Quadrature and interpolation orders. Recall that the error estimates for the absolute quadra-

ture errors for far-field, neighboring, and identical elements read

|Rn| ≤ hi hj
(
C1 ρ

−2n1−1
1 + C2 ρ

−2n2−1
2

)
.

Here, we assume that the kernel functions are analytically extendable onEρ1 × [−1, 1] and

[−1, 1]×Eρ2 and for the interpolation method onEρ1×Eρ2 . Further, we assume that the Galerkin

error behaves likeε(N ), whereN denotes the degrees of freedom. With the estimates for|Rn|
and the estimates for the consistency errors presented in this section, we can a priori determine

the quadrature and interpolation orders such that the consistency error in Strang’s Lemma does

not spoil the convergence rates of the Galerkin error. Specifically n is chosen such that|Rn| .
ε(N ).

Remark 4.3.40.The a priori estimate presented in Theorem 1.6.5 indicates thatε(N ) = N−α−1

for uniform h-methods andε(N ) = N−2α−1 for uniform p-methods, whereα depends on the

interior angles of the domain.

For geometrichp-methods, Theorem 1.6.7 indicates thatε(N ) = e−b
√
N , whereb depends on

the grading parametersσ andϑ.

Tables 4.1-4.3 give an overview on the quadrature orders forall Galerkin matrices for the differ-

ent combinations of boundary elements. For the NURBS basis functions we setpi = pj = q but

remark that the constants in all estimates still depend on the weight functionω and hence onq.
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Let

C̃ := − log(ε(N )) +
1

2
log(hi hj) +

1

2
log(pi pj)−

1

2
log(max{hi, hj}) + log(min{pi, pj}).

V ordern

far-field elements

(quadrature)

n1 ≥
C̃ + log(C1)

2 log(ρ1)
+
pi − 1

2

n2 ≥
C̃ + log(C2)

2 log(ρ2)
+
pj − 1

2

far-field elements

(interpolation)

n1 ≥
C̃ + log(C1)

log(ρ1)

n2 ≥
C̃ + log(C2)

log(ρ2)

neighboring elements
n1 ≥

C̃ + log(C1)

2 log(ρ1)
+

max{pi, pj} − 1

2

n2 ≥
C̃ + log(C2)

2 log(ρ2)
+
pi + pj − 1

2

identical elements
n1 ≥

C̃ + log(C1)

2 log(ρ1)
+
pi + pj − 1

2

n2 ≥
C̃ + log(C2)

2 log(ρ2)
+
pi + pj − 1

2

Table 4.1.: Quadrature and interpolation orders that are chosen for the assembly of the single

layer Galerkin matrixV. We denote the order with respect tos andu by n1 and with

respect tot andv by n2.
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Let

C̃ := − log(ε(N )) +
1

2
log(hj) +

1

2
log(p3i p

5
j).

K ordern

far-field elements

(quadrature)

n1 ≥
C̃ + log(C1)

2 log(ρ1)
+
pi − 1

2

n2 ≥
C̃ + log(C2)

2 log(ρ2)
+
pj − 1

2

far-field elements

(interpolation)

n1 ≥
C̃ + log(C1)

log(ρ1)

n2 ≥
C̃ + log(C2)

log(ρ2)

neighboring elements
n1 ≥

C̃ + log(C1)

2 log(ρ1)
+

max{pi, pj} − 1

2

n2 ≥
C̃ + log(C2)

2 log(ρ2)
+
pi + pj − 1

2

identical elements
n1 ≥

C̃ + log(C1)

2 log(ρ1)
+
pi + pj − 1

2

n2 ≥
C̃ + log(C2)

2 log(ρ2)
+
pi + pj − 1

2

Table 4.2.: Quadrature and interpolation orders that are chosen for the assembly of the double

layer Galerkin matrixK. We denote the order with respect tos andu by n1 and with

respect tot andv by n2.
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Let

C̃ := − log(ε(N )) + log(hi hj) +
3

2
log(pi pj).

W ordern

far-field elements

(quadrature)

n1 ≥
C̃ + log(C1)

2 log(ρ1)
+
pi − 1

2

n2 ≥
C̃ + log(C2)

2 log(ρ2)
+
pj − 1

2

far-field elements

(interpolation)

n1 ≥
C̃ + log(C1)

log(ρ1)

n2 ≥
C̃ + log(C2)

log(ρ2)

neighboring elements
n1 ≥

C̃ + log(C1)

2 log(ρ1)
+

max{pi, pj} − 1

2

n2 ≥
C̃ + log(C2)

2 log(ρ2)
+
pi + pj − 1

2

identical elements
n1 ≥

C̃ + log(C1)

2 log(ρ1)
+
pi + pj − 1

2

n2 ≥
C̃ + log(C2)

2 log(ρ2)
+
pi + pj − 1

2

Table 4.3.: Quadrature and interpolation orders that are chosen for the assembly of the Galerkin

matrixW of the hypersingular integral operator. We denote the orderwith respect to

s andu by n1 and with respect tot andv by n2.
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The implementation of NURBS-based boundary element methods for the solution of the inte-

gral equations defined in Section 1.2 is discussed in this chapter. It is the goal to provide an

implementation that has a wide field of application. In particular, we focus on an implementa-

tion that allows for the use of different kernel functions, different basis functions for the ansatz

space, including polynomial and rational basis functions,and the use of collocation and Galerkin

methods. Apart from Laplace, Lamé, and Helmholtz problems, for which our implementation

can be used, also other fundamental solutions of a similar type should be incorporated easily.

Hence, the assembly of the collocation and Galerkin matrices should be implemented as black

box.

We would like to stress that unlike in most previous works, weuse the exact boundary represen-

tation via NURBS for all computations, which allows for the solution of integral equations on

complex geometries. Particularly, our implementation canbe used for multi-connected bound-

aries with corners. For NURBS-enhanced methods, where an exact NURBS parametrization

of the boundary and a Legendre basis for the polynomial ansatz space are used, we focus on

high-order methods like uniformp- and geometrichp-methods. This requires the accurate and

efficient evaluation of the boundary integral operators andthe assembly of the collocation and

Galerkin matrices for high polynomial degrees.

The chapter is organized as follows. In the first section we give a short overview on existing

software packages for boundary element methods. Next, we describe the implementation of

NURBS-based BEM, where we first discuss general implementational aspects. We then go into

detail on the implementation of collocation and Galerkin methods, where the collocation and

Galerkin matrices are assembled with the algorithms developed in Chapter 4 by a black box im-

plementation. For both collocation and Galerkin methods, we present numerical results, which

show that our implementation works well for high-order NURBS-enhanced methods and low

order isogeometric methods.

5.1. Overview on Existing Software Packages

There are many software packages for boundary element methods. In this section, we give an

overview on some software packages, which is by no means complete.
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5. Implementation and Numerical Results

• BEMLIB is a boundary element software library ofFortran 77/90 and MATLAB codes,

which is based on the book of Pozrikidis ([Poz02]). It implements isoparametric methods

with quadratic and cubic splines for Laplace, Helmholtz, and Stokes problems in two and

three dimensions. Furthermore, it supports both collocation and Galerkin methods.

• BEM++ [ŚBA+15] is aC++ software package implementing the Galerkin method for two

and three dimensional Laplace, Helmholtz, and Maxwell problems. Piecewise polyno-

mial basis functions up to order 10 and plane triangular grids are supported. The arising

singular integrals are evaluate with the quadrature rules of Sauter and Schwab [SaSch97].

Furthermore,Hmatrices [BGH03] and ACA [Beb00] are supported by an interface to the

library AHMED [Beb08].

• epsBEM[BBF13, Ban13] is a software package for two-dimensionalhp-BEM for Laplace

and Lamé problems. The software package provides a stable and efficient implementa-

tion of thehp-BEM on polygonal boundaries for high polynomial degrees byevaluating

the arising integrals analytically with recurrence relations. epsBEM is implemented in a

combination of MATLAB andC. While the core routines, which are critical with respect to

the performance are implemented inC and parallelized with OpenMP, the top layer func-

tions are implemented in MATLAB . This results in an implementation that can be used by

students and researches alike.

• HILBERT [AEF+14] (Hilbert Is aLovely BoundaryElementResearchTool) is a soft-

ware package for the solution of two dimensional Poisson problems on polygonal do-

mains which is implemented in MATLAB andC. It features functions for the evaluation

of the boundary integral operators and the assembly of the Galerkin matrices for lowest

order ansatz functions. The arising integrals are evaluated with quadrature rules or semi-

analytically. Specifically the inner integral is evaluatedexactly, while the outer integral

is evaluated with a quadrature rule. Furthermore,HILBERT provides the implementa-

tion of severalh-adaptive algorithms using weighted residual, (h-h/2)-type, and two-level

error estimators.

• HyENA [MMR+14] (Hyperbolic andElliptic Numerical Analysis) is aC++ software

package for the solution of two and three dimensional Galerkin and collocation bound-

ary element methods, where the use of collocation methods islimited to Symm’s integral

equation. The collocation and Galerkin matrices can be assembled for linear and quadratic

ansatz functions on polygonal and polyhedral boundaries for all partial differential equa-

tions which have a fundamental solution of a specific type. This yields a wide field of
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application. The singular integrals arising in the assembly of the Galerkin matrices are

regularized with the coordinate transformation given in [Duf82].

• Maiprogs is aFortran-based software package for solving Laplace, Lamé, and Helmholtz

problems withhp-BEM. The multiple precision library ARCPREC [BHL+02] is used for

the assembly of the Galerkin matrices with quadruple precision. In [Mai12], several nu-

merical results are collected.

• In [Sim12] a MATLAB implementation of an isogeoemtric collocation BEM for two-

dimensional Lamé problems is presented. Particularly, the software package supports

the solution of Symm’s integral equation. The arising integrals are evaluated with quadra-

ture rules, where the singular and nearly singular integrals are regularized with the Telles

transformation [Tel86].

All software packages only feature the solution of specific boundary integral equations, basis

functions or boundary approximations. In the following, wepresent a more general black box

implementation for two dimensional NURBS-based boundary element methods supporting gen-

eral boundary representations. Similar to the software packageHyENA , we support the solution

of all fundamental solutions, which are of the general types(4.3) and (4.26), respectively, with

Galerkin and collocation methods. Hence, the implementation can be used for a wide range of

BIEs. Furthermore, we provide the use of different sets of basis functions. Besides polynomial

ansatz spaces with Legendre and Lobatto bases, for which we present a stable implementation

for high orders (we present results forp ≤ 128), we also implement isogeometric methods with

NURBS basis functions.

5.2. Implementation

The goal of our implementation is to provide an efficient implementation for a wide class of

NURBS-based BEM, which is easy to use. Therefore, the functions are implemented in a com-

bination of MATLAB andC. While the functions that are critical with respect to performance

are implemented inC, the top layer functions are written in MATLAB , which results in an easy

to understand, straight-forward code. To illustrate the simple use of our black box implementa-

tion, Listing 5.1 shows an example for the solution of Symm’sintegral equation for the Laplace

operator

Vϕ =
1

12
(3θ2 − 6πθ + 2π2) onΓ := ∂Ω, Ω := {x ∈ R

2 : ‖x‖2 < 0.25}

with a Galerkin method:
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5. Implementation and Numerical Results

Listing 5.1: Solution of Symm’s integral equationVϕh = f for the Laplace problem.

1 %*** specify operator , geometry , basis , and polynomial degree

2 operator = 'laplace';

3 problem = 'exSymmCircle';

4 basis = 'Leg';

5 p = {[5;2;4;8]};

6

7 %*** reset the path

8 restoredefaultpath;

9 %*** get home directory of NURBSbem

10 home = '..';

11 libdir = [home ,filesep ,'lib',filesep];

12 exdir = [home ,filesep ,'examples',filesep];

13 %*** addpath standard routines

14 addpath([libdir ,'general']);

15 addpath([libdir ,'general',filesep ,'c']);

16 %*** addpath routines of operator

17 addpath([libdir ,operator ,filesep ,'mat']);

18 %*** add problem and get data

19 addpath([exdir ,operator ,filesep ,problem]);

20

21 %*** load and display geometry

22 [curves,splines ,options] = loadSplines;

23 figure (1)

24 plotGeometry(splines)

25

26 %*** compute solution of Symm 's integral equation

27 % assemble V

28 % assemble f

29 % solve V phi_h = f

30 phi_h = solveSymm_f(curves ,splines , p, basis , @f , options);

31

32 %*** display solution over arc length

33 figure (2)

34 plotArclength(curves , splines , basis , p, x, @phi , options)

35

36 %*** display solution in domain

37 figure (3)

38 showSolDom(curves,splines ,[], [], [], phi_h , basis , p, ...

39 linspace(-1,1,30), linspace(-1,1,30), 'interior');
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Figure 5.1.: Solutionϕh and exact solutionϕ plotted over arc length (left) andVϕh plotted in the

domainΩ (right) for the non-symmetric polynomial degree vectorp = [5, 2, 4, 8].

We start the description of our implementation with some general aspects, i.e. the data structures

for the boundary representation, the implementation of thebasis functions, and the numerical

integration, before we go into detail on the implementationof collocation and Galerkin methods.

5.2.1. General Aspects of Implementation

Representation of NURBS curves.With the notation of Definition 3.1.1 we represent NURBS

curves by MATLAB structs, that contain the following fields:

Struct representing a NURBS curve

Xi∈ R
n+q+1 open knot vector

q ∈ N degree of the NURBS curve

Qw ∈ R
3×n weighted control pointsQω

k = (q
(1)
k ωk, q

(2)
k ωk, ωk) column by column

isClosed∈ {0, 1} 1 if NURBS curve is closed, 0 else

type∈{’D’,’N’} character indicating if the NURBS curve belongs to the Dirichlet

or Neumann boundary

h∈ R
m vector containing the arc lengthhi of each elementTi

rho∈ R
m vector containing the semi-axis sumρi of the ellipseEρi defined in

Definition 3.2.9

Apart from the parametersXi, q, Qw, isClosed, andtype, which are needed for the defini-

tion of the NURBS curve and are specified by the user, we compute and save some additional

information on the NURBS curve needed for the implementation in the fieldsrho andh. The
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5. Implementation and Numerical Results

semi-axis sumsρi, which are used for the computation of the quadrature and interpolation orders

of all arising integrals, are computed by the function

splines = getRho(splines)

by solving the root finding problem in Remark 3.2.11 with the MATLAB functionroots. The

arc length

hi =

∫ 1

−1
|γ̇i(t)| dt

is computed with a Gauss-Legendre quadrature rule by the function

splines = getArcLength(splines).

In order to save computational time, the evaluation of the NURBS curves, their derivatives, and

the corresponding basis functions is implemented inC and connected to MATLAB with Mex-

interfaces.

Representation of the geometry.For the implementation of NURBS-based boundary element

methods, we consider general Lipschitz domains that may contain holes and whose boundaryΓ

is decomposed into a Dirichlet boundaryΓD and a Neumann boundaryΓN . LetNc denote the

number of connected pieces of the boundary and let each connected piece of the boundary in

ΓD andΓN be parametrized by one NURBS curve. For the representation of the boundary in

MATLAB , we use the data structurescurves andsplines. splines is a vector of MATLAB

structs, where each struct describes one NURBS curve. The NURBS curves are sorted such that

all NURBS curves belonging to one connected piece of the boundary are listed subsequently.

