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Abstract

In this thesis we address the implementation of collocadiad Galerkin boundary element me-
thods (BEM) in two dimensions and the numerical evaluatibthe arising nearly singular and
singular integrals. The focus is on methods that are basedMdRBS (non-uniform rational
b-splines) parametrization of the boundary, which we rédes NURBS-based methods. The
advantage of NURBS-based methods is that a geometric sremoided, which is induced by
the boundary approximation in standard methods and dilsishe convergence of BEM.

The first part of this thesis is devoted to the derivation af,rstable algorithms for the accurate
and efficient numerical evaluation of the arising integr&g exploiting the special structure

of the NURBS parametrization and by interpolating partshef kernel functions by Legendre

polynomials, we are able to evaluate the boundary integradaiors in a stable way. Apart from
weakly singular boundary integral operators, our algarittan also be applied to singular and
hypersingular boundary integral operators.

The singular integrals arising in the assembly of the Galariatrices are regularized with coor-
dinate transformations and evaluated with adapted quaedratles. For all arising integrals, an
exponential convergence of the error is proven and rigoestus bounds are derived. We use
these bounds for the estimation of the consistency erraistta a priori computation of the

guadrature orders for Galerkin methods.

The algorithms for the numerical integration are used ferithplementation of NURBS-based
methods in the second part of this dissertation. Our impfeat®n is the first, which is known

to us, that can be used for solving boundary integral egosimising from Laplace, Lamé, and
Helmholtz problems with collocation and Galerkin methodseaact boundary parametrizati-
ons. Furthermore, it allows the use of different basis fiamst The final numerical experiments
show that even for high degregs < 128) of the polynomial basis functions accurate results are
obtained and practice-relevant problem can be efficientlyesl.






Kurzzusammenfassung

Diese Arbeit beschaftigt sich mit der Implementierung KHelokations- und Galerkin-Rand-
elementmethode (BEM) in zwei Dimensionen sowie der nurokees Berechnung der auftre-
tenden fast-singularen und singularen Integrale. D&wuEdiegt dabei auf Methoden, die auf
einer NURBS (nicht-uniforme, rationale B-Splines) Paraiaerung des Randes basieren, kurz
NURBS-basierte Methoden. Der Vorteil von NURBS-basieftgthoden liegt in der Vermei-
dung des geometrischen Fehlers, der bei Standardmethodem die Randapproximation ver-
ursacht wird und die hohe Genauigkeit der BEM beeintrgthti

Im ersten Teil der Arbeit werden neue, stabile Algorithméndie genaue und effiziente nume-
rische Auswertung der auftretenden Integrale entwickettem wir die spezielle Struktur der
NURBS Parametrisierung ausnutzen und Teile der Kernfanktiit Legendre Polynomen inter-
polieren, ermdglichen wir die stabile Auswertung der Rategjraloperatoren mit hoher Genau-
igkeit fur alle Auswertungspunkte. Neben schwachsiagen”Randintegraloperatoren kdnnen
diese Algorithmen auch fur die Auswertung von singulamed hypersingularen Randintegral-
operatoren verwendet werden.

Die singularen Integrale, die bei der Berechnung der @eleratrizen auftreten, werden durch
Koordinatentransformation regularisiert und mit angspas Quadraturformeln ausgewertet. Fur
alle auftretenden Integrale wird eine exponentielle Kogeaz des Fehlers bewiesen und es wer-
den rigorose Fehlerschranken hergeleitet. Wir verwendesedrehlerschranken fur die Abschat-
zung des Konsistenzfehlers und die a-priori Berechnun@dedraturordnungen bei Galerkin-
Methoden.

Die Algorithmen zur numerischen Integration werden im zemiTeil der Arbeit fur die Imple-
mentierung NURBS-basierter Methoden verwendet. Unsemelmentierung ist die erste uns
bekannte, die fir das Losen von Laplace, Lamé und Helinlitroblemen mit Kollokations-
und Galerkin-Verfahren auf exakten Randparametrisiegnngerwendet werden kann und ver-
schiedene Basisfunktionen unterstitzt. Die numerisdbgrerimente zeigen schlief3lich, dass
auch fir hohe Polynomgradg € 128) der polynomialen Basisfunktionen akkurate Ergebnisse
erzielt und praxisrelevante Probleme effizient gelosderkonnen.
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Introduction

The boundary element method (BEM) is a modern numerical ogéfibr the solution of bound-
ary integral equations (BIES) arising in various fields ofjieeering, such as potential theory,
solid mechanics, acoustics, and electromagnetics. As amdpgo other methods for the solu-
tion of these problems, it has several advantages, paatigihe natural treatment of unbounded
domains. However, the implementation of BEM is very chalieg, because singular and nearly
singular integrals have to be evaluated up to a high accuidugrefore, in order to exploit the
full potential of BEM, efficient algorithms for the accuratamerical integration are required.

Boundary integral equations can be solved with differemirapches. In Galerkin BEM, the
variational formulation of the BIE is solved in a discretesatz space. For collocation BEM, the
BIE is evaluated at a given number of collocation points.hBagiproaches give rise to a system
of linear equations, which is solved numerically.

There are several versions of BEM. kversions, the unknown solution is approximated by
piecewise low-order polynomials, typically polynomials aderp = 0 or p = 1, on fine
boundary meshes. Iprversions, high-order polynomials are used for the appnakion of the
solution on coarse meshes. A combinatiorhefindp-versions is calledip-BEM. While uni-
form h-methods yield an algebraic convergence with respect tdegeses of freedom, uniform
p-methods have twice the convergence rate as compared tmmrifmethods ([StSu91]) and
even show an exponential decay for smooth solutions. Ftainelypes ofhp-methods, an ex-
ponential decay of the error can also be observed for noregnsmlutions[[Heu96].

In most existing BEM implementations, the exact boundagpisroximated by piecewise poly-
nomials, typically of orde; = 1 (polygonal boundaries) or order = 2, which induces a
geometric error. However, on complicated geometriesragisi industrial applications a signif-
icant loss of accuracy of the numerical solution is obserhedrder to eliminate the geometric
error, non-uniform rational b-spline (NURBS) parametii@as of the boundary are used for
the computation, generally based on models developed wusingputer-aided design (CAD)
software. To see the impact of the geometric error on higletoBEM and the importance of
NURBS-based methods, we consider the following simple gtamf a BIE on a circle.
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Model Problem
We consider the BIE arising from the Laplace problem

1
—Au(z) =0, x € Q= {zERzz l|lzl2 < Z}’

1
u(z) =afe3, wel:= {z ER?: ||z] = Z}'

The BIE is solved numerically with a Galerkin method by a anifi h-refinement with poly-
nomial degreep = 1 or p = 2. The boundary is discretized by polynomial approximations
of ordersq = 1,2 and by an exact NURBS parametrization, respectively. Eiduishows
the point-wise absolute error of the solutipn(z*) — uy,(z*)| for the arbitrarily chosen point
x* = (0.135,—-0.143) € Q over the degrees of freedoid as well as the convergence rates

indicated by the numbers in the triangles.

10| |
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B *p=1,qg=1

1015k ) 5 |
7

absolute error

-o-p =1, NURBS
=p=2,q=2
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degrees of freedom

Figure 1: Absolute errofu(z*) — up(z*)| with 2* = (0.135,—0.143) over the degrees
of freedomN\ for uniform h-methods with linear, quadratic, and exact boundary

parametrizations.

It can be seen that the convergence rates obtained with #w baundary representation are
diminished by the geometric error resulting from the polyal boundary approximations. Par-
ticularly, high-order boundary approximations with demye= p + 1 are required to obtain the

full convergence rates of the Galerkin error.

While standard BEM is well understood from a theoretical arattical point of view, there
are still several open questions for NURBS-based BEM. Iawhrk, we discuss some of these

challenges including:

» Accurate and efficient numerical evaluation of integraisiag in high-order NURBS-
based BEM
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« Efficient and stable implementation of NURBS-based caltimn and Galerkin BEM

In the course of this dissertation, we discuss both aspeatsore detail and elaborate on the
progress made in these areas of NURBS-based BEM.

Numerical Integration for NURBS-Based BEM

The solution of the boundary integral equations with NURESed methods requires the eval-
uation of nearly singular and singular integrals, whichsexis Cauchy principle values or in
the sense of Hadamard finite parts. As the Galerkin errorydeeagponentially with respect
to the degrees of freedom on geometrically grafipemeshes/ [Heu96], an exponential decay
of the evaluation error is needed in order to preserve theergance of the Galerkin method.
Hence, the evaluation of the integrals arising in NURBSeda&BEM is numerically challenging.

Common techniques for the evaluation of these integralsugagytic approaches, semi-analytic
approaches, and quadrature formulae. For polygonal boyndaresentations, approaches
for the analytic integration of the nearly singular and siag integrals are presented in e.g.
[RSO7,BanlB, Mai9€, Mai97, STOB9]. While these analytic moebs avoid the introduction of
a consistency error and provide the possibility of an adeuvesaluation of the nearly singular
and singular integrals, their field of application is lintiteo simple boundary representations.
Furthermore, the analytic integration leads to canceltaéffects for small integration domains
and high-order basis functions. This problem is address¢8an13], where algorithms for the
stable analytic integration for high-order basis functieia three-term-recurrence relations are
developed.

Semi-analytic approaches split the integrand into regafat singular parts using kernel ex-
pansions, see e.gl_[Sau92, H593, SIS|98, NWIB] and the references therein. While the
regular parts are evaluated with quadrature rules, thaisingnd nearly singular integrals are
evaluated analytically. For the numerical integrationmwiuadrature rules, composite rules
[Sch94], adapted quadrature rules, and coordinate tnanafmns [SISI9E, Tel86, TM74, Duf82,
SaSch9r7] are used for the evaluation of the nearly singualdisangular integrals. Although an
exponential decay of the quadrature error is achievedhadketapproaches have limitations in
the case of nearly singular integrals. Composite rulesirediue exact knowledge regarding the
location of the nearly singular point, adapted quadratulesrcannot be pre-computed and are
inefficient, and coordinate transformations do not elirténae dependence of the quadrature
error on the near singularity which still results in a slovpesrential convergence of the quadra-
ture error.
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In this work, we develop algorithms for the accurate and ieficnumerical integration for all
integrals arising in high-order NURBS-based BEM includangriori estimates for the absolute
error.

The accurate evaluation of the boundary integral operagdoased on the classification of the
evaluation points in far-field, near-field, and singulangei In implementing NURBS-enhanced
methods, we use the Legendre polynomials as basis funatiote polynomial ansatz space,
allowing us to evaluate all far-field integrals for high-erdbasis functions. With a Legendre
expansion of the kernel function and the orthogonality eftlegendre polynomials, we prove
that the error and the complexity are independent of thenoohjal degres. For the near-field
and singular integrals, we use the knowledge of the (neagufarity for splitting the kernel
function into regular and (nearly) singular parts. With eadre expansions of the regular parts,
the evaluation of the potentials can be reduced to the eN@tuaf the basic integrals defined in
[Ban13]. As compared to the existing semi-analyitc appneacour method is stable even for
high-order Legendre expansions, since efficient and stfpeithms for the analytic evaluation
of these basic integrals are presented_in [Ban13]. Furthiexnwe prove that the convergence
rate only depends on the boundary parametrization but epeodent of the evaluation point.
As an example, we consider the evaluation of the integral

1
I(x) := ~5- /Flog |z — y|ds, (1)

forT' = {z € R?: 2 = (r cos(#),r sin(d)), r = 0.25, § € (0,7/2)} and two near-field points

z(D) = 11%) - (1,1) with different distance® to the boundary. We compare our algorithm

with the evaluation with the cubic Telles transformatiothieh is introduced in[Tel86] and pro-

posed for evaluation of the boundary integral equationSBIT["12].

Figure 2 shows the absolute error over the evaluation ordek significant improvement can
be observed. Particularly, the integral is evaluated upottbté machine precision with order
n = 20 for both points using our algorithm.

For the evaluation of the double integrals arising in Gaferkethods, we regularize the singu-
lar integrals with a coordinate transformation introdu@edDuf82] and proposed for the use
of three-dimensional BEM in_[SaSch97]. In contrast to therapch of Sauter and Schwab
[SaSch9l], which is used in many software packages such &+BEnd HYENA, we regu-
larize the remaining weakly singular integrals with an addpmuadrature rule instead of using
composite rules. Our approach has the advantage that thergence of the quadrature error
depends only on the boundary parametrization, while theergence of composite rules de-
pends significantly on the grading parametérs [Sch94]. Farsing integrals, we are able
to prove an exponential decay of the quadrature error andd@@ complete consistency error
analysis. Using the consistency error estimates, the gua@rorders are computed a priori such
that the convergence rates of the Galerkin method are nanidined by the consistency errors.

Vi
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This is the foundation for an efficient implementation of &&in methods.
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Figure 2: Absolute error plotted against the ordefior the evaluation of (1) with two evalua-
tion points with different distance® to the boundary. Comparison of our near-field
algorithm based on Legendre expansions and the Telleddraretion [Tel86].

Implementation of NURBS-Based BEM

There are a variety of software packages implementing cation and Galerkin boundary ele-
ment methods, such as BEMLIB [P0z02], BEM+SBAt15], HILBERT [AEE'14], epsBEM
[BBF13,/Bani3], and HYyENA [MMR14] to mention a few but not all. All software pack-
ages feature the solution of specific BIEs, boundary reptatens, and basis functions. Except
for the implementation of isogeometric collocation BEMI{8i2], these software packages im-
plement polynomial boundary approximations of orders {1,2,3} and polynomial basis
functions. While most software packages focus on low-oBIEM, high-order methods are
considered in epsBEM [BBF13] and by Maischak [Mai96] for laag@, Lamé, and Helmholtz
equations on polygonal boundaries.

Thus far, there has been no software package able to imptahefull spectrum of NURBS-
based BEM including isogeometric and NURBS-enhanced ndstlamd collocation and Galerkin
approaches for various partial differential equationsisThthe second issue addressed in this
work. With the algorithms for the efficient and accurate ea#ibn of the integrals arising in
NURBS-based collocation and Galerkin methods, we develbfaek box software package
that implements NURBS-based BEM for two-dimensional Lapla_.amé, and Helmholtz equa-
tions. By considering fundamental solutions of a genenaétywe are able to incorporate other

Vi
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PDEs such as the Stokes equation. With the variability ofimyplementation, particularly the
use of different types of basis functions, we use the impteat®n to investigate several open
issues of collocation and Galerkin BEM. Specifically, wesem numerical results concerning
the choice of the collocation points for high-order methadsl the effect of the high inter-
element regularity of the ansatz functions used in isogé&ocmaethods.

A NURBS parametrization of the boundary serves as the basthé efficient solution of PDEs
on complicated domains, allowing us to represent these imhamath few degrees of freedoms.
The stability of our implementation of high-order NURBShanced methods for polynomial
degreeyp < 128 is achieved by using the Legendre polynomials and theidaritiatives as
basis functions. Hence, our implementation permits us topedge highly accurate solutions
of pratice-relevant problems in potential theory, linelastcity, and acoustic scattering. As an
example we consider two problems in linear elasticity (Fég8) and acoustic scattering (Figure
4), respectively.

Figure 3: NURBS parametrization of the boundary with cdnpalygon and boundary con-
ditions (left) and shear energy density on displaced dorfrajht). The material co-
efficients correspond to plexiglask & 2900, v = 0.4) and the displacement
is scaled by a factor of 500.

Figure 3 shows the solution of the mixed traction and dispiaent problem in linear elasticity,
which is computed by solving the Lamé equation with mixedrmary conditions. The work-

piece is fixed at the bottom side and the arrows indicate tpbeaptraction. The right picture

shows the shear energy density on the displaced workpidgehvs computed with 21 elements
and polynomial degreg = 16.

viii
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Figure 4 shows the scattering of an acoustic plane wave vatrewmumber = 10, which cor-
responds to the solution of the Helmholtz equation. Thectioa of the incoming plane wave as
well as the geometry of the obstacle are depicted in the iefiife. The right picture shows the
total acoustic wave comprised of the incoming and the seatt@ave. The solution is computed
with 12 elements and polynomial degree- 32.

Figure 4: NURBS parametrization with control polygon anaediion of incoming wave (left)
and total acoustic wave consisting of incoming and scattes@ve with wave num-
berx = 10 (right).

Outline

In the first chapter we introduce the function spaces, bayridéegral operators, and boundary
integral equations for Laplace, Lamé, and Helmholtz éqnat We also summarize the main
existing results for collocation and Galerkin methodstadtice the geometrically gradeugh-
meshes, and present standard a priori estimates for ctiin@nd Galerkin methods.

The second chapter serves as foundation for the efficienemgntation of NURBS-based
boundary element methods. After introducing orthogon&iqmmmials and reviewing their main
properties, we introduce quadrature rules for the numlgribegration. The traditional method
for computing Gauss quadrature nodes and weights is theb@@ish algorithm, which ex-
ploits the three term-recurrence relation satisfied byeall orthogonal polynomials. The relation
gives rise to a symmetric tridiagonal matrix, whose eigkremare the nodes of the quadrature
rule. The weights can be easily computed by the correspgrelgenvectors [GW69]. Besides
the Gauss-Legendre quadrature we also consider a Gaussumadvith respect to a logarith-
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mic weight function, which we refer to as Gauss-Log quadeatior the stable computation of
the nodes and weights of the Gauss-Log quadrature we usedatliied Chebyshev algorithm
[Gaul0] and modified moments, for which we derive explicitialae [BE14]. Furthermore, we
derive error estimates for the Gauss quadrature rulesjvanebased on the remainder theory of
analytic functions[[DR75]. While we present the standardrezstimate for the Gauss-Legendre
quadrature, we also propose a new error bound for the Gaagsspliadrature based on numeri-
cal experiments.

The ansatz spaces for NURBS-based boundary element maihegsesented in Chapter 3.
After defining NURBS curves and summarizing their basic props, we introduce the basis
functions used for isogeometric and NURBS-enhanced methBdrthermore, we discuss al-
gorithms used for different mesh refinement strategiesidiety uniformh-, p-, and geometric
hp-refinements as well as the uniforerefinement[[HCBO5]. At the end of this chapter, the reg-
ularity of NURBS curves is analyzed. Particularly, we esitly compute the size of the largest
ellipse in which the NURBS parametrizations can be analifficextended. As the semi-axis
sums of these ellipses occur in the error estimates for Gauesdrature rules, this information
is the foundation for an a priori error analysis in NURBS4BEM.

Chapter 4 is concerned with the derivation of algorithmaliierefficient and accurate numerical
integration in NURBS-based BEM. We discuss the accuratiiatian of the boundary integral
operators for all evaluation points € R?. Based on Legendre expansions of the kernel and
parts of the kernel, an exponential decay of the error wittintgd rate is proven for regular,
nearly singular, and singular integrals. We also exploeabksembly of the Galerkin matri-
ces. For the singular integrals, we combine the coordimatestormations introduced by Sauter
and Schwab [SaSch97] with the Gauss-Log quadrature ane aroexponential decay of the
quadrature error for all integrals. For NURBS-enhanced Bihkre Legendre polynomials are
chosen as ansatz functions, we deriveandp-asymptotic error estimates, which we use in the
subsequent consistency error analysis. Finally, we ptésanulae for the a priori computation
of the quadrature orders, which is the key for the efficiemiléamentation of Galerkin methods.

Lastly, we present a black box software package implemgiofiNURBS-based BEM in Chap-
ter 5. For NURBS-enhanced collocation methods, we pres@mterical experiments for the
appropriate choice of the collocation points based on dpétion problems. The effect of the
high inter-element regularity of the isogeometric ansatzcfions is investigated for Galerkin
methods, particularly we present new results concernirifpmm 4-methods. The final nu-
merical experiments show the stability of our implememwtafior high-order NURBS-enhanced
methods withp < 128. While also for low-order isogeometric methods accuraselts are ob-
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tained, the implementation is restricted to moderate pmtyial degrees due to the exponential
growth of the condition number of the system matrix with exggo the polynomial degree. On
geometrically gradedp-meshes an exponential decay of the error can be observedlfoca-
tion and Galerkin methods.

As a visual guide to the discussion that follows, Figure Saghan overview on the chapters
in this work and their relationships.

Chapter 1:
Analytical Basics and Notation

Chapter 2:
Orthogonal Polynomials and
Gauss Quadrature Rules

Chapter 3:
High-Order NURBS-based
Boundary Element Methods

Chapter 4:
Numerical Integration for
High-Order NURBS-based BEM

Chapter 5:
Implementation and Numerical Results

Figure 5: Overview on the chapters in this work and the retethips between the chapters.

Xi






1. Analytical Basics and Notation

The notation and basic theoretical results used in this waoekintroduced in this chapter. The
first section is devoted to the definition of function spadedhe second section we give a short
introduction to boundary integral equations before weafpd general results to the boundary
integral equations (BIE) arising from three partial diffietial equations (PDE), that we consider
throughout this work, namely the Laplace, the Lamé, andH&lenholtz equation. In the third
section, we introduce different boundary meshes and amspatzes. Finally, we discuss the
numerical solution of boundary integral equations usintpcation and Galerkin methods.

1.1. Function spaces

For the definition of Lebesgue and Sobolev spaces for donaa@id$doundaries of domains, we
only state the main results and refer[to [AFO03] for a detailsgtussion of Sobolev spaces.

Q-i—

Figure 1.1.: Lipschitz domaif2~ and its complemenf™. The unit normal vector at € T’
pointing fromQ~ to QT is denoted by, the interior angle at each corneby 3..

Throughout this section we denote ffy ¢ R? a bounded Lipschitz domain and byC 9~
the boundary of2~ or a connected subset of the bound&fy—. Furthermore, we introduce
the complement o2~ by O := R?\Q~. The boundary of a Lipschitz domain can locally be
represented by a Lipschitz continuous function &dis locally only on one side of. This
implies thatQ™ is an unbounded Lipschitz domain if it is connected. For aitkzt definition



1. Analytical Basics and Notation
we refer to[[SaSch04, McL00].

Letk € Ng,m € N, Q € {Q,Q7"} be connected, and :  — C™. We writeu € C’“(Q)m
if each component of: is & times continuously differentiable. Furthermore, we idtroe the
spaceC>(2)™ of all infinitely differentiable functions by
ce@)m = () ¢k
keNg
The space of all*(Q2)™ (k € NoU{oo}) functions with compact support is denotedy(2)™.
We define the Lebesgue spat& )™ of all measurable and integrable functions, i.e.

/|uz(:v)|d:6<oo Vi=1,..,m.
Q

The space of all locally integrable functions is denotedllé(;é(Q)m. We define the Lebesgue
spaceL?(Q2)™ of all measurable functions, which satisfy

/Q|uz(:v)|2 dr <oo Vi=1,..,m.
The Lebesgue spade’ ()™ equipped with the? scalar product
(u,v)2()m = /QWT’U(ZU) dz Yu,ve L*(Q)™
is a Hilbert space. Furthermore, thé scalar product induces a norm &4 as follows

HUH%%Q)W = (U7U)L2(Q)m-
The space of all locally integrablg? functions is given by

L ()™ := {u: Q — C™ measurable u|x € L*(K)™ VK C Q compact.

loc

We denote the space of all essentially bounded functions>bi£2)"™.
For singular functions, we introduce the Cauchy princigdue and the Hadamard finite part.
Leta; € Cwith Rea; > 0 anda; # ay for j # k. If a function g satisfies

n

b.
ge) = 57]J +bpyi1loge + bupa +o(1) fore — 0,
=1

then the ternb,, - is called thefinite part of g(¢) ase — 0, i.e. f.p.lim.,0g(e) = bpio. If
no singular terms are present,= ... = b,+1 = 0, andg exists as a limit, we call the limit the
Cauchy principle value, i.e. p.v. lim._,g g(¢) = by, 42.

Sobolev spaces on domainsFor notational convenience, we restrict to scalar funetitor
the introduction of Sobolev spaces. For vector valued fanstwe refer to[[McL0OD, Chapter 3]
and add the superscript indexto all function spaces. In order to define Sobolev spaces ste fir
introduce weak partial derivatives.



1.1. Function spaces

Definition 1.1.1. We callu € L}, .(Q) weakly differentiable if there exists a functidghu €
Li () (i = 1,2) such that

loc

(u,0;v) 12(0) = —(Oiu, V) 2y Vv € C57 ().

Remark 1.1.2. If u € L?(2) has a weak derivative andqifis differentiable on a subset 6fin
the classical sense, then the weak and the classical dezicaincide almost everywhere on the
subset. In the following we writd* for the k-th (weak) derivativeVu := (9,u, dpu) for the
weak gradient, anfVu, Vv)2q) = (O1u, 01v) 12(q) + (O2u, D2v) 12 (0.

Definition 1.1.3. (i) We identify the Sobolev spacE’(Q2) with the Lebesgue spade?((2).
Furthermore, we define

HY(Q) := {u € L*(Q) : u is weakly differentiable withVu € L?(Q)?},

which is equipped with the scalar product
(u,v) g1y = (u,v)2(0) + (Vu, Vo) r2(q)-
The scalar product induces a norm B () which is given by
ullFr gy = (ww)mi () = lull2q) + VulZ2q)-

Higher order Sobolev spaces are defined recursively torlN by

H*(Q) = {u € L*(Q) : u is weakly differentiable wittvu ¢ H*~1(Q)?}
and are associated with the scalar product and norm

(u,0) () = (w,0) 22y + (Y, VU) e,

HUH?T{IC(Q) = (u,u) gr(q) = HUH%%Q) + HVUquk—l(Q)-
(i) The space of all locaH* functions is defined by
HF () := {u: Q — Rmeasurable u|x € H*(K),¥ K C Q compac}.

Theorem 1.1.4([BS08&, Theorem 1.3.4])For k € Ny, the space€>(Q) N H*(Q) andC>(Q)
are dense subspaces Bf' ().

We define fractional order Sobolev spaces using the Sol&itwedeckij semi-norm as follows.

Definition 1.1.5. (i) Lets € (0,1) andk € Ny. We define the scalar product

(1, 0) 1= ) ::/Q/Q(U(w)—U(y))(v(x)—v(y)) dr dy,

o =y
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which induces the Sobolev-Slobodeckij semi-norm
|u|12r{s(sz) = (u, u) ()
The fractional order Sobolev spagg+*(Q) is defined by
H*(Q) == {u € H¥(Q) : |D*ulp(q) < o0}
A norm on H*+5(Q) is induced by the scalar product
(1, 0) sy = (u,0) gy + (DFu, DF0) e .

(i) We define the spacé*t5(Q2) as the closure a5°(Q2) in H*5(R™).

Theorem 1.1.6(JAF03, Theorem 3.5]) For £ > 0, H*(Q) equipped with the scalar product
(") i () is @ Hilbert space.

Sobolev spaces with negative orders are defined as the cacdsspf the Sobolev spaces with
positive orders. The Riesz representation theorem leats following definition of dual spaces
with the extended.? scalar product.

Definition 1.1.7. Fork > 0, we denote by —*(Q2) the dual space off*(£2) with respect to the
extended.? scalar product-, '>ﬁ*’“(ﬂ)xH‘“(Q)' The norm onH —*(Q) is given by the dual norm

| (u, ”>F1—k(9)ka(Q) |

|ull g-k(qy == sup
HHO) ™ e nr () V]l % ()

Similarly the spaceé? —*(9) can be defined as the dual space#df(()

Whenever it is clear which spaces are involved we wite for the extended.? scalar product.

Sobolev spaces on boundarie§obolev spaces on the boundary or a subset of the boundary are
defined through a local parametrization. The idea is to defiase spaces by Sobolev spaces
on the parameter domain and lifting up. We only state the rfeaits and refer td_[SaSch04,
Chapter 2.4] for a detailed discussion.

For a Lipschitz domaif2, the boundary” can be locally parametrized by a Lipschitz-continuous
function, which allows the construction of Sobolev spab?ﬁs{l“) for £ < 1. For the construc-
tion of higher order Sobolev spaces smoother boundarieaesded. For Lipschitz domains
Q with a boundary that can be locally parametrized by a Ho@betinuous function of order
(k — 1,1), shortC* domains, the Sobolev spacég’(T") can be defined. Here, we are only
interested in the spadé*(T"), s € [0, 1].

For the definition of the dual space of the Sobolev space wim age the Riesz representation



1.2. Boundary Integral Equations
theorem. Fow € (0,1), the spaced —%(I") is defined as the dual spacedf (I') and the norm
on H~#(T") as the dual norm

|<u7U>H—s(I‘)Xﬁs(I‘)|
v

HUHH*S(F) ‘= sup

0£ve H*(T) 177 )

Here, (-, '>H*S(F)><ﬁs(1“) denotes the extenddd scalar product.

Trace operators. For Lipschitz domaing?, we can define trace operators on Sobolev spaces
HF*(Q) in order to obtain an analytic representation of Soboleetions on the boundary.

Theorem 1.1.8([McL00, Theorems 3.37, 3.38]Let(2 be a Lipschitz domain with boundaty
ands € (1/2,3/2). There exists a linear bounded operatgr: H*(Q2) — H*~1/2(I") with

You = ulpr  Yu € C(Q).

Furthermore, we can define the one-sided trace operatorg by H°(Q~) — H*~1/%(T") and
v HA(QY) — HS7V2(T) .

Remark 1.1.9. With the previous theorem, the spaié/?(I") is characterized as the trace space
of HY(Q), i.e. H/2(T') = {yu: u € H'(Q)}.

We further introduce the co-normal derivative for a linesgond-order, and self-adjoint partial
differential operatorZ, with associated sesquilinear forty,-) : H'(Q) x H'(Q) — C. Let
HY¥(Q) = {v € Hf

loc

. Lv € L2 (Q)inaweak senge The co-normal derivative can be

loc

defined using Green’s first identity as follows.

Lemma 1.1.10([SaSch04, Theorem 2.2.7])etQ € {Q~,Q*} be a Lipschitz domain with
boundaryT". Then, the co-normal derivativg : H} (Q) — H~'/?(T") with

(mu,yov) = oq (b(u,v) — <Lu,v>g71(mle(Q)) Yo € Hlloc(Q)

is continuous. Here, we set, = 1 for interior domainsQ? = Q~ andog = —1 for exterior
domains2 = Q.

For the one sided co-normal derivatives we wrjfeand~; depending on the domaid™ and
Q~, respectively.

1.2. Boundary Integral Equations

In order to apply the boundary element method to an elligitial differential equation (PDE),
the PDE has to be transformed into an equivalent boundaggrialt equation. This can be done
for all partial differential operators for which a fundan&nsolution can be calculated. While
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Ehrenpreis[[Ehr54] proved the existence of a fundamentatien for all partial differential
operators with constant coefficients, they are not knowrdi@p for all PDEs. In this work
we are interested in the two-dimensional Laplace, Lamd, Helmholtz operators, for which
the fundamental solutions are known explicitly and heneghibundary element method can be
applied.

In the remainder of this section, we denote byn elliptic, linear, second-order, self-adjoint
partial differential operator and a fundamental solutibrLdy G(z,y) = G(z — y). Further,
we assume that the domdihe {Q~, Q™ }, in which the partial differential equation is solved,
is a connected Lipschitz domain, but may contain holes. ThentbaryI" is divided into the
Dirichlet boundanyp and the Neumann boundaRy with ' = I'p U T . We are interested
in solving the homogenous interior or exterior mixed praile

Lu=0 inQ%,
Yfu=1v¢p onlp, (1.1)
’yliu =¢ny only.
We also consider the Dirichlet problem, ilB.= I', and the Neumann problem, i.E.= I'y.
For exterior problems, the solution has to satisfy an apjatgradiation condition.
The main theorem is the representation theorem for theidgntand exterior problems, which

states that the solution df (1.1) is uniquely determinedtd¥auchy data, specifically the trace
and the co-normal derivative aof

Theorem 1.2.1(Interior representation formuld, [SaSch04, Theoren6}.1For v € H' (™)
with Lu = 0 there holds almost everywherefr
u(x) = /FG(w —y) vy u(y) dsy — /Fvin(ﬂc — ) Vo u(y) dsy. (1.2)

A similar result can be stated for exterior Laplace and Helitzhproblems with an appropri-
ate condition at infinity, which is called the Sommerfeldiagidn condition in the case of the
Helmholtz equation.
Theorem 1.2.2(Exterior representation formula, [CS85b, Lemma 3.5t x € C andu €
HY(QF) with —Au — x?u = 0 and

u(z) = O(|z|71/?), —Bg‘(xﬁ) —iru = o|z|~V?), |z| = 00, K#0 L.3)

u(x) = aoo + Z%jlog ||, |z] = 00, oo, beo € C, k=0.

Then, there holds almost everywhereiin for x # 0

u(z) = — /F Gz —y) v uly) dsy + /Fﬁ,yG(ﬂc —y) g u(y) dsy (1.4)

and fork =0

u(z) = — /F Gz —y) 71 uly) dsy + /Fﬁ,yG(w —y) g u(y)dsy +as.  (1.5)
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The two integral operators arising in the representati@oriems are called thgingle layer
potential

@w@wzéau—www@yxeRﬂn

which is well defined forp : I' — C™, and thedouble layer potential

@w@wzzﬁwG@—ww@m% € RAT,

which is well defined for) : I' — C™.
In the sequel, we state some important properties of thdesanyl the double layer potentials,
but refer to[[SaSch04, Chapter 3] ahd [Mcl.00, Chapter 7] fdetiled analysis.

Theorem 1.2.3(Single layer potential) (i) The single layer potential is a linear bounded op-
erator withV : H-V/2(I')" — H. (R?)™ andVy € H~'/2(I')™ there holds

L(Vp) =0 weakly inR*\T.

(i) The tracesyEV : H-Y/2(D)™ — HY2(D)™ and~FV : H-V2()™ — H-Y/2(I)™ are
linear bounded operators and satisfy the jump relations

Vol =i Ve — 5V =0,
[Vl =5 Vo — 7 Ve (L.6)

[1V¢] := 7 Ve — 17V = —.

We state a similar result for the double layer potential.

Theorem 1.2.4(Double layer potential) (i) The double layer potential is a linear bounded
operator withC : H'/2()™ — H] (R?)™ N H'(Q)™ andVy € H'/2(T')™ there holds

L(Ky) =0 weakly inR\T.

(i) The tracesyK : HY/2(I)™ — HY2()™ and K : HY2(D)™ — H-/2(T)™ are
linear bounded operators and satisfy the jump relations

VoK) := v Ky — v Ko = b,

_ _ _ (1.7)
[V K] == 71 Kep — 47 Kyp = 0.

In general, not the complete Cauchy data= ~,u andvyu are known ori’. While for Dirichlet
problems the tracegyu onI' is known (Dirichlet boundary conditions), the co-normatidative

@ is given onI" for Neumann problems (Neumann boundary conditions). Faedproblems

the trace is only known oif , and the co-normal derivative is only known &n;. In order

to compute the solution in €2 the missing Cauchy data have to be determined. Therefore, we
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derive integral equations by applying the trace operatotkéd representation formulds (I1.2) and

@.4) (or [1B)), i.e.

You = ga (10 Ve — 1K) (1.8)
u = oa(1 Ve — nKY) (1.9)

or for the exterior Laplace problem

You = —Y0Ve + 1KY + aoo (1.10)
You = —YoV¢ + 1KY + too. (1.11)

Here,oq is defined as in Lemmia L.1]10. The jump relatidns] (1.6) arif) (hotivate the defini-
tion of the following integral operators on the bounda&ry

* thesingle layer operator. V := 'V,

+ thedouble layer operator. K :=1/2 4 v, K,

+ theadjoint double layer operator: K’ := —1/2 +~; V),

« thehypersingular integral operator: W := —v; K.
Equations[(1J6) and (1.7) directly imply
V=1V and K'=1/2+4~V
as well as
K=~fK—-1/2 and W= —;Kk.

Remark 1.2.5. The operatory’ and)V are well-defined for ali: € T", whereas the operatoks
and K’ are only defined almost everywhere Bni.e. if I" is differentiable in a neighborhood.
For a corner: we denote bys the interior angle (cf. Figude 1.1) and get the relations

(o) = (1 32 ) wlo) + 25 Kta),
g

(00) (@) = —-(a) +2¢ Ku(e),

and

(K'o)(@) = —-p(a) + 77 Vip(a),
(o)) = (1= 5 ) ola) 421 Pila)
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An explicit representation of the integral operators ancgpirag properties are stated in the
following theorem.

Theorem 1.2.6([McL00, Theorems 7.1, 7.4]) (i) The boundary integral operators

V:H Y20 — HYAT)™, K:HY2()™ — HY*(D)™,
K- H7Y2()™ — HY2(1)™, W HYAT)™ — HV2(1T)™

are linear and bounded.
(i) For ¢ € L>(I")™ we get
V)(o) = [ Gla =)ol ds,
Letx € T andT beC2-regular in a neighborhood of. If we define
B(z,e):={yel:|x—y| <e}, >0,

then we have for alp ¢ H~1/2(I')™ andvy € H'/2(I")™

(Ky)(x) = lim Y1,yG (T —y) Y(y) dsy,
=0 JM\B(z,e)
(K'¢)(z) = lim Y1,2G(x — y) ¢(y) dsy,
=0 JM\B(z,e)
Wy)(z) = —f.p. lim Y,271,yG (T —y) P (y) dsy.
=0 JM\B(z,e)

By settingy := ~{u and definingrq, as in Lemm&1.1.10, we rewrite Equations11.8) 1.9)
and obtain the Caldéron system

<u> _ <1/2 — ok oqV ) <u> (1.12)
© ocaW 1/2 4+ oK’ ©

and for exterior Laplace problems

(u) _ (1/2+IC 2 ) (u) N (%o) ‘ (1.13)
@ -W  1/2—-K') \p 0

In the sequel, we describe how the Caldéron system can deasempute the missing Cauchy
data for Dirichlet, Neumann, and mixed problems. For sigifgli we omit the exterior Laplace
problem and remark that the constagt has to be added to the appropriate integral equations.
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Dirichlet problem. If Dirichlet boundary conditions are imposed, i#is given onl'p := T,
then the first equation of the Caldéron system can be usempute the missing Neumann data
Q= ’yliu. This leads to Symm'’s integral equation

ooV = (1/2 4+ 0o)u. (1.14)
We also considef{1.14) in a more general setiigg= f, f € HY/?(I")™.

Neumann problem. For Neumann boundary conditions, i.ex := ﬁu onl'y =T, we
rearrange the second equation of the Caldéron system aadh dhe hypersingular integral
eqguation

coWu = (1/2 — ooK') . (1.15)
In a general setting we will consid®vu = f, f € H-1/2(I)™.

Mixed problem. For mixed boundary value problems the boundary is split Ihntoand Ty
withT' = I'p UT'y and|T'p| > 0. The Dirichlet dataup := ’}/(:]tuh‘D is imposed o' and
extended td" by zero such thatp, € H'/?(T'). The Neumann datay := v ulr, is given on
I'y and extended td' by zero such thapy € H~/?(I"). The missing Cauchy data, ¢p)

©D nu N
and are computed by rearranging the full Caldéron systefollas/s
1 - v
Al = (— - A) P A= . (1.16)
¢D 2 ON w K

The operatot4, called the Caldéron projector, maps the sphice= HY/2(I'y) x H=/2(I'p)
to its dual spacé{’ := H'Y/2(I'p) x H~Y/2%(I'y). The duality product of{ and?#’ is given by

can be represented by

((up,oN), (uN, D)) xn = (¢D,uD)rp + (N, UN)Ty

where(-,-)r, and (-, )r, denote the extendefi* scalar product o', andl'y. Further, a
norm onH can be defined by

1Cuns o050 = lun G2 ) + 0D 11720, )-

10
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1.3. BIEs for Elliptic Partial Differential Operators

In this section, we introduce boundary integral equatiemgte three partial differential opera-
tors that we consider in this work, namely the Laplace, theé&zaand the Helmholtz operators.
We only summarize the main results, a detailed descriptimhaaalysis of all three operators
can be found in[[McL0O, Chapters 8, 9 and 10]. For the Helnzhetjuation we also refer to
[CK83,[SaSch(4], more details on Lamé problems are givgtaD3].

Laplace equation. For a functionu : Q* — R the Laplace operator is given dyu := —Auw.
The associated bilinear form is given b, v) = (Vu, Vv) and the co-normal derivative co-
incides with the normal derivative, i.e;u = du/0v. Here,v denotes the unit normal vector
pointing from the interior domaif2~ to the exterior domaif ™, see FiguréI]1. A fundamental
solution is given by

1
Gz —y) = —5_logl|z —yl.

Under the assumptions of Theorém 112.6 the integral opsrataC, X', and)V have the fol-
lowing explicit representations

Vo)(z) = —% /Flog [z —ylo(y) ds,y,

xXr — TV
() = 5 [ @) Yy a,

T e Je—yP
z—vy) T,
(o =5 [ wwas,
vl vz =) (x—y)Tv
W) = 5= (~fo. [ gt ds, + [ EZ I ) 05, ).

The next theorem summarizes important properties of tiegiat operators of the Laplace equa-
tion.

Theorem 1.3.1([McL0Q, Theorems 8.16, 8.20]LetV, K, K/, andW be the integral operators
of the Laplace equation. The following statements hold.

(i) If the capacity ofl’, cap, is smaller than one, the operatdtis H~'/2-elliptic, i.e. there
existsC' > 0 such that

Ve.0) 2 Cllglyaney Vo € HTVAD),

(i) LetI,...,I',, denote the connected pieces of the boundaryhe null space of the hyper-
singular operator is given bier W = span{x, ..., x» }, Where the indicator functiong,
are defined by

1 onIy

Xk
0 onI\I'k.

11
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1

The operatonV is elliptic on HY/*(T') := {v € HY2(I') : (v,w) =0 VYw € ker W},

i.e. there existg” > 0 such that
Wi, ) > Cll6|2 0y V€ B2 (D).

iy Forall vy,1, € H/?(T"), there holds

_/,001 Oy
<W¢1,7/)2> - <V§7 ¥> )

where% denotes the arc length derivative.

(iv) The operatoi’’ is the adjoint of the double layer operatdt, i.e. (K1, p) = (1, K'¢p) for
all p € H-Y2(I), ¢ € HY/*(I).

For a definition of the capacity of the boundary we refei _to I, Theorem 8.15]] [SISp88],
and [Dij08], but we mention thatiam(Q2~) < 1 implies cap < 1. Hence the ellipticity of the
single layer operator can be guaranteed by an approprialiegof the domain.

Lamé equation. The Lamé equation is a system of elliptic second order gdadifferential
equations, which describes problems in linear elasticity.
We denote by : 9~ — R? the displacement field of an elastic medium. Furthermore, we
introduce the strain tensdf := £ (Vu + Vu!) € R?*? and the stress tenserc R?*2. For a
linear homogenous and isotropic elastic medium, the sta@ss relationship, known as Hook'’s
law, reads

o(u) =2pE(u) + Adiv(u)I.

Here, we denote bithe two dimensional identity matrix and By € R the Lamé coefficients.
We assume: > 0 and A + 2u > 0 in order to obtain a strongly elliptic partial differential
operator.

In the state of equilibrium all forces add up to zero, i.eréheolds

dive+ f =0,
where we denote by :  — R? the body force density and write

. 8/6901 011+6/69&2 012
diveo := .
8/81’1 091 + 8/8%’2 099

The Lamé equation is now given by

Lu:= —pAu— A+ p)V(divu) = f in Q.

12
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The associated bilinear form reatls:, v) = [, tr(c(u)” E(v)) dz. With the first Betty iden-
tity the explicit representation of the co-normal derivatcan be derived, i.ey;u = o(u) v,
wherev denotes the unit normal vector as depicted in Figure 1.1.celemposing Neumann
boundary conditions corresponds to fixing the traction immad direction on the boundary.

An explicit representation of a fundamental solution of Liané equation, the Kelvin matrix,
reads

1
 drp(\ + 2u)

(z—y)(xz—y)"

G(z —vy) P— > . (.17

<—(3,u +A)log |z —y|T+(A+ )

For the co-normal derivatives of the fundamental solutind #ne explicit representation of the
integral operators’, KC, K, andWW we refer to Appendik’A. We collect the main properties of
the integral operators of the Lamé equation in the nextrdmo

Theorem 1.3.2([McL0OQ, Theorem 10.7],[IGS93, Appendix]Let V, K, K’, and W be the
integral operators of the Lamequation.

() The single layer operatoy is H~'/2-elliptic, i.e. there exist&' > 0 such that
(Ve,0) = Clloly 1oy Voo € HVA(T).
(i) Let Q™ be simply connected. The null space of the hypersingularatqeis given by

ker W = span{(1,0), (0,1), (x2,—x1) : x € T'}.

