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Abstract

The Sun is the omnipresent demonstration of the immense energy output
generated by the nuclear fusion of hydrogen. Using this process as the heat source
for electricity generation is thus not a far-fetched idea. The conditions necessary
for a power plant, however, require temperatures of 107 − 108 K if the fuel is
magnetically confined. Hence, it is crucial to understand the processes which
determine how well the emerging hot plasma is confined by the helical magnetic
field surrounding and permeating it. In modern-day tokamak devices it has been
established that the steep pressure gradients lead to a state of turbulence which in
turn gives rise to most of the cross-field transport for the main ion species. There
is, however, another transport channel driven by collisions and the curvature of
the magnetic field: The so-called neoclassical transport provides a steady level of
cross-field particle and momentum flux even in cases when turbulence becomes
weak or suppressed. Furthermore, neoclassical and turbulent phenomena are only
independent of each other in the so-called local limit if the length scales governing
each of them are sufficiently separate, i.e. the ratio ρ∗ between the ion gyroradius
and the pressure gradient length is small enough. The goal of this work is to
quantify the last statement and to better understand how neoclassical effects and
turbulence can influence each other when their scales are not disparate.

For this purpose, the most suitable theoretical description is the well-establish-
ed gyrokinetic model. Due to its complexity very often only numerical solutions
to it are feasible. In this work the nonlinear gyrokinetic turbulence code Gene is
employed. First, its capabilities for purely neoclassical systems are improved and
successfully tested. In particular, its ability to self-consistently calculate the neo-
classical radial electric field in global simulations is successfully benchmarked
against the radial force balance equation. Additionally, Gene is used to study the
plasma region close to the very center of a tokamak. Standard neoclassical theory
assumes that the transport at a certain radial position is determined by the local
plasma parameters at this very position, but this assumption is no longer valid
in the so-called potato region. Indeed, simulation results show the importance of
nonlocal effects which the standard neoclassical model does not account for.

In the next step a model system in the flux-tube limit which only considers a
small plasma region around a specific field line is studied. There a sinusoidal long-
wavelength external potential - based on the observed shape of the neoclassical
field in global simulations - is imposed on ion temperature gradient-driven (ITG)
turbulence. The comparably low computational cost of this system allows to study
a wider range of physical parameters. With these simulations it is found that the
presence of an external potential has a fundamental effect on the dynamics of the
self-generated shear flow pattern of the turbulence: these zonal flows adapt to the
imposed external pattern and even a small external E × B shear is sufficient to
notably reduce turbulent cross-field energy transport.

Motivated by these indications for an interaction mechanism between neoclas-
sics and turbulence global ITG simulations with fixed ion temperature gradient
profiles are performed with and without inclusion of neoclassical effects. Compari-
son of these otherwise identical systems reveals that the presence of the neoclassical
field enhances turbulent transport by 20 − 30% for ρ∗ > 1/300. No difference is
found for ρ∗ = 1/500. A possible explanation found is that for high ρ∗ the neoclassi-
cal field aligns a region of low E×B shear with the maximum of the gradient profile
where the turbulent drive is strongest. Further investigation reveals that neoclassi-
cal effects also change the dependence of the system on physical parameters such
as collisionality or the safety factor.
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Finally, in physically more comprehensive (but computationally more demand-
ing) simulations with fixed power input and a self-consistently evolving temper-
ature profile, it is found that the presence of neoclassical phenomena modifies
the self-organization behavior. For example, the additional neoclassical transport
channel reduces the frequency and amplitude of intermittent turbulent transport
bursts. The well-known phenomenon of profile stiffness is reproduced from three
different power inputs.
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Zusammenfassung

Die Sonne ist der allgegenwärtige Beweis für die hohe Energieausbeute der
thermonuklearen Fusion von Wasserstoff. Es ist daher eine naheliegende Idee,
diesen Prozess als Wärmequelle in der Elektrizitätserzeugung einzusetzen. Für
den Betrieb eines Kraftwerks sind jedoch Temperaturen von 107 − 108 K nötig,
wenn der Brennstoff magnetisch eingeschlossen wird. Es ist daher wichtig die
Prozesse zu verstehen, die bestimmen wie gut das Plasma durch das umgebende
schraubenförmige Magnetfeld eingeschlossen wird. Bei modernen Experimenten
vom Typ Tokamak ist bekannt, dass der steile Druckgradient im Plasma klein-
skalige turbulente Fluktuationen antreibt, die wiederum für den überwiegenden
Teil des radialen Teilchen- und Wärmetransports verantwortlich sind. Durch Stöße
und die Krümmung des Magnetfeldes wird jedoch eine weitere Art von Transport
angetrieben: Dieser sogenannte neoklassische Transport erzeugt ein stetes Niveau
von radialem Fluss, selbst wenn die Turbulenz nur sehr schwach ist oder vollständig
unterdrückt wird. Außerdem sind neoklassische und turbulente Phänomene nur im
sogenannten lokalen Grenzfall unabhängig voneinander, d.h. wenn die jeweiligen
mit ihnen verbundenen Längenskalen ausreichend verschieden sind. Mit anderen
Worten, das Verhältnis ρ∗ zwischen dem Ionengyroradius und der Abfalllänge des
Druckgradienten muss klein genug sein. Ziel dieser Arbeit ist es letztere Aussage zu
quantifizieren und besser zu verstehen, wie Neoklassik und Turbulenz miteinander
wechselwirken, wenn ihre Skalen ähnlich sind.

Die zu diesem Zweck am besten geeignete theoretische Beschreibung ist das gy-
rokinetische Modell. Wegen seiner Komplexität ist sehr häufig nur ein numerischer
Lösungsansatz praktikabel. In dieser Arbeit wird der nichtlineare gyrokinetische
Turbulenzcode Gene verwendet. Zunächst wird seine Infrastruktur für rein neo-
klassische Simulationen verbessert und erfolgreich getestet. Insbesondere wird das
radiale neoklassische elektrische Feld, das in globalen Simulationen selbstkonsi-
stent berechnet wird, erfolgreich mit dem radialen Kräftegleichgewicht verglichen.
Weiterhin wird mit Gene der Bereich des Plasmas im Zentrum des Magnetfeldes
untersucht. Die neoklassische Standardtheorie enthält die Annahme, dass der
Transport an einer bestimmten radialen Position durch die Plasmaparameter an
genau dieser Position bestimmt ist, ihre Gültigkeit und diese Annahme ist in der
sogenannten Kartoffelregion nicht mehr gültig. In der Tat zeigen Simulationser-
gebnisse die Bedeutsamkeit von nichtlokalen Effekten, die in der neoklassischen
Standardtheorie nicht enthalten sind.

Als nächster Schritt wird ein Modellsystem in der Flussschlauchnäherung, die
nur eine kleine Region in der Umgebung einer spezifische Feldlinie betrachtet,
untersucht. Dort wirkt ein sinusförmiges externes elektrostatisches Potential (basie-
rend auf der Form des globalen radialen neoklassischen Feldes) auf Turbulenz, die
vom Gradienten der Ionentemperatur (ITG) getrieben wird. Wegen des vergleichs-
weise niedrigen Rechenzeitaufwandes für dieses System ist es hiermit möglich
einen großen Parameterbereich zu betrachten. Das Ergebnis dieser Simulationen ist,
dass die Gegenwart des externen Potentials grundlegende Auswirkungen auf die
Dynamik der intrinsischen Scherströmungen der Turbulenz hat: Diese sogenannten
zonalen Flüsse passen sich der von außen vorgegebenen Struktur an. Außerdem ist
erkennbar, dass bereits eine kleine externe E×B-Scherrate genügt um den radialen
turbulenten Wärmefluss merklich zu verringern.

Ausgehend von diesen Anhaltspunkten für einen Wechselwirkungsmechanis-
mus zwischen Neoklassik und Turbulenz werden globale ITG-Simulationen mit
festgelegten Temperaturgradientenprofilen durchgeführt, jeweils mit und ohne
neoklassische Effekte. Im Vergleich dieser ansonsten identischen Systeme zeigt
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sich, dass für ρ∗ > 1/300 bei Anwesenheit des neoklassischen Feldes der turbulente
Wärmetransport um 20− 30% höher ist, während bei ρ∗ = 1/500 kein signifikan-
ter Unterschied messbar ist. Eine mögliche Erklärung ist, dass das neoklassische
Feld bei großem ρ∗ einen Bereich mit schwacher E ×B-Scherrate am Maximum
des Temperaturgradientenprofils und damit am stärksten Antrieb der Turbulenz
positioniert. Weitere Untersuchungen zeigen, dass neoklassische Effekte auch den
Einfluss von Parametern wie Stoßfrequenz oder Sicherheitsfaktorprofil verändern.

Zuletzt werden physikalisch umfassendere (jedoch rechenaufwändigere) Simu-
lationen mit festgelegter Leistungszufuhr und sich selbstkonsistent entwickelnden
Profilen durchgeführt. Dabei zeigt sich, dass neoklassische Effekte die Selbstor-
ganisation des Systems beeinflussen, z.B. in Form seltenerer und schwächerer
Lawinen turbulenten Transports. Der bekannte Effekt der Profilsteifheit kann für
drei Leistungszufuhren ebenfalls beobachtet werden.
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Chapter 1

Introduction

“Several billion trillion tons of superhot exploding hydrogen nuclei rose
slowly above the horizon and managed to look small, cold and slightly
damp.” - Douglas Adams: Life, The Universe and Everything

1.1 Nuclear fusion

The question about the nature of the Sun is probably one of the oldest questions of
mankind. We have come a long way from shining divine chariots to the discovery that it
generates energy through the fusion of light nuclei, particularly hydrogen, into heavier
ones [1]. The next step from there was if and how this process can be reproduced under
controlled conditions on Earth to directly access its obviously high energy yield. As it
turns out, the predominant fusion reaction of the Sun, the proton-proton chain,

41
1p → 4

2He + 2e+ + 2νe + 2γ + 25.7MeV,

is not well suited for this, as its first step involves the weak interaction leading to a very
low reaction cross-section. While it is enough for a star to be in an equilibrium state
with the immense gravity from its total mass, the most accessible process on terrestrial
scales is instead the fusion of the heavier isotopes of hydrogen, deuterium and tritium:

2
1D + 3

1T → 4
2He + 1

0n + 17.6MeV.

Deuterium accounts for about 0.016% of naturally occurring hydrogen in the oceans,
which means that it is abundant on Earth. The radioactive tritium, on the other hand,
has a half-life of about 12 years and can thus be only found in trace amounts. It can be
produced, however, by a nuclear reaction from lithium:

6
3Li + 1

0n → 4
2He + 3

1T + 4.8MeV,
7
3Li + 1

0n → 4
2He + 3

1T + 1
0n − 2.47MeV,

where the neutron from the fusion reaction can be used.
The D-T fusion reaction has been successfully applied on a large scale since the

1950s - unfortunately only in its uncontrolled form as the hydrogen bomb. Applying it
in a peaceful way as the energy source for a power plant to generate electricity without
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1. Introduction

carbon dioxide emissions has evolved to be a greater challenge than anticipated by the
pioneers of the field in the 1960s.

For nuclear fusion to occur the involved nuclei need to overcome the Coulomb
barrier where "overcome" is used in the sense of being close enough for a high chance of
tunneling. In terms of a collective state this means a very high temperature T to have
particles with sufficient kinetic energy, a density n that provides enough collisions and
a means of confinement for the fuel to sustain the former two conditions long enough.
These circumstances can be summarized in the Lawson criterion:

nT τE & 1021 keV · s
m3 , (1.1)

where the energy confinement time τE quantifies the energy losses to the environment.
Fulfilling this criterion means that the fuel has reached ignition, i.e. the fusion reaction
sustains itself without external energy input.

The most straightforward approach to this is inertial confinement, where the only
limiting factor for the rapid expansion of the system is the inertia of the fusion fuel.
Obviously, this means that an intense initial compression is critical for a high fuel
conversion rate and energy output. This is achieved by a shock wave created by, for
example, a runaway fission reaction (in the case of warheads) or by a high-powered laser
pulse [2]. It is inherently difficult to use inertial confinement in a steady-state process,
which would be desirable for an electric power plant. Thus, there are other approaches,
which use low density and compensate by higher temperatures and confinement times,
namely confinement by magnetic fields.

1.2 Magnetic confinement

Hydrogen that is heated to the necessary temperatures for fusion of around 107 − 108 K
(equivalent to energies of 10 − 20keV1) becomes an ionized gas, a so-called plasma.
It consists mainly of charged particles and can thus be influenced and confined by
magnetic fields via the Lorentz force which restricts cross-field movement. Due to the
high particle energy this requires typically a magnetic field strength of several Tesla.
Then the confinement properties of the device are determined by the magnetic topology
and shape of the field.

After early experiments with cylindrical configurations it became clear that the
(so far) best concept is to have a toroidal geometry with magnetic field lines winding
helically around the torus. In a purely toroidal field magnetic drifts would lead to
charge separation, generating an electric field which in turn would lead to a radial E×B
drift (see Sec. 2.2.2). The most prominent forms to technically realize a helical field on
an annular shape are the tokamak [3] (from the transliteration of Russian “токамак”, an
acronym for "toroidal chamber with magnetic coils") and the stellarator [4] (from Latin
“stella” = star).

1A very popular definition in plasma physics is to measure temperatures in units of energy.
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1.2. Magnetic confinement

Figure 1.1: Coil system (orange), currents (red) and magnetic field (yellow) of a tokamak
(Source: IPP, Dr. Christian Brandt)

1.2.1 The Tokamak

The magnetic field for a tokamak has two contributions: The strong toroidal field
Bt is generated by an annulus of planar coils around the plasma, while the weaker
poloidal field Bp is generated by a toroidal current in the plasma. This current is
driven inductively by a solenoid in the center of the torus (see Fig. 1.1). A fundamental
property of the resulting field is that it is axisymmetric, i.e. symmetric in regard to the
central axis of the torus. Additionally, toroidal coils are used to shape the poloidal
cross-section of the plasma into a characteristic form.

As a result of its construction principle the machine is operating in pulses limited
by the current ramps in the central coil. There are other means to drive a current in
the plasma, such as the injection of neutral beams or the intrinsic bootstrap current
(see Sec. 2.2.2), but they can only contribute to the toroidal current, not sustain it by
themselves. Nonetheless, the tokamak has shown to be a successful line of research:
Single experiments at the JET tokamak have reached around two thirds of energetic
break-even and the ITER project, which is currently under construction at Cadarache
in France, is planned to produce 500 MW of fusion power with a heating power of 50
MW.

1.2.2 The Stellarator

The magnetic field of a stellarator is completely generated by external coils, avoiding the
necessity of driving a plasma current and allowing steady-state operation. This comes
at the price of giving up axisymmetry and, as it turned out, having to use computer-
optimized complex three-dimensional coil designs (see Fig. 1.2) to avoid catastrophic
transport losses. Thus stellarator development has been lagging behind tokamak
research. With the advent of high capacity computing and advanced manufacturing
methods, however, it is nowadays a very active field of research and development.

3



1. Introduction

Figure 1.2: Coils and plasma shape of the stellarator Wendelstein 7-X (Source: IPP)

1.3 Transport processes and modeling

Since the energy confinement time τE is invariably connected to the cross-field transport
of particles and energy (and to some degree also of momentum) in radial direction, the
understanding of the processes governing it is one of the central goals of theoretical
works in magnetic confinement fusion research. Two forms of transport are established
to be important in this context: Neoclassical and turbulent transport. The former is
driven by collisions between the confined particles and hence provides an essentially
omnipresent level of minimum transport. The latter is usually much stronger in
tokamaks and optimized stellarators2 and is based on the system being far from
thermodynamic equilibrium. The strong temperature and density gradients between
core plasma and the edge (typically a drop from 107K to 102K) allows microinstabilities
to grow and establish a state of turbulence.

The modeling formalism most suitable to describe these microinstabilities in a
hot plasma with rare collisions is a kinetic treatment, which evolves a phase space
distribution function for each species of the plasma (electrons and ions of hydrogen
isotopes as well as of heavier impurities) according to the Vlasov equation(see Sec. 2.3).
Although this is one of the most fundamental descriptions of a plasma, it poses a
complex six-dimensional problem (3D in configuration, 3D in velocity space). In
consequence, simplifications have to be made. If the plasma is magnetized, i.e. the
dynamics are dominated by a strong magnetic background field, it is, for example,
possible to average over the fast gyration around the magnetic field lines thus reducing
dimensionality to 5D and removing the necessity to resolve a comparably fast timescale.
If this is done in a way that consistently accounts for gyroradius scale fluctuations of
the electromagnetic fields, the resulting model is called gyrokinetic theory. It also covers
not only turbulent transport but also as a subset neoclassical transport and is the basis
of multiple numerical modeling efforts for magnetic confinement fusion experiments.

2These modern stellarators, like Wendelstein 7-X, are, in fact, optimized to minimize neoclassical
transport.
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1.4. Scope of this thesis

1.4 Scope of this thesis

In this work the gyrokinetic nonlinear Vlasov code Gene is employed and extended
to study possible interaction mechanisms between the (usually) dominant turbulent
transport and the subdominant neoclassical transport. In many cases both effects are
treated separately and the total cross-field transport calculated by summation of the
two. This can be analytically justified when the scale of the gyration movement is
assumed to be infinitely small compared to the dimensions of the magnetic field or
the time-averaged temperature and density gradients. In small devices or regions with
steep gradients a clear scale separation is not possible and neoclassical effects can
influence turbulence and vice versa. These steep gradients typically occur in zones of
strongly reduced turbulence, so-called transport barriers. There is experimental [5] and
theoretical [6] evidence that neoclassical transport and the neoclassical radial electric
field are connected to the dynamics of barriers both in the core as well as the edge.
This work forms the foundation for more comprehensive numerical investigations of
transport barriers.

While some results in this work could also be applicable to stellarator physics, its
focus lies exclusively on tokamaks. Accordingly, assumptions which only hold in a
tokamak, such as axisymmetry of the magnetic guide field, are going to be used.

This thesis is structured in the following way: Chapter 2 contains a basic phe-
nomenological description of neoclassical transport and an overview over the deriva-
tion of the gyrokinetic framework. It is also pointed out how this formalism covers not
only the physics of turbulent transport but also contains neoclassical effects as a limit
case. Chapter 3 covers how the equations are implemented in the Gene code with a
focus on elements relevant to neoclassical transport and systems where it can interact
with turbulence. Additionally, it is shown how to calculate the turbulent and neoclas-
sical transport fluxes and discuss methods of estimating their uncertainty. Chapter 4
presents purely neoclassical simulations which confirm the validity of the simulation
results for neoclassical transport in local simulations, demonstrate the ability to self-
consistently calculate the neoclassical radial electric field in global simulations and
finally study the nonlocal effects attributed to so-called potato orbits near the magnetic
axis. In Chapter 5 the influence of low-wavelength electrostatic fields (similar to the
neoclassical field) on local simulations of ion temperature gradient-driven (ITG) turbu-
lence are studied. In Chapter 6 the interaction between neoclassical effects and ITG
turbulence is demonstrated in global simulations both with fixed temperature gradient
and fixed power input. Finally, Chapter 7 summarizes the results of this thesis and
gives prospects for further investigations.
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Chapter 2

Theoretical model

The magnetically confined plasmas in fusion applications are characterized by a high
temperature and a low density and as a consequence by a very low number of collisions.
Hence, a standard fluid model approach turns out to be insufficient for the mechanisms
that drive plasma transport and a kinetic approach must be used. In order to better
understand the phenomenon of neoclassical transport it is, however also helpful to
consider the dynamics of single particles. This provides useful concepts such as the
magnetic and the E×B drift velocities and allows for simple random walk estimates for
the scalings of neoclassical transport. Afterwards we go through the steps of deriving
the gyrokinetic Vlasov-Poisson equation system in the form it will be used in the
numerical calculations of the following chapters.