The topological structure of the boundary is represented bythe vectorcurves∈ N
Nc+1, which

contains the index of the first NURBS curve on each connected piece of boundary. Hence, the

expression (curves(k):curves(k+1)-1) gives the indices of the NURBS curves parametriz-

ing thek-th connected piece of the boundary. Figure 5.2 illustratesa simple example.

Integration in NURBS-based BEM.For the implementation of NURBS-based BEM, integrals

of the type

∫ 1

−1
f(t)|γ̇i(t)| dt

have to be computed for a smooth functionf up to a given accuracytol. In particular, integrals

of this type arise in the projection of the Dirichlet and Neumann data onto the ansatz spaces,

in the assembly of the right-hand sides of the discrete variational formulations for Symm’s and

the hypersingular integral equations, and in the computation of the arc lengths of the elements.

While the integrals can be evaluated with adaptive quadrature rules, we give an estimate for
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Figure 5.2.: Boundary representation for a Lipschitz domain with two holes.

the a priori computation of the quadrature order, such that the tolerance is met. According the

Theorem 2.2.11, the quadrature error is bounded by

|Rn| ≤ max
z∈∂Eρ

∣∣f(z) |γ̇i(z)|
∣∣ ℓ(Eρ)
ρ2n+1

, 1 < ρ < ρi. (5.1)

In general, computing the constantmaxz∈∂Eρ |γ̇i(z)| explicitly is inefficient. We can apply the

worst case estimate

max
z∈∂Eρ

|γ̇i(z)| ≤
(ai + a)2(q−1)

(ai − a)2q
(ai − 1)2q

(ai + 1)2(q−1)
max

z∈[−1,1]
|γ̇i(z)| =: c(a)hi, (5.2)

which is given in Lemma 3.2.12 in order to obtain an upper bound. Here,a andai denote the

lengths of the real semi-axis ofEρ andEρi , andq denotes the order ofγi. This implies that the

quadrature order has to be chosen according to

n ≥
⌈
log(C) + log (c(a)hi) + log(π(ρ+ ρ−1))− log(tol)

2 log ρ
+

1

2

⌉
=: c1(ρ), (5.3)

whereC := maxz∈∂Eρ |f(z)|. Although this estimate for the quadrature order yields reliable

results for the approximated integral for all1 < ρ < ρi, it overestimates the quadrature order

needed to meet the tolerance in most practical examples.

For the implementation, we propose to choose the quadratureorder according to

n ≥
⌈
log(C̃) + log

(
maxz∈[−1,1] |γ̇i(z)|

)
+ log(π(ρi + ρ−1

i ))− log(tol)

2 log ρi
+

1

2
+ q

⌉

=: c2 (5.4)

with C̃ := maxz∈[−1,1] |f(z)|. This bound is obtained from (5.3) by choosingρ = ρi, but only

considering the maximum value of the integrand on[−1, 1] instead ofEρi . The choiceρ = ρi

implies that the exact asymptotic behavior of the quadrature error is reflected byc2. Furthermore,
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5. Implementation and Numerical Results

we obtain an upper bound for the quadrature error forn = 0, since plugging inρ = 1 in (5.1)

yields

|Rn| ≤ max
z∈[−1,1]

∣∣f(z) |γ̇i(z)|
∣∣ 2 < max

z∈[−1,1]

∣∣f(z) |γ̇i(z)|
∣∣ℓ(Eρ)
ρ

, 1 < ρ < ρi.

As long as the pre-asymptotic area in the behavior of the quadrature error is small, the tolerance

tol is met by choosing the quadrature order according to (5.4) and we obtain reliable results.

However, oscillating integrands generally have a large pre-asymptotic area. The asymptotic be-

havior is not reached until the quadrature order is chosen such that the oscillations are resolved.

In order to resolve the possibly occurring oscillations in the boundary parametrization we add

the orderq to the bound in (5.4). Furthermore, iff is a polynomial of degreep, we obtain

|Rn| ≤ max
z∈∂Eρ

∣∣|γ̇i(z)|
∣∣ ℓ(Eρ)
ρ2n−p+1

, 1 < ρ < ρi. (5.5)

Thus, we additionally increase the quadrature order by⌈p/2⌉.

In the following, we compare the results of both boundsc1(ρ) andc2 with the optimal order

c(opt), which is needed to meet a given tolerance. For the boundsc1(ρ), we choose equidistant

values ofρ ∈ (1, ρi). Further, we consider the integral
∫ 1

−1
|γ̇i(t)| dt,

which corresponds to computing the arc length of the elementTi. The optimal orderc(opt) is

computed adaptively. For our examples, we choose four different NURBS curves, which are

illustrated in Figure 5.3. Specifically a smooth second degree, a non-smooth second degree, an

almost closed fifth degree, and an oscillating fifth degree NURBS curve. Figure 5.4 shows the

quadrature orders computed byc1(ρ) andc2 as well as the adaptively computed orderc(opt) plot-

ted againsttol−1 for all four NURBS curves. The top left subfigure shows that for the smooth

curves the order obtained byc2 corresponds to the order obtained withc1(ρ) with the optimal

value ofρ. However, for the non-smooth and higher-order curves the bound c2 is significantly

smaller thanc1(ρ) for all 1 < ρ < ρi. The last figure shows that for the tolerance10−15, c1(ρ)

is larger than the optimal order by a factor of six, i.e.c1(ρ) ≈ 900 as compared toc(opt) ≈ 150.

On the other hand we obtainc2 ≈ 200, which is less than twice the optimal order. The bottom

left subfigure shows that the orders are invariant with respect to a scaling of the parametrization.

All subfigures indicate that the boundc2 yields a reliable and sharp estimate for the quadrature

order for the examples considered, although it can not be proven that the boundc2 is reliable for

general curves.

Remark 5.2.1. For the computation of theL2 andH1 projection, we assume that the Dirichlet

and Neumann data are analytic. However, for several benchmark examples the boundary con-

ditions are of the formf(t) = tαf̃(t) with α ∈ (−1, 1) and f̃ analytic. Hence, applying a
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(d) Fifth degree NURBS curve withρi = 1.12.

Figure 5.3.: Different smooth and non-smooth NURBS curves with corresponding semi axis

sumsρi used for benchmarks.

Gauss-Legendre quadrature only yields algebraic convergence. Gauss-Jacobi quadrature rules

can be applied for fixedα in order to achieve an exponential decay of the quadrature error. The

corresponding nodes and weights can be computed in an efficient and accurate way with the

same techniques as presented in Section 2.2.

Basis functions.For the implementation, we support four different sets of basis functions, that

are specified by the stringbasis ∈ {’Leg’,’Lob’,’NURBS0’,’NURBS1’}. For the Legendre

and Lobatto basis functions, we additionally require a cellarrayp of the same length as the

vectorsplines. Each fieldp{k} contains a vector with the local polynomial degrees on all

elements of the NURBS curve represented bysplines(k).

For isogeoemtric methods, we feature two different bases, aglobally continuous basis’NURBS1’

and a globally discontinuous basis’NURBS0’. The basis functions specified by’NURBS1’ are

the same basis functions used for the boundary parametrization. Since each connected piece
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Figure 5.4.: Quadrature order computed withc1(ρ) for equidistant values of1 < ρ < ρi andc2

as well as the adaptively computed orderc(opt). Each subfigure corresponds to the

NURBS curves depicted in Figure 5.3.

of the boundary can be parametrized by more than one NURBS curve, we have to add up the

nodal basis functions at the transitions of the Dirichlet and the Neumann boundary, in order to

obtain a globally continuous basis. We remark, that with this boundary representation we do not

construct basis functions of higher regularity at the intersections of the Dirichlet and Neumann

boundaries. However, since in many practical applicationssingularities of the solution are ex-

pected at these intersections, basis functions with higherregularity at these points do generally

not yield better approximations of the solution as comparedto functions with less regularity.

The globally discontinuous basis’NURBS0’ is constructed from the knot vector of the NURBS

parametrization of the boundary. By deleting the first and the last knot in the open knot vec-

tor, which corresponds to the inverse process ofk-refinement, the degree and the inter-element

regularity of the standard NURBS basis are reduced by one. Since it is not determined which
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weights have to be used, we simply delete the first weight. This allows for the construction

of globally discontinuous functions even for isogeometricmethods, which can be used for the

approximation of the Sobolev spaceH−1/2(Γ).

All sets of bases are evaluated with the MATLAB function

val=evalBasis(spline,z,p,basis,nodes).

The input parameters are the structspline defining the NURBS curve, them evaluation points

z ∈ R
m, the local polynomial degreep, the stringbasis specifying the basis, and the vector

nodes containing the nodes of the element, on which the basis has tobe evaluated. Optionally,

evalBasis returns as second argument the derivative of the basis functions, which is needed

for the assembly of the Galerkin matrix of the hypersingularintegral operator.

The choice of the basis functions significantly affects the condition numbers of the Galerkin

matrices. Figure 5.5 shows the condition number for the single layer Galerkin matrix of the

Laplace operator on the circle parametrized by the NURBS in Example 3.1.3 for all sets of

bases introduce above. We refer to the globally discontinuous and continuous NURBS basis

functions byR(0)
k andR(1)

k , respectively. We consider different refinement strategies, i.e. uni-

form p-refinement, uniformk-refinement (only for NURBS basis functions), and geometrichp-

refinement (only for Legendre and Lobatto basis functions).For all bases, we also investigate

the condition number of the Galerkin matrix, which is scaledby its diagonal.

For uniformp-refinements, we see that the condition number grows exponentially for the NURBS

basis functions, while we observe an algebraic growth for the Legendre and the Lobatto basis.

Specifically, the Galerkin matrix with respect to the Legendre basis behaves likeO(p3), which

coincides with the theoretical result stated in [Heu92, Heu96]. Further, the condition number of

the scaled Galerkin matrix with respect to the Legendre basis only grows linearly, which is also

observed for the geometrichp-refinement.

Remark 5.2.2. (i) The linear growth of the condition numbers with respect to the Legendre

and Lobatto basis functions for the uniformp- and geometrichp-refinements indicates that

these basis functions are an appropriate choice for high-order NURBS-enhanced methods.

(ii) Since the condition numbers grow exponentially for theNURBS basis functions for high

ordersp and high regularitiesk, these basis functions are inappropriate for the use of

high-order methods without any suitable preconditioning strategy. In this work, we do

not discuss advanced preconditioning methods for these bases, but present new results for

uniform p- andk-refinements with moderate polynomial degrees.

5.2.2. Collocation Methods

For the implementation of collocation methods we discuss two aspects. The first aspect is the

evaluation of the integrals according to the algorithms presented in Section 4.2 as black box.

135



5. Implementation and Numerical Results

degrees of freedom
100 101 102 103

co
n
d
it
io
n
n
u
m
b
er

100

105

1010

1015

       3      

       1      

       7      

R
(0)
k

R
(0)
k scaled

R
(1)
k

R
(1)
k scaled

Pk

Pk scaled
Nk

Nk scaled

(a) Uniformp-refinement withNe = 4 elements.

degrees of freedom
4 6 8 10 12 14 16 18 20

co
n
d
it
io
n
n
u
m
b
er

100

1010

1020

1030

1040

R
(0)
k

R
(0)
k scaled

R
(1)
k

R
(1)
k scaled

(b) Uniformk-refinement.

degrees of freedom
102 103

co
n
d
it
io
n
n
u
m
b
er

100

1010

1020

      5/2     

       1      

Pk

Pk scaled

Nk

Nk scaled

(c) Geometrichp-refinement withϑ = 0.5 andσ = 1.

Figure 5.5.: Condition number of the single layer Galerkin matrix for the Laplace equation on the

circle parametrized by the NURBS curve defined in Example 3.1.3. Here, ”scaled”

means that the Galerkin matrices are scaled by their diagonals.

136



5.2. Implementation

Second, we address the choice of the collocation points, since the location of the collocation

points has a large impact on the stability of the collocationmethods. In the end of this section,

we present benchmark examples, in order to show that our implementation is numerically stable.

Assembly of the Collocation Matrices

The evaluation of the boundary integral operatorsV, K, A, andW is implemented in the

MATLAB -functions

V = potV(splines, basis, p, x, N, options,varargin)

K = potK(splines, basis, p, x, N, options,varargin)

A = potA(splines, basis, p, x, N, options,varargin)

W = potW(splines, basis, p, x, N, options,varargin).

The structsplines describes the NURBS curve on which the integral operators are evaluated,

basis andp specify the basis functions used for the computations,x is a(Np × 2)-matrix con-

tainingNp evaluation points, andN denotes the interpolation order used for the computations.

The structoptions contains parameters belonging to the underlying BIE, e.g. the Lamé co-

efficientsλ andµ, the wave numberκ, andσΩ indicating if interior or exterior problems are

considered. Optionally, all functions get the vectoru and a tolerancetol. The vectoru contains

the coefficients of the solution with respect to the basis functions and is used for the evaluation of

the solution in the domainΩ. The tolerancetol is used for the near- and far-field classification,

see Algorithm 4.1. The functions return a matrix containingthe values of the boundary integral

operator at all evaluation points for all non-vanishing basis functions on the NURBS curve.

In the sequel we describe the classification of the evaluation points and the evaluation for far-

field, near-field and singular integrals in more detail.

For the classification of the evaluation points, the complexzeroszx as defined in Definition

4.2.14 have to be computed. According to Remark 4.2.5 (i), wecompute the roots of the com-

plex polynomial

f(z) = ωi(z) [(x1 − γi,1(z)) + i (x2 − γi,2(z))] ∈ C

for all evaluation points(x1, x2) ∈ R
2. Listing 5.2 shows an excerpt of the MATLAB code.

Listing 5.2: Excerpt of the functiongetZeros.m for the computation ofzx (Definition 4.2.14).

1 %*** get coefficients of numerator and denominator

2 t = cos( ((0: splines.q)+1/2)*pi/(splines.q+1)) ';

3 tt = (nodes (2)-nodes(1))/2*t+(nodes (2)+nodes (1))/2;

4 [Num ,Den] = evalCurve(splines.q,splines.U,splines.Pw ,tt);

5 tmp = vander(t)\[Num ',Den '];
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6 c1 = complex(tmp(:,1),tmp(:,2));

7 c2 = tmp(:,3);

8 %*** compute zeros

9 pts = [];

10 for k=1:size(x,1)

11 pts = [pts;roots(c1-complex(x(k,1),x(k,2))*c2) '];

12 end

First, we compute the coefficients of the numerator and the denominator ofγi with respect to

the monomials by interpolation. Therefore, the numerator and denominator ofγi are evaluated

at the zeros of the(q + 1)-th Chebyshev polynomial with theMex-functionevalCurve and the

system of linear equations is solved. In Lines 10-12, we compute the roots off with the MAT-

LAB functionroots. We remark that in the case of linear and quadratic NURBS curves we use

explicit formulas in order to compute the roots off for all evaluation points, simultaneously.

Due to the efficient realization of vector operations in MATLAB we hence save computational

time. The classification of the evaluation points is then implemented according to Algorithm 4.1.