1

Wi is elliptic on H/*(T')? := {v € HY2(T)? : (v,w) =0 Yw € ker W}, i.e. there

existsC' > 0 such that
<W1/}71/}> Z CHwHél/Q(F)Q vw < Hi/Q(F)Q

iy Forall vy, € H'/?(I')2, we have the identity

<W¢177;Z)2> = <V s’ Os

Where% denotes the arc length derivative and

z—y)(x—y)T
(V*tp)(w)=%/r<—log!w—y\l+( |f)_(y|2y) )tp(y)dsy- (1.18)

(iv) The operatork’ is the adjoint of the double layer operathy, i.e. (K, p) = (1, K') for
all g € H-Y2(I")?, ¢ € HY*(I')2.

Physically, the null space of the hypersingular operatosists of all rigid body motions, i.e. the
translations inv; andzs direction and the rotation. Hence, the solution of the intdleumann

13
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problem is unique up to strain-free displacements that @amgpcised of the rigid body motions.
For multi-connected domains with holes, the null space aspd by all rigid body motions of
each connected piece of the boundary.

Helmholtz equation. For acoustic wave propagation in a homogenous medium witedsp
of soundc and damping coefficient the velocity potentiall satisfies, in the linearized theory,
the dissipative wave equation

o, o

2 _
5z 15 — AU =0. (1.19)

The space dependent part: & — C of a time-harmonic solution of (1.19) with frequency
w > 0 satisfies the Helmholtz equation

Lu = —Au — k*u = 0. (1.20)

Here, k2 = w € C\{0} is called the wave number, whelei(x) > 0 corresponds to
damping andm(x) < 0 corresponds to excitation of the wave. Within this work, wesider
damped waves and hence choaswith Im(x) > 0. Forx € R, the Helmholtz operator is
self-adjoint.

The sesquilinear form of the Helmholtz operator is giverbfy, v) = (Vu, Vo) — |, K2uwvdz.
Green’s identity directly implies that the co-normal dative is given byy;u = du/dv.

Before we state important properties of the integral opesatve first give a result for the solv-
ability of the interior and exterior Helmholtz problems. érbfore, we define the set of all interior
Dirichlet and Neumann eigenvalues of the Laplace operator b

Mp:={\€C:Fwe H(Q)\{0},-Av = vinQ~, y;v=0o0nT}, (1.21)
My :={\eC:3wec HOQ)N\{0},~Av = inQ,y;v=00nT}. (1.22)

Theorem 1.3.3(Interior Helmholtz problem| [CK&83, Theorems 3.20, 3.24Jgt f € ﬁ*l(Q*).
(i) For g € HY/2(I"), the interior Dirichlet problem
—Au—r*u=f inQ, Y u=g onl
has a unique solution € H'(27) if and only ifs? ¢ Mp.
(i) For g € H-Y/2(I"), the interior Neumann problem
~Au—rk*u=f InQ°, ~Aju=g onT

has a unique solution € H(27) if and only ifx? ¢ My.

14



1.3. BIEs for Elliptic Partial Differential Operators

Theorem 1.3.4(Exterior Helmholtz problem,[[McL0OO, Theorem 9.11])et f < ﬁ—1(§2+)
have compact support.

(i) For g € H'/2(I"), the exterior Dirichlet problem
—Au—r*u=f inQt, fya'u:g onl
has a unique solutiom € H}, .(Q"), if the radiation condition(I.3)is satisfied.
(i) For g € H-Y/2(I"), the exterior Neumann problem
—Au—r*u=f inQF, fu=g onT
has a unique solutiom € H}, .(Q"), if the radiation condition(I.3)is satisfied.

An explicit representation of a fundamental solution of Helmholtz equation is given by the
Hankel function '

Gl —y) = H (sl — ).
The main properties of the Hankel function and the represient of all integral operators are
collected in AppendikA.

We state some important properties of the integral opesanathe following theorem.

Theorem 1.3.5([SaSch04, Theorems 3.9.1, 3.9.8], [CS85b, Lemma3Ll¥)V, K, X', andW
be the integral operators of the Helmholtz equation. Thiefdhg statements hold.

() The null space of the single layer operator is given by
kerV = {y;v: —Av=r%vinQ", yyvonT}.
The operatorV is invertible if and only if<? & Mp.
(i) The single layer operator can be decomposed into aptidliand a compact operator, i.e.
V=V + Ty,

where)), denotes the single layer operator of the Laplace problemBnd H—1/2(I") —
H'Y2(I') is compact.

(i) There holdsker W = {y;v: —Av = r?vin Q~, 4, vonI'} and hence the hypersingular
operator is invertible if and only ik? ¢ My.

(iv) The hypersingular operator can be decomposed into Aptieland a compact operator,
ie.
W =Wy + Ty,
whereW, denotes the hypersingular operator of the Laplace probledi@,, : H'/?(I') —
H~Y2(I') is compact.

15
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(v) Forall 4,1, € H'/?(T), there holds

<W1/}171/}2> = <V%7 %> - 52<V¢1V7¢2V>7

where% denotes the arc length derivative.

(vi) The operatoi’’ is the adjoint of the double layer operatdi, i.e. (K1, p) = (1, K'¢p) for
all real-valued functionsp € H=Y/2(T"), ¢ € H/*(T).

Properties (ii) and (iv) imply tha® andWV are Fredholm operators with index zero. This is used
for the proof of the existence of a unique solution in the sgbent sections.

Remark 1.3.6. For all wave numbers € C\{0}, the existence of a unique solution of exterior
problems is guaranteed. Since the integral operatoand )V are not invertible for all wave
numbers, the integral equations (1.14), (1.15), and (Jdéhot solvable and cannot be used for
the computation of the missing Cauchy dataifc Mp or x? € My.
To remedy this problem there are various different apprescisee[BW65, Pan65, Lei65,
BM71] to name a few but not all. We only state the approach takBage and Werner [BW65]
for the exterior Dirichlet problem. The idea is to choosec R such thatyRe(x) > 0. For
z € QF andyp := ~; u, we set

U = lap — z'nfiap.
It can be proven that the solutiansatisfies the Sommerfeld radiation condition dnd= 0 in
QT. The jump relations of the single and the double layer patnyield the boundary integral
eqguation

(1/24+ K —inV) ¢ = u. (1.23)

The invertibility of the operatot /2+ IC—in)V is proven in[BW65] if the boundary is globally
smooth. Hence, the missing Neumann data can be compute@®). We stress that for non-
smooth boundaries the invertibility of the operatge + K — in) is still an open question. The
problem is that ifl" is not smooth the potentialg and X have different domains of definition.
However, we do not go into detail on alternative boundarggral formulations, but assume
k> & Mp U My throughout this work.

1.4. Triangulation and Discrete Spaces

In order to numerically solve the boundary integral equetiintroduced in Section 1.2, we
consider finite-dimensional subspaces of the involved Botspaces.

Let O~ c R? be a bounded Lipschitz domain with bounddiyand its complemenf)t =
R?\Q-. T is divided into relative open and disjoint sub boundaries, ithe Dirichlet and
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1.4. Triangulation and Discrete Spaces

Neumann boundary. We consider the caSes- I'p (Dirichlet problem),I" := I"'yy (Neumann
problem) andl’ := I'p U T (mixed problem). For the discretization of the boundary we
introduce a triangulation.

Definition 1.4.1. (i) A triangulation7 is defined by

i=1

Ne
T = {Ti,izl,...,./\/e, r=Jm, mﬂTj]:Oforiyéj.}.

We refer toT; € T as boundary elements and call = |7| the number of elements. If
the boundary is divided into the Dirichlet and Neumann beuigs, we assume that each
boundary elemert’ € T either belongs td'p or I' y and introduce the triangulations of
the sub-boundaries by
Tp:={TeT:|TnTp| >0} and
Tn:={TeT:|TNTx|>0}.

In particular, we havd = Tp U Ty and7p N Ty = 0.

(i) For a given triangulation, we denote by, the set of all element end-points, which we
call nodes, and by, := |M,| the number of nodes.

(iii) We assume that each boundary elemé&ni 7 is parametrized by a bijective Lipschitz-
continuous functiony; : [—1, 1] — T; with smooth inverse.

(iv) Leth € L>(T') be the mesh-width function with|iy ) = |T;| =: h;, where|T;| denotes
the arc length of the elemeffii. Further, we introduce the mesh-width ratio

h;
J

(v) Letp € L>(T") be the polynomial degree function wihnyr,) =: pi € No.

(vi) Let k € L>(I") be the regularity function wittk(z;) =: k; € Z with k(z;) > 0,
YIS M,.

We are now in the position to introduce the discrete ansateespthat we use for the implemen-
tation.

Definition 1.4.2. Let 7, h € L>(T"), p € L>=(I"), andk € L*(I") as defined in Definition

[1.4.1. We denote the space of all functions thatigrémes continuously differentiable at each

nodex; € M, by C¥(T'), j = 1,...,\V,. The finite-dimensional ansatz spaces are defined by
S(T.h,p,k) = {p € C*N () : plr; 0% € Ppi([=1,1]), i = 1,.., N} (1.24)
R(T h,p,k) C {p € C* M) : ¢l 07i € Ry, ([-1,1]), i = 1,..., N} (1.25)
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1. Analytical Basics and Notation

Here,P, andR,, denote the space of all polynomials and rational functioitis degreep € Ny,
respectively. We denote the dimension of the ansatz spgc&S b

Remark 1.4.3. The discrete space&(7,h, p,0) ¢ H~'/>(T") of globally discontinuous func-
tions andS(7,h,p,1) C Hl/Q(P) of globally continuous functions are the spaces used for
classical Galerkin BEM on polygons. The spa&€7, h, p, p) is widely used for collocation
methods and the rational spa&&7, h, p, k) is used for isogeometric methods ( see Section
[3.2).

We further introduce the ansatz spa&g := S(7y, hy, p?, k) with respect to a geometrically
gradedhp-mesh. Given a mesh grading parameéter (0, 1), the boundany" is divided geomet-
rically towards a corner. In particular, we obtaifyh; = o for neighboring elements; andT},
whereT; is the element closer to the corner. The polynomials degeetwp?’ is constructed

as follows. At the smallest element near the corner we set0 and increase the polynomial
degree linearly with slope € N. The two examples of a unit circle and a smoothened L-shaped
domain, that we consider within the scope of this work, dusttated in Figure112.

1.5. Collocation Methods

In this section we introduce collocation methods for sajvthe boundary integral equations
({@.13), [1.15), and (1.16). We first derive fully discretenfmilations for the Dirichlet, Neumann,

and mixed problems and then go into detail on the existen@euwfique solution and a priori

error estimates.

1.5.1. Discrete Collocation BEM

The idea of collocation methods is, that the involved Sobsfgaces are substituted by finite-
dimensional subspaces and the integral equation is fdlfdtea discrete number of collocation
points.

Let X, ¢ H-'/2(') andY; ¢ H'?(T") be two of the finite-dimensional ansatz spaces de-
fined in Definition[1.4.R with base§b, ..., ®o} and{ ¥y, ..., ¥ }. We denote byl x =
{z1,...,zx} CT'andMcy = {y1,...,ym} C I the sets of collocation points with respect to
the spaces(, andY,.

Symm’s integral equation. Symm’s integral equation reads

ca(Vo)(x) = (0K +1/2)u(z), ue HY*T)

18



1.5. Collocation Methods

(@) Geometrichp-grid on the unit circle. The numbers indicate the
polynomial degree on each element.

(b) Geometridhp-grid on the smoothened L-shaped domain. The num-
bers indicate the polynomial degree on each element.

Figure 1.2.: Examples of geometrig-grid and polynomial degree vectors with= 0.5 and
o = 1, that can be used for geometfip-refinements.
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1. Analytical Basics and Notation

with o, as in Lemma&_1.1.10 or in the general setting

(Vo)(z) = f(z), feHY*D).

The discrete problem is then given by:
Find ¢, € X, such that

oa(Ven)(z;) = (coK +1/2)u(z;), j=1,..,N,
(or (Ven)(x;) = f(zj), j=1,...N))
Projecting the Dirichlet data oF, i.e. uj, := 3324 u, Uy, and writinge, = S0, @y we
obtain the system of linear equations
oqVep = (0K +1/2Mx)u
(or Ve=f£)

Here, V := (Vji)k j1,...v With Vi := (V®;)(z;) andK = (Kj) ="y with Ky ==

(KW¥y)(x;) denote the collocation matrices of the single and the doalgker operators and the

mass matrix is given bVl y := (Mjk)?;l ........ Af‘/" andM;;, := ¥ (x;). The entries of the right-

hand side vectof are given byf; = f(z;),j =1,...,N.

The hypersingular integral equation. Recall that the hypersingular integral equation reads
caWu)(x) = (1/2 — 0ok)p(x), ¢ =1iue H /AT
or in the general setting

Wu)(z) = f(z), feHYAI).

The discrete problem is then given by:
Find u;, € Y, such that

oa(Wun)(y;) = (1/2 — 0oK)e(y;), j=1,...M,
(or  Wup)(y;) = f(y;), j=1,...M.)
Projecting the Neumann data &f, i.e. pp, := fozl Pk, and writingu;, = Zﬁil u, U, we
obtain the system of linear equations
ocoWu = (1/2 My — 0qA)ep
(or Wu=f)

Here,W = (ij)k,jzl,...,/\/t with ij = (W\I’k)(y]) andA = (Ajk)?ill:_.::/j\\fl with Ajk =
(K'®;)(y;) denote the collocation matrices of the hypersingular aedatfjoint double layer

operators. The mass matrix is given By := (Mjk);?;l’_'_'_"N andM;;, := ®(y;) and the

entries of the right-hand side vectbby f; = f(y;), j=1,..., M.
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1.5. Collocation Methods

Remark 1.5.1. Since the null space of the hypersingular operator is rnigiakr appropriate
conditions have to be introduced in order to solve the disgreoblem. Within the scope of this
work, we consider the hypersingular integral equation ooen arc for the Laplace equation
and imply that the solutiom;, vanishes at both endpoints.

Mixed problem. With the notation of Section 1.2 (paragraph mixed probldm)integral equa-
tion, which we solve for mixed boundary conditions reads

e e

We assumé/lc x C I'p aswellasM¢y C I'y. The ansatz space is givenByy x X, p C H.
With the notation of the previous two paragraphs we obtaérfofiowing discrete problem

(1.27)

1.5.2. A Priori Error Analysis

In order to derive a priori estimates for all above considéntegral equations simultaneously,
we consider the general problem

Au=f onT (1.28)

with a bijective Fredholm operatot with index zero, i.e.A = Ay + K can be decomposed
into an elliptic and a compact operator. This assumptiomantaes tha#l satisfies the Garding
inequality. We stress that the single layer and the hypgusim operator for Laplace, Lamé, and
Helmholtz problems are of this type, see Theorems I.3.12,1aBd 1.3.5.

The following theorem states a result concerning the sdltsalof the discrete problem and
gives anh-asymptotic a priori error estimate for the numerical dolut

Theorem 1.5.2(JAW83, Theorem 2.1.5]) LetT" be analytic andp be uniform and odd, i.e.
p = 2j — 1 with j € N. We chosex such that4 : H/*%(T") — H’/~*(T") and the collocation
points to be the nodes, i.8/- := M, with M, as defined in Definition_1.4.1 (ii).

Providedj — o < 1/2, the discrete problem

Auh(xk) = f(.%'k) YV € Mc. (1.29)
has a unique solution;, € S(7, h, p, p) with
Hu - U,hHHj-ka(F) S C inf Hu - ?)hHHj-m(F). (130)

Uh GS(T7h7p7p)
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1. Analytical Basics and Notation

Ifue H*(I'), j + o < s < a, then
[ = wnl iy < CR* 77 ul| s (- (1.31)
with a constantC' > 0.

Remark 1.5.3. (i) The proof of Theorenh_1.512 is based on the derivation otguivalent
Galerkin formulation on which the Céa Lemma can be appligding the well-known
approximation estimates for the spline spatg , h, p, p) the a priori estimatd_(1.81) is
obtained. The restrictiof — o < 1/2 arises since we requit€(7, h, p,p) C H'~%(T)
and Auy, € C(T).

(i) The theorem requires strong assumptions, i.e. a smioatimdary, only odd degree basis
functions of highest regularity and collocation only at gmants. Thus, it can only be
applied to a small class of problems.

However, similar results are proven [n [SW85] for even dedrasis functions where the
collocation points are chosen as element midpointd._In B8Fpiecewise smooth bound-
aries are investigated. Using weighted Sobolev spacesast similar to[(1.31) are de-
rived for lowest order basis functions, i.. = 0 andp = 1. In [Sch86, Dom03] the
collocation method is introduced which allows to chooseengmneral uniform collocation
points. In particular, convergence is proven for collamagpoints that are shifted by> 0
and positioned between the end and mid points.

(i) An open issue is the convergence and the a priori eséméor non-smooth splines, i.e.
for S(7,h,p,k) andR(T, h, p, k) with k < p. Further, it is not clear how to choose the
collocation points for the general caS€éT , h, p, k), since more than one collocation point
has to be chosen on each element. We will address the optimaiglecof the collocation
points in Chapter 5.

For Symm’s integral equation of Laplace problems on thelsli= (—1,1), a p-asymptotic
estimate is given in [SISt92]. Therefore, we introduce tbbd@ev-type norms fos € R by

™2 (1 2 o
ey = (3) (a'qu 2K '“'f'2> |

k=1

whereuy, k € Ny denote the coefficients of the Chebyshev expansion dfhe spaced*(I")
is defined as the closure of the set of all polynomials witlpees to this norm. Fow(z) =
(1 — 2?)~Y2 andv = wu, a second Sobolev-type norm is defined by

ol = Nl ooy,
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1.6. Galerkin Methods

Theorem 1.5.4([SISt92, Theorem 2])Letl’ = (—1,1) and f € H'™(T"). For p € Ny, there
exists a solutionp;, € wP, of

Ven)(xj) = f(x;), j=1,...p,

wherez; denote the zeros of theth Chebyshev polynomial. Furthermoretit> —1/2 and
t > s, then for the exact solutiop Ft(F), there holds

ng — SOhHﬁs(F) < cp min{tfs,tJrl}HfHHHl(F).

Remark 1.5.5. A corresponding result is also proven for the hypersingimtagral equation on
the slit in [ES92]. Here, the basis functions are chosen tinbé&hebyshev polynomials of the
second kind and their zeros are chosen as the collocationspoi

1.6. Galerkin Methods

Galerkin methods are another approach for solving the bemyridtegral equations derived in
Sectior_1.P. The first part of this section is devoted to thévdion of numerical schemes for
the solution of the boundary integral equations with a Gdbemethod, while in the second part
we state important results for the a priori error estimation

1.6.1. Discrete Galerkin BEM

Throughout this section leX, ¢ H~'/?(T") andY; ¢ H'/?(T") be two of the discrete spaces
introduced in Definitio 1.412 with bas€®, ..., &} and{ ¥, ..., U}, respectively. We in-
vestigate the boundary integral equatidns ({1.14), {1.48)@.16), separately.

Symm'’s integral equation. Recall that Symm’s integral equation reads
o0 (Ve)(x) = (00K +1/2)u(z), ue H*(T)
with o as in Lemma_1.1.70 or in the general setting
(Ve)(x) = f(x), feHY*D).

The variational formulations are given by:
Foru € HY%(T') (or f € HY2(I")), find o € H~/%(T') such that

(0aVip,v) = (oK + 1/2)u,v), Yo e H Y3(T)

(1.32)
(or (Vp,v) = (f,v), YveHY4I)).
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We obtain a discrete problem by considerikig c H~'/2(I) instead of /(") in (1.32):
Foru € HY/?(T") (or f € HY(I")), find ¢}, € X, such that
O-Q<V90h’(1)]> = <(UQK+1/2)U? (I)J>? \V/j = 13,N,
(Or <V(ph,q)j> = <f, (I)j>, V] = 1,...,./\/ )

In order to obtain a fully discretized problem, we projeat firichlet data onyy, i.e. u =

(1.33)

22\;‘1 u, V. Writing ¢, = Z{c\/zl »1 P we get the systems of linear equations

caVe = (0K + 1/2M)u
(or Vp=1).

Here, the matrice®/ := (Vi) k1. With Vj, := (V& @;) andK := (K;)i=1 7\,
with K, := (K¥, ®;) denote the Galerkin matrices of the single and the doubkr lagera-
tors. The entries of the mass math4 := (Mjk){;ﬁ/xl are given byM ;;, := (¥, ;). The

vectorf is defined byfy, = (f, ®;), k=1, ..., N.

The hypersingular integral equation. The hypersingular integral equation (1.15) reads
oo(Wu)(z) = (1/2 = 00K )¢(z), ¢ =riue H ()
with o as in Lemma&_1.1.10 or in the general setting
(Wu)(z) = f(x), feHT).

Since the hypersingular operatdy is Hi/Q—eIIiptic for the Laplace and the Lamé equation we
consider the variational formulation in this space. Forrit@ltz problems we sdtl,f/Q(F) =
HY2(T"). We have:

Forp € H-Y2(T") (or f € H-Y2(I"), findu € HY/*(T') such that
caWu,v) = ((1/2 — 0oK)e,v), Vv e HY*(T) (139
(or (Wu,v) = (f,v), Yuve HYAT)).

The formulation [(1.34) is not straight-forward to use foe implementation and we therefore
introduce a modified sesquilinear form. leb;, j = 1,..,n} be a basis oker W. Then,

n

(u, o) wes = Wu,0) + D (u,w;) (v, w;).

j=1
The modified variational formulation reads:
Foro € H-Y2(T) (or f € H~Y/2(")), findu € H'/?(T) such that
oollu, v)wis = ((1/2 — oK )p,v), Vv e Hl/Q(F)
(or ((u,v)wis = (f,v), Yve HYXI)).

The next lemma states the equivalence of both variatiomaidtations.

(1.35)
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Lemma 1.6.1([Ste03]) A functionu € H'/?(I") solves{I.34)if and only ifu solves(1.35)

We obtain a discrete problem by consideririgc H'/2(I") instead ofH'/2(I") in (L.38):
Foro € H-Y/2(T") (or f € H-Y/2(T")), find uy, € Y, such that
ool(un, Uihwis = ((1/2 —0oK)p, ¥;), Vj=1,..,M,
(Or <<uha\11j>>W+S: <fa \I]]>a \V/]: 1""3M )

In order to obtain a fully discretized problem, we projeat theumann data oy, i.e. ¢ =

(1.36)

fozl prPr. Writing uy, = Zﬁil u, ¥, we get the systems of linear equations

(W +S)u = (1/2M7 — 60K )
(or (W+Su=f).

Here, K, M, andf are defined as in the previous paragraph. The m&&fix= (W), x=1,... m
with W, = WV, ¥ ;) is the Galerkin matrix of the hypersingular operator 8ne- (S, ) k—1,..., M
with S == > 1 (U, wi) (¥, w;) is the stabilization matrix.

Remark 1.6.2. The general solutiofi;, of the hypersingular integral equation can be represented
by

n
up = uh+Zajwj.
j=1
wherew;, solves Equation[(1.36). To fix the constamatswe require the scaling conditions
(up,wj) = oy, wherea; are arbitrary but fixed. For benchmark examples, where thetex
solutionu is known, we choosey; = (u,w;). If {w;,j7 = 1,..,n} is an orthogonal basis of
ker W we get

o = (u,w;) = (Up, w;) = a; (wj,w;)

and hencey; = &?“;{?Y If the exact solution is not known we substitutéy Vo — Kuy,.
VERat}

The mixed problem. With the notation of Sectidn 1.2 (paragraph mixed probldm)doundary
integral equation(1.16) for the mixed problem reads

) CA) e

The variational formulation is given by

(A(un, ©p), (v, w)) 3 = ((1/2 = A)(up, on), (v, W) xm, V(v,w) € H.  (1.38)
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1. Analytical Basics and Notation

To discretize the variational formulation we proceed ashia previous two paragraphs. We
replace the spack by the ansatz spade y x Xy, p C H, where the indices indicate that the
spaces are only defined @iy and Tp, respectively. With the projections of the Dirichlet and
Neumann data on the ansatz space we obtain the following ncahscheme

) e

A = oq Vroxrp  —Krpry and A :=oq v oK
K%:NXI‘D WFNXFN KT W

with

The indices in the matrixA indicate that the Galerkin matrices are restricted to trsistfanc-
tions with support il"p andT y, respectively.

1.6.2. A Priori Error Analysis

In this section we state a priori error estimates for therdigcsolution obtained by solving the
variational formulationd(1.32), (1.B5) arid (11.38). Wertstath stating two results for the unique
solvability of the variational formulations in the genekdilbert space framework.

Let X be a Hilbert space with its du&l’ and f € X’. We further assume that the linear and
bounded operatod : X — X’ can be decomposed in an elliptic and a compact operator, i.e.
A = Ay + T. We consider the variational formulation

a(u,v) := (Agu,v) + (Tu,v) = (f,v) Yve X. (1.40)

For/ € N, we introduce a sequence of finite dimensional subspages X with X, C X1,

¥ _ X The discrete variational formulation reads

dim Xy — oo for £ — oo, and|J, oy X¢
G(Ug,vg) = <AOUg,?)g> + <TU,g,?}g> = <f, Ug> Yup € Xp. (1.41)

The next theorem gives the existence and the quasi-optintdla unigue solution.

Theorem 1.6.3([SaSch04, Theorem 4.2.9])f the sesquilinear form corresponding #y is
X-elliptic anda is injective, i.e.

(Aou,v) + (Tu,v) =0 Yve X\{0} = u=0,

then(@.40)has a unique solution € X for all f € X’. Furthermore, there exist§ € N, such
that the discrete variational formulatioff.41) has a unique solutiom, € X, for all £ > ¢,.
For ¢ > ¢, the solutionsu, converge quasi-optimal to, i.e.

lu —wel|x < C min |Ju — vyl x. (1.42)
ugEXg
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In practice, the variational formulatioh (1141) cannot béved exactly, since quadrature rules
are applied to numerically evaluate the arising integralfierefore, we solve the perturbed
variational formulation

a(Ug,Ug) = <AVQUg,Ug> + <TU,5,1}@> = <]7, ?)g> Yup € Xp. (1.43)

Before we state the next theorem, called Strang’s Lemmatdakas the approximation error
into consideration, we introduce a second stronger nprfjiy on X, i.e. |Jus||x < C/||luel|e for
all uy € X,.

Theorem 1.6.4([SaSch04, Theorem 4.2.1])et the sesquilinear form corresponding Ag be
X-elliptic and
(Agu,v) + (Tu,v) =0 VYve X\{0} = wu=0.

If the sesquilinear forma satisfies the stability condition
lla(ue, ve) = @(ug, ve)l| < Cllugllx lvellx  Vue, v € X
and the consistency condition with respect to the strongemn| - ||/
lla(ug, ve) — alug, ve) | < Colluellu lJvellx  Vug,vp € X,

then there existg, € N such that for alll > ¢, the perturbed formulatiof1.43)is stable and
has a unique solutioit, € X, which satisfies

~ . sop)y — (f,v
lu—uelx S 4 inf ([lu—welx+Collwellv) + sup o) = {Fswn)| { (1.44)
wp€Xy 0#£vpeXy thHX

We stress that the two theorems stated above can be appltbd totegral equations (1.82),
(1.38) and[(1.38) for Laplace, Lamé, and Helmholtz equationder the assumptions of Theo-
rems 1.3.1 1.312, aid 1.8.5. This guarantees the uniqualsiitly and the quasi-optimality of
the Galerkin solution for sufficiently large

We obtain a priori error estimates by analyzing the appratiom properties of the discrete
ansatz spaces. The following result for the mixed problepmasen for the Laplace equation on
polygonal domains with uniform polynomial degrgesn quasi-uniform meshes.

Theorem 1.6.5([StSu91, Theorem 3.5])Let 2 c R2 be a polygonal domainuy, vp) € H
be the solution of.38)for up € H*(I'p) andpy € H* (T y). Furthermore, lefuy,, ¢p,) €
X;:=S8(T,h,p,1) x S(T,h,p,0) be the numerical solution fL.39) Then, forp € N large
enough,h > 0 small enough, and large enough and for alt > 0, there exist®® = C(e)
independent oh and p such that

lun = wnll iz gy + 119D = Onll goszryy < CR* P> F = (lupllmswrp) + lonllas-1ry))-

Here,a = min {Blj,j =1, ...,/\/U} where/3; denote the interior angles of the doman
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Remark 1.6.6. (i) Similar estimates hold for Symm’s integral equatibiB3@).and the hyper-
singular integral equatiof (1.35), sée [StSu91, Theoréhatd [GHO6, Theorem 4.2].

(ii) The proof is based on the fact that the exact solutionalseh likexz® near the corners of
the domain, wherer depends on the interior angle at the corner. Then, the ajpppation
properties of the discrete ansatz space are used to obsaingdhori error estimate.

(i) With the same techniques, regularity results for tbison for Lamé and Helmholtz prob-
lems are proven in [StSuB9], [HSW85] and [SW84]. Hence, Isindstimates are obtained
for these problems.

(iv) The results can be generalized to Lipschitz domains lapping the line segments to
curved elements with a smooth mapping.

The previous theorem shows that increasing the polynoneigtes uniformly yields twice the
convergence rate as compared to refining the mesh unifokititit. geometrically graded meshes,
that are introduced in Sectién 1.4, exponential convergénproven in[[Heu96].

Theorem 1.6.7([Heu96]). Let Ty be a geometric mesh with corresponding linear polynomial
degree vectop’. Further, let the right-hand side ifiL.32) be piecewise analytic and have a
polynomial behavior in the corners &t If ¢ € H~'/2(I") is the solution of Symm’s integral
equation(l.32)and ¢, € SG = S(Ty, hy,p?,0) is the discrete solution off.33) then there
holds

I = @nll oy < Ce Y.

Here, N := dim S§ andC andb only depend on the grading parametérando but not on\V.

Remark 1.6.8. Similar results are proven for the hypersingular integeplagion in [Heu95].
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2. Orthogonal Polynomials and Gauss

Quadrature Rules

For the implementation of high-order BEM, efficient and aete algorithms for numerical in-
tegration are essential. While there are analytical aghemfor the computation of the relevant
integrals, such as in_[Banil3], these approaches requinel&dge of the kernel functions and
are limited to a polygonal boundary approximation. Sincepaavide a black box software
package, which allows for the computation for general Keraad boundaries, these analytical
approaches cannot be used. Hence, we mainly use Gausstguadtdes for the assembly of
the collocation and Galerkin matrices. Besides the Gaegehdre quadrature, we also use a
Gauss guadrature rule with respect to a logarithmic weiginttion, which we refer to as Gauss-
Log quadrature. Within this chapter consisting of thredisas we explore these two types of
Gauss quadrature rules.

The first section is devoted to orthogonal polynomials, Whize closely related to Gauss
guadrature rules. Besides general orthogonal polynomiadsalso consider special orthogo-
nal polynomials. Specifically the Legendre polynomials #redr antiderivatives known as the
Lobatto shape functions are introduced, as we choose tlodgeomials as basis functions for
the polynomial ansatz spaces of NURBS-enhanced methods.

In the next section, we introduce Gauss quadrature rulesdir to evaluate the arising integrals
up to a set level of accuracy, the nodes and weights have torbputed up to the same level
of accuracy. Since the problem of computing the weights e s is generally ill-conditioned,
the implementation for high quadrature orders is not dttafigrward. We present an approach
based on the ideas of [Gaul0] that allows for the accuratguatation of nodes and weights for
the Gauss-Legendre and Gauss-Log quadrature up to 16 cagmifligits even for high orders.
By computing the entries in the Galerkin or collocation ras with quadrature rules, a con-
sistency error is induced. In order to control the consistegrror, such that the convergence
rates of the high-order collocation or Galerkin methodsmatespoiled, rigorous and sharp error
bounds for the quadrature error are needed. While sharplsdanthe Gauss-Legendre quadra-
ture rules are already known, we derive a new estimate foGthess-Log quadrature.
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2. Orthogonal Polynomials and Gauss Quadrature Rules

Ellipses. In the subsequent sections, we will see that confocal eltipgith focii +1 play an
important role in the estimation of the quadrature errore @gfinition of these ellipses is moti-
vated by a conformal mapping, specifically the Joukowskigfarm. The Joukowski transform
maps the exterior of concentric circles with radius gre#ttan one to the exterior of ellipses
with focii +1. The transform is given by

J:{weC: |w|>1} - C\[-1,1]
2 (+3)
w— - w4+ — ).
2 w
The inverse of the Joukowski transform is given by
JLC\[-1,1] = {weC: |w| > 1}

224122 — 1.

We choose the branch of the square root that yigldy co) = co. Figurel2.1 shows an example
of J. With the Joukowski transform we define complex ellipsesivacii +1 as follows.

Figure 2.1.: Circular grid (left) mapped to elliptical grfdght) with the conformal Joukowski
transfrom.J.

Definition 2.0.9. For p > 1, we define the open ellipse with foelil and semi-axis sum by

1

gp = {z:§ (U)—i-%) :w:r'eiw77‘€ (17p)7 ZBS [072W)}U[_171]

We denote the real semi-axis hyand the imaginary semi-axis bywith
1 1
a=(p+p') and b=_(p—p ).
2 2
Remark 2.0.10. The following identities are directly obtained from Defiait[2.0.9.

(i) There holds the following relationship betweere 0&, and the real semi-axis.

|z + 1]+ |z — 1]
a= 5 )

30



2.1. Orthogonal Polynomials

(i) The circumference of the ellipsg, is bounded by
0E) <mlp+ph),.

see e.g.[[DR75] Equation (4.6.1.11).

2.1. Orthogonal Polynomials

Throughout this section, we denote by C((—1, 1)) a positive weight function, i.ev(z) > 0
for x € (—1,1). With the weight function we define a scalar product fog € C(|—1, 1]) by

1
(f,9)w = /1f(x)g(x)w(x) dz.

The scalar product induces a norm bff|2 := (f, f).. The moments associated to the weight
function w are defined by, := (2*,1),, k € No. In the following definition we introduce
orthogonal polynomials.

Definition 2.1.1. Let (p,)nen, be a sequence of polynomials with exact degiteendw be a
positive weight function.

() (pn)nen, is called monic if the leading coefficient of all polynomiaguals one, i.e.
n—1
pn(z) = 2" + Z apz®.
k=0

(i) (pn)nen, is called orthogonal with respect g if

(pnapm)w = HanZ 5nma
whereé,,,,, denotes the Kronecker delta.

(iii) We denote monic orthogonal polynomials with respedite weight functiorw by 7, (z, w).
If it is clear which weight function is involved we only write, (x).

The existence and the uniqueness of monic orthogonal poliaie is stated in the following
theorem.

Theorem 2.1.2(|Gaul0, Theorem 1.6])or every positive weighted scalar product, there exists
a unigque sequenaer, ),cn, of monic orthogonal polynomials.

Remark 2.1.3. The uniqueness of orthogonal polynomid}s,),cn, is also preserved if we
substitute the assumption that, )<, are monic by the property,, (1) = 1 for all n € N.

Some useful properties of orthogonal polynomials are ctdlbin the following lemma.
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2. Orthogonal Polynomials and Gauss Quadrature Rules

Lemma 2.1.4([Gaul0]) Letw be a positive weight functiorip,, ),en, be the orthogonal, and
(7n )nen, be the monic orthogonal polynomials with respect to the tteid) scalar product.

() (pn)nen, are linearly independent and hence fore Ny the set{pq, ..., p, } forms a basis
of P,.

(i) Forall n € N, the zeros op,, are real, disjoint, and located if—1, 1). Between two zeros
of p,, there is at least one zero pf,, m > n.

(i) (mn)nen, Satisfy the following three-term recurrence relation

7Tk+1(1') = (1‘ — Oék)ﬂ'k(l') — ﬂk kal(l') ke NQ,

2.1)
7T_1(1') = O, WQ(I‘) =1
with
ay = M, k € N, 2.2)
(Ths T )
By = _(meme o (2.3)

(Th—1, Th—1)w
Remark 2.1.5. Although 3, can be chosen arbitrarily sinee_;(z) = 0, we defines, :=

(7o, m0)w, Which is used for the computation of Gauss quadrature e subsequent section.

Apart from orthogonal polynomials we are also interestedhin associated functions of the
second kind.

Definition 2.1.6. Forn € N, we define the associated functions of the second kind,afn

1
pn(2) ::/ () w(x)dx.

1R —X

The next lemma states some important propertigs, of

Lemma 2.1.7([Gau81]) The associated functioms, of the second kind are analytic @ [—1, 1]
and satisfy the same three-term recurrence relafiad) as the orthogonal polynomials with ini-
tial valuep_;(z) = 1.

Legendre polynomials and Lobatto shape functionsThe Legendre polynomials and the Lo-
batto shape functions are introduced as special orthogahaiomials and their antiderivatives.
We start by giving a definition of the Legendre polynomiald atate some properties.

Definition 2.1.8. For z € C andk € Ny, the Legendre polynomialg}(z) are the uniquely
determined orthogonal polynomials with respect to the wfignctionw(z) = 1 with Py (1) =
1,i.e.

1
[ P Petay e = 1P 5
-1
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2.1. Orthogonal Polynomials

Lemma 2.1.9. For k € Ny, the Legendre polynomials have the following properties.
(i) (Recurrence Relation) For z € C andk € N, the Legendre polynomials satisfy

(k+1)Ppia1(z) = (2k + 1)z Pe(2) — kPp—1(2)
Py(z) =1, Pi(z) ==z

(2.4)

(i) (Symmetry) For z € [—1, 1], there holdsPy(—z) = (—1)¥ P (x). Specifically, the values
at the end points are given iy, (—1) = (-1)* and P, (1) = 1

(iii) (Norm) For the weighted norm, there holds

2
P2 = :

(iv) (Antiderivative) For k > 1, the antiderivative of the Legendre polynomials is given by

v _ Piyi(x) — Pra(o)
/_1Pk(t)dt— + T .

(v) (Maximum on &,) For p > 1, the Legendre polynomials fulfill

max | Py (z)] < pF. (2.5)
2€&p

Proof. The first statement is a direct consequence of the recurretetéon [2.1) for the monic
orthogonal polynomials and (ii) is obtained by the symmetithe weight functionw(z) =
w(—x). Property (iii) is proven in[Mac67, p. 86]. With the recunce relation for the derivative
P (x) — P_ (%) = (2k 4 1) Px(x), k > 1, which is proven in[[Mac67, p. 91], we get (iv).
The upper bound (v) is proven in [SaSch97, Proposition 15]. O

We define the Lobatto shape functions as antiderivativehef_egendre polynomials. They
differ from the similar shape functions in [BS91] just by akeg factor.
Definition 2.1.10. Fork € N with & > 3 andz € [—1, 1], we define

Ni(@)i= 250 Nae) = o,

/Pk2

Forz € C, we definelNy(z) as the unique analytic extension §f,(z).

The next lemma summarizes some important properties, teaa direct consequence of the
properties of the Legendre polynomials.

Lemma 2.1.11.Letz € [—1, 1]. The Lobatto shape functions satisfy the following prapert
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2. Orthogonal Polynomials and Gauss Quadrature Rules

(i) (Relation to Legendre polynomiald For k& > 3, there holds
1
Ni(x) = m(Pkfl(x) — Py_3(7)).
(i) (Recurrence relation) For k& > 4, the three-term recurrence relation is given by
k Ngy1(z) = (2k — 3)x Ni(x) — (k — 3)Ng_1(x)
1 (2.6)

Ni(e) = 5a* 1), Nie) = %x( 2_ ),

(i) (Values at+1) For k£ > 3, there holdsV,(+1) = 0.

Proof. Lemmd2.1.D (iv) implies part (i). The recurrence relatidnig a consequence of (i) and
the recurrence relation of the Legendre polynomials. Tird tbroperty follows from (i) and
Lemmd2.1.D (ii). O

2.2. Gauss Quadrature Rules

Gauss quadrature rules, i.e. rules of the type

1 n
| @@ de = 3wt + Rulh) 2.7)

k=1
are introduced for example ih_ [DRI75] for numerical integmat Here,n € N is the order of
the quadrature rule, the nodes, & = 1,...,n, are the zeros of the-th monic orthogonal
polynomialr,, associated with the positive weight functierand the weightss,, are given by
kn+1 1
= — . (2.8)
kn 7Tn+1(wk)77n/(xk:)

By R, (f) we denote the remainder of the Gauss quadrature rule. Withiacope of this work

we consider Gauss quadrature rules for two different wdighttions defined of—1,1):

* the Gauss-Legendre quadrature rule wiy, () := 1,

« the Gauss-Log quadrature with, o, (z) := — log ZHL.

In this section we address two main points. The first poinbédomputation of the weights
and nodes of the quadrature rule. For the accurate humeriegration the nodes and weights
have to be computed up to machine precision for large insegeln order to avoid that round-
off errors affect the first 16 significant digits, Maple is ds®r the implementation, which
allows computations with multiple precision arithmeticecBnd, we state sharp and reliable
error bounds for the absolute quadrature error, which aed tes control the consistency error
induced by numerical integration. While for Gauss-Legemrdiles the computation of weights
and nodes as well as sharp error bounds are well known, themoacorresponding results for
Gauss-Log rules. In the remainder of this section, we firstdiee the computation of both
Gauss rules before we give sharp error bounds for the alesplidrature error.
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2.2. Gauss Quadrature Rules

2.2.1. Computation of Gauss Quadrature Rules

If the coefficientsa;, and 3, in (2.1) of the orthogonal polynomials associated to theghei
functionw are known, the nodes and weights of the related Gauss ruleecapmputed with an
algorithm presented in [GW69]. It is proven that the nodgsre the eigenvalues of the matrix
J, with

a0 VB 0
VB a1 B2
Jp = VB2 s € R™", (2.9)
ﬁnfl
0 Bn—l Qp—1

(see for example [Gaull0]). The corresponding weights carobguted from the eigenvectors
of J,. If we denote by, ..., v, an orthonormal system of eigenvectors, the weights arengive
by wi, = ”1371 [GW69]. However, the eigenvectors do not have to be compexedcitly, since
the weights have the following representation.

Lemma 2.2.1([Gaul0, Theorem 1.31])The weights satisfy

-1

n—1
Wg = Z%](.%'k)z s k= 1, ey N (2.10)
Jj=0

Here, the orthonormal polynomialg, are defined by the recurrence

Trt1(z) = (2 — ag) (@) ﬁkLl(x)’
VA B (2.11)
F @) =0, Fol)= —.

vV Bo
Listing[2.1 shows a Maple code for the computation of the Wsigvith [2.10). The procedure
compWeigth requires the zeraosi of r,, and the vectorak andbk containingay, and+/jx, re-

spectively, as input parameters and returns the vectontaining the weights. The orthogonal
polynomials7; are evaluated efficiently with the three-term recurrentatios (2.11).

Listing 2.1: Maple code for the computation of the weights@auss quadrature rules.

compWeights:=proc(xi::Vector, ak::Vector,sbk::Vector)::Vector;
# xi -> vector of roots of n-th orthogonal polynomial

# ak -> vector of first coefficient of three-term recurrence
# sbk -> vector of square roots of second coefficient of
#

three-term recurrence
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2. Orthogonal Polynomials and Gauss Quadrature Rules

local j,k,n,w,p0O,pl,p2,tmp;
n:=Dimension(xi):
w:=Vector(1..n,0);
for k from 1 to n do
p0:=1 / sbk[1];
tmp :=p0*p0;
if n>1 then
pl:= (xil[k]-ak[1])*p0 / sbk[2];
for j from 1 to n-1 do
p2:=((xilk]l-ak[j+1])*pl-sbk[j+1]1*p0) / sbk[j+2];

tmp := tmp+p2*p2;
pO:=pl;
pl:=p2;
end do;
end if;
wlk]:=1 / tmp;
end do;

For the Gauss-Legendre quadrature rule with weight functiq.,, the coefficients of the monic
orthogonal polynomials are given by

ap =0, Br=

Thus, the quadrature rule can be computed Vith (2.9) land)2Listing[2.2 shows an excerpt
of the Maple script for the computation of the Gauss-Legerglradrature rule. After having
computed the coefficients, and gy of the orthogonal polynomials (line 1), the symmetric tridi
agonal Jacobi matri¥n is assembled (lines 2-13). The nodes and weights are obt&ine
computing the eigenvalues 6f and calling the procedureompWeights from Listing[2.1.

Listing 2.2: Excerpt of a Maple code for the computation & @auss-Legendre quadrature rule.