2.1 Basic geometry of a tokamak

Before considering the dynamics of the plasma, we shall introduce the basic geometrical
framework to operate on when describing tokamak physics. Obviously, the defining
quantity for this is the magnetic field,

B = ∇×A = Bϕ êϕ +∇ψ ×∇ϕ, (2.1)

B = I(ψ)∇ϕ +∇ψ ×∇ϕ, (2.2)

where ϕ is the toroidal angle and we have used the vector potential A to define the
poloidal flux function ψ = −RAϕ with R the distance from the axis of symmetry. Since

Figure 2.1: Basic tokamak shape with a q = 2 field line (green).
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2. Theoretical model

B ·∇ψ = 0 holds, the magnetic field vector will lie on surfaces of constant ψ. This makes
ψ one possible choice of a flux surface label. These surfaces form nested toroids in
a tokamak.3 The innermost of these is degenerated to a circular line and called the
magnetic axis where we set ψ = 0. Its radius is the major radius R0 of the tokamak. The
possible shapes of the flux surfaces are solutions of the Grad-Shafranov equation [7],
which is derived from the magnetohydrodynamic equilibrium condition

j ×B = ∇p.

The pressure p = p(ψ) is an example of a flux surface quantity, i.e. a quantity that only
depends on ψ. One possible solution are concentric (besides a small displacement of
the center of the outer flux surfaces called Shafranov shift, which we neglect) circular
toroids, which serve as a good model system for theoretical and numerical studies
due to their symmetry. Obviously, this means that the distance of the surface from
the magnetic axis is a function of ψ: r = r(ψ). The radius of the outermost closed flux
surface from the magnetic axis determines the minor radius a of the tokamak. The
quotient

ε =
r

R0

is called inverse aspect ratio and is an important dimensionless parameter.
If we introduce the poloidal angle θ as a third coordinate besides ψ and φ, we can

define the volume element:

d3x =
dψdθdφ

|(∇φ×∇ψ) ·∇θ| ,

and with this the useful concept of the flux surface average, where we average over the
volume between two neighboring flux surfaces at ψ and ψ + dψ:

〈Q〉(ψ) =

∫
Q(ψ,θ)d3x∫

d3x
=

∮
Q(ψ,θ)
B ·∇θ dθ

/∮
1

B ·∇θ dθ .

In case Q also is not axisymmetric (i.e. has a φ dependence), it also includes an
integration over the toroidal angle.

The final parameter of the magnetic field we introduce here is the safety factor,

q =
nt
np

=
〈B∇φ〉
〈B∇θ〉 ,

which describes the twistedness of the magnetic field, i.e. the number of toroidal turns
nt of a field line per poloidal turn np. It is a function of the radial position and its first
order derivative is called the magnetic shear:

ŝ =
1
q

∂q

∂r
.

3In experiments, situations occur where this does not hold anymore, such as the formation of magnetic
islands which include stochastization of the field lines.
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2.2. The single particle description

For the treatment of particle dynamics it is helpful to split velocities in components
parallel and perpendicular to the background magnetic field (introducing b̂ = B/B):

v = v‖b̂+ v⊥.

The sign of v‖ indicates if the velocity is co- or countercurrent to the field.

2.2 The single particle description

The most fundamental and intuitive approach for a theoretical description is to consider
the trajectory of every particle in a plasma. While it is immediately obvious that this
task is not feasible for a plasma consisting of about 1020 interacting particles, the
picture is helpful to understand a number of phenomena relevant for this work in a
qualitative and illustrative way.

2.2.1 Gyro-orbits and classical transport

Since the Lorentz force only restricts movement perpendicular to the magnetic field
lines, the characteristic trajectory of electrons and ions is a helical curve. This move-
ment determines two important characteristic scales of the plasma: the gyroradius
(sometimes called Larmor radius) and the gyrofrequency:

ρσ =
mσv⊥c
Zσ eB

, Ωσ =
Zσ eB

mσc
,

with mass mσ , charge number Zσ of the particle belonging to species σ , as well as
the magnetic field B and perpendicular velocity v⊥ of the particle. Typical values
for deuterium ions in fusion plasmas are a gyroradius in the millimeter range and
a gyrofrequency around 1011 s−1 (where the machine dimensions amount to several
meters). Hence, the magnetic field does not change notably over the time and space the
particle needs to complete several gyrations and the magnetic moment,

µ =
mσv

2
⊥

2B
,

is a conserved quantity. This also includes the fact that collisions occur very infrequently.
Such a plasma is called (strongly) magnetized.

Cross-field transport of particles, heat and momentum can be realized by collisions
that displace the particles from their original field line as sketched in Fig. 2.2. It should
be noted, though, that the shown large angle collision represents the net effect of many
small angle collisions. This effect is known as classical transport [8]. Since the process is
diffusive, its net transport can be estimated by a random walk argument with ρ as the
step size. For the transport of electrons Γe due to a cross-field density gradient ∇n this
results in:

Γe = −De∇n, (2.3)

with: De ∼
ρ2
e

2τei
, (2.4)

9



2. Theoretical model

B

∇T
Figure 2.2: Principle of classical heat transport due to collisions in the presence of a temperature

gradient

where τei is the typical time for small-angle collisions of an electron with ions to
accumulate to a 90◦ scattering. For the exact definition of τab see Eq. (2.38). Analogously
we find for the heat transport qi by ions due to a temperature gradient ∇T :

qi = −κi∇T , (2.5)

with: κi ∼
niρ

2
i

2τii
. (2.6)

The contribution from ion-electron collisions can be neglected here, as it is smaller by
a factor of the mass ratio me/mi .

Because Coulomb collisions conserve momentum, particle transport by this mecha-
nism must be automatically ambipolar, i.e. Γi = Γe, and self-collisions cannot contribute
to particle transport. Classical transport turns out to have no significant contribution
to the confinement time of fusion devices because it is very small compared to other
effects that occur in toroidal magnetic field configurations.

2.2.2 Drift orbits and neoclassical transport

In the magnetic field of a tokamak the particle dynamics extend beyond the gyra-
tion. Movement of the particles’ gyration centers is determined by three approximate
constants of motion [9]: the magnetic moment µ, the total energy,

E =
mv2

2
+Zeφ,

where the electrostatic potential φ does not vary strongly on a flux surface, and the
toroidal canonical momentum:

pφ =mRBφv‖/B−Zeψ.

10



2.2. The single particle description

flux surfaces

potato 
orbit

banana orbit

circulating
orbit

r

Figure 2.3: Poloidal projection of drift orbits in a tokamak

Since the strength of the magnetic field varies between Bmax on the inboard and Bmin
on the outboard midplane, two distinct populations of particles exist. If a particle
fulfills the condition,

0 <
v2
⊥
v2 <

B

Bmax
,

it can reach all points on the flux surface and is referred to as passing, circulating or
untrapped. On the other hand, ions or electrons satisfying,

B

Bmax
<
v2
⊥
v2 ≤

B

Bmin
,

are reflected at the point where v⊥ = v and turn around, i.e. v‖ necessarily becomes 0
and changes sign. These are trapped on the outboard side of the torus. Particles with
v2
⊥
v2 >

B
Bmin

cannot exist.
Furthermore, the gradient and curvature of the magnetic background field and also

an electric field lead to a drift movement of the gyration centers [10]:

vD =
E ×B
B2 +

v2
⊥

2Ω

(
b× ∇B

B

)
+
v2
‖
Ω

(b× (b ·∇)b)︸                                  ︷︷                                  ︸
v∇B+vc=vd

, (2.7)

where we have introduced the magnetic drift velocity vd , consisting of ∇B and curvature
drift. The electric field must be weak enough to not violate the assumption of a
magnetized plasma, i.e. E/B� v⊥. The consequence of this phenomenon can be seen
in Fig. 2.3: The gyration centers follow paths which are closed in the poloidal plane
and are called drift orbits.

If we consider a circular flux surface with a small inverse aspect ratio ε� 1 far away
from the magnetic axis, a positive ion will always feel an upwards force. A passing
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2. Theoretical model

ion starting with v‖ > 0 on the outboard midplane then poloidally prescribes a circular
path on the poloidal plane with a slightly bigger diameter than its original flux surface
while its (otherwise identical) counterpart with v‖ < 0 will move equivalently with a
smaller diameter. This excursion from the flux surface is quite small [9]:

∆rc ∼
qv

Ω
. (2.8)

On the other hand, a trapped ion will undergo a motion whose poloidal projection
motivates its iconic name banana orbit. Again the sign of v‖ on the outboard midplane
determines the direction of displacement from the original flux surface. The width of
this orbit can be estimated as:

rb ∼ ε1/2ρp = ε−1/2∆rc, (2.9)

where ρp is the poloidal gyroradius, i.e. the length scale derived from Bp instead of B.

Neoclassical transport

In the same way as gyro-orbits, drift orbits will not cause any transport perpendicular
to the magnetic field unless they undergo collisions. Since this provides a stronger
transport on top of the classical one, it was termed neoclassical transport. The mechanism
was first described in Ref. [11]. We can again estimate it by a random walk argument,
this time using the banana width rb� ρ:

De ∼
r2
b

2τei
∼ ε−3/2q2Dcl. (2.10)

This means for the typical dimensions of a tokamak, neoclassical transport is around
two orders of magnitude higher than classical transport. This observation holds equiv-
alently for heat transport. The important underlying assumption here is that the
average time to detrap a particle by collisions is much longer than the time to com-
plete a poloidal orbit, estimated by the bounce frequency ωb ∼

√
εvth/qR. This can be

quantified with a dimensionless parameter, the collisionality ν∗:

ν∗ =
ν/ε

ωb
=
νε−3/2

vth/qR
, (2.11)

where the particle velocity is estimated by the thermal velocity vth =
√

2T /m. Based on
ν∗, we can distinguish three specific transport regimes:

• ν∗� ε3/2, the banana regime, which we just described.

• ε3/2 � ν∗ � 1, the plateau regime, which only becomes clearly distinguishable
for a big aspect ratio.

• ν∗� 1, the Pfirsch-Schlüter regime, where the plasma can be described as a fluid
and collisions completely disrupt the drift orbits.
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2.3. The gyrokinetic description

We will present different analytical predictions for heat transport in these regimes
when we compare them to numerical results in Sec. 4.1.

The assumption of locality, i.e. that particles do not drift away far from their
flux surface (rb � r), which underlies the standard theory of neoclassical transport
in tokamaks, is valid in the majority of the plasma volume, but becomes invalid in
the region near the magnetic axis. The radial position where this happens can be
straightforwardly defined by setting rb = r, which results in the potato width:

rp = 3
√

4q2ρ2R0. (2.12)

As it is obvious from the potato orbit in Fig. 2.3, transport phenomena within this
region cannot be described by parameters of a specific flux surface. We will elaborate
on these non-local effects in Sec. 4.2.2 together with according numerical simulations.

Bootstrap current

The presence of magnetic drifts also affects the parallel direction: Radial gradients
in density and temperature give rise to a parallel current - the bootstrap current. If
we consider a system with a radial density gradient, we will find that there are more
trapped ions with v‖ < 0 than v‖ > 0 on a specific flux surface as their average orbit
radius is smaller than the flux surface. Since Eq. (2.7) contains the charge, the opposite
holds for electrons resulting in a net parallel current [12]. This flow, however, is only
the seed for the bootstrap current which is carried mainly by the circulating particles.
Although the trapped population only makes up for a fraction of around

√
ε of the total

density, collisions couple them to the rest and thus transfer the asymmetry in their
parallel velocity distribution to the entire population.

The bootstrap current generated this way has been observed in experiments [13]
and plays a role in concepts for steady-state operation [14] and advanced confinement
scenarios [15] of tokamaks. On the other hand it also drives an instability known as
neoclassical tearing mode [16].

2.2.3 Turbulent transport

While the neoclassical theory is able to explain the transport fluxes in some experi-
mental cases, in general its predictions are still by an order of magnitude too small.
The observed enhancement of the fluxes is sometimes referred to as anomalous trans-
port, but we will use the term turbulent transport based on the underlying physical
phenomenon. As this type of turbulence is based on collective states of the plasma, we
abandon the concept of single particles at this point and turn to a model more apt to
collective behavior.

2.3 The gyrokinetic description

For the desired quantitative predictions of neoclassical and turbulent transport the
model of choice is describing each species σ of the plasma in terms of a (six-dimensional)
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2. Theoretical model

ensemble-averaged phase space distribution function fσ (x,v, t). The time evolution of
this function is determined by the kinetic equation:

Dfσ
Dt

=
∂fσ
∂t

+ v ·∇xfσ +
F
mσ
·∇vfσ = C(fσ ), (2.13)

where the force field F = Ze(E + v ×B) is determined by the Maxwell equations:

∇ ·E = 4π
∑
σ

Zσ e

∫
fσ d3v,

∇ ·B = 0,

∇×E = −1
c
∂B
∂t
,

∇×B =
4π
c

∑
σ

Zσ e

∫
vfσ d3v +

1
c
∂E
∂t
.

The fields E and B are macroscopic variables. All microscopic interactions are sub-
sumed in the term C(fσ ), which is named collision operator due to the effect it describes.
According to the form (see Sec. 2.3.4) of this collision operator Eq. (2.13) is called a
Fokker-Planck equation. In the collisionless limit it is named the Vlasov equation.

In principle, it is possible to calculate a numerical solution to this system of equa-
tions (see, for example, Ref. [17]). The computational cost is, however, (still) prohibitive
for everything beyond very simple systems, especially for the strong magnetic field of a
tokamak. Thus it is necessary to make further approximations and adaptations for the
equation system, which accommodate to the specifics of a strongly magnetized thin hot
plasma of toroidal shape. This leads to the so-called gyrokinetic description which we
explain briefly in the following section. For a comprehensive review of the subject see
Ref. [18].

2.3.1 Gyrokinetic ordering

The fundamental temporal ordering is that any effect we consider happens on time
scales that are much longer than the time for a gyration τg :

τg � τb� τE ,

with the bounce time τb and the energy confinement time τE . The space-scale ordering
is expressed with

ε⊥ = |k⊥|ρi ,

and we have to distinguish between ε⊥ ∼ 1 for turbulent and ε⊥� 1 for neoclassical
phenomena.

Additionally, we assume that the distribution function can be split into a small
perturbation f1 and a Maxwellian background F0 and that the perpendicular electric
field fluctuations are small compared to the background magnetic field:∣∣∣∣∣ f1F0

∣∣∣∣∣ ∼
∣∣∣∣∣∣cδE⊥Bvth

∣∣∣∣∣∣ ∼ ε⊥ eφ1

Ti
∼ εδ. (2.14)
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2.3. The gyrokinetic description

The index 1 of φ1 does not imply a direct ordering here, but merely that it is connected
to f1. An analogous ordering can be introduced for a fluctuating vector potential A1‖
and magnetic field B1‖, but this is beyond the scope of this work and thus neglected
from here on. This means we restrict this work to the electrostatic limit - assuming
that the plasma pressure is so low that the fields induced by current fluctuations are
negligible compared to the background field.

The scale separation between the ion gyroradius and the length scales of the mag-
netic field LB and of the background equilibrium temperature and density gradients LF
allows to define the small parameters:

εB =
ρi
LB

with
∣∣∣∣∣ρi∇BB

∣∣∣∣∣ ∼ εB, (2.15)

εF =
ρi
LF

with
∣∣∣∣∣ρi∇F0

F0

∣∣∣∣∣ ∼ εF . (2.16)

The ratio εB/εF is in fact the inverse aspect ratio ε and can be used for the small
aspect ratio limit in neoclassical theory. For turbulence studies it is usually assumed
to be unity. The background changes on a time scale of order ε3

B, which is the typical
transport time scale.

The last ordering we introduce is based on the strong anisotropy of the plasma
dynamics:

ε‖ =
|k‖|
|k⊥|
� 1.

In the derivation of the gyrokinetic Vlasov-Poisson system usually several of these
ordering parameters are considered to be of similar magnitude and thus subsumed into
one ε.

2.3.2 The guiding-center and gyro-center transformation

The modern form of gyrokinetics is based on using phase space coordinate transfor-
mations to reach equations of motion that are independent of the fast gyration time
scale [18]. This is a two-step process, first moving to guiding-center coordinates in
stationary electromagnetic fields and then to gyro-center coordinates which incorporate
the fluctuating fields of a turbulent plasma. For clarity, we drop the species index in
equations where it is not necessary.

Guiding-center transformation

The starting point is the single particle Hamiltonian

H(x, ẋ) =
1
2
mv2 +Zeφ(x) with: v = ẋ, (2.17)

and the Lagrangian
L(x, ẋ) = pẋ −H(x, ẋ), (2.18)

with the canonical momentum p = mv + Ze
c A(x). This can also be expressed by a

one-form γ which fulfills ∫
Ldt =

∫
γ.
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2. Theoretical model

The strong magnetization of the plasma allows to treat the gyration as purely circular
and to introduce the transformation to guiding-center coordinates (X ,v‖,µ,θ, t) with
the gyration phase angle θ:

x = X + ρ(X ,µ)a(θ), (2.19)

v = v‖b̂(X) + v⊥(X ,µ)c(θ). (2.20)

The unit vectors a and c represent the local radial and tangential directions of the
gyro-orbit. If we only consider terms of first order in εB, applying this transformation
and an average over the gyro-angle (a gyroaverage) to the one-form γ yields:

Γ0 =
Ze

c
A∗0(X) · dX +

µB(X)
Ω(X)

dθ −H0(X ,v‖,µ)dt, (2.21)

where we have introduced:

A∗0 = A0 +
mc
Ze
v‖b̂, (2.22)

H0(X ,v‖,µ) =
1
2
mv2
‖ +µB(X) +Zeφ0(X). (2.23)

The zeroth order electrostatic potential φ0 is associated with plasma rotation and is
neglected from here on. The potential arising from neoclassical effects can technically
be also considered zeroth order, but we absorb it in φ1 based on the fact that it will be
calculated from f1. This is justified by the ordering (2.14) where only ε⊥φ1 is relevant.
The one-form (2.21) is already sufficient to derive the drift-kinetic Vlasov equation, a
limit we will discuss in Sec. 2.3.7.

Gyro-center transformation

For the model to cover turbulent transport, on the other hand, the guiding-center form
has to be extended to allow short-wavelength and time-dependent perturbations in the
electromagnetic potential - in this work limited to electrostatic perturbations. Hence,
we extend the particle and guiding-center one-form and the Hamiltonian by O(εδ)
contributions:

γ = γ0 +γ1,

Γ = Γ0 + Γ1,

H =H0 +H1,

which are found to be:

γ1 = −H1 dt,

H1 = Zeφ1(x, t).

When the gyroaverage is applied, it now turns out that the dependency of the
one-form and the Hamiltonian on the gyrophase θ cannot be completely removed
anymore because φ1 varies on the gyroradius scale. The mathematical tool of choice to
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2.3. The gyrokinetic description

treat this is the Lie transform, which is a near-identity coordinate transform and applies
to one-forms in the following way:

Γ̄ = T ∗−1Γ + dS,

with the gauge function dS. The operator T ∗−1 consists of a number of individual Lie
transforms with the generator G in the form of Lie derivatives,

[LGΓ ](X) = Gλ(X)
(
∂Γν(X)
∂Xλ

− ∂Γλ(X)
∂Xν

)
.