The evaluation of the boundary integral operators is implemented as a black box. Therefore,

general kernel functions of the type

K̃(x− y) := g−1(x− y) + g0(x− y) log |x− y|+
N∑

ℓ=1

gℓ(x− y) |x− y|−2ℓ (5.6)

are supported. For the use of our implementation, only the non-vanishing coefficient functions

gµ, µ = −1..., N , andK, which are implemented in the functionsgm1, g0,...,gN, andK, have

to be specified by the user. Hence for the single layer operator of the Laplace problem, we only

implement the coefficient functiong0(x − y) := − 1
2π , since all other coefficient functions are

not present in Equation (5.6). This allows the easy incorporation of new kernel functions into

the software package.

Table 5.1 shows an overview on the present terms in the kernelfunctions for Laplace, Lamé, and

Helmholtz equations, for which our implementation can be used.

For far-field elements, we support both the evaluation of theregular integrals with a Gauss-

Legendre quadrature and in the special case of the Legendre basis functions the interpolation

method introduced in Section 4.2.1, which is based on the Legendre expansion of the kernel

function. Figure 5.6 shows the computational time for both the Gauss-Legendre quadrature and

the interpolation method over the polynomial degreep. The single layer operator of the Laplace

equation is evaluated atNp = 5083 far-field points for the Legendre basis functions and the
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5.2. Implementation

V K A W

g−1 x x x x

g0 x x x x

g1 x x x x

g2 x x x

g3 x

Table 5.1.: Overview on the terms used for the evaluation of the integral operators, which arise

for Laplace, Lamé, and Helmholtz problems.

quarter circle NURBS curve defined in Example 3.1.3. Both thequadrature and the interpola-

tion order are chosen such that all integrals are evaluated up to an accuracyε = 10−14.
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polynomial degreep.

Figure 5.6.: Comparison of Gauss-Legendre quadrature and the interpolation method for the

evaluation of the single layer operator of the Laplace problem forNp = 5083 far-

field points. The computations are performed on a desktop computer with an AMD

Phenom II X6 processor, 16GB RAM, and the Ubuntu 10.04 operating system.

For small polynomial degrees, we see that the Gauss-Legendre quadrature outperforms the inter-

polation method. This can be explained by the fact that the absolute error of the Gauss-Legendre

quadrature decreases with twice the rate as compared to the interpolation method (cf. Lemmas

4.2.6 and 4.2.9). However, for linearly increasing polynomial degrees both the computational

time and the quadrature order increase linearly for the Gauss-Legendre quadrature. Since the

interpolation method only interpolates the kernel and exploits the orthogonality of the Legendre

polynomials, the order and hence the computational time areindependent of the polynomial de-
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5. Implementation and Numerical Results

greep (cf. Remark 4.2.10). For high polynomial degreesp > 34 the interpolation method is

more efficient as compared to the Gauss-Legendre quadrature.

In order to show the accuracy of our near-field algorithm, we consider the following example.

Example 5.2.3.We consider the evaluation of the double layer operator for the Helmholtz equa-

tion (κ = 1)

(KÑ1)(x) =

∫

Ti

γ−1,yG(x− y) Ñ1(y) dsy

for the Lobatto functionÑ1 and four evaluation points

x = x(D) := γi(1/3) +D · νi(1/3), D ∈ {10−1, 10−2, 10−3, 10−4}. (5.7)

The quarter circleTi and its NURBS parametrizationγi are defined in Example 3.1.3 andνi

denotes the unit normal vector.

We compare our near-field algorithm with the Telles transformation [Tel86], which is proposed

in [SBT+12, SlSl98] for the evaluation of nearly singular integrals. Figure 5.7 shows the abso-

lute error plotted against the order for both approaches.

order n
0 50 100 150 200 250

ab
so
lu
te

er
ro
r

10-15

10-10

10-5

100

O(ρ−n
i )

D = 10−1 D = 10−2 D = 10−3 D = 10−4

Figure 5.7.: Absolute error over the ordern for the Helmholtz problem defined in Example 5.2.3.

Solid lines: Near-field algorithm presented in Section 4.2.2, dashed lines: Telles

transformation.

For all distancesD, the absolute error for the evaluation according to the algorithms presented

in Section 4.2.2 (solid lines) converges exponentially with factorρi, which shows the indepen-

dency of the convergence rate on the evaluation pointx, see Remark 4.2.21. As compared to

the Telles transformation (dashed lines), where a very slowexponential convergence can be ob-

served, this yields a significant speed up. Specifically forD = 10−4, the error can only be
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reduced to approximately10−5 with ordern = 256 by the Telles transformation, while the error

is reduced to10−13 with ordern ≈ 20 by our implementation. Similar results are also obtained

for all other coordinate transformations presented in [SlSl98, Tel86, TM74], as the dependency

on the evaluation point can generally not be eliminated by coordinate transformations.

Although the absolute error is reduced by almost 16 significant digits for all evaluation points,

which shows the stability of the evaluation, the absolute error can not be evaluated up to an accu-

racy of10−16. The reason is that the constantcℓ(x) in the error estimate given in Lemma 4.2.18

still depends on the evaluation pointx and hence on the distanceD, i.e. cℓ(x) = O(D−2ℓ+1).

Hence, we only expect an accuracy of1015−2ℓ for the evaluation with double precision, but re-

mark that with multiple precision libraries more accurate result can be obtained.

Figure 5.8 shows surface plots of all four boundary integraloperators for Laplace, Lamé, and

Helmholtz equations and Legendre, Lobatto and NURBS basis functions. In all plots, the bound-

ary is the quarter circle parametrized by the NURBS curve defined in Example 3.1.3.

Choice of Collocation Points

An important aspect for the implementation of collocation methods is the choice of the colloca-

tion points, since they have a large impact on the condition number of the collocation matrices

and on the stability of the collocation method. However, there are only few theoretically proven

results for the appropriate choice of the collocation points:

For collocation methods with spline ansatz functions of highest regularity, i.e. the ansatz space

S(T ,h,p,p), and smooth boundariesΓ, the collocation points are chosen to be the element

endpoints for odd degree splines, see [AW83]. For even degree splines the collocation points

can be chosen as element midpoints, see [SW85]. In [Dom03], convergence is also proven for

collocation points that are shifted byε > 0 from the endpoint- and midpoints, which is called

ε-collocation. For the solution of Symm’s and the hypersingular integral equation on an inter-

val with a uniformp-method, convergence is proven in [SlSt92, ES92]. Here, theChebyshev

polynomials of first and second kind are used as basis functions and their zeros are chosen as

collocation points, respectively.

For isogeometric methods, the knot averages, called Greville points, and the extrema of the

Chebyshev splines, called Demko points [Dem85], are proposed in [SBT+12].

In the sequel, we discuss the choice of the collocation points for NURBS-enhanced and isogeo-

metric methods, separately.

For our implementation of NURBS-enhanced methods with the Legendre polynomials and the

Lobatto shape functions, we choose their zeros as collocation points, which coincides with the
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5. Implementation and Numerical Results

(a) Real (left) and imaginary (right) part of the single layer operator
(
VR̃1

)
(x) for Helmholtz problems withκ =

2 + i.

(b) Both components of the double layer operator
(
K(Ñ3, 0

)T
)(x) for Lamé problems withλ = 600 andµ = 300.

(c) Adjoint and hypersingular integral operator,
(
AP̃3

)
(x) and

(
WÑ3

)
(x), for the Laplace problem withνx =

(1,−1)T .

Figure 5.8.: Surface plots of the boundary integral operators for different sets of basis functions

on the quarter circle NURBS curve.
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approach proposed in [SlSt92] for the Chebyshev basis. Although we do not prove the conver-

gence or the stability of the resulting collocation method,we numerically investigate the effect

of the collocation points on the energy error and the condition number of the collocation matri-

ces. Therefore, we consider two benchmark examples of Symm’s and the hypersingular integral

equations on the slit.

Example 5.2.4.We consider Symm’s integral equation

Vϕ =
x

2
onΓ := (−1, 1).

With the identity

∫ 1

−1
log |x− t| Tn(t)√

1− t2
dt =




−π log(2), n = 0

−π
nTn(x), n > 0,

which is proven in [Rea79], the exact solution can be computed byϕ(x) = x(1 − x2)−1/2 and

has two singularities at the end points±1.

For this benchmark, we choose the Legendre basis and comparethe zeros of the Legendre poly-

nomialsx(Gauss)
j with the zeros of the Chebyshev polynomialsx(Cheb)

j and optimal collocation

points. For the computation of the optimal collocation points, we consider two criterions for the

optimality, the minimization of the error and the minimization of the condition number of the

the single layer collocation matrixV. Since the energy norm||| · |||2V := 〈V·, ·〉 is equivalent to

theH−1/2-norm, we consider the energy norm of the solution in the numerical examples. The

corresponding minimization problems read





Find x
(opt,E)
0 , ..., x

(opt,E)
p ∈ (−1, 1), s.t.

|||ϕ− ϕh|||V → min

Vϕh

(
x
(opt,E)
j

)
= f

(
x
(opt,E)
j

)
, j = 1, ...,N

and





Find x
(opt,C)
0 , ..., x

(opt,C)
p ∈ (−1, 1), s.t.

cond(V)→ min

Vϕh

(
x
(opt,C)
j

)
= f

(
x
(opt,C)
j

)
, j = 1, ...,N .

In order to solve the minimization problems we start with equidistant collocation points and

assume that the optimal points are located symmetrically inthe interval(−1, 1). The minimiza-

tion problems are solved with the MATLAB functionfmincon.
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(b) Uniformp-refinement.
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(c) Geometrichp-refinement withϑ = 0.25 andσ = 1.

Figure 5.9.: Energy error (left) and condition number of thesingle layer operator (right) over the

degrees of freedom.
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We consider three different types of mesh refinement, specifically a uniformh-refinement with

polynomial degreep = 7, a uniformp-refinement withNe = 2 elements, and a geometrichp-

refinement, where the mesh is refined towards the singularities of the solution at±1. Figure 5.9

shows the energy error over the degrees of freedom (left) andthe condition number of the single

layer collocation matrix over the degrees of freedom (right).

For all refinements, the minimal energy error is attained forthe optimal collocation points

x
(opt,E)
k and the minimal condition number of the single layer collocation matrix is attained

for the optimal collocation pointsx(opt,C)
k , which indicates that the minimization problems are

solved correctly. For uniformh- and p-refinement, the behavior for all four types of points

is similar. Particularly, the energy error decays algebraically with order1/2 for uniform h-

refinement and with order 1 for uniformp-refinement. For the geometrichp refinement, we

observe an exponential decay of the error. Both the condition number and the energy error only

differ slightly in the constant for all refinement strategies. Overall, both the zeros of the Leg-

endre and the Chebyshev polynomials yield good results for both the condition number and the

energy error. Furthermore, the optimal collocation pointsare located similarly in the interval

(−1, 1) as compared to the zeros of the orthogonal polynomials, specifically the collocation

points become more frequent at the endpoints±1. Figure 5.10 shows that the Chebyshev zeros

are located more closely to the optimal points with respect to the energy error, while the zeros

of the Legendre polynomials are located more closely to the optimal points with respect to the

condition number.

x
(opt,C)
k

x
(Gauss)
k

x
(opt,E)
k

x
(Cheb)
k

Figure 5.10.: Location of the collocation points forp = 7 andNe = 1 element.

For the Lobatto basis functions, we consider the following benchmark example of the hypersin-

gular integral equation.

Example 5.2.5.We consider the hypersingular integral equation

Wu = 1 onΓ := (−1, 1).

The exact solution is given byu(x) = 2(1 − x2)1/2.

As the Lobatto shape functions are defined as antiderivatives of the Legendre polynomials, we

compare their zerosx(Lob)j with the extrema of the Chebyshev polynomialsx(Cheb1)
j and the op-
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timal collocation points, with respect to the energy error and the condition number. Specifically,

the minimization problems read:





Find x
(opt,E)
0 , ..., x

(opt,E)
p ∈ [−1, 1], s.t.

|||u− uh|||W → min

Wuh
(
x
(opt,E)
j

)
= f

(
x
(opt,E)
j

)
, j = 1, ...,N

and





Find x
(opt,C)
0 , ..., x

(opt,C)
p ∈ [−1, 1], s.t.

cond(W)→ min

Wϕh

(
x
(opt,C)
j

)
= f

(
x
(opt,C)
j

)
, j = 1, ...,N .

The minimization problems are again solved by the MATLAB -function fmincon with equidis-

tant initial points, whereby the element endpoints are fixedas collocation points. Figure 5.11

shows the energy error and the condition number over the degrees of freedom for a uniform

h-refinement withp = 7, a uniformp-refinement withNe = 2 elements and a geometrichp-

refinement with the same geometrically graded mesh as used for the previous example.

Again, the minimal energy error is obtained by the collocation pointsx(opt,E)
j and the minimal

condition number is obtained by the pointsx(opt,C)
j , which indicates that the minimization prob-

lems are solved correctly. We see that the zeros of the Lobatto shape functions as well as the

extrema of the Chebyshev polynomials yield the optimal behavior with almost optimal constant

for both the energy error and the condition number for all considered refinements. Furthermore,

this benchmark example shows the sensitivity of the energy error with respect to the collocation

points. Specifically, we see that the convergence of the energy error breaks for the collocation

pointsx(opt,C)
j for the uniformh- and geometrichp-refinements. Figure 5.12 shows the distri-

bution of the different sets of collocation points for the polynomial degreep = 7. It can be seen

that the optimal points become more frequent towards the endpoints, which is the same behavior

as for the Lobatto points and Chebyshev extrema.

For the implementation of isogeometric methods, we supportthe Greville and the Demko points,

which are also proposed in [ADH+10]. For the knot vectorΞ = {−1 = ξ0, ..., ξn+q+1 = 1}
and the degreeq, the knot averages are defined by

xk =
ξk+1 + · · · + ξk+q

q
, k = 0, ..., n − 1.

The Demko points are defined as the extrema of the Chebyshev splines and have no explicit
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(a) Uniformh-refinement withp = 7.
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(b) Uniformp-refinement.
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(c) Geometrichp-refinement withϑ = 0.25 andσ = 1.

Figure 5.11.: Energy error (left) and condition number of the hypersingular operator (right) over

the degrees of freedom.
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Figure 5.12.: Location of the collocation points forp = 7 andNe = 1 element.

representation, but can be computed approximately with theMatlab-functionchbpnt. Both

Greville and Demko points contain the element endpoints andare hence only appropriate for the

continuous NURBS basis functions’NURBS1’. For our application to the globally discontinuous

basis function’NURBS0’, these points cannot directly be used. Therefore, we compute the

collocation points with respect to the modified knot vector

Ξ̂ = {−1,Ξ, 1}

with degreeq + 1 and remove the first and the last collocation point such that only interior

collocation points are obtained.

Remark 5.2.6. (i) For NURBS-enhanced methods, the zeros of the Legendre polynomials

and the Lobatto shape functions are an appropriate choice for the collocation points, as

they yield an almost optimal behavior of the energy error andthe condition number of the

single layer and the hypersingular collocation matrix.

(ii) For isogeoemtric methods, we choose the Greville points and the modified Greville points

as collocation points, as they can be computed in an efficientand accurate way. The numer-

ical experiments in the subsequent section will show, that these points yield good results

for low-order isogeoemtric BEM.