A := coefflegendre(n, a, b):
for j to RowDimension(A) do
A[j, 2] := sqrt(A[j, 21):
end do:
if n = 1 then
Jn := A[1, 1]:
else
Jn := Matrix([convert(A(2 .. n, 2), list),
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2.2. Gauss Quadrature Rules

convert(A(1 .. n, 1), list),
convert(A(2 .. n, 2), list)],
shape = band[1l, 1], scan = band[1l, 1],
shape = symmetric):

end if:

EW := Eigenvalues(Jn):

W := compWeights(EW, A[1 .. n, 11, A[1 .. n+1, 2]):

For thelog-weight functionwy,4, the coefficientsy, andg;, of the orthogonal polynomials have
to be computed recursively. 1n [Che59] an algorithm is pméesd, the so-called Chebyshev al-
gorithm, that can be used to compute the coefficientand 5, via the momentg:,,.. However,
the problem of computing the coefficients by the momentd-moihditioned forwz,,, and com-
putations are only possible for small integers

To remedy this problem we introduce modified moments and usedification of the Cheby-
shev algorithm, which is presented In [Gaul0, Algorithm].2.The modified moments with

respect to the scaled Legendre polynomilz) := 27(12(;1;?2

Py(x) are defined by

my = (f’k, 1) , k=0,..n. (2.12)

WLog

Remark 2.2.2. For the definition of the modified moments, also other sets of monic poly-
nomials can be used, as long as they satisfy a three-ternreaca relation of the form_(2.1)
with known coefficientsy;, and ;.. Our choice of the scaled Legendre polynomials is motivated
by two facts. First, orthogonal polynomials have good ditghproperties in many practical ap-
plications and hence we expect to obtain a well-conditigpedlem. Second, there are closed
formulas for the modified moments, which are given in the sgbsnt theorem.

Theorem 2.2.3([BE14)). Leta,8 > —1, n € Ny and P,ﬁo"ﬁ) denote the Jacobi polynomials.
Then, forn =0

/1 (1—1)*(1+ 1)’ log (%) PP (t) at

- Ia+1)T(B+1) 2.13)
_ _satp+1i\c o .
— g T VIO (a5 9) - w5+ 1)
and forn > 0
1
/ (1-t)*(1+1)? log<¥>ﬂga’m (t)dt
-1 (2.14)

n—12a+ﬂ+1r(n+a+ DI(B + 1).
nT'(n+a+8+2)

- (-1)

Here, we denote bl (z) the gamma function, and hy(x) := % In(T"(x)) the digamma func-
tion.
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2. Orthogonal Polynomials and Gauss Quadrature Rules

Remark 2.2.4. Theoreni 2.2J3 can be used to compute the modified moments
( 76) P N( 7/8)
n%? ,_<}%a ’1>w”ﬁ)
Log
with respect to the scaled Jacobi polynomials

ﬁ(a76) — 2”
n (@) I2ntat+pf+1) "

(z)

for the more general weight function

1+x

ﬁﬁWﬁ=%LﬂWO+m“%< >7aﬁ>—L

Fora = 8 = 0, the general case reduces to the modified momeents (2.12).

Listing 2.3: Maple code for the computation of the modifiedrrmtSm,(f’ﬁ )

modMom := proc (n::integer, a::numeric, b::numeric)::Vector;

local k, m, tmp;

m := Vector(l .. n+1, 0);
tmp := 2-(a+b+1) *GAMMA (a+1) *GAMMA (b+1) /GAMMA (a+b+2) ;
m[1] := tmp*(Psi(a+b+2)-Psi(b+1));

m[2] -2xtmp*(a+1) /(a+b+2) "2;
for k from 2 to n do
m[k+1] := -2*m[k]*(a+b+k)*(k-1)*(a+k) /
((at+b+k+1) *(a+b+2xk-1) *(a+b+2%*k)) ;
end do;
m;

end proc:

Listing[2.3 shows a Maple code for the computation of the ﬁdmdiimomentgn,(f"ﬁ) with the
formulas given in Theorem 2.2.3. In order to save computatitime, the modified moments
are computed recursively. Fbr> 2, there holds

(@) _ (_1)k_12k+a+ﬁ+11“(k+1)1“(k+a+ﬁ+1) Ik+a+1)T(B+1)

k Fr2k+a+p+1) kT(k+a+(+2)

— (—1)h-lgktatAil kL(k) (k +a+ B)T(k +a+pB)
2k +a+pB)2k+a+B—-1)T2k+a+3-1)
(k+a)T(k+a)T(B+1)

kE(k+a+B+D)I(k+a+B8+1)

() 2(k—1)(k+a+B)(k+a)

=L 2k +a+B)2k+a+B-1)(k+a+B+1)

where we used the functional equation of the gamma functieny I'(z) = I'(x + 1).

Listing [2.4 shows a Maple code for the computation of the faiehts o, and ;. of the or-
thogonal polynomials with respect to the weight functiobf)f ). The modified Chebyshev
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2.2. Gauss Quadrature Rules

algorithmmodifiedChebyshev, which is implemented ir [Gau06], computes the coefficients
{ow, Bk }r=o,....n using the modified momen{snﬁf’m}kzo,___,gnﬂ and the coefficient$ay, by, }r=o,... 2n
of the scaled Jacobi ponnomiaﬂ%a’B). The coefficients are computed in the procedutref f Jacobi
according to the following formulas
ﬁQ —a?
H TRk tat Bk tatpt2)
%ZQMﬂHHa+mrw+1)
Ma+p5+2) '

Ak(k + a)(k + B)(k + a + B) L1

2k +a+p)22k+a+8+1)2k+a+p5-1)  —

k € Ny,

by, =

Listing 2.4: Computation of the coefficients, and 5;, for thelog-weight function.

modMom (2*n+1, a, b):
coeffJacobi(2*n, a, b):
modifiedChebyshev(m, ab[1], ab[2]):

B8
I

ab

=
I

Replacing the first line in Listing 2.2 by the code of Listingl2he Gauss-Log rule can be
computed efficiently and stable even for large integersTable[2.1 shows the computational
times for the computation of Gauss-Log quadrature rulesravtthe nodes and weights are
computed up to an accuracy of 16 significant digits. For athpotations 36 digits are used.
We see that our implementation allows the computation ofGhess-Log rule of order =
2048 in approximately2.5 minutes. Further, the overall computational time is dor@ddy the
computation of the eigenvalues, the time for computing tloeiffred moments is negligible.

2.2.2. Error Bounds for Gauss Quadrature Rules

In order to control the consistency error, which is inducgdhg numerical integration in BEM,

it is of main importance to have a computable, sharp, andbigliestimate for the quadrature
error. For(2n)-times continuously differentiable functions the followirepresentation of the
remainder can be proven.

Theorem 2.2.5([Gaul0, Theorem 1.48])Letn € N, f € C?*([-1,1]) and (7, )nen, be the
monic orthogonal polynomials corresponding to the positieight functionu. Then

Fe(e)

Remark 2.2.6. (i) Equation [2.15) implies that the-th order Gauss quadrature rule is exact

Imall2, €€ (=1,1). (2.15)

for all polynomials of degreen — 1. Among all interpolatory quadrature rules of order
this is optimal.
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2. Orthogonal Polynomials and Gauss Quadrature Rules

computational time [s]
ordern )
mod. momentsn;, | mod. Cheb. alg| nodesr; | weightsw;,
64 0.046 0.050 0.057 0.054
128 0.005 0.130 0.222 0.090
256 0.005 0.424 0.846 0.404
512 0.008 1.744 3.245 1.805
1024 0.013 6.806 15.182 7.159
2048 0.111 28.812 87.092 30.876

Table 2.1.: Computational times in seconds for the comjautaif Gauss-Log quadrature rules
with Maple. The nodes and weights are computed up to an asycofd 6 significant
digits. All computations are performed on a desktop computith a 3.5 GHz Intel
Core i7 processor, 32GB DDR3 RAM and OSX 10.9.5 operatintesys

(i) Estimating the expressiomaxgc(_1 1) | f(27)(€)| we obtain an upper bound for the quadra-
ture error. However, the bound requires knowledge of higleioderivatives of the inte-
grand, which is not provided for the application to BEM. Ire thequel, we thus derive
derivative-free error bounds for analytic integrands.

Throughout this section, we denote lfyan analytic function on the domaih c C contain-
ing [—1, 1] in its interior. Based on the Cauchy integral theorem thiofohg derivative-free
representation of the remainder is givenlin [Gaul0].

Theorem 2.2.7([Gaul0, Theorem 2.48])Letn € N, w be a positive weight function ard
be a contour inD with positive orientation that encircles the real interjat1, 1]. Then, the
remainder can be expressed by

1

Ru(f) =5 CKn(Z) f(z) dz. (2.16)
Here, the kernek, is given by
Kp(2) i= Z"Ez; (2.17)

With TheoreniZ.2]7 we obtain the error bound

(C
BalP) = A7 e [, ()] manx [ (2), 218)

where/(C') denotes the length of the contodit

Remark 2.2.8. The bound[(2.18) significantly depends on the cont@uin the literature, see
e.g. [Gaul0D, Gau92, Sch97, GV83], there are used two clagsmmtours, concentric circles
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and confocal ellipses. For the application to BEM there ooceromorphic integrands that may
contain poles near the intervigt1, 1]. Therefore, we derive estimates with respect to confocal
ellipses, i.e.C := 0&, with £, as defined in Definition 2.0.9, as the poles can be avoided by
choosingp > 1 sufficiently small.

While the second maximum in_(2]18) depends on the integfarite first maximum only de-
pends on the quadrature rule. Hence, general error boundsefguadrature rule are obtained
by deriving estimates fomax.cp¢, | K, (2)]. Contour plots of the kernel&,, for the weight

functionswy,, andwy,., are given in Figuré 2]2.

(a) Gauss-Legendre weight functiaf,cg. (b) Gauss-Log weight functiofrog.

Figure 2.2.: Contour plot of the kernél,, for n = 8 for different weight functions.

The following lemma collects some useful properties of thmkl.

Lemma 2.2.9. Letn € N, w be a positive weight function anl,, as defined in2.17) Then,
the following properties hold.

(i) K, is analytic onC\[—1, 1] and hasn simple poles if{—1,1).
(i) For z — oo there holds

Kn(z) = O(z72"71). (2.19)

Proof. The first property is a direct consequence of Lenima P.1.4t(i@ second statement is
proven in [GaulO, Equation (1.3.43)]. O

With property (i) in the above lemma, we have an asymptaticmate of the kernel for general
weight functions on large ellipses. However, we are alser@sted in reliable error bounds and
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2. Orthogonal Polynomials and Gauss Quadrature Rules

thus in the behavior of the kernel for small ellipses. Wedfane analyze the kerné{,, with
respect to the weight functions;., andwr,, more closely. For the Gauss-Legendre weight
functionwy.., we have the following result.

Lemma 2.2.10([DR75, Equation (4.6.1.10)])Letn € N be sufficient large and<, be the

kernel associated tor.,. Then, there holds
27

Bnle) = (z+ (22— 1)1/2)2n+1’ (2.20)

where the symbol Z” means that the quotient of the left-hand and the right-haide ap-
proaches to one for — oo.

With the asymptotic estimate (2]20), the well-known ermmuthd for the Gauss-Legendre quadra-
ture is a direct consequence.

Theorem 2.2.11.Letn € N be sufficiently largep > 1 and f be analytic inf,. Then, the error
of then-th order Gauss-Legendre quadrature rule is bounded by

m(p+p ) -
ARV s 1<p<p. 2.21
P gggé!f@)!, p<p (2.21)

IR (f)] <

Proof. For z € O&; we have|z + (22 — 1)1/2| = p. With (Z20) and the inequality(&;) <
7(p + p~1) we conclude the proof. O

Remark 2.2.12. (i) Theorem 2.2, 11 shows that the Gauss-Legendre quadratarerges ex-
ponentially with respect to the quadrature order for amalytegrands.

(i) The asymptotic estimate of the kerngl (2.20) yields arptrerror bound, provided the sec-
ond maximum in[(2.18) can be estimated sharply.

(iii) The optimal bound is obtained by

(54 51
Ro(f) < inf (M o \f(z)\>-

1<p<p prtl  ceog;

However, computing the optimal error bound for the a pri@tedmination of the quadra-
ture error is inefficient and hence generally omitted. Femfore, for controlling the con-

sistency error induced by the quadrature rules for Galeskitollocation methods, we are
mainly interested in the asymptotic behavior of the quadeatrror. Hence, we choose
p — p althoughlim;_, , max.epg; | f(2)| may tend to infinity, iff contains a pole 0f&,.

We now investigate the kernel, which is associated to thghtdunctionwr,.,. Since there are
no closed formulas for the kernel, and hence no asymptdtimates, we start by investigating
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2.2. Gauss Quadrature Rules

the behavior of; on confocal ellipses. The first coefficient of the three-term recurrence
relation is given by

N (t 0, T0) w0 1
0=—"—"" = —=
(70, T0)wp o 2

and hence

m(z)=2z—ay =2+ =

2
2.22)
Ytt+1/2 1+t 1 z—1 (
= — 1 —_— dt - - d.l - 2'
== [ S s () = () ane (55
Remark 2.2.13. The di-logarithm is defined by
. Z logt
dil = dt.
ilog(z) /1 T+
Note the following relationship to the poly-logarithdilog(z) = Liz(1 — 2).
With (2.22) we get
z—1 2
K =dil - .
O e
We see that{; has singularities for = —1 andz = —%. Since the algebraic singularity
z = —% is stronger, the maximum value &f; near the real interval-1, 1] is located in the

vicinity of —1. On ellipsest,,, i.e. z := z(p) = 3 (pe’? + p~Le~*%), this yields

1 2
argmaxco 2x) | K1(2(¢))| — arccos <—§> =3m asp— 1.

For large values of the value ofK; is determined by thdilog-term. Hence, the maximum of
the kernel is attained on the negative real axis for suffidemgep, i.e.

argmax e o,2r) | K1(2(0))| = 7.

Figure[2.3 (a) shows the values |df;(z(y))| over¢ on different ellipsest,. We see that the
behavior of the kernel coincides with our theoretical cdasations, i.e. for smap ~ 1 the

maximum is attained fop = %w and due to the symmetry with respect to the real axis at

~ 4
@Ngﬂ'.

Similar results are also obtained for the higher order Kerfg, n > 1. Figure[2.8 (b) shows
the results fom = 3. We see that for smalp we have peaks that correspond to the zeros
-1 < xz9g < .. <z, <1ofm, Inparticular, the maximal peak df,, is located in the
neighborhood of the zers, closest to—1. Lemmd2.1.4 (ii) implies that) — —1 asn — oo

and hence the maximum value of the kernel is attained at = for sufficiently largen and
smallp. For large values g, the numerical examples indicate that the maximum is atthfor
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2. Orthogonal Polynomials and Gauss Quadrature Rules

—p=1.01
—p=1.1
61 —p =1.2"1
o —p=1.5
= 4 —p=2
S p=2.5
= —p =3
=2 .
=<
_2 -
0 /3 2/3m ™ 4/37 5/3m 2m
2
(a) Kernel forn = 1.
w0 —,=1.01
8- —p=1.1
—p=1.2
o —p=1.5
= 4r —p = % .
~ p —_ .
x Ll —p =
ko p=?
= 0
Eﬁi////////////————\\\\\\\\\\\\_
‘4A
—6//’\
_8 1 1 1 |
0 w/2 T 3/2m 2T

(b) Kernel forn = 3.

Figure 2.3.: Kernel K, (z(y))| with z(p) = 3 (pe'® + p~le~¥) over for different values of
p>1.

p = .

Since we do not know an analytical result for the maximum efkérnel forn > 1, we derive an
upper bound based on numerical experiments. In order tanodtsimple bound for the kernel,
we choose the following approach:

c
max |K,(z)| < , ¢>0. (2.23)
%&' ) (p—1)(p+1)p*1

We note that the bounf (2123) describes the behavior of imekthat is observed in Figure 2.3.
In particular, the singularity of the kernel &g, which is relevant for the maximum value of the

kernel on&,,, is considered in the bound by the te(m— 1)—1. Furthermore, for large values of
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2.2. Gauss Quadrature Rules

p the bound behaves lik@(p—2"~1), which with coincides the behavior that is proven for the

kernel in [2.19).

Remark 2.2.14. For the subsequent numerical experiments, the associatetidns of the sec-
ond kind p,, have to be evaluated for large order Although p,, satisfies the same three-term
recurrence relation as,, the recurrence is unstable foy and hence inappropriate for the eval-
uation.

The instability can be explained by minimal solutions. Aui@n f, of a difference equation
Y1 = (2 — a)yr — Bryk—1, k € Ny, is said to be minimal if

lim & —0
n—o0 yn

for all linearly independent solutiong, of the difference equation. 1h [Gaul0, Theorem 1.43],
it is proven thafp,, is a minimal solution of the recurrence relatign {2.1) for C\[—1, 1].

For the evaluation of minimal solutions a stable algorittasdd on continued fractions is given
in [Gau81] and a MTLAB code is provided by [Gau06], which is used for the numerizpke
iments in the remainder of this section.

In order to obtain an explicit upper bound for the kernel, wiedninec numerically. Therefore,
we define

cn(p) == max |K,(2)| (p — 1)(p+ 1)p*" !

z€€p

and investigate the dependencyegtp) on p andn. We start by investigating, (p) with respect
to p. The results are illustrated in Figure 2.4, whegép) is plotted againsp. For the test case
we choosep > 1.01 andn < 512, which covers most practical applications. Both plots in

8 ar
T 3.8f
6 3.6
A57 —
~ 334
5 J 3.2
3
2 3
1 2.8
o 2 3 4 5 28 20 40 60 80 100
p p

Figure 2.4.¢,,(p) overp for n < 512, small values op (left) and large values gf (right).

Figure[Z.4 show that for alt < 512, ¢,,(p) behaves similarly. It reaches the maximum point for
p € [1,2] and stabilizes for large values pf In particular,c, (p) is bounded for all values of
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2. Orthogonal Polynomials and Gauss Quadrature Rules

and
max,>1.01 cn(p)

min,>1.01 cn(p)
which means that the bound &f,, overestimates the real value at most by a facta. of

< 8§,

In the next step we investigate the dependencyiak,~ o1 c,(p) onn. The results are illus-
trated in Figuré 2J5. We see thatax,~1.01 cn(p) is bounded for all values ot and remains

8
7.8 :
7.6 :
~~
=
2 14 :
Q
Za 72
S 72 .
g
7 -
6.8 :
1

1 1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500
n

Figure 2.5.:maxpe[1_017100] Cn(p) overn.

constant for large values of Thus, by choosing = 8 in (2.23) we obtain a reliable bound for
the kernelK,,, n < 2048. The resulting error bound is given in the next "theorem”.

"Theorem” 2.2.15. Letp > 1 and f be analytic in€,. Then, the error of the-th order Gauss-
Log quadrature rule is bounded by

~2 1~—n
uauwg4;+> 2

Proof. With (2.18), (2.2B) and < p < p there holds

£(&p)
K
o gggé! n(2)] gggé!f@)!
8m(p+p ")
= G- )G+ Dt )

72+ 1
L max )

1<p<p. 2.24
=) ngggﬁ\f(zm <p<p (2.24)

[Bn(f)] =

=4
U

Remark 2.2.16. The numerical experiments indicate that the bound in The&e.15 is reli-
able for allp > 1.01 andn < 2048. However, Figuré Z]4 shows that the error may by over-
estimated by a factor of 8 in some cases. Better bounds cahthmed by further parameter
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2.2. Gauss Quadrature Rules

optimization with respect tp andn. Since the constant i (2.24) is only included logarithmi-
cally in the consistency estimates for BEM, we use the sirbplend [2.2%) for our application.

For the computation of the Galerkin entries, we also appigde quadrature rules. Therefore,
we generalize the results of Theordms 2.P.11[and 2.2.15.

Theorem 2.2.17.Letn := (n1,n2) € N2, w® € {wrey,wrog}, and :::,(f) and w,(:) be the
nodes and weights with respect to the weight funatiéh, i € {1,2}. Furthermore, the tensor
guadrature rule is given by

[ [ stereoni ot = 35055 6809
7j=1

If £(-,y)is analytic on,, forall y € [-1,1] and if f(z, ) is analytic on&,, forall = € [-1,1],
p1, p2 > 1, then there holds

IRa(f) < il max Ce (pa,na, f(,-) + p) max C (p1,n1, £())-
ze[-1,1] ye[-1,1]

Here, we denote b}y(l) the zeroth moment with respect.t§) and byC, i) (pi, ni, f) the bound
for the remainder of they;-th order Gauss quadrature rule with respect.t), which is given
in Theorem§ 2.2.11 ald 2.2]15, respectively.

Proof. The proof is based on the idea pbf [SaSdh97, Proposition 1dJh&Ve

/ / fz,y) w )dww y)dy — Zwl)Zw,f)f )
7j=1
1,1
[ ]t Vs o)y - / Zw,?’f(x,w,?’)w(l)(x)dw
/ Zwk (z xk dw—Zw(l Zw j )).
7=1

=1

Applying the triangle inequality we get

//fxy (z)dz ' (y)dy — /Zw xwk ywD (z)da:
/Zw”fmk Zw”Zw”f 2
L= j=1

[/ flz,y)w 2) y)dy — Zwlf)fxxk ] (x)dx
S5l [/11 a2 O e — 3l f<x§”~ff”]

HI<
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2. Orthogonal Polynomials and Gauss Quadrature Rules

Here,RS) and Rﬁf) denote the remainders for the integration with respeat amdy, respec-
tively. Since the integrang is analytic on—1, 1] x&,, and€,, x [—1, 1] we can apply Theorems

[2.2.11 and 2.2.15, which completes the proof.
[l
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3. High-Order NURBS-Based Boundary
Element Methods

Discrete ansatz spaces arise when solving the boundagrahtequations introduced in Sec-
tion[I.2. In standard BEM implementations, e.g. [BBF13, AR#&,/SBAt15], the boundary

I" is approximated by a polygoh;, and piecewise polynomial basis functions are chosen for
the ansatz space. For high-order collocation or Galerkithauts, which use ansatz functions
with high polynomial degrees, the geometric error inducgdhie boundary approximation di-
minishes the convergence rates. In order to preserve tlmalptonvergence rates there are
different approaches depending on the choice of the baselsfasthe boundary representation
and the ansatz space. Throughout this work, we consider gmeroachessoparametric, iso-
geometricand NURBS-enhancedmethods. These three approaches and their dependency on
the functions chosen for the boundary parametrization aedta space are summarized in Table

B.1.

ansatz space
polynomial NURBS

polynomial isoparametric
NURBS NURBS-enhanced isogeometric

boundary param.

Table 3.1.: Different versions of BEM depending on the chaif the basis functions used for
the boundary parametrization and the ansatz space.

Isoparametric methods, which were introduced [n [Zie71], approximatelthendaryl” by the
same polynomial basis functions that are used for the aspatz. While the geometrical error
decays with the same order as the collocation or Galerkior éor the hypersingular integral
equation, the convergence rates are in general diminishé¢ldebgeometrical error for Symm’s
integral equation.

Isogeometricanalysis, first introduced in [HCBO5], extends the idea op@rametric methods
by using a common basis for the boundary parametrizatiorttenensatz space without induc-
ing a geometrical error. In practice, the geometry is design computer-aided design (CAD)

49



3. High-Order NURBS-Based Boundary Element Methods

software and represented with NURBS basis functions. Therethe same NURBS basis is
also used for the ansatz space, which in general resultsaitioaal ansatz space.

The new isogeometric approach has several advantages asi@mhto conventional methods.
While in conventional methods the exact representatiorhefgeometry is approximated by
piecewise polynomial meshes, this mesh generation prasetisninated in isogeometric anal-
ysis by directly using the CAD representation of the geoyndtiis mentioned in[[HCBO5] that
mesh generation takes a huge amount of the overall simualatiocess, hence the simulation
time is significantly reduced in isogeometric methods. Meeg, no communication with CAD
is required for repeated mesh refinement, since the exadt nas be directly refined using
simple algorithms available for NURBS. Another advantagthat besides the classidal and
p-refinements, where the triangulation is refined and thenohjal degree of the basis functions
is increased, new refinement algorithms are developed lmastite variable global regularity of
the NURBS basis functions.

Although isogeometric analysis has found many applicattorihe finite element method (FEM),
see e.g.[[CHB09, WEC0B, BHO8, BCR6, BBH"10, CRB06], the most suitable method for
isogeometric analysis is BEM. Usually, the geometry is aefiby its surface parametrization in
CAD and a volume mesh has to be generated for the applicatifinite elements. Since BEM
requires the discretization of only the domain’s boundaoyadditional volume mesh has to be
generated. However, the application of isogeometric &ty BEM has been investigated only
very recently in e.g/[SSEL3, SBT"12,[FGP15].

Finally, we also consider thdURBS-enhancedapproach, which was introduced for FEM in
[SEHO08] and further examined in [SFH11]. NURBS-enhancethows combine the classical
methods with the idea of eliminating the geometrical ermidane in isogeometric methods.
While the geometry is represented exactly using NURBS ayragolynomial basis is chosen
for the ansatz space. Hence, the advantages of isogeomudtimds - i.e. the absence of a
geometrical error, the elimination of the mesh generatiamtgss as well as the elimination of
the communication with CAD during the mesh refinement preeese transferred to NURBS-
enhanced methods.

The original idea of NURBS-enhanced FEM was to preservefflogemcy of conventional FEM
implementations by using the standard integration for tigrmmial ansatz functions on interior
elements. While for the application to BEM there is gengrall gain in efficiency as compared
to isogeometric methods, stability properties are entafmehigh-order methods, specifically
by using Legendre polynomials and their antiderivative®asis functions for the polynomial
ansatz space.

Since both isogeometric and NURBS-enhanced methods aed basa NURBS representation
of the boundary, we refer to both methods as NURBS-basedaietivithin the scope of this
work. In order to define the bases for the discrete ansatespddNURBS-based BEM, we first
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3.1. Non-Uniform Rational B-Splines

introduce NURBS curves used for the boundary parametoizatVe then introduce the discrete
ansatz spaces used for the implementation and concludelthger by describing different
strategies of mesh refinement.

3.1. Non-Uniform Rational B-Splines

For the introduction of NURBS, we are guided by [PT97] and®% We only state the main
properties of the NURBS basis functions and curves as wélirlamental algorithms used for
mesh refinement.

Definition 3.1.1. Letg,n € Ny.

() For -1 = & < -+ < &g = 1, we introduce a non-uniform knot vect@ :=
{&0, -, &ntq}, Which we call open iy = ... = §, and§,—1 = ... = &,44. Further,
we define the unique knot vectar = {Co, -+, Gm } With (y < ... < (,,, and associate with
each unique knaf; a multiplicity r; such that

E = {05105 s Gmy s G }-
ro times rm times
In particular, we havg ", r; = n + ¢+ 1. We assume; < ¢ + 1 and refer to(; as

nodes;j = 1,...,m.

(i) Fori=0,...,n + g and¢ € [—1, 1], we define the b-spline basis functions recursively by

1, &< i
Bio(€) = O 'fl § < &it1
, else.
§—& Sitqr1 — &
B; =B, — - B _ . 3.1
,q(f) gi—}—q _ gz ,q 1(6) + §i+q+1 _ §i+1 +1,q 1(6) ( )

(i) Let wg >0,k =0,...,n, be positive weights. We define the weight functioby

w(€) = wi Brgl)
k=0

and the NURBS basis functions by

Wk

w(€)

(iv) For control pointsQ;, € R?, k = 0, ..., n, we define the NURBS curve by

Rk,q(g) = Bk,q(g)

v:[-1,1] — R?

£ 98 = Rigl€) Q.
k=0
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3. High-Order NURBS-Based Boundary Element Methods

Remark 3.1.2. Most common geometries like circles, ellipses, and conégs e represented
exactly using NURBS curves (see e.q. [PT97] Chapter 7). Eleicmany computer aided
design (CAD) software programs NURBS curves are used fointieenal representation of the
geometries.

Example 3.1.3. The NURBS parametrization of a quarter circle with degree2 is given by
E={-1,-1,-1,1,1,1}
1
- =q1,—, 3.2
{wk}k 0,...,2 { \/5 } (3.2)
{Qk}k =0,...,2 — { 070)7 ) ( )}

The unit circle can be parametrized by concatenating foartgucircles. We obtain

== 1,—-1,-1 L1 0,0 11 1,1,1
== {t g 00 g
1 1 1 1
{wk}kio,...,S = {Lﬁa ’E’ aﬁ’laﬁal} (33)
{Qk}k:O,...,S = {(LO)’ (1’ 1)’ (0’ 1)’( 1’ 1)’ (_1’0)’ (_1’ _1)’ (0’ _1)’ (17 _1)’ (1’0)}'

0.8+
0.6
0.4}
0.2+

0.8+

0.6

02} 0.4+
041}
0.6}

-0.8+

0.2+

Figure 3.1.: NURBS parametrization of the unit circle withntrol polygon (left) and corre-
sponding rational basis functions (right).

The following lemma collects some useful properties of NIBRENd b-spline basis functions
and curves.

Lemma 3.1.4. With the notation of Definition_3.1.1 the following propesgtihold.

() The b-spline and NURBS basis functions form a partitiburity, i.e. >, By 4(§) =
> ko Riq(&) =1for & € [—1,1].
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3.1. Non-Uniform Rational B-Splines

(i) The b-spline and NURBS basis functions have local sttppe. supp B, ; = supp Ry g =
[flm §k+q+1)-

(iif) The b-spline and NURBS basis functions are r; times continuously differentiable &f,

7=0,....,m.

(iv) The b-spline basis functiorts;, ,, £ = 0, ...,n, form a basis of the space of all piecewise
polynomials of degreg, which areq — r; times continuously differentiable g, j =

0,..,m.

(v) The derivative of the b-spline basis functions is given b

B, —g ( Big—1  Bijig-1 > .
4 Sktg =k Sktgr1 — Skt

(Vi) fwy = ... = wy, =1, thenw(§) = 1 and the NURBS basis functions reduce to the b-spline
basis functions.

(vii) Atall nodes(; the NURBS curve is ¢ — r; times continuously differentiable.

(viil) Both components Oﬂ[@,éﬁm} (j = 0,...,m) are rational functions of degreg with non-
vanishing denominator.

(ixX) Letwpmin = ming—q »wk. The derivative is bounded by

----------

2
max (6] < n(m) e 1@ = Qiall

¢€[-1,1] Wmin / 0<i<n &pg—1 — &j—1

Proof. A proof of (i)-(viii) is given in [PT97] and the estimate inxfiis proven in[[Far99, page
164]. O

In the following we introduce some basic geometric algonigh which we will use for mesh
refinement in Section 3.3. A detailed derivation of all aifons is given in[[PT97, Chapter 5].
Let v(t) = > iy Riq(t)Qi be ag-th degree NURBS curve associated with the open knot
vectorZ, weightsw;, and control points); := (¢\", ¢!”). The two dimensional NURBS curve

is projected in the three dimensional space by defining thghtexd control points

Qf = (wea) wiq” ) (3.4)
and setting

1) =Y Brp(t)Q-
k=0

All subsequently presented algorithms only use the thieeiasional projection® (t) of v(t).
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3. High-Order NURBS-Based Boundary Element Methods

Knot Insertion. Knot insertion is a fundamental algorithm that can be used@idividing
NURBS curves and changing the regularity of the NURBS basistfons. Additional knots are
inserted into the knot vect& without changing the curve parametrically or geometncall
Inserting the knok € [, &,41) iNto = we obtain the new knot vector

= {507 ceey gka 57 £k+1> ceey £n+p}'

(1

Hence, the number of NURBS basis functions associatefl i increased by one, i.e. the
NURBS curve has a representation

n+1

'y“’(t) = Z Bj7qQ?.
j=0

The new weighted control poin@?,j =0,...,n + 1, can be computed by

N

QY = a;Q + (1 — a))QY, (3.5)
with
L, j<k-p
= £j§_p£j£j’ k=—ptl<j<k
0, j>k+1.

Hence, inserting a knot into the knot vector changes theslsapresenting the curve but not the
curve itself. This implies, that the continuity of the cureenains unchanged while due to prop-
erty (iii) in Lemma[3.1.4 the continuity of the basis functsis reduced by inserting additional
knots in the knot vector. Therefore, the knot insertion athm allows to control the regularity
of the basis functions without changing the regularity & tairve.

Furthermore, repeating an existing knot until its multijtyi equalsg + 1 splits the curve. Re-
peating this procedure for all interior knots yields a nagibBezier splitting of the NURBS curve.

Knot Removal. Knot removal is the inverse process of knot insertion. Aetior node( € =
with multiplicity r is called removable if the curve’ is p — r 4 1 times continuously differen-
tiable in¢, i.e. additional regularity of the curve is assumed.
Let( € = be a removable node with multiplicity > 1 andk € {0, ...,n + ¢} be the index with
¢ = & # &k41- The new weighted control pointfé;;u can be computed by

gp = U0 0l kogsis

. “ —(1—a;)QY_ 1
QW:QJ ( )@ 5(2k—q—r+2)§j§k—r

(2k—q—r—1),

Q
S
DO =
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with ay := &f’l%fj& Again, the curve is neither changed geometrically normpatécally but
q

the regularity of the basis functions @ts increased by one.

Degree Elevation. Elevating the degree of a curve bye N without changing the curve geo-
metrically or parametrically is called degree elevatioa, i

7
V() = BjgrsQ5.
j=0
Since the curve is not changed parametrically, the cortirudithe curve at the nodese = has
to remain unchanged. Property (vii) in Lemfma_3.1.4 impltes the multiplicity of each knot
in the knot vector has to be increaseddy.e.

é = { 0y --s én—i—q—l—s(m—i—l)} = {C(]a E) CO? vy Gy vens Cm}
ro+s times rm-+s times
For the computation of the new weights and control pointsofitgm[3.1 can be used, which is
introduced in[[PT97, Chapter 5.5].

Algorithm 3.1 Computation of new control points and weights for degreeatien

INPUT: ¢-th degree NURBS curve defined By Q. andwy, k =1, ..., n.
OUTPUT: (¢ + s)-th degree NURBS curve defined By Q, andy, k = 1,...,n 4+ sm.

1: Extract the Bezier segments of the curve by repeating atimtknots(q + 1) times using
the knot insertion algorithm.

2: Degree elevate each Bezier segment.

3: Remove all interior knots untit; = r; 4+ s using the knot removal algorithm.

3.2. Discrete Ansatz Spaces

Let Q c R? be a Lipschitz domain with boundaiy := 9€2. We introduce a triangulation and
its parametrization in the following definition.

Definition 3.2.1. (i) Let N, € Nandy : [-1,1] — I be theg-th degree NURBS parametriza-
tion of I with open knot vector

E = {C07 b CO? A CNe? ) CNQ}?

ro times T/, times
weightswy, and control point), k = 0,...,n, as given in Definition 3.111. Far =
1,..., N, we introduce boundary elemenfts:= ~([¢;—1, ¢;]), which form a triangulation
T={Ti,i=1,..,N.} of " as in Definitior{ 1.41.
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3. High-Order NURBS-Based Boundary Element Methods

(i) We denote the number of vertices of the triangulatioty N,.
(iii) For each element; € 7,i =1, ..., N, we define its local parametrization by

= i(t) == <(t h 1)(% = G-1) + Ci—l) -

(V) Leth € L*°(I") be the mesh width function with|inyr,y = |Ti| =: h;, where|T;| :=
fC_I |7(t)| dt denotes the arc length of the elemé&ht Further, we introduce the mesh-
width ratio

h;
J

(v) Letp € L>(T") be the polynomial degree function wighy, =: p; € Ny. If the polynomial
degree function is uniform, i.@y = ... = par,, We writep = p.

(vi) Letk € L*°(T") be the regularity function witk|r, = ¢ — r; + 1.

Remark 3.2.2. Throughout this work, we assume that eitfierc R? is an open arc of is
closed andV, > 1. This assumption implies that the local parametrizatigns = 1, .., N, are
bijective.

Now we are in the position to introduce the bases for the miffe ansatz spaces. We start
with the isoparametric and isogeometric ansatz spacesewte use transformed b-spline and
NURBS basis functions.

Definition 3.2.3. Let~y be the NURBS parametrization Bfas given in Definitiof 3.2]1. Further,
let Ry == Rpqov ', k = 0,...,n, whereR;, , are the NURBS basis functions of degrge

defined by the same knot vector and weights that are used féfe define the rational ansatz
space by

R(T,h,q,k) := span {ﬁk, k=0, ,n} (3.6)

Remark 3.2.4. (i) The ansatz space for isoparametric methods is obtaipedtting all weights
wr=1,k = 0,...,n. Then, the rational ansatz spaBéT , h, ¢, k) changes over the poly-
nomial ansatz space(7T, h, ¢, k) introduced in Section_11.4.

(i) Using NURBS and b-spline basis functions, respecyivallows for the easy construction
of ansatz spaces with variable and high-order global regylarherefore, b-spline basis
functions are often used for collocation methods, wherditje-order regularity is needed
in the theoretical analysis.

For the construction of the ansatz spaces for NURBS-enkamethods, we use transformed
Legendre polynomials and Lobatto shape functions.
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3.2. Discrete Ansatz Spaces

Definition 3.2.5. Let 7 and~ be defined as in Definitidn 3.2.1.

() Fori = 1,..,N,, we defineP”) := P, o~', k € No, andN" := Ny o~ ', k € N,
whereP, and NV, are the Legendre polynomials and Lobatto shape functiodsfased in
Definitions[2.1.B and 2.1.10, respectively.

(i) The basis of the ansatz spaS€T, h, p, 0) is given by
Ne o
UL - B (3.7)
=1
and the basis of the ansatz sp&té, h, p, 1) is given by
~ ~ Ne ~ ~
{He, ..., Hy, b U (U {N(Z),...,N;:L1}> , (3.8)
i=1

whereH oy € Py ([—1,1]) with #;(v(Cx)) = d;x denote the hat functiong,= 1, ..., V,..

Remark 3.2.6. (i) In[Heu92] and[[HS96] the condition number of the singigdr Galerkin
matrix for polygonal boundaries is analyzed. In particulais proven that taking the
Legendre basis as defined [n_(3.7) yields condition numbeesder O(p“) with oo = 3.
The numerical results presented(in [Ban13] indicate thettndition number only grows
linearly inp if a diagonal scaling is applied to the Galerkin matrix. $anresults are also
observed in our numerical examples for curved boundariéiseitater chapters.

(i) Although the Legendre polynomials and the Lobatto shamction yield good condition
numbers in the Galerkin matrix, it is difficult to construcisatz spaces with higher global
regularity. Hence, these basis functions are only usechtbahsatz spaceq 7, h, p,0)
andS(7,h,p,1).

(iii) Since Lamé problems are two-dimensional problenesdhsatz spaces are defined by the
tensor producf, x X,, whereX, = {®;, k = 1, ..., N'} denotes one of the above defined
ansatz spaces. The basis of the tensor product space istbarg{(®.,0), (0, P), k =
1,...N}

Example 3.2.7.Let I" be an open arc parametrized by the NURBS curve with degree2,
knot vector= = [-1,—1,-1,-0.5,0,0, 1,1, 1], weights{w, }x—o,...5 = {1,2,1,0.5,1,3} and
control points{Qy }x—o... 5 = {(1,0),(2,2),(3,-1),(5,2.5),(6,2),(7,0)}. The polynomial
degree vector is given by = [1, 3,2]. The NURBS curve with control polygon and the basis
functions of the three ansatz spad®d , h, ¢, k), S(7,h,p,0) andS(7, h, p, 1) are depicted

in the Figure$ 3]2 arid 3.3.
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3. High-Order NURBS-Based Boundary Element Methods

Figure 3.2.: NURBS curve as defined in Exaniple 3.2.7 withrobpiolygon (dashed).

In the remainder of this section, we derive some importamp@rties of the NURBS parametriza-
tions~; that are used for the implementation of collocation and Ralenethods. In particular,

we proof that the local parametrizations are analyticatigredable and determine their domain
of analyticity.

Lemma 3.2.8.For p > 1, let £, denote the ellipse with focii-1 as defined in Definition 2.0.9.

(i) ~i:[-1,1] — T; is bijective and there exists; > 0, such that for alls, ¢ € [—1, 1]

1 _— [7i(t) = i(s)] N _
oi! < min 14:(8)| < ST < (ax 1%:(8)] < .

(i) For a sufficiently small arc length;, we get

h; w
3 < e [ < g

(i) There existsp; > 1 such that both components f are analytically extendable to the
complex ellipse,, with semi-axis surp.
(iv) There existg, > 1 such thaty;| is analytically extendable to the complex elliggg with

semi-axis sums.

Proof. (i) With Remark:3.2Z.R2 and; € T, and since is a Lipschitz domain there exists a
bi-Lipschitz continuous parametrization, which impli@s (

(i) For the first inequality, we obtain

hy 1/1r'<t>\dt< max[54(¢)|
- = = 4 ~ X 4 .
2 24 i ec[-1,1] b

For the second inequality, we assume a rational Bezier septation with control points
Q. and weightsyy, of ~;, Which can be obtained by inserting the kngts; and{; up to
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0.8+ 1

0.6+ 1

0.4+ 1

0.2+ 1

| |
Ot T —I i

o 1 2 3 4 5 6 7 8 9 10
arc length

(&) NURBS basis function®y, k = 0,...,5.

08} .
06 .
0.4} 1
0.2

1] | I I
Rl \ / f il
-0.2+ g

0.4 1

0.6} 1

0.8} 1
1
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arc length

(b) Legendre basis functiond'”, i = 1,....4,k =0, ..., p;.

1k 4
05} |
oH |
Ll VI ~_J
-05+ 4
_li\ L L L L \7
0 2 4 6 8 10

arc length
(c) Lobatto basis function&lgi),i =1,..,4,k = 3,...,p; + 1, and hat functions

Hi k= 1,...,4, respectively.

Figure 3.3.: Basis functions of the ansatz spaces in DefivsiB.2.B and3.2.5 plotted over the
arc length of the boundary. The vertical bars on the x-axestéethe multiplicity
of the knot in the knot vector.
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3. High-Order NURBS-Based Boundary Element Methods

multiplicity ¢ + 1. In [PK94] it is proven that);, = v (&) + O(R?). Hence, we get with
Lemmd 3.1} (ix)

. Wmax 2~ !
. < g—= ( ), — ( ) .
fg[l_al}fl] |WZ(£)| a qwmin OSII];?}E” H F JH

w
< max ) o - Oh2
< g max (&) = (&)l + O7)

< ¢ 4 O(h2).

Wmin

For sufficiently smalk; we getmaxec_q 17 [5i(€)] < g=e= h;.

(iii) Due to (viii) in Lemmal3.1.4 both components of are rational functions with poles
z; € C\[-1,1] (j = 1,...,q). Thus, there exists; > 1 such thatz; ¢ £, and hencey;
can be analytically extended &, .

(iv) Since both components of are analytically extendable ), , both components of; are
analytically extendable t§,,, .
Let f(t) := [$i.1(t)]* + [%:.2(t)]*. Then,f is an analytic function og,, and with (i) we
getf(t) # 0forall t € [—1,1]. Due to the continuity off there existd < ps < p; with
f(t) #0fort e &,,. With [EBOE, Theorem I1.2.9] there exists a holomorphicdtion
h: &, — Cwith h? = f on &p,- The holomorphic functiork is the unique analytic
extension of+;|, sinceh(t) = |§;(t)| for t € [—1, 1] ([EBO6], Theorem 111.3.2]).

[l

Definition 3.2.9. Leti = 1,..., NV, and~; be the local parametrization @};. We denote by
&y, the ellipse with maximum semi-axis supp as defined in Definition 2.0.9, in which both
components ofy; andhi\ are analytically extendable. Further, we identjfyand|%;| by their
analytic extensions if no ambiguity occurs.

Proposition 3.2.10. The derivativey of a ¢g-th degree NURBS parametrization is a piecewise
rational function with numerator of degre¥q — 1).