The number depends on the desired order of the smallness parameter ε (in this example
ε2):

T ∗−1 = e−εL1e−ε
2L2 = 1− εL1 + ε2

(1
2
L2

1 −L2

)
+O(ε3).

A detailed description of the choices for G and dS can be found in Ref. [19, 20],
we will just give the end result here. The gyro-center one-form resulting from this
transformation of the perturbed guiding-center one-form is then found to be:

Γ̄ = Γ̄0 + Γ̄1 =
Ze

c
A∗0 · dX +

µB

Ω
dθ −

(1
2
mv2
‖ +µB+ qφ̄1

)
dt. (2.24)

2.3.3 The gyrokinetic Vlasov equation

We can insert Eq. (2.24) in the Euler-Lagrange equations,(
∂Γ̄λ
∂Zν

− ∂Γ̄ν
∂Zλ

)
dZλ

dt
= 0 with Z = (X ,v‖,µ),

and arrive after some algebra at the equations of motion for the gyrocenters:

Ẋ = v‖b̂+
B

B∗‖

 µ

Ωm
b̂×∇B+

v2
‖
Ω

(
∇× b̂

)
⊥

+
c
B
b̂×∇φ̄1


= v‖b̂+

B

B∗‖

(
v∇B + vc + vφ

)
= v‖b̂+

B

B∗‖
vD ,

(2.25)

v̇‖ = − Ẋ
mv‖
· (µ∇B+Ze∇φ̄1), (2.26)

µ̇ = 0 (as a conserved quantity), (2.27)

where we find the magnetic and the E ×B drift velocity of Eq. (2.7) again. The parallel
component of the generalized magnetic field B∗‖ = B+ B

Ω
v‖b̂ ·(∇× b̂) is kept for the system

to fulfill the Liouville theorem [18], eq. B12. The second term is of order εB, though.
Inserting the equations of motion into Eq. (2.13) (while ignoring the collision

operator for the moment), we arrive at the gyrokinetic Vlasov equation, which gives
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the time evolution of the distribution function of the gyrocenters:

∂F0 + f1
∂t

+ Ẋ ·∇ (F0 + f1) + v̇‖
∂(F0 + f1)
∂v‖

= 0 (2.28)

⇒
∂f1
∂t

+

v‖b̂+
µc
ZeB∗‖

b̂×B +
v2
‖ cB

ZeB∗‖
(∇× b̂)⊥

 ·
·
(
∇(F0 + f1)− 1

mv‖
· (µ∇B+ q∇φ̄1)

∂F0 + f1
∂v‖

)
= 0.

(2.29)

If we assume most of the ordering parameters of Sec. 2.3.1 to be of the same magnitude,
εδ ∼ εB ∼ εF ∼ ε‖, we can separate the terms of this equation according to their order in
ε into F0 and f1.

The equilibrium distribution

For the lowest (0-th) order, we find:

v‖b̂ ·
(
∇F0 −

1
mv‖

µ∇B∂F0

∂v‖

)
= 0. (2.30)

Hence, F0 is not explicitly evolved in time and we need to choose an equilibrium
distribution that fulfills Eq. (2.30) at all times. One way to achieve this is a local
Maxwellian for each species in the form:

F0σ

(
x,v‖,µ

)
=

n0σ (x)

π3/2v3
th0σ

(x)
exp

−mσv2
‖ /2 +µB

T0σ (x)

 , (2.31)

where the background temperature and density only depend on the radial coordinate x
since they are flux surface quantities.

The first order equation

Introducing the Maxwellian F0 into the first order equation results in:

∂f1
∂t

+
B

B∗‖

(
v∇B + vc + vφ

)
·
(
∇(F0 + f1) +∇(µB+Zeφ̄1)

F0

T0

)
+

+v‖b̂
(
∇f1 +Ze∇φ̄1

F0

T0
−

µ

mv‖
∇B∂f1

∂v‖

)
= 0.

(2.32)

The curvature drift velocity can be cast in a more convenient form by using Ampére’s
law and the magnetohydrodynamic equilibrium condition ∇p = j ×B/c:

Ω

v2
‖
vc =

(
b̂× (b̂ ·∇)b̂

)
=

(
∇× B

B

)
⊥

= −b̂×
(
b̂×

(4π
cB
j +

1
B
b̂×∇B

))
=

= b̂×
(
∇B
B

+
β

2
∇p
p

)
with: β =

8πp
B2 .
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2.3. The gyrokinetic description

The parameter β is the ratio between the thermodynamic and the magnetic pressure.
The electrostatic limit, which we use throughout this theory, implies β ≈ 0.

In Eq. (2.28) we have neglected the right hand side of Eq. (2.13) which describes
collisions. Since these are crucial for neoclassical transport (see Sec. 2.2.2), the collision
operator will now be discussed in greater detail.

2.3.4 The collision operator

Even if we do not ignore collisions, they are still quite rare events in hot plasmas.
For example, the core of fusion devices is typically in the banana regime described in
Sec. 2.2.2. Hence, the collision operator can be restricted to binary collisions (including
the case σ = σ ′.):

C(fσ ) =
∑
σ ′
Cσσ ′ (fσ , fσ ′ ).

Due to the long range of the Coulomb force, undergoing a collision changes the velocity
of a particle only by a small step. This can be quantified by the parameter Λ =
λD /bmin, which compares the minimal impact parameter bmin attributed to a 180
degree deflection with the Debye length λD as the typical impact parameter. The
Coulomb logarithm lnΛ is in the range 15− 25 for laboratory plasmas, a number of
formulas for its value in different parameter regimes can be found in Ref. [21].

As a result we can express the collision operator as a combination of a drag force
and a diffusive spreading in velocity space (repeated indices imply summation):

Cσσ ′ (fσ , fσ ′ ) = −∇v · jσσ
′
,

jσσ
′

k =
〈∆vk〉σσ

′

∆t
fσ −

∂

∂vl

(
〈∆vk∆vl〉σσ

′

2∆t
fσ

)
,

where it is necessary to derive the expectation values 〈·〉/∆t from the collision dynamics.
The original derivation by Landau can be found in Ref. [22] and a concise description
appears, for example, in Ref. [9]. Here we only provide the final result:

Cσσ ′ (fa, fb) = 4π lnΛ

(
ZσZσ ′e

2

mσ

)2
∂

∂vk

(
mσ
mσ ′

∂ϕσ ′

∂vk
fσ −

∂2ψσ ′

∂vk∂vl

∂fσ
∂vl

)
, (2.33)

with the Rosenbluth potentials [23]:

ϕσ ′ (v) = −
∫

1
u
fσ ′ (v

′)d3v′ , ψσ ′ (v) = −1
2

∫
ufσ ′ (v

′)d3v′ where: u = |v − v′ |. (2.34)

It can be easily shown that this collision operator fulfills a number of conservation
laws: ∫

Cσσ ′ (fσ , fσ ′ )d3v = 0, (2.35)∫
mσvCσσ ′ (fσ , fσ ′ )d3v = −

∫
mσ ′vCσ ′σ (fσ ′ , fσ )d3v, (2.36)∫

mσv
2

2
Cσσ ′ (fσ , fσ ′ )d3v = −

∫
mσ ′v

2

2
Cσ ′σ (fσ ′ , fσ )d3v, (2.37)
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representing conservation of particles, momentum and energy. The operator is also
Galilean invariant, since only relative velocities and derivatives of v appear. Lastly,
if the operator is applied to two Maxwellian distributions with equal temperature, it
vanishes.

Linearization and Maxwellian background

As the next step, we now apply the splitting of the distribution function from Sec. 2.3.3
to Cσσ ′ , which yields:

Cσσ ′ = C(F0σ ,F0σ ′ ) +C(f1σ ,F0σ ′ ) +C(F0σ , f1σ ′ )︸                          ︷︷                          ︸
CL
σσ ′

+C(f1σ , f1σ ′ )︸       ︷︷       ︸
CNL
σσ ′

.

The first term vanishes for self-collisions or species with equal temperatures. Otherwise,
it represents thermalization between two species. Since we do not consider the slow
evolution of the background distribution in the Vlasov equation, this term is simply
neglected. Hence, Eq. (2.30) and the choice of F0 remain valid in the presence of
collisions. The term CNL is second order in ε and is thus also not considered. The
remaining terms constitute the linearized Landau-Boltzmann operator, where the first
term is often called test-particle and the second one field-particle operator.

For the test-particle part it can be shown that the derivatives of the Rosenbluth
potentials evaluate to:

dϕσ ′ (xσ ′ )
dv

= − nσ ′

v2
thσ ′

x2
σ ′

(
erf(xσ ′ )− xσ ′erf′(xσ ′ )

)
,

dψσ ′ (xσ ′ )
dv

= −nσ
′

2

(
erf(xσ ′ )−

erf (xσ ′ )− xσ ′erf′(xσ ′ )

2x2
σ ′

)
,

with x = v/vthσ
′, erf(x) the error function and erf′ = derf/ dx. If inserted into Eq. (2.33)

this gives the final result for the test particle operator. An explicit expression and
more detailed derivations can be found, for example, in Ref. [24]. The prefactors of the
collision operator can be combined to define a basic collision frequency and time4:

νσσ ′ =
4πnσ ′Z2

σZ
2
σ ′e

4 lnΛ

m2
σv

3
thσ

, τσσ ′ =
3
√
π

4νσσ ′
. (2.38)

The field part of the linearized collision operator poses a more complex problem.
Although it is possible to compute the Rosenbluth potentials for the perturbed dis-
tribution function, usually an ad-hoc model which has the conservation properties
(2.35)-(2.37) is sufficient. Details how this is accomplished can be found in Ref. [24]
and references given therein. Care must also be taken so that the model conserves the
property of self-adjointness of the general linearized collision operator, i.e. that the
functional

S[f̂ , ĝ] =
∫
ĝ(v)CLσσ (F0σ , f̂ )d3v,

4This is the definition from Ref. [9]. The definitions for ν and τσσ ′ tend to vary in the constants and
the definition of vth (see Appendix A).
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2.3. The gyrokinetic description

is symmetric in its arguments. Physically, this implies that collisions must have a
positive entropy production rate.

Finally, the collision operator must be transformed from particle space to the gyro-
center space of Eq. (2.32). By representing the guiding center coordinate transformation
with the push-forward operator

T −1
(gc) : f → f (gc) = T −1

(gc)f ,

and the inverse transformation with the pull-back operator

T(gc) : f (gc)→ f = T(gc)f
(gc),

we can formally write:

C
(gc)
σσ ′ (f

(gc)
σ ) = T −1

(gc)Cσσ ′ (T(gc)f
(gc)
σ ). (2.39)

In principle, this operator still has a gyro-angle dependence, since the guiding center
transformation is only constructed to remove it from the Vlasov part of the kinetic
equation. However, the smallness of the collision frequency justifies to only consider
the gyro-angle independent part. Furthermore, the guiding center distribution function
can be approximately replaced by its gyro-center counterpart.

2.3.5 Field aligned coordinates

In order to fully use the smallness of the ordering parameter ε‖ it is sensible to rewrite
the vector expressions of the Fokker-Planck equation in terms of their components.
While the toroidal-poloidal-radial coordinate system of Sec. 2.1 is very intuitive, field
aligned coordinates are a better suited choice for this. Introductions to the topic can be
found in Ref. [25, 26]. We use so-called Clebsch coordinates, where the magnetic field
is:

B = C∇x ×∇y.

The constant C only depends on the radial position, the labels x,y and z represent the
radial, binormal and the parallel direction. In this formulation the parallel derivative
becomes:

b̂ ·∇ =
1
√
gzz

∂

∂z
=
C
JB

∂

∂z
,

and the triple products appearing in terms with the drift velocity turn into:

b̂×∇A ·∇B =
gkz
J
√
gzz

∂iA∂jB εijk =
C
J2B

gkz∂iA∂jB εijk ,

for arbitrary scalar fields A,B. J =
√

det(gij) is the determinant of the Jacobian associ-

ated with the covariant metric coefficients gij = ei · ej .
Applying these expressions to Eq. (2.32) (and adding the collision operator) allows

now to identify terms smaller by order ε‖ and yields the final form of the first-order
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Fokker-Planck equation:

∂f1
∂t

=
c
C
B

B∗‖
∂yφ̄1∂

n,T
x F0 −

c
C
B

B∗‖

(
∂xφ̄1Γy −∂yφ̄1Γx

)
+

+
c
C
B

B∗‖
·
µB+mv2

‖
ZeB

(
KxΓx −KyΓy

)
− C
JB
v‖Γz+

+
C
JB

µ

m
∂zB

∂f1
∂v‖

+
c
C
B

B∗‖
·
µB+mv2

‖
ZeB

Kx∂
n,T
x F0 +CL(f1),

(2.40)

which contains the following abbreviations:

Γ = ∇f1 +Ze
F0

T0
∇φ̄1,

Kx =
(
∂yB−

gyz
gzz
∂zB

)
,

Ky =
(
∂xB−

gxz
gzz
∂zB

)
,

∂n,Tx F0 = ∂xF0 +
µ

T0
F0∂xB.

This equation is already very close to the form used in the Gene code for numerical
solving.

2.3.6 The Poisson equation

The remaining task for solving the gyrokinetic equations of motion is to evaluate the
self-consistently generated electric field. As previously stated, we neglect fluctuations
of the vector potential A. Based on Maxwell’s equations, the electrostatic potential is
determined by the Poisson equation:

−∇2φ = 4πe
∑
σ

Zσnσ (x), (2.41)

where the density is now defined as the lowest order fluid moment of the particle
distribution function:

nσ =
∫
fσ (x,v)d3v.

Since the equilibrium is assumed to be quasineutral, only field perturbations are
explicitly calculated by this equation.

As for collisions, we have to express the particle distribution function in terms of
the gyro-center distribution. This can again be written in terms of a pull-back operator,
which now represents the gyrocenter transformation. For the first order perturbation it
takes the form:

T ∗f
(gy)

1σ = f (gy)
1σ − eZσ φ̃1

F0σ

T0σ
, (2.42)
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2.3. The gyrokinetic description

where φ̃1 = φ1 − φ̄1 denotes the gyro-angle dependent part of the potential in particle
space. We can use this operation to calculate the fluid moments in terms of the gyro-
center distribution function (B∗‖ ≈ B from here on):

Mab =
1
m

∫
δ(X − x+ρ)T ∗f1(X ,v‖,µ)Bva‖v

b
⊥d3Xdv‖dµdθ

=
1
m

∫
δ(X − x+ρ)

(
f1(X ,v‖,µ)− φ̃1

F0

T0

)
Bva‖v

b
⊥d3Xdv‖dµdθ.

(2.43)

Inserting n(x) =M00(x) into Eq. (2.41) and moving all terms involving φ1 to the left
hand side then results in:

∇2
⊥φ1 − 8π2

∑
σ

Z2
σ e

2

mσ

∫ φ1B
F0σ

T0σ
−
〈{
Bφ̄1σ

F0σ

T0σ

}
x−ρ

〉
gy

 dv‖dµ =

=− 8π2
∑
σ

Zσ e

mσ

∫ 〈
{Bf1σ }x−ρ

〉
gy

dv‖dµ,

(2.44)

where 〈. . .〉gy denotes a gyroaverage and {. . . }x−ρ implies that the content of the curled
brackets is evaluated at the position x−ρ. Notably, this means that the Poisson equation
contains two different gyroaverages: · · · is evaluated at the guiding center position,
〈· · · 〉gy at the particle position. It can also be shown that the first term of Eq. (2.44) is
small compared to the rest by a factor of the squared Debye length (see Sec. 3.3). Thus
it can be neglected.

The left hand side of Eq. (2.44) can be considered as an operator which has to be
inverted to calculate φ1 from f1.

Adiabatic electrons

For a number of problems (such as those studied in this work) it is adequate to consider
the electrons massless and thus infinitely fast along the magnetic field. This consider-
ably reduces the complexity of the gyrokinetic Vlasov-Poisson system: The electron
distribution function is not explicitly advanced as the perturbed density becomes:

n1e

n0e
=

e

T0e
(φ1 − 〈φ1〉),

where 〈. . .〉 is the flux surface average (see Sec. 2.1). The simplified Poisson equation
then is:

−
∑
σ,e

me
mσ

Z2
σ e

2
∫ φ1

〈{
B
F0σ

T0σ

}
x−ρ

〉
gy

−
〈{
Bφ̄1σ

F0σ

T0σ

}
x−ρ

〉
gy

 dv‖dµ =

=Be2n0e

T0e
(φ1 − 〈φ1〉)−

∑
σ,e

me
mσ

Zσ e

∫ 〈
{Bf1σ }x−ρ

〉
gy

dv‖dµ.
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2.3.7 The drift-kinetic limit

We have now established the theoretical framework to describe and numerically simu-
late plasma microturbulence. As it turns out, this model also contains the neoclassical
transport problem as a subset. The drift-kinetic equation, which has to be solved to
calculate neoclassical transport coefficients [11, 27, 28], can be derived from the guiding-
center Lagrangian. This means we allow the electrostatic potential, and in consequence
the distribution function, to vary spatially only on the scale of the background (ε⊥� 1,
see Sec. 2.3.1) and specifically is assumed constant over the width of a gyro-orbit.

This has implications on the advection term vd ·∇f1: The magnetic drift part is
ordered as:

vd ·∇f1 ∼ εδ ·
ε⊥
εδ
· εδ ∼

O(εδ) for gyrokinetics (turbulence).

O(ε2
δ) for drift-kinetics (neoclassical).

Here, the ordering vd ∼ εF ∼ εδ implies that the banana orbits are narrow and do not
deviate far from a flux surface so that the background quantities do not change across an
orbit width. Since this assumption does not hold in the potato region near the magnetic
axis (see Sec. 2.2.2 and 4.2.2) or in a region with very steep temperature/density
gradient, this term provides insight into neoclassical effects beyond the standard
theory.5

The E×B component of the drift on the other hand is consistentlyO(εδ) for both phe-
nomena: The electric field associated with turbulent fluctuations has short-wavelength
low-amplitude potential variations, while the neoclassical radial electric field varies
over the background scale with a corresponding amplitude.

The first order drift-kinetic equation formally looks like Eq. (2.32) with φ̄1 = φ1.
If we write it in components, however, the axisymmetry of neoclassical transport in a
tokamak can be used and the derivatives in the binormal direction can be neglected.
Eq. (2.40) then takes the form (setting B∗‖ ≈ B):

∂f1
∂t

=
c
C
µB+mv2

‖
ZeB

Kx

(
∂xf1 +Ze

F0

T0
∂xφ1

)
− C
JB
v‖Γz+

+
C
JB

µ

m
∂zB

∂f1
∂v‖

+
c
C
µB+mv2

‖
ZeB

Kx∂
n,T
x F0 +CL(f1).

(2.45)

If we now enforce the neoclassical ordering and consider only narrow orbits with
constant background gradients, f1 will also not depend on the radial position within
the narrow sheet of plasma. Additionally, the Poisson equation for this case reduces to
a trivial expression that is fulfilled regardless of φ. This reflects the fact that the lowest
order neoclassical fluxes are automatically ambipolar in this limit (see Sec. 3.5.2). The

5It has been argued that this term should be part of a second order equation involving the nonlinear
part of the collision operator [29]. CNL, however, is always O(ε2

δ ).
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drift-kinetic equation of the standard neoclassical theory is thus:

∂f1
∂t

+ v‖b̂ ·
(
∇f1 −

µ

mv‖
∇B∂f1

∂v‖

)
+ vd ·∇n,T F0 = CL(f1), (2.46)

∂f1
∂t

=− C
JB
v‖∂zf1 +

C
JB

µ

m
∂zB

∂f1
∂v‖

+
c
C
B

B∗‖
·
µB+mv2

‖
ZeB

Kx∂
n,T
x F0 +CL(f1). (2.47)

This equation can be found in basically all works on the topic [9, 28, 30], usually
without the ∂v‖ term (the so-called magnetic mirror term) when the parallel derivative
is taken at constant energy instead of v‖.