Numerical Experiments

We perform numerical experiments in order to show that the choice of the collocation points

and the evaluation of the boundary integral operators yieldaccurate results for collocation meth-

ods. Since we do not provide a consistency analysis for collocation methods within the scope

of this work, we choose the interpolation order for the evaluation of the boundary integral op-

erators uniformly, i.e.n = 2max{p} + 1. Although this choice is not optimal, it is suffi-

cient for the numerical examples presented in this section.The linear system of equations is

solved with the MATLAB -backslash operator. Since the energy norms||| · |||V := 〈V·, ·〉1/2 and

||| · |||W := 〈W·, ·〉1/2, which are induced by the single layer and the hypersingularintegral oper-

ators, are equivalent to theH−1/2 andH1/2 norms, respectively, we consider the error in these

148



5.2. Implementation

norms. For Helmholtz problems, the energy norms with respect to the Laplace problem are cho-

sen. We perform three benchmark examples on the circle, the smoothened L-shaped domain,

and the slit.

Example 5.2.7.We consider Symm’s integral equation for the Laplace problem

Vϕ = f onΓ := {x ∈ R
2 : ‖x‖2 = 0.25},

where the right-hand side is given in polar coordinates byf(r, θ) = 1
12(3θ

2 − 6πθ + 2π2).

With the identities proven in [BS87, Section 4.4.1.2, Equations (24), (26)] and the mapping

properties ofV the exact solution can be computed byϕ(r, θ) = −8 log
(
2 sin

(
θ
2

))
, which

contains a logarithmic singularity forθ = 0. The boundary is parametrized by the NURBS

curve as defined in Example 3.1.3.

We run different refinement algorithms for the Legendre basis, a uniformh-refinement with

polynomial degreep = 0, a uniformp-refinement withNe = 16 elements, a geometrichp-

refinement, where thehp-mesh is created with the parametersϑ = 0.25 andϑ = 0.5 (cf. Section

1.4), respectively. For the NURBS basis functions, we run uniform h-methods withq = 2 for

Greville and Chebyshev collocation points.
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Figure 5.13.: Energy error|||ϕh − ϕ||| over the degrees of freedomN for the Laplace problem

given in Example 5.2.7.

Figure 5.13 shows the energy error over the degrees of freedom. We see that the error converges

algebraically with order 1 for all uniformh-methods. For uniformp-methods we obtain twice

the convergence rate, which is a similar behavior as expected for Galerkin methods, although no
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corresponding theoretical results for uniformp-refinements are available for collocation methods

on closed boundaries. For both geometrichp-meshes, we observe an exponential convergence of

the energy error with respect to the degrees of freedomN , where the convergence forϑ = 0.25

is faster as compared to the mesh created withϑ = 0.5. We stress that with both geometric

hp-methods the error could be reduced by almost 8 digits.
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(a) Uniformh-refinement withp = 0.

degrees of freedom
200 400 600 800 1000p

er
ce
n
ta
ge

of
th
e
ov
er
a
ll
ti
m
e

0

0.2

0.4

0.6

0.8

1

near-field
comp. zx
far-field

(b) Uniformp-refinement withNe = 8 elements.

Figure 5.14.: Percentage of the computational time of the near- and far-field integrals and the

computation of the zerozx for the classification according to Remark 4.2.5.

Figure 5.14 shows the percentage of the overall time for the evaluation of the near- and far-field

integrals and the computation of the zeroszx for the classification according to Remark 4.2.5

for the uniformh- andp-methods with the Legendre basis. For both uniformh- and uniformp-

refinements, we see that the computational time is dominatedby the evaluation of the near-field

integrals, while the time for the computation of the far-field integrals is negligible. In particular,

for uniform p-refinement the time for the evaluation of the far-field integrals grows linearly in

p, since the orthogonality of the Legendre polynomials is exploited. For the evaluation of the

near-field integrals for uniformp-refinements, the computational time is proportional top2, since

the Legendre expansion of ordern = 2max{p} + 1 has to be computed for all(p + 1) basis

functions. Furthermore, it can be observed that the time forthe computation ofzx is smaller

than the time needed for the evaluation of the near-field integrals for both refinements. For the

uniform p-refinement, the percentage of the computation ofzx is even smaller, since the zeros

zx are computed for all evaluation pointsx with the efficient vector operations in MATLAB .

The second benchmark example is the following Helmholtz example on the smoothened L-

shaped domain.
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Example 5.2.8.We consider Symm’s integral equation for the Helmholtz equation

Vϕ = (K + 1/2)u onΓ,

whereΓ is the boundary of the smoothened L-shaped domain:
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Figure 5.15.: NURBS parametrization for the smoothened L-shaped domain with control poly-

gon (dashed).

The functionu is given in polar coordinates by

u(r, θ) = Γ(2/3 + 1)J2/3(κr) sin

(
2

3
(θ + 4π/3)

)
,

where we choose the wave numberκ = 2. The Bessel function of the first kindJν is defined

in Appendix A. By settinguD = u|Γ we obtain a benchmark example for Symm’s integral

equation, where the exact solution has a singularity of order r−1/3 at the origin.

For NURBS-enhanced methods, we run a uniformh-refinement with polynomial degreep = 0,

a uniformp-refinement withNe = 20 elements, and geometrichp-refinements with the param-

etersϑ = 0.25 andϑ = 0.5 (cf. Section 1.4), respectively. For the NURBS basis functions, we

run a uniformh-method with Greville collocation points andq = 2.
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5. Implementation and Numerical Results

For all refinements, the energy error over the degrees of freedom is depicted in Figure 5.16. It

can be seen that the uniform refinements yield an algebraic convergence of the energy error,

whereby the error decays with twice the rate for uniformp-refinement as compared to uniform

h-refinement. Both geometrichp-refinements yield an exponential decay of the energy error,

where the convergence is faster forθ = 0.25. In particular, the energy error is reduced by almost

8 digits forϑ = 0.25.

degrees of freedom
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y
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10-10

10-8

10-6

10-4

10-2

100

      2/3     

      4/3     

uniform h, p = 0
uniform h, q = 2 Grev.
uniform p, Ne = 20
geometric hp, ϑ = 0.5
geometric hp, ϑ = 0.25

Figure 5.16.: Energy error|||ϕh − ϕ||| over the degrees of freedomN for the Helmholtz problem

given in Example 5.2.8.

As third example we consider the hypersingular integral equation. We first present results for

the benchmark Example 5.2.5 on the slit domain, where an exact solution is known, before we

show that our implementation also works on curved arcs.

For the Lobatto basis, we run a uniformh-method with polynomial degreep = 1, a uniform

p method withNe = 2 elements, and a geometrichp-method withϑ = 0.5. Furthermore, we

run a uniformh-method withq = 4 for the globally continuous NURBS basis with Greville

collocation points.

Figure 5.17 shows the energy error plotted against the degrees of freedom. All uniform methods

yield an algebraic convergence, where the uniformp-methods has twice the convergence rate

as compared to both uniformh-methods. For the geometrichp-method, we observe an expo-

nential decay of the energy error. However, the convergencebreaks at the level of10−3, which

is caused by the exponential growth of the condition number of the hypersingular collocation

matrix. Particularly in the last step we getcond(W) = 1.9 · 108. Using double arithmetics,

only 7 significant digits of the solution of the system of linear equations are certainly correct

(see [Sch88, page 34]). Since the square root is taken for thecomputation of the energy error,
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Figure 5.17.: Energy error|||uh − u||| over the degrees of freedomN for the Laplace problem on

the slit domain given in Example 5.2.5.

the energy error is only computed accurately up to an accuracy of 10−3.

arc length
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Figure 5.18.: Solution of the hypersingular integral equation Wu = 1 on the quarter circle

NURBS curve defined in Example 3.1.3 computed with the collocation and the

Galerkin method by a uniformh-refinement with polynomial degreep = 3.

We consider the hypersingular integral equationWu = 1 on the quarter circle NURBS curve

defined in Example 3.1.3. The solution is computed with a uniform h-refinement with polyno-

mial degreep = 3. Since we do not know an exact solution, the discrete solution computed

with the collocation method is compared with the one computed with the Galerkin method, see

Figure 5.18.

Lastly, we consider a practical example of the scattering ofa plane wave, which corresponds to
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5. Implementation and Numerical Results

the solution of the following exterior Helmholtz problem.

Example 5.2.9.We consider Symm’s integral equation for the exterior Helmholtz problem

−Vϕ = (−K + 1/2)ui onΓ,

whereΓ is the boundary of the scattering obstacle illustrated in Figure 5.19 (a). The incoming

acoustic plane wave is defined by

ui(x) = −exp(iκ (cos(α)x1 + sin(α)x2)),

where we chooseκ = 10 andα = 5
4π.

The solution is computed with a uniformp-method withNe = 12 elements. Figure 5.19 (b)

shows the total acoustic waveu comprised of the incoming and scattered wave around the ob-

stacle.

-2 -1 0 1
-2

-1.5

-1

-0.5

0

0.5

1

(a) Boundary of the obstacle with control poly-

gon and direction of the incoming acoustic plane

waveui.

(b) Total acoustic wave around the obstacle.

Figure 5.19.: Scattering of the acoustic plane wave given inExample 5.2.9.

Figure 5.20 (a) shows the point-wise error|uh,fine(x∗)−uh(x∗)| for x∗ = (−0.05,−0.1) close

to the corner of the boundary over the degrees of freedom. Thefine solutionuh,fine is computed

with Ne = 12 elements and polynomial degreep = 128.

Remark 5.2.10. (i) The numerical experiments show that our implementationof NURBS-

enhanced and isogeometric collocation methods, specifically the evaluation of the bound-

ary integral operators and the choice of the collocation points, yields accurate results even
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(a) Point-wise error|uh,fine(x∗) − uh(x
∗)|. The

fine solution is computed withp = 128.

N p absolute value|uh(x∗)|
96 8 9.73702474 · 10−5

192 16 1.80172142 · 10−5

384 32 1.79677630 · 10−5

768 64 1.79677696 · 10−5

1536 128 1.79677695 · 10−5

(b) Absolute value |uh(x∗)| for different

degrees of freedomN .

Figure 5.20.: Solutionuh(x∗) evaluated at the pointx∗ = (−0.05,−0.1) near the corner with a

uniform p-method.

for high polynomial degreesp ≤ 64 for all academic benchmark examples in the case of

NURBS-enhanced methods. In the last example we present stable results even for polyno-

mials degreep ≤ 128.

(ii) In contrast to the software packages HyENA [MMR+14] and [Sim12] we also implement

the collocation method for the hypersingular integral equation, which requires the accurate

evaluation of Hadamard finite part integrals.

(iii) Due to the exponential convergence obtained for the geometricalhp-meshes, we are able

to reduce the energy error by almost 8 digits for Symm’s integral equation. This is close to

double machine precision, since the square root is taken forthe computation of the energy

error. As all computations are performed in double arithmetics, this is optimal.

(iv) Concerning the computational times we see that the overall time is dominated by the evalu-

ation of the near-field integrals. The percentage of the timeneeded for the evaluation of the

near-field integrals can be reduced by exploiting the knowledge on the fundamental solu-

tion and the used basis functions. Particularly, for the Laplace problem with the Legendre

basis, the Legendre polynomials have to be evaluated only once for all elements. Further-

more, the Chebyshev expansion only has to be computed once for all evaluation points, as

the coefficient functiong0(x− y) = − 1
2π in (4.3) is independent of the evaluation pointx.

5.2.3. Galerkin Methods

For the implementation of Galerkin methods, we go into detail on the assembly of the Galerkin

matricesV, K, andW with the quadrature rules introduced in Section 4.3 and the apriori
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computation of the quadrature orders.

Assembly of the Galerkin Matrices

The assembly of the Galerkin matrices is implemented in the MATLAB functions

V = buildV(curves,splines,p,basis,options)

K = buildK(curves,splines,p1,p2,basis1,basis2,options)

W = buildW(curves,splines,p,basis,options).

The input parameterscurves andsplines describe the geometry of the problem,p andbasis

specify the basis which is used for the computation, and the structoptions contains parameters

belonging to the underlying BIE, e.g. the Lamé coefficientsλ andµ or the wave numberκ and

the flagσΩ specifying if interior or exterior problems are considered. All three functions allow

the use of all different sets of basis functions. Hence, alsomodified integral equations like the

Brackhage Werner formulation [BW65], where globally continous ansatz functions are used for

the Galerkin matrix of the single layer operatorV, can be solved with both NURBS-enhanced

and isogeometric methods. Furthermore, the symmetry of theGalerkin matricesV andW is

exploited in order to save computational time.

For the assembly of the Galerkin matrixW of the hypersingular integral equation, we use the

relationship to the single layer operatorV, which is given in Theorems 1.3.1 (iii), 1.3.2 (iii),

and 1.3.5 (v) for the Laplace, Lamé, and Helmholtz equations. Since the basis functionsΨk and

their arc length derivatives∂∂sΨk have to be evaluated, we support a general linear combination

aΨk + b
∂

∂s
Ψk, a, b ∈ C

for the assembly of the Galerkin matrixW, which is specified for each partial differential oper-

ator in the functionbasisW.

The Galerkin matrices are assembled element-by-element, where we distinguish far-field, neigh-

boring and identical elements. For the non-local basis functions, the local contributions are

added up.

The assembly of the Galerkin matrices is implemented as black box. Since after the regulariza-

tion with the coordinate transformations (4.32) and (4.48)for neighboring and identical elements

only the logarithmic term has to be evaluated with a special Gauss-Log quadrature, we consider

kernel functions of the general type

K̃(x− y) = g1(x− y) log |x− y|+ g2(x− y). (5.8)

Hence, for the assembly of the Galerkin matrices only the functionsg1, g2, andK have to be

implemented by the user in the MATLAB functionsg1, g2, andK, which allows the easy incor-

poration of new kernel functions into the software package.We remark that although the whole
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kernel functionK can be evaluated by the functionsg1 andg2 with representation (5.8), the user

has to implement the functionK separately in order to save computational time.

If only one of the two functionsg1 andg2 is present in (5.8), only this function has to be imple-

mented by the user. In this case only the integrals corresponding to the non-vanishing function

are evaluated, which saves computational time.

For neighboring and identical elements we proceed as follows. After having applied the coordi-

nates transformations we split the logarithm in (5.8) according to Equations (4.34) and (4.49).

In the case of identical elements, we hence obtain for the transformed kernel

K
(
γi(θ1(u, v)), γi(θ2(u, v))

)

= g1
(
γi(θ1(u, v)) − γi(θ2(u, v))

)
log

(
v + 1

2

)

+ g1
(
γi(θ1(u, v)) − γi(θ2(u, v))

)
log

( |γi(θ1(u, v)) − γi(θ2(u, v))|
v + 1

)

+ g2
(
γi(θ1(u, v)) − γi(θ2(u, v))

)
.

While the first term is evaluated with a combination of Gauss-Log quadrature inv and Gauss-

Legendre quadrature inu, the second and third terms are evaluated with a tensor Gauss-Legendre

quadrature.

A Priori Computation of the Quadrature Order

The quadrature orders are computed according to the estimates given in Tables 4.1-4.3, such

that the consistency error arising in the assembly of the Galerkin matrices does not affect the

convergence rates of the Galerkin method. Since the asymptotic behavior of the quadrature error

is described by the maximum ellipses contained in the domainof analyticity of the kernel (with

respect to both integration variables), the semi-axis sumsρ1 andρ2 of these ellipses have to be

computed explicitly in order to obtain sharp and reliable bounds.