Proof. Defining P(t) := >"}'_ Bk.q(t)wi Qi we have

. w(t) P'(t) — W' (t)P
0= SOPO 0P

The derivative of the b-spline polynomials is given By () = ¢ <B’“*“‘1(t) — Brr1g-1(0) )

[ Ekrqr1—Ekt1
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3.2. Discrete Ansatz Spaces

(Lemmd3.1.1 (v)). Therefore, we get

1) PO~ OP() = 4 303wy Qk(qu e )Bj,q@)

Skrqg =k Sktgr1 — &kt

k=0 j=0
n n By, q71(t) BkJrl q71(t) >
R 9 \gs - : B 4t
! kzoj‘zowkwj 9 <fk+q =& Chrgr1 — Skt .q(t)

v o (On — O [ Bra1@) Bk+1,q1(t)> '
—QZZ kwj (Qk — Q) <£k+q_£k — B;q(t)

Skrqr1 — &kt

k=0 j=0
n n Bk} q—l(t) Bk+1 q—l >
1 @k \ &, - : B gt
kzojgo 5,k <§k+q—§k fk+q+1—£k+1(t) JQ( )
Wlth a]k' = Wk;w] (Qk - Q]) Sinceajk = _ak‘j we have

w(t) P'(t) — ' (t)P(t)
B n n " thil(t) B Bk+1,q71(t) )
1 Z Z h |:<£k+q — &k - £k+1> Biall)

Pt Ektq+1

- <Bj,q1(t) _ Bitig1(®) >Bk,q(t)} :

§ita— & Ejrgr1 — &1

Applying the recurrence relatioh (3.1) we get
(Bk,q—l(t) _ Biyig-1(t) )Bj7q(t) 3 (Bj,q—l(t) _ Bitig-1(t) )Bk,q(t)

Chrg — &k Chtqr1 — Eht1 $ivq— & Ejrgrr — i

- (Bk,ql(t) ~ Bry1ga(t) > < t=& qu1(t)+MBj+1q1(t)>

Ekrq — &k kg1 — Skt §iva — & Eitat1 — &j+1

B (Bj,ql(t) _ Biti4-1(0) > ( t =& qu_l(t)Jr%Bqu 1@))

Eivg =& Ejrgr1 — &jt1 Ekvqg — &k Ehtgr1 — Skt

_ (Bk,pl(t) ~ Bryiga(t) > <_ & qu_l(t)—i-&lgj-l—lq—l(t))

Ekrq — &k kg1 — Skt $ivq — & Ejtar1 — &j+1

_ (Bj,ql(t) _ Bitiga(®) ) <_ Sk By, q—1(t)+§k+—q+18k+1 q—1(t)>.

$iva =& Sjrgr1r — & Ektq — Sk Ektgr1 — kg1
Finally, we obtainw(t) P'(t) — w'(t)P(t) € Porg—1)([—1,1]).

O

Remark 3.2.11(Computation of the domain of analyticityAs we see in the subsequent chap-
ters it is necessary to explicitly determine the domain alitity of the local parametriza-
tion ~;. In particular, we compute the semi-axis sppas defined in Definition 3.2.9 in order
to obtain accurate error bounds for the quadrature rulescoring to the proof of Lemma
[3.2.8 (ii) and (iii) we have to compute the complex zeros dralgoles of the rational func-
tion f(z) == [4i.1(2)]> + [%i2(2)]?. If we denote the numerator 6f by g = (g1, g2) and the
denominator by; we have

fo) = B E P

wi(2)*
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3. High-Order NURBS-Based Boundary Element Methods

The poles off (z) correspond to the roots af;(z). Sincew;(z) is a polynomial of order we
have closed formulas only fay < 4 and for higher order splines we can compute the roots
numerically, e.g. via an eigenvalue problem.

Since the numerator of is a polynomial with real coefficients, the roals j = 1,...,4q¢ — 2,

are complex conjugate. In order to determine the semi-axis s, we only have to compute
one zero of the complex conjugate pairs. Therefore, we write

91(2) + g2(2)? = [91(2) +1.92(2) | |91(2) = i 92(2).

Since the coefficients afy, k£ € {1,2}, are real, we have

91(2) +iga(2) = 91(Z) — i g2(2).

This implies that if¢; is a zero ofy; (2) + i g2(z), then(; is a zero ofg; (2) — i g2(2). Thus, itis
sufficient to compute the complex roots of the polynongigl:) + i g2(z). Due to Proposition
[3.2.10 we compute the roots of24; — 1)-th degree polynomial and analytic formulas for the
roots are given fog < 3.

Let M denote the set of all roots and polesfofAccording to Remark 2.0.10 (i) the real semi-

axis of€,, is given by
|2k + 1] + |2z — 1
a = min

zreEM 2
and finallyp; = a + va? — 1.

The following lemma gives an estimate for the maximum valfigygz)| on confocal ellipses

lying in the domain of analyticity.

Lemma 3.2.12.Letl < p < p; anda,a; > 1 denote the real semi axis of the ellipsgsand
&y;- Then, there holds

(a; +a Aa-1) (q; —1)%
H < ) ( ) max |%;(2)| =: ch;.

max | < = o G D L85y

z2€08,

Proof. Due to the definition of the ellipsg,,, 4;(z) contains no roots and polesdp,. However,
at least one root or pole is located @,,. In the worst case, we have a root of multiplicity
2(q — 1) (degree of the numerator &f) located at—a; and simultaneously a pole of ordey
(degree of the denominator 9f) located at;. In this case |7;(z)| behaves |Ik€% If

the maximum orj—1, 1] is attained at the right end, we obtain the upper bound

) | (a; + a)?@=D  (q; —1)%

ggg{ | h/z (ai )2q (ai + 1)2((]71) zg[la1X1 h/z( )| =:ch,.
Here, we applied Lemnia3.2.8 in the last step. O

Remark 3.2.13. The estimate in Lemnia 3.2]12 is a worst case estimate. \Wigite fare bound-
ary parametrizations for which the estimate is sharp, ttimate is generally very coarse.
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3.3. Boundary Meshes and Refinement

3.3. Boundary Meshes and Refinement

We construct a sequence of discrete ansatz sgagshy, ps, k¢) andR(7y, hy, qe, k), £ € N,
during the mesh refinement process. In order to increaseirmendion of the discrete ansatz
spaces, there are different types of mesh refinements. &etfid classical- andp-refinement,
we also consider the uniforirrefinement for the isogeometric ansatz sp&¢&;, hy, q¢, k¢),
which is originally introduced i [HCB05] and [CHRD7]. Fhermore, we go into detail on the
construction of geometrically graded meshes on the urdteceind a round L-shaped domain,
which are introduced in Section 1.4.

Uniform h-refinement. In uniform h-methods we refine the boundary meBhuniformly by
splitting each elemerif’ € T into two sonsT” and7T”. For NURBS-enhanced methods both
sons inherit the polynomial degreeof 7'.
For the splitting of elements, a new knot is inserted in eawtt knterval of the knot vectdE,,
ie.

Ee={&0, - nta} = Evr1 = {0 - Enrgins }-

The new control points and weights are computed using theiksertion algorithm introduced
in Sectior 3.1L such that the curves are neither changed gecatig nor parametrically.

Remark 3.3.1. Since the parametrization remains unchanged by using tbeiksertion al-
gorithm, the domain of analyticity of the new local pararizetiions can directly be computed
without solving the root finding problem described in Renfauk11 in the following way:
Let v; be the local parametrization @f; and M; denote the set of all roots and poles-of
as introduced in Remarlk 3.2]11. Refining the mesh by ingegiinto [¢;, ¢;41] the local
parametrizationyi(é) andfyfr) of the new element?fi(é) andTZ.(T) with fyi(é)([—l, 1]) = TZ.(Z) and
%.(r)([—l, 1]) = Ti(r) can be represented by

W00 = (S )

@ (=D (1= ()
7 )= ( Giy1 — G * 1> '

Hence, withz € M;, 20 e MZ.(Z) andz(") e Mi(r) we have the following relationship

S0 St =G G —C
C—G =G

S St =G 66
Gr1—=C  Giy1—¢

The semi-axis sumﬁy) and pg” can be computed with the seMi(g) and Mi(’") as in Remark

B.2.11.
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3. High-Order NURBS-Based Boundary Element Methods

An open issue irh-refinement is how to choose the new knots. The easiest wayhialt each
element such that a uniform mesh is created during the reéineprocess and the mesh-width
ratioo (h) is not blowing up. However, since the parametrization ndf depends on the control
points but also on the weights, refining the knot vector unilg does not refine the boundary
mesh uniformly. An approach based on point inversion foraxmately halving the element
size is presented in [HCBO5]. The idea is to compute the pBint % (v(Ck) + v(Ck+1)) and
determine such tha€ = argming_ yllv(¢) — P|.

As itis proven in Remark 3.3.1, the smoothness of the pararagbn depends on the knot that
is inserted. Hence, another strategy is to choose the kribbsthe smoothness of the resulting
local parametrization is optimally increased, i.e.

€:=arg max min{p(t),p}(t)}.
Ci=arg max min{p;(t), i (1)}

This strategy of choosing has the advantage that the order of the quadrature rulesfaised
the numerical integration is decreased. Although the madthwatio o(h) remains bounded
during the mesh refinement using this strategy, we obtaimiforsn mesh.

Uniform p-refinement. We increase the discrete ansatz space by uniformly incrgaise de-
gree of the basis functions, .oy — psr1 = 2p¢ + 1 for NURBS-enhanced methods and
q¢ — qu+1 = q¢ + 1 for isogeometric methods. Hence, for NURBS-enhanced ndstia@ do
not change the boundary parametrization since the basiedrsatz space is independent of
the basis used for the boundary approximation. For isogg@and isoparametric methods we
increase the degree of the NURBS basis functions that aveuakxd for the boundary approx-
imation. In order to compute the new control points and wisigtithout changing the curves
geometrically or parametrically, the degree elevationoAthm([3.]1 is used. Hence, the dimen-
sion of the ansatz space is increase\jy

Since only the NURBS basis functions and the control pointsnbt the parametrization itself
are changed, the domain of analyticity of the local para@etton remains unchanged both for
NURBS-enhanced and isogeometric methods.

Uniform k-refinement. The idea ofk-refinement, which has no analogue in classical BEM,
is that the global regularity of the basis functions can barotled by the multiplicity of the in-
terior knots in the open knot vectal;. In order to increase the regularity of the basis functions
we assume that the boundary is smooth enough such that nceg@mherror is induced by
increasing the regularity of the basis. Further, the knotorz, is required to contain interior
knots. If there are no interior knots, the basis functioeadly have®>°-regularity and uniform
k-refinement corresponds to uniforparefinement. We proceed as in Algorithm13.2. After the
degree elevation in the first step the regularity of the basistions is unchanged, i.e. the basis

64



3.3. Boundary Meshes and Refinement

Algorithm 3.2 Uniform k-refinement

INPUT: g¢-th degree NURBS curve defined By, @, andw?, k =0, ..., n.
OUTPUT: (g + 1)-th degree NURBS curve defined By, Q' andw(, k = 0,...,n + 1.

1: Degree elevate the curve using Algorithm]3.1.
2: Remove all interior knots in the knot vector one time:

Er={C0, 05 s CNes - N}
—— ———

ro times TN, times

- Ef-f—l = {CO? "'7(07C1> "'7C1 "'7(./\[5*1? "'><Ne*17CNe> "'7CN6}
—_—— N —

~~

ro+1times rjtimes TN, —1times TN, +1times

Compute the corresponding control points and weights wighknot removal algorithm.

functions are; + 1 — (1, + 1) = ¢ — ry, times continuously differentiable gt. Removing all
interior knots one time yield&; — r; + 1) regularity at the interior nodg;.
The dimension of the resulting ansatz space is given by

dlm R(ﬁ+17 hf+17 q£+17 k£+1) - dlm R(n7 hfv qe, kf) + 1.

A comparison of the basis functions obtained by unifgrrandk-refinements is given in Figure
B.4.

Geometric hp-refinement. The geometrically gradeblp-meshes, which are introduced in Sec-
tion[1.4, are created using the knot insertion algorithm. ddfesider the unit circl& := {z €
R? : ||z||2 = 1}, the procedure for the L-shaped domain is similar.
Form € N andd € (0,1), we define a geometrically graded mesh on the parameter domai
by 2 = {-1,-1,-1,—zp,...,—x1,—0.5,-0.5,0,0,0.5,0.5, 21, ..., Ty, 1, 1,1} with z;, =

— %k, k = 1,...,m. The control points and weights of the parametrization araputed by
inserting the knots-xy, k = 1, ..., m, into the initial knot vectoE, which is defined in Example
[3.1.3. Due to the symmetry of the weights in the initial mesk, obtainh;/h; = o for all
neighboring elements; andT};, whereT; is closer to the singularity.

In the end of this section, we proof that the different megimements introduced above produce
a nested sequence of ansatz spaces. This property is aargcassumption for the a priori es-
timates stated in Sectién 1.6.2. While this is clear for tblymomial ansatz spaces, for general
rational ansatz spaces this assumption is not satisfied.
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Figure 3.4.: Comparison of uniform- and k-refinements. The initial knot vector and the
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3.3. Boundary Meshes and Refinement

Lemma 3.3.2. Let Ry(7¢, hy, qr ke), ¢ € N, be the sequence of NURBS ansatz spaces as de-
fined in Definition 3.2J3 which are created by unifofmor p-refinement. Then, there holds
Ry(Te, hy, qo, k) C Rea(Ter1, by, qegr, Keyr)-

Proof. Due to the definition of the NURBS basis functions we obtamffe& R,(7;, h, ¢, k)

with the weight functionu, andfe S¢(Te, hy, qo, ke). For all introduced mesh refinements the
weights are computed such that= wy, 1. With Sy(7¢, he, qo, ko) C Ser1(Tes1, or1, qovt, kKes1)
we obtain thatf € Ryy1(Tet1, hett, govrs ko). O

Remark 3.3.3. The sequence of ansatz spaces produced by unfer@fiinement is not nested.
Hence, Theoren 1.6.3 cannot be applied and convergenceuasdaptimality fork-refinement
is still an open question.
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4. Numerical Integration for High-Order
NURBS-Based BEM

The efficient evaluation of the arising integrals in NURB&&d boundary element methods is
numerically challenging. First, the boundary is pararaettiby arbitrary NURBS curves, there-
fore the use of analytic formulae for the numerical inteigrats not possible. Hence, the arising
integrals have to be evaluated approximately, which inglageonsistency error. Second, besides
regular integrals also singular and nearly singular irglsghave to be evaluated accurately for
high-order basis functions. Theorém 116.7 states that tideridn error decays exponentially
with respect to the degrees of freedom on geometricallyegtadeshes. The numerical results
in Chapter 5 show a similar decay for collocation methodsrtter to obtain algorithms for the
numerical integration with algebraic complexity, thatgeeve the exponential convergence of
the collocation and the Galerkin errors, the quadraturer dras to decay exponentially for all
integrals, too.

This chapter is organized as follows. The first section garesverview on existing approaches
for the numerical evaluation of integrals arising in BEM.

In the second section, we discuss the evaluation of the lawyntegral operators, that are in-
troduced in Section 1.2. We derive evaluation schemes #rabe applied to the evaluation of
all boundary integral operators of Laplace, Lamé, and Helta problems for general NURBS
boundary parametrizations and for all discrete ansatzespatroduced in Sectidn 3.2. In the
case of NURBS-enhanced methods we also present algorittanare efficient for high degrees
of the polynomial basis functions. For all algorithms, wegfran exponential decay of the
approximation errors with respect to the evaluation oréteparticular, we show that the con-
vergence rates are optimal in the sense that they only depetiet smoothness of the boundary
parametrization but not on the kernel function and the etadn point. While the error estimates
presented are in generadasymptotic estimates, for NURBS-enhanced methods, wigi@ud
ally give estimates that are explicit in the polynomial degy of the basis functions and can be
used for unifornp- andhp- methods.

We discuss the assembly of the Galerkin matrices that an@dinted in Section 1.6.1 in the last
part of this chapter. Therefore, we present algorithmsHerdvaluation of the arising double
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integrals that converge exponentially with respect to treduation order for general boundary
parametrizations and all considered ansatz spaces. Foedbtarization of the singular inte-
grands coordinate transforms are introduced. The rentalagarithmic singularity is evaluated
with the Gauss-Log quadrature that is introduced in Se@i@nFurther, we give error estimates
for the evaluation of all integrals that are explicit in thesh sizeh, and for NURBS-enhanced
methods also explicit in the polynomial degree In the end of this section, we derive a re-
lationship of the absolute evaluation error and the indum®mtsistency error. Combining this
relationship and the error estimates, we are able to givéoa pstimates for the evaluation or-
der for all integral operators, such that the consistenay eloes not deteriorate the convergence
rates of the Galerkin method.

4.1. Existing Approaches for the Numerical Integration in BEM

For the evaluation of integrals arising in BEM, there aree¢hdifferent types of approaches:
analytic approaches for the exact integrationymerical approaches that use quadrature rules
for the approximate integration, arsgmi-analytic approaches. In the following we give an
overview on the different approaches. This overview is byrmeans complete.

Analytic formulae are often used for the evaluation of singular and nearlyusamgntegrals,
since the integrals can be evaluated exactly without artigduregularization. However, in order
to be able to derive analytic formulae, knowledge on the éeiumction and a simple boundary
parametrization is required, which limits the field of apptions. For polygonal boundaries and
polynomial basis functions, analytic approaches for theerical integration are presented in
e.g. [RS07, Ban13, Mai96, Mai97, ST99]. While in [R$07] atialformulae for the evaluation
of the Galerkin entries arising in lowest order BEM for Laygaand Lamé problems are given,
the works of Maischak and Bantle focus on high-order BEM.r&fare, the evaluation of the
arising integrals is reduced to the evaluation of some ahang integrals, for which analytic
formulae can be derived. 1n [Ban13], the evaluation of thergary integral operators and the
assembly of the Galerkin matrices for the Laplace problezrreduced to the evaluation of the
modified associated Legendre functions of second kind agiddhtiderivatives. Further, the ef-
ficient and stable evaluation for high orders with recurear&ations is discussed. This approach
can also be extended to Lamé and Helmholtz problems. In96/dfai97], a similar approach
for all three patrtial differential operators is presentedtfvo- and three-dimensional BEM. As
compared to the approach bf [Ban13] the elementary integral defined via monomials instead
of Legendre polynomials. Due to the arising cancellatidact$ multiple precision libraries are
used for the evaluation.
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The idea ofsemi-analytic approachesds to extend the field of application of the analytic for-
mulae by interpolation of the kernel functions and appration of the curved boundaries by
affine elements. The arising singular and nearly singulgials are then evaluated analyti-
cally or with a combination of analytic formulae and quadratrules. In[[Sau92, HS93, SIS[98,
NWW™05,[GG90| GKR 92], semi-analytic approaches for the evaluation of theetkal en-
tries are presented for piecewise smooth boundaries aratajéwernel functions. Besides the
expansion of the kernel and the interpolation of the cunashidary elements, coordinate trans-
formations are introduced for the regularization of theyslarities. The resulting integrals are
then evaluated semi-analytically. However, for high-oidernel expansions and basis functions
these methods become inefficient and cancellation effeists m the analytic evaluation of the
integrals [ST99].

For thenumerical integration with Gauss quadrature rules, the absolute quadrature @gror
cays exponentially with respect to the quadrature ordeaf@lytic integrands, see Theorems
2.2.11 and2.2.15. Furthermore, quadrature rules can bedpp all regular integrands with-
out any additional knowledge on the kernel function and thenidary parametrization and have
hence a wide field of application. However, it is proven in B4Rthat the quadrature error only
decays algebraically for weakly singular integrals, foosgly singular integrals the quadrature
rules do not converge at all. For the efficient numericalwatidn of singular integrals, there are
basically three different methods: the evaluation withpaeld quadrature rules, the application
of composite rules, and the regularization of the integnaitld coordinate transformations.
Adapted quadrature rules are special quadrature rulegevithe weak singularity of the inte-
grand is considered to be the weight function of the quadeatle and an exponential decay of
the error is achieved. If the quadrature rules can be casmikapriori, the application of adapted
guadrature rules provides an efficient possibility for thaleation of weakly singular integrals.
In particular, for the logarithmic singularities, whickpigally arises in twodimensional bound-
ary element methods, the Gauss-Log quadrature rules, vahécimtroduced in Sectidn 2.2, can
be used.

The idea of composite rules, which are presented_in [Schi94}p introduce a mesh, that is
geometrically graded towards the singularity. On eachateof the mesh a Gauss-Legendre
qguadrature of variable order is applied, i.e. the lowesebig chosen on the interval closest
to the singularity and the order increases linearly foreasing distance to the singularity. In
[Sch94] an exponential convergence is proven for a wides@ésingular integrands. However,
the factor of the exponential convergence significantlyedels on the grading parameters and
optimal parameters that yield a fast exponential converge@annot be determined for general
integrands.

By applying appropriate coordinate transformations, @iagintegrands are regularized, since
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the singularity is cancelled out by the Jacobian deternminathe transformation. Iri_[Duf82],
a coordinate transformation, called Duffy transformatitor the integration over a triangle is
given, which regularizes integrands containing algebcaimer singularities. Amongst oth-
ers, this coordinate transformation is used.in [SaSch9Rgrer quadrature rules for the three-
dimensional Galerkin BEM with general kernel functions gederal piecewise smooth bound-
ary parametrizations are presented. The Duffy transfoomatnd a subsequent composite rule
are applied to the integrand and exponential convergenca deneral class of kernel functions
is proven. These quadrature rules are widely used in threergional boundary element im-
plementations, see e.g. [HKI18BAt15,MMRT14].
While the singular case can be treated efficiently with gataule rules, the nearly singular case
is numerically challenging, since the application of galre rules yields a very slow exponen-
tial, almost algebraic convergence. In two-dimensionaWBEe nearly singular integrands are
of the type

f(z)log(z?® +¢*) and :UzLj—U)CQ 4.2)
with ¢ < 1. Constructing adapted quadrature rules is inefficientesihe nodes and weights de-
pend onc and cannot be pre-computed. For the application of comgpadgiés, which also yield
exponential convergence depending on the grading paresnetbas to be known explicitly.
In the setting of NURBS-based BEM this is equivalent to cotimguthe point on the NURBS
curve which is closest to the evaluation point by the poimeision algorithm. This is generally
inefficient.
In [SISI98, Tel86/ TM74] different types of coordinate tshmrms for the regularization of in-
tegrands of type[(4l1) are given. Besides the power and thesTgTel86]) transformation,
which are polynomial transformations, also trigopnometiaordinates transformationsag-
transformation,[[SISI98]) and double exponential forneutanh-sinh-transformations [TM74])
are presented. While the near singularity is not cancelledtbe domain of analyticity is in-
creased by the coordinate transforms, which yields an e@@n of the convergence speed if a
Gauss-Legendre quadrature is applied. This is depictethéopower transformation(t) = #>
in Figure[4.1, where it is shown that the ellipggscontained in the domain of analyticity of the
transformed integrand (blue) are significantly larger th@mnellipses contained in the domain
of analyticity of the original integrand. A comparison of mlentioned coordinate transforma-
tions is illustrated in Figure_ 4.2, where a significant aecation of the convergence speed can
be observed. However, the application of coordinate taansf has two drawbacks. First, the
coordinate transformations require the knowledge:;,ofvhich affects the efficiency. Second,
the convergence speed dependgomhich still yields a slow exponential convergence for very
smallc.
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Figure 4.1.: Ellipses®, contained in the domain of analyticity of the original intagd (red),
and of the transformed integrand (blue) for the power t@msétiong(t) = ¢ and
¢ = 0.1. The black dots denote the singularities of the integrand.
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Figure 4.2.: Absolute errdiz,,| over quadrature order for different coordinate transformation
applied to the logarithmic integrand of type (4.1) witk= 0.01 and logarithmically

scaledy-axis.

For the evaluation of the boundary integral operators, wiggla semi-analytic approach, where
the singularities and the near singularities are extrastade integrand and integrated analyti-
cally. While the above mentioned semi-analytic approatiee®me unstable for high order ex-
pansions, our algorithm is numerically stable even for ligérpolation orders. This is achieved
by exploiting the general structure of NURBS curves, whiltbves to reduce the evaluation of

the boundary integral operators to the evaluation of eleamgrintegrals discussed in [Ban13].

These integrals can be evaluated in an efficient and stalyidawvaigh orders.

For the assembly of the Galerkin matrices, we introducedinate transformations for the reg-
ularization of the singular integrands, which are simitathe coordinate transformations pre-
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sented in[[SaSch97] for three-dimensional BEM. Howevestteiad of using composite rules for
the integration of the remaining singular integrals, wel@a& the integrals containing a loga-
rithmic singularity with a Gauss-Log quadrature. This g#eh fast exponential convergence for
these integrals and polynomial integrands are integratadily.

4.2. Evaluation of Boundary Integral Operators

Apart from the assembly of the collocation matricés K, A, andW introduced in Section
151, the potentialé?, K and their co-normal derivatives have to be evaluated forctmepu-
tation of the solution and its co-normal derivative withiretdomaint). Hence, we discuss the
evaluation of the integral operators for alke R?, which covers both cases.

Depending on the ansatz space, we have basis functionsogdhdupport, i.eﬁ,ﬁi) andﬁ,ﬁi),
and basis functions whose support contains more than onmertei.e. ), andRy. Since the
basis function with non-local support have reduced regylat the element edges, see Lemma
[B.1.4 (ii), we split the integration at all element edges add up the local contributions. For
T; € T andz € R?, we investigate the evaluation of

A (@) = /T K(x—y)@ (y)ds,, k=0,...p: (42)

Here, we denote b;bl(f) the non-vanishing basis functions @hof one of the discrete spaces
introduced in Definition§ 3.213 afnd 3.2.5, and Kz — y) the kernel function of the integral
operator. We assume the following representation of thedter

N

K(@—y)=g1(x—y)+golz—y) logle—y|+ > gz —y)le -y  (4.3)
(=1

with functionsgy, ¢ > —1, that are analytic oft.

Remark 4.2.1. The fundamental solutions of Laplace, Lamé, and Helmlegjtzations and their
co-normal derivatives are of the forfn (4.3). For an expliefiresentation of all kernel functions
and the corresponding representations of the funcijpmege refer to Appendik’A.

Plugging in the local parametrization 6f we get withK (z,¢) := K(xz — ~;(t))

, 1
@)= [ Koo ol dr

Since the regularity of the kernel functidi has a big impact on the numerical integration, we
first analyzekK’, before we go into detail on the evaluationfﬁ)g) ().

The representationn_(4.3) @€ implies thatK is weakly singular and singular if € T}, while

K is regular forz ¢ T;. However, also in the regular case the domain of analytioftys
significantly depends on the parametrizatigrand the mutual location of andT;, which is
proven in the subsequent lemma.
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Lemma 4.2.2. Letx ¢ T;, D := dist{T;,«} > 0 and &,, as defined in Definition 3.2.9.
Then, the kernel functio (z,¢) is analytically extendable o#,, N &,, with real semi-axis
ap = 1+ ch%. The constant > 0 is independent of; and D, but still depends on the

parametrizationy;.

Proof. By assumption, the functiong(z), ¢ = —1, ..., N, in representatiori (4.3) are analytic
for z € C and~; is analytically extendable afy,,. Hence g,(z — ~;(t)) is analytic fort € &,,.
Let f(t) := (z1 —7i,1(1))? + (m2 — 7i2(1))?. Sincef is analytic ong,, and f(t) = |z — ;(t)[?
on[—1,1], f is the unique analytic extension [of — ~;(t)|> on&,,. Hencelog(f) and f~* are
analytic onf, NE,,, wherep; > 1is chosen such thdt(t) > Oforallt € &, . Sincef(t) > D
fort € [-1,1], the real semi-axig; of £,, is given by

D

ag =14+ ——-=
maxzee; h/z(z)‘

with 1 < p; < p < p;. With Lemma3.2.12 we haveaxecs; |4:(z)| < ¢h; and conclude the
proof. O

Lemmal[4.2.P2 motivates, that besides the singular caseaithT;, we also differentiate the
near-field case, in which the domain of analyticity of thenletiis spoiled by (p1 < p;), and
the far-field case, in which the size of the domain of anailytiof the kernel does not depend on
z (p1 > pi)-

The proof of Lemm&_4.2]2 shows that the estimate is a worgt essmate and generally pes-
simistic. Therefore, we are interested in the computatiothhe maximum ellipse contained in
the domain of analyticity. Since the domain of analyticifyttee kernel is limited by the zeros of
the analytic functionz — ~;(¢)|?, we state the following result concerning the position efsth
zeros.

Lemma 4.2.3. LetT; € T, v; be its parametrization and € R?\T;. Then, there exists at most
one pair of complex conjugate numbets € &,, with |z —~;(2)|* = |z —~,(z)|* = 0. Further,
the zeros: andz have multiplicity one if they exist. (i is real, = = Z and we have one zero
with multiplicity two).

Proof. It is proven in LemmaZ4.2]2 that(z) = |z — v;(z)|* is analytically extendable t6,,.
By analogy to Remark 3.2.111 we write

[z =7 (2)]* = [(z1 = 7i,1(2)) + i (22 — 75,2(2)] [(21 — 71.1(2)) — i (22 — 7i2(2))].

Sincexz € R? and~; has real coefficients, we have the following propertyzlfis a zero of
[(xl —7i1(2)) + i (22 — %2(2))} , thenz; is a zero Of[(xl —7i1(2)) —i(x2 — ’yig(z))] and
vice versa. Therefore, it is sufficient to show thét) := [(z1 —7;1(2)) + i (z2 —7i2(2))] has
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at most one zero ifi,,.
There holds

9'(2) = —Hi1(2) = i%i2(2).
Due to Remark3.2.1%/(z) # 0 on&,, and with [Jae99, Section 3.4]is locally injective on

&,,- This implies that there exists at most one zero,0.e= g(z1) = g(22) = 21 = 22. Since
¢’ does not vanish o8, , the zero has multiplicity one if it exists. O

With the result of the previous lemmas we now introduce thimvdng classification for the
evaluation pointe.

Definition 4.2.4. Forz € R?, letz; € C, j = 1,...,¢;, denote the zeros df — 4;(z)|?. We
define

(i) the set of all far-field points/; by
M :={zx e R? : 2 €€y =14},
(ii) the set of all near-field pointaZ,, by

M, = {x S RQ : E|Zj S gpi\[_l’ 1]}7

(iii) and the set of all singular point&/; by

Mg :={z €R?:3z € [-1,1]} =T,

Remark 4.2.5. (i) In order to classify the evaluation poinis the zeros:; of |z — ~;(2)|?
have to be computed explicitly. As it is shown in the proof eihhmd 4.2.3, it is sufficient
to compute the zeros of the complex polynomial

9(2) = wi(2) [(x1 = 7,1(2)) + i (22 — 7i,2(2))]

with the same degreg as the parametrization. Here, we denoteuhythe denominator
of 4;. Thus, there are closed formulae fgr < 4, which are the most common cases,
and for higher order parametrizations, the zeros can belestd numerically, e.g. via an
eigenvalue problem.

(ii) In the standard implementation, the dependency of #wularity of the kernel on the
parametrizationy; is ignored for the classification of far-field points. Theterion, which
is used in e.g. [NWWO05,ST99], is the ratio of the distand2 > 0 and the arc length,;,
i.e.

x € My, if D > ¢ h; for a given tolerance > 0. (4.4)
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The representation af; in Lemmal4.2.P2 implies, that this criterion works well forde
distancesD, since in this case the size of the domain of analyticity efkkrnel is dom-
inated byD. However, for small distances, the regularity is mainlyedetined by the
derivative of the parametrization, which may be non-smdottgeneral NURBS curves.
Hence, the dependency on the parametrization cannot beeijior NURBS curves, if
reliable statements concerning the regularity of the Keane needed. This is also ex-
emplified in Figuré 413, which shows the domain of analyieihd the set of all far-field
points for the quarter circle as defined in Exaniple 3.1.3.

(i) Comparing the complexity of computing the distanB@eawith the complexity of computing
the zeros;;, we obtain the following result.
For the computation of the distanég the parametef := argmin,c|_; 17 [z —7;(t)| has to
be computed explicitly. This is equivalent to the computaf the roots of a polynomial
with degree3q; — 1, see e.g. [CZS07]. Hence, the computation of the zergsaccording
to (i) is more efficient. Furthermore, we will see in the suhsmt sections that in the
near-field and the singular case the additional informadioiiie rootz; € &£, is not only
used for the classification of the evaluation points, bub &s the regularization of the

integrals.

Figure 4.3.: Semi-axis sum of the largest ellipse containetthe domain of analyticity of the
kernel (left) and seb/; of all far-field points (right) for the quarter circlg;, which
is parametrized by the NURBS curve defined in Exarhple 3.1.3.

Algorithm[4.1 shows the classification of the evaluatiomp®i,, / = 1, ..., n. We additionally
introduce a tolerance < (0, 1] for the classification, as for parametrizatiopscontaining a
pole ond€,, there exist many evaluation points for which the zerpare located closely to this
pole. For these points the far-field algorithm with almodtirapl convergence is more efficient
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as the near-field evaluation with optimal convergence. Gimgax < 1 classifies these points
as far-field points, specifically setting= 0 in Algorithm[4.1 corresponds to the classification
of all points as far-field points. Having computed the zerpsf |z, — ~;(t)|?, we determine
the real semi-axig of the maximum ellipse that does not contain any zgtoFora = 1 there
exists a zera; € [—1, 1] and we are hence in the singular case,lfet a < ¢ (% - 1> +1

we are in the near-field case sin%éfﬁ corresponds to the real semi-axis&f

! Pi Pit
In the remainder of this section we discuss the evaluaticntne)integralsAg) (x) for all three
cases, separately.

Algorithm 4.1 Algorithm for the Classification of the Evaluation Points

INPUT: Evaluation pointsy, £ = 1, ..., n, semi-axis sunp; > 1 of 4;, and tolerance < (0, 1].
OUTPUT: The setsM;, M,, and M of far-field, near-field and singular points.

1: for £ from 1tondo

Compute the zeros,, ..., z,, of |z, — v;(t)|? according to Remafk4.2.5 (i)
Computea = min;—; qw
if a = 1then

xp € M.

-----

end if
if1<a<s(¥—1)+1then
xy € M,.

else

=
e

Xy € Mf.
11:  endif
12: end for

4.2.1. Far-field Case

We assume that the kernel function is analyticggn If ¢ < 1 is chosen for the classificatiop
has to be substituted by . := e(a; — 1) + 1 + \/e2(a; — 1)2 + 2¢(a; — 1), wherea; denotes
the real sexi-axis of,,,. For the evaluation oﬁg) () with the Gauss-Legendre quadrature, an

exponential convergence of the absolute quadrature ergroven in the subsequent lemma.

Lemma 4.2.6. LetT; € T, v; denote its parametrization and € M;. The absolute error
| Ry, ()| for the evaluation oﬂg) (x) with a Gauss-Legendre quadrature rule of ordee N is
bounded by

|Rn(2)| < chip™ 1, 1< p<p, (4.5)
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with a constant > 0 independent of;, but still depending or; and the basis function®,.

Proof. Sincex € My, the kernel and hence the integrand is analytic€gnand we can apply
Theoren 2.2.711. With Lemnia 3.2]12, there holdslfet p < p;

max |K (vi(t), =) Fi(2)] | < e1h (4.6)

with ¢; > 0 independent of;. Since the kernel function and the basis functions are bedynd
we obtain [4.5). O

Remark 4.2.7. For the Legendre polynomial®;, := P, and the Lobatto shape functions,
®,, := N, we apply the estimates given in Lemma2.1.9 (vi) and 2] i) Iaqd obtain

’Rn(x)‘ < Ehz P72n+k717 1< P < pi-
Here, the constartis also independent of the polynomial degkee

The Gauss-Legendre quadrature yields a fast exponenti@emgence of the quadrature error
for the general representation of the kermell(4.3) and pksyof basis functions. This allows
the easy implementation in the far-field case. However, éoh NURBS-enhanced and isogeo-
metric methods we propose two alternative approaches asthdomplexity as compared to the
Gauss-Legendre quadrature. Both approaches are based mmettpolation of the kernel and

exploit the properties of the basis functions.

NURBS-enhanced methods.For simplicity, we restrict to consider the ca$¢ = P, cor-
responding results for the Lobatto shape functions areradatain a similar way. Lefl,,(z,t)
denote the:-th degree Legendre expansionffz, t) |y:(t)|, i.e.

K(@,8) Fu)] ~ In(.8) == 3 (@) Pu(t). @.7)
n=0

Plugging in the interpolation polynomial we obtain for &l= 0, ..., p;

1
-1

1 n
/1 K(x,t)|yi(t)] Pe(t) dt = Zau(x)/ P,(t) Py(t)dt
_ =
%ﬂak(aﬁ), n>k

0, otherwise.

Here, we used the orthogonality of the Legendre polynomuétls respect to thé.? scalar prod-
uct in the last step. Computing the coefficieajgx), 1 = 0, ..., n, we can evaluate all integrals
{A,(f) (x)}k:07___7pi, simultaneously. For directly computing the interpolatiolynomial in the
Legendre representatio(n?) operations are needed. Therefore, we follow the algorithm
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given in [AR91], which only has a complexity @(n log n). A Pseudo-code is given in Algo-
rithm[4.2.

The coefficientsy, := a,(x), p = 0, ...,n, are computed in three steps. First, we evaluate the
function f at the zeros of thén + 1)-th Chebyshev polynomial and obtain the vedtar R
Second, we apply the discrete cosine transforify gee [RY90], and obtain the coefficients

with respect to the Chebyshev basis. In the third step, wlyappasis transformation, which
corresponds to a matrix-vector multiplication. The exasfticient matrixM is given by

(

1 ifi=5=0
N e if0<i=j<n 48
R B (CZ=V2) NP (j’ifz) A (jHH) if 0 <i<j<nandi+ jeven 9
GHit1) (- 2 2 = ’
0, otherwise
with
I'(z+41/2)
A(z) = ———.
(2) I'(z+1)

A proof can be found in[AR91, Section 2.3]. Further, the amtpresent an algorithm of linear
complexity that calculates the matrix-vector product bgragimating the coefficient matrix up
to a given tolerance > 0 by an?/2-matrix.

Algorithm 4.2 Algorithm for the Computation of the Legendre Interpolatio

INPUT: Functionf, ordern.
OUTPUT: Vectora € R™"! containing the coefficients,,, i = 0, ..., n.

1: Evaluatef att,, = cos (M), uw=0,..,n

n+1
f < f(t).
2: Apply discrete cosine transformationfto
a < dct(f).

3: Transform the coefficients to Legendre basis

a <« Ma.

Remark 4.2.8. With the algorithm presented in_[AR91] we have an overall ptaxity of
O(nlogn). However, the linear complexity of th&?-matrix approach for the basis trans-
formation is dominated by the constant and is only profitétmédnigh interpolation orders.

The next lemma gives an upper bound for the absolute ergingrin the evaluatiom,f) (z) by
interpolation.
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Lemma4.2.9.Letn € N,z € My, I,,(z,t) as defined if{d.7) and
) 1
IRy (2)] == ‘A,@(x) _/ I(z,t) Py(t) dt

denote the absolute error for the evaluationzﬁf) (x). Then, there exists > 0 independent of
h; such that

1
max |K(z,z)[, 1<p<p;. (4.9)

R, <chj ———
|Bn(2)] < € (p—1)pntl zeoe,

Proof. Recall thatK (z,t)|¥;(t)| is analytic ong,, O [—1,1]. In particular, the kernel is con-
tinuous on[—1, 1] and hence we can represent the kernel by a Chebyshev segefRig90,
Theorem 3.4]. There holds

K (@, t)[5()] = au(x) Tu(t), (4.10)
n=0

where the coefficients,, are bounded by

v (z )|<2maX\K$Z|% e, 1<p<p

A proof is given in [Riv90, Theorem 3.8]. Witax.coe, | [7i(z)|| < ¢h; and [4.10), the
interpolation error

[Bn(@)] i= max 1K (z,8)}3:(!) Z%

u:ZnH G (@)l < 2CW§£§‘§ | K (z,2)]. (4.11)

where we usedl,(t)| < 1. With the Holder inequality, we get

1
~ hi
|Rp(2)] < |En(2)] /1 | P (t)] dt < 40m£3§ ‘K(JU,Z)‘

O

Remark 4.2.10. (i) The method based on the interpolation of the kernel hasagwantages
as compared to the Gauss-Legendre quadrature, if ansatiofusiwith large polynomial
degrees are considered. First, Lenima 4.2.9 shows that rteinéer|R,,(z)| does not
depend on the polynomial degree of the basis functions, since only the kernel is in-
terpolated in[(4.]7). For high-order methods with a largeypoiial degreep;, a small
number of interpolation points < p; suffices, since the kernel is smooth in the far-field
case. For the Gauss-Legendre quadrature Lemma 4.2.6 sniblat the quadrature order
n > Pi— L is needed in order to reduce the quadrature error. The sembrthtage is, that
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-----

grals are evaluated simultaneously by using the orthoggrdithe Legendre polynomials.
In particular, the complexity oO(n p;) of the Gauss-Legendre quadrature is reduced to
O(n logn), where the interpolation order is smaller as compared totiaelrature order.

Hence, the interpolation method shows to be very efficiantifiform p- andhp-refinements.

(i) Since the Lobatto shape functions are closely relatethé Legendre polynomials, see
Lemmd2.1.11 (i), the method introduced above can also berglired tod,, = N,.

Isogeometric methods.For the numerical integration in isogeometric FEM, quathetules
are constructed that exactly integrate all basis functainhhe NURBS ansatz space, see e.g.
[ACHT12]. As compared to the Gauss-Legendre quadrature, lestidnmvaluations are needed
if the basis functions have a high inter-element regularity

We extend this approach to the application to BEM by congidea patch”? C 7 that may
contain more than one element. L&t € S(P,h|p,q,k|p), £ = 1,...,m, denote all non-
vanishing b-spline basis functions on the pafeh Furthermore, we assume that the pagth
is parametrized by §°-regular b-spline curvep and thatz € R? is a far-field point for the
whole patch. By analogy td (4.7), we denote By(x,t) the interpolation polynomial of the
kernel and the parametrization of the patch, i.e.

K(x,t) [yp ()| & In(x,t)

with K (z,t) := K(z,vp(t)). Plugging in the interpolation polynomial, we obtain

1 n 1
| K@okr@leda =Y a, [ Ao
—1 -1
n=0

SinceP,(t)®,(t) € S(P,h|p,q+n,k|p), p =0,...,nandl = 1,...,m, a quadrature rule that
exactly integrates all functions isi(P, h|p, ¢ + n, k|p) can be used for the exact evaluation of
the integral on the right-hand side. If the basis functioagehuniform regularityk > 0, the
optimal interpolatory quadrature rule, which is also dhltgeneralized Gauss rule, is of order

N := [dim S(P, hlp,q + n,k|p)/2], i.e.
1 N
[ =3 ws(e). Vi €SP blpg+nklp)
- k=1

Remark 4.2.11. (i) Forthe exact integration with the Gauss-Legendre cmﬂde,w
function evaluations are needed, where we denot&bthe number of elements contained
in the patch.

The space (P, h|p,q+n,k|p) is spanned by b-splines defined on a periodic knot vector,
i.e. there holdslim S(P, h|p, ¢ + n,k|p) = |P|(n+ q — k) — k — 1. Hence, the order of
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4.2. Evaluation of Boundary Integral Operators

the optimal interpolatory quadrature rule depends on thelagity of the basis functions.
While for discontinuous basis functions the same org (”;‘”1)1 as for the Gauss-

i [(n+1)—g i i
Legendre quadrature is needed, 0H§2—W function evaluations are needed for the
basis functions with maximum regularity.

(i) The main issue of this approach is the computation ofth@es and weights of the optimal
guadrature rules. While in [MRW96] the existence and unmigss of generalized Gauss
rules is proven for special families of functions, so-a&l&hebyshev systems, this result
cannot be applied to the B-spline basis. Hence, existerdterigueness of the quadrature
rule in the general case are still an open question.

(iii) The computation of the generalized Gauss rule cowasp to the solution of a non-linear
problem. Hence, the nodes and weights have to be computeidra prhich limits the
fields of application to some special cases, i.e. unifornt keotors with the same multi-
plicity of all interior knots. In [ACH"12], an algorithm based on the Newton iteration for
uniform periodic and open knot vectors is presented.

4.2.2. Near-Field Case

The near-field case is the numerically most challenging,csisee for small distanced :=
dist{T;,z} the kernel is nearly singular. While for singular integréie singularity can be
cancelled out by coordinate transforms or adapted quaeratles can be applied, it is not
possible to find similar coordinate transforms and quadeatules independent of the evaluation
point x in the nearly singular case.

We propose a semi-analytic approach, which is based on #igtanintegration introduced in
[Ban13, Section 2.3]. Therefore, we define the modified aatat Legendre functions.

Definition 4.2.12([Ban13, Definition 2.3.1]) (i) For z € C\(—o0, 1], we define

. 1
lel(z) = /1 Py (t) log(z — t) dt
and forz € (—oo, 1] we define
0 (w) o= 5 I (G +ed) + G (@ — <))
(i) Form € Ny andz € C\(—1, 1), we define
QU (z) == /1 _Bt)

1 (Z _ t)erl
and forzx € [—1, 1] we define
1

Qi) =5 lim (Qp(w +23) + Q' —24))
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4. Numerical Integration for High-Order NURBS-Based BEM

Remark 4.2.13. (i) The accurate and efficient evaluation of the integég%(z) is discussed
in [Ban13] for allz € C\{—1, 1}. Therefore, the following recurrence relation is derived

(k—m+1)QF1(2) = 2k +1)2Q'(2) — (k+m) Qi1 (2), m,k €N, (4.12)

With this recurrence relation and Gautschi’'s continuedtiom algorithm all integrals can
be evaluated up to double machine precision for large vaifiesn an efficient way.