2.4 Summary

In this chapter the physical phenomena leading to collisional (classical and neoclas-
sical) transport in a plasma were described and the gyrokinetic equations that make
quantitative numerical predictions of turbulent and neoclassical transport possible
were formally derived. The equations were taken in the limit without electromagnetic
fluctuations and special attention was paid to the collision operator as it is crucial for
correctly modeling neoclassical effects. The Poisson equation was also given for the
frequently applied limit of massless (adiabatic) electrons. Finally, the connection to
the simpler drift-kinetic equation was shown which in its local limit is the basis for
standard neoclassical transport theory.

In the next chapter the cornerstones of the numerical schemes to solve these equa-
tions with the Gene code will be presented.
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Chapter 3

Numerical implementation of the
gyrokinetic equation

In even remotely physically realistic scenarios the nonlinear gyrokinetic Vlasov-Poisson
system6 presented in the previous chapter is only solvable by numerical methods. One
of the codes that implements this is Gene which has been developed at IPP since 1999
[24, 26, 31, 32, 33].

This chapter will give an overview of the numerical schemes used by Gene and
elucidate in detail key elements and the features that are relevant for this work. This
includes the classification of Gene as a δf code that can use the flux-tube and the
global approach for its simulation domain, the choice of the coordinate system and
boundary conditions and the normalization to make quantities dimensionless. In
addition a scheme is presented to allow the background temperature and densities to
evolve self-consistently in global simulations. Lastly, the calculation of the cross-field
transport from the phase-space distribution function is shown and ways to calculate a
statistically sound uncertainty estimate for them are discussed.

3.1 Local and global simulations

For the numerical realization of the gyrokinetic Vlasov-Poisson system as we have
presented it in the last chapter there are two distinct approaches with regard especially
to how the device geometry is reflected in the boundary conditions.

In the core of sufficiently large devices, such as JET, ASDEX-Upgrade or DIII-D and
the future ITER, the perpendicular size of turbulent structures is so small compared
to the characteristic system size that it is justified to do local simulations. This means
that the values of the profiles at a single radial position are taken as constant over the
entire simulation domain. First order derivatives, however, are still retained under the
assumption that they do not change their base values significantly across the considered
plasma region. Consequently, the boundary conditions for the perpendicular directions
x and y can be set as periodic enforcing fixed background gradients. If the simulation

6Strictly speaking, it should be named the Fokker-Planck-Poisson system, but most works also call the
collisional kinetic equation Vlasov equation.
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domain size is chosen to be many times the turbulent correlation length, this will
introduce no significant artificial effects. The benefit is that the equation system can be
solved by applying spectral methods, which are very accurate and efficient to calculate
the various derivatives and operators in the system. An interesting feature of the local
model is that neoclassical effects exclusively exist on the (kx, ky) = (0,0) Fourier mode of
the distribution function and thus completely decouple from the turbulent fluctuations.
This means that the two phenomena can be treated separately even with different
numerical codes.

The non-local or global approach, on the other hand, is required if background
quantities vary across the scale of the turbulence. This can be the case for smaller
tokamaks (e.g. TCV, Alcator C-Mod) or for transport barriers in larger machines, where
the relevant background scale is the steep and quickly varying gradient length. Here,
it is no longer justified to use periodic boundary conditions in the radial direction
requiring an algorithm on a real space grid, while periodicity (and the spectral solution
methods) can be kept in y thanks to the axisymmetry of the problem. A large stellarator
requires the opposite: Its magnetic geometry varies strongly in the y direction, while
locality can be assumed in x. Comprehensive modeling of small stellarators might even
require a "fully" global model. We use global from here on to refer to a radially global
model. Giving up the strong radial scale separation also implies that neoclassical and
turbulent effects can no longer be analytically separated, motivating the investigations
in this thesis. A step further in this concept is to not employ the splitting of the
distribution function into background and perturbation when deriving the gyrokinetic
Vlasov-Poisson system. Numerical approaches based on this method are called full-f
codes. A particular feature of them is that neoclassical effects are inextricably included
in them. In contrast, a code using the splitting is called δf -code.

Even though the global model is more physically comprehensive, local simulations
are still of much value, as they are far less numerically demanding and allow to test
phenomena separately and systematically in a less complex environment.

3.2 Numerical approach in Gene

Gene is a so-called Eulerian δf code, which means that the perturbation of the distribu-
tion function f1 is discretized on a fixed phase space grid. Another common approach
are particle-in-cell methods, which track particles in a Lagrangian framework.

Gene employs the method of lines, which treats spatial and temporal derivatives
separately when solving a partial differential equation.

The gyrokinetic equation can be schematically written as:

∂tf1 = Lf1 +N [f1] +Z0 (3.1)

where terms linear in f1 are summarized in Lf1, N [f1] represents the nonlinear part
(the second term in Eq. (3.4)) and Z0 only depends on the background F0. The right
hand side is evaluated on the phase space mesh and the resulting ordinary differential
equation system is then advanced in time with an explicit fourth order Runge-Kutta
scheme. Over the development timespan of Gene numerous optimizations have been
implemented to both of these steps, e.g. spatial differentiation schemes that conserve
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properties of the analytic equation [34] or means for the optimal time step size in the
Runge-Kutta scheme [35]. As a result simulations can be efficiently parallelized on up
to tens of thousands of processors [36], allowing for the studies in this work, which
include both fast turbulent as well as slow collisional time scales.

The algebraic solver for neoclassical equilibria

For the purely neoclassical (drift-kinetic) problem, it is possible to employ another
method. While turbulence only reaches a steady state in a time-averaged sense, the
neoclassical equilibrium is characterized by ∂tf1 = 0. This means the steady state
fulfills the algebraic equation:

Lf1 = −Z0.

In its discrete form this equation is a linear system that can be solved directly or
iteratively. For this purpose Gene uses an iterative solver via an interface to the PETSc
library. This method has the advantage that it can be tremendously faster than the
explicit time stepping scheme for small grid sizes. Unfortunately, while the initial
value computation has a complexity of O(N ) (N being the number of grid points) for
each time step, the algebraic solver scales with O(N2) per iteration. The number of
necessary steps/iterations on the other hand can depend on several parameters: A long
collision time slows convergence for the initial value problem, because it requires to
cover multiple τii , but makes the linear system more sparse favoring the iterative solver.
The baseline, however, is that the latter is better for local simulations, while explicit
time evolution suits global problems better: The number of points in x increases from
1 to between 150 and 500. The initial value solver has the additional advantage that it
yields salvageable results even if it does not reach the fully steady state.

3.2.1 Coordinate choice and boundary conditions

At this point, we have to remember that our physical model is not determined by the
Vlasov-Poisson partial differential equations alone - we are, in fact, looking for the
solution of a boundary value problem. Hence, care needs to be taken that the numerical
boundary conditions in phase space correctly represent the physical ones. To sensibly
do this, we also need to define which of the directions in a tokamak (see Sec. 2.1) our so
far abstract curvilinear coordinates x,y,z represent.

Field line label(y)

The field line label is sometimes also called binormal direction although strictly speak-
ing this term implies an orthogonal coordinate system. It is defined as:

y = Cy(q(ρ)θ −ϕ),

where ϕ is the toroidal angle, q the safety factor profile and θ is the straight field
line angle, i.e. it is chosen so that the field lines appear as straight lines in the y − z
plane. The constant Cy = ρ0/q0 is a constant length factor determined by the reference
position ρ0 = x0. The y direction is represented in Fourier space for both local and
global Gene simulations.
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The boundary condition in y can be derived in a straightforward way from the
physical periodicity:

f (ρ,ϕ,θ) = f (ρ,ϕ + 2π,θ)

⇒f (x,y,z) = f (x,y − 2πCy , z).

Hence, the simulation domain in y is has periodic boundaries if its length is chosen
as Ly = 2πCy . If the turbulent correlation length is considerably smaller than a full
toroidal turn, as is usually the case, it is enough to limit Ly to only an integer fraction
of a full toroidal turn:

Ly =
2πx0

n0q0
.

The lowest nonzero wavenumber in the simulation is then ky,min = n0/Cy and we write
ky = jky,min, j ≥ 0. Neoclassical effects do not depend on y in a tokamak, hence they are
part of exclusively the ky = 0 Fourier mode.

Radial direction(x)

As its name suggests, x is a flux surface label. A common convention is to define:

x = ρ =
√
ψ,

where ψ is either the poloidal or toroidal flux function. For our simple model with
concentric circular flux surfaces it is valid to write x = r (r being the local minor radius).
Details of the ad-hoc geometry with circular concentric flux surfaces we use throughout
this entire work can be found in Ref. [37].

The boundary conditions for the radial direction depend on which model of Sec. 3.1
is chosen: Local simulations have periodic boundaries in x and the direction is treated
in Fourier space. Global simulations on the other hand offer primarily the choice
between Dirichlet and von Neumann boundaries7. The former is a sane choice for the
outer boundary (i.e. at big x) because it represents assuming a fixed temperature at the
edge of the plasma. The inner boundary is less straightforward. Since the field-aligned
coordinate system becomes singular at the magnetic axis, the simulation domain has to
end at least a gyroradius away from it. The plasma itself has no physical edge there,
so choosing a Dirichlet boundary can produce numerical artifacts. As we will show
in Sec. 4.2.1, a von Neumann boundary for the ky = 0 mode is the superior choice
there for long range neoclassical effects, while the short-wavelength turbulence is only
minimally affected by the Dirichlet boundary condition.

Additional problems can arise when the perturbation f1 (or in a less harmful form
its radial derivative) has still finite values at grid points next to the radial boundary. In
this case the finite difference scheme tends to produce numerical oscillations (“zigzag”)
that can over time reach large amplitudes and spread into the rest of the domain.
Gene can prevent this by adding a Krook damping term of the form

Sb = −κb(x)f1
7Specifically, we refer to setting f1 or its derivative to zero. Other boundaries are in principle an option

if it is clear what they would represent in a physical system.
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to the gyrokinetic equation. κb(x) is typically fourth-order polynomial decaying to zero
within an adjustable distance to the boundary. While this is an excellent choice for
Dirichlet boundary conditions, it is not compatible with a von Neumann boundary,
which would be simply converted to Dirichlet by the damping. It can be a good choice
to damp modes with finite ky in this case, though.

Parallel direction (z)

The direction along the field line is chosen to be z = θ. Its boundary condition is based
on the poloidal periodicity of the system:

f (ρ,ϕ,θ) = f (ρ,ϕ,θ + 2π).

This affects also the y coordinate, leading to:

f (x,y,z) = f
(
x,y + 2πq(x)

n0

ky,min
, z+ 2π

)
,

which in Fourier space for y takes the form:

f (x,ky , z) = f (x,ky , z+ 2π)e2πijn0q(x).

This form of the parallel boundary condition is sufficient for global simulations. It,
however, requires further adaption to also satisfy the periodicity in x for the local
model. The safety factor q(x) is expanded to first order around x0:

q(x) = q0 + (x − x0)
∂q

∂x
= q0

(
1 +

x − x0

x0
ŝ

)
,

and we can write:∑
kx ,ky

f (kx, ky , z)e
ikxx =

∑
kx ,j

f (kx, jky,min, z+ 2π)eikxxe2πijn0q0e2πijn0 ŝ(x−x0)/Cy .

Thus, under the assumption Cy = x0/q0, the parallel boundary condition couples the kx
and ky grid in the form that

k′x = kx + 2πŝky

has to be a wave number present in the system. The minimal (finite) radial wavenumber
is consequently:

kx,min =
2πŝky,min

N
with: N =

2πŝLx
Ly

.

When the number of kx modes given by the grid is reached, the physical parallel
boundary condition can no longer be sustained and field or distribution function
components with higher kx are simply set to zero in Gene .
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Velocity space (v‖,µ)

Since we assume f1 to be small compared to F0, the total distribution function is
approximately Maxwellian and therefore has to exponentially decay with increasing
velocity. If the simulation domain is big enough, it is thus justified to use Dirichlet
boundary conditions for v‖ in the non-collisional part.The magnetic moment µ is a
parameter for the non-collisional part and thus no boundary condition for it is required.
The collision operator uses a finite volume discretization scheme that assumes vanishing
fluxes at the µ and v‖ boundaries.

3.2.2 Discretization schemes

Gene employs a number of different schemes to discretize the derivatives in the gy-
rokinetic equations. In the case of periodic boundaries (y and in local simulations
x) they become mere multiplications in Fourier space with machine precision. The
other directions, however, require different schemes. In our case these are fourth order
centered finite differences of the form

∂fi =
1

12∆
(fi−2 − 8fi−1 + 8fi+1 − fi+2) .

The index i represents a position in one of the grid directions and ∆ is the constant
grid spacing. Centered finite differences are non-dissipative but dispersive, which
means the occurrence of sub-grid oscillations originating from the boundary must
be suppressed by numerical hyperdiffusion. Details on this can be found in Ref. [32].
The role of v‖ hyperdiffusion is also fulfilled by collisions and vice versa (in a rather
crude way). This means that its amplitude can and has to be chosen low in collisional
simulations.

An alternative differencing scheme is motivated by recasting the gyrokinetic equa-
tion so that the parallel advection and the nonlinear term take the form of two-
dimensional Poisson brackets

{F,G}v‖,z =
∂F

∂v‖

∂G

∂z
− ∂F
∂z

∂G

∂v‖
.

In order to numerically conserve the mathematical properties of this bracket an
Arakawa scheme [34] can be used. This is important for applications which rely
on the exact conservation of constants of motion such as studies of turbulent energetics,
but is generally not harmful, so it is nowadays the standard choice for the nonlinearity
in Gene . Its use in the parallel advection term leads to a notably higher computational
cost (directly and by increased grid point number requirements) leading to a bad cost-
benefit ratio for expensive global simulations. Hence, the simulations in Chapter 6 do
not employ it for the parallel advection.

The discretization of the collision operator employs a different scheme: It uses
a finite volume method after writing C as the divergence of a flux analogously to
Eq. (2.3.4). The details of this procedure are described in Ref. [24]. A convenient
property of this scheme is the conservation of density. It, however, does not fully
preserve the self-adjointness property (2.3.4).
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The last important part of the numerical discretization schemes is the imple-
mentation of the gyrophase average. Here the application of the integral operator
Gf = 1

2π

∫ 2π
0 f dθ becomes a matrix-vector multiplication. Its derivation can be found in

Ref. [19] including the local case, where G becomes the scalar Bessel function J0(k⊥ρ).
This concludes the overview over the numeric representations of elements of the

gyrokinetic Vlasov-Poisson system. But in order to make predictions from global
simulations we need to introduce a number of additional terms that are not originally
part of the equations.

3.3 Normalization

A final preparatory step for the implementation of any physical model as a numerical
problem is to make all quantities dimensionless with the benefit that all normalized
variables in the calculations are kept at roughly order unity. This generally improves
the stability of the numerical schemes. Normalization can be performed by defining
appropriate reference values, which were originally defined in Ref. [38] and extended
for global simulations in Ref. [19]. Obviously, it is easy to reintroduce units in the
post-processing to compare, for example, with experimental data.

3.3.1 Basic quantities

The units for normalization are the basic quantities Lref,mref,nref,Tref and Bref and the
composed quantities:

cref =

√
Tref

mref
, ρref =

mrefcrefc
eBref

.

Typical choices for them are:

mref =mi , nref = ne, Tref = Te,

Lref = R or Lref = a, Bref = B(x = 0) (i.e. at the magnetic axis).

The particle charge is normalized by the elementary charge e, i.e. Ẑe = Z For the
background density and temperature we can define the normalized profiles n̂pσ , T̂pσ :

n0σ (x) = nrefn̂0σ (x0)n̂pσ (x), T0σ (x) = TrefT̂0σ (x0)T̂pσ (x),

thus splitting dimension, species and radial dependency.
The normalizations for the phase space coordinates reflect the anisotropy between

the parallel and perpendicular plasma dynamics:

x = x̂ρref, y = ŷρref, z = ẑ,

v‖ = v̂‖ v̂thσ

∣∣∣
x0
cref, µ = µ̂ T̂0σ

∣∣∣
x0

Tref

Bref
, t = t̂

Lref

cref
,

For post-processing of simulations that consider the full radial extent of the torus
it can be convenient to give x as a fraction of the minor radius a. The normalized
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thermal velocity is v̂th =
√

2T̂0σ /m̂σ . Hence, the velocity space normalization is species-
dependent to account for scenarios with differing temperatures. On the other hand we
do not consider the radial dependence substantially yet: The notation |x0

means that
the quantity is evaluated at the reference position x0, typically x = 0.5a and the velocity
space box sizes have to be chosen appropriately. There is undergoing work, though, to
make use of an adaptive velocity space grid [39].

For spatial derivatives two different normalizations are used depending on whether
they apply to background or fluctuating quantities:

∂

∂x
=


1
ρref

∂

∂x̂
on fluctuating quantity,

1
Lref

∂

∂x̂
on background quantity,

and analogously for y. This reflects the gyrokinetic ordering in the normalization and
puts the normalized quantities in the same order of magnitude.

The distribution function and the electrostatic potential are accordingly written as:

F0σ = F̂0σ
nref

c3
ref

n̂0σ

v̂3
thσ

∣∣∣∣∣∣∣
x0

, f1σ = f̂1σ
nref

c3
ref

n̂0σ

v̂3
thσ

∣∣∣∣∣∣∣
x0

ρref

Lref
, φ1 = φ̂1

Tref

e

ρref

Lref
. (3.2)

The normalized background local Maxwellian thus takes the form:

F̂0σ (x,v‖,µ) =
n̂pσ (x)

π3/2T̂ 3/2
pσ (x)

e
−
v̂2
‖ +µ̂B̂(x)

T̂pσ (x) .

Finally, the collision frequency (2.38) can be written in normalized quantities as:

νσσ ′ =
4n̂σ ′Z2

σZ
2
σ ′

m̂1/2T̂ 3/2
0σ

cref

Lref
νc with νc =

πe4nrefLref lnΛ

23/2T 2
ref

. (3.3)

Obviously, the collision frequency depends on the radial position via the density and
temperature. νc can be directly set to conveniently determine the overall collisionality
of the simulated system. The collision operator is normalized accordingly:

CL
σσ ′ =

cref

Lref

nref n̂0σ |x0

c3
ref v̂

3
thσ

∣∣∣∣
x0

ρ∗Ĉ
L
σσ ′ .

3.3.2 Dimensionless parameters

The introduced normalizations also allow to define reference values for parameters
that are already dimensionless by themselves, namely ρ∗ and βref.

The length ratio ρ∗ = ρref/Lref fundamentally determines the importance of nonlocal
effects in the system considered by relating the microscopic to the macroscopic scale.
While local simulations are not affected by it, its value in global simulations is as a basic
indicator for the importance of using the global model. It should be noted though, that
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3.4. Steady state in global simulations

ρ∗ only describes the impact of the machine dimensions (minor or major radius), which
is not necessarily the decisive characteristic length (see Chapter 6).

The ratio βref = 8πnrefTref/B
2
ref controls the plasma pressure assumed for the par-

ticular magnetic equilibrium. It is consistent to set βref = 0 when choosing concentric
circular flux surfaces. Since βref also determines the strength of electromagnetic effects
(fluctuations of A), this choice justifies the electrostatic limit we are using in this work.
As it turns out the normalized form of B∗‖ also becomes B∗‖ = B for βref = 0 thus making
the approximation made in Sec. 2.3.6 apply in a strict sense.