For identical elements, we have proven the analyticity of the kernel onEρi (cf. Lemma 4.3.22

and Corollary 4.3.23). Since the semi-axis sumρi is already precomputed and stored in the field

splines.rho, we obtain a sharp estimate for the needed quadrature order in this case.

For far-field and neighboring elements, the optimal values of ρ1 andρ2 can also be computed

explicitly. The domain of analyticity is limited by the zeros of

γi(s)− γi(t)

for far-field and the zeros of

γi

(
(1+u)(1−v)

2 − 1
)
− γj(v)

1− v
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for neighboring elements. Therefore, the optimal values ofρ1 are obtained by computing the

zeros with respect tos andu for fixed t, v ∈ [−1, 1], respectively. Similarly, the optimal values

of ρ2 are obtained by computing the zeros with respect tot andv for fixeds, u ∈ [−1, 1], respec-

tively. The valuesρ1 andρ2 are then the semi-axis sums of the largest ellipses not containing any

zero. However, in both cases the computation is very time-consuming and most of the overall

computational time would be spent in the computation of the quadrature order, but not in the

quadrature itself. Hence, we use the worst case estimates given in Lemmas 4.3.2 and 4.3.12 for

the computation ofρ1 andρ2, which yield larger estimates for the quadrature orders, but can be

computed very efficiently. In the following, we only describe the computation of the semi-axis

sumρ1, the computation ofρ2 is alike. For far-field and neighboring elements, the semi-axis

sumρ1 is of the type

ρ1 = min{a+
√
a2 − 1, ρi},

a = 1 +
D

c(a)maxt∈[−1,1] |γ̇i(t)|
=: 1 + c(a)−1 C̃. (5.9)

Here, the constantc(a) is given by

c(a) =
(ai + a)2(q−1)

(ai − a)2q
(ai − 1)2q

(ai + 1)2(q−1)
, (5.10)

whereai denotes the length of the real semi-axis ofEρi andq denotes the order of the boundary

parametrization (cf. Lemma 3.2.12). For far-field elements, the constantD is the distance of

both elements and for neighboring elementsD depends on the shape, the angle, and the ratio of

the arc lengths of both elements. Since both sides of (5.9) depend ona we obtain the maximum

value ofa by solving

max
1<a<ai

min
{
a, 1 + c(a)−1 C̃

}
, (5.11)

which is equivalent to solving the equation

f(a) := 1 + c(a)−1 C̃ − a = 0. (5.12)

An example is illustrated in Figure 5.21.

In order to obtain an approximate solution of (5.12) we applyone step of Newton’s method with

initial valuea = 1. With

f ′(a) = −C̃ (ai + 1)2(q−1)

(ai − 1)2q

(
2q

(ai − a)2q−1

(ai + a)2(q−1)
+ 2(q − 1)

(ai − a)2q
(ai + a)2q−1

)
− 1

we obtain as approximate solution

a = 1− f(1)

f ′(1)
= 1 +

C̃

C̃ [2q(ai − 1)−1 + 2(q − 1)(a1 + 1)−1]− 1
.
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Figure 5.21.: Problem (5.11) forai = 5 andC̃ = 3. The optimal parametera is depicted as a

black dot.

In order to investigate how accurate the approximation is, we compare the optimal semi-axis

sumsρ(opt) with the semi-axis sumsρ(WC) obtained by the worst case estimates of Lemmas

4.3.2 and 4.3.12 for far-field and neighboring elements. Besides simple geometries occurring in

most academic examples, we also consider element combinations that are known to be critical

for the evaluation of the arising integrals with a Gauss-Legendre quadrature, see [AG10].

For far-field elements, we consider four benchmark examples: a quadratic smooth, the standard

quadratic quarter circle, a quadratic non-smooth, and an oscillating fifth degree NURBS curve.

All curves are illustrated in Figure 5.22.

In order to compareρ(opt) andρ(WC), we proceed as follows. First, we refine each spline until

we obtainn ∈ N elements. Then, we compute for each far-field element combination (T1, Tj),

j = 3, ..., n, the semi-axis sumsρ(opt)j andρ(WC)
j .

Figure 5.23 showslog(ρ(opt)j ) and log(ρ(WC)
j ) plotted against the element indexj. In all ex-

amples we see the dependency of both semi-axis sums on the distanceD, particularly the de-

creasing domain of analyticity for a decreasing distanceD. Hence, we only obtain a very slow

exponential convergence of the quadrature error for small distancesD. Furthermore, both bot-

tom subfigures show that the valuelog(ρ(opt)j ) is spoiled by the small domain of analyticityEρi
of the parametrization, which explains the cut off in both red plots. Overall, we see thatρ(WC)

j

is a reliable lower bound for allj = 1, ..., n, which imitates the behavior of the optimal value

ρ
(opt)
j .

Next, we investigate the factor, by which the optimal quadrature order computed withρ(opt)j is

overestimated by the order computed with our worst case approximationρ(WC)
j . Figure 5.24
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(a) Second degree NURBS curve withρi = 14.1.
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(b) Second degree NURBS curve withρi = 5.02.
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(c) Second degree NURBS curve with four elements and

ρi = (1.80, 1.57, 1.82, 4.6).
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(d) Fifth degree NURBS curve withρi = 1.21.

Figure 5.22.: NURBS curves for the benchmarks in the case of far-field elements.

shows the quotients

rmin = min
j=3,...,n

log(ρ
(opt)
j )

log(ρ
(WC)
j )

and rmax = max
j=3,...,n

log(ρ
(opt)
j )

log(ρ
(WC)
j )

(5.13)

of each refinement step plotted against the number of refinements of the NURBS curves. In

all subfigures the minimal quotient decreases with respect to the number of refinements and is

smaller than 2 for all examples after 10 refinements. The maximum quotientrmax is bounded for

all four curves. Asymptotically, the quadrature order is overestimated by a factor of at most 3.5

for the bottom right example, while we obtain less than a factor of 2 for both top subfigures. For

all examples, the maximum valuermax is attained for the element combination(T1, T3), which

corresponds to almost neighboring elements. Here, there holds D
h1
≈ 1 and hence the constant

c(a) has a big impact on the worst case estimateρ
(WC)
3 in Equation (5.9). This implies that we

overestimate the quadrature error by a larger factor in thiscase. The effect is strengthened for
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Figure 5.23.: Optimal valuelog(ρ(opt)j ) and approximated valuelog(ρ(WC)
j ) plotted overj for

n = 64 elements. All subfigures correspond to the NURBS curves illustrated in

the respective subfigures in Figure 5.22.

high-order and non-smooth NURBS curves. For large distancesD, the impact ofc(a) onρ(WC)
3

is small, which yields good results for the quadrature orders in most cases.

For neighboring elements, we investigate the effect of the angle between both elements on the

optimal and the approximated semi-axis sumsρ(opt) andρ(WC), where we consider three bench-

mark curves: linear elements, the standard quarter circleswith mesh-width ratio 2, and a second

order non-smooth NURBS curve, see Figure 5.25. For all curves we start with angleβ ≈ 0 and

increase the angle linearly by rotating the control points belonging to the second element until

both elements intersect.

Figure 5.26 showslog(ρ(opt)) and log(ρ(WC)) (left) and the quotientlog(ρ
(opt))

log(ρ(WC))
(right) plotted

against the angleβ. All left subfigures show that both semi-axis-sumsρ(WC) andρ(opt) tend to

1, as the angle between both elements vanishes. Hence, for elements with small anglesβ > 0,

we have a slow exponential, nearly algebraic convergence ofthe quadrature error, which implies

that high quadrature orders are needed.
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Figure 5.24.: Quotientrmax andrmin as defined in Equation (5.13) plotted over the number of

refinements. All subfigures correspond to the NURBS curves illustrated in the

respective subfigures in Figure 5.22.

The middle and bottom figures on the left-hand side of Figure 5.26 show that the optimal values

log(ρ(opt)) are cut off for all angles≈ π, which is due to the small domain of analyticity of the

NURBS curve itself. Similarly to the far-field case, the approximationsρ(WC) provide a lower

bound for all angles and all curves. However,ρ(WC) is a coarse approximation ofρ(opt) for most

angles and the needed quadrature order is overestimated, which is illustrated in the right-hand

side plots. While for the standard quarter circle with mesh-width ratio 2 the quadrature order is

overestimated by a factor of 4, the factor is much smaller forthe non-smooth NURBS curve for

anglesβ ∈ (0.6π, π). This is due to the small domain of analyticity of the NURBS parametriza-

tion itself. For linear elements,log(ρ(WC)) is by a factor of 2-2.6 smaller thanlog(ρ(opt)). For

the uniformh-refinement, we hence expect that the quadrature order is asymptotically overesti-

mated by factors between 2 and 3, since all NURBS curves converge to linear elements.

In order to investigate the effect of large mesh-width ratios σ(h) on the domain of analyticity

of the kernel function for neighboring elements, we consider the linear elements depicted in

Figure 5.25 (a) with angleβ = π/2 for different mesh-width ratios. Figure 5.27 (left) shows
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(a) Linear elements with mesh-width ratio 1.
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(b) Second degree NURBS curve withρi = (5.02, 5.02)

and mesh-width ratio 2.
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(c) Second degree NURBS curve with four elements and

ρi = (1.24, 2.6) and mesh-width ratio 2.1.

Figure 5.25.: NURBS curves used for the benchmarks in the case of neighboring elements.

the optimal semi-axis sumlog(ρ(opt)) and the approximationlog(ρ(WC)) over the mesh-width

ratio σ(h). Both semi-axis sums decrease as the mesh-width ratio increases, which shows the

sensitivity of the quadrature rules on high mesh-width ratios. In addition, the approximation

behaves like the optimal valuelog(ρ(opt)), whereby the optimal value is approximated better for

larger mesh-width ratios (see Figure 5.27 (right)).

Finally, we show the quadrature orders used for the assemblyof the single layer Galerkin matrix

on the circle, which are computed with the a priori estimatesgiven in Table 4.1. Figure 5.28

shows the number of Gauss pointslog(n1 · n2) for a uniform mesh withNe = 32 elements and

uniform polynomial degreep = 2 and a geometrically graded mesh withϑ = 0.25 andσ = 1

(Ne = 25). The first and last element correspond to the smallest elements with polynomial

degreesp1 = p25 = 0.
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(a) Linear elements.
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(b) Second degree NURBS curve withρi = (5.02, 5.02).
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(c) Second degree NURBS curve with four elements andρi = (1.24, 2.6).

Figure 5.26.:log(ρ(WC)) andlog(ρ(opt)) plotted against the angle between both elements (left)

and the corresponding ratior = log(ρ(opt))/ log(ρ(WC)) (right). The three subfig-

ures on the left- and right-hand side correspond to the NURBScurves illustrated

in the respective subfigures in Figure 5.25.
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Figure 5.27.: The values oflog(ρ(WC)) and log(ρ(opt)) (left) and corresponding ratior :=

log(ρ(opt))/ log(ρ(WC)) (right) plotted against the mesh-width ratioσ(h).

Both subfigures show that the quadrature orders are symmetric with respect to both diagonals,
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(a) Uniform mesh withNe = 32 elements and

polynomial degreep = 2.
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(b) Geometrically graded mesh withϑ = 0.25 andσ = 1

andNe = 25 elements.

Figure 5.28.: The number of Gauss pointslog(n1 ·n2) computed with the a priori estimates given

in Table 4.1 for the single layer operator on the circle. The geometrically graded

mesh is refined towards the first element.

which is what we expected as the uniform and the geometrically graded meshes are symmetric.

In the case of the uniform mesh (subfigure (a)) the number of Gauss points for far-field elements

increases as the distance between both elements decreases,which coincides with the behavior

of ρ(WC) illustrated in Figure 5.23. In particular,n1 · n2 = 49 Gauss points are chosen for

elements with large distances, while for almost neighboring elements the quadrature order in-

creases ton1 · n2 = 100. The highest quadrature orders are chosen for neighboring elements,
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i.e. n1 · n2 = 168, whereas for identical elements,n1 · n2 = 49 Gauss points suffice.

For the geometrically gradedhp-mesh (subfigure (b)), we obtain similar results, where we can

additionally observe the linear dependency of the quadrature order on the polynomial degree. In

particular, we see that the quadrature order increases linearly towards the diagonal pointing from

the bottom left to the top right, which corresponds to the elements with the largest polynomial

degrees.

Numerical Experiments

We present several benchmark examples for isogeometric andNURBS-enhanced Galerkin meth-

ods in order to show that our implementation produces accurate results. For the solution of the

system of linear equations the MATLAB backslash operator is used. For NURBS-enhanced

methods, the Galerkin matrix is preconditioned by a diagonal scaling. All computations are per-

formed on a desktop computer with an AMD Phenom II X6 processor (6 cores), 16GB RAM,

and the Ubuntu 10.04 operating system.

The first benchmark example is Symm’s integral equation for the Laplace operator, which is

introduced in Example 5.2.7. For NURBS-enhanced methods, we run a uniformh-method with

polynomial degreep = 5, a uniformp-method withNe = 16 elements and geometrichp-

methods withϑ = 0.25 andϑ = 0.5, respectively. Figure 5.29 shows the energy error and

the computational time for the assembly of the linear systemof equations over the degrees of

freedom. The uniformh-method converges algebraically with order 1, while we observe twice

the order for the uniformp-method, which is the expected behavior, see Theorem 1.6.5 and Re-

mark 1.6.6. The geometrichp-methods converge exponentially with respect to the degrees of

freedom. Forϑ = 0.25, we are able to reduce the energy error by almost 8 digits, which is close

to double machine precision.

The computational times, which are the times for the assembly of the Galerkin matrix and the

right-hand side, are illustrated in the bottom picture of Figure 5.29. It can be seen that for the

uniform h-refinement the computational time is proportional toN 2 and the computational time

asymptotically grows with order4 for uniform p-refinement.

For isogeometric methods, we run uniformh-, p-, andk-refinements. In order to guarantee that

the NURBS parametrization isC∞(−1, 1) regular, the boundary is parametrized by the follow-

ing NURBS-curve:

q = 5, Ξ = {−1,−1,−1,−1,−1,−1, 1, 1, 1, 1, 1, 1} ,

{Qk, k = 0, ..., 4} =
{(

0.5

0

)
,

(
0.5

2

)
,

(
−1.5
1

)
,

(
−1.5
−1

)
,

(
0.5

−2

)}
.
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Figure 5.29.: Energy error|||ϕ − ϕh||| (top) and computational time (assembly of the Galerkin

matrix and right-hand side) in seconds (bottom) over the degrees of freedomN for

the Laplace Example 5.2.7.

For the computations, the NURBS curve is two times pre-refined.

Figure 5.30 shows the energy error over the degrees of freedom. We see that both uniformh-

refinements yield an algebraic convergence with order 1, while we obtain twice the convergence

rates for the uniformp- andk- refinements. Due to the exponential growth of the conditionnum-

ber of the single layer Galerkin matrix for the uniformp- andk-refinements, which is observed

in Figure 5.5, the convergence breaks forp = 25 andp = 27, respectively.