(i) The definition of the modified associated Legendre fioms can be extended to €
{—1,1} in the sense of the Hadamard finite part. With a modificatiothefrecurrence
relation [4.12), where the coefficients of the infinite algébterms have to be considered
separately@?(il) can also be evaluated in an efficient and accurate way fordridgrs
k.

In the following, we reduce the evaluation Af) (z) to the computation of the modified associ-
ated Legendre functions by interpolation. Since the dorobimalyticity of the kernel is limited
by the complex conjugate zeros|af—~;(t)|?, see Lemmds 4.2.2 ahd 412.3, the interpolation of
the whole kernel only yields very slow convergence of theripblation error. Hence, we split
the kernel functiork’ into regular and nearly singular parts and only interpdia¢eregular parts.

Definition 4.2.14. ForT; € T with its parametrization; andx € M,, we denote by, € &,
one of the complex conjugate zeros|of- ~;(t)|%.

The following proposition is a direct consequence of Lemgh@s2 and 4.2]3.

Proposition 4.2.15.Letx € M,, and~; be the parametrization df; € 7 as defined in Defini-
tion[3.2.1. Then, the function
|z = %)
)= ——
0=
is analytic on&,, and0 & f(&,,).

Using the result of the previous lemma, we now split the Kefiungction K (z, ¢) in regular and

nearly singular parts:
N

K(z,t) = g-1(z = %(t)) + go( = 7:(1)) log [z — w()* + Y ge(w — 7i(1) |2 — 7i(t)| 7>
=1

|z —%(t)]?

= + go(z — 7i(t)) log |z — t[?
‘Zx - t‘

= g-1(z —7i(t)) + go(z —7i(t)) log

N

I |zp — t|?¢ 1
+ ; <9Z( 'Yz(t)) ‘x _ %_(t)‘gg> ‘Zx — t‘%

1
‘Zx _ t’QZ'

(4.13)

N
= foa(z —7(t) + folw —vi(t)log |z — 1 + Y folz — 7i(t))
(=1
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4.2. Evaluation of Boundary Integral Operators

With Proposition[4.2.75 the functionf, ¢ = —1,..., N, are analytic org,,. The integral
corresponding tgf_; can be evaluated efficiently as in the far-field case. Thelywsargular
integrals are given by

Io( / folw = () Tog [t — 2, [5:(8)] () dt
(4.14)

1
/ Julw It — 252 [Yi(t)| Px(t)dt, €=1,..,N.
For the computation of the nearly singular integrals we rteedollowing preliminary lemma.

Lemma 4.2.16.Let/ € N, ¢t € R andz € C\R. Then, there holds

L1
m Zé’u ( ),ﬁr(—l) (z_t)u>. (4.15)

Proof. We proof the statement by induction over-or/ = 1 we have

1 1 1 1
z—tEz—t)  2Im(z) <z—t_§—t> (4.16)
and hence(4.15) holds. If we assume thaf (4.15) hold&/fer1), we get with [4.15)

1
C-0lE-0 (z-1) ZQ# ( 1) +(_1)u(z—t)u>

:_QIml(z)i (zit—éit>€ 1QH(Z)((Z—lt)“+(—1)u(§_1t)“>

pn=1
{—1
_ ou(2) 1 1
-> <_2h¢1(z) Z) <(z Tt (—1)u+1m>
{—1
ou(2) 1 1
- 2 <—2Ir¢1(z) z) <(—1)u G0 G- t)“) : (4.17)

Investigating the expressions in the second sum we obtaapplying [4.16) recursively

1 1 1 1 1
Z—tr(z—t)  2Im(2) <z—t - z—t) (z— )1

:_QImli)z< (z—lt) +l(€z1—t)(zl—t)u1>
p—k+

> (me) w7

1

k=1
p pok+l
(Z—t)(z —t)» Z(QIm ) (z —t)k"

k=1

and with similar arguments
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4. Numerical Integration for High-Order NURBS-Based BEM

Hence, the second sum [n(4117) can be written as

£ () S ) ()

k=1

/—1 /-1
B B ok(2) 1 B 1
= ( 2 Ehnle) z‘)kw?) (=g =)

Finally, we get

S S < (C W (S W
2tz -t 2Tm(z) 4 2 — ) =S—
‘ =1 +1 1
) -1 B -1 ok(2) 1 1) 1
= Py (2Tm(z) i)k—n+2 - Gt
¢
1 1
=S (i 0 )
pu=1 g (Z - t)ﬂ (Z — t)
with
o | (82 T ), =1 (@19
_21%@1)@'7 ="

0

Remark 4.2.17.Foryu = 1, ..., £, the coefficienty,, in LemmdZ4.2.16 satisfip, | = O(Im(2)%~H).
For¢ = 1 this is proven by Equation (4.1.6), fér> 1 the statement follows by induction and
the representatiof (4.118) of..

For the numerical evaluation of the nearly singular intkxy(4.14), we expand the regular parts
of the integrand into a Legendre sum, i.e. foe N we get

Folz — 7)) [3:(8)| ®p(t) Za (4.19)

The coefﬂuentmw = a,(f)( ) of the Legendre expansion are computed with Algorithnh 4.2.
Plugging in the interpolation polynomial, we can reducedtaluation of the critical integrals
to the computation of modified associated Legendre funstaanfollows:

Za@/ t) log |2y — t? dt = Za@/ t) log(zy — t)(z5 — t) dt

=2 Z o Re(Q, " (22)). (4.20)

pu=0
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4.2. Evaluation of Boundary Integral Operators

For the algebraic terms with= 1, ..., V we distinguish between real valueszgfand complex
values ofz,. Forz, € R\[-1, 1], we have

n 1 1 n 0,
I(z) ~ ) ol /1Pu(t)mdt => afQ% 1 (z). (4.21)
p=0 - v p=0

For complexz, € C\R, we apply the partial fraction decompositidn (4.15) andaobt

For even integerg, we get

/_11 Bu(t) <(Zx i e i t)j> dt =2 Re (@{;1(%»

and for odd integerg we obtain

/11 Fult) ((zx - (= - t)j> dt =2i T (Q} ! (z2)).

which yields

n l 4
Ip(z) ~ 2 Z O‘ff) ( Z in(Zm) Im <éft—1(zm)) + Z 0¢(2z) Re <@L1(Zm))) :
p=0

j=1, 7 odd Jj=1, j even

While the modified associated Legendre functi@ﬁscan be evaluated exactly (up to 15 sig-
nificant digits, see [Ban13]), it remains to investigate ¢ner, which is introduced by the in-
terpolation. The following Lemma gives an upper bound far diwerall error of the evaluation

according to[(4.20)[(4.21), and (4122).

Lemma 4.2.18. Let v; be the parametrization df; € T, x € M, be a near-field point and
z, as defined in Definition 4.2.]14. For € N, the remaindeﬂRﬁf)(xﬂ of the evaluation of the

integrals (4.14)according to(4.20), (4.21) and (4.22)is bounded by

1
|RO(x)| < celx) b e 1<e<a (4.23)

The constant is independent ofi; but still depending on the basis functiofg, and

f_ll |log |2z —t||dt, £=0
co(z) =

1 1
f—l m dt, £>0.
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4. Numerical Integration for High-Order NURBS-Based BEM

Proof. Due to Propositiof 4.2.15 for all= 0, ..., N, the interpolants are analytic ¢h,. With
the same arguments as in the proof of Lenima 4.2.91ard p < p;, the interpolation error
|E7(f) (x)| of the Legendre sun (4.119) is bounded by

n

felw = %)) [5:() @(t) =D alf) Pu(t)

=0

EWO =
|Ey ()] L

1
< chi——p !
p—1

with ¢ > 0 independent of; and the distancé. Applying the Holder inequality we get for
=0

1
[RO@)| < [EQ @) [ |logle— =]
-1
1 1
gchi—pnl/ ‘log|t—zm||dt
p—1 —1
and

|R ()]

IN

) b
E S —
O () / —

1 1 1

chy ——p "1 / ——; dt.
p—1 e

IN

0

Corollary 4.2.19. For x € M, the absolute errofR,,(x)| of the evaluation 014,(;) (x) accord-
ing to (4.20) (4.21) and (&.22)is bounded by
- 1
| R ()] < &) hi ﬁp*"*l, 1<p<pi (4.24)
Remark 4.2.20. For the Legendre polynomial®;, = P, and the Lobatto shape functions,
&, = N, we apply the estimates given in Lemma 2.1.9 (vi) land 2] i) Jad obtain

- 1
|R,(z)| < Ch; —1p*"+'H, 1<p<pi
p [e—
Here, the constaritis independent of; and the polynomial degrée

Remark 4.2.21. (i) Forthe evaluation oﬂ,(f) (z) in the near-field case, the remaindary, ()|
asymptotically behaves lik€ (p~"~!) with a convergence factdr< p < p; only depend-
ing on the boundary parametrization but not on the evalngtimint x. This yields a fast
decay of the absolute error even for small distanbesHowever, the constanf,(z) in
(4.23) depends on the evaluation paintRemarkK4.2.17 implies that(z) = O(D~2+1)
asD — 0.

-----

n interpolation points i€ (p; n log n), since the basis functior;, are also interpolated in
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4.2. Evaluation of Boundary Integral Operators

(4.19), Furthermore, the bourid (4124) f&, (x)| depends on the polynomial degree of the
basis functions. Hence, the advantage that the compleniyttee decay of the remainder
are independent qf;, which we obtain in the far-field case, cannot be transfetoeithe
near-field case.

(i) As compared to the Gauss-Legendre quadrature, thepotation generally only yields
half the convergence rate with respect to the orderHowever, since we only interpo-
late the regular parts of the kernel and integrate the na@mbyular parts analytically, the
interpolation order is much smaller than the quadratureerprdthen a Gauss-Legendre
quadrature is applied for the evaluationA)f) (z). We will see in Sectioh 5.2.2 that the
convergence of the Gauss-Legendre quadrature rules isskxeer if the integrand is ad-
ditionally regularized with coordinate transforms.

(iv) For the single layer operator of the Laplace equatibere holdsyy(z — y) = —% and
ge(x —y) = 0, £ € N. Hence, the coeﬁicient&g) in (4.19) are independent of the
evaluation point: and the Legendre expansion of the kernel only has to be cathuice
for all evaluation points. However, this does not apply te single layer operator of the
Lamé and Helmholtz equations and double layer operataadl tifree PDEs.

4.2.3. ldentical Case

Letx € T; andz, € [—1,1] as defined in Definition 4.2.14. The modified associated Lexgen
functions@’g(z) are also defined of+-1, 1] in the sense of the Cauchy principle values and the
Hadamard finite parts, see Definition 4.2.12. Furthermdfiejent algorithms for the evaluation
are given in[[Banl13]. Hence, we can proceed as in the nedrdede for the evaluation of
Ag) (z). All results concerning the complexity and the absolutereremain valid, expect for
the constant, in Lemma4.2.1B, which changes to

p.v. fjl | log |z, — ] | dt, £=0
co(x) == ) )

Remark 4.2.22. Since the nearly singular and singular cases do not have ttisbeguished
and all type of singularities are evaluated in a similar wes,obtain a simple implementation
for all kernel functions of the general type (4.26). Howeer some special cases there are
also alternative methods for the evaluation of the nearlgwdar integrald,(z), ¢ =0, ..., N as
defined in[(4.14), which we present in the following.

(i) For the integrally containing the logarithmic singularity, i.e.

1 1
oe) = [ ol = (e oglt = = 15(0) Bule) dt = [ Fit)logt ] at
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4. Numerical Integration for High-Order NURBS-Based BEM

the Gauss-Log quadrature, which is introduced in Secti@ncn be used for the evalu-
ation. For this purpose, we split the integrationzatand apply affine transforms to the
resulting integrals, such that the logarithmic singuaistlocated at -1. We get

1— L /11— 1
In(z) = log(1 — 2,) 2%/ f< 2th+ zz$>dt
-1

1 L/ 1 1—
+log(1 + z,) _;Z‘T / f <— _;th— 2%) dt
—1

1 1+t\ [~/1—2, 142z, ~f 142z, 1-—2z,
1 t - t— dt.
oo () [P ) T ()

The first two integrals can be evaluated as in the far-fieleé cadile the third integral

is evaluated with a Gauss-Log quadrature. Since the fmng}ﬁ'm analytic on&,,, The-
orem[2.2.1b implies that the absolute quadrature errortferthird integral decays with
O(p; 2n=1) "which is twice the convergence rate with respect to theraudes compared
to the interpolation approach. Furthermore, the compidgitthe evaluation reduces from
O(nlogn) of the interpolation ta)(n) for the Gauss-Log quadrature.

(i) For the evaluation of;(x), the approach presented in [GC87] can be used when addition-
ally assuming thaf (z —7;(t)) = (zo — ) f1(z — 7 (t)) with f1 (25 —i(t)) # 0. This is
satisfied for the double layer operators of Laplace, LantEH#gimholtz equations. Hence,
we get

pv. I1(z) = pw. / f1 x — % ))"Yz()’q)k()

pv/f

There holds

L=
pv. I (z / f fi dt +p 1(z) dt

,1Zm—t

f _f(zzv) ry 2y — 1

= W) 1 .
/1 pp— Jrf(Z)ngxle

Since the first integrand is analytic ép, the Gauss-Legendre quadrature yields exponen-
tial convergence with twice the convergence rate as cordgarthe interpolation method
if the integrand is evaluated appropriatelyzat

(iii) A similar algorithm for the evaluation of the hypergialar integralsi,, £ > 1, is pre-
sented in[[PA92]. Here, higher order Taylor expansiong afe used for the semi-analytic

90
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evaluation, i.e. for = 2 with f(zx) £ 0andf(z,) # 0

f.p-Ix(z fp/ /(0 e _ft)(zm)(zx_t) dt
f(zzv) ! f/(zm)
+fp/ 7( vy dt+p.v./1zx_tdt
/f zm—ft)( e t)dHf(z”C)z%—l+F(z”‘*’)10g2+1'

4.3. Computation of Galerkin Entries

In this section we discuss the assembly of the Galerkin oestV, K, and W that are intro-

duced in Section 1.6.1. For the evaluation of the arisingptibimtegrals, we split the integration
at all element edges. For the non-local basis functions,dsleup the local contributions. For a
fixed element combination of boundary elemefitsl’; € 7, we have to evaluate the integrals

A,(f”éj) = /T <I>](;) () / \I’EJ)(y)IN((:U —y)dsy ds,. (4.25)
@ J

Here, we denote bsb,(f) and\Ifgj) the basis functions of the discrete ansatz spaces as defined i

Definitions[3.2.8 anf 3.2.5. The kernel functifinis of the type

K(z —y) = go(r —y) + g1(z — y)log |z — y|

(z —y)"

— s (4.26)
+ g2(z — y)w + g3(x — y)w

z—y[>
where we denote by, and7, the outer unit normal and tangential vectorsyat I'. Fur-
thermore, we assume that the functiopgz), n = 0,...,3, are analytic or: € C\{0} and

analytically extendable to = 0 andgs(z — y) = g3(y — z).

Remark 4.3.1. The entries oV andK of the Laplace, Lamé and Helmholtz operators are of the
form (4.25) with kernel functiong (4.26), see Appendix A.r flee assembly oWV, we use the
relationship between the hypersingular and the singler lagerator, see Theorerns 1]3.1 (iii),
[1.3.2 (iii), and1.3.b (v). Hence, the Galerkin matricesdtrpartial differential operators are
included in the subsequent analysis.

Plugging in the local parametrizations Bf and7};, which are defined in Definition 3.2.1, we
obtain with K (s,t) := K (i(s) — v;(t))

. 1 1
4] = / / B(s) Wo(t)K (5,0) ()] 15 (1)] dt ds. 4.27)
—1J-1

Since the kernel function contains singularitie®;iknd7’; have common points, we differentiate
the following cases:
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4. Numerical Integration for High-Order NURBS-Based BEM

« far-field elementsT; N T; = 0, i.e. D := dist{T;, T;} > 0.

* neighboring elementst; N 7; # () and|T; N 7T}| = 0, i.e. the elements have one common
node.

* identical elementsT; = Tj.

In the remainder of this section, we discuss the evaluatigheodouble integrals i (4.27) and

give error estimates for the absolute error. For all threegawe proof that the absolute error
decays exponentially with respect to the function evatueti This is fundamental for high-

order methods that yield an exponential decay of the Galexidor. The last part of this section

is devoted to the derivation of a priori estimates for thedyature orders by estimating the
consistency error induced by numerical integration.

4.3.1. Far-field Elements

Throughout this section, we denote by > 0 the minimal distance of the elemerfsandT;.
Since the kernel is regular in this setting, the tensor Ghegendre quadrature yields an expo-
nential decay of the quadrature error and is hence theiirguwhoice for the evaluation. After
having proven an explicit bound for the quadrature erroraige propose alternative algorithms
for the numerical integration in NURBS-enhanced methods.

We start with proving the analyticity of the kernel function

Lemma4.3.2.Leth;, h; denote the arc lengths @, 7}, and&,,, £,, be as defined in Definition
8.2.9.

(i) Forall t € [-1,1], the kernelK (s, t) is real analytic or—1, 1] with respect tas and admits
an analytic extension t§,, N&,,, where€,, is defined by its real semi-axis = 1+¢; hQ

(i) Forall s € [—1,1], the kernelK (s, t) is real analytic on{—1, 1] with respect ta and admits
an analytic extension t§,, N &,;, wheret,, is defined by its real semi-axig = 1+ cthj.

The constants; and c; only depend on the parametrizations and ~y;, respectively, but are
independent of; andh;.

Proof. Lett € [—1,1] be fixed. Setting: := ;(t), Lemmd4.2.R implies tha (s, t) is analyti-
cally extendable o8,, N &,, with real semi-axis;; = 1+ ci% andD; := dist{v;(t), T3} > 0.
With D = min¢[_; 1) Dy we obtain (i). Statement (ii) can be proven analogously. O

Remark 4.3.3. The previous lemma shows that the regularity of the kerngédds on the ratio
of the distance and the arc length of the elements. Depermdirthe position off; andT; the
maximum domains of analyticit§,, and&,,, respectively, may be decreased. This is the main
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difference to the far-field case for the evaluation of thegnal operators discussed in Section
4.2, where the maximum regularity of the kernel is guarahfeeall far-field points.

The following lemma gives an estimate for the absolute esftine Gauss-Legendre quadrature.

Lemma 4.3.4. Letn := (n1,n2) € N? andpy, p2 > 1 such that the domaing¢,, x [—1,1]
and[—1, 1] x 0&,, are contained in the domain of analyticity of the kerhA&l Furthermore, we
denote by R, | the absolute quadrature error of the tensor Gauss-Legeqdeirature of order
n for the integral(4.25)

Then, there exist constant§ , C;, > 0 depending on the distance, the parametrizatignand
v; and the basis functions, but independent.oéndh; such that

[Ral < hihy (Crpp™ 71+ Copy ™71, (4.28)

Proof. With Lemmd4.3.2 and the analyticity of the basis functidhs,integrand is analytic on
&y x [—1,1] and[-1,1] x &,, and we thus apply Theorem 2.2117. In order to obtain {4.28) it
remains to estimates the maximum of the integrand on the ihsrofanalyticity. For the kernel
function, there holds

m K 1
a s5,8)| < ag+aq |log D| + as —=
(Svt)eagpl)i[fl,l}’ (s,0)] < ag + a1 |log D| + o

1
K(s,t)| < log D| + fs —.
(s,t)e[g%ﬁxas%' (s,8)] < Bo+ B1|log D] + B2 )

The constantsy, 5. > 0, k = 0, 1, 2, depend on the coefficient functions and the parametriza-
tions but are independent of the distargeand the arc lengths; andh; of the elements. The
maximum value of the basis functions 66,, anddé&,, is bounded and independent/gfand
h;. With Lemmg 3.2, 12 we get

v < ch; and Y < ch;
oax [Yi(2)| < chy o 1Y(2)] < chj

and conclude the proof. O

Corollary 4.3.5. For the Legendre polynomials, i.&; = P, andV, = P, and the Lobatto
shape functions, i.eb, = N, and¥, = N,, there holds

Ry | < hih; (01 pImHh=1 | 0 o2 +e—1) |

where the constants’; and C, only dependent on the parametrizatiopsand y; and the dis-
tance of the elements, but are independent of the polynategmbes: and/.

Proof. Follows directly from the estimates given in Lemrmhas 2.1i9dnd[2.1.11 (iv). O
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4. Numerical Integration for High-Order NURBS-Based BEM

NURBS-ehanced methods.For the Legendre and the Lobatto bases, we generalize the ap-
proach of expanding the kernel into a Legendre series, wikiafitroduced in Sectionh 4.2 for

the evaluation of the boundary integral operators. By @kidvantage of the smoothness of the
kernel for far-field elements and the orthogonality of thgd&mdre polynomials and the Lobatto
shape functions, we obtain a complexity for the evaluatibﬂf@j), k.l =1,...,p, thatis inde-
pendent of the polynomial degree

For simplicity, we only describe the interpolation for thedendre basis, i.e®, := P, and

¥, .= P,. Let the tensor Legendre expansion be given by

ny n2

K (s, )/ %) |35 ()] & In(s,t) := > > Pu(s) P (b). (4.29)

pn=0v=0

Plugging in the Legendre expansion we obtain
[ A [ R0 bl ko] as
niy n2 1
~30 aw / ©R)ds [ PoP©

- -1

p=0v=0
4 .
_ JorEm e k<ny and j<mny (4.30)
0, otherwise.

Hence, for evaluating all integralﬁ{’g), k,f =0,...,p, Simultaneously we only have to compute
the coefficients of the Legendre expansion. Similarly tookipm[4.2 for the one-dimensional
case, we compute the coefficients in two steps. First, we atenihe coefficientsy,, with
respect to the Chebyshev basis. Therefore, we evakigset) |¥;(s)| |¥;(t)| at

(Susty), v=1,..,n and pu=1,..,n

wheres, andt, denote the zeros of thg; + 1)-th and(n, + 1)-th Chebyshev polynomials,
respectively. We then apply the discrete cosine transfarihe rows and columns.

Second, the basis transformation to the Legendre polynsnsiaealized by the multiplication
of the coefficient matrix with the transformation matbA defined in [[4.B) from the left and
right.

Remark 4.3.6(Complexity) Forn := n; = ng, we have an overall complexity ¢¥(n? logn):
The two-dimensional discrete cosine transform has a codtylef O(n?logn), since the dis-
crete cosine transform is applied two times tgax n)-matrix. The basis transformation to the
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4.3. Computation of Galerkin Entries

Legendre basis corresponds to two matrix-matrix multgglans. If the algorithm of [AR91] is
used for theH2-matrix approximation of the transformation matrix, wecatbtain a complexity
of O(n?).

As compared to the tensor Gauss-Legendre quadrature weedaoer the complexity from
O(n?) to O(n?logn). Furthermore, the interpolation order only depends on theashness
of the kernel and the boundary parametrization and is intldgr& of the polynomial degree
Hence, the interpolation approach becomes very efficianthf uniformp-refinement, i.e. if
the kernel is smooth and the polynomial degrees of the basitibns are large.

The following Lemma gives an estimate for the absolute etan error.

Lemma 4.3.7. Let T;,7; € T with D = dist{7;,7;} > 0 and py,p2 > 1 such that the
expressionk (s, t) |¥;(s)| |7;(t)| is analytically extendable ofi,, x &,,. Forn € N?, let I,, be
the Legendre sum as defined#29) If we denote byR,,| the absolute error of the evaluation
of the double integraf4.28)according to(@.30) then there holds

1 1
R,| < Ch;h,; max K(s,t + .
| n| 1199 (5,£)€0E,, XOEp, | ( )| ((Pl . 1) p1111+1 (p2 . 1) pngrl)

Proof. Let 3t ; () Pu(s) denote the Legendre expansionfofs, t) |4 (s)||7;(t)| with re-
spect tos. Then, we obtain for the interpolation error Bf

K(S,t) ‘fY’L(S)’ h’](t)‘ - In

<K (s, ) o) 15 (0] = D o) Puls)
pn=0

+ 1D au(t)Pu(s) — In| .
©n=0

By analogy to the proof of Lemnia 4.2.9 we obtain for the firatite

— hih;
K(s,t) |[%(s)| |7 ()] — a,(t)P,(s)| < 6 ———2L— max K(s,t)|.
(5,0) [%i(s)] | J( )l Hgo u() u( ) 1(p1 — 1)p?1+1 (s,t)eafplxasp2| ( )|

For the second term we get with (4111)

ni

Z a,(t)Pu(s) — In| = Z (au(t) - Zau,VPy(t)> P,(s)
pu=0 v=0

©n=0
1 =

< max |au(t)| ————m77 D [Fu(s)]

€06y, " (py — 1) ! uz=;) '

1

<(m+1 max K(s,t)|%(s)] |y (t)]| | —————

(m+D) e KOO0
<é(np+1) max |K (s t)\L
- (5,8)€DEp, XDEpy ’ (p2 —1) p;lz-l—l
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4. Numerical Integration for High-Order NURBS-Based BEM

With

[Rn| < 4|K(s,t) [Yi(s)| [ (0)] = In

we conclude the proof. O

Remark 4.3.8. (i) In[Heu96] and|[Ban1B], itis observed that the entriethia far-field block
A,(fj) decay rapidly with respect to the polynomial degreesid/ of the Legendre polyno-
mials. For the implementation, the small entries, that desigmificantly affect the overall
error, are simply neglected. This yields a data compressibeme for the far-field blocks.
The interpolation approach presented above yields a similmpression scheme, since
small entries are automatically neglected by exploitirgy dithogonality of the Legendre
polynomials.

(i) As compared to the Gauss-Legendre quadrature, theecgemce is slower, since the kernel
K has to be analytically extendabledp, x £,, as compared t6,, x [—1,1] and[—1,1] x
Epys

given in Lemma4.3]2 and the computation is in general expens

respectively. Hence, the semi-axis symandp, cannot be estimated by the formulas

4.3.2. Neighboring elements

LetT;,T; € T be neighboring elements that have one common node. Witbestdf gener-
ality we assume that the local parametrizationg’oénd7; satisfy~;(1) = v;(—1), the case
7;(=1) = ~(1) can be treated analogously. Plugging in the local paramagibns into the
representation of the kernel functidn (4.26) we get

oy ) = (0) ()
+92(%( ) ’VJ(t)) |%-(5) —’7]'(75 |2 (4.31)
(vils) = () 7(0)
i(8) — t ,
+ g3 (7i(s) —;(t)) ——E

which implies that the kerndt (s, t) has algebraic and logarithmic corner singularitiesat) =
(—1,1). Thus, the integrand has to be regularized in order to aetd@ewexponential decay of the
evaluation error. Therefore, we first introduce a coordii@nsformation, discuss the evaluation
of the integral [(4.25) with quadrature rules, and proof tkgomential decay of the quadrature
errors. Finally, we derive analytic formulas for the evéioma of (4.25) for NURBS-enhanced
methods and linear boundary parametrizations.
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4.3. Computation of Galerkin Entries

For the regularization of the integrand we introduce thifaihg coordinate transformation:

//fstdsdt // <—v1—1+“)2(1_”)>1;”d3dt
// <1+u1—v)_ljv>1;v

Figure[4.3.2 shows a geometrical interpretation of thesfiam. In the first step, the integration
domain is split along the diagonal going through the singutatex. Second, both triangles are
transformed to the unit square by a transformation, whickiriglar to the one introduced in
[Duf82] for the regularization of vertex singularities acalled Duffy transformation. In the last
step, the first square is reflected with respect to the didgoich that the top edge is the singular
edge. For both transformations, the Jacobian determiaaitén byl

(4.32)

Figure 4.4.: Coordinate transformation for neighboringmeténts. The red corner and edges in-
dicate the singularity.

Remark 4.3.9. The transformation given ifL(4.B2) is specially designedtie regularization of
algebraic singularities of order one. We will show in thewsglgthat the Jacobian determinant
1%” cancels out the algebraic singularities in the kernel fioncand we obtain regular expres-
sions. However, the logarithmic term multiplied with thedhian determinant is continuously
extendable to the top edge= 1, but not real analytic. IN_[LR&4] it is proven that the Gauss-
Legendre quadrature yields an algebraic convergence désettypes of integrands. Hence, the
logarithmic term has to be treated separately.
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4. Numerical Integration for High-Order NURBS-Based BEM

Since the algebraic terms in the representation are regfiarthe transformation, we apply a
tensor Gauss-Legendre quadrature. For the integratidmedbgarithmic term arising from the
lower triangle, we additionally introduce the followinglisiing

log |7; (W — 1) —7; (v)
2 s Atuw)(-—v) _ ¢\ _ .. (4.33)
= log [ ( 2 T > ) +1og<1_v>.

A similar splitting is also introduced for the upper triaaglWe will prove that the first term
in (4.33) is regular and can be evaluated with a tensor Glaaegendre quadrature. The second
term contains the logarithmic singularity and the corresliing integral has to be evaluated with
a combination of Gauss-Legendre quadrature with respecaial a Gauss-Log quadrature with
respect taw. Overall, we have to evaluate four integrals.

Remark 4.3.10. A similar coordinate transformation is also introduced/8a&ch97] for the
Galerkin entries in three-dimensional BEM. In contrastdo&pproach of evaluating the weakly
singular integrals with adapted quadrature rules, a coitgonge is applied in order to achieve
an exponential decay of the quadrature error.

In the following, we analyze the regularity of the transfedrkernel function and then derive

estimates for the quadrature errors. In particular, weggrvexponential decay of the quadra-
ture error for all four integrals. For the subsequent anglgbthe kernel, we only consider the

two integrals arising from the lower triangle, the same argnts also apply to the two integrals

coming from the upper triangle.

For notational convenience we define

(1+u)(1—w)
K <—2

_ 1,v> =: f(l(u,v) + f(g(u,v) log <1 ; U> ) (4.34)

where K (u,v) contains all terms of the transformed kernel that are eteduwith a Gauss-
Legendre quadrature.

Proposition 4.3.11. Let f(u, v) := W — 1 and €&, as defined in Definition 2.0.9 with
p > 1. Then, we obtain

0(&y,[-1,1]) c &, and 6([-1,1],&,) C &,

Proof. Leta be the real semi-axis &,, u € £, andv € [—1,1]. Sinced(u,v) = 52 u — £2,

f corresponds to a scaling 6f, with a scaling factoﬁ%” < 1 and a subsequent translation in

the direction of the real axis by”T” < 0. Hence, it suffices to show thét—a,v) € &£, for all

€ [~1,1]. We getd(—a,v) = —15%a — 2 > —a sincea > 1. The second statement can

be proven with similar arguments. O
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4.3. Computation of Galerkin Entries

We now estimate the domain, in which the kerfiel- v) K is analytically extendable.
Lemma 4.3.12.Let K (u, v) be as defined ifg.32)

(i) Forall v € [~1,1], the term(1 — v) K (u,v) is real analytic on[—1, 1] with respect tau
and admits an analytic extensiondp, N &,, with real semi axisi; = 1 + c; hQ
(i) For all u € [~1,1], the term(1 — v) K, (u,v) is real analytic on[—1, 1] with respect
to v and admits an analytic extension &, N &,, N &,, with real semi axisz, = 1 +
D
€2 max{hi by}
The constants;, c; > 0 only depend on the parametrizationsand~;, the constantD > 0
depends on the angle between the eleméngdT;.

Proof. Due to Definitiorl 3.2.8y; and-; are analytically extendable &), and&,,, respectively.
Propositio_4.3.11 implies that <W - 1) is analytically extendable tp-1,1] x &,,
and&,, x [—1,1]. Further, the expression

SCETTEC N R

and by assumption the coefficient functions

Y LT R N

are analytically extendable fe-1,1] x (£, N &,;) and&,, x [—1,1]. Hence, it remains to
investigate the logarithmic and the algebraic terms in épeasentatiori (4.26) of the kernel. We
first proof that these terms are real analytic[er, 1]? and then estimate the ellipse, in which
these terms can be analytically extended.

The Taylor expansion of; at —1 and of~; at1 is given by

u —v U —0 U2 _,02
P (e

2 4
5= 1) -0 (- 1)%)
—-) (3055 s+ 00-0)
— (1= v) h(u, v). (4.35)

Plugging in the Taylor expansion_(4135) we obtain for theebhgic terms of the kernel multiplied
with the Jacobian determinaft®

1—v (’Yi (W - 1) 7 (U))TVJ'(U) _ h(u,v)Tv;(v)

2 v ((1+u)2(17v) _ 1) ., (U)‘2 — 2[h(u,v)]?

(4.36)
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4. Numerical Integration for High-Order NURBS-Based BEM

and

1— v (%‘ <7(Hu)2(17v) - 1) = (U))TTJ'(U) _ h(u,v)Tj(v)

= ) (4.37)
2 w)(1—v 2 2 |h(u,v)|?
" ((1+ M) _ 1) >y (U)‘ [h(u, v)]
Further, we get for the logarithmic term
(= 1) oy o)
log = log |h(u,v)|. (4.38)

1—w

The functionh(u,v) does not vanish of-1, 12, sinceh(u,1) = %(—1)“3“) +4;(1) =0

if and only if the angle between both elemeffisandT; vanishes, which is not possible for
Lipschitz boundaries.

Therefore, all three termb{4136), (4.37) ahd (#.38) arkaealytic on[—1, 1]> and there exists
p1, p2 > 1 such that they are analytically extendable&n x [—1, 1] and[—1, 1] x &,,.

In the sequel we proof the representation of both real segs@ andas. Let

D:= min min |h(u,v)| > 0. (4.39)
u€[—1,1] ve[-1,1]

(i) Letv € [—1,1] be fixed. There holds

—v . 14+u)(l1—v . 1+u)(1—v
ah( )_12 ,YZ_<( )2( )_1)_%(( )2( )_1)
ou YT 1—v o 2 '
With Lemmd 3.2.1P we get
3h(u v)| < chi
ou - '

Hence,|h(u,v)| > 0 for all u € £,, with real semi-axis; = 1+ 2 2, which implies the
analyticity of the kernel o0&, N &,, with respect tau.

(i) Letu € [—1,1] be fixed. Since fov ¢ [—1, 1]

y <(1 )1 —v)

h(u.0)] = 0 & |f(0)] = 1) -

we restrict to investigaté¢. There holds

3} 14w, (A+u)(d —v) .
o (v) =— 9 ’7@( 5 1) =75 (v),
which implies that
0
%f(v) < 2¢; h; + Cj hj.

Here, we applied Lemmia 3.2]12. Henfe(u,v)| > 0 for all v € £,, with real semi-axis
az = 1+ 5575+ which implies the analyticity of the kernel dfy, N &,, N €, with
respect ta.
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O

Remark 4.3.13. (i) The proof of Lemm&4.3.12 shows, that the maximum domé&emalyt-
icity may be decreased by the zeros of

(TR R

1—w

(4.40)

According to Lemmé 4.2]3, for all fixed € [—1, 1] there exists at most one pair of com-
plex conjugate zeros(v) € &,, with respect tau. Depending on the angle between both
elements and the ratio of the arc lengths, the zefo$ may be positioned close to the
interval [—1, 1], which results in a small domain of analyticity of the intexgd. This fact is
exemplified in Figuré4l5. For the evaluation of the corresjiag integrals with a Gauss-
Legendre quadrature, we hence expect a slow exponentiatigmnce.

Although z(v) can be computed for all € [—1, 1], itis generally not possible to derive an
explicit representation of(v). Hence, we cannot regularize the integrand as it is done for
the evaluation of the boundary integral operators in the-fielal case in Section 4.2.

(i) The estimate for the semi axis sumsandp, are worst case estimates and hence in general
coarse. The numerical examples in Chapter 5 will show, ghatnd p, are smaller than
the actual semi axis sums of the domains of analyticity. Hexdemmd 4.3.12 gives a
reliable and computable bound for the domain of analyticity

Figure 4.5.: Neighboring Elements, and T; with interior angler/10 parametrized by the
NURBS curves defined in Examgle 311.3 (left figure). The rifignire showst,,
(blue), the maximum ellipsé€,, in which the expression (4.40) is analytic with re-
spect tou (black dashed), and the zero®) of (4.40) forv € [—1, 1] (red).

Now we are in the position to derive estimates for the quadeagrrors.

101



4. Numerical Integration for High-Order NURBS-Based BEM

Lemma 4.3.14.Letn € N? and p;, p» > 1 be the semi-axis sums &f, and €, such that
L= K1 (u, v) is analytically extendable o8, x [~1,1] and [-1,1] x &,,. Further, let|R,|
denote the absolute quadrature error of the Gauss-Legeqdagrature rule applied to the in-
tegral

/_11 /_11 1;“K1(u,u) o, ((HLQ“_U) - 1) ()

Then, there holds

(=0 o

|Ra| < hih; (Clpl—?"l—l Oy p;2”2—1) (4.41)

with constant”';, C, > 0 depending on the basis function, the parametrizatigrasd-y;, but
independent of; andh;.

Proof. Since the basis functiorB, and¥, and the parametrizationg and-~; are analytic, the
kernel and hence the whole integrand is analyti€gnx [—1, 1] and[—1, 1] x &,,, respectively.
In order to apply Theorem 2.2117, it remains to estimate tagimum value of the integrand on
the domains of analyticity.

Let h(u,v) be defined as iNC(4.85) anB = max(, ,)c[—1,1)2 | (u,v)|. With the Cauchy-
Schwartz inequality we obtain

b )Ty @) 1

w0 Jh(w,0)
hw, o) )] 1
o) = o)

Hence, the kernel can be bounded by

1—v
—K
2 1(’&,’0)

max

1
< agllog D| + az
(w0)€[-1,1]x0E ),

57

(4.42)

where the constants; > 0 anday > 0 depend on the parametrizatiopsand-y;. With Lemma
[3.2.12 we get
1 1-—
i <W_1>' < ag h;

max v (0)] < au hj.
(u,0)€[-1,1]x0Ep, 195 (0)| < aa hy

Similar estimates td (4.42) and (4143) can be proved@n x [—1,1].
With Theoreni2.2.77 there exist constaitsandC5 independent of; andh;, but depending
on-;, vj, andD, such that

max
(u0) €[~ 1,1] x9E

(4.43)

|Rn| S hz h] <C1 p1—2n1—1 + CQ p2—2n2—1> '
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For the integral corresponding to the second terri in {4\8Hich is evaluated with a combina-
tion of Gauss-Legendre and Gauss-Log quadratures, thdemria gives an upper bound for
the quadrature error.

Lemma 4.3.15.Letn € N? and p;, p; > 1 as defined in Definition 3.2.9 and< p; < p; and
1 < p2 < min{p;, p;}. Further, let|R,| denote the absolute error of the Gauss-Legendre and
Gauss-Log quadrature rules applied to the integral

[we(15) [ 5 term () o

o (ESTE N TP

Then, there holds
IRl < hihy (Clpl_Q”l_l + G ,02_2"2_1> (4.44)

with constantg’, Cy > 0 depending of the parametrizations and;, but independent df;
andh;.

Proof. Let w(v) := log (1*7”) be the weight function of the Gauss-Log quadrature rule-in

direction.

By assumptionf(Q(u,v) = q (%- (W - 1) - yj(v)> is analytically extendable on
&y, x [-1,1] and[-1,1] x &,,. Since the basis functions and the local parametrizatioas a
also analytic on these domains, the whole integrand (eXoephe weight functionw) is ana-
lytic and Theorerh 2.2.17 can be applied. With (4.43) and thenHedness of the basis functions

and K, (u, v), we obtain
(Rl < hihy (Crop® ™ 4 oY)
and conclude the proof. O

Corollary 4.3.16. For the polynomial basis functions used for NURBS-enhaited, we ob-
tain for (4.41)and (4.44)

’Rn‘ < hy hj <51p1_2n1+k_1 + 5’2p2—2n2+k+€—1) .

Here, the constant§’;, Cs are also independent of the polynomial degreesd/ of the basis
functions.

Proof. The statement follows directly from the estimates givenémimas$ 2.1]9 (vi) and 2.1111
(iv). O
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4. Numerical Integration for High-Order NURBS-Based BEM

NURBS-Enhanced BEM.For neighboring elements; andT; with affine parametrizations and
polynomial basis functions, we present an analytic metloodhfe computation of the Galerkin
entries based on the coordinate transformation introdabede, which provides an alternative
to the evaluation presented in [Ban13]. We exploit the faat for affine parametrizations we can
split the kernel function into terms ef andv. Therefore, the integral can be split in a singular
integral, a nearly singular integral and a regular integwlich can be treated separately.

For simplicity, we only consider the logarithmic part in tlepresentation of the kernel function,
ie.
14+u)(l—-wv
" (M _ 1) ()

ITi173) / /
I g = ———— I
k.0 1 ) 0og 9

A (% - 1) Pi) =

v dudv.

For linear elements, we obtain with the Taylor expansioB).

14w
2

Ny ((1 +u)(l—v)

1) s =00 (D ). @)

Therefore, we get

2

(=0 )y

o 2
1wy (Mu ) (14w (1) + \%(1)\2)

)2
— - e -y -,

where the complex zerpis given by

_ DT - VEEDT )2 = F=DP WP

’ 2P (1) !
_ 291" = 20 ((=1) x 45(1)
= ‘%(_1)‘2 1. (4.46)

Remark 4.3.17. The representatiori_(4.46) ofshows, that for collinear elemenis and T}

there holds: € R. Furthermore, if the angle between both elements vanisheé$lal < |T;|

thenz € [—1,1], i.e. for identical elements with;(s) = ~;(—s) we obtainz = 1. Hence,
apart from the singular edge= —1 we obtain a second singular edge= 1 in the integration
domain.
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4.3. Computation of Galerkin Entries

Splitting the logarithmic term, we obtain fdf, ,

i| T Lol w)(l—wv —v
VNS % <10g (|%(—1)|2) /1 /1 Py <% - 1> Py(v) ! 5 dudv

+2/_11/_1110g<1;”> Py (—(H“)z(l_”) —1> Py(v) I;Ududv
+/11 /11 log (= — u)(Z — u)) Py (w - 1) Py(o) 1;Ududv>

2
Tl T3 ) @2 , 73
— (1 +218) + 1)

While the first integral[,gg is regular, the second integrﬁ,@ contains the logarithmic singu-
larity. The last integra],g?’g contains the nearly singular part, which is responsibldaHerslow
convergence of quadrature rulegifs positioned close to the intervgt1, 1].

We discuss the evaluation of all three integrals separatadystart with deriving analytic formu-

las forI,ilg in the next lemma.

Lemma 4.3.18.For k, ¢ € Ny, there holds

/11 /11 P, <W _ 1) Pi(v) 1 ; Y dude
2

{(”kﬂ (519,@71 Mw — Ok,041 Mw) , k=21,02>1

For the second integral, we apply a Gauss-Log quadraturai a Gauss-Legendre quadrature
in u. SincePy <W - 1) Py(v) 5% € Py([-1,1]) with respect ta: and

Py <W - 1) Py(v) 15¢ € Piyrr1([-1,1]) with respect tay, we choose the quadrature

order according ta = ([&£17, [&H£ 4 1), such thatl\*) is integrated exactly.
For the third integral, we write

k
Py <(1+“)# - 1> = ;ag’ﬂ(v) P (u).

The coefficients can be computed with the discrete cosinsfwem according to Algorithin 4.2.
Plugging in the Legendre expansion we obtain

k 1 v 1
=3 [ aPwre S [ o -uE-w) 5w d

1 —

_» Z/ o) (0) Py (v) 1g”dv Re (/1 log (= — u) P, (u) du>

-1 -1

=2 Z/ aﬁtk)(v)Pg(v) ! ; “dv Re <@;1(2)> )
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where the modified associated Legendre functions of secimﬂ@k;l(z) are defined as in
Definition[4.2.12.

Remark 4.3.19. (i) Only the third integral[,(j’g depends on the mutual position @f and
T; and has to be computed for all combinations of neighboriegnehts. However, the
integrals[li}g andl,fg only depend on the basis functions and can be precomputedanc

the maximum polynomial degree.

(i) The functions@;l(z) are also defined for € C\{—1, 1} and can be extended to= +1
in the sense of the Hadamard finite parts. Therefore, theafddentical elements can be
treated similarly and has not to be distinguished for thecgg setting of linear elements.