3.3.3 Kinetic and Poisson equation

With all quantities and derivatives normalized, we can now write the field-aligned
first-order gyrokinetic equation in dimensionless form:

∂f̂1
∂t

=
1

Ĉ
∂ŷ

ˆ̄φ1∂
n,T
x̂ F̂0 −

1

Ĉ

(
∂x̂

ˆ̄φ1Γ̂y −∂ŷ ˆ̄φ1Γ̂x

)
+

+
1

Ĉ

T̂0

∣∣∣
x0

Z
·
µ̂B̂+ 2v̂2

‖

B̂

(
K̂x Γ̂x − K̂y Γ̂y

)
− Ĉ
Ĵ B̂
v̂‖ v̂th

∣∣∣
x0
Γ̂z+

+
Ĉ
Ĵ B̂

µ̂

2
∂ẑB̂

∂f̂1
∂v̂‖

+
1

Ĉ

T̂0

∣∣∣
x0

Z
·
µ̂B̂+ 2v̂2

‖

B̂
K̂x∂

n,T
x̂ F̂0 + ĈL(f̂1),

(3.4)

where we have dropped the part of the curvature drift that is proportional to βref.
The normalized Poisson equation is:

λ̂2
D∇̂

2
⊥φ̂1 −

∑
σ

πZ2
σ
n̂0σ

T̂0σ

∣∣∣∣∣∣
x0

∫ φ̂1B̂
ˆF0σ

T̂pσ
−
〈B̂ ˆ̄φ1σ

ˆF0σ

T̂pσ


x−ρ

〉
gy

 dv̂‖dµ̂ =

=−
∑
σ

π n̂0σ |x0
Zσ

∫ 〈{
B̂f̂1σ

}
x−ρ

〉
gy

dv̂‖dµ̂,

(3.5)

which contains the normalized Debye length,

λ̂D =

√
B2

ref

4πnrefmrefc2 ,

meaning that the first term is very small compared to the rest of the left-hand side of
the equation and can be justifiably left out.

With these normalizations the system of equations is now in a convenient form for
discretization.

3.4 Steady state in global simulations

While local simulations intrinsically keep temperature, density and their respective
gradients constant (in a time-averaged sense) by their periodic boundary conditions,
the particle and heat fluxes in global scenarios will relax them and lose energy and
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3. Numerical implementation

particles at the Dirichlet outer radial boundary. Thus, appropriate sources and sinks of
heat and particles have to be introduced in order to reach the desired steady state. This
can be achieved in two ways: as a gradient-driven or as a flux-driven scenario.

3.4.1 Gradient-driven setup

The first choice strives to preserve the initial state of the gradient profiles mirroring
the behavior of the local case. In a δf splitting this means that adaptive sources need
to be employed to force the perturbed part of the distribution function f1 towards
zero. Gene achieves this with Krook-type sources originally inspired by Ref. [40],
implemented in Ref. [41] and expanded in Ref. [26]. The particle source is a term added
to the right-hand side of the Fokker-Planck equation (2.40):

SP σ = −κP

〈fσ (X , |v‖|,µ)
〉
−

∑
σ ′ Zσ ′

〈∫
〈fσ ′ (X , |v‖|,µ)〉d3v

〉
Zσnspec

〈∫
〈F0σ (X , |v‖|,µ)〉d3v

〉 〈F0σ (X , |v‖|,µ)
〉 ,

where the prefactor κP regulates the strength of the source and the distribution function
is symmetrized in v‖ to not introduce parallel momentum. nspec is the total number
of species considered in the simulation and 〈· · · 〉 denotes the flux surface average as
introduced in Sec. 2.1. This form of the source fulfills∑

σ

Zσ

〈∫
SP σ d3v

〉
= 0,

i.e. it does not violate the quasineutrality and does not introduce spurious electrostatic
potentials. The particle source is generally not needed for turbulence simulations
with the adiabatic electron approximation, which is almost exclusively used for the
results presented in this work, since density and potential fluctuations are in phase
and produce no particle transport. If, however, the electrostatic potential is completely
neglected in purely neoclassical simulations, the vd ·∇f1 term in Eq. (2.45) can drive
particle transport and the source is required.

The Krook-type heat source has a similar form:

SHσ = −κH

〈fσ (X , |v‖|,µ)
〉
−

〈∫
〈fσ (X , |v‖|,µ)〉d3v

〉〈∫
〈F0σ (X , |v‖|,µ)〉d3v

〉 〈F0σ (X , |v‖|,µ)
〉 , (3.6)

where the second term now ensures that SH does not act as a particle source:〈∫
SHσ d3v

〉
= 0.

The opposite is not true, though: Calculating the v2 fluid moment of SP shows
that the particle source introduces heat. This can be remedied by replacing κH by
κeff(X ,κH ,κP ) whose definition can be found in Ref. [26].
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3.4. Steady state in global simulations

3.4.2 Flux-driven setup

The second choice to achieve steady state is physically more meaningful but also
computationally more challenging. Flux-driven scenarios operate with a fixed power
input with the aim of predicting the time evolved profiles. Due to the connection of the
source with the physical power input in Watts, we use explicit normalization notation
here.

The heat source in this case is localized and is constructed in the dimensionless
form:

ŜH = Ŝ0ŜxŜE , (3.7)

where

ŜE =
2
3

1
p̂0σ (x)

 v̂2
‖ + µ̂B̂

T̂p(x)
− 3

2

 F̂0σ

ensures that no particles or parallel momentum are introduced and Sx(x) allows to
specify a radial profile with the normalization∫

Ŝx(x)Ĵ(x,z)dV̂ = 1.

The remaining factor Ŝ0, with the units[
Ŝ0

]
=
n0σ (x0)ρrefcref

v̂th
3(x0)L2

ref

,

gives the source the desired amplitude with the correct dimensions, so that its volume
integral is the normalized injected power:

Padd = Ŝ0nrefTrefρ
3
ref
cref

Lref
.

Compared to the Krook sources in Sec. 3.4.1 this type of source is much closer to the
physical conditions in an experiment as it does not cool the plasma in the core to keep
the profiles fixed. The price to pay for this is that the profiles must evolve to their
steady state over transport time scales, which are typically another order of magnitude
longer than the already big ion-ion collision time.

Additionally, strong deviations from the initial state profiles will violate the δf
splitting employed in the derivation of the gyrokinetic Vlasov equation. So unless the
initial condition is already a good guess of the equilibrium state measures have to be
taken to ensure f1/F0 = εδ� 1.

Resetting the distribution function

Gene solves this by adapting the background profiles and thus the Maxwellian F0. This
is not an entirely physical evolution but amounts to an iterative optimization of the
initial state. If f1/F0 or the corresponding fluid moment ratios n1/n0 and T1/T0 exceed a
prespecified threshold value, typically around 0.1, the time stepping scheme is stopped
and the following procedure performed:
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3. Numerical implementation

1. Set the new background temperature and density profiles based on the current
total distribution function:

n0σ,new = n0σ +n1σ , T0σ,new = T0σ + T1σ .

2. Apply a smoothing filter to these new profiles to remove gyroradius scale fluctua-
tions which are formally and numerically problematic when they are transferred
to the background profiles and distribution function. The default choice is a
Gaussian filter with adjustable window width, typically 10 ion gyroradii.

3. Use the smoothed profiles to define the new background Maxwellian distribution
F0σ,new(n0σ,new,T0σ,new).

4. Reinitialize the time stepping scheme with

f1σ,new = F0σ + f1σ −F0σ,new.

We will further address the numerical challenges and limitations of this method in the
context of simulation results in Sec. 6.2.

For obvious reasons, flux-driven simulations are the preferred operation mode of
full-f codes (which do not employ the f1,F0 splitting) and it is possible to observe the
physical evolution from an arbitrary initial state to the equilibrium with them.

3.5 Observables

While the formalism and numerical schemes presented so far are mainly concerned
with the distribution function of the gyrocenters f1, the foremost goal of any numerical
simulation is to make predictions on physically measurable quantities such as density,
temperature, mean flow velocities and the fluxes of particles, heat and momentum in
particle space. We shall now present how to gain those tangible quantities from the
distribution function. In Gene they are calculated in regular intervals and output as
binary or ASCII data (and optionally in the HDF5 format).

The starting point are the fluid moments defined in Eq. (2.43), which are normalized
according to Sec. 3.3:

Mab
σ (x) = ρ∗nrefn̂0σ (x0)ca+bref v̂

a+b
thσ

(x0)M̂ab
σ (x).

These moments contain the transformation to particle space so that we can calculate, for
example, the (normalized) density, temperature and parallel flow velocity fluctuations
of species σ :

n1σ =M00
σ , T1σ = (M20

σ + 2M02
σ )/3nσ , u‖ =M10

σ /nσ .

We monitor the parallel flow more closely in the form of

jBσ = Zσ e
〈
u‖σB

〉
= Zσ e

〈
B

∫
v‖f1σ d3v

〉
= Zσ e

〈
BM10

σ

〉
, (3.8)
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which is the contribution of each species to the bootstrap current. While each individual
summand is of first order, their sum jBS =

∑
σ jBσ is second order as the electron current

nearly compensates the ion current [12].

Since it determines the confinement time and thus ultimately the energy yield of
a fusion device, measuring cross-field transport is of foremost interest in numerical
simulations. The origin of these fluxes is the radial component of the drift vD = vd + vφ
(see Eq. (2.7) and (2.25)). We do not measure the classical fluxes (see Sec. 2.2.1) as they
are negligibly small compared to both turbulent and neoclassical fluxes in all relevant
scenarios.

The normalization of radial fluxes in Gene are so-called gyro-Bohm units, which are
based on the assumption that transport is coupled to the gyroradius scale, i.e. that it is
a local effect:

ΓgB = nrefcrefρ
2
∗ , ΠgB = nrefmrefc

2
refρ

2
∗ , QgB = prefcrefρ

2
∗ .

Although this scaling is not found everywhere in experiments and simulations, it still
fulfills the purpose of avoiding very large or small numbers in numerical schemes quite
well. A notable feature of the gyro-Bohm heat flux is its strong temperature dependency
of T 5/2

ref . This means that scenarios with similar dimensionless quantities can exhibit
quite different physical heat fluxes.

3.5.1 Turbulent fluxes

The radial fluxes measured in Gene as turbulent fluxes of particles, parallel momentum
and heat are in the electrostatic limit those driven by the fluctuating component of the
E ×B velocity vφ:

Γ xturb =
〈∫

vxφf1(x,v)d3v

〉
,

Πx
turb =

〈∫
vxφv‖f1(x,v)d3v

〉
,

Qxturb =
〈∫

vxφ(v −u)2f1(x,v)d3v

〉
≈

〈∫
vxφv

2f1(x,v)d3v

〉
.

The flux surface average 〈· · · 〉 means that we are interested in the net flux through a
magnetic surface. In field-aligned coordinates vxφ is written as:

vxφ = − c
C

(
∂φ1

∂y
−
g23

g33

∂φ1

∂z

)
,
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where we neglect the second part based on the parallel wave number ordering. Thus
we define:

Γ xturb =
〈
− c
C
∂φ1

∂y
M00(x)

〉
= −ΓgB

n̂0

Ĉ

〈
−
∂φ̂1

∂ŷ
M̂00(x̂)

〉
,

Πx
turb =m

〈
− c
C
∂φ1

∂y
M10(x)

〉
= −ΠgB

m̂n̂0v̂th

Ĉ

〈
−
∂φ̂1

∂ŷ
M̂10(x̂)

〉
,

Qxturb =
m

2

〈
− c
C
∂φ1

∂y
(M20(x) +M02(x))

〉
= −QgB

n̂0T̂0

Ĉ

〈
−
∂φ̂1

∂ŷ
(M̂20(x̂) + M̂02(x̂))

〉
.

Notably, if we consider the y dependence in Fourier space (as we do generally in this
work) the ky = 0 component of f1 and F0 do not contribute to these fluxes.

3.5.2 Neoclassical fluxes

The definition of the neoclassical fluxes is a bit more involved. There are two ways of
defining them, which are straightforwardly shown to be equivalent in the local model
but require additional attention in the global one. In the latter case the goal is to find
a definition that is consistent with other observables, e.g. to have vanishing particle
fluxes for a purely neoclassical simulation without density profile evolution and no
particle source (see Sec. 4.2). Additionally, turbulent and neoclassical effects do not
fully separate in a global simulation - studying their interaction is the goal of this work,
after all. Thus the name neoclassical fluxes becomes a formal denomination for the
radial fluxes occurring due to the ky = 0 mode of the distribution function.

Fluxes in the local limit

As stated in Sec. 2.3.7, it is not possible to calculate the self-consistent electrostatic
potential in the local model because the neoclassical particle fluxes are automatically
ambipolar in all orders of εδ we are considering. This is shown by finding that the
particle flux can be expressed via the parallel friction force F‖ =

∫
mv‖C(f1)d3v [9, 27]

(for the definition of I and ψ see Sec. 2.1):

Γ xnc = − I

dψ/dx

〈
F‖
ZeB

〉
, (3.9)

where we cast the radial coordinate from the poloidal flux ψ to the minor radius of
the flux surface x = r by means of ∇ψ = dψ

dx∇x. Ambipolarity of the fluxes is the
requirement: ∑

σ

Zσ Γncσ = 0,

which can easily be shown to hold for Eq. (3.9) by using the conservation of momentum
from Eq. (2.36).

In order to derive a definition involving the drift from Eq. (3.9), we have to insert
the drift-kinetic equation (2.46) in steady state (∂tf1) for the collision operator. This
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results in:

Γ xnc =
I

dψ/dx

〈
1
ZeB

∫
mv2
‖

(
b ·∇f1 −

µ

mv‖

∂f1
∂v‖

b ·∇B
)

︸                                ︷︷                                ︸
I

+mv‖v
x
d ·∇F0︸        ︷︷        ︸
II

d3v

〉
.

The integral over Term II vanishes because it is odd in v‖. Term I can be transformed
using

(b̂×∇B) ·∇ψ = −IB ·∇B, (3.10)

which makes use of the system’s axisymmetry and we find:

Γ xnc =
〈∫ mv2

‖
eB2 +

µ

eB

 (b×∇B) ·∇xf1 d3v

〉
=

〈∫
vxdf1 d3v

〉
. (3.11)

This form shows a nice correspondence with the turbulent flux definition and we can
write it in component form as:

Γ xnc =
〈 mKx
CZeB

(1
2
M20(x) +M02(x)

)〉
= ΓgB

〈
2K̂x

n̂0(x0)T̂0(x0)

ZB̂

(1
2
M̂20(x̂) + M̂02(x̂)

)〉
.

(3.12)
A similar argument holds for the energy flux, which we measure in the form:

Qxnc =
〈∫

m

2
v2vxdf1 d3v

〉
, (3.13)

Qxnc =
〈
m2Kx

2CZeB

(1
2
M40 +

3
2
M22 +M04

)〉
=

=QgB

〈
2K̂x

n̂0(x0)T̂0(x0)2

ZB̂

(1
2
M̂40 +

3
2
M̂22 + M̂04

)〉
.

(3.14)

The parallel momentum flux definition is accordingly:

Πx
nc =

〈∫
mv‖v

x
df1 d3v

〉
, (3.15)

Πx
nc =

〈
m2Kx
CZeB

(1
2
M30(x) +M12(x)

)〉
= ΠgB

〈
2K̂x

n̂0(x0)m̂2v̂th0
(x0)3

ZB̂

(1
2
M̂30 + M̂12

)〉
.

(3.16)

It should be emphasized again, that only the (kx, ky) = (0,0) mode of the distribution
function contributes to these fluxes. Thus, they are entirely decoupled from the
turbulent fluxes, which depend on finite wave numbers.

Fluxes in global simulations

In the global model this separation does not formally exist: The maximal spatial scale
(i.e the lowest possible wave number kx) is now given by the system size. Consequently,
we also can calculate the self-consistent electrostatic potential φ1 and have to include
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3. Numerical implementation

its contributions. If we start again from the parallel friction definition (3.9) for the
particle flux, inserting the kinetic equation Eq. (2.32) now yields:

Γ xnc = Γ xnc,loc +
I

dψ/dx

〈
1
ZeB

∫
mv‖

(
vxd ·∇f1 +

ZeF0

T0
vxd ·∇φ1

)
︸                                ︷︷                                ︸

III

d3v

〉
+

+
I

dψ/dx

〈∫
ZeB

T0
mv2
‖ F0b̂ ·∇φ1︸                 ︷︷                 ︸
IV

d3v

〉
,

i.e. we need to treat two additional terms compared to the local result. In term III, the
field dependent summand is odd in v‖ and hence vanishes. We neglect its other part on
the basis that it is formally higher order than the rest. The contribution from term IV
on the other hand corresponds to the covariant x-component of the E ×B drift from
z-variations of φ1. Using Eq. (3.10) we can show that:

− I

dψ/dx

〈∫
ZeB

T0
mv2
‖ F0b̂ ·∇φ1 d3v

〉
=

〈∫ mv2
‖

T0B
F0(b̂×∇φ1) ·∇xd3v

〉
.

In fact, this represents transport due to poloidal variations of the potential because
axisymmetry does not allow a toroidal component of the parallel derivative. It is
also straightforward to show that term III can be reproduced by evaluating the local
definition Eq. (3.11) for f1 + F0

ZeT0
φ1 instead of f1. Comparing with the form of the

pull-back operator (2.42) this provides a convenient way to implement term III. In
conclusion the definition of the particle flux in global simulations amounts to:

Γ xnc =
〈∫

([f1]ky=0v
x
d +F0[vxφ]z)d3v

〉
, (3.17)

where the contribution of F0v
x
d vanishes for up-down symmetric systems such as the

one we are considering. In other cases, the asymmetries in the curvature are small
and it is still legitimate to neglect this flux. In component form we can simply employ
Eq. (3.12) to calculate the normalized flux if the moments Mab are modified so that
T ∗f1σ = f1σ .

The energy flux is derived in an analogous way as

Qxnc =
〈∫

mv2

2
([f1]ky=0v

x
d +F0[vxφ]z)d3v

〉
, (3.18)

and the normalized component form is equal to Eq. (3.14) with the modified moments.
It is important to note that this is only the flux of kinetic energy. It can lead to an increase
in electron heat flux by a factor of

√
mi/me compared to the local result. Helander has

pointed out in Ref. [42], though, that the kinetic energy flux is compensated by a flux
of potential energy:

Qxpot =
〈∫

Zeφ1F0v
x
d d3v

〉
.
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Figure 3.1: Examples of simulation time traces starting at t = 0. Time units are normalized
according to Sec. 3.3, i.e. a/cs.

This effect was also shown in numerical simulations [43]. For the ion heat flux it
only provides a small correction, so it is not included in the present study. Future
investigations which do not use the adiabatic electron approximation will have to take
it into account, though.

Finally, the momentum flux is:

Πx
nc =

〈∫
mv‖([f1]ky=0v

x
d +F0[vxφ]z)d3v

〉
, (3.19)

and we can use the same concept as for particle and heat flux to calculate it with
Eq. (3.16).

3.5.3 Error estimation for the fluxes

With the expressions for the radial fluxes established, it is an important question how
reliable estimates of these and their uncertainty can be given based on data from
numerical simulations. A very natural first step is, of course, to neglect data from the
initial phase of the simulation. As can be seen for the turbulent example in Fig. 3.1 this
phase is easily recognizable.