The second benchmark is the Helmholtz problem on the smoothened L-shaped domain defined

in Example 5.2.8. Again, we compute the energy error with respect to the single layer operator

of the Laplace equation, which is equivalent to theH−1/2 norm. For NURBS-enhanced meth-
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Figure 5.30.: Energy error|||ϕ − ϕh||| over the degrees of freedomN for the Laplace Example

5.2.7.

ods, we run a uniformh-method with polynomial degreep = 0, a uniformp-refinement with

Ne = 20 elements, and geometrichp-methods withϑ = 0.25 andϑ = 0.5, respectively. For

the NURBS basis functions, we run a uniformh-method withq = 2. Figure 5.31 shows the

energy error and the computational times (for the assembly of the single layer operator and the

right-hand side) over the degrees of freedom.

The top picture shows that all uniform methods yield an algebraic decay of the energy error, the

uniform p-method having twice the convergence rate of the uniformh-methods. Both geomet-

ric hp-refinements yield an exponential convergence, where the energy error could be reduced

to 10−9 with less than 600 degrees of freedom usingθ = 0.25. Looking at the computational

times we see that the times are proportional toN 2 for the uniformh-methods andN 4 for the

uniform-p method. Since the overall time is dominated by the evaluation of the Hankel and

Bessel functions, the computational time for the uniformp-method is smaller as compared to

both uniformh-methods. Further, the computational times for both geometric hp-refinements

are proportional toN 2.

As third benchmark example, we investigate the following Lamé problem on the smoothened

L-shaped domain:

Example 5.2.11.We consider the hypersingular integral equation for the Lamé problem

Wu = (1/2 −K′)ϕ onΓ,

whereΓ is the boundary of the smoothened L-shaped domain defined in Example 5.2.8. We
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Figure 5.31.: Energy error|||ϕ − ϕh||| (top) and computational time (assembly ofV and the

right-hand side(K + 1/2M)u) in seconds (bottom) over the degrees of freedom

N for the Helmholtz Example 5.2.8.

define the functionu in polar coordinates by

u(r, θ) :=
rα

2µ

({
−(α+ 1) cos

[
(α+ 1) θ

]
+
[
C2 − (α+ 1)

]
C1 cos

[
(α− 1) θ

]}
{
(α+ 1) sin

[
(α+ 1) θ

]
+
[
C2 + α− 1

]
C1 sin

[
(α− 1) θ

]}
)

with α := 0.544483736782464, C1 := − cos
(
(α+1)ω

)

cos
(
(α−1)ω

) , C2 := λ+2µ
λ+µ , andω = 3π

4 . By setting

ϕ := γ−1 u|Γ to be the interior co-normal derivative ofu, we obtain a benchmark example.

We run uniformh-methods with polynomial degreesq = 2 for the isogeometric basis andp = 7

for the Lobatto basis, a uniformp-method withNe = 20 elements, and geometrichp-methods

with ϑ = 0.5 andϑ = 0.25, respectively.

Figure 5.32 shows the energy error and the computational times for the assembly ofW and
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Figure 5.32.: Energy error|||u − uh||| (top) and computational time for the assembly ofW and

the right-hand side in seconds (bottom) over the degrees of freedomN for the

Lamé Example 5.2.11.

the right-hand side over the degrees of freedom. For all uniform methods, we observe an al-

gebraic decay of the energy error with rateα for the uniformh- and 2α for the uniformp-

refinement, which is the expected rate for this Lamé example. The geometrichp-refinements

yield an exponential convergence, whereby the energy errorcan be reduced by 7 significant dig-

its for ϑ = 0.25. In the bottom picture showing the computational times we see a quadratic

growth for the assembly of the system of linear equations forboth uniformh- and geometric

hp-methods. For the uniformp-refinement, we observe an algebraic growth with order 4 for

large polynomial degreesp.

Lastly, we consider a practical problem in linear elasticity, specifically the mixed traction and
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displacement problem.

Example 5.2.12.We consider the mixed Lamé problem

− div σ(u) = 0, in Ω

u = 0, onΓD

σ(u)ν = (−1, 0), onΓN,1

σ(u)ν = (0, 0), onΓN,2.

Particularly, the workpiece is fixed at the bottom sideΓD and a traction is applied toΓN,1.

The Lamé coefficientsλ = 57692 andµ = 38462 correspond to plexiglass. The geometry,

its NURBS parametrization, and the splitting into the Dirichlet and Neumann boundaries are

illustrated in Figure 5.33 (a).

The solution is computed with a uniformp-method withNe = 21 elements. Figure 5.33 (b)

shows the displaced workpiece, where the displacement is scaled by a factor of 500. The colors

denote the elastic shear energy density of the solution [ACF+02], which is defined by

(
µ2

24(λ+ µ)2
+

1

8

)
(σ11 + σ22)

2 − σ212 − σ11σ22
2µ

. (5.14)

Figure 5.34 (a) shows the point-wise error|uh,fine(x∗) − uh(x∗)| for x∗ = (−0.8,−10) close

to the top left edge of the boundary over the degrees of freedom. The fine solutionuh,fine is

computed withNe = 21 elements and polynomial degreep = 64.

Remark 5.2.13. (i) The numerical results show that our implementation of Galerkin meth-

ods is stable for all sets of basis functions and BIEs considered in this work. In the case

of NURBS-enhanced methods, our implementation is stable even for high-order methods,

i.e. accurate result can be produced for polynomial degreesp ≤ 128. Further, the energy

error is reduced by 7 digits with the geometrichp-meshes, which is close to double ma-

chine precision and hence optimal, since no multiple precision libraries are used for the

implementation.

(ii) For isogeometric methods, accurate results for uniform h-methods are presented. Further-

more, the potential of high-order isogeometric methods is shown. With our implementa-

tion accurate results for uniformp- andk-refinements are obtained for polynomial degrees

up to q = 25. Hereby, the effect of the increasing global regularity on the energy error

can be observed. In particular, we obtain twice the convergence rate as for the uniform
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Figure 5.33.: Mixed traction and displacement problem of a workpiece.
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(a) Point-wise error|uh,fine(x∗)− uh(x∗)|.
The fine solutionuh,fine is computed withp = 64.

N p absolute value|uh(x∗)|
168 4 2.514066 · 10−5

336 8 2.525437 · 10−5

672 16 2.527994 · 10−5

1344 32 2.528572 · 10−5

2688 64 2.528773 · 10−5

(b) Absolute value |uh(x∗)| for different

degrees of freedomN .

Figure 5.34.: Solutionuh(x∗) evaluated at the pointx∗ = (−0.8, 10) near the top left edge with

a uniformp-method.

h-refinement and the same behavior with a better constant as compared to the uniformp-

refinement. The reason for the limitation of the computations is the exponential growth of

the condition number with respect to the degrees of freedom.

(iii) The computational times for the assembly of the Galerkin matrices show a behavior, which

is almost proportional toN 2 for uniform h-methods. SinceN 2 entries have to be com-
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puted, the assembly of the Galerkin matrix is almost independent ofh, which is a nearly

optimal behavior. For uniformp-methods, the time for the assembly is proportional toN 4.

This is caused by the assembly of the neighboring and identical matrix blocks. Due to the

coordinate transformations and the fact that the quadrature order is linearly dependent on

the polynomial degreep, each basis function has to be evaluated atp2 points. We remark

that the time for the evaluation of the far-field blocks with the Gauss-Legendre quadrature

is proportional toN 3 and hence the overall time for the assembly of the Galerkin matrix is

dominated by the time for neighboring and identical elements.

(iv) Table 5.2 shows a comparison of the computational timesfor the assembly of the single

layer collocation and Galerkin matrices for the circular boundary (Example 5.2.7). For

the uniformh-refinement, the time for the assembly of the collocation andGalerkin matrix

show the same behavior, specifically both times are proportional toN 2. Here, the assembly

of the collocation matrix is faster by a factor of≈ 2
3 . For the uniformp-refinement, we

see that for small polynomial degrees the assembly of the Galerkin matrix is faster, while

for large polynomial degrees the assembly of the collocation matrix is faster. This can be

explained by the algebraic growth of the computational timeof order 4 for the Galerkin

matrix.

uniformh, p = 0 uniform p,Ne = 8

N Galerkin Collocation Galerkin Collocation

128 7.42 4.92 0.14 0.61

256 29.64 19.73 0.87 1.82

512 120.65 80.45 10.86 10.00

1024 512.96 337.03 197.35 59.87

Table 5.2.: Computational times for the assembly of the collocation and Galerkin matrices for

Example 5.2.7
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Through the course of this dissertation we have developed the implementation of NURBS-based

boundary element methods for the Laplace, Lamé, and Helmholtz equations in two dimensions.

Using an exact NURBS parametrization of the boundary, no geometric error is induced. Thus,

there is no deterioration of the convergence rates of high-order collocation or Galerkin meth-

ods. This allows the computation of highly accurate solutions on complicated domains with

few degrees of freedoms. Besides isogeometric methods, which had previously been introduced

for finite element methods, we presented NURBS-enhanced methods, which combine the ad-

vantages of standard high-order boundary element methods with the concept of isogeometric

analysis. By choosing the Legendre polynomials and their antiderivatives, called the Lobatto

shape functions, as basis functions of the polynomials ansatz spaces, we were able to stably and

efficiently implement high-order NURBS-enhanced methods.In particular, we observed a linear

relationship between the condition number of the Galerkin matrices and the polynomial degree

p. By exploiting theL2 orthogonality of the Legendre polynomials efficient algorithms for the

evaluation of the arising integrals were developed for high-order collocation and Galerkin meth-

ods.

Three aspects of NURBS-based boundary element methods wereexplored in detail. First, we

examined the computation of Gauss quadrature rules and the derivation of error bounds for the

absolute quadrature error. We then discussed the derivation of algorithms for the efficient and

accurate evaluation of all integrals arising in NURBS-based collocation and Galerkin methods.

Lastly, we presented a black box implementation of NURBS-based BEM, which has a wide field

of application and a natural extension to other BIEs.

The foundation for the implementation of NURBS-based boundary element methods is the ef-

ficient and accurate numerical integration using Gauss quadrature rules. As most fundamental

solutions of elliptic partial differential operators in two dimensions contain a logarithmic singu-

larity, we discussed the computation of Gauss-Log quadrature rules. The key for the efficient and

stable computation of their nodes and weights for high orders with the algorithm of Golub and

Welsh [GW69] was the use of the modified Chebyshev algorithm presented in [Gau10] and the

explicit representation of the modified moments with respect to the Jacobi polynomials [BF14].

These modified moments can also be used for the computation ofquadrature rules for some
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modified logarithmic as well as Jacobi weight functions.

Based on numerical experiments, we then derived a new error bound for the Gauss-Log quadra-

ture rule, which served as the foundation for the consistency error analysis for Galerkin methods.

Our results indicated that the bound was reliable for integrands, which are analytically extend-

able on ellipsesEρ with ρ > 1.01, and all ordersn ≤ 2048. This includes most practical

applications.

Further research should be conducted on this topic. A theoretically proven error bound for

Gauss-Log quadrature rules is desired. Therefore, estimates for the maximum of the kernel

Kn(z) = πn(z)
ρn(z)

on confocal ellipsesEρ would need to be derived. Up to now, corresponding

results are only proven for some special weights, like Jacobi and Chebyshev weights, for which

closed formulas forKn(z) are available [GV83]. For the kernel with respect to the Gauss-Log

weight function, closed formulas and asymptotic estimateswith respect ton are not yet known.

We also examined the efficient and stable evaluation of the integrals arising in NURBS-based

BEM. For both collocation and Galerkin methods, we considered kernel functions of a general

type, which provides a wide field of application in two-dimensional BEM.

For the integrals arising in collocation methods, we developed new algorithms for the evaluation

of far-field, near-field, and singular integrals including error estimates for the absolute error. The

far-field integrals with respect to the Legendre basis functions were evaluated with an algorithm

based on the Legendre expansion of the kernel and the orthogonality of the Legendre polynomi-

als. We showed that the complexity and the decay of the absolute error are independent of the

orderp, thus improving the evaluation with a Gauss-Legendre quadrature rule for high polyno-

mial degrees.

For the near-field integrals, which are numerically most challenging, we presented an algorithm

yielding the maximum convergence rate of the absolute errorindependent of the evaluation

point. This approach was based on the efficient and stable evaluation of basic integrals pre-

sented in [Ban13] and the exact knowledge of the zerozx decreasing the domain of analyticity

of the kernel. As compared to existing approaches based on the regularization with coordinate

transformations, we accelerated the decay of the absolute error significantly. Furthermore, this

approach could also be generalized to the case of singular integrals, thus allowing for the stable

implementation for singular integrals as well.

For the evaluation of the double integrals arising in Galerkin methods, we introduced coordi-

nate transformations in order to regularize the singular integrals arising for neighboring and

identical element combinations. The remaining singular integrals containing a logarithmic type

singularity were evaluated efficiently with a combination of Gauss-Log and Gauss-Legendre

quadratures. We proved there is an exponential decay of the quadrature error for all integrals.

With the estimates of the absolute quadrature error we couldprovide a complete consistency
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error analysis including computable a priori estimates forthe quadrature order. This opens the

door for the efficient implementation of Galerkin methods.

Whereas Galerkin methods are well-understood from the theoretical point of view, there are sev-

eral open questions for collocation methods. Specifically,a priori estimates for ansatz functions

others than smoothest splines as well as consistency estimates, which can be used for the a priori

computation of the quadrature orders, have yet to be derived. If estimates for the effect of the

absolute error in the collocation matrix on the consistencyerror were available, we could derive

a priori estimates for the quadrature and interpolation orders, improving the efficiency of the

collocation method.

Lastly, we described the black box implementation of NURBS-based boundary element meth-

ods. The focus was on an implementation that has a wide field ofapplication and can be readily

extended to other kernel functions. Both NURBS-enhanced and isogeometric methods could

be used for solving Symm’s integral equation as well as the hypersingular and mixed boundary

integral equations with Galerkin and collocation methods.The implementation was used to in-

vestigate the appropriate choice of the collocation pointsfor NURBS-enhanced methods, where

optimal points were computed by solving minimization problems. Furthermore, we examined

the effect of the high global regularity of the isogeometricbasis functions on the energy error in

numerical examples.

Our implementation serves as a basis to explore the full potential of isogeometric BEM. With ap-

propriate pre-conditioning strategies, high-order isogeometric methods can be advanced. Com-

binations of the classicalh- andp-refinement with the newk-refinement as well as adaptive

refinement strategies, which have been investigated for low-order methods in [FGP15], are de-

sired.

Using the Legendre polynomials and their antiderivatives was the key for the stable implemen-

tation of high-order NURBS-enhanced methods. Our final numerical examples showed that our

implementation produces accurate results for high polynomial degreep ≤ 128. Furthermore, we

were able to reduce the energy error up to machine precision for both collocation and Galerkin

methods on geometrically gradedhp-meshes. Overall, our implementation can be used for the

computation of highly accurate solutions of pratice-relevant problems in two dimensional poten-

tial theory, linear elasticity, and acoustic scattering. By using NURBS parametrizations of the

boundary we are able to compute the solution of the boundary integral equations on complicated

domains with few degrees of freedom.
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A. Explicit Representation of the Integral

Operators

In this section we give an overview on the kernel functions and their co-normal derivatives of

the Laplace, Lamé, and Helmholtz equations.