(iii) This approach can also be extended to the algebraingaf the kernel function, by ap-
plying the partial fraction decomposition proven in Lemmd. 6. Here, the algebraic
singularity is cancelled out by the Jacobi determinant eftthnsformation and only the
nearly singular integral has to be evaluated.

4.3.3. Ildentical Elements

In the case of identical elemeris = T; with v; = ~;, the kernel has an edge singularity on
the diagonal, i.e. fos = t. In order to regularize the integrand we introduce the foilhg
transformation:

/11 /11 f(s,t) dsdt = /11 /11 f<91(u,1)),02(u,v)> % du dv
i /_11 /_11 ! (92(“’ v), B (u, v)) % du dv.

01(u,v) = W —1 and 6y(u,v)=1-—

(4.47)

with

(1= u)(1-v)

5 (4.48)

Figure[4.6 shows the geometrical interpretation of thesfiamation. In the first step the in-

tegration domain is rotated and split along the singulagati@l. Second, both triangles are
transformed to the unit square by a transformation, whicsiriglar to the one introduced in

[Duf82]. In the last step, the second square is flipped hatadosuch that the bottom edge is
the singular edge. For both transformations, the Jacolsterminant is given bylg—” which

implies (4.47).

Remark 4.3.20. While for neighboring elements the Jacobian determinatiiefransformation
cancels out the algebraic singularities, this is not trugte transformation introduced in_(4148).
However, we will proof in the sequel that this transformatadso regularizes the algebraic edge
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a(u,v) =u

b(u,v) =v

z(s,t) =s—t s(a,b) = a(12—|— ) a(u,v) =u
y(s,t) = s+t t(a,b) = b_Tl b(u,v) = —v

Figure 4.6.: Coordinate transformation for identical ebetis. The singular edges are depicted
in red.

singularity of the kernelK, whereby the singular parts are cancelled out by adding tip bo
integrands. For the logarithmic singularity, we proceedilsirly to the case of neighboring
elements and introduce the following splitting for the sfammation of the upper triangle

o 2 |7 (01 (u, v)) — 73 (O2(u,v))|
v+1

log |7i (61(u, v)) = i (f2(u, v))| = 1o

v+1
+ log 5 .

A similar splitting is introduced for the lower triangle. W#ove that the first part is regular

(4.49)

while the second part contains the logarithmic singularity

The regular parts of the kernel function, i.e. the algebtaims in [4.26) as well as the first
logarithmic term in[(4.49), are evaluated by a tensor Gaesgendre quadrature. The second
term in [4.49) is evaluated with a combination of Gauss-bege quadrature in and a Gauss-
Log quadrature in, where the logarithmic singularity is considered to be theéght function.
For notational convenience we define

K(@l(u,v),az(u7v)> =: [A(fl)(u,v) + R’él)(u,v) log <1 ;— U) ;
(4.50)

N . 1
K(@g(u,v),ﬁl(u,v)> =: K?)(u,v) + K§2)(u,v) log < —2H}> ,

where R’fl)(u,u) and R’f) (u,v) contain the parts of the kernel that are evaluated with the

Gauss-Legendre quadrature.
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4. Numerical Integration for High-Order NURBS-Based BEM

In the remainder of this section, we proof the analyticitythad integrand for identical elements
and derive upper bounds for the quadrature errors. In péatiove prove the exponential decay
of the quadrature error with respect to the quadrature orfleerefore, we need the following

preliminary result.

Proposition 4.3.21.Let &, denote the ellipse with semi axis sym> 1 as defined in Definition
[2.0.9 and¥; andé, as defined iff4.48) Then, there holds

01(—1,11,,) C &, 016, [-1,1]) CE,

and
O2([—1,1],&,) C &y 02(Ep, [—1,1]) CE,.

Proof. The statements can be proven with similar arguments as nsbd proof of Proposition
4.3.11. O

Lemma 4.3.22.Leté,, as defined in Definition 3.2.9 and" (u, v) and K? (v, v) as defined
in @50) Then, K" (u,v) and K (u, v) are analytically extendable tp-1,1] x (£,,\{—1})
and&,, x (—1,1] and contain a simple pole far= —1.

Proof. We only proof the statement fdi’fl)(u, v), the proof forf(f) (u,v) is similar.
Due to Definition[3.2.9y; is analytically extendable t&,,. Proposition 4.3.21 implies that
vi (61(u,v)) and~; (f2(u,v)) are analytically extendable to-1,1] x &,, and&,, x [-1,1].
Since, by assumption, the coefficient functiaps 1 = 0, ..., 3, in (4.28) are analytic, the ex-
pression

9u (i (01(u,v)) =% (B2(u,0)) ), p=0,...,3,

is analytically extendable to-1,1] x £,, and&,, x [—1,1]. Hence, it remains to investigate the
logarithmic and the algebraic terms in the representadad@f of the kernel.

Due to Lemma& 4.2]3; is injective on&,,. Hence, for fixeds,t) € [—1,1] x &,, and(s,t) €
Epy x [—1,1],7i(s) —v:(t) = 0if and only if s = ¢. Plugging in the transformation we get

01(u,v) = O2(u,v) v =—1.

Hence, the logarithmic term in the splittiig_(4.49)
og <m<el<u,v>> - %wz(u,v))\)

1+ |

is analytically extendable ofy,, x [—1,1] and[—1, 1] x &,,. The algebraic terms

({01 (1, 0) = (B2 0) "viBa(w. ) (302, 0) — i(Ba(w0)) " i (Ba(u, v)
|7 (61 (1, v)) — 7 (B2 (u, 0)) | 17 (61 (1, 0)) = 7i(G2(u, 0)) |
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4.3. Computation of Galerkin Entries

contain a pole for = —1. With the Taylor series of;(s) att and plugging in the transformation
(4.48), we obtain

~i(01(u,v)) — vi(O2(u,v)) = (v+1) (*’yl- (HQ(u,v)) + (Hg(u,v)) (v+1)+ (’)((v + 1)2)) .
Plugging in the Taylor series, the algebraic terms read

(i1 (1, 0)) = 7i(Oa(w,v))) v (Ba(w,v)) (5 (Ba(u, v)) + Ov + 1)) vy (62 (u, v))

701 (u, v)) = 7 (B2 (u, v)) | |5 (62w, v)) + O(v + 1)

and

(7i(01(u, v)) = 7i(02(u, v))) " 75 (B2(u, v)) _ 1 (% (02(u,v)) + O(v + 1))TTZ‘ (62(u,v)) .
|7 (61 (1, v)) — 7i(G2(u, 0)) | vt1 1% (62(u, 0)) + O(v + 1)

Note that we use; () v;(t) = 0 for the first term. Hencels; (u, v) contains a simple pole for

v=—1. O

T

Corollary 4.3.23. The expressiok (" (u, v) + K\* (u, v) is analytically extendable t6,, x
[—1,1] and[-1,1] x &,,.

Proof. Due to the proof of Lemnfa4.3.22 we only investigate the terd 8’ (v, v)+ K (u, v),
which contains the algebraic singularity, i.e.

(%i (B2(u,v)) + O(v + 1))T7'Z- (62(u,v))
|%i (02 (u, v)) + O(v + 1)‘2
(=4 (02(u, v)) — O(v + 1)) 7 (61 (u,v)) )
15 (61 (u, v)) + O(v + 1) '
_ 93(01(u, v) — O5(u,v)) ((% (02(u,v)) + O(v + 1))T(Ti (62(u,v)) — 7 (91(107”))))
vl 1% (62(u, v)) + O(v + 1)|° ’
(u, —

where we used the symmetry propertygaf Sincef (u,

1

fu,v) = P (93(91(%”) — 02(u,v))

+93(02(u, v) — 01(u,v))

1) = 03(u,—1) = u, the term in
brackets vanishes as— —1 and hencéim,_, 1 f(u,v) < oc. O

We are now in the position to give an estimate for the intetiral is evaluated with the tensor
Gauss-Legendre quadrature.

Lemma 4.3.24.Letn € N2, &,, as defined in Definition 3.2.9, < p < p;, and ®;, and ¥,

denote the basis functions introduced in Definitions 3.28#&2.5. Further, Ief%’fl)(u,u) and

f(f) (u,v) be as defined if4.50)and | R,,| denote the absolute error of theth order Gauss-
Legendre quadrature applied to the integral

1 1
/_1 /_1 [Rfl)(u,v) @k(al(u,v))\pz(%(uw))

R (0, 0) 4O, 0) P00 ,0))]| 01 (1, 0))] B, )| -
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4. Numerical Integration for High-Order NURBS-Based BEM

Then, there exist constants, C5 > 0 independent of; such that
|R| < B2 (Crp 2~ 4 Cyp 227t (4.51)

Proof. With Lemma4.3.2P and Corollafy 4.3]23 and the analyticityhe basis functions, the
integrand is analytic op-1, 1] x £, and&, x [—1, 1], respectively. Since the basis functichg
and ¥, and the terms\" and K{* are bounded ofi-1,1] x &, and&, x [—1, 1], we obtain
with Lemmal3.2.IP that the integrand is bounded®yh? on 9, x [—1,1] and byC, h? on
[—1,1] x 0&,. Here,C, Cy > 0 are independent df;. With Theoreni 2.2.17 we obtain

|Rn| < h12 (Cl p—2n1—1 —|—C2 p—2n2—1) )
[l

For the integrals evaluated with the Gauss-Legendre anthess-Log quadrature, the next
Lemma gives an estimate for the absolute error.

Lemma 4.3.25.Letn € N2, &,, as defined in Definition 3.2.9, < p < p;, and ®;, and ¥,
denote the basis functions introduced in Definitions 8.28[@.2.5. Further, Ietkél)(u,v)
and f(éz) (u,v) be as defined iif4.50) and | R,,| denote the absolute error of the -th order
Gauss-Legendre quadrature inand then,-th order Gauss-Log quadrature inapplied to

11
/_1 /_1 [Kél)(u’ 0) @ (01 (11, 0)) W (0 (1, 0)) + K5 (u, 0) @ (02 (1, 0)) e (01 (u, v))]

30 ) O, )| 5 o (£ ) dua

Then, there exisf;, Cy > 0 independent of; such that
|Rn| < B2 (CLp™ 27 4+ Cyp 227 (4.52)

Proof. For the Gauss-Log quadrature the weight function is givewfy) = log (11%). By

assumption the expressions

KD (u,0) = g1 (1(61 (1w, 0)) — 75(Ba(u, v)))
K (u,0) = g1 (3i(02(u, v)) — 7i(01 (u, v)))

and thus the integrand (except for thg-term) are analytic and bounded 6p x [—1,1] and
[—1,1] x &,. With Lemm&3.2.IP and Theordm 2.2.17 we obtain

‘Rn’ < hzz (Cl pf2n171 + CQ pf2n271) )
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4.3. Computation of Galerkin Entries

Corollary 4.3.26. For the polynomial basis functions used for NURBS-enhaited, we ob-
tain for (4.51)and (4.52)

IRn| < h? <51 p—2n1+k+e—1 n 52 p—2n2+k+é—1) .

Here, the constant§’;, Cs are also independent of the polynomial degrkesd/ of the basis
functions.

Proof. The statement directly follows by the estimates given in hed 2.1.D (vi) and 2.1.11
(iv). O

4.3.4. Consistency Error Analysis

After having discussed the computation of the Galerkiniesitvia interpolation and quadrature
rules, we investigate the effect of the absolute errorser@halerkin matrices on the consistency
error in Strang’s Lemmla_1.6.4. We then give a priori estimébe the interpolation and quadra-
ture orders, such that the induced consistency errors depwit the convergence rates of the
Galerkin methods.

In the general framework of Sectibn1l.6 we consider a HilbpaceX with its dual X', f € X’
and a linear and bounded operatbr: X — X’. We denote byX, C X one of the discrete
ansatz spaces as defined in Definitions 3.2.3and|3.2.5, afidiby.., @} a basis ofX,. The
discrete variational formulation is given by

a(un,vp) = (Aup,vp) = (f,on) Yor € Xy

LetZ = {1,...,N} be the set of all degrees of freedom. Writing = fozl u, P, and
vy, = Zﬁle v ®;, we obtain

a(up,vp) = Z WA vy = ulAv. (4.53)
J,k€L

Here, A denotes the Galerkin Matrix of the integral operatrwhich is defined for all consid-
ered integral operators in Section 116.1. In a similar wayftain for the perturbed sesquilinear
form a(up, vp,)

a(up,vp) = Z uj:&j,kvk = uT:A;v, (4.54)
J,keT

whereA denotes the numerically computed Galerkin matrix. Stahgmma 1.614 implies that
the consistency error, which is induced by the perturbedusisear forma, is given by

)

sup la(up, vy) — a(up, vy)|
wnonEXy lurllu [Jvnllx
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4. Numerical Integration for High-Order NURBS-Based BEM

where|| - |7 is a stronger norm oX, i.e. |lu ||y < C||lug||x for all up, € X,. The consistency
error induced by the right-hand side is given by

sup [(f,vn) — <fvvh>‘7
v EXp thHX

Remark 4.3.27. (i) For the solution of Symm'’s integral equatidn (1.33), tperatorA .=V
is the single layer operator. The Hilbert space involvel is= H~1/2(T"), and the norm is

given by| - |[x := || - [ z-1/2(r)- Since all discrete ansatz spaces considered in this work
are subsets af?(I") we can choose the” norm as stronger norm, i.4: ||y == || - || .2(r)-

For the hypersingular integral equation, the operatos W is the hypersingular integral
operator. Since the variational formulatidn (1.36) is gbseX := H'/?(T') we choose

- lx =1 llo =1 gz
(i) Throughout this section, we assurpe> 0.

Before we start with estimating the consistency error fan8ys and the hypersingular integral
equation, we first state some preliminary results. In paldic foru;, € X, we state an inverse-
type inequality and proof the equivalence of #tenorm of its coefficient vecton and theL?
norm.

The following lemma states an inverse-type inequality figr polynomial ansatz spaces. For the
rational ansatz-spaces a corresponding result is stilt.ope

Lemma 4.3.28([Geo07, Theorem 3.9])Let X, be a polynomial ansatz space,< s < 1,
—00 <a<a<ooand—oo < B < B < oco. Then, there holds

hCl{

hera
H =~ . Vu, e X, (4.55)

p25+ﬁ Uh

2wy ‘ H—5(I)

uniformly ina € [, @] andj € [, B].

The following lemma, which is is proven in [SaSch04, Conyll&.3.28], shows the equivalence
of the L2 norm and the’s norm || - ||» of the coefficient vector. The proof is cited here, as it is
used to derive further estimates for the Legendre and Lolbaisis functions.

Lemma 4.3.29.LetT; € T and~; be its NURBS parametrizatiofiy, := {k € Z : |supp @1 N
T;| > 0} and|Zr,| denote the cardinality afr,. Further, letur, be the local coefficient vector
of up, € Xy onT;. If maxper |Zr| < oo and the eigenvalues of

M= ([ (@5 070 (1) (@5 071 )

-1 kvjel-Ti
satisfy0 < Apin < A < Anax < 00, then there holds

cllunll 2y < b a2 < Cllunllizery,  Yun € Xo (4.56)
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4.3. Computation of Galerkin Entries

The constantg > 0 andC > 0 are independent di; but still depending on the degree of the
basis functions.

Proof. Foru|z, := 3 ez, u,iTi)ék, we obtain
2 L 2
lunlry = [ | 30 wiPee@) | de= [ | 37w (@ron)®) | Rl ds
T; -1
v \k€Llr, ke,

With Lemmda3.2.IP and the definition of the math& we obtain

[unllF2(zy) = Chi uf; Mur, > eh; Amin|[uz, [13-

lunl72(z,) < Chi uf, Mug, < Chy Amax|uz |3
|

Remark 4.3.30. The lemma stated above can be applied to all sets of basesr¢hednsidered
in this work. Since the polynomial basis functions (Legendrobatto and b-splines basis func-
tions) form a basis of®,, ([—1, 1]) and theL? scalar product is a scalar productBp ([—1, 1]),
the matrixM is positive definite for these bases. For the NURBS basidifumewe write

1
[ R (56 =)+ 6 ) Ry (G =)+ G )

1 t+1 t+1 1
= /_1 wi By <%(C]’1 — () + (jl) w;B; (%(gjl — () + Cj1> [EOE dt

= (WkBkijBj)Lg(—an

wherew;, wy, denote the weights and(x) denotes the weight functions of the NURBS basis
functions. Sincgw(x))* > 0 we have a weighted scalar produt; By, w;B;) 2 (—1,1) On
P, ([—1,1]), which yields the positivity oM for the NURBS basis functions.

While the constants in Lemnia 4.3]29 are independent of thieagthh;, the eigenvalues i,
and . of M still depend on the polynomial degrggeof the basis functions. In order to obtain
consistency estimates for uniforpa and hp-refinements for NURBS-enhanced BEM, we have
to determine the dependency pnexplicitly. A corresponding result is stated in the folloi
corollary.

Corollary 4.3.31. For the ansatz spacé(7, h, p, 0) spanned by the Legendre basis we obtain
cllunllzzcry < 0 lunlle < € llunllizgry, Vun € Xe. (4.57)

The constants are independentpfindp;. For the discrete ansatz spad¢7, h, p, 1) spanned
by the Lobatto basis, we get the following estimate

cllunllzzy < b luzlls < €Y unll 2y, Yun € Xe (4.58)

with ¢, C independent ok; andp;.
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4. Numerical Integration for High-Order NURBS-Based BEM

Proof. Since the independency of the constantsiofs already proven in Lemnia 4.3]29, we
only need to proof the independencypf Due to the orthogonality of the Legendre polynomials
we obtain

1 2
M = </ Py (t) P;(t) dt> = diag <—k =0, ---7Pi> :
-1 ’ k,j=0,...,p; 2k +1

Hence, the minimum and maximum eigenvaluedvbfare given by, = ﬁ = O(p;l)
andAn.x = 2, which directly implies the first inequality.

For the Lobatto shape functions, we first prove an inequalditpe H' norm and then apply an
estimate between thE! and L2 norms. With the relationship (i) in Lemnia 2.1111, we obtain
for the Lobatto shape functions

Pk 0o
b 24 b o
—% —% * 0 = 0
M= & —-%]0 * 0 x ,
0 0 * 0 x 0 =
* 0 = 0
0 0 0 * 0 x
M
where the matriM is given by
M, ), = : 8jk
PR 2k +3)2k +1)(2k — 1)
2 2

T @k TRk F )@k 1 D) T @k D)2k - Dk _3) Ok
Furthermore, we define the matrix by

1
A= (/ N (t) Ny (t) dt> .
-1 Jk=1,...,pi+1

With the definition of the Lobatto shape functions and thaagbnality of the Legendre poly-
nomials, we get

=10 ... 0
-3 310 ... 0
A= 0 0 [=x 01,
*
0 010 *
A

114



4.3. Computation of Galerkin Entries

with Z&j,k = diag (%ﬂ) Foruy, € S(T,h,p, 1) we get
lunlzr iy = lunlZeemy + 122y = Aminllull3 (4.59)
lunllzr oz = llunllZzi) + 1ubll7z) < Amaxluall3: (4.60)

Here, Amin and Ay denote the minimum and maximum eigenvalueg Af+ M). Applying
Gershgorin’s Theorenm [Schi88] we can estimate the minimyarealue by

N S mind 2 26 4+20pi+3)2pi—1) 2
e = T { 571057 (2p; +3)(2pi + 1)(2pi — 1) (2pi +1)(2pi — 1)(2pi — 3) }
= O(Pi_l) (4.61)

and the maximum eigenvalue by

260 34 4+2(2pi +3)(2pi — 1) N 2 }
157217 (2pi +3)(2pi + 1)(2pi — 1) (2pi +1)(2p; — 1)(2p; — 3)

< 2. (4.62)

Amax < maX{

With Equations[(4.59)[(4.61), and the inverse inequalityvpn in [Geo07, Theorem 3.3], we
get
lallz < Cpi 2 lfunll sz < Cp> funll o).
With Equations[(4.60)[(4.62), and the Poincaré inequdllit, || .>(1,) > €llup|r2(z;), Which is
proven in [Sch98, Theorem A.25], we get
lulle > cllunllgr(z) > cllunllpz(z,)-
Both constantg, C' > 0 are independent qf;. O

We are now in the position to give an estimate of the congistenror for Symm'’s and the hy-
persingular integral equations, where we restrict to tHgnmonial ansatz spaces7, h, p, k).

Symm’s integral equation. The following lemma gives an estimate how the absolute quadr
ture error in the Galerkin matrix of the single layer operatffects the consistency error of the
sesquilinear form.

Lemma 4.3.32. If the absolute error in the Galerkin entries of the singlgdaoperatorV is
bounded by
Vik =Vl < eh® hi, jkeT,

then the induced consistency error of the sesquilinear fsrbounded by

la(un, v) — a(up, vy)| < N=
lunllzzry [lonll g-1/2y

The constant is independentlobut still depending omp.

115



4. Numerical Integration for High-Order NURBS-Based BEM

Proof. With the Cauchy-Schwartz inequality we obtain

jaun, o) — a@lup, o) <Y R Y hylvil

jez keT
1/2 1/2
<e | Y hyhyl (Zhi!vﬁ) Z|.  (4.63)
JET kel

With Lemmd 4.3.29 we obtain for the first sum[in_(4.63)

D ohiluP ="k D wf?

jET T,eT  kelr,

S Z ||Uh\|%2(Ti) = ||uh\|%2(r)-
T;eT

For the second sum ia (463) we additionally apply the irvémgquality [(4.55) and obtain

1/2
STEVEP S ST hillonlZay = O 10 onllZa

keT T;eT T:eT

= 10" 2vnlZ2(ry S lonllf—12(ry - (4.64)

Hence, we get

|CL(Uh,Uh) _a(uh’vh)| 5./\/'8
lunllz2y llonll g-172(r)

0

Corollary 4.3.33. If the absolute error in the Galerkin entries of the singlgdaoperatorV
with respect to the Legendre basis is bounded by

‘V]k - {,]k‘ S gh;/Q pj_l/Q hkp;3/27 j7k € Za

then the induced consistency error of the sesquilinear fisrgiven by

|a(un, vn) — aun, vp)| < Ne.
lunllL2(ry l[onll -2y

The constant is independentlofind p.

Proof. With Corollary(4.3.31 and the inverse estimate (#.55) waiobt

S ohip = kit > Jwef

jE€T T,eT keTr,

2
S D llunlZey = lonlzzm
T;eT
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and

S i Pvil? =)0 hip > il

kel T;eT keITi
B2 2
—2 2 ]
S hip  onllia gy = D ||~
T;€T TeT Il L2(T;)
2
hl/2
= ||~ S Monllf-12(ry- (4.65)
Pl

O

The next lemma states a relationship of the absolute errtireoGalerkin matrix of the double
layer operator and the consistency error induced by thé-highd side. Let., € Y, ¢ HY/?(I)
denote the discretized Dirichlet datuf, ..., ¥, } denote a basis df;, and7 = {1, ..., M}
denote an index set.

Lemma 4.3.34.If the absolute error in the Galerkin entries of the doublgdaoperatorK is
bounded by
K —Kjp| < eh;b)/?, jeT, ke,

then the induced consistency error of the right-hand gide- (K + %)uD in Symm'’s integral
equation is bounded by

(£, vn) — {f, o)

SNY2MY2 € |lupl| 2.
lvallg-172(r)

The constant is independentlobut still depending omp.

Proof. For allv, € X,, there holds

[(Foon) — (Foondl = VT (K — K)up| < e vilhy Y Jupslhy/

JjeET keJ
1/2 1/2
< 8./\/1/2./\/11/2 Z’Vj‘Q h? <Z \uD,k\Q hk> . (466)
JjET keJ

With (4.64) we obtain for the first sum in_(4166)

Z h?|Vj|2 S thH?{flm(r)-
JjeET

Applying Lemmd 4.3.29 on the second sum[in (4.66), we finabiam

[y on) = (Fron)] < N2 MY ol gr-vsa e lull oy
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Corollary 4.3.35. If the absolute error in the Galerkin entries of the doublgdaoperatorK
with respect to the Legendre basis &y and the Lobatto basis fdr; is bounded by

’K]k - R]k’ < ghj h]1<;/2 pj_g/Q p];5/27 ] € I7 ke \77

then the induced consistency error of the right-hand gide- (K + 3)up in Symm’s integral
equation is bounded by

[(fson) = (fvn)]

vl =172

SNY2MY2 ¢ |lupl| 2y,

The constant is independentlobut still depending omp.

Proof. With (4.68) we obtain for the first sum ih (4]66)

Z h?l);?’ vil* < thqu—l/?(r)-
JET

With Corollary[4.3.31 the second sum bf (4.66) simplifies to

Z hipy” [up i = Z hip;® Z lup x|*

keJ T;eT keJr,
2
S D lunlifzy = llunllzer -
T;eT

0

The hypersingular integral equation. The effect of the perturbations in the Galerkin matrix
of the hypersingular operator on the consistency errordadby the sesquilinear form in the
hypersingular integral equation is estimated in the nexinhea.

Lemma 4.3.36. If the absolute error in the Galerkin entries of the hypeggilar operatorw
is bounded by
‘W]k_W]k’§ g, j7k€:z’-7

then the induced consistency error of the sesquilinear fisrgiven by

|CL(Uh,Uh) _a(uh>vh)| SN‘C:
HuhHHl/2(F) HUhHH1/2(F)

The constant is independentlobut still depending omp.

Proof. With the Cauchy-Schwartz inequality we obtain

laun, o) —alup, on)| < &) luy Y vl

jez  kez
1/2 1/2
<e Dyl <Z!Vk\2> IZ]. (4.67)
jez kez

118



4.3. Computation of Galerkin Entries

With Lemmd4.3.29 we obtain for the first sum [of (4.67)

dolwP=d" > wl

jEI TZET ]CEITZ.
_ —1/2
< T unl By = 2 I PunlZa
T;eT T;eT
= Hh_l/QuhH%%F) S Huhuém(r)- (4.68)

Applying the same arguments to the second surh of(4.67), we ge

la(up,vp) — alup, vy)| < N-
lwnll g2y ol gy ™

O

Corollary 4.3.37. If the absolute error in the Galerkin entries of the hypegsilar operatorw
with respect to the Lobatto basis functions is bounded by

— -3/2 -3/2 .
then the induced consistency error of the sesquilinear fsrgiven by

la(up, vp) — a(up,vp)| < Ne
lunll gz ey vl gy ™

The constant is independentlofand p.

Proof. With Corollary[4.3.31, we obtain similarly to Equatidn (8)6

Dol =) p? Y

jez T,€T keTr,
P; e p |
S D P lunliam = D | Faum
Ter ' TieT || 7 LA(T))
NP P < 4.69
= W“h 2wy~ HuhHHl/Q(F)7 (4.69)
with a constant independent hfandp. O

For the investigation of the consistency error induced kyripht-hand side of the hypersingular
integral operator, we define the discrete spiigec H~'/2(I") with basis{¥1, ..., U} and
corresponding index sef := {1, ..., M }.

Lemma 4.3.38.Lety € Y, denote the discretized Neumann datum. If the absolute grribre
Galerkin entries of the double layer operatir is bounded by

K — K| < 6h}/2, J keI,
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4. Numerical Integration for High-Order NURBS-Based BEM

then the induced consistency error of the right-hand gide- (%M — K7)¢ in the hypersin-
gular integral equation is bounded by

|(f,vn) — {f,vn)]

thHHl/Q(F)

S NVEM2 ¢ HSOHL2(F)-

The constant is independentlobut still depending omp.

Proof. For allvy, € X,, there holds

[(fovn) — (Fron) = VT KT =KDl < il S vl

JjeJ kel

1/2 12

<eNPZMYPZ N i by <Z!Vk\2> :
JjET keZ

With similar arguments as i (4.68) we get

Z |Vl~c|2 = thqul/fz(r)'
kez

Further, Lemma4.3.29 yields

> el by Sllelzem
JjeJ
and we finally get

[ on) = (From)| < eNY2 MY lopl| gy Il 2y

0

Corollary 4.3.39. If the absolute error in the Galerkin entries of the doublgdaoperatorK
with respect to the Legendre badig = P}, and the Lobatto basi¥; = N; is bounded by

’K]k - R]k’ S gh;/Q pj_l/2 p;3/27 ] € I7 ke \77

then the induced consistency error of the right-hand gide- (1/2M — K')¢ in the hypersin-
gular integral equation is bounded by

[(Foon) = (Froml < e qe ol z2ry.-
HUhHH_l/Q(F) - v

The constant is independentlofand p.

Proof. Corollary[4.3.31 implies that

> b e S leliem
JjeJ
and with Equation(4.69) we get

ZP;3|Vk|2 = H%H?{lm(r)-
keZ
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4.3. Computation of Galerkin Entries

Quadrature and interpolation orders. Recall that the error estimates for the absolute quadra-
ture errors for far-field, neighboring, and identical elentseread

‘Rn’ S hz hj <Cl p1—2n1—1 + Cv2 p2—2n2—1> .

Here, we assume that the kernel functions are analyticadlgnelable ort,, x [—1,1] and
[—1,1] x &,, and for the interpolation method @R, x &,,. Further, we assume that the Galerkin
error behaves like(N\'), whereN denotes the degrees of freedom. With the estimatelgor
and the estimates for the consistency errors presentedkiadbtion, we can a priori determine
the quadrature and interpolation orders such that the stengly error in Strang’s Lemma does
not spoil the convergence rates of the Galerkin error. $ipatly n is chosen such thaR,| <
e(N).

Remark 4.3.40. The a priori estimate presented in Theofem1.6.5 indichtast\V) = A/~ ~!
for uniform h-methods and(N) = N2~ for uniform p-methods, where: depends on the
interior angles of the domain.

For geometrichp-methods, Theorein 1.6.7 indicates thgt/) = e~YN whereb depends on
the grading parametetsand?.

Tabled 4.1{-4.13 give an overview on the quadrature orderalif@alerkin matrices for the differ-
ent combinations of boundary elements. For the NURBS basigibns we sep; = p; = ¢ but
remark that the constants in all estimates still depend envikight functiono and hence op.
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4. Numerical Integration for High-Order NURBS-Based BEM

Let

~ 1 1 1
C 1= ~1og(e(N)) + 5 log(hi hy) + 5 log(pi ;) —  log(max{hy, by }) + log(min{pi, p;}).

Vv ordern
C+log(Cy) pi—1
= 2log(p1) 2
far-field elements & 1g lec | 1
+log(C2) | p; —
(quadrature) ny > 2Tog(o2) >
C +log(Ch)
far-field elements . 10?-1;(PE)C |
i i + log(C2
interpolation = T Os\2)
(nie ) log(p2)

neighboring elements

C + log(Cy) max{p;,p;} — 1

2log(p1)

2

C+log(Cy)  pi+pi—1

2log(p2) 2
C +log(C1) | pi+pj—1
identical elements 2log(p1) 2
C+log(C2)  pitp;—1
2log(p2) 2

Table 4.1.: Quadrature and interpolation orders that aosearh for the assembly of the single
layer Galerkin matrixvV. We denote the order with respectstandu by n; and with

respect ta andv by ns.
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N 1 1
C = —log(e(N)) + 5 log(hy) + 510g(P§1€)-

K ordern
C+log(Cy) pi—1
" 2log(p1) 9
far-field elements : 1g Plc 1
(quadrature) ;O;’t(‘%;?)z) D; 2—
C +log(C1)
far-field elements : 105-1?@1)0
(interpolation) i‘;gofi()ﬁ
2
. Ctlog(Cr)  max{pip} —1
1 =
neighboring elements ~2 log(p1) 2
C +log(Cy)  pit+pj—1
21og(p2) 2
C +1log(C1) | pi+p;—1
identical elements 2log(p1) 2
C+log(Ca)  pitpj—1
ng =2
2log(p2) 2

Table 4.2.: Quadrature and interpolation orders that apsarh for the assembly of the double

layer Galerkin matri¥<. We denote the order with respectstandu by n, and with

respect ta andv by no.
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4. Numerical Integration for High-Order NURBS-Based BEM

Let

~ 3
C = —log(e(N)) + log(hi hy) + 5 log(pi p))-

%%

ordern

C +log(C1) | pi—1

ny >
far-field elements 52 lig(P(lcz | 2 1
+log(C2)  pj—
(quadrature) Ny > 2108 (0y) 5
C +1log(C1)
far-field elements : IO?(PE)C |
i i + log(Co
interpolation et = a7
(interp ) log(p2)

neighboring elements

C + log(Cy) max{p;,p;} — 1

2log(p1) 2
C+log(Cy)  pitpj—1
2log(p2) 2

identical elements

C+log(Cy)  pi+pi—1

2log(p1) 2
C+log(Ca)  pitpj—1
2log(p2) 2

Table 4.3.: Quadrature and interpolation orders that ansarhfor the assembly of the Galerkin
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matrix W of the hypersingular integral operator. We denote the ordérrespect to

s andu by nq, and with respect to andv by n..




5. Implementation and Numerical Results

The implementation of NURBS-based boundary element metfardthe solution of the inte-
gral equations defined in Sectibn11.2 is discussed in thiptehalt is the goal to provide an
implementation that has a wide field of application. In martr, we focus on an implementa-
tion that allows for the use of different kernel functiongfetent basis functions for the ansatz
space, including polynomial and rational basis functi@amsl the use of collocation and Galerkin
methods. Apart from Laplace, Lamé, and Helmholtz probleimswhich our implementation
can be used, also other fundamental solutions of a simifsr should be incorporated easily.
Hence, the assembly of the collocation and Galerkin marit®uld be implemented as black
box.

We would like to stress that unlike in most previous works,use the exact boundary represen
tation via NURBS for all computations, which allows for thalwgion of integral equations on
complex geometries. Particularly, our implementation lsarused for multi-connected bound-
aries with corners. For NURBS-enhanced methods, where act 8JJRBS parametrization
of the boundary and a Legendre basis for the polynomial arsgsice are used, we focus on
high-order methods like uniform- and geometridip-methods. This requires the accurate and
efficient evaluation of the boundary integral operators #iedassembly of the collocation and
Galerkin matrices for high polynomial degrees.

The chapter is organized as follows. In the first section we @i short overview on existing
software packages for boundary element methods. Next, weride the implementation of
NURBS-based BEM, where we first discuss general implemientdtaspects. We then go into
detail on the implementation of collocation and Galerkintmoes, where the collocation and
Galerkin matrices are assembled with the algorithms dpeelin Chapter 4 by a black box im-
plementation. For both collocation and Galerkin methods pvwesent numerical results, which
show that our implementation works well for high-order NURBnhanced methods and low
order isogeometric methods.

5.1. Overview on Existing Software Packages

There are many software packages for boundary element dgethio this section, we give an
overview on some software packages, which is by no meansletenp
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5. Implementation and Numerical Results

* BEMLIB is aboundary element software libraryRefrtran 77/90 and MATLAB codes,

126

which is based on the book of Pozrikidis ([P0z02]). It imptarts isoparametric methods
with quadratic and cubic splines for Laplace, Helmholtz] &tokes problems in two and
three dimensions. Furthermore, it supports both collooatind Galerkin methods.

BEM++ [SBAT15] is ac++ software package implementing the Galerkin method for two
and three dimensional Laplace, Helmholtz, and Maxwell |enmis. Piecewise polyno-
mial basis functions up to order 10 and plane triangularsgaick supported. The arising
singular integrals are evaluate with the quadrature rifl&aater and Schwab [SaSch97].
FurthermoreH matrices[[BGHOB] and ACA [Beb(00] are supported by an interfto the
library AHMED [Beb08].

epsBEM[BBF13,Ban13] is a software package for two-dimensidnaBEM for Laplace
and Lamé problems. The software package provides a statlefficient implementa-
tion of the hp-BEM on polygonal boundaries for high polynomial degreestsluating

the arising integrals analytically with recurrence r@afi. epsBEM is implemented in a
combination of MhTLAB andcC. While the core routines, which are critical with respect to
the performance are implementeddmand parallelized with OpenMP, the top layer func-
tions are implemented in MLAB. This results in an implementation that can be used by
students and researches alike.

HILBERT [AEFT14] (Hilbert Is aL ovely BoundaryElementResearchr ool) is a soft-
ware package for the solution of two dimensional Poissoiblpros on polygonal do-
mains which is implemented in M'LAB andC. It features functions for the evaluation
of the boundary integral operators and the assembly of therkia matrices for lowest
order ansatz functions. The arising integrals are evaduatth quadrature rules or semi-
analytically. Specifically the inner integral is evaluadactly, while the outer integral
is evaluated with a quadrature rule. Furthermd#,BERT provides the implementa-
tion of severah-adaptive algorithms using weighted residuaki(/2)-type, and two-level
error estimators.

HyENA [MMR "14] (Hyperbolic andElliptic Numerical Analysis) is ac++ software
package for the solution of two and three dimensional Galestkd collocation bound-
ary element methods, where the use of collocation methdasited to Symm’s integral
equation. The collocation and Galerkin matrices can bawsisel for linear and quadratic
ansatz functions on polygonal and polyhedral boundariealfgartial differential equa-
tions which have a fundamental solution of a specific typeis Vields a wide field of
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application. The singular integrals arising in the assgnolblthe Galerkin matrices are
regularized with the coordinate transformation given inif&?].

» Maiprogs is aFortran-based software package for solving Laplace, Lamé, anchhiatz
problems withip-BEM. The multiple precision library ARCPREC [BH102] is used for
the assembly of the Galerkin matrices with quadruple pi@tisin [Mail2], several nu-
merical results are collected.

* In [Sim12] a MaTLAB implementation of an isogeoemtric collocation BEM for two-
dimensional Lamé problems is presented. Particularly, sthftware package supports
the solution of Symm’s integral equation. The arising inddgjare evaluated with quadra-
ture rules, where the singular and nearly singular integaes regularized with the Telles
transformation/[Tel86].

All software packages only feature the solution of specibarmary integral equations, basis
functions or boundary approximations. In the following, present a more general black box
implementation for two dimensional NURBS-based boundégnent methods supporting gen-
eral boundary representations. Similar to the softwar&ameHyENA , we support the solution
of all fundamental solutions, which are of the general ty@e3) and [(4.26), respectively, with
Galerkin and collocation methods. Hence, the implemesiatan be used for a wide range of
BIEs. Furthermore, we provide the use of different sets efdfunctions. Besides polynomial
ansatz spaces with Legendre and Lobatto bases, for whichregen a stable implementation
for high orders (we present results foK 128), we also implement isogeometric methods with
NURBS basis functions.

5.2. Implementation

The goal of our implementation is to provide an efficient ierpentation for a wide class of
NURBS-based BEM, which is easy to use. Therefore, the fanstare implemented in a com-
bination of MaTLAB andC. While the functions that are critical with respect to periance
are implemented i, the top layer functions are written in AMLAB, which results in an easy
to understand, straight-forward code. To illustrate tiepde use of our black box implementa-
tion, Listing[5.1 shows an example for the solution of Symimtsgral equation for the Laplace
operator

_1

= 12(392 — 6760 +27%) onl := 00, Q:={x € R?: ||z||2 < 0.25}

Vo

with a Galerkin method:
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. Implementation and Numerical Results

Listing 5.1: Solution of Symm'’s integral equatidiy;, = f for the Laplace problem.

%**x specify operator, geometry, basis, and polynomial degree

operator 'laplace’;

problem 'exSymmCircle';

basis 'Leg';

P = {[5;2;4;8]};

%*** reset the path

restoredefaultpath;

%**x get home directory of NURBSbem

home = '.."';

libdir = [home,filesep,'lib',filesep];
exdir = [home,filesep, 'examples',filesep];
%**x addpath standard routines
addpath([libdir, 'general']);
addpath([libdir, 'general',filesep,'c']);
%**x addpath routines of operator
addpath([libdir,operator,filesep, 'mat']);
%**x add problem and get data
addpath([exdir ,operator,filesep,problem]);

%**x load and display geometry
[curves,splines,options] = loadSplines;
figure (1)

plotGeometry(splines)

%**x compute solution of Symm's integral equation
% assemble V

% assemble f

% solve V phi_h = f

phi_h = solveSymm_f (curves,splines, p, basis, @f, options);

%**x display solution over arc length
figure (2)

plotArclength(curves, splines, basis, p, x, @phi, options)

%**x display solution in domain
figure (3)
showSolDom(curves,splines,[], [], [], phi_h, basis, p,

linspace(-1,1,30), linspace(-1,1,30), 'interior');
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5.2. Implementation

Figure 5.1.: Solutiorp,, and exact solutio plotted over arc length (left) anidy;, plotted in the
domaing2 (right) for the non-symmetric polynomial degree vegor [5, 2, 4, 8].

We start the description of our implementation with somesgalaspects, i.e. the data structures
for the boundary representation, the implementation otbtms functions, and the numerical
integration, before we go into detail on the implementatiboollocation and Galerkin methods.

5.2.1. General Aspects of Implementation

Representation of NURBS curvesWith the notation of Definition 3.111 we represent NURBS
curves by MATLAB structs, that contain the following fields:

Struct representing a NURBS curve

Xie Rntatl open knot vector
qgeN degree of the NURBS curve
Qw € R3*" weighted control point§)y = (q,(cl)wk, q,(f)wk, wy) column by column

isClosede {0,1} 1if NURBS curve is closed, 0 else
typee{’D’,’N’} character indicating if the NURBS curve belongs to the Digt
or Neumann boundary

he R™ vector containing the arc length) of each elemerit;
rhoe R™ vector containing the semi-axis symof the ellipses,, defined in
Definition[3.2.9

Apart from the parametersi, q, Qw, isClosed, andtype, which are needed for the defini-
tion of the NURBS curve and are specified by the user, we coengid save some additional
information on the NURBS curve needed for the implementatiothe fieldsrho andh. The
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5. Implementation and Numerical Results

semi-axis sumg;, which are used for the computation of the quadrature aeddotation orders
of all arising integrals, are computed by the function

splines = getRho(splines)

by solving the root finding problem in Remdrk 3.2.11 with theaias functionroots. The
arc length

1
m=[ ol

is computed with a Gauss-Legendre quadrature rule by thatifum
splines = getArcLength(splines).

In order to save computational time, the evaluation of théRBS curves, their derivatives, and
the corresponding basis functions is implemented end connected to MrLAB with Mex-
interfaces.

Representation of the geometryFor the implementation of NURBS-based boundary element
methods, we consider general Lipschitz domains that matacoholes and whose bounddry

is decomposed into a Dirichlet bounddry, and a Neumann boundafyy. Let N, denote the
number of connected pieces of the boundary and let each cmthpiece of the boundary in
I'p andT' be parametrized by one NURBS curve. For the representafitimedoundary in
MATLAB, we use the data structuresrves andsplines. splines iS a vector of MATLAB
structs, where each struct describes one NURBS curve. THRBS turves are sorted such that
all NURBS curves belonging to one connected piece of the danynare listed subsequently.
The topological structure of the boundary is representetheyectorcurvese NV<+1, which
contains the index of the first NURBS curve on each connedtszkf boundary. Hence, the
expressiondurves (k) : curves (k+1)-1) gives the indices of the NURBS curves parametriz-
ing thek-th connected piece of the boundary. Fidguré 5.2 illustratenple example.

Integration in NURBS-based BEM. For the implementation of NURBS-based BEM, integrals
of the type

1
| rwrola

have to be computed for a smooth functipap to a given accuracyol. In particular, integrals
of this type arise in the projection of the Dirichlet and Nearm data onto the ansatz spaces,
in the assembly of the right-hand sides of the discrete titanial formulations for Symm’s and
the hypersingular integral equations, and in the compartadf the arc lengths of the elements.
While the integrals can be evaluated with adaptive quadratules, we give an estimate for
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5.2. Implementation

curves = (1, 3, 4, 5)T

splines(l)\ =T'p;

. splines(2) | =Ty
splines = R

splines(3) | ='p2

splines(4) ) =Ty

Figure 5.2.: Boundary representation for a Lipschitz denveth two holes.

the a priori computation of the quadrature order, such thatdlerance is met. According the
Theoreni 2.2.11, the quadrature error is bounded by

(&)
p2n+1 ’

|R,| < max |f(2) [5i(2)| | 1<p<pi (5.1)
2€0&,

In general, computing the constantix.ca¢, |7i(2)| explicitly is inefficient. We can apply the
worst case estimate

. (a; + a)?@=D  (aq; — 1)% '
' i(2)] =: ; 2
2CoE, (@)l < (@i — )2 (a; + 126D .1 19i(2)| =: c(a) hs, (5.2)

which is given in Lemm&_3.2.12 in order to obtain an upper ldoudere,a anda; denote the
lengths of the real semi-axis 6f, and¢&,,, andq denotes the order of;. This implies that the
guadrature order has to be chosen according to

n >

o oo (cla) h:) & log(r —1)) —log(to
{lg«ﬁ—Flg(()M);LE;(P+P )) — log(t U_%%w::qgm (5.3)

whereC' := max_.cp¢, | f(2)]. Although this estimate for the quadrature order yieldgbi
results for the approximated integral for all< p < p;, it overestimates the quadrature order
needed to meet the tolerance in most practical examples.