In the case of purely neoclassical systems (without turbulent fluctuations in a global
simulation, see Chapter 4), the final result is a steady state established over several
collision times and the fluxes (ideally) have constant values as shown for the energy
flux in Fig. 3.1(b). Thus their uncertainty can only be estimated by considerations of
the exactness of the underlying theory and comparisons between several simulations.
An example for the former is that the collision operator is only accurate up to first
order in 1/ lnΛ ≈ 1/10− 1/20 (see Sec. 2.3.4), i.e. neoclassical fluxes cannot be more
accurate than up to 5-10% tolerance. Comparisons between simulations can give hints
on the influence of non-physical parameters, such as the grid resolution or numerical
schemes.

Turbulent fluxes, on the other hand, fluctuate, i.e. their time evolution follows a
probability distribution and we can use statistical analysis for them. The same applies
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3. Numerical implementation

to the neoclassical fluxes measured in global turbulence simulations where the two
phenomena cannot be separated. An important feature of these time series is that the
neighboring data values are usually correlated; physically, the autocorrelation time
tc may, for instance, represent the lifetime of turbulent eddies. We estimate tc by
calculating the discrete autocorrelation function:

R(ti) =
N∑
j=0

qiqi+j with qi =Qi − 〈Q〉, (3.20)

R(tc) = R(t0)/e, (3.21)

where 〈Q〉 is the average over the entire time trace.
In order to calculate a meaningful error based on the standard deviation, we thus

preprocess the flux data by combining all measurements within windows of several
autocorrelation times into a single mean value. This can be understood as a form of
subsampling or two-stage sampling [44]. Ref. [45] refers to this method as batch means.
The set of window averages is now assumed to constitute statistically independent
measurements. It is important to note that the estimate of the correlation time does
not need to be very robust; it is sufficient if it is not grossly underestimated. In terms
of physical processes we have grouped measurements belonging to single turbulent
eddies. In the following we denote the time average over one window by Q̄n and the
average over all window averages by 〈Q〉 as it is equivalent to the mean of all data due
to the linearity of the mean value.

The standard deviation of the window means is then calculated according to the
usual expression:

σwin =

√√√
1

Nwin − 1

Nwin∑
n=1

(
Q̄n − 〈Q〉

)2
.

In general, the standard deviation of the full sample σ provides an estimate of the
amplitude of the turbulent fluctuations, which can be used as a proxy to estimate the
uncertainty of the fluxes. Its application to the window means, though, suffers from a
number of flaws as we will show in the following. On the other hand, if we consider
our dataset as a sample of an infinitely long time series, the standard estimate for the
error of the sample mean compared to the mean of the infinite series is

swin =
σwin√
Nwin

or for small Nwin: swin =
σwin√
Nwin − 2

, (3.22)

where the second expression assumes a Student’s t-distribution rather than a Gaussian.
This is a statistically rigorous estimate of the uncertainty of the mean. Standard
deviation and standard error can also be divided by the mean 〈Q〉 giving the relative
quantities σ̂ and ŝ (as well as their windowing equivalents).

A basic test for this calculation is a set of artificial data of the form:

Qn = 2.5 + 10ξn,

where ξn ∈ [0,1) is a (pseudo-)random number, i.e. we have a set of completely uncorre-
lated data which is shown in Fig. 3.2(a).
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Figure 3.2: Artificial uncorrelated dataset of random numbers

In Fig. 3.2(b) we study the dependence of our two choices of uncertainty quantifica-
tion on the number of averaging windows used. The standard deviation of samples from
a uniform distribution of width w is known to be σ0 = w/2

√
3, i.e. σ̂0 = σ0/〈Q〉 = 38%,

which can be found as the blue dashed line in Fig. 3.2(b). The corresponding relative
standard error of the mean depends on the number of samples N . In our case of
N = 2500 it is ŝ0 = 0.8% (dashed green line). These two values form the reference for
the estimators based on the two-stage sampling. As should be the case for uncorrelated
data, the windows’ standard error of the mean agrees well with its target value and
is largely independent from the number of windows (solid green line). The standard
deviation of the window means, on the other hand, is systematically smaller than its ref-
erence and scales with

√
Nwin for fixedN (solid blue line). This means that considerable

care needs to be taken when interpreting its exact value.
If we, on the other hand, consider how the uncertainty estimate scales with the

number of samples - practically the length of the simulation - it is obvious that σ
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Figure 3.3: Turbulent heat flux from a global ITG simulation (from chapter 6)

(windowed or not) is independent from it for sufficiently large N ; it represents the
width of the distribution function after all. Consequently, the standard error of the
mean scales withN−1/2 exhibiting the intuitively expected property that the uncertainty
should decrease with a growing number of samples. In Fig. 3.2(c) we illustrate this for
our random dataset and fixed windows containing 25 samples each compared to the
straightforward standard error of the mean and its analytical reference ŝ0. The batch
subsampling clearly increases the minimum N required to arrive at a robust value for
the error but beyond this limit we achieve good agreement of all three curves.

The necessity of the batch procedure naturally becomes apparent when we analyze
a time trace of autocorrelated simulation data. As previously mentioned the samples
are assumed to be correlated over a time span of approximately the turbulent eddy
lifetime; in this case the autocorrelation function decays to 1/e after tc = 4.7 time units,
an order of magnitude that appears plausible for the time trace of Fig. 3.3(a). If the
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3.5. Observables

Subsampling σ̂ ŝ

no windows 44% 0.8%
48 windows (5tc) 23% 3.4%
115 windows (2tc) 36% 3.4%

Table 3.1: Standard deviation and error of the mean for turbulent heat fluxes

width of the averaging windows is determined based on multiples of this time, we arrive
at the estimates for the full time trace length presented in Tab. 3.1. The 5tc and 2tc
window numbers are also the left and right boundary of the shaded region in Fig. 3.3(b)
where we again show the dependence of the estimators on the number of subsampling
windows chosen for the entire time trace length. The standard error of the mean ŝ
exhibits good properties: it is nearly independent of the number of windows, at least in
the range that is typically used, and its value for the window averages is larger than for
the full sample, i.e. respecting the autocorrelation of the data increases the uncertainty.
The standard deviation of the windows, however, again shows a scaling with

√
Nwin

for a fixed time interval and is generally smaller than the standard deviation of the
full sample. This is somewhat plausible because the window averaging removes strong
bursts, e.g. at t ≈ 2000 and this effect is stronger for big windows.

If we study only parts of the time trace with varying length but keep the window
size fixed (e.g. 5tc), the number of windows scales linearly with the length of the time
trace, analyzing more data can possibly lead to a higher error estimate with the window
standard deviation. At best, it remains independent of the length of the time trace. The
standard error, on the other hand, has a scaling of N−1/2

win ∼ ∆t; the uncertainty estimate
for the mean improves for longer simulations if they remain in a state of equilibrium.
The batch mean standard error in Fig. 3.3(c) also shows a small modulation caused by
the fact that the number of windows has to be a positive integer.

In conclusion, the standard error of the 5tc window means is our recommended
estimator for the uncertainty caused by the limited length of a turbulence simulation.
Selecting smaller multiples of the correlation time, such as 2tc, would also be possible
for the case shown in Fig. 3.3 as the estimator is relatively independent of the number
of windows. Longer windows, however, provide a safety margin against underestimates
of the correlation time. A caveat of the proposed method is that it only removes the bias
on the error estimate originating from short-time correlations, typically the turbulent
eddy life time. Many systems under consideration, though, exhibit phenomena which
introduce long-term correlations to the measured quantities. Examples for this are
the occurrence of intermittency and transient bursts when turbulence becomes weak
or cases of bifurcation. If the simulation time is big enough, the standard error can
become negligibly small compared to other errors, especially for comparisons with
experimental data, which introduce uncertainties in the simulation parameters. Future
work could be the construction of an a priori estimator for the error based on known
properties of the distribution function, e.g. in Ref. [46], in order to determine an
optimal run time for nonlinear simulations.

The standard deviation of the sample on the other hand provides an estimate of
the fluctuation amplitude, which is a quantity worth studying in its own right. It can
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3. Numerical implementation

even be used (cautiously) as an error estimator for the mean because it provides a
rather pessimistic error margin that can cover other error sources. The subsampling
procedure, however, introduces a severe bias and an alternative estimator for the
fluctuation amplitude should be found while still respecting the autocorrelation of the
fluctuations.

3.6 Summary

In this chapter elements of the numerical implementation of the gyrokinetic equation
which are relevant for this work were introduced. This included the basic distinction
between global and local simulations, the normalization used by the Gene code, the
discretization and the choice of boundary conditions for the phase space directions.
Furthermore, the two ways of establishing a steady state in global simulations were
presented and discussed. Lastly, expressions were introduced to calculate physical
quantities from the distribution function, especially radial transport fluxes. This
included the discussion of means for estimating the uncertainty of these fluxes, con-
cluding that due to their inherent autocorrelation the measurements from their time
series should be grouped into batches whose means are not correlated. The standard
error of the mean of these batch/window means then provides a sound uncertainty
estimate.

In the following chapter the presented methods will be employed to investigate
systems that contain exclusively neoclassical effects.
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Chapter 4

Purely neoclassical systems

Before studying neoclassical phenomena in turbulent systems it is also worthwhile
to investigate them on their own. A number of theoretical predictions exist for local
scenarios, so the numerical calculations can be benchmarked against them. This also
provides an excellent numerical test, especially, for the collision operator. In global
simulations the influence of effects exclusive to the model are investigated. In particular,
the focus lies on the radial electric field, whose physically correct representation is
crucial for the turbulence studies later in this work. Furthermore, the situation near the
magnetic axis where neoclassical transport becomes nonlocal and analytic predictions
in the literature have obtained contradicting results will be studied.

The simulations performed in this chapter are purely neoclassical in the sense
that only the ky = 0 (and additionally kx = 0 in the local case) Fourier component of
the distribution function is considered and consequently only the linear part of the
gyrokinetic Vlasov equation is solved.

4.1 Local neoclassical benchmarks

The validity of the neoclassical equilibrium solver for the flux-tube limit has already
been well established in Ref. [24]. In this chapter additional tests which are significant
as a preparation for global simulations are presented. In particular these are results
of the initial value (IV) solver. Local simulations with the IV solver are in general
more costly than the algebraic (NC) solver as they need at least several ion-ion collision
times to ensure convergence. On the other hand they tend to be more robust and
convergence can be monitored more easily (see Sec. 3.2). We also use this opportunity
to introduce three relevant analytic predictions for neoclassical radial transport of
energy. A fundamental aspect here, is that expressions are usually derived for the
conductive heat flux qnc, which is related to the energy flux by

qnc =Qnc −
5
2
T Γnc. (4.1)

For simulations employing the adiabatic electron approximation, such as all in this
thesis, this distinction is less relevant as Γ = 0 holds for them.

For the Pfirsch-Schlüter regime (ν∗ � 1), the high collisionality justifies a fluid
treatment. Since collisions disrupt the banana orbits, the random walk estimate given
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4. Purely neoclassical systems

in Sec. 2.2 is not valid, but the presence of the magnetic curvature still provides an
enhancement of q2 over classical transport. The original derivation by Pfirsch and
Schlüter was never published, but it can be found in several reviews on the topic [9, 28,
47]. Its end result for the ion heat flux, as given in Ref. [9], is

qxPS,i = −I2
〈

(Bκ∧,i)2

κ‖,i

(
1
B2 −

1
〈B2〉

)〉
∂Ti
∂x

, (4.2)

where
κ∧,i =

5n0iTi
2miΩi

, κ‖,i = 3.9
niTiτi
mi

.

In fact, the Pfirsch-Schlüter flux is present in all collisionality regimes as it is an effect
caused purely by the field curvature. Since it only scales with q2, effects that scale with
q2ε−3/2 overshadow it at low collisionality.

For the limit of very low collisionality the most accurate prediction was derived by
Taguchi [48]. It has the form:

qTa,i = −2niTiI2

miΩ
2
i τi

(〈
B2

0

B2

〉
−

fc
fc + 0.462ft

)
∂Ti
∂x

, (4.3)

which contains the fraction of free particles fc and of trapped particles ft = 1− fc.
The most common expression for the heat flux is the so-called Chang-Hinton formula

[49], which provides a prediction for a large parameter regime by interpolating between
the ε� 1 and ε = 1 limit as well as for ν∗ from the banana up to the Pfirsch-Schlüter
regime. The full formula also includes corrections for Shafranov shift and the presence
of heavy high-Z impurities, which we leave out here for the sake of clarity:

qCH,i = −ε1/2ni
ρ2
θ,i

τi
K2
∂Ti
∂x

, (4.4)

where

K2 =
0.66 + 1.88ε1/2 − 1.54ε

1 + 1.03ν1/2
∗ + 0.31ν∗

〈
Bϕ

2

B2

〉
+ 1.6

0.74ν∗ε3/2

1 + 0.74ν∗ε3/2
F(x), (4.5)

F(x) =
1

2ε1/2

〈
Bϕ

2

B2 − 1
〉
. (4.6)

It is known, though, to overpredict the flux for ε ∼ 0.1 by up to 30% [48]. Since we will
use this prediction also in future sections, we also provide the normalized version.

q̂CH,i =
16
√

2
3
√
π
n̂2
i Z

4T̂ 1/2
i m̂1/2

i q2ε−3/2
√

1− ε2K2νcω̂Ti , (4.7)

where we use the normalized temperature gradient length ω̂T = Lref
Ti

∂Ti
∂x̂ . It should be

noted that from this point on we will drop the x̂ notation and consider all quantities to
be normalized according to the rules given in Sec. 3.3 unless explicitly stated.

In order to benchmark Gene with the three presented predictions we use local
simulations with parameters given in Tab. 4.1. The numerical grid resolution used is
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4.1. Local neoclassical benchmarks

ε R q ŝ ωn = a/Lni ωT = a/LTi
0.18 2.78 1.4 0.796 0.789 3.0

Table 4.1: Simulation parameters for local neoclassical benchmark (CBC-like, length scales
normalized to Lref = a)
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Figure 4.1: Neoclassical ion heat flux with adiabatic electrons compared to different analytical
models.

Nkx×Nky ×Nz×Nv‖×Nµ = 1×1×32×96×64 with a velocity space box of (lv‖ , lµ) = (3.0,9.0)
(in normalized units). The geometry parameters and ωni are based on the so-called
Cyclone Base Case (CBC), a standard benchmarking scenario for gyrokinetic codes [50].

Fig. 4.1 shows the ion heat fluxes in the local neoclassical equilibrium over a wide
range of collisionalities from the banana up to the Pfirsch-Schlüter regime. The simula-
tion shows good agreement with the Chang-Hinton formula, yielding overall smaller
values than the formula (see above). For small ν∗ (inset in Fig. 4.1) we find better
agreement with the more accurate Taguchi prediction. At very high collisionalities, on
the other hand, a notable deviation occurs between simulation and the Pfirsch-Schlüter
prediction. Collisions are the dominant process in this regime, so even very small
imperfections of the numerical schemes of the collision operator start to matter. Since
this high collisionality does not occur in almost all relevant fusion plasma applica-
tions, the deviation can be considered the result of a trade-off between accuracy and
computational cost.

Summarily, the Gene results for local neoclassical simulations are reliable, especially,
if we regard the more expansive benchmarks performed in Ref. [24].
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4. Purely neoclassical systems

4.2 Radially global simulations

When we expand our simulations to the global model, a number of interesting physical
effects and with them also numerical challenges are introduced. Since the (almost)
full radial domain is considered, the value of the inverse aspect ratio ε varies from
values close to 0 up to the ratio a/R0 ∼ 0.4 for our typical cases. Additionally, with the
introduction of temperature and density profiles the collision frequency is smaller in
the inner region due to the usually higher temperature. This means that the value of ν∗
can vary over several orders of magnitude.

In this work we initialize the background density and temperature profiles with an
analytic ad-hoc function which takes either the peaked form

ωn0,T0
(x) = κn,T

cosh
(x−cn,T
wn,T

)−2
− cosh

( cn,T
wn,T

)−2

1− cosh
( cn,T
wn,T

)−2 , (4.8a)

ωn0,T0
(x) = κn,T cosh

(
x − cn,T
wn,T

)−2

, (4.8b)

with the former specifically used for cn,T = 0.5 and the latter in all other cases, or the
flat-top form

ωn0,T0
(x) =

1
2
κn,T

(
tanh

(
x − cn,T + δn,T

wn,T

)
− tanh

(
x − cn,T − δn,T

wn,T

))
. (4.9)

The safety factor profile is chosen to be:

q(x/a) = 0.854 + 2.239(x/a)2 + 0.147(x/a)4, (4.10)

which reproduces q and ŝ of the CBC-like parameters at x = 0.5a. For a plot see “std q”
and “std ŝ” in Fig. 6.9.

4.2.1 The radial electric field

One important additional physical effect that becomes tractable in global simulations
is the neoclassical radial electric field Er . As we will demonstrate in chapters 5 and
6, it is in fact the cornerstone of the interaction between neoclassical and turbulent
phenomena. A fundamental test for the self-consistent calculation of this electric field
is to employ the radial force balance:

ZeEr = −∇xp+ (u×B)x = −∇xp+uϕBθ −uθBϕ , (4.11)

which reflects conservation of toroidal angular momentum [43] and which we need to
transform into our specific set of curvilinear coordinates. If the poloidal flow velocity
is determined by neoclassical effects, it can be expressed in terms of the temperature
gradient. The derivation can be found in Ref. [28] and the end result can be written
normalized as: 〈

u‖σB
〉

=
1
Zσ

Bϕ
Bθ
nσTσ

(
ωnσ + (1− k)ωTσ +

Z

Tσ
Er

)
, (4.12)
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4.2. Radially global simulations

c1 c2

Analytical 1.0 0.0
Dirichlet 0.52 0.39
von Neumann 0.97 0.01
vN, no vd ·∇f1 0.98 −0.01

Table 4.2: Regression results for the force balance Eq. (4.14)

where the dimensionless parameter k = k(ν∗) was introduced. It was already predicted
for the banana regime in Ref. [28] but in Ref. [51] a more generally valid estimate was
found. Nonetheless, no exact function for k is known.

If, on the other hand, we assume a simpler system with constant temperature, the
force balance equation reduces to a relation between parallel flow, radial electric field
and the density gradient, all three readily measurable quantities:〈

u‖σB
〉

=
1
Zσ

Bϕ
Bθ
nσTσ

(
ωnσ +

Z

Tσ
Er

)
, (4.13)

or with the further assumption of only one ion species and no toroidal rotation (u‖ ≈ 0):

Er = − Ti
Zi
ωnσ , (4.14)

where we can set the normalized quantities to Tσ = Z = 1.
For our simulations we impose a background density gradient profile of the peaked

form (4.8a), which has the advantage that it assumes the value 0 at x = {0, a}. The
parameters are chosen to be κn = 2.789, cn = 0.5 and wn = 0.15. This is a rather narrow,
peaked gradient profile since the field is sensitive to particle and momentum sources at
the radial boundary, as we will show in the following.

With the predetermined gradient we can perform a linear regression for Eq. (4.14)
in the form:

Er = −c1ωnσ + c2. (4.15)

In Fig. 4.2 and Tab. 4.2 we show the results of this regression for three different
numerical setups.

In the first case (Fig. 4.2(a)), which uses the default Dirichlet radial boundary
condition, i.e f1|xmin/max

= 0 and thus φ1

∣∣∣
xmin/max

= 0, we find that our approach fails. This
is not very surprising as a monotonic solution for φ1 with boundary values 0 cannot
exist. The system reacts to this by developing a (spurious) field in the near-axis region.
Another interpretation would be that the inner Dirichlet boundary acts as a hardly
controllable particle and momentum source near the magnetic axis. It is important
to note that the full force balance (4.13) is still fulfilled: a considerable parallel flow
profile develops.