Laplace equation.For the Laplace operator, the kernel functions of the singlelayer, the double

layer, the adjoint, and hypersingular operators are given in the following lemma.

Lemma A.1. The fundamental solution of the Laplace equation is given byG(x − y) =

− 1
2π log |x− y|. The co-normal derivatives with respect tox andy are given by

γ1,xG(x− y) = −
1

2π

(x− y)T νx
|x− y|2

and

γ1,yG(x− y) =
1

2π

(x− y)T νy
|x− y|2 .

The second order co-normal derivative is given by

γ1,x (γ1,yG(x− y)) =
1

π

νTx (x− y)(x− y)T νy
|x− y|4 − 1

2π

νTx νy
|x− y|2 .

Proof. The representation of the fundamental solution is e.g. proven in [McL00]. Forn ∈ R
2

we obtain

(∇x log |x− y|)Tn =
(x− y)Tn
|x− y|2 = −(∇y log |x− y|)Tn.

Since the co-normal derivative coincides with the normal derivative for the Laplace operator, we

obtain withn := νx

γ1,xG(x− y) = −
1

2π

(x− y)T νx
|x− y|2

and withn := νy

γ1,yG(x− y) =
1

2π

(x− y)T νy
|x− y|2 .

179



A. Explicit Representation of the Integral Operators

With the identity

∂

∂νx

(x− y)T νy
|x− y|2 = 2

νTx (x− y)(x− y)T νy
|x− y|4 − νTx νy

|x− y|2

we directly obtain the last statement and we conclude the proof.

An overview on the coefficient functions in the general representation (4.3), which are directly

defined by the previous lemma, is given for the Laplace equation in Table 1.1.

V K A W

g−1

g0 x

g1 x x x

g2 x

g3

Table 1.1.: Overview on the termsgµ in representation (4.3) for the Laplace equation.
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Lamé equation. Let λ, µ ∈ R with µ > 0 andλ + 2µ > 0 denote the Lamé coefficients. The

fundamental solution and its co-normal derivatives are given in the subsequent lemma.

Lemma A.2. A fundamental solution of the Lamé equation is given by

G(x− y) = 1

4πµ(λ+ 2µ)

(
−(3µ + λ) log |x− y| I+(λ+ µ)

(x− y)(x− y)T
|x− y|2

)

Let I× I :=

(
0 1

−1 0

)
. For the co-normal derivatives ofG the following identities hold

γ1,xG(x− y) = −
µ

2π(λ+ 2µ)

(
(x− y)T νx
|x− y|2 I+

(x− y)T τx
|x− y|2 I× I

)

+
λ+ µ

π(λ+ 2µ)

(x− y)T νx
|x− y|4 (x− y)(x− y)T

= −γ1,yG(x− y)

(A.1)

as well as

γ1,x(γ1,yG(x− y))

=
λµ

π(λ+ 2µ)

(x− y)T νx(x− y)T νy
|x− y|4 I− µ2

π(λ+ 2µ)

(x− y)T τx(x− y)T τy
|x− y|4 I

+
µ2

π(λ+ 2µ)

(x− y)T τx(x− y)T νy − (x− y)T νx(x− y)T τy
|x− y|4 I× I

+
µ2

π(λ+ 2µ)

νTx νy I+τTx τy I× I

|x− y|2

+
µ(λ+ µ)

π(λ+ 2µ)

(
νTx νy
|x− y|4 − 8

(x− y)T νx(x− y)T νy
|x− y|6

)
(x− y)(x− y)T

+
µ(λ+ µ)

π(λ+ 2µ)

(x− y)T νy(νx(x− y)T + (x− y)νTx )
|x− y|4

− µ(λ+ µ)

π(λ+ 2µ)

(x− y)T τy[I× I τx(x− y)T I× I] + (x− y)T νxνy(x− y)T
|x− y|4 .

(A.2)

Proof. The representation of the fundamental solution is e.g. proven in [McL00]. For the co-

normal derivatives of the fundamental solution we use the identity

γ1u = σ(u)ν = µ(∇u+∇uT ) + λdiv(u) I .

In order to apply the co-normal derivative to the columns of the fundamental solutionG, we

denote the columns ofG byGi, i = 1, 2. For simplicity, we abbreviatez := x− y. We get

∇
(
log |x− y|

0

)
=

1

|z|2

(
z1 z2

0 0

)
and ∇




z21
|z|2
z1z2
|z|2


 =


2 z1

|z|2 − 2
z31
|z|4 −2z21z2

|z|4
z2
|z|2 − 2

z21z2
|z|4

z1
|z|2 − 2

z1z22
|z|4


 .
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Hence, the first column of the co-normal derivative is given by

σ(G1(z))nx = µ(∇G1(z) +∇G1(z)
T ) + λdiv(G1(z)) I

= − 3µ+ λ

4π(λ+ 2µ)


2 z1

|z2|
z2
|z|2

z2
|z|2 0


 νx +

λ+ µ

4π(λ+ 2µ)


4 z1

|z|2 − 4
z31
|z|4

z2
|z|2 − 4

z21z2
|z|4

z2
|z|2 − 4

z21z2
|z|4 2 z1

|z|2 − 4
z1z22
|z|4


 νx

− λ(3µ + λ)

4πµ(λ+ 2µ)


2 z1

|z2| 0

0 2 z1
|z2|


 νx +

λ(λ+ µ)

4πµ(λ+ 2µ)


2 z1

|z|2 0

0 2 z1
|z|2


 νx

= − µ

2π(λ+ 2µ)

zT νx
|z|2

(
1

0

)
− λ+ µ

π(λ+ 2µ)

zT νx
|z|4

(
z21

z1z2

)
− µ

2π(λ+ 2µ)

zT τx
|z|2

(
0

−1

)

For the second column, we get with

∇
(

0

log |x− y|

)
=

1

|z|2

(
0 0

z1 z2

)
and ∇




z1z2
|z|2
z22
|z|2


 =




z2
|z|2 − 2

z21z2
|z|4

z1
|z|2 − 2

z1z22
|z|4

−2z1z22
|z|4 2 z2

|z|2 − 2
z32
|z|4


 .

the following representation

σ(G2(z))nx = µ(∇G2(z) +∇G2(z)
T ) + λdiv(G2(z)) I

= − 3µ+ λ

4π(λ+ 2µ)


 0 z1

|z|2
z1
|z|2 2 z2

|z2|


 νx +

λ+ µ

4π(λ+ 2µ)


2 z2

|z|2 − 4
z21z2
|z|4

z1
|z|2 − 4

z1z22
|z|4

z1
|z|2 − 4

z1z22
|z|4 4 z2

|z|2 − 4
z32
|z|4


 νx

− λ(3µ + λ)

4πµ(λ+ 2µ)


2 z2

|z2| 0

0 2 z2
|z2|


 νx +

λ(λ+ µ)

4πµ(λ+ 2µ)


2 z2

|z|2 0

0 2 z2
|z|2


 νx

= − µ

2π(λ+ 2µ)

zT νx
|z|2

(
0

1

)
− λ+ µ

π(λ+ 2µ)

zT νx
|z|4

(
z1z2

z22

)
− µ

2π(λ+ 2µ)

zT τx
|z|2

(
1

0

)
.

The representations of both columns yield

γ1,xG(x− y) = −
µ

2π(λ+ 2µ)

(
(x− y)T νx
|x− y|2 I+

(x− y)T τx
|x− y|2 I× I

)

+
λ+ µ

π(λ+ 2µ)

(x− y)T νx
|x− y|4 (x− y)(x− y)T

= −γ1,yG(x− y).

For the kernelγ1,x(γ1,yG(x− y)) of the hypersingular operator we introduce the notationνy :=

(m1,m2)
T andT (x− y) := γ1,yG(x − y), where we denote the columns ofT by Ti, i = 1, 2.

There holds

∇




zT νy
|z|2

− zT τy
|z|2


 =




m1
|z|2 − 2

z1 zT νy
|z|4

m2
|z|2 − 2

z2 zT νy
|z|4

−m2
|z|2 + 2

z1 zT τy
|z|4

m1
|z|2 + 2

z2 zT τy
|z|4



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and

∇
(

z21 zT νy
z4

z1z2 zT νy
z4

)
=




z21m1+2z1 zTny

|z|4 − 4
z31 zTny

|z|6
z21m2

|z|4 − 4
z21z2 z

Tny

|z|6
z1z2m1
|z|4 +

z2 zTny

|z|4 − 4z21z2 z
Tny

|z|6
z1z2m2
|z|4 +

z1 zTny

|z|4 − 4
z1z22 zTny

|z|6


 .

Plugging in the gradients, we get

σ(T1(z))nx = µ(∇T1(z) +∇T1(z)T ) + λdiv(T1(z)) I

= − µ2

2π(λ+ 2µ)


2m1

|z|2 − 4
z1 zT νy
|z|4 2

(z1−z2) zT νy
|z|4

2
(z1−z2) zT τy

|z|4 2m1
|z|2 + 4

z2 zT τy
|z|4


 νx

+
µ(λ+ µ)

π(λ+ 2µ)




2z21m1+4z1 zTny

|z|4 − 8
z31 zTny

|z|6
(z21m2+z1z2m1)

|z|4 +
z2 zTny

|z|4 − 8
z21z2 z

Tny

|z|6
(z21m2+z1z2m1)

|z|4 +
z2 zTny

|z|4 − 8
z21z2 z

Tny

|z|6 2z1z2m2
|z|4 + 2

z1 zTny

|z|4 − 8
z1z22 zTny

|z|6


 νx

− µλ

2π(λ+ 2µ)


2m1

|z|2 − 2
(z1−z2) zT νy

|z|4 0

0 2m1
|z|2 − 2

(z1−z2) zT νy
|z|4


 νx,

where we used that

div

(
z21 zT νy

z4

z1z2 zT νy
z4

)
= 0.

Simplifying the terms we obtain

σ(T1(z))nx = µ(∇T1(z) +∇T1(z)T ) + λdiv(T1(z)) I

=

(
λµ

π(λ+ 2µ)

zT νxz
T νy

|z|4 − µ2

π(λ+ 2µ)

zT τxz
T τy

|z|4
) (

1

0

)

+
µ2

π(λ+ 2µ)

zT τxz
T νy − zT νxzT τy
|z|4

(
0

−1

)

+
µ2

π(λ+ 2µ)

(
νTx νy
|z|2

(
1

0

)
+
νTx τy
|z|2

(
0

−1

))
+

µ(λ+ µ)

π(λ+ 2µ)

(
νTx νy
|z|4 − 8

zT νxz
T νy

|z|6
)(

z21

z1z2

)

+
µ(λ+ µ)

π(λ+ 2µ)

zT νy
|z|4 (z1νx +m1z))−

µ(λ+ µ)

π(λ+ 2µ)

zT τy + τxz
T

|z|4

(
0

−1

)
+
z1 z

T νx
|z|4 νy.

For the second column, we get by analogy for the gradients of both terms

∇




zT τy
|z|2
zT νy
|z|2


 =




m2
|z|2 − 2

z1 zT νy
|z|4 −m1

|z|2 − 2
z2 zT νy
|z|4

m1
|z|2 − 2

z1 zT νy
|z|4

m2
|z|2 − 2

z2 zT νy
|z|4




and

∇
(
z1z2 zT νy

z4
z22 zT νy

z4

)
=




z1z2m1
|z|4 +

z2 zTny

|z|4 − 4z21z2 z
Tny

|z|6
z1z2m2
|z|4 +

z1 zTny

|z|4 − 4
z1z22 zTny

|z|6
z22m1

|z|4 − 4
z1z22 zTny

|z|6
z22m2+2z2 zTny

|z|4 − 4
z32 zTny

|z|6


 .
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Plugging in the gradients we obtain

σ(T2(z))nx = µ(∇T2(z) +∇T2(z)T ) + λdiv(T2(z)) I

= − µ2

2π(λ+ 2µ)


2m2

|z|2 − 4
z1 zT νy
|z|4 −2 (z1+z2) zT νy

|z|4

−2 (z1+z2) zT τy
|z|4 2m2

|z|2 − 4
z2 zT τy
|z|4


 νx

+
µ(λ+ µ)

π(λ+ 2µ)


 2z1z2m1

|z|4 + 2
z2 zTny

|z|4 − 8
z21z2 z

Tny

|z|6
z1z2m2+z22m1

|z|4 +
z1 zTny

|z|4 − 8
z1z22 zTny

|z|6
z1z2m2+z22m1

|z|4 +
z1 zTny

|z|4 − 8
z1z22 zTny

|z|6 2
z22m2+2z2 zTny

|z|4 − 8
z32 zTny

|z|6


 νx

− µλ

2π(λ+ 2µ)


2m2

|z|2 − 2
(z1+z2) zT νy

|z|4 0

0 2m2
|z|2 − 2

(z1+z2) zT νy
|z|4


 νx

Rearranging the terms yields

σ(T2(z))nx = µ(∇T2(z) +∇T2(z)T ) + λdiv(T2(z)) I

(
λµ

π(λ+ 2µ)

zT νxz
T νy

|z|4 − µ2

π(λ+ 2µ)

zT τxz
T τy

|z|4
) (

0

1

)

+
µ2

π(λ+ 2µ)

zT τxz
T νy − zT νxzT τy
|z|4

(
1

0

)

+
µ2

π(λ+ 2µ)

(
νTx νy
|z|2

(
0

1

)
+
νTx τy
|z|2

(
1

0

))
+

µ(λ+ µ)

π(λ+ 2µ)

(
νTx νy
|z|4 − 8

zT νxz
T νy

|z|6
)(

z1z2

z22

)

+
µ(λ+ µ)

π(λ+ 2µ)

zT νy
|z|4 (z2νx +m2z))−

µ(λ+ µ)

π(λ+ 2µ)

zT τy + τxz
T

|z|4

(
1

0

)
+
z2 z

T νx
|z|4 νy.

Finally, we obtain with the representations of both columnsof σ(T (x− y))νx the identity

γ1,x(γ1,yG(x− y))

=
λµ

π(λ+ 2µ)

(x− y)T νx(x− y)T νy
|x− y|4 I− µ2

π(λ+ 2µ)

(x− y)T τx(x− y)T τy
|x− y|4 I

+
µ2

π(λ+ 2µ)

(x− y)T τx(x− y)T νy − (x− y)T νx(x− y)T τy
|x− y|4 I× I

+
µ2

π(λ+ 2µ)

νTx νy I+νTx τy I× I

|x− y|2

+
µ(λ+ µ)

π(λ+ 2µ)

(
νTx νy
|x− y|4 − 8

(x− y)T νx(x− y)T νy
|x− y|6

)
(x− y)(x− y)T

+
µ(λ+ µ)

π(λ+ 2µ)

(x− y)T νy(νx(x− y)T + (x− y)νTx )
|x− y|4

− µ(λ+ µ)

π(λ+ 2µ)

(x− y)T τy[I× I τx(x− y)T I× I] + (x− y)T νxνy(x− y)T
|x− y|4 .
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An overview on the coefficient functions in the general representation (4.3), which are directly

defined by the previous lemma, is given for the Lamé equationin Table 1.2.