For the implementation, we propose to choose the quadratdes according to

+-+4q

. log(C) + log (maxc(_11 [%i(2)]) +log(m(pi + p; ")) — log(tol) 1
- 2log p; 2

=:cy (5.4)

with C := max_.c (117 |f(2)]- This bound is obtained from (5.3) by choosing= p;, but only
considering the maximum value of the integrand[en, 1] instead off,,,. The choicep = p;
implies that the exact asymptotic behavior of the quadeaturor is reflected by,. Furthermore,
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we obtain an upper bound for the quadrature erromfet 0, since plugging inp = 1 in (5.1)
yields

L(E
Rl < max [7G) () |2 < _max [7G) B[22, 1<p <

As long as the pre-asymptotic area in the behavior of thergtia error is small, the tolerance
tol is met by choosing the quadrature order accordind td (5.dvamobtain reliable results.
However, oscillating integrands generally have a largegsyamptotic area. The asymptotic be-
havior is not reached until the quadrature order is choseh that the oscillations are resolved.
In order to resolve the possibly occurring oscillationshie boundary parametrization we add
the orderg to the bound in[(5]4). Furthermore, fifis a polynomial of degreg, we obtain

&)
p2n7p+1 ’

|R,| < max ||%(z)| ‘ 1< p<pi. (5.5)
2€0&,

Thus, we additionally increase the quadrature ordef2].

In the following, we compare the results of both bourg§) andc, with the optimal order
c°r) which is needed to meet a given tolerance. For the bour(@s, we choose equidistant
values ofp € (1, p;). Further, we consider the integral

1
/ 540 dt,
-1

which corresponds to computing the arc length of the elefienThe optimal order(°P!) is
computed adaptively. For our examples, we choose fourrdiifteNURBS curves, which are
illustrated in Figuré 5]3. Specifically a smooth second eéega non-smooth second degree, an
almost closed fifth degree, and an oscillating fifth degreeRBS curve. Figuré5l4 shows the
quadrature orders computed &yp) andc; as well as the adaptively computed ord&p?) plot-

ted againstol ! for all four NURBS curves. The top left subfigure shows thattfe smooth
curves the order obtained ly corresponds to the order obtained witf{p) with the optimal
value of p. However, for the non-smooth and higher-order curves thmtbo, is significantly
smaller thar; (p) for all 1 < p < p;. The last figure shows that for the tolerande °, ¢ (p)

is larger than the optimal order by a factor of six, g(p) ~ 900 as compared te(°?") ~ 150.

On the other hand we obtaify =~ 200, which is less than twice the optimal order. The bottom
left subfigure shows that the orders are invariant with retsfoea scaling of the parametrization.
All subfigures indicate that the bourg yields a reliable and sharp estimate for the quadrature
order for the examples considered, although it can not beeprthat the bound; is reliable for
general curves.

Remark 5.2.1. For the computation of thé? and H! projection, we assume that the Dirichlet
and Neumann data are analytic. However, for several benghexamples the boundary con-
ditions are of the formf(t) = t“f(t) with o € (—1,1) andfanalytic. Hence, applying a
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(a) Second degree NURBS curve wjth= 7.10.
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(c) Fifth degree NURBS curve with; = 1.46. (d) Fifth degree NURBS curve with; = 1.12.

Figure 5.3.: Different smooth and non-smooth NURBS curvé worresponding semi axis
sumsp; used for benchmarks.

Gauss-Legendre quadrature only yields algebraic conmeegeGauss-Jacobi quadrature rules
can be applied for fixed: in order to achieve an exponential decay of the quadratuce. &the
corresponding nodes and weights can be computed in an eff@ie accurate way with the
same techniques as presented in Se¢tidn 2.2.

Basis functions.For the implementation, we support four different sets aid&unctions, that
are specified by the stririgasis € {’Leg’, ’Lob’, ’NURBS0’, ’NURBS1°’}. For the Legendre
and Lobatto basis functions, we additionally require a aalay p of the same length as the
vector splines. Each fieldp{k} contains a vector with the local polynomial degrees on all
elements of the NURBS curve representedsp¥ines (k).

For isogeoemtric methods, we feature two different basgwfzlly continuous basisNURBS1’

and a globally discontinuous basi¥URBS0’. The basis functions specified BYURBS1’ are
the same basis functions used for the boundary paraméirizaSince each connected piece
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(a) Second degree NURBS curve wjth= 7.10. (b) Second degree NURBS curve wjth= 1.28.
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(c) Fifth degree NURBS curve with; = 1.46. (d) Fifth degree NURBS curve with; = 1.12.

Figure 5.4.: Quadrature order computed witkip) for equidistant values of < p < p; andcs
as well as the adaptively computed ord&"). Each subfigure corresponds to the
NURBS curves depicted in Figure 5.3.

of the boundary can be parametrized by more than one NURB& cwe have to add up the
nodal basis functions at the transitions of the Dirichled #e Neumann boundary, in order to
obtain a globally continuous basis. We remark, that wite Htundary representation we do not
construct basis functions of higher regularity at the seetions of the Dirichlet and Neumann
boundaries. However, since in many practical applicat&ingularities of the solution are ex-
pected at these intersections, basis functions with higdgrlarity at these points do generally
not yield better approximations of the solution as compaoddnctions with less regularity.

The globally discontinuous basi$lURBS0’ is constructed from the knot vector of the NURBS
parametrization of the boundary. By deleting the first arellést knot in the open knot vec-
tor, which corresponds to the inverse proces-oéfinement, the degree and the inter-element
regularity of the standard NURBS basis are reduced by oneceSi is not determined which
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weights have to be used, we simply delete the first weight.s &lows for the construction
of globally discontinuous functions even for isogeometrniethods, which can be used for the
approximation of the Sobolev spaég1/2(I").

All sets of bases are evaluated with theMAB function

val=evalBasis(spline,z,p,basis,nodes).

The input parameters are the straplline defining the NURBS curve, the evaluation points

z € R™, the local polynomial degrep, the stringbasis specifying the basis, and the vector
nodes containing the nodes of the element, on which the basis has &valuated. Optionally,
evalBasis returns as second argument the derivative of the basisidmsctwhich is needed
for the assembly of the Galerkin matrix of the hypersingiriéegral operator.

The choice of the basis functions significantly affects thedition numbers of the Galerkin
matrices. Figuré 515 shows the condition number for thelsitayer Galerkin matrix of the
Laplace operator on the circle parametrized by the NURBSxantple[3.1.B for all sets of
bases introduce above. We refer to the globally discontiatend continuous NURBS basis
functions byR,(f) andR,(j), respectively. We consider different refinement straggie. uni-
form p-refinement, unifornk-refinement (only for NURBS basis functions), and geoméiric
refinement (only for Legendre and Lobatto basis functiof®)r all bases, we also investigate
the condition number of the Galerkin matrix, which is scabgdts diagonal.

For uniformp-refinements, we see that the condition number grows expiatigiior the NURBS
basis functions, while we observe an algebraic growth ferltbgendre and the Lobatto basis.
Specifically, the Galerkin matrix with respect to the Legenkasis behaves lik@ (p?), which
coincides with the theoretical result statedlin [Hgu92, $63uFurther, the condition number of
the scaled Galerkin matrix with respect to the Legendresbasly grows linearly, which is also
observed for the geometrigp-refinement.

Remark 5.2.2. (i) The linear growth of the condition numbers with respecthe Legendre
and Lobatto basis functions for the unifopnand geometri¢p-refinements indicates that
these basis functions are an appropriate choice for higarddURBS-enhanced methods.

(ii) Since the condition numbers grow exponentially for #M&RBS basis functions for high
ordersp and high regularitiek, these basis functions are inappropriate for the use of
high-order methods without any suitable preconditionitrgtegy. In this work, we do
not discuss advanced preconditioning methods for thesesphst present new results for
uniform p- andk-refinements with moderate polynomial degrees.

5.2.2. Collocation Methods

For the implementation of collocation methods we discugs dgpects. The first aspect is the
evaluation of the integrals according to the algorithmssentéed in Section 4.2 as black box.
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Figure 5.5.: Condition number of the single layer Galerkatrix for the Laplace equation on the
circle parametrized by the NURBS curve defined in Exarnple33 Here, "scaled”
means that the Galerkin matrices are scaled by their didgona
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5.2. Implementation

Second, we address the choice of the collocation pointsegime location of the collocation
points has a large impact on the stability of the collocatimethods. In the end of this section,
we present benchmark examples, in order to show that oueimguitation is numerically stable.

Assembly of the Collocation Matrices

The evaluation of the boundary integral operatds K, A, and W is implemented in the
MATLAB -functions

potV(splines, basis, p, x, N, options,varargin)

potK(splines, basis, p, x, N, options,varargin)

Vv
K
A = potA(splines, basis, p, x, N, options,varargin)

W = potW(splines, basis, p, x, N, options,varargin).

The structsplines describes the NURBS curve on which the integral operat@®wealuated,
basis andp specify the basis functions used for the computatiars,a (N, x 2)-matrix con-
taining \V,, evaluation points, antl denotes the interpolation order used for the computations.
The structoptions contains parameters belonging to the underlying BIE, ehg. Liamé co-
efficients A and 1, the wave numbek, andoq indicating if interior or exterior problems are
considered. Optionally, all functions get the veai@nd a toleranceol. The vectom contains

the coefficients of the solution with respect to the basistions and is used for the evaluation of
the solution in the domaif2. The toleranceol is used for the near- and far-field classification,
see Algorithnmi4.1L. The functions return a matrix contairting values of the boundary integral
operator at all evaluation points for all non-vanishingi®&snctions on the NURBS curve.

In the sequel we describe the classification of the evalngi@mnts and the evaluation for far-
field, near-field and singular integrals in more detail.

For the classification of the evaluation points, the comperosz, as defined in Definition
[4.2.14 have to be computed. According to Renfark #.2.5 (i)cavepute the roots of the com-
plex polynomial

f(2) = wi(z) [(z1 —7i,1(2)) + i (22 — 7i2(2))] € C

for all evaluation point§z, z2) € R2. Listing[5.2 shows an excerpt of theAVILAB code.

Listing 5.2: Excerpt of the functiogetZeros.m for the computation of, (Definition[4.2.14).

%***x get coefficients of numerator and denominator

t = cos( ((0:splines.q)+1/2)*pi/(splines.q+1))"';

tt = (nodes (2)-nodes (1)) /2*xt+(nodes (2)+nodes(1))/2;
[Num,Den] = evalCurve(splines.q,splines.U,splines.Pw,tt);

tmp = vander (t)\[Num',Den'];
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5. Implementation and Numerical Results

cl
c2

complex(tmp(:,1) ,tmp(:,2));
tmp (:,3);

%*** compute zeros
pts = [J1;
for k=1:size(x,1)
pts = [pts;roots(cl-complex(x(k,1),x(k,2))*c2)'];

end

First, we compute the coefficients of the numerator and timénator ofy; with respect to
the monomials by interpolation. Therefore, the numeratar @enominator of;; are evaluated
at the zeros of thég + 1)-th Chebyshev polynomial with théex-functionevalCurve and the
system of linear equations is solved. In Lines 10-12, we agmfhe roots off with the MAT-
LAB functionroots. We remark that in the case of linear and quadratic NURBSesuwwe use
explicit formulas in order to compute the roots pffor all evaluation points, simultaneously.
Due to the efficient realization of vector operations imMMAB we hence save computational
time. The classification of the evaluation points is thenlanmented according to Algorithm 4.1.

The evaluation of the boundary integral operators is imgleted as a black box. Therefore,
general kernel functions of the type
N

K@—y):=ga(z—y)+go(z—y) loglz —yl+ > gl —y) |z —y[* (5.6)

=1
are supported. For the use of our implementation, only tieevamishing coefficient functions
gu, b = —1..., N, and K, which are implemented in the functioga1, go,..., g\, andk, have
to be specified by the user. Hence for the single layer opeshtbe Laplace problem, we only
implement the coefficient functiogy(x — y) := —%, since all other coefficient functions are
not present in Equation_(5.6). This allows the easy incafon of new kernel functions into
the software package.
Table5.1 shows an overview on the present terms in the kkmetions for Laplace, Lamé, and
Helmholtz equations, for which our implementation can bedus

For far-field elements, we support both the evaluation ofrdgilar integrals with a Gauss-
Legendre quadrature and in the special case of the Legeadie functions the interpolation
method introduced in Sectidn 4.2.1, which is based on theeh@g expansion of the kernel
function. Figuré 5J6 shows the computational time for bb#h Gauss-Legendre quadrature and
the interpolation method over the polynomial degsed@he single layer operator of the Laplace
equation is evaluated &t,, = 5083 far-field points for the Legendre basis functions and the
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\% K A W
g—1 b b b
90 X X X
g1 X X X
92 X X X
93 X

Table 5.1.: Overview on the terms used for the evaluatiomefittegral operators, which arise
for Laplace, Lamég, and Helmholtz problems.

quarter circle NURBS curve defined in Example 3.1.3. Bothghadrature and the interpola-
tion order are chosen such that all integrals are evalugigd an accuracy = 10714,
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2, -e-quadrature 20 o-quadrature
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(@) Computational time in seconds over the (b) Quadrature and interpolation orders over the
polynomial degree. polynomial degree.

Figure 5.6.: Comparison of Gauss-Legendre quadrature tednterpolation method for the
evaluation of the single layer operator of the Laplace mwbfor A, = 5083 far-
field points. The computations are performed on a desktogpatenwith an AMD
Phenom Il X6 processor, 16GB RAM, and the Ubuntu 10.04 opeyalystem.

For small polynomial degrees, we see that the Gauss-Legepddrature outperforms the inter-
polation method. This can be explained by the fact that tiselabe error of the Gauss-Legendre
guadrature decreases with twice the rate as compared totdrpadlation method (cf. Lemmas
[4.2.6 and 4.2]9). However, for linearly increasing polymndegrees both the computational
time and the quadrature order increase linearly for the &hagendre quadrature. Since the
interpolation method only interpolates the kernel and @itpkhe orthogonality of the Legendre
polynomials, the order and hence the computational timeadependent of the polynomial de-
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5. Implementation and Numerical Results

greep (cf. RemarK4.2.70). For high polynomial degrees- 34 the interpolation method is
more efficient as compared to the Gauss-Legendre quadrature

In order to show the accuracy of our near-field algorithm, aes@er the following example.

Example 5.2.3.We consider the evaluation of the double layer operatoti®iHelmholtz equa-
tion (v = 1)
(KN (@) = [ 25, Gla =) By ds,

7

for the Lobatto functionV; and four evaluation points
x=1x(D):=(1/3) + D -14(1/3), De{1071,1072,1073,1074}. (5.7)

The quarter circlel; and its NURBS parametrization, are defined in Example_3.1.3 ang
denotes the unit normal vector.

We compare our near-field algorithm with the Telles tramsfation [Tel86], which is proposed
in [SBT™12,[SISI98] for the evaluation of nearly singular integrdfgyure[5.7 shows the abso-
lute error plotted against the order for both approaches.
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order n

Figure 5.7.: Absolute error over the ordefor the Helmholtz problem defined in Example 5]2.3.
Solid lines: Near-field algorithm presented in Secfiond.2ashed lines: Telles

transformation.

For all distancedD, the absolute error for the evaluation according to therdlyos presented
in Sectio 4.2.R (solid lines) converges exponentiallyhvéctor p;, which shows the indepen-
dency of the convergence rate on the evaluation poirtee Remark 4.2.21. As compared to
the Telles transformation (dashed lines), where a very siquonential convergence can be ob-
served, this yields a significant speed up. Specificallyfor= 10~*, the error can only be
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reduced to approximately0—> with ordern = 256 by the Telles transformation, while the error
is reduced td0~!3 with ordern =~ 20 by our implementation. Similar results are also obtained
for all other coordinate transformations presented inIEESTel86, TM74], as the dependency
on the evaluation point can generally not be eliminated lyrdioate transformations.

Although the absolute error is reduced by almost 16 sigmificigits for all evaluation points,
which shows the stability of the evaluation, the absoluteraran not be evaluated up to an accu-
racy of 10716, The reason is that the constaptx) in the error estimate given in Lemrmha4.2.18
still depends on the evaluation pointand hence on the distanég i.e. ¢,(z) = O(D~2*1).
Hence, we only expect an accuracyl6f®—2 for the evaluation with double precision, but re-
mark that with multiple precision libraries more accurasuit can be obtained.

Figure[5.8 shows surface plots of all four boundary integr@rators for Laplace, Lamé, and
Helmholtz equations and Legendre, Lobatto and NURBS basigibns. In all plots, the bound-
ary is the quarter circle parametrized by the NURBS curvenddfin Examplé_3.113.

Choice of Collocation Points

An important aspect for the implementation of collocatioathods is the choice of the colloca-
tion points, since they have a large impact on the conditiomlver of the collocation matrices
and on the stability of the collocation method. Howeverréhare only few theoretically proven
results for the appropriate choice of the collocation point

For collocation methods with spline ansatz functions ohkgj regularity, i.e. the ansatz space
S(T,h,p,p), and smooth boundari€s, the collocation points are chosen to be the element
endpoints for odd degree splines, see [AW83]. For even degpines the collocation points
can be chosen as element midpoints, see [SW85]. In [Dom08j,ecgence is also proven for
collocation points that are shifted ly> 0 from the endpoint- and midpoints, which is called
e-collocation. For the solution of Symm’s and the hyperslagintegral equation on an inter-
val with a uniformp-method, convergence is proven in [SISt92, ES92]. HereCthebyshev
polynomials of first and second kind are used as basis furectimd their zeros are chosen as
collocation points, respectively.

For isogeometric methods, the knot averages, called Grgudints, and the extrema of the
Chebyshev splines, called Demko points [Dem85], are peghos SBT12].

In the sequel, we discuss the choice of the collocation pdortNURBS-enhanced and isogeo-
metric methods, separately.

For our implementation of NURBS-enhanced methods with tbgelndre polynomials and the
Lobatto shape functions, we choose their zeros as colotatints, which coincides with the
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0.12

(a) Real (left) and imaginary (right) part of the single Iay)perator(vﬁl)(x) for Helmholtz problems withx =
2 +1i.

(b) Both components of the double layer opere(ﬂdl(ﬁg,, O)T)(x) for Lamé problems withh = 600 andp = 300.

(c) Adjoint and hypersingular integral operat@rd Ps)(z) and (WNs)(z), for the Laplace problem with, =
(1,-17.

Figure 5.8.: Surface plots of the boundary integral opesdiar different sets of basis functions
on the quarter circle NURBS curve.
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approach proposed in [SIS192] for the Chebyshev basis.oAtth we do not prove the conver-
gence or the stability of the resulting collocation methed,numerically investigate the effect
of the collocation points on the energy error and the comdlitiumber of the collocation matri-
ces. Therefore, we consider two benchmark examples of Sgrana the hypersingular integral
equations on the slit.

Example 5.2.4.We consider Symm'’s integral equation

Vo = onl':= (—1,1).

i
2
With the identity

T, (t) B —mlog(2), n=0

1
log |x — t|——==dt =
/1 V1t —ITn(z), n>0,

which is proven in[[Rea79], the exact solution can be combbtep(z) = =(1 — z2)~ /2 and
has two singularities at the end points.

For this benchmark, we choose the Legendre basis and cotigazeros of the Legendre poly-
(Gauss)
J

points. For the computation of the optimal collocation p®jrmve consider two criterions for the

nomialsz with the zeros of the Chebyshev ponnomiaggheb) and optimal collocation

optimality, the minimization of the error and the minimizex of the condition number of the
the single layer collocation matri¥. Since the energy norifi- ||, := (V-,-) is equivalent to

the H~'/2-norm, we consider the energy norm of the solution in the micakexamples. The
corresponding minimization problems read

Find x(()Opt’E) ...,x](fpt’E) €(-1,1), s.t.

)
l — @nlly — min

Von (37 )) = f (2l j =1, N

and

Find 2\ 279 e (-1,1), stt.
cond(V) — min

Vi (¢l = f (@), G =1,

In order to solve the minimization problems we start with idtgiant collocation points and
assume that the optimal points are located symmetricaliyannterval(—1, 1). The minimiza-
tion problems are solved with the MLAB function fmincon.
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Figure 5.9.: Energy error (left) and condition number of$hwgle layer operator (right) over the
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5.2. Implementation

We consider three different types of mesh refinement, spattifia uniforma-refinement with
polynomial degree = 7, a uniformp-refinement with\, = 2 elements, and a geometrig-
refinement, where the mesh is refined towards the singelsudti the solution at-1. Figure[5.9
shows the energy error over the degrees of freedom (leftjtandondition number of the single
layer collocation matrix over the degrees of freedom (dight

For all refinements, the minimal energy error is attainedtf@ optimal collocation points
mg’pt’E) and the minimal condition number of the single layer coltmsa matrix is attained
for the optimal collocation points,(fpt’c), which indicates that the minimization problems are
solved correctly. For uniformh- and p-refinement, the behavior for all four types of points
is similar. Particularly, the energy error decays algefaigi with order1/2 for uniform h-
refinement and with order 1 for uniforptrefinement. For the geometrigp refinement, we
observe an exponential decay of the error. Both the comditionber and the energy error only
differ slightly in the constant for all refinement strategyieOverall, both the zeros of the Leg-
endre and the Chebyshev polynomials yield good resultsdtir the condition number and the
energy error. Furthermore, the optimal collocation poares located similarly in the interval
(—=1,1) as compared to the zeros of the orthogonal polynomials,ifggaly the collocation
points become more frequent at the endpoints Figure[5.10 shows that the Chebyshev zeros
are located more closely to the optimal points with respet¢hé energy error, while the zeros
of the Legendre polynomials are located more closely to fiamal points with respect to the
condition humber.

—x]g‘)pt’c) : ! ! ! ! ! ! !

a:](fGauss)
— plopt.E)

. I
_z(Cheb) : ] l 1 L 1 |
k

Figure 5.10.: Location of the collocation points foe= 7 and N\, = 1 element.

For the Lobatto basis functions, we consider the followiegdhmark example of the hypersin-
gular integral equation.

Example 5.2.5.We consider the hypersingular integral equation
Wu=1 onI:=(-1,1).
The exact solution is given by(z) = 2(1 — z2)/2.

As the Lobatto shape functions are defined as antiderigat¥¢he Legendre polynomials, we

compare their zerasg.L“b) with the extrema of the Chebyshev polynomiﬁjg hebl) and the op-
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timal collocation points, with respect to the energy erm the condition number. Specifically,
the minimization problems read:

Find méOpt’E),...,méOpt’E) €[-1,1], s.t.
lluw — up|lyy — min

W (2\7F)) = £ (@), =1, N

and

Find méOpt’C),...,méOpt’c) € [-1,1], s.t.

cond(W) — min

War (z8779) = f(2PD), j=1,.N.

The minimization problems are again solved by thamas -function fmincon with equidis-
tant initial points, whereby the element endpoints are fiagdollocation points. Figufe 5J11
shows the energy error and the condition number over theedegsf freedom for a uniform
h-refinement withp = 7, a uniformp-refinement withV. = 2 elements and a geometrig-
refinement with the same geometrically graded mesh as usékfprevious example.

(opt,E)
J
condition number is obtained by the poimﬁpt’c), which indicates that the minimization prob-

Again, the minimal energy error is obtained by the collamatpointsz and the minimal
lems are solved correctly. We see that the zeros of the Loishtpe functions as well as the
extrema of the Chebyshev polynomials yield the optimal feiavith almost optimal constant
for both the energy error and the condition number for allsidered refinements. Furthermore,
this benchmark example shows the sensitivity of the enemgy with respect to the collocation

points. Specifically, we see that the convergence of theggresror breaks for the collocation
(opt,C)
J

bution of the different sets of collocation points for thdypmmial degree» = 7. It can be seen

pointsz for the uniformh- and geometrigip-refinements. Figurie 5.112 shows the distri-
that the optimal points become more frequent towards thpant$, which is the same behavior
as for the Lobatto points and Chebyshev extrema.

For the implementation of isogeometric methods, we sugherGreville and the Demko points,
which are also proposed in [ADHO]. For the knot vectoE = {—1 = &g, ..., {ntq+1 = 1}
and the degree, the knot averages are defined by

I R
T = )
q
The Demko points are defined as the extrema of the Chebystieespand have no explicit

k=0,..,n—1.
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Figure 5.12.: Location of the collocation points for= 7 and ., = 1 element.

representation, but can be computed approximately withMba#ab-functionchbpnt. Both
Greville and Demko points contain the element endpointsaa@dhence only appropriate for the
continuous NURBS basis function§URBS1’. For our application to the globally discontinuous
basis function’ NURBSO0’, these points cannot directly be used. Therefore, we camiat
collocation points with respect to the modified knot vector

with degreeq + 1 and remove the first and the last collocation point such tht mterior

collocation points are obtained.

Remark 5.2.6. (i) For NURBS-enhanced methods, the zeros of the Legendseaqmials
and the Lobatto shape functions are an appropriate chorcedocollocation points, as
they yield an almost optimal behavior of the energy error wedcondition number of the
single layer and the hypersingular collocation matrix.

(il) For isogeoemtric methods, we choose the Greville goartd the modified Greville points
as collocation points, as they can be computed in an effiaighiccurate way. The numer-
ical experiments in the subsequent section will show, these points yield good results

for low-order isogeoemtric BEM.

Numerical Experiments

We perform numerical experiments in order to show that trmcehof the collocation points
and the evaluation of the boundary integral operators yetdirate results for collocation meth-
ods. Since we do not provide a consistency analysis for catiion methods within the scope
of this work, we choose the interpolation order for the esibin of the boundary integral op-
erators uniformly, i.e.n = 2max{p} + 1. Although this choice is not optimal, it is suffi-
cient for the numerical examples presented in this sectidme linear system of equations is
solved with the MATLAB -backslash operator. Since the energy nofmgy, := (V-,-)%/? and

I~ llw := (W-,-)}/2, which are induced by the single layer and the hypersingatagral oper-
ators, are equivalent to tHé—1/2 and H'/2 norms, respectively, we consider the error in these
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norms. For Helmholtz problems, the energy norms with respedte Laplace problem are cho-
sen. We perform three benchmark examples on the circle,nioethened L-shaped domain,
and the slit.

Example 5.2.7.We consider Symm'’s integral equation for the Laplace proble
Vo=f onl:={zxcR?: |z|s =025},

where the right-hand side is given in polar coordinatesfby 6) = (30% — 676 + 272).
With the identities proven in [BS87, Section 4.4.1.2, Eqra (24), (26)] and the mapping
properties of) the exact solution can be computed pyr, ) = —8 log (2sin (%)), which
contains a logarithmic singularity fat = 0. The boundary is parametrized by the NURBS
curve as defined in Example 3.11.3.

We run different refinement algorithms for the Legendre $asiuniformh-refinement with
polynomial degreew = 0, a uniform p-refinement with\/, = 16 elements, a geometriep-
refinement, where thigp-mesh is created with the parametérs: 0.25 and = 0.5 (cf. Section
[1.4), respectively. For the NURBS basis functions, we ruifoam ~-methods withy = 2 for
Greville and Chebyshev collocation points.

| —>—uniform h, p =0
—¥—uniform h, ¢ = 2, Grev.
1078 |- —+uniform A, g = 2, Cheb.
uniform p, N, = 16
—e—geometric hp, ¥ = 0.5
108} geometric hp, ¥ = 0.25 7

1l

energy error
H
o
SN

10t

degrees of freedom

Figure 5.13.: Energy errdfy, — ¢|| over the degrees of freedoid for the Laplace problem
given in Examplé 5.2]7.

Figure[5.18 shows the energy error over the degrees of fneede see that the error converges

algebraically with order 1 for all uniformh-methods. For unifornp-methods we obtain twice
the convergence rate, which is a similar behavior as exgdotesalerkin methods, although no
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5. Implementation and Numerical Results

corresponding theoretical results for unifopanefinements are available for collocation methods
on closed boundaries. For both geometiemeshes, we observe an exponential convergence of
the energy error with respect to the degrees of freedomwvhere the convergence for= 0.25

is faster as compared to the mesh created with 0.5. We stress that with both geometric
hp-methods the error could be reduced by almost 8 digits.

g 1~ & . .
e —e—near-field e —e—near-field
E 0.8} —%—comp. z, E 1| —*—comp. z, |
g far-field g far-field —o
° 0.6 o . ° 0.8 J/ﬁ |
< <
e 04 . 06+
c04r * * S
& - $04r¢
E 02! b
§ . § 0.2 \ .
g o ) — | g | - ‘ ‘ |
0 500 1000 200 400 600 800 1000
degrees of freedom degrees of freedom
(a) Uniform h-refinement withp = 0. (b) Uniform p-refinement with\. = 8 elements.

Figure 5.14.: Percentage of the computational time of tle-re:nd far-field integrals and the
computation of the zere, for the classification according to Remark 412.5.

Figure[5.14 shows the percentage of the overall time for ¥htuation of the near- and far-field
integrals and the computation of the zergsfor the classification according to Remark 412.5
for the uniformh- andp-methods with the Legendre basis. For both unifégrnand uniformp-
refinements, we see that the computational time is domiratede evaluation of the near-field
integrals, while the time for the computation of the fardi@itegrals is negligible. In particular,
for uniform p-refinement the time for the evaluation of the far-field imsdg grows linearly in
p, since the orthogonality of the Legendre polynomials isl@tgd. For the evaluation of the
near-field integrals for uniform-refinements, the computational time is proportionaftcsince
the Legendre expansion of order= 2max{p} + 1 has to be computed for alp + 1) basis
functions. Furthermore, it can be observed that the timahfercomputation of,. is smaller
than the time needed for the evaluation of the near-fieldyrate for both refinements. For the
uniform p-refinement, the percentage of the computation,ofs even smaller, since the zeros
z, are computed for all evaluation pointswith the efficient vector operations in MLAB .

The second benchmark example is the following Helmholtzrgxta on the smoothened L-
shaped domain.
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5.2. Implementation

Example 5.2.8.We consider Symm'’s integral equation for the Helmholtz ¢igna
Vo= (K+1/2)u onT,

wherel is the boundary of the smoothened L-shaped domain:

1 11
q:2’ E= _1’_1,_1,_§5—§’__,__5_5 ,§’§,151,1 )
5 5 5 55 55

1
5
2 v
{Qr.k=0,..,9} = {(g (:E) | (_0@) | <_T_2>
8 T g
2\ (V2 () (-2
D66 ()

N——

0.6+

0.4}

0.2+

-0.2+

0.4}

-0.6¢

Figure 5.15.: NURBS parametrization for the smoothenethdpsd domain with control poly-
gon (dashed).

The functionu is given in polar coordinates by

u(r,0) = T(2/3 + 1)1y 3 (sr) sin @(9 + 47?/3)) ,

where we choose the wave number= 2. The Bessel function of the first kind, is defined
in Appendix[A. By settingup = u|r we obtain a benchmark example for Symm’s integral
equation, where the exact solution has a singularity ofrord&’® at the origin.

For NURBS-enhanced methods, we run a uniférmefinement with polynomial degree= 0,

a uniformp-refinement with\V, = 20 elements, and geometrigp-refinements with the param-
etersy = 0.25 andd = 0.5 (cf. Sectior_1.1), respectively. For the NURBS basis fuomnsj we
run a uniformh-method with Greville collocation points ard= 2.
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5. Implementation and Numerical Results

For all refinements, the energy error over the degrees afldrees depicted in Figure 5.116. It
can be seen that the uniform refinements yield an algebraieecgence of the energy error,
whereby the error decays with twice the rate for unifgrrefinement as compared to uniform
h-refinement. Both geometrikp-refinements yield an exponential decay of the energy error,
where the convergence is faster foe 0.25. In particular, the energy error is reduced by almost
8 digits fory = 0.25.

2/3
107+ 1
5
= 10t 1
<]
>
55
q;J 108 | “¥-uniform h, p =0 J
) ——uniform h, ¢ = 2 Grev.
g| —8-uniform p, N, =20
10°r geometric hp, ¥ = 0.5 )
—o—geometric hp, ¥ = 0.25
10—10 . A | . M | . M| . s

0 1

102 10
degrees of freedom

10 10 10

Figure 5.16.: Energy errdfpy, — ¢|| over the degrees of freedaivi for the Helmholtz problem
given in Exampl&5.2]8.

As third example we consider the hypersingular integralaéiqn. We first present results for
the benchmark Example 5.2.5 on the slit domain, where art egqtion is known, before we
show that our implementation also works on curved arcs.

For the Lobatto basis, we run a uniforbamethod with polynomial degree = 1, a uniform

p method with\/, = 2 elements, and a geometrig-method withd = 0.5. Furthermore, we
run a uniformh-method withg = 4 for the globally continuous NURBS basis with Greville
collocation points.

Figure[5.1¥ shows the energy error plotted against the degriefreedom. All uniform methods
yield an algebraic convergence, where the unifgrmethods has twice the convergence rate
as compared to both unifordrmethods. For the geometrigp-method, we observe an expo-
nential decay of the energy error. However, the convergbneaks at the level af0—3, which

is caused by the exponential growth of the condition numibeh@ hypersingular collocation
matrix. Particularly in the last step we getnd(W) = 1.9 - 10%. Using double arithmetics,
only 7 significant digits of the solution of the system of Bmeequations are certainly correct
(see[Sch88, page 34]). Since the square root is taken faraitmputation of the energy error,
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Figure 5.17.: Energy errdju;, — u|| over the degrees of freedaivi for the Laplace problem on
the slit domain given in Example 5.2.5.

the energy error is only computed accurately up to an acgut) 3.

—Up, Coll. - = -Up, Gal.

0 05 1 15
arc length
Figure 5.18.: Solution of the hypersingular integral egpradVu = 1 on the quarter circle

NURBS curve defined in Example_3.1.3 computed with the calioa and the
Galerkin method by a uniform-refinement with polynomial degree= 3.

We consider the hypersingular integral equati¢hn = 1 on the quarter circle NURBS curve
defined in Example_3.1.3. The solution is computed with aarmifi-refinement with polyno-
mial degreep = 3. Since we do not know an exact solution, the discrete selutmmputed
with the collocation method is compared with the one conghwiith the Galerkin method, see
Figure[5.18.

Lastly, we consider a practical example of the scattering jplatne wave, which corresponds to
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5. Implementation and Numerical Results

the solution of the following exterior Helmholtz problem.
Example 5.2.9.We consider Symm'’s integral equation for the exterior Halltthproblem
—Vyp =(-K+1/2)u; onT,

whereT is the boundary of the scattering obstacle illustrated gufe[5.19 (a). The incoming
acoustic plane wave is defined by

u;(z) = —exp(ik (cos(a) z1 + sin(a) z2)),
where we choose = 10 anda = 27

The solution is computed with a uniforprmethod withA/, = 12 elements. Figure 5.19 (b)
shows the total acoustic wavecomprised of the incoming and scattered wave around the ob-
stacle.

(a) Boundary of the obstacle with control poly- (b) Total acoustic wave around the obstacle.
gon and direction of the incoming acoustic plane
waveu;.

Figure 5.19.: Scattering of the acoustic plane wave giveexamplg 5.2.9.
Figure[5.20 (a) shows the point-wise erfof fine(z*) — up(z*)| for 2* = (—0.05,—0.1) close

to the corner of the boundary over the degrees of freedomfifi@solutionuy, r;,.. is computed
with A, = 12 elements and polynomial degrge= 128.

Remark 5.2.10. (i) The numerical experiments show that our implementatdbiNURBS-
enhanced and isogeometric collocation methods, spedbjfite evaluation of the bound-
ary integral operators and the choice of the collocatiomigolyields accurate results even
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10° : N p | absolute valuguy, (z*)|
96 | 8| 9.73702474-107°
192 | 16 | 1.80172142-107°
10} 1 384 | 32| 1.79677630-10~°
768 | 64 1.79677696 - 10~°

fine(®") — up(x7)]

10710}
= 1536 | 128 1.79677695 - 10~°
10715 ‘
10 102 10°
degrees of freedom
(@) Point-wise errofuy, fine(z*) — up(x*)|. The (b) Absolute value |uy(z*)| for different
fine solution is computed with = 128. degrees of freedoV'.

Figure 5.20.: Solution;, (z*) evaluated at the point* = (—0.05, —0.1) near the corner with a
uniform p-method.

for high polynomial degreeg < 64 for all academic benchmark examples in the case of
NURBS-enhanced methods. In the last example we presef sésnilts even for polyno-
mials degree < 128.

(i) In contrast to the software packages HyENA [MMR4] and [SIm12] we also implement
the collocation method for the hypersingular integral éigua which requires the accurate
evaluation of Hadamard finite part integrals.

(iii) Due to the exponential convergence obtained for thengetrical hp-meshes, we are able
to reduce the energy error by almost 8 digits for Symm'’s irtegquation. This is close to
double machine precision, since the square root is taketiidotomputation of the energy
error. As all computations are performed in double arithiesethis is optimal.

(iv) Concerning the computational times we see that theadhvime is dominated by the evalu-
ation of the near-field integrals. The percentage of the tirezled for the evaluation of the
near-field integrals can be reduced by exploiting the kndgdeon the fundamental solu-
tion and the used basis functions. Particularly, for theldeg problem with the Legendre
basis, the Legendre polynomials have to be evaluated owly fum all elements. Further-
more, the Chebyshev expansion only has to be computed onal évaluation points, as
the coefficient functiony(z — y) = —% in (4.3) is independent of the evaluation paint

5.2.3. Galerkin Methods

For the implementation of Galerkin methods, we go into dietaithe assembly of the Galerkin
matricesV, K, and W with the quadrature rules introduced in Section 4.3 and tpeai
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5. Implementation and Numerical Results

computation of the quadrature orders.

Assembly of the Galerkin Matrices

The assembly of the Galerkin matrices is implemented in thelMB functions

V = buildV(curves,splines,p,basis,options)
K = buildK(curves,splines,pl,p2,basisl,basis2,options)
W

= buildW(curves,splines,p,basis,options).

The input parametersurves andsplines describe the geometry of the problepandbasis
specify the basis which is used for the computation, andtthet®ptions contains parameters
belonging to the underlying BIE, e.g. the Lamé coefficientnd . or the wave numbet and
the flagoq specifying if interior or exterior problems are consideréd three functions allow
the use of all different sets of basis functions. Hence, alsdified integral equations like the
Brackhage Werner formulatioh [BW65], where globally cantis ansatz functions are used for
the Galerkin matrix of the single layer operaiy can be solved with both NURBS-enhanced
and isogeometric methods. Furthermore, the symmetry oGtlerkin matrices/ andW is
exploited in order to save computational time.

For the assembly of the Galerkin mati¥& of the hypersingular integral equation, we use the
relationship to the single layer operafWr, which is given in Theoremls 1.3.1 (iii),_1.3.2 (iii),
and1.3.5 (v) for the Laplace, Lamé, and Helmholtz equati@ince the basis functiors, and
their arc length derivativeggxlfk have to be evaluated, we support a general linear combimatio

0
aV,+b—Y,, abeC
0s

for the assembly of the Galerkin mati¥’, which is specified for each partial differential oper-
ator in the functiorbasisw.

The Galerkin matrices are assembled element-by-eleméetiewe distinguish far-field, neigh-
boring and identical elements. For the non-local basistfans, the local contributions are
added up.

The assembly of the Galerkin matrices is implemented akldag. Since after the regulariza-

tion with the coordinate transformatiors (4.32) dnd (4fé8jheighboring and identical elements
only the logarithmic term has to be evaluated with a spec#lss-Log quadrature, we consider
kernel functions of the general type

K(z—y) = g1(z —y) log|z — y| + g2z — ). (5.8)

Hence, for the assembly of the Galerkin matrices only thetfans g1, g», and K have to be
implemented by the user in theAVILAB functionsg1, g2, andk, which allows the easy incor-
poration of new kernel functions into the software packalye.remark that although the whole
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5.2. Implementation

kernel functiork can be evaluated by the functiogs andg2 with representatiori (5.8), the user
has to implement the functianseparately in order to save computational time.

If only one of the two functiong; andgs, is present in[(5]8), only this function has to be imple-
mented by the user. In this case only the integrals correipgrio the non-vanishing function
are evaluated, which saves computational time.

For neighboring and identical elements we proceed as fslldvter having applied the coordi-
nates transformations we split the logarithm[in{5.8) adcwy to Equations.(4.34) and _(4149).
In the case of identical elements, we hence obtain for timstoamed kernel

K (7i(01(u, v)),7i(02(u, v)))

= 1 ((Ba(0) = (Bal ) o (5

|73 (61 (u, v)) — 7i(Oa(u, U))’)
v+1

+mﬁ%%WWD—%Wﬂwwnbg<
T 2 (35061 (1, ) — B2, ).

While the first term is evaluated with a combination of Gaueg-quadrature i and Gauss-
Legendre quadrature i the second and third terms are evaluated with a tensor Gagendre
quadrature.

A Priori Computation of the Quadrature Order

The quadrature orders are computed according to the estingaten in Tables_41-4.3, such
that the consistency error arising in the assembly of thei®ial matrices does not affect the
convergence rates of the Galerkin method. Since the asyimpthavior of the quadrature error
is described by the maximum ellipses contained in the domig@malyticity of the kernel (with
respect to both integration variables), the semi-axis spyradp- of these ellipses have to be
computed explicitly in order to obtain sharp and reliableruis.

For identical elements, we have proven the analyticity efkbrnel oné,, (cf. Lemma4.3.22
and Corollary 4.3.23). Since the semi-axis spys already precomputed and stored in the field
splines.rho, we obtain a sharp estimate for the needed quadrature ortf@sicase.

For far-field and neighboring elements, the optimal values;cand p» can also be computed
explicitly. The domain of analyticity is limited by the zerof

Yi(s) —vi(t)
for far-field and the zeros of

o (1)

1—w
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5. Implementation and Numerical Results

for neighboring elements. Therefore, the optimal valueg,cére obtained by computing the
zeros with respect te andw for fixed t, v € [—1, 1], respectively. Similarly, the optimal values
of py are obtained by computing the zeros with respec¢taiodv for fixed s, u € [—1, 1], respec-
tively. The values, andp, are then the semi-axis sums of the largest ellipses notioimgeany
zero. However, in both cases the computation is very times@ming and most of the overall
computational time would be spent in the computation of thadgature order, but not in the
guadrature itself. Hence, we use the worst case estimates gi Lemmasg 4.312 and 4.3]12 for
the computation of; andp-, which yield larger estimates for the quadrature orderscan be
computed very efficiently. In the following, we only des@&ithe computation of the semi-axis
sum pp, the computation op- is alike. For far-field and neighboring elements, the sexis-a
sump; is of the type

p1 =min{a + Va? —1,p;},
D

a=1+ - ::1—i—ca71C~'. 5.9
(@) maxeer 11 [3a(0) (@) (59)

Here, the constant(a) is given by

(al- _|_ a)2(q_1) (ai — 1)2(]

C(a) = (ai — a)2q (ai T 1)2((]71) )

(5.10)

wherea; denotes the length of the real semi-axisCgfandq denotes the order of the boundary
parametrization (cf. Lemnia_3.2]12). For far-field elemgetite constantD is the distance of
both elements and for neighboring elemehtslepends on the shape, the angle, and the ratio of
the arc lengths of both elements. Since both sidels of (5@9rtbonz we obtain the maximum
value ofa by solving

1I<nazg§” min {a, 1+ c(a)™? C’} , (5.11)

which is equivalent to solving the equation
f(a):=1+cla)*C—a=0. (5.12)
An example is illustrated in Figufe 5.21.

In order to obtain an approximate solution [of (5.12) we aplg step of Newton’s method with
initial valuea = 1. With

~ (a; + 1)2((171) (a; — a)2q71 (ai — a)2q
B 2 2 —1)——=— 72 ) -1
C (a; —1)% (@ +a)Za D (q )(ai e

f'(a) =

we obtain as approximate solution

O ¢

PO CRglas— 1)t +2(g - D(ar + )7 — 1

=1
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Figure 5.21.: Probleni{5.11) far; = 5 andC = 3. The optimal parameter is depicted as a
black dot.

In order to investigate how accurate the approximation is,campare the optimal semi-axis
sumsp(°Pt) with the semi-axis sump("W'¢) obtained by the worst case estimates of Lemmas
4.3.2 and 4.3.12 for far-field and neighboring elementsid&sssimple geometries occurring in
most academic examples, we also consider element contiedtiat are known to be critical
for the evaluation of the arising integrals with a Gaussdrelye quadrature, see [AG10].