If we choose the more physically appropriate von Neumann condition on the inner

radial domain boundary, i.e. ∂f1
∂x

∣∣∣∣
xmin/max

= 0, the linear regression yields parameters

that agree very well with the analytical prediction (Fig. 4.2(b)). Minor deviations
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Figure 4.2: Radial electric field and possible fit to the density gradient profile

occur due to remaining small numerical momentum sources, whose contributions can
accumulate over the long simulation time of several ion-ion collision times (t = 5000).
An additional interesting test is to solve the neoclassical Vlasov-Poisson system with
identical parameters but without the term vd ·∇f1, i.e. Eq. (2.46). As can be seen in
Fig. 4.2(c) the neoclassical radial electric field is still established in a global simulation
that strictly enforces the neoclassical ordering.

In conclusion, we find that the correct choice of the radial boundary condition on
the inside boundary is crucial for the calculation of the self-consistent neoclassical
radial electric field. The Dirichlet condition is generally unsuited for long-wavelength
phenomena (kxρ� 1). It also disturbs short-wavelength turbulence but only in a region
of limited width at the edge of the simulation domain which usually is neglected.

4.2.2 The effects of potato orbits

After establishing the correct behavior of Gene in view of global simulations that cover
both neoclassics and turbulence (see Chapter 6), we now study how nonlocality can
fundamentally affect radial transport in purely neoclassical systems. Since both the
local model as well as the standard neoclassical theory are based on the assumption that
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4.2. Radially global simulations

R ρ∗ νc cn,T wn,T κn κT

2.78 1/150 3.863 · 10−4 0.5 0.3 0.789 3.58

Table 4.3: Simulation parameters for global neoclassical benchmark (length scales normalized
to Lref = a)

the orbit width is small compared to magnetic field and/or background temperature
and density gradient scales, global simulations are the logical choice to investigate
situations where this does not hold. One such case appears in every tokamak: As
described in Sec. 2.2.2 trapped drift orbits in the proximity of the magnetic axis can
have a considerable radial extent. Accordingly, these orbits are given the name potato
instead of banana orbit. Their region of relevance is estimated by the potato width
Eq. (2.12) which we repeat here:

rp = 3
√

4q2ρ2R0.

Consequently, this also implies that the time scale separation between parallel (to
the magnetic guide field) and perpendicular dynamics decreases. The boundary in
collisionality between the banana/potato and plateau regimes is modified as well, as
ε−3/2 in Sec. 2.2.2 is based on the assumption for the trapping fraction that ft ∼

√
ε

which is only valid for thin orbits - a possible expression for it in the potato region can
be ft = (rp/R)3/2.

Since transport phenomena in this region are nonlocal, it is important to understand
that even if a diffusivity or heat conductivity is defined by dividing the radial fluxes by
their respective gradient profiles, it merely becomes another way of expressing the flux
[43, 52].

A particular property of our simulations is that they cannot include the archetypal
potato orbit which exactly crosses the magnetic axis; the field aligned coordinate system
becomes singular there so the numerical radial domain has to end a few ion gyroradii
away from it. This is not a severe limitation as not many particles populate these
specific orbits and the treatable paths that come close to the axis are physically very
similar. Since the existing (semi-)analytical predictions for this region do not take the
radial electric field into account, we also set the potential to zero.

As a first step we study a basic case where the gradient profiles of temperature have
the peaked form of Eq. (4.8a) and the relevant parameters are as listed in Tab. 4.3. For
these parameters we find a potato width of rp = 0.12a. The collisionality profile ν∗(x)
resulting from the choice of νc is well within the banana/potato regime, even when
considering the previously mentioned modification to the boundary in the near-axis
region. This is easily demonstrated when comparing ν∗ε3/2 with the cubed trapping
fraction f 3

t in Fig. 4.3.
We compare the simulation results for the full (field-free) nonlocal drift-kinetic

equation with both a Dirichlet and a von Neumann radial boundary and for its local
counterpart that lacks the term vd · ∇f1 and also does not include the gyroaverage
operation (i.e. the drift-kinetic limit). As can be seen in Fig. 4.4, this additional term
has almost no effect for radial positions beyond x = 0.3 ∼ 3rp. This is consistent with the
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Figure 4.4: Radial heat flux profile for global neoclassical simulations with predictions for the
potato region by Lin et al. [53] and Bergmann et al. [54]

fact that it is formally second order in the standard neoclassical ordering. Additionally,
we find reasonable agreement with the Chang-Hinton formula. In the potato region,
on the other hand, the simulations differ significantly. The numerical solution of
the local-like drift-kinetic equation still follows the Chang-Hinton prediction and
reproduces the singularity of the thin-orbit theory at the magnetic axis. The solution
of the full equation in contrast seems to be strongly influenced by the choice of the
radial boundary condition. The same qualitative result as for the Dirichlet boundary
was found in Ref. [43]. The von Neumann boundary seems to result in a higher heat
flux than the local prediction but has a decreasing slope so that it should not diverge at
the magnetic axis.

In addition to the simulation results, we present a number of analytical approaches
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4.2. Radially global simulations

were made to treat neoclassical transport in the wide-orbit region for the banana/potato
and plateau collisionality regime8. In the banana/potato regime Ref. [53] (marked as
“Lin” in Fig. 4.4 to 4.6) predicts a strong reduction of the heat flux near the axis of the
form:

Qnc/QCH = 1− e−(x/rp)3
(1 + (x/rp)3), (4.16)

i.e. zero flux at the magnetic axis. We are using the Chang-Hinton formula as the
reference for the prediction of standard (thin-orbit) neoclassical theory here. Ref. [55]
on the other hand states that, while no longer a random walk process in x, transport
remains one in the poloidal flux ψ. Since the circular geometry provides dψ

dx = xB0/q̄

(where q̄ = q
√

1− ε2), it is indeed possible to have small steps in ψ corresponding to
large changes in x. The result of Ref. [55] is an enhancement of the banana heat flux by:

Qnc/QCH ∼
√
rp/x, (4.17)

which is problematic as it does not resolve the singularity of the standard theory at
the magnetic axis. Ref. [52] criticizes both works, pointing out certain hard to justify
assumptions. Ref. [54] (marked as “Bergmann” in Fig. 4.4 to 4.6) tests these predictions
numerically and empirically finds a modification of the heat flux by:

Qnc/QCH = 1− (1− x/3rp)2, (4.18)

thus being qualitatively closer to the prediction of Ref. [53]. For the potato regime both
Ref. [52] and Ref. [56] reach the conclusion that the prediction of standard neoclassical
theory remains valid although they disagree in the method of derivation.

As can be seen in Fig. 4.4, we do not find strong quantitative agreement with any
of these predictions for our simulations. Qualitatively we can agree the most with
Ref. [54]. The strong dependency on the boundary condition and the necessity for
relatively strong Krook-type heating to keep the temperature profile constant hint that
the observed difference could be due to numerical artifacts. In order to address this we
turn to a different approach: Based on the argument made in Ref. [52] that an analysis
of the potato regime should also include the energy source, we perform flux-driven
simulations with a localized heat source employing the resetting mechanism described
in Sec. 3.4.2. The threshold for f1/F0 is 0.08. In the region x/a > 0.9 a Krook-type buffer
zone serves as a smooth energy sink. For the geometry we now choose a major radius of
R = 5a in order to make the potato width slightly wider (rp = 0.15− 0.18 depending on
the temperature profile evolution) and to achieve a much bigger collisionality interval
in the plateau region. When we use νc = 3.863 · 10−3 (as we will in the following) the
entire radial domain has a collisionality on the very upper border of the potato regime.
The scale parameter is kept at ρ∗ = 1/150. For the density we assume a flat profile, which
does not evolve in time. The initial state of the temperature gradient profile is like given
in Tab. 4.3 but evolves according to the heat source. The simulations now require a run
time not only several collision times long to reach a steady state but about a neoclassical
confinement time (∼ 105a/cref). Fortunately, neoclassical computations only require

8The Pfirsch-Schlüter regime does not have undisrupted orbits so their width becomes irrelevant. The
near-axis tokamak core is also the hottest part of a fusion plasma, so collisionality will be low.

57



4. Purely neoclassical systems

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x/a

0.5

0.0

0.5

1.0

1.5

2.0

2.5
a/LT

Source (scaled)

(a) Source on axis: ωTi and source

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x/a

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Q
n
c/
Q
gB

Chang-Hinton

Lin

Bergmann

GENE

(b) Source on axis: heat flux

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x/a

1

0

1

2

3

4

5
a/LT

Source (scaled)

(c) Narrow (half width) source on axis: ωTi
and source

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x/a

2

0

2

4

6

8

10

12

Q
n
c/
Q
gB

Chang-Hinton

Lin

Bergmann

GENE

(d) Narrow source (half width) on axis: heat
flux

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x/a

0.5

0.0

0.5

1.0

1.5

2.0

a/LT

Source (scaled)

(e) Source off axis(x = 0.05): ωTi and source

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x/a

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q
n
c/
Q
gB

Chang-Hinton

Lin

Bergmann

GENE

(f) Source off axis (x = 0.05): heat flux

Figure 4.5: Effects of varying source profile on flux-driven neoclassical equilibria. Source
amplitudes are scaled to arbitrary units. Predictions for the potato region are by
Lin et al. [53] and Bergmann et al. [54].
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4.2. Radially global simulations

solving the linear part of the gyro-/drift-kinetic equation, so computational cost is still
at least one, but rather two orders of magnitude smaller than for the turbulent systems
presented in Chapter 6.

In Fig. 4.5 we present the results for simulations where we keep the total input
power, i.e. the volume integral of the source constant (Ŝ0 = 1000) but vary either its
width (Fig. 4.5(c) and (d)) or its position(Fig. 4.5(e) and (f)).

Far away from the magnetic axis (e.g. at x/a = 0.5) we consistently find in all three
cases that the heat flux agrees well with the Chang-Hinton prediction. However, both
temperature gradient and transport have a higher value for the narrow source than
in the other two cases. A possible explanation is that the very close boundary and
the finite radial resolution affect the normalization of the power input for the narrow
source profile resulting in a slightly higher power input.

In the region near the axis - and the source - the heat flux in all three cases
(Fig. 4.5(b), (d), (f)) is smaller than the predictions we have presented. Since these all
derive their value at a certain radial position on the temperature gradient (and quite
strongly the local aspect ratio) at this position, their overestimate gives a strong indica-
tion of the nonlocal nature of transport there. The temperature gradient in each case
(Fig. 4.5(a), (c), (e)) develops a distinct peak at the edge of the source region before reach-
ing a local minimum at the potato radius, x ≈ 0.17, and then monotonically increases
until the outer sink region shows its influence. For the narrow source (Fig. 4.5(c)) the
profile shape suggests that the observed peak is actually two overlapping maxima - one
at the edge of the source, the other at about half the potato width. In the other two cases
both positions coincide and possible effects of the source and the potato region are hard
to separate. Fig. 4.6(a) and (b) demonstrate the effect of a power input increased by the
factor 1.5: The neoclassical heat flux scales accordingly while the temperature gradient
does not increase as much. Since the Chang-Hinton prediction based on this gradient
widely agrees with the measured heat flux, this behavior appears to be consistent with
the standard neoclassical model. The observations about shape of the gradient and
transport profiles made for Fig. 4.5(a) and (b) on the other hand still hold. If we reduce
the collisionality from borderline plateau to deeply within the banana/potato regime,
the qualitative behavior of the heat flux profile in Fig. 4.6(d) is similar to the previously
shown results as should be expected for equal power input. The temperature gradient
(Fig. 4.6(c)), however, is significantly different: The maximum-minimum-monotonic
growth radial dependence is still existent but much stronger pronounced and with a
larger radial extent. A possible explanation would be the stronger dependency of the
heat conductivity on the collisionality in the banana regime compared to the plateau
and the according need for the temperature gradient to adapt to this. The position of
the minimum is now at approximately 2rp. At the edge of the source region we find
a change in the slope of the gradient profile reminding of the earlier conjecture of a
double peak. The maximal gradient is at x/a ∼ 0.12, about two thirds of the potato
width.

These results demonstrate that new insights into neoclassical transport near the
magnetic axis can be gained when the kinetic problem is solved taking a (controlled)
source term into account. In particular, the potato width rp appears to determine
certain characteristics of the self-consistent temperature gradient profile. There are,
however, many open questions left and more research is necessary to arrive at satis-
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Figure 4.6: Effects of stronger source and lower collisionality on flux-driven neoclassical equi-
libria. Source amplitudes are scaled to arbitrary units. Predictions for the potato
region are by Lin et al. [53] and Bergmann et al. [54].

fying explanations for the observed behavior and at quantitative predictions for the
implications of wide drift orbits.

4.3 Summary

In this chapter the Gene code was used to perform simulations of purely neoclassical
effects by solving only for the ky = 0 mode of the linear drift-kinetic equation. First, it
was reconfirmed that Gene is able to provide good estimates of the radial neoclassical
heat flux over a wide range of collisionalities in local simulations by comparing with
established analytical results. Secondly, it was demonstrated that the radially global
version of the code is able to self-consistently calculate the neoclassical radial electric
field which obeys the radial force balance equation. In this context the importance of
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choosing a physically sound (von Neumann) boundary condition at the inner edge of
the radial domain has been demonstrated.

Lastly, the role of so-called potato orbits for transport near the magnetic axis
has been investigated. It was shown that the term vd ·∇f1 in the Vlasov equation is
necessary to cover these finite-orbit-width effects and the heat fluxes were compared
with a number of predictions from previous analytical and numerical works. Based
on the unsatisfying match of the fluxes and an observed strong influence of the radial
boundary condition and adaptive heat source even without an electrostatic potential
flux-driven simulations were also performed. There, a localized power source allows
the fluxes and temperature to evolve into a self-consistent state. The simulations
confirmed the nonlocality of neoclassical transport in the potato region. Additionally,
the data indicated that the potato width rp provides a relevant scale length for the
self-consistently evolved ion temperature profile. These findings form a good basis for
research work beyond this thesis.

In the following chapter the successful calculation of the radial electric field will
serve as a motivation to study the effects on turbulence in flux-tube (local) simulations
when a slowly varying long-range electric field akin to the neoclassical one is present.
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Chapter 5

Effects of non-turbulent
electrostatic fields on ITG
turbulence

In Sec. 4.2.1 it was demonstrated that neoclassical effects provide a sheared electrostatic
field in global simulations. Due to the mechanisms of turbulence in magnetically
confined plasmas, which shall be elaborated on in the following, this radial electric
field is a prime candidate for an interaction mechanism. As an intermediate step before
investigating this in radially global simulations of turbulence including neoclassical
effects the impact of additional E ×B shear in local simulations is studied. The lower
simulation cost of local simulations (roughly one order of magnitude less CPU time)
allows us to do more systematic parameter studies and the periodic radial boundary
conditions simplify the overall simulation setup and analysis of the resulting data.
Since electrons are considered adiabatic, the radial particle fluxes are exactly 0 and the
quantity of main interest is the turbulent transport of heat/energy.

5.1 Turbulence saturation by zonal flows

For these studies in the flux-tube limit we use a simple case of ion temperature gradient-
driven (ITG) turbulence, a form of drift-wave turbulence [57], with adiabatic electrons
in the usual circular equilibrium. The behavior of such a system has been studied
thoroughly in the past and it is an established finding that the growth of unstable
turbulent modes saturates by self-generated shear flows, so-called zonal flows [58].
Shape-wise, zonal flows in a tokamak are toroidally and poloidally symmetric structures
with finite but small radial wavenumbers. Their damping effect can be understood
descriptively in the form that they tilt and shear apart the turbulent eddies. The basic
mechanism in terms of free energy can be described in the following way:

• The temperature gradient provides a source of free energy.

• Microinstabilities (so-called drift waves) tap into this reservoir to grow.
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Figure 5.1: Linear growth rate and non-linear time-averaged E ×B shear rate spectra for ITG
turbulence

• The zonal flow mode can only access the energy in the drift wave thus damping it
and in consequence limiting its own growth.

• Dissipation, e.g. Landau damping and collisions, removes free energy from the
system.

The last item introduces an additional dependency: Increased collisionality dampens
zonal flows and thus tends to increase the turbulent transport [59]. It is also important
to note that zonal flows are a purely nonlinear effect: They are linearly stable n =m = 0
components9 of the fluctuating electrostatic potential φ1 driven by the distribution
function perturbation f1.

The reference setup for our simulations in this chapter are CBC-like parameters
(see Tab. 4.1), where we vary the ion temperature gradient between values of ωTi =
2.0,2.3,3.0. The numerical grid used is (Nkx ,Nky ,Nz,Nv‖ ,Nµ) = (192,32,32,32,20) with
a radial domain size of lx = 175ρi and lx = 226ρi for the low temperature gradient,
respectively. These relatively large boxes are required to observe the zonal flow pattern
on higher radial modes than kx,min = 2π/Lx.

In a first step we only solve the linear system and measure the spectrum exponential
growth rates γ(ky) which occurs without the nonlinear damping mechanism. This
gives an indication how strong the system is driven and at which length scale the
strongest. As can be seen in the spectrum Fig. 5.1(a) the peak linear growth rate for
the reference system occurs at a wavenumber of kyρi = 0.35− 0.45 with a tendency to
lower wavenumbers for small gradients. Its value (see Tab. 5.1) depends strongly on
the temperature gradient which is very characteristic for the turbulent system at hand
[57].

It is clear that this growth needs to be balanced by a damping mechanism of similar
strength for a quasistationary result if the nonlinear full Vlasov equation is solved.
Since the primary damping effect in our system are E × B shear flows, we expect a

9n andm are the toroidal and poloidal mode numbers, i.e. as stated before the zonal mode is toroidally
and poloidally symmetric.
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ωTi γmax

√
ωE×B2 Qturb/QgB

3.0 0.18 0.67± 0.01 10.7± 0.3
2.3 0.12 0.37± 0.01 5.2± 0.1
2.0 0.09 0.25± 0.01 3.3± 0.1
1.5 0.04 0.05 0.02± 0.002

Table 5.1: Dependency on the temperature gradient of ITG simulations (errors according to
Sec. 3.5.3, growth rate and E ×B shear in units of cs/a)

shearing rate ωE×B of a similar magnitude to the growth rate. In fact, since shear flows
that are shorter-lived than the turbulent eddies provide no effective damping, the time
averaged root mean square shearing rate is usually several times bigger, as can be seen
in Tab. 5.1. Ref. [60] derives an expression for an efficient E ×B shearing rate based
on the ratio between the eddy decorrelation rate and the fluctuation frequency of the
flux-surface averaged electrostatic potential

〈
φ(kx)

〉
. Unfortunately, it is difficult to

find a robust estimate for this ratio, since correlation estimators tend to be biased and
φ actually contains a frequency spectrum. Nonetheless, the conclusion of Ref. [60]
is that the small kx components of the shear rate contribute considerably stronger to
turbulence damping than their shorter-wavelength counterparts. This means that the
components kyρi & 1 of the shear rate spectrum in Fig. 5.1(b) are almost irrelevant for
the saturation of turbulence. It also implies that temporally (nearly) constant shearing
rates such as the one from the neoclassical field or an externally imposed one will
have a stronger effect compared to their amplitude. The lowest gradient of ωTi = 1.5
is a special case: While the linear simulation still finds unstable modes, its nonlinear
counterpart results in practically zero turbulent heat transport and a very small E ×B
shearing rate. This difference in behavior between linear and nonlinear case is the
so-called Dimits shift [50] and is specifically caused by the presence of zonal flows;
notably growth rate and E ×B shear rate are nearly equal. Since collisions dampen
zonal flows, the borders of this gradient range become less pronounced in collisional
simulations (Dimits shift softening [59, 61]).

Further insight into zonal flows can be gained by studying the time evolution
of the flow patterns. In Fig. 5.2 we show the typical behavior of the flux-surface
averaged electrostatic potential as a function of radial coordinate and time. All three
temperature gradient amplitudes share two important features: Firstly, large scale
(20 − 50ρi) structures remain mostly constant in time for several hundreds of time
units but occasionally change their position in a rapid fashion. These changes occur
much more rarely in the case of weak turbulence (note the different time scales in
Fig. 5.2). The shifts of the zonal flows are coupled to the second feature: a fine structure
of diagonal ripples. These represent the turbulent fluctuations which move into a
direction determined by the sign of the local shear. Since the turbulence drive gets
weaker from Fig. 5.2(a) to 5.2(c) they become less pronounced in the latter. We will
elaborate on this pattern of avalanches and a E ×B staircase [62] in the context of global,
especially flux-driven, simulations in Chapter 6. The nature of the local model - fixed
constant mean gradients and periodic radial boundary conditions - prevents them from
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Figure 5.2: Spatio-temporal behavior of the intrinsic flux-surface averaged electrostatic poten-
tial: zonal flow patterns

being a defining effect of the system here.
The next step is now to expose such a system of ITG turbulence and zonal flows to

additional shear of the likeness of but not limited to what the neoclassical electric field
in global simulations can provide.

5.2 Effects of long wavelength external potentials

Since it is impossible to calculate the neoclassical radial electric field in local simulations
(see Sec. 2.3.7), we have to find a way of modeling it. Even if the former was possible,
it would be the (kx, ky) = (0,0) Fourier component, hence constant and we would only
expect notable effects, when Er is strong enough to modify the topology of drift orbits
[52, 63]. Consequently, in order to approximate a system where the scales of turbulence
and neoclassical field are not entirely disjunct we choose to impose an external potential
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Figure 5.3: Turbulent heat flux reduction by external E ×B shear (kext = kx,min). Annotations
refer to Fig 5.4.

of the following form:

φext(x) = φ0 sin(kextx+ δext), (5.1)

φ̃(kx) =

∓ i
2φ0e±iδext for kx = ±kext

0 for kx , ±kext,
(5.2)

where the tilde denotes a Fourier transformed variable. This field imposes an additional
(temporally) static shearing rate on the system:

ωE×B,ext =
∂2φ

∂x2 = k2
extφ̃. (5.3)

Simulations are initially started without the external field until a saturated state is
established; at this point the system can adapt to the additional shear more quickly and
a new steady state is reached. Since we are mainly concerned with long wavelength
radial electric fields, we focus on the lowest possible wavenumber for kext, kext = 2π/Lx.

As can be seen in Fig. 5.3 the system behaves in the expected way: Additional shear
reduces the turbulent radial heat flux. Most noteworthy, a relatively small external
shear of e.g. 10% of the intrinsic shear rate (see Tab. 5.1) is enough to cause a reduction
of the flux by 25% for ωTi = 3.0. For weak turbulence drive (ωTi = 2.0) this becomes
dramatic enough to almost completely suppress turbulent activity. In fact, transport in
this case mainly occurs in the form of intermittent bursts (also giving rise to a larger
uncertainty for the mean flux). These observations confirm the conjecture made in
the previous section that a static E ×B shear is damping turbulence more effectively
than its self-generated fluctuating zonal flow patterns. Obviously, Ref. [60] consistently
gives ωeff = ω0. It is also be found that a spatially constant shearing rate results in a
similar reduction if it is equal to the root mean square average of the sinusoidal rate.
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Figure 5.4: Total 〈φ〉 patterns for an external potential with kext = kx,min
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Figure 5.5: Turbulent heat flux reduction by external E ×B shear (ωTi = 3.0). Annotations refer
to Fig .5.6

The variation of the external field and hence the shear rate over the radial domain
has interesting effects, though. As can be seen for the time dependency of the total
(intrinsic + external) potential in Fig 5.4, the system adapts to the externally introduced
pattern: The intrinsic potential tries to shield the external one in order to reach a state
where their total amplitude is similar to the unperturbed system. If the external field
is weak enough it is overcompensated by the internal one as in Fig. 5.4(a) leading to
a pattern of inverse sign compared to the imposed potential of Eq. (5.1) with δext = 0.
When the external amplitude increases this becomes no longer possible (Fig. 5.4(b)) and
the total amplitude is reduced. Finally, an even larger φ0,ext means that the potential
structure is dominated by the external field as in Fig. 5.4(c).

All three cases (Fig. 5.4(a)-(c)), however, have in common that the radial position
of the shear flows is determined by the external source. While Fig. 5.4(a)-(c) only
cover 200 time units, they are representative for the entire simulation time as soon as
adaption to the external field has occurred. This is a distinctly different behavior than
in the undisturbed case in Fig 5.2(a), but the periodic boundary conditions and the
constant background gradient imply that the position of the shear flows will hardly
affect the turbulent fluxes. For weaker ion temperature gradients the phenomenon
becomes less pronounced: While ωTi = 2.3 (Fig. 5.4(d)) still robustly positions the
potential pattern on kext, the very weak turbulence of ωTi = 2.0 does not. When almost
no turbulent transport occurs (Fig. 5.4(e)), we find partial shielding of the external
potential. A burst of turbulent activity (Fig .5.4(f)), on the other hand, is characterized
by a clear deviation from the imposed pattern. This could possibly be related to the
larger eddy sizes of weak turbulence - compare the growth rate peaks in Fig. 5.1(a))
- which makes the zonal flow pattern appear narrower and easier to move across for
them.

The role of the external field’s length scale can be studied directly by choosing
higher wavenumbers for kext. We study the cases 4kx,min and 16kx,min for the strongly
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Figure 5.6: Total 〈φ〉 patterns for ωTi = 3.0 with varying kext

turbulent system with ωTi = 3.0. In Fig. 5.5 their turbulent heat flux is compared to the
result for previous case of kext = kx,min when the external E ×B shearing rate amplitude
is comparable.10

We find that external shear rate patterns with higher wavenumbers are considerably
less effective in damping ITG turbulence. The systems with k = 16kx,min even reach
a state where the turbulent flow only weakly depends on the external shear before it
abruptly vanishes at ωE×Bext ≈ 0.55 (not shown in Fig. 5.5). The intermediate case of
k = 16kx,min is also less effective for low shear rate amplitudes but quickly becomes
comparable to the minimal wavelength case. The time-resolved analysis of the po-
tential in Fig. 5.6 helps to explain this behavior. Both in Fig. 5.6(a) and (b) the zonal
potential pattern only partly adapts to the externally imposed structure. It is apparent
that the turbulent fluctuations can move across the underlying potential modulation,
especially in its weaker form in Fig 5.6(a). Fig. 5.6(b) has even some resemblance to the

10The external potential, in fact, acts on the gyrocenters - it does not contain a gyroaverage. Hence, the
16kx,min case has a slightly larger amplitude in particle space.
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5.3. Summary

unperturbed weakly driven situation of Fig. 5.2(c). On the other hand, kext = 4kx,min in
Fig. 5.6(c) produces a regular 4-periodic potential structure. It still contains occasional
bursts that go across the pattern, though. This could explain why kext = 4kx,min is less
effective in turbulence damping at smaller amplitude.

Finally, we investigate a system with ωTi = 3.0 and kext = kx,min again, where we
choose a special value for the magnetic shear: ŝ = 0. This parameter is of particular
interest because enhanced confinement scenarios in experimental tokamaks often have
regions with very low or even negative magnetic shear. Specifically there - in internal
transport barriers - the turbulence can become suppressed [64]. The magnetic shear is
not the only ingredient of such a barrier, though. In our simulations we find that the
turbulent ion heat flow is systematically smaller than for CBC-like shear by around
20%. This is consistent with the observation of a maximum of the ITG linear growth
rate at ŝ ∼ 0.6 [65, 66]. The impact of external E×B shear is very similar to the behavior
shown in Fig. 5.3; we find a flux that is 20-25% smaller than the ŝ = 0.796 case for all
external field amplitudes.

5.3 Summary

In this chapter local simulations were used to systematically study the effect of long-
wavelength E ×B shear on ion temperature gradient driven (ITG) turbulence and the
zonal flow pattern connected to it. It was demonstrated that a sinusoidal external
electrostatic potential can reduce the radial turbulent heat flux. It is also more effective
at turbulence damping than the self-generated fluctuating zonal potential. Furthermore,
it was shown that the intrinsic flow pattern accommodates and adapts to the imposed
structure. This is less pronounced for turbulence closer to the marginal state, though.
External potentials with shorter radial wavelength are found to be less effective to
suppress turbulence compared to the lowest wavenumber in the system because eddies
can move across the flow pattern.

Since the neoclassical radial electric field in global simulations establishes a similar
long wavelength E ×B shear pattern, these observations motivate a possible interaction
mechanism for turbulence and neoclassical effects in global simulations which will be
investigate in the following chapter.
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Chapter 6

Synergy between turbulence and
neoclassical effects

After successfully establishing a possible interaction mechanism between ITG turbu-
lence and neoclassical effects by means of the local model, this concept can be put to the
test in global simulations that include both effects. Such work is particularly facilitated
by the fact that Gene as a δf code allows to selectively remove neoclassical effects by
suppressing the term vd ·∇F0 in the Vlasov equation. We will refer to this term as
the neoclassical source in the following. For simplicity, the simulations in this chapter
all include only one ion species (hydrogen) and treat the electrons in the adiabatic
limit. As a consequence no radial particle transport occurs both in the turbulent and
neoclassical channel and the focus is put on the radial ion heat transport.

First, systems are investigated where the background temperature and density
profiles are kept constant by an adaptive heating, then the more realistic but also more
costly model of a self-consistent profile evolution according to a fixed power input is
used. For the numerical methods employed see Sec. 3.4.1 and Sec. 3.4.2, respectively.
Adhering to the observations of Sec. 4.2.1 a von Neumann boundary condition on
the inner radial boundary is used. All simulations in this chapter have length scales
normalized to the minor radius a and employ a circular geometry with a major radius
R0 = 2.78a. The minor radius serves as the reference length Lref (see Sec. 3.3).

6.1 Gradient-driven setups

The role of neoclassical effects in systems with fixed gradient profiles have been previ-
ously studied with the ORB5/NEMORB [67] code in Ref. [61]. Based on the notion that
neoclassical effects are inherently connected to collisions, noncollisional and collisional
turbulence simulations are compared. The central result for the heat diffusivity χ is
that

χtot(ν∗) > χturb(ν∗ = 0) +χNC(ν∗). (6.1)

For a qualitative explanation of this it is, however, not necessary to involve neoclassical
effects: Collisions themselves dampen zonal flows and hence can increase the level of
turbulent transport [58](see Sec. 5.1). In contrast, we will compare collisional systems
with and without neoclassical effects.
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6. Turbulence and neoclassical effects

shape cn,T wn wT δn,T κn κT

peaked 0.5 0.15 0.25 - 0.789 3.49
flat-top 0.5 0.05 0.05 0.25 0.789 3.49

Table 6.1: Profile parameters for gradient driven simulations. For their definition see Sec. 4.2
and Eq. (4.8a), (4.9).
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Figure 6.1: Shape of the radial profiles for Ti and ni . Dashed: initial state, solid: time average
over 500 time units at t ∼ 2000a/cs

For gradient-driven simulations we set up temperature and density gradient profiles
according to either Eq. (4.8a) or (4.9) and keep them fixed in a time-averaged sense by
using Krook type heating. We study both cases with peaked (Eq. (4.8a)) and flat-top
(Eq. (4.9)) gradient profiles with the shape and position parameters given in Tab. 6.1.
Their initial state and their time average over several hundred time units at around
t = 2000 in a typical simulation are shown in Fig. 6.1. While some deviation from
the initial state can be found, it is not problematic and based on a trade-off with the
modification of the system caused by a stronger Krook source. The safety factor
profile has the monotonically increasing form of Eq. (4.10). The typical grid is chosen
as (Nx,Nky ,Nz,Nv‖ ,Nµ) = (Nx,32,32,64,32), where Nx is adapted when the system size
parameter ρ∗ is changed to ensure 1− 1.33 grid points per ion gyroradius. The ion-ion
collision frequency varies over the radial domain, but its value at x = 0.5a is determined
by setting the parameter νc = 3.863 · 10−3. This corresponds to a collisionality of
ν∗(x = 0.5a) = 0.29, which is in the banana regime but not very far. The simulation time
is chosen to cover at least 2 ion-ion collision times at all radial positions in order to
ensure reasonably converged neoclassical fluxes.

6.1.1 System size effects

The physical parameter of primary interest is the normalized gyroradius ρ∗. Any
observed interaction between ITG turbulence and the neoclassical effects should weaken
and disappear when ρ∗ decreases since the simulations then approach the local (flux
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Figure 6.2: Neoclassical and turbulent radial heat flux profile (peaked gradient, averaged over
last 600 time units); uncertainties according to Sec. 3.5.3

tube) limit. The ρ∗ considered here is its value at the position x/a = 0.5. The local
ion gyroradius varies with the temperature and the magnetic field strength. It should
also be noted that since both profiles are quite narrow the scaling of the turbulent
flows does rather depend on an effective ρ∗eff = ρ∗/∆T (where ∆T is related to wT or δT
respectively) [68, 69].

Peaked gradient profile

The weakening of interaction can be observed in Fig. 6.2 where the time-averaged heat
fluxes are plotted as a function of the radial position for the peaked gradient profile for
two different ρ∗. The turbulent flow is increased by the presence of neoclassical effects
for ρ∗ = 1/150 but remains the same within the statistical error for ρ∗ = 1/500. The time-
averaged so-called neoclassical flux Qnc agrees well with the Chang-Hinton prediction
if the neoclassical source is present. If it is absent, non-zero though small transport
is measured in this channel. This reflects the statement of Sec. 3.5.2 that Qnc is the
flux on the ky = 0 mode caused by the magnetic drift whose major but not exclusive
contribution are neoclassical effects. If we consider additional values for ρ∗ and
compare the value of the time-averaged fluxes at the radial maximum of the turbulent
flow (appearing at x/a ≈ 0.4 for all cases), we arrive at the scaling shown in Fig. 6.3. The
general trend that turbulent transport decreases with growing ρ∗ is a well established
observation [69, 70]. Due to the narrow profile shape (see above) the convergence to
the local limit occurs at relatively large ρ∗. At this point it is important to remember
that the fluxes are measured in units which imply the gyro-Bohm scaling, i.e. diffusive
behavior with the scale of the ion gyroradius and thus locality. Neoclassical heat
transport outside of the potato region (see Sec. 4.2.2) fulfills this condition and hence is
mostly independent of ρ∗ in Fig. 6.3. The observed scaling of turbulent transport means
that system size effects start to play a role at large ρ∗. Below ρ∗ = 1/300 the scaling is
quite close to Bohm-like, i.e. Q/QgB ∝ 1/ρ∗. Comparing its values for a fixed system size
we find a systematic increase of 20− 30% for the system with neoclassical effects for
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Figure 6.3: Time averaged radial heat flux peak dependence on ρ∗

ρ∗ ≤ 1/300. It should be emphasized that this difference is not the neoclassical flux,
which is measured separately and comes on top for an estimate of the total energy flux.

For ρ∗ = 1/50 both transport channels reach the same magnitude because the turbu-
lent eddies’ radial extent barely fits into the region where the temperature gradient can
drive them. Since this case operates at the limits of the validity of the used gyrokinetic
model and boundary artifacts can spread far across the radial domain we do not analyze
it beyond this qualitative observation.

With the general interaction confirmed we return to the two cases of Fig. 6.2 and
investigate how the presence of the neoclassical source modifies the spatio-temporal
dynamics. The time resolved turbulent ion heat flux profiles in Fig. 6.4 all show the
ripple structures we have already found in the local simulations of Chapter 5. These
avalanches have been observed in several studies of ITG turbulence e.g. Ref. [69, 71].
Ref. [72] finds their direction to be connected to the sign of the E ×B shear: ωE×B > 0
means outward movement, ωE×B < 0 inward movement. Obviously, in Fig. 6.4(a) and
(b) the presence of neoclassical effects changes the avalanche directions from a singular
one to a V shape. This is consistent with the results of Sec. 4.2.1, although the field
profile does not exactly follow the pressure gradient due to the collisionality-dependent
factor k in Eq. (4.12) which also varies in radial direction. In consequence, we attribute
the transport modification at least partly to a change in the zonal E ×B shear pattern
by the neoclassical radial electric field. In contrast to our local results, however, the
additional long range electric field now causes an increase not a reduction of heat
transport. The explanation lies within the nonperiodicity of the radial domain. While
the phase δext of the external potential in Eq. (5.1) had no impact on the turbulence
level of the local simulations, it matters for global simulations with their radially
varying profiles. Indeed, if we look at the time averaged field and corresponding ωE×B
for ρ∗ = 1/150 (Fig. 6.5), the presence of the neoclassical field seems to align an area
with very low shear - the minimum of Er - with the peak of the gradient at x = 0.5a.
Hence, the strongest turbulence drive would coincide with the weakest damping. Root
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Figure 6.4: Time resolved turbulent radial heat flux profile (peaked gradient)
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Figure 6.5: Time averaged radial electric field and shear, ρ∗ = 1/150, peaked gradient
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Figure 6.6: Neoclassical and turbulent radial heat flux profile (flat-top gradient, averaged over
last 600 time units)

mean square radial averages of ωE×B on the other hand yield similar values for both
cases. Accordingly, the flux increase by the presence of the neoclassical source is not in
direct contradiction to the results of Sec. 5.2; the additional radial electric field does
not generate a significant amount of absolute shear rate.

In the case of Fig. 6.4(c) and (d) the spatial scales of zonal flows (20 − 50ρi) and
neoclassical field (system size, i.e. 500ρi) are so far apart that the flow pattern is not gen-
erally affected: The direction of the avalanches changes multiple times independently
of the long-range background field.

Flat-top gradient profile

A straightforward way to test the argument made about the alignment of tempera-
ture gradient and E ×B shear profile is to study systems with the flat-top profiles of
Fig. 6.1(b).

We find again a consistently increased (∼ 30%) turbulent ion heat flux for ρ∗ = 1/150
when the neoclassical source is present (Fig. 6.6(a)) and vanishing interaction between
turbulence and neoclassical equilibrium for ρ∗ = 1/500 (Fig. 6.6(b)). When we examine
the E ×B shear profile of the former case in Fig. 6.7(b), the simulation with neoclassical
source exhibits a visibly lower level of shear in the region x/a ∼ 0.4−0.8. Further inwards
the shearing rate peaks in both simulations at x/a ∼ 0.3 with approximately equal
magnitude while the turbulent heat fluxes are clearly different. It can be misleading
though to focus on a single radial position: Since the turbulent fluctuations have
finite spatial correlations, transport is nonlocal and it is plausible that the narrower
shear peak in the system with neoclassical effects is less effective in damping the heat
flux. In conclusion, for a flat-top gradient the alignment argument is insufficient
when only considering the temperature and E ×B shear to explain the turbulent flux
modification by the neoclassical source. Although the gradient is the dominant quantity
for determining the turbulence drive, it is not the only one: The magnetic shear ŝ, for
example, also plays a role, as was pointed out in Sec. 5.2 and Ref. [65, 66]. So the
modification of the radial electric field by its neoclassical contribution remains a crucial
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Figure 6.7: Time averaged radial electric field and shear, ρ∗ = 1/150, flat-top gradient

effect as it still can align minimum shear regions with ones of the strongest linear
growth rate.

6.1.2 Collisionality effects

The collision frequency in