V K A W

g−1

g0 x

g1 x x x x

g2 x x x

g3 x

Table 1.2.: Overview on the termsgµ in representation (4.3) for the Lamé equation.
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Helmholtz equation. Before we give an explicit representation of a fundamental solution and its

co-normal derivatives for the Helmholtz equation, we introduce the Bessel and Hankel functions

and summarize some important properties.

Lemma A.3 ([BOL+10]). The Bessel function of first kind is defined by

Jν(z) =
(z
2

)ν ∞∑

k=0

(−1)k (12z
2)k

k!Γ(ν + k + 1)

and the Bessel function of second kind is given by

Yν(z) =
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
.

The Hankel function is defined as linear combination of both Bessel functions, i.e.

H(1)
ν (z) = Jν(z) + iYν(z).

The following properties hold.

(i) Jν(z) is an analytic function for all integerν.

(ii) For ν ∈ N the derivatives of the Bessel and Hankel functions are givenby

J ′
0(z) = −J ′

1(z) J ′
ν(z) =

1

2
(Jν+1(z) + Jν−1(z))

Y ′
0(z) = −Y ′

1(z) Y ′
ν(z) =

1

2
(Yν+1(z) + Yν−1(z))

(H
(1)
0 )′(z) = −H(1)

1 (z) (H(1)
ν )′(z) =

1

2

(
H

(1)
ν+1(z) +H

(1)
ν−1(z)

)

(iii) For ν ∈ N, the Bessel function of second kind has the following power series representation

Yν(z) =
1

π

(
2 log

(z
2

)
Jν(z)−

(
2

z

)ν ν−1∑

k=0

(ν − k − 1)!

4k k!
z2k

−
(z
2

)ν ∞∑

k=0

[ψ(k + 1) + ψ(k + 1 + ν)]
(−1)k

4k k! (k + ν)!
z2k

)
,

whereψ(1) = γ andψ(n + 1) =
∑n

k=1
1
k − γ. Here,γ denotes the Euler constant.

Lemma A.4. For κ ∈ C\{0}, a fundamental solution of the Helmholtz equation is given by

G(x− y) = i

4
H

(1)
0 (κ|x− y|) = i

4
(J0(κ|x− y|) + iY0(κ|x− y|)) .

The co-normal derivatives with respect tox andy are given by

γ1,xG(x− y) = −
iκ

4
H

(1)
1 (κ|x− y|)(x− y)

T νx
|x− y|
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and

γ1,yG(x− y) =
iκ

4
H

(1)
1 (κ|x − y|)(x− y)

T νy
|x− y| .

The second order co-normal derivative is given by

γ1,x (γ1,y G(x− y))

=
iκ

4

(
κ
H

(1)
2 (κ|x− y|) +H

(1)
0 (κ|x− y|)

2

νTx (x− y)(x− y)T νy
|x− y|2

−H(1)
1 (κ|x− y|)ν

T
x (x− y)(x− y)T νy

|x− y|3 +H
(1)
1 (κ|x− y|) ν

T
x νy
|x− y|

)

Proof. The representation of the fundamental solution is e.g. proven in [McL00]. For the co-

normal derivatives of the fundamental solution, which coincide with the normal derivatives, we

get with Lemma A.3 (ii)

γ1,xG(x− y) =
∂

∂νx
G(x− y) = − iκ

4
H

(1)
1 (κ|x− y|)(x− y)

T νx
|x− y|

and

γ1,yG(x− y) =
∂

∂νy
G(x− y) = iκ

4
H

(1)
1 (κ|x− y|)(x− y)

T νy
|x− y| .

For the second order co-normal derivative we get with

∂

∂νx

(x− y)T νy
|x− y| =

νTx νy
|x− y| −

νTx (x− y)(x− y)T νy
|x− y|3

and Lemma A.3 (ii) the following representation

γ1,x (γ1,y G(x− y))

=
iκ

4

(
κ
H

(1)
2 (κ|x− y|) +H

(1)
0 (κ|x− y|)

2

νTx (x− y)(x− y)T νy
|x− y|2

−H(1)
1 (κ|x− y|)ν

T
x (x− y)(x− y)T νy

|x− y|3 +H
(1)
1 (κ|x− y|) ν

T
x νy
|x− y|

)
.

In order to derive a representation according to (4.3) we usethe series representation ofYν stated

in Lemma A.3 (ii).

Lemma A.5. The kernel functions can be split according to(4.3)as follows:

(i) single layer operator

G(x− y) = G(x− y) + 1

2π
J0(κ|x− y|) log |x− y|

︸ ︷︷ ︸
=:g−1(x−y)

− 1

2π
J0(κ|x− y|)

︸ ︷︷ ︸
=:g0(x−y)

log |x− y|

= g−1(x− y) + g0(x− y) log |x− y|
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(ii) double layer operator

γ1,yG(x− y) = γ1,yG(x− y) +
κ

2π
J1(κ|x − y|)

(x− y)T νy
|x− y| log |x− y| − 1

2π

(x− y)T νy
|x− y|2︸ ︷︷ ︸

=:g−1(x−y)

− κ

2π
J1(κ|x− y|)

(x− y)T νy
|x− y|︸ ︷︷ ︸

=:g0(x−y)

log |x− y|+ (x− y)T νy
2π︸ ︷︷ ︸

=:g1(x−y)

1

|x− y|2

= g−1(x− y) + g0(x− y) log |x− y|+ g1(x− y)
1

|x− y|2

(iii) adjoint operator

γ1,xG(x− y) = γ1,xG(x− y)−
κ

2π
J1(κ|x − y|)

(x− y)T νx
|x− y| log |x− y|+ 1

2π

(x− y)T νy
|x− y|2︸ ︷︷ ︸

=:g−1(x−y)

+
κ

2π
J1(κ|x− y|)

(x− y)T νx
|x− y|︸ ︷︷ ︸

=:g0(x−y)

log |x− y| −(x− y)T νy
2π︸ ︷︷ ︸

=:g1(x−y)

1

|x− y|2

= g−1(x− y) + g0(x− y) log |x− y|+ g1(x− y)
1

|x− y|2

(iv) hypersingular integral operator

γ1,x(γ1,yG(x− y))

=

[
γ1,x(γ1,yG(x− y))

+

{
κ2

4π
(J2(κ|x − y|) + J0(κ|x− y|))

νTx (x− y)(x− y)T νy
|x− y|2

+
κ

2π

J1(κ|x− y|)
|x− y|

(
νTx (x− y)(x− y)T νy

|x− y|2 − νTx νy
)}

log |x− y|

+
1

2π

νTx νy
|x− y|2 −

1

π

νTx (x− y)(x− y)T νy
|x− y|4

]

−
{
κ2

4π
(J2(κ|x− y|) + J0(κ|x− y|))

νTx (x− y)(x− y)T νy
|x− y|2

− κ

2π

J1(κ|x− y|)
|x− y|

(
νTx (x− y)(x− y)T νy

|x− y|2 − νTx νy
)}

log |x− y|

− 1

2π

νTx νy
|x− y|2 +

1

π

νTx (x− y)(x− y)T νy
|x− y|4

=: g−1(x− y) + g0(x− y) log |x− y|+ g1(x− y)
1

|x− y|2 + g2(x− y)
1

|x− y|4 .

Here, the functiong−1 is defined by the terms in the box brackets, the functiong0 is defined

by the terms in curved brackets, and we setg1(x, y) := − 1
2πν

T
x νy and g2(x − y) :=

1
πν

T
x (x− y)(x− y)T νy.
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Proof. In order to proof the representations, we have to proof the analyticity of the coefficient

functions gµ, µ = −1, ..., 2. Therefore, we consider the series expansion given in Lemma

A.3 (iii). Since the functionsg−1 are obtained by subtracting the logarithmic and algebraic

singularities in the series representation of the Bessel functionsYν and since the term|x − y|
only arises in even powers,g−1 is analytic for all boundary integral operators.

(i) Since the Bessel functionJ0 is analytic and|x − y| only appears in even powers in the

series representation the coefficient functionsg0 is analytic.

(ii),(iii) With the series representation ofJ1 we get

κ

2π
(x− y)T νy

J1(κ|x− y|)
|x− y| =

κ

2π
(x− y)T νy

κ

2

∞∑

k=0

(−1)k (12z
2)k

k!Γ(k + 2)
,

which proofs the analyticity ofg0. The analyticity ofg1 is obvious.

(iv) The series representation ofJν in Lemma A.3 (iii) shows thatJ0(κ|x− y|), J2(κ|x− y|),
andJ1(κ|x−y|)

|x−y| are analytic. Furthermore, the termsνTx (x−y)(x−y)T νy
|x−y|2 andνTx νy are analytic

and hence the functiong0 is analytic. The analyticity ofg1 andg2 is obvious.

An overview on the coefficient functions in the general representation (4.3) is given for the

Helmholtz equation in Table 1.3.

V K A W

g−1 x x x x

g0 x x x x

g1 x x x

g2 x

g3

Table 1.3.: Overview on the termsgµ in representation (4.3) for the Helmholtz equation.

Remark A.0.14. The representation of the kernel functions according to (4.26), which is used

for the assembly of the Galerkin matrix for the single and double layer operator can directly be

obtained by the representation given in Lemma A.5 (i) and (ii).
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List of Symbols

The numbers in the end of each row indicate the page number.

General Notation

| · | absolute value or cardinality of a set

∂/∂s arc length derivative

O(f) Landau symbol,f is an asymptotic upper bound

., & smaller than or equal to and greater than or equal to up to constant

Re(z), Im(z) real and imaginary part of a complex number

span(X) space that contains all linear combinations of elements in the setX

dist{·, ·} Euclidean distance

χ indicator function

δk,ℓ Kronecker symbol

p.v., f.p. Cauchy principle value and Hadamard finite part

Function Spaces, Scalar Products, and Norms

Ω−,Ω+ ⊂ R
2 bounded and unbounded Lipschitz domain, 1

Ck(Ω)m space ofk times continuously differentiable functions

with values inCm, 2

Ck0 (Ω)m space of functions inCk(Ω)m with compact support inΩ, 2

C∞(Ω)m space of infinitely times differentiable functions with values inCm, 2

C∞0 (Ω)m space of functions inC∞(Ω)m with compact support inΩ, 2

L2(Ω)m Lebesgue space of square integrable functions with values inC
m, 2

L2
loc(Ω)

m Lebesgue space of locally square integrable functions

with values inCm, 2

L∞(Ω)m space of essentially bounded functions with values inC
m, 2

Hk(Ω)m Sobolev space of orderk onΩ (k ≥ 0) with values inCm, 3

Hk
loc(Ω)

m space of localHk(Ω) functions with values inCm, 3

H̃−k(Ω)m dual space ofHk(Ω) (k ≥ 0), 4
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(·, ·)L2(Ω)m scalar product inL2(Ω)m, 2

〈·, ·〉X×Y extendedL2 scalar product, 4

(·, ·)Hk(Ω)m scalar product inHk(Ω)m, 3

‖ · ‖L2(Ω)m norm induced by the scalar product inL2(Ω)m, 2

‖ · ‖Hk(Ω)m , ‖ · ‖Hk(Γ)m norm onHk(Ω)m andHk(Ω)m, 3

| · |Hσ(Ω) Sobolev-Slobodeckij semi norm (σ ∈ (0, 1)), 3

γ−0 , γ+0 , γ0 trace operators, 5

γ−1 , γ+1 , γ1 co-normal derivatives, 5

σΩ 1 if Ω is bounded, 0 ifΩ is unbounded, 5

The indexm is omitted if the range of the function is clear.

Special Functions

Jν(·), Yν(·), Bessel functions of first and second kind, respectively, 186

H
(1)
ν (·) Hankel function, 14, 186

Γ(·), ψ(·) Gamma function and digamma function, respectively, 37

γ, Euler constant, 186

P
(α,β)
n (·) Jacobi polynomials, 37

Boundary Integral Equations

L elliptic, linear, second-order, self-adjoint partial differential operator, 5

G(x− y) fundamental solution of the partial differential operatorL, 5

λ, µ Lamé coefficients, 12

κ wave number for Helmholtz problems, 13

Ṽ, V single layer potential and operator, 6, 8

K̃,K double layer potential and operator, 6, 8

K′ adjoint double layer operator, 6, 8

W hypersingular operator, 6, 7

V, K, W Collocation or Galerkin matrix for single layer, double layer,

and hypersingular operator, 19, 20, 23, 24

M mass matrix, 20, 24
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Orthogonal Polynomial and Quadrature Rules

Eρ, ρ complex ellipse with semi-axis sumρ and focii±1, 30

ω(x) weight function, 31

(πn)n∈N0 , (ρn)n∈N0 sequence of monic orthogonal polynomials and associated functions, 31

µk,mk moments and modified moment, 31, 37

Pk,Nk Legendre polynomials and Lobatto shape functions, 32, 33

Rn(f),Kn(f) remainder and its kernel of the quadrature formula of ordern, 40

Non-Uniform-Rational B-Splines (NURBS)

q degree of NURBS curve, 51

Ξ, ξj open knot vector and knot, 51

Ξ̃, ζj, rj unique knot vector, node, and corresponding multiplicity ,51

ωk, ω weights and weight functions, 51

Bk,q,Rk,q b-spline and NURBS basis functions, 51

Qk,Qω
k control points and weighted control points, respectively,51, 53

γ, γω NURBS curve mapping from[−1, 1] and projection inR3, 51, 53

Boundary Mesh and Ansatz Spaces

T boundary mesh onΓ, 16

P patch of elements, 82

Ne,Nv number of elements and nodes inT , 17

Ti element ofT ,16

ϑ, σ mesh parameter for geometric meshes, 17

h, σ(h), hi mesh-width function, ratio, and mesh width ofTi, 17, 56

p, pi polynomial degree function and polynomial degree onTi, 17, 56

k regularity function, 17, 56

γ, γi NURBS parametrization of the boundaryΓ andTi, respectively, 56

Xℓ, Yℓ sequence of general discrete spaces, 19, 23

Φk, Ψk basis functions of the discrete spacesXℓ, Yℓ, 19, 23

P̃
(i)
k Legendre polynomial onTi, 57

Ñ
(i)
k Lobatto shape function onTi, 57

R̃k NURBS basis functions, 56
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S(T ,h,p,k) space of piecewise polynomial functions with global regularity k

w.r.t. the meshT , 17, 57

R(T ,h,p,k) space of rational functions with global regularityk spanned by

NURBS basis functions, 17, 56

N ,M dimension of discrete space if the spaces involved are clear, 17, 111

Collocation Methods

x point for the evaluation of the boundary integral operators, 74

zx complex zero of|γi(t)− x| lying in the ellipseEρ, 75, 84

Mf ,Mn,Ms set of far-field, near-field, and singular evaluation points, 76

A
(i)
k (x) matrix block of the Collocation matrix, 74

K̃(x),K(t) kernel function in global and local coordinates, respectively, 74

Q̃m
k associated Legendre functions, 83

Galerkin Methods

A
(i,j)
k,ℓ (x) matrix block of the Galerkin matrix, 91

K̃(x, y),K(s, t) kernel function in global and local coordinates, respectively, 91

a(·, ·), ã(·, ·) sesquilinear form and perturbed sesquilinear form, 111

f , f̃ right-hand side and perturbed right-hand side of integral

equation, respectively, 111

Ṽ, K̃, W̃ perturbed Galerkin matrices, 115, 117, 118
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