For far-field elements, we consider four benchmark examplegadratic smooth, the standard
guadratic quarter circle, a quadratic non-smooth, and eillaighg fifth degree NURBS curve.
All curves are illustrated in Figuie 5.22.

In order to compare(©PY) andp("W'©), we proceed as follows. First, we refine each spline until

we obtainn € N elements. Then, we compute for each far-field element camtibm(77, ),

j = 3,...,n, the semi-axis sumsfpt) andp§wc)

Figure[5.28 Showﬂiog(pg-gpt)) andlog(pgwc)

amples we see the dependency of both semi-axis sums on thaadi®), particularly the de-

) plotted against the element indgx In all ex-

creasing domain of analyticity for a decreasing distabcedHence, we only obtain a very slow

exponential convergence of the quadrature error for snigtthiccesD. Furthermore, both bot-

tom subfigures show that the valhg(;é‘”’”) is spoiled by the small domain of analyticigy,

of the parametrization, which explains the cut off in bott pbots. Overall, we see thaﬁwc)

is a reliable lower bound for all = 1, ...,n, which imitates the behavior of the optimal value
(opt)

P -

Next, we investigate the factor, by which the optimal quadeaorder computed Witbg.(’pt) is

overestimated by the order computed with our worst caseoajpation p(Wc). Figure[5.24
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(a) Second degree NURBS curve wjth= 14.1. (b) Second degree NURBS curve wjth= 5.02.

(c) Second degree NURBS curve with four elements and (d) Fifth degree NURBS curve with; = 1.21.
pi = (1.80,1.57,1.82,4.6).

Figure 5.22.: NURBS curves for the benchmarks in the casardfdld elements.

shows the quotients

lo ('opt) lo (op t)
Pmin = Mmin 7g(,0(]wc)) and rpa.x = max 7g(p(wc)) (5.13)
=3 log(p; ) =3 log(p; )

of each refinement step plotted against the number of refinsnod the NURBS curves. In
all subfigures the minimal quotient decreases with respettte number of refinements and is
smaller than 2 for all examples after 10 refinements. The mawxi quotient ., is bounded for
all four curves. Asymptotically, the quadrature order ism@stimated by a factor of at most 3.5
for the bottom right example, while we obtain less than adiact 2 for both top subfigures. For
all examples, the maximum valug,. is attained for the element combinati¢fy , 753), which
corresponds to almost neighboring elements. Here, thdds %%1-) ~ 1 and hence the constant
c¢(a) has a big impact on the worst case estimé%c) in Equation [[5.B). This implies that we
overestimate the quadrature error by a larger factor indh$®. The effect is strengthened for
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Figure 5.23.: Optimal valuiog(p'”") and approximated valuleg (p;

J

5.2. Implementation

_IOg (p;opvi) ) |
—log (o)
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element index j
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—Ilog (p;‘opf)) |

—log (p;")
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element index j

(Wc)) plotted over; for

n = 64 elements. All subfigures correspond to the NURBS curvestitided in

the respective subfigures in Figlre 5.22.

high-order and non-smooth NURBS curves. For large distahgehe impact of:(a) on p,

both elements intersect.

that high quadrature orders are needed.

we)

is small, which yields good results for the quadrature @demost cases.

For neighboring elements, we investigate the effect of tigdeabetween both elements on the
optimal and the approximated semi-axis suifg") andp("'©), where we consider three bench-
mark curves: linear elements, the standard quarter ciwdthsmesh-width ratio 2, and a second
order non-smooth NURBS curve, see Figure b.25. For all suwestart with angle ~ 0 and
increase the angle linearly by rotating the control poimibging to the second element until

Figure[5.26 showiog(p(°P!)) andlog(pW ) (left) and the quotien sgg((p”((ﬁf;)))) (right) plotted
against the anglg. All left subfigures show that both semi-axis-supt¥’©) andp(°?") tend to
1, as the angle between both elements vanishes. Henceefoerls with small angles > 0,
we have a slow exponential, nearly algebraic convergentieeafuadrature error, which implies
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Figure 5.24.: Quotient,,., andr,,;, as defined in Equation (5.1.3) plotted over the number of
refinements. All subfigures correspond to the NURBS cuniastibted in the
respective subfigures in Figure 5.22.

The middle and bottom figures on the left-hand side of FigL2é Show that the optimal values
log(pt°PY) are cut off for all angles «, which is due to the small domain of analyticity of the
NURBS curve itself. Similarly to the far-field case, the appmationsp(""'©) provide a lower
bound for all angles and all curves. Howeyet? ©) is a coarse approximation pf°?t) for most
angles and the needed quadrature order is overestimatétdh ishllustrated in the right-hand
side plots. While for the standard quarter circle with mestith ratio 2 the quadrature order is
overestimated by a factor of 4, the factor is much smalletfemon-smooth NURBS curve for
angless € (0.6, ). This is due to the small domain of analyticity of the NURB $gaetriza-
tion itself. For linear elementdog(p("W'©)) is by a factor of 2-2.6 smaller thdng(p(*")). For
the uniformh-refinement, we hence expect that the quadrature orderrisstically overesti-
mated by factors between 2 and 3, since all NURBS curves ogave linear elements.

In order to investigate the effect of large mesh-width tioh) on the domain of analyticity

of the kernel function for neighboring elements, we consitie linear elements depicted in
Figure[5.25 (a) with anglg = =/2 for different mesh-width ratios. Figufe 5127 (left) shows
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(a) Linear elements with mesh-width ratio 1.  (b) Second degree NURBS curve wijth = (5.02, 5.02)
and mesh-width ratio 2.

(c) Second degree NURBS curve with four elements and
pi = (1.24,2.6) and mesh-width ratio 2.1.

Figure 5.25.: NURBS curves used for the benchmarks in the abiseighboring elements.

the optimal semi-axis suog(p(°P)) and the approximatiotbg(p("'©)) over the mesh-width
ratio o(h). Both semi-axis sums decrease as the mesh-width raticaisese which shows the
sensitivity of the quadrature rules on high mesh-widthosatiln addition, the approximation
behaves like the optimal valueg(p(°?")), whereby the optimal value is approximated better for
larger mesh-width ratios (see Figlire 5.27 (right)).

Finally, we show the quadrature orders used for the assenilthe single layer Galerkin matrix
on the circle, which are computed with the a priori estimafesn in Tabld 411. Figure 5.28
shows the number of Gauss poihig(n; - no) for a uniform mesh withV, = 32 elements and
uniform polynomial degre@ = 2 and a geometrically graded mesh with= 0.25 ando = 1
(W, = 25). The first and last element correspond to the smallest elenweith polynomial
degreeg; = pos = 0.
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(c) Second degree NURBS curve with four elements @ne (1.24, 2.6).
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Figure 5.26.10g(p")) andlog(p(°*?)) plotted against the angle between both elements (left)
and the corresponding ratio= log(p{°?Y)/log(p"©)) (right). The three subfig-
ures on the left- and right-hand side correspond to the NURB®es illustrated
in the respective subfigures in Figlire 5.25.
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Figure 5.27.: The values dbg(p("'©)) andlog(p(®?")) (left) and corresponding ratio :=
log(p(P1) /1og(p"©)) (right) plotted against the mesh-width rati¢h).

Both subfigures show that the quadrature orders are synuméth respect to both diagonals,

2.2 5
3.5
2.1
10 .
N 3
2 -
15 . 25
19 H
20 2
18
15
17 25
5 10 15 20 25
(a) Uniform mesh with\V. = 32 elements and (b) Geometrically graded mesh with= 0.25 ando = 1
polynomial degreg = 2. andN. = 25 elements.

Figure 5.28.: The number of Gauss poihig(n -n2) computed with the a priori estimates given
in Table[4.1 for the single layer operator on the circle. Thergetrically graded
mesh is refined towards the first element.

which is what we expected as the uniform and the geometigaiilded meshes are symmetric.
In the case of the uniform mesh (subfigure (a)) the number ak&points for far-field elements

increases as the distance between both elements decresgs coincides with the behavior

of p(WE) illustrated in Figurd 5.23. In particulan; - no = 49 Gauss points are chosen for
elements with large distances, while for almost neighlgpetements the quadrature order in-
creases ta; - no = 100. The highest quadrature orders are chosen for neighbolémgeats,
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5. Implementation and Numerical Results

i.e.ny - ng = 168, whereas for identical elements, - no = 49 Gauss points suffice.

For the geometrically gradefdp-mesh (subfigure (b)), we obtain similar results, where we ca
additionally observe the linear dependency of the quadraitder on the polynomial degree. In
particular, we see that the quadrature order increasexlynewards the diagonal pointing from
the bottom left to the top right, which corresponds to thenalets with the largest polynomial
degrees.

Numerical Experiments

We present several benchmark examples for isogeometriddRBS-enhanced Galerkin meth-
ods in order to show that our implementation produces ateuesults. For the solution of the
system of linear equations the AViLAB backslash operator is used. For NURBS-enhanced
methods, the Galerkin matrix is preconditioned by a diagsoaling. All computations are per-
formed on a desktop computer with an AMD Phenom Il X6 procegs@ores), 16GB RAM,
and the Ubuntu 10.04 operating system.

The first benchmark example is Symm'’s integral equation lierltaplace operator, which is
introduced in Example5.2.7. For NURBS-enhanced methodsuw a uniformi-method with
polynomial degree = 5, a uniformp-method with N, = 16 elements and geometrigp-
methods withy = 0.25 andd = 0.5, respectively. Figure_5.29 shows the energy error and
the computational time for the assembly of the linear systémquations over the degrees of
freedom. The unifornk-method converges algebraically with order 1, while we oleséwice
the order for the unifornp-method, which is the expected behavior, see Thebérem| 1n6. Re-
mark[1.6.6. The geometritp-methods converge exponentially with respect to the degoée
freedom. For} = 0.25, we are able to reduce the energy error by almost 8 digits;iwikiclose

to double machine precision.

The computational times, which are the times for the assgwithe Galerkin matrix and the
right-hand side, are illustrated in the bottom picture afufe[5.29. It can be seen that for the
uniform h-refinement the computational time is proportional\fé and the computational time
asymptotically grows with ordet for uniform p-refinement.

For isogeometric methods, we run unifofy p-, andk-refinements. In order to guarantee that
the NURBS parametrization & (—1, 1) regular, the boundary is parametrized by the follow-
ing NURBS-curve:

g=5 =={-1,-1,-1,-1,-1,-1,1,1,1,1,1,1},
0.5 0.5 —-1.5 —-1.5 0.5
{Qkak =0, 74} = > ’ ’ ) .
0 2 1 1)\ =2
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Figure 5.29.: Energy errdfy — ¢ | (top) and computational time (assembly of the Galerkin
matrix and right-hand side) in seconds (bottom) over theaksgyof freedorV” for
the Laplace Example 5.2.7.

For the computations, the NURBS curve is two times pre-rdfine

Figure[5.30 shows the energy error over the degrees of fneelide see that both uniforrh-
refinements yield an algebraic convergence with order llgwe obtain twice the convergence
rates for the uniformp- andk- refinements. Due to the exponential growth of the conditiom-
ber of the single layer Galerkin matrix for the unifopnandk-refinements, which is observed
in Figure[B.b, the convergence breaksjoe 25 andp = 27, respectively.

The second benchmark is the Helmholtz problem on the smoethe-shaped domain defined

in Exampld 5.2.8. Again, we compute the energy error witpeesto the single layer operator
of the Laplace equation, which is equivalent to fie!/2 norm. For NURBS-enhanced meth-
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Figure 5.30.: Energy errdfy — || over the degrees of freedam for the Laplace Example
o.2.1.

ods, we run a unifornh-method with polynomial degreg = 0, a uniformp-refinement with
N. = 20 elements, and geometrigp-methods withy) = 0.25 and?¥ = 0.5, respectively. For
the NURBS basis functions, we run a unifofiamethod withg = 2. Figure[5.31L shows the
energy error and the computational times (for the assentflilyecsingle layer operator and the
right-hand side) over the degrees of freedom.

The top picture shows that all uniform methods yield an algiebdecay of the energy error, the
uniform p-method having twice the convergence rate of the unifbrmethods. Both geomet-
ric hp-refinements yield an exponential convergence, where teeygrerror could be reduced
to 10~ with less than 600 degrees of freedom usihg: 0.25. Looking at the computational
times we see that the times are proportionaMé for the uniformh-methods andv* for the
uniform-p method. Since the overall time is dominated by the evaloatibthe Hankel and
Bessel functions, the computational time for the unifgrrmethod is smaller as compared to
both uniformh-methods. Further, the computational times for both gedmép-refinements
are proportional to\V2.

As third benchmark example, we investigate the followingnéaproblem on the smoothened
L-shaped domain:

Example 5.2.11.We consider the hypersingular integral equation for the &g@noblem
Wu=(1/2-K')¢ onT,

whereT is the boundary of the smoothened L-shaped domain definedample[5.2.B. We
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Figure 5.31.: Energy errdfy — ¢p| (top) and computational time (assembly ¥fand the
right-hand sidg K + 1/2M)u) in seconds (bottom) over the degrees of freedom
N for the Helmholtz Example’5.2.8.

define the function: in polar coordinates by

u(r,0) = r® ({=(a+1) cos [(a+1)0] + [C2 — (a+ 1)] C1 cos [(a—1)0] }
20\ {(e+ 1) sin[(a+1)0] + [Co+ o — 1] Cy sin [(a —1)0] }
With o = 0.544483736782464, C; = —=L@F9) o adm g 37 By setting

cos ((a—l)w) Atp

¢ = ~y; u|r to be the interior co-normal derivative of we obtain a benchmark example.
We run uniformh-methods with polynomial degregs= 2 for the isogeometric basis apd= 7
for the Lobatto basis, a uniformrmethod with\V, = 20 elements, and geometrigp-methods
with 4 = 0.5 and¥ = 0.25, respectively.

Figure[5.32 shows the energy error and the computationastifor the assembly oW and
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Figure 5.32.: Energy errdfu — uy|| (top) and computational time for the assemblyWfand
the right-hand side in seconds (bottom) over the degreeseetiom/\ for the

Lamé Exampl€5.2.11.

the right-hand side over the degrees of freedom. For albumifmethods, we observe an al-

gebraic decay of the energy error with ratefor the uniform h- and 2« for the uniformp-
refinement, which is the expected rate for this Lamé example geometridip-refinements

yield an exponential convergence, whereby the energy eambe reduced by 7 significant dig-

its for ¢ = 0.25. In the bottom picture showing the computational times we a&uadratic
growth for the assembly of the system of linear equationsb@ah uniformh- and geometric

hp-methods. For the uniform-refinement, we observe an algebraic growth with order 4 for

large polynomial degrees

Lastly, we consider a practical problem in linear elastjciipecifically the mixed traction and
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displacement problem.

Example 5.2.12.We consider the mixed Lamé problem

—dive(u) =0, in Q
u =0, onl'p
o(u)vr =(-1,0), onI'y,
o(u)v = (0,0), onlyo.

Particularly, the workpiece is fixed at the bottom sidg and a traction is applied tOy ;.
The Lamé coefficients. = 57692 and . = 38462 correspond to plexiglass. The geometry,
its NURBS parametrization, and the splitting into the Ditet and Neumann boundaries are
illustrated in Figuré 5.33 (a).

The solution is computed with a uniforprmethod with\, = 21 elements. Figure 5.3 (b)
shows the displaced workpiece, where the displacemenaisdsby a factor of 500. The colors
denote the elastic shear energy density of the solution [A2F, which is defined by

2 2
% 1 2 Ol — 011022
B4 - _ Q2 ~ I1923 5.14
<24()\+M)2+8>(011+022) o (5.14)

Figure[5.34 (a) shows the point-wise ertay, fin.(z*) — up(z*)| for z* = (—0.8, —10) close
to the top left edge of the boundary over the degrees of firmedbhe fine solutionuy, i, is
computed with\V, = 21 elements and polynomial degrge= 64.

Remark 5.2.13. (i) The numerical results show that our implementation ofe@@n meth-
ods is stable for all sets of basis functions and BIEs consilen this work. In the case
of NURBS-enhanced methods, our implementation is statda &r high-order methods,
i.e. accurate result can be produced for polynomial degre€s! 28. Further, the energy
error is reduced by 7 digits with the geomettip-meshes, which is close to double ma-
chine precision and hence optimal, since no multiple pi@cifbraries are used for the
implementation.

(i) For isogeometric methods, accurate results for unifbrmethods are presented. Further-
more, the potential of high-order isogeometric methodsissw. With our implementa-
tion accurate results for uniform andk-refinements are obtained for polynomial degrees
up tog = 25. Hereby, the effect of the increasing global regularity lo@ énergy error
can be observed. In particular, we obtain twice the convexgeaate as for the uniform
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(a) NURBS parametrization of the workpiece with (b) Elastic shear energy densify (5.14) on displaced work-
control polygon and boundary conditions. piece logarithmically scaled.

Figure 5.33.: Mixed traction and displacement problem obakpiece.

N | p | absolute valuéuy, (z*)|

o 168 | 4 2.514066 - 1075
S 10710} 1 336| 8 2.525437 - 1075
672 | 16 2.527994 - 1075
1344 | 32 2.528572 - 107

1014} ] 2688 | 64 2.528773 - 1075
102 10°
degrees of freedom
(a) Point-wise errofus, fine(z*) — up(x*)|. (b) Absolute value |u,(x*)| for different
The fine solutionuy, fx. is computed wittp = 64. degrees of freedonV.

Figure 5.34.: Solutiom, (x*) evaluated at the point* = (—0.8, 10) near the top left edge with
a uniformp-method.

h-refinement and the same behavior with a better constantrapared to the unifornp-
refinement. The reason for the limitation of the computatisithe exponential growth of
the condition number with respect to the degrees of freedom.

(iii) The computational times for the assembly of the Galerkatrices show a behavior, which
is almost proportional tav? for uniform h-methods. Sinced? entries have to be com-
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puted, the assembly of the Galerkin matrix is almost inddpahofh, which is a nearly
optimal behavior. For uniformp-methods, the time for the assembly is proportiona\/tb
This is caused by the assembly of the neighboring and iddntiatrix blocks. Due to the
coordinate transformations and the fact that the quadraitder is linearly dependent on
the polynomial degrep, each basis function has to be evaluateg’gtoints. We remark
that the time for the evaluation of the far-field blocks witle tIGauss-Legendre quadrature
is proportional to\® and hence the overall time for the assembly of the Galerkitmixria
dominated by the time for neighboring and identical element

(iv) Table[5.2 shows a comparison of the computational tifoeshe assembly of the single
layer collocation and Galerkin matrices for the circulaubdary (Examplé 5.217). For
the uniformh-refinement, the time for the assembly of the collocation@aterkin matrix
show the same behavior, specifically both times are prapatito\N 2. Here, the assembly
of the collocation matrix is faster by a factor of % For the uniformp-refinement, we
see that for small polynomial degrees the assembly of therldalmatrix is faster, while
for large polynomial degrees the assembly of the collooatiatrix is faster. This can be
explained by the algebraic growth of the computational toherder 4 for the Galerkin
matrix.

uniformh, p =0 uniformp, N, = 8
N Galerkin | Collocation| Galerkin | Collocation
128 7.42 4.92 0.14 0.61
256 29.64 19.73 0.87 1.82
512 || 120.65 80.45 10.86 10.00

1024 || 512.96 337.03 197.35 59.87

Table 5.2.: Computational times for the assembly of theocalion and Galerkin matrices for
Exampld5.2.7
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Conclusions

Through the course of this dissertation we have developeihtphlementation of NURBS-based
boundary element methods for the Laplace, Lamé, and Hétméguations in two dimensions.
Using an exact NURBS parametrization of the boundary, nongdac error is induced. Thus,
there is no deterioration of the convergence rates of higkfocollocation or Galerkin meth-
ods. This allows the computation of highly accurate sohgion complicated domains with
few degrees of freedoms. Besides isogeometric methodshwiaid previously been introduced
for finite element methods, we presented NURBS-enhancedaaigt which combine the ad-
vantages of standard high-order boundary element methdtstive concept of isogeometric
analysis. By choosing the Legendre polynomials and thdidarivatives, called the Lobatto
shape functions, as basis functions of the polynomialstaisgaces, we were able to stably and
efficiently implement high-order NURBS-enhanced methddparticular, we observed a linear
relationship between the condition number of the Galerkatrives and the polynomial degree
p. By exploiting theL? orthogonality of the Legendre polynomials efficient algjums for the
evaluation of the arising integrals were developed for fagter collocation and Galerkin meth-
ods.

Three aspects of NURBS-based boundary element methodsexglared in detail. First, we
examined the computation of Gauss quadrature rules ancetivation of error bounds for the
absolute quadrature error. We then discussed the denvatialgorithms for the efficient and
accurate evaluation of all integrals arising in NURBS-llasallocation and Galerkin methods.
Lastly, we presented a black box implementation of NURBSedaBEM, which has a wide field
of application and a natural extension to other BIEs.

The foundation for the implementation of NURBS-based bampalement methods is the ef-
ficient and accurate numerical integration using Gaussrqua@ rules. As most fundamental
solutions of elliptic partial differential operators inavdimensions contain a logarithmic singu-
larity, we discussed the computation of Gauss-Log quadratles. The key for the efficient and
stable computation of their nodes and weights for high areéth the algorithm of Golub and

Welsh [GW69] was the use of the modified Chebyshev algorithesgnted in[[Gaul0] and the
explicit representation of the modified moments with respethe Jacobi polynomials [BF14].

These modified moments can also be used for the computatignaafrature rules for some
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modified logarithmic as well as Jacobi weight functions.

Based on numerical experiments, we then derived a new estordofor the Gauss-Log quadra-
ture rule, which served as the foundation for the consistenor analysis for Galerkin methods.
Our results indicated that the bound was reliable for ireds, which are analytically extend-
able on ellipsest, with p > 1.01, and all orders» < 2048. This includes most practical
applications.

Further research should be conducted on this topic. A thieally proven error bound for
Gauss-Log quadrature rules is desired. Therefore, egtarfat the maximum of the kernel
K,(z) = ™(2) on confocal ellipses’, would need to be derived. Up to now, corresponding

= n(2)
results are only proven for some special weights, like Jaaath Chebyshev weights, for which

closed formulas fol,,(z) are available [GV83]. For the kernel with respect to the Gelsgy
weight function, closed formulas and asymptotic estimaiiéls respect tar are not yet known.

We also examined the efficient and stable evaluation of ttegials arising in NURBS-based
BEM. For both collocation and Galerkin methods, we congdeiernel functions of a general
type, which provides a wide field of application in two-dins@mnal BEM.

For the integrals arising in collocation methods, we dgwetbnew algorithms for the evaluation
of far-field, near-field, and singular integrals includirrgoe estimates for the absolute error. The
far-field integrals with respect to the Legendre basis fionstwere evaluated with an algorithm
based on the Legendre expansion of the kernel and the ortatityoof the Legendre polynomi-
als. We showed that the complexity and the decay of the ateselvor are independent of the
orderp, thus improving the evaluation with a Gauss-Legendre qiade rule for high polyno-
mial degrees.

For the near-field integrals, which are numerically mostlehging, we presented an algorithm
yielding the maximum convergence rate of the absolute endependent of the evaluation
point. This approach was based on the efficient and stablaatim of basic integrals pre-
sented in[[Ban13] and the exact knowledge of the zgrdecreasing the domain of analyticity
of the kernel. As compared to existing approaches basedeoretjularization with coordinate
transformations, we accelerated the decay of the absalde stgnificantly. Furthermore, this
approach could also be generalized to the case of singtéagrais, thus allowing for the stable
implementation for singular integrals as well.

For the evaluation of the double integrals arising in Gaferkethods, we introduced coordi-
nate transformations in order to regularize the singulsegrals arising for neighboring and
identical element combinations. The remaining singultegrals containing a logarithmic type
singularity were evaluated efficiently with a combinatioh@auss-Log and Gauss-Legendre
quadratures. We proved there is an exponential decay ofuhédrgture error for all integrals.
With the estimates of the absolute quadrature error we conddide a complete consistency
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error analysis including computable a priori estimatesttierquadrature order. This opens the
door for the efficient implementation of Galerkin methods.

Whereas Galerkin methods are well-understood from thed¢tieal point of view, there are sev-
eral open questions for collocation methods. Specificalpriori estimates for ansatz functions
others than smoothest splines as well as consistency éssimehich can be used for the a priori
computation of the quadrature orders, have yet to be derifazktimates for the effect of the
absolute error in the collocation matrix on the consistegregr were available, we could derive
a priori estimates for the quadrature and interpolatiorexdimproving the efficiency of the
collocation method.

Lastly, we described the black box implementation of NURESed boundary element meth-
ods. The focus was on an implementation that has a wide fig@mfcation and can be readily
extended to other kernel functions. Both NURBS-enhancebisogeometric methods could
be used for solving Symm'’s integral equation as well as theeigingular and mixed boundary
integral equations with Galerkin and collocation methotise implementation was used to in-
vestigate the appropriate choice of the collocation pdot®lURBS-enhanced methods, where
optimal points were computed by solving minimization pesbs. Furthermore, we examined
the effect of the high global regularity of the isogeomelrdsis functions on the energy error in
numerical examples.

Our implementation serves as a basis to explore the fulhpiatef isogeometric BEM. With ap-
propriate pre-conditioning strategies, high-order igwgetric methods can be advanced. Com-
binations of the classicdl- and p-refinement with the nevk-refinement as well as adaptive
refinement strategies, which have been investigated foolaler methods in [FGP15], are de-
sired.

Using the Legendre polynomials and their antiderivatives the key for the stable implemen-
tation of high-order NURBS-enhanced methods. Our final migakexamples showed that our
implementation produces accurate results for high polyabdegreep < 128. Furthermore, we
were able to reduce the energy error up to machine precisioboth collocation and Galerkin
methods on geometrically gradég-meshes. Overall, our implementation can be used for the
computation of highly accurate solutions of pratice-ral@vyproblems in two dimensional poten-
tial theory, linear elasticity, and acoustic scattering. UBing NURBS parametrizations of the
boundary we are able to compute the solution of the boundéegial equations on complicated
domains with few degrees of freedom.
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A. Explicit Representation of the Integral

Operators

In this section we give an overview on the kernel functiond #reir co-normal derivatives of
the Laplace, Lamé, and Helmholtz equations.

Laplace equation.For the Laplace operator, the kernel functions of the sitagler, the double
layer, the adjoint, and hypersingular operators are gimghe following lemma.

Lemma A.1. The fundamental solution of the Laplace equation is giverGlgy — y) =
—% log |x — y|. The co-normal derivatives with respectit@ndy are given by

_ 1 (:U B y)TV:c
"YLIG(I' y) - o> |.I — y|2
and
1 (z—v) v
oGl —y) = oo T

T 2r Jz—yP?

The second order co-normal derivative is given by

vp(@—y)@—y)v, 1 vy
|z —yl* 2m |v —y|*

1
Na Ny Gl —y)) = —

Proof. The representation of the fundamental solution is e.g. gwon [McLOQ]. Forn € R?
we obtain

)n

(z—y

Velog |z —y|)Tn="—2 —
( T ’ ’) ’x_y‘g

= —(V,log|z —y|)"n.

Since the co-normal derivative coincides with the normaiMdéve for the Laplace operator, we
obtain withn := v,

1 (1‘ - y)TVx
Glx—y)=— —"-F—
’Yl,x (1‘ y) ot ’1’ — y‘g
and withn := v,
1 (z—y)Tv
nyGlo—y) == T8

21 |z —yl?
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With the identity

9 (z— y)TVy _ v (. —y)(z — y)TVy _ Vg”y
Oy |z —y[? |z —y[* |z — y[?
we directly obtain the last statement and we conclude thefpro O

An overview on the coefficient functions in the general repretation[(4.13), which are directly
defined by the previous lemma, is given for the Laplace eqoati Table T.1L.

Vv K A \%%
g-1
9o X
g1 X X
92
93

Table 1.1.: Overview on the terngg in representatiori (4.3) for the Laplace equation.
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Lamé equation. Let A\, u € R with . > 0 and\ + 2 > 0 denote the Lamé coefficients. The
fundamental solution and its co-normal derivatives aremgiv the subsequent lemma.

Lemma A.2. A fundamental solution of the Lanequation is given by

(z —y)(x - y)T>

lz —y|?

1

Gle—y) = Arp (X +2p)

<—(3,u +A)log |z —y|T+(A+ )

0 1 L . .
LetI xI:= ( . O) . For the co-normal derivatives a@F the following identities hold

I+

Y,2G(x —y) = a <(x —y)' ey @) I x I>

Cor(A+2p) \ Jr -y |z — y[2
Ap (2= T (A1)
iz g WOV
= _'Yl,yG(w -y)
as well as
Y2 (11,yG(x —y))
SR VN el )2 Gt TR Y U Gt ) 3 ol DT
(A + 2p) |z —y[* (A + 2u) v —yl*
2 _ T _ T _ _ T _ T

L (x —y) Tz —y) vy (ci y) ve(z —y) 7y Ix1
(A4 2p) lz —y]

n w2 vIvy 1+7l7, Ix1
TA+2p) |z —yP (A-2)

T o T _ T

:u(>‘+:u) Ve Vy _8(1' y) Vx(l' y) Yy (x—y)(x—y)T
T(A+2u) \ |z —y[* |z — |
N+ ) (@ =) vy (ve(@—y)" + (@ —y)wl)
(A +2u) |z —yl*
pA+p) (=) TrIxIrn(z -y T Ix] + (2 —y) vz —y)T
(A4 2p) |z —y[* '

Proof. The representation of the fundamental solution is e.g. eovram [McLOQ]. For the co-
normal derivatives of the fundamental solution we use tleatity

yu = o(u)r = pw(Vu + Vul) + Mdiv(u) T.

In order to apply the co-normal derivative to the columnshaf tundamental solutioty, we
denote the columns af by G;, ¢ = 1, 2. For simplicity, we abbreviate := x — y. We get

22 23 2229
o <log|x—y|> _ 12 <21 Zz) and w2 | _ (25 —22,2‘1—4 =27 ]
2229 212
0 SR [ EE2TE R o 2%
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A. Explicit Representation of the Integral Operators

Hence, the first column of the co-normal derivative is givgn b

(2) + VG1(2)T) + Adiv(Gy(2)) T

0(G1(2))ne = u(VGy
3 2
L Bp+ (23 , At (A —4Agh R4 y
= - T — Y= T
dr(A+20) \ & 0 dr(A+2u) \ 2 — 422 22 — 423
CAButN) (23 0 AMA+p) (252 O ,
xT xT
drp(A+2u) \ 0 25 drp(A+2u) \ 0 25
_ 1 ZTu, (1 At Ly, [ 22 B 1 T, [0
2t 2m) 2P \o) 7O 2m) 2P \zz) 232w FE \ -1
For the second column, we get with
2
0 — L 0 0 and \V4 T;EQQ — é% o 212% ﬁ - 27225
log |z — y| 1212 \ 21 2 e 2% 2% -2
the following representation
0(Go(2))ngy = uw(VGa(2) + VGa(2)T) + Adiv(Ga(2)) 1
2 2
w2 \ gy o2y )7 WO 2\ 2 - aiE g o4
CAButN) (23 0 , AMA+p) (252 O ,
xT xT
drp(A+2p) \ 0 2% drpA+2u) \ 0 2%
_ 7 2Tv, (0 At 2Tuy (2122 B 1 Tr, (1
2r(A+2p) |22 \1)  7w(A+2p) [2]* \ 22 2r(A+2p) |22 \o/

The representations of both columns yield

H -y v (@-y'n
—y) = — I IxI
N.2Glz = y) 21 (A + 2p) < |z — y|? " |z — y|? :
A+ K (.%' — y)TVx T
W) g VY

= —71,G(x —y).

For the kernety; ,(v1,,G(x —y)) of the hypersingular operator we introduce the notatipn=
(m1,m2)T andT (z — y) := v1,G(x — y), where we denote the columnsBfoy T;, i = 1, 2.

There holds

2Ty m_gm M_QZQZTV@/
vl B )= BT BE
— T
_Z Ty _M z1 2 ’Ty m zZ2 Z Ty
EE e P2 EE EE 2T
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and

z% zTyy zfm1+2z1 zTny . 4z§’ zTny zfmg . 4z%z2 zTny
v 27 _ 2] EN |2[* |2[°
Z122 ZTI/y 2122MmM1 + zZ2Z le _ 42%22 ZTle 2122MmM2 + zZ1z ny _ 42123 ZTle
24 |2[* [2]* [2]° |2[* [2]* [2]°
Plugging in the gradients, we get
o(Ty(2))n, = p(VTi(2) + VTl(z)T) + Adiv(Ti(z)) 1
9 mi 4% zTuy (Zl*ZQ)ZTl/y
S L e e I
z1—2Z2 Z7 T Z9Q 2T Ty
2 (N + 2u) 2% 2|ﬂ;_|12+4%
M(}\ n M) 2zfm1J‘;é‘lil 2Tny _ Szf‘j;ny (Z%mQ‘J;‘Ziszl) 4 22|zj|:1ny B 8Z%ZQZT:ny
(22ma+z122m1) z222'n 2229 2Tn, z120n 2125 2" Ny
O it = e = ke = Lk =
—2) 2Ty
o 2y — 21 b 0 )
21 (A + 2p) 0 2 _2% v
where we used that
22 2Ty,
iz
div <Z1Z2ZZTVy> =0.
Z4
Simplifying the terms we obtain
o(Ty(2))n, = p(VTi(2) + VTl(z)T) + Adiv(Ty(z)) I
B Al zTyszyy u? ZTTxZTTy 1
C\m(A+2p) [zt (A +2u) [zt 0
. ,u2 ZTT;BZTI/y — le/szTy 0
7O+ 20) R .
n u? viv, (1 n vir, [0 N pA+p) (vlivy, B 8ZTV‘TZTVy 22
m(A+2u) \ 27 \0 22 \ -1 (A +2p) \ [2|* |21
- Z122
A T A T T 0 T
pA+p) 2"y (1 +m12)) — pAN+p) 2Ty 4+ T2 LAz nyy.
A+ 2p0) 2] o2 B \o1) T TRR

For the second column, we get by analogy for the gradientetbf terms

T

z Ty m _221 ZTVy _m _ zZ2 ZTVy
v B = [ [P 2] |2[2 2]
ZTVy mi 2212 Vy ma 2222 Vy
|2[2 [2]2 |2[* [2]2 |2[*
and
zzma 22 2Ty _ 422202Tny  21z0ma + z1ziny 4z1z§ 2Tny
v (22T 32w _ TR ER 20 BR B} A
z4 24 - 22mq z122ztn 22mo+229 2T n 23 2Tn
2 471%2 y 2 v _ 4% y
BR B Ek

EN
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A. Explicit Representation of the Integral Operators

Plugging in the gradients we obtain

o(Ta(2))ne = p(VTa(2) + VTa(2)") + Adiv(Ta(z)) T

- MQ 2 ‘m‘% _ 4zllziVy 2(21+|zzl)42Tyy
2\ +2p) 2(21+IZ2I>4Z woogmy _4% @
:u(>‘ + ,u) 221‘22‘211 + 2Z2‘Z‘4ny — 8zf2‘2;‘:§ny 212272;1'23”11 + Zl‘ZZ‘Tfy _ 8z1z\§;\:§”y
m(\+ 2”) le?"ﬁrgzgml + Zl‘zz‘Tfy _ 8Z1Z|2ZTS ny QZSmQJTZz‘Zf Ly g% |ZZ|6”y
p [2m o 0
2n(A +20) 0 gmy _ plate) Ty, | Ve

\ZP ER

Rearranging the terms yields

o(To(2))ne = u(VTa(2) + VIa(2)1) + A div(Ta(2)) 1
( Mo 2Tv2Ty, TR A Ty 0
(A +2p)  z* m(A+2pu) 2]t 1
n 12 zTszTyy — zTuszTy 1
(A +2p) |24 0

L (vh (0 (1)) e <_8)
2w \ 122 \1) TR \o) ) T At 2w TP 2 2

pA+p) 2T, + 72T (1) 29 2 vy

A+ p) 2y,
T(A+2pu) [z]*

2oVe +Moz2)) — Vy.
(ave tma2)) = oo Rr o) TR

Finally, we obtain with the representations of both colurafis(7'(x — y))v, the identity

Y1,2(1yG(T —Y))

M @-ypv@—yy, 2 @y @y
(A +2p) |z —yl* (A +2p) v —yl*
TR ) L ) L ) A Gt PR

O+ 270) = yp

u? Vfl/yI—H/nyIXI
Ot 2m) e yP
pA + p) ( vavy @ —y) Tz — y)TVy> (& — 9)e— )7
T3+ 20) \Jo — [ v = y[f e
pA+p) (=) vye(e —y)" + (@ —y)vy)
(A +2p) |z —yl*
pA+p) (@ —y) " ry[Ix (e — )" TxT + (2 — y) very(z — y)"
T+ 20) 7=y '
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An overview on the coefficient functions in the general reprgation[(4.13), which are directly
defined by the previous lemma, is given for the Lamé equatidrable[1.2.

g-1
90
91
92
93

Table 1.2.: Overview on the terngg in representatiori (4.3) for the Lamé equation.
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A. Explicit Representation of the Integral Operators

Helmholtz equation. Before we give an explicit representation of a fundamermtait®on and its
co-normal derivatives for the Helmholtz equation, we idtroe the Bessel and Hankel functions
and summarize some important properties.

Lemma A.3 ([BOL"10]). The Bessel function of first kind is defined by

lZQ)k

Z\V — (
Tu(z) = (5) Z(_l)kk!F(VQJr k+1)

and the Bessel function of second kind is given by

Jy(z)cos(vm) — J_,(2) .

sin(vm)

Y, (z) =

The Hankel function is defined as linear combination of bathg®| functions, i.e.
HWY(2) = J,(2) + iV, (2).
The following properties hold.
(i) J.,(z)is an analytic function for all integer.

(i) For v € N the derivatives of the Bessel and Hankel functions are diyen

Ty(e) = ~Ji(2) Tz = 5 G () + Lo ()
Yi(s) = -¥i(2) V() = 5 (Yora(2) + i (2))
(HgY(2) = —H{ " (2) (Y () = 5 (1) + B ()

(iii) For v € N, the Bessel function of second kind has the following poemgsrepresentation

Y, (2) = % (2 tog (5) Ju(2) - @):Z:%zzk

(A (=DF o
<2> Z[w(k+1)+w(k+1+u)]4kk!(k+y)!z :

k=0

wherey(1) =y andy(n + 1) = >_, 1 — 7. Here,y denotes the Euler constant.

Lemma A.4. For k € C\{0}, a fundamental solution of the Helmholtz equation is given b
¢ () i .
Gla —y) = {Hy (xle = yl) = 7 (Jo(kle — y]) + iYo(xle — y))).

The co-normal derivatives with respectit@ndy are given by
: T
ik (1) (x —y)
—H, " (klz —y|)————
4 1 ( ’ ‘) ’1’ _ y’

Vg

'Yl,arG(w - y) = -
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and
1y Gle — ) = WD (sl —y) T2
The second order co-normal derivative is given by
Y,z (11 Glz —y))
_ ik ( HY (sl — y)) + H (slz = y)) o2 (@ — )@ — )T,

4 2 |z —y/?

T T T
1) vy (z —y)(x —y) Yy (1) Ve Vy )
—H, " (klx —y + H,"” (klr — y|) —=

Proof. The representation of the fundamental solution is e.g. eovram [McLOQ]. For the co-
normal derivatives of the fundamental solution, which cale with the normal derivatives, we
get with LemmaA.B (ii)

d ik (1) (z —y) v
)= —Gr—y)= ——H IR V]
Y1,2G(x = y) aymG(w Y) 12 (slz = yl) Py
and
0 ik (1) (z —y)Ty,
MG —y) = +—Gx —y) = —H) ' (klx —y|)——.
Gle —y) = oGl =) = (sl =) 2

For the second order co-normal derivative we get with
i(x—y)TVy _ VmTVy _ vi(z —y)(z—y
v o —yl |z —y| |z —yf?

)TVy

and Lemm&A.R (ii) the following representation

Tz (119 G —Y))

_in (H sl — ) + B (sl — ) vl @ —y) @ —9)Ty,
4 2 |z —y|?

T T T
“HY (gl — vy (—y)(x —y) Vy—l-H(l)/ix— nyy>.
1 ( ’ y‘) ]m—y]3 1 ( ‘ y’)]m—y\

O

In order to derive a representation according tal (4.3) wehesseries representation df stated
in LemmdA.3 (ii).

Lemma A.5. The kernel functions can be split according{@3) as follows:
(i) single layer operator

1 1
Gz —y)=Gx—y)+ %Jo(m —yl)log |z — y| —gJo(ffIw —yl)log |z — y|

N~ ~~

=:g-1(z—y) =:g0(z—y)

=g_1(x —y) + go(z — y) log |z — y|
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A. Explicit Representation of the Integral Operators

(i) double layer operator

. (z— )", L (@ =y
Glz — 1) = v1..G(x — —J —yl)——"—7"1 I R e D
1yG = y) =1yGle —y)+ g rhlele —y)FE o lesle —yl = 5 e
=:g-1(z—y)
K (z—y) v z—y)v 1
LRy YR Pl T} W PR O e ) >
2 ERE 2 |-yl
:go(x—y) :gl(x_y)
1
=9-1(r = y) + go(@ —y)loglw —yl+ (@ —y)— 5
(iii) adjoint operator
K (z —y) v, 1 (z— y)TVy
M2G(@ —y) =106 —y) = o 1(klz —yl) iz — y] og |z —yl + 2 |z —yl?
=:g-1(z—y)
2 (z—p)Tv, (@—yTy, 1
Ay —y ) =1 — —
+ g1 (rle —y) = logle — g 2o Jr—yP?
Y ———
=190‘(;*y) =1(==y)
1
= g1 = 9) + golw =) log oyl + 1w~ ) —
(iv) hypersingular integral operator
71,$(71,yG(x - y))
= M2(nyGlz —y))
K2 v (z —y)(@ — )"y,
+ {E(JQ(K/|$—y|)+JO(K/|x—y|)) 1z — |2
k Ji(klz —y vl —y)(x—y)Tv
w hlele =) (E =)@, Vg
2 |z — vy |z — y|
1 iy, 1yl -yl —y) 'y
2|z —y|2 o« |z — y[*
K2 v (= y)(x —y)"yy
— {E(Jg(fﬂx—y|)+J0(“|5'3—y|)) z — y[2
k Ji(klz —y vi(z—y)(x—y)Tv
m el =) (=)@, Vg,
2 |z —y| |z — g
L viy, 1yl —ylz—y) 'y
2|z —y|2 o« |z — y[*
(2~ 9) + g0z — ) log |z — y| + g1z — ) 5 + gale — )
=191 —y)+golx —y)log|x —y| + g1(T —Y)——5 + 92 — ¥y :
| —y? |z —yl*

Here, the functiory_; is defined by the terms in the box brackets, the fungtiaa defined

by the terms in curved brackets, and we ggftr,y) = —5-v1v, and go(z — y) =

2
Ll (@ —y)(x —y) Ty,
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Proof. In order to proof the representations, we have to proof tladysoity of the coefficient
functionsg,, n = —1,...,2. Therefore, we consider the series expansion given in Lemma
(ii). Since the functiongy_; are obtained by subtracting the logarithmic and algebraic
singularities in the series representation of the BesswitionsY, and since the terme — y|

only arises in even powers, 1 is analytic for all boundary integral operators.

(i) Since the Bessel functior is analytic andz — y| only appears in even powers in the
series representation the coefficient functignss analytic.

(i), (i) With the series representation df we get

K . Jiklr—yl) K K z
2 — SR IV R ad E k2%
21 (@ =y) vy |z — vy 21 @ =y vy 2 k:O( ) KIT(k+2)

which proofs the analyticity ofy. The analyticity ofg; is obvious.

(iv) The series representation &f in Lemm&A.3 (i) shows thatly(k|z — y|), J2(k|z — y|),
and% are analytic. Furthermore, the ter T(xflg)filgy)T”y andv!v, are analytic
and hence the functiogy is analytic. The analyticity of; andgs is obvious.

O

An overview on the coefficient functions in the general repreation [(413) is given for the
Helmholtz equation in Table1.3.

Vv K A W

g-1 X

90 X

n X

92 b
g3

Table 1.3.: Overview on the termgg in representatiori (413) for the Helmholtz equation.

Remark A.0.14. The representation of the kernel functions according 8y .which is used
for the assembly of the Galerkin matrix for the single andldeuayer operator can directly be
obtained by the representation given in Lerima A.5 (i) and (ii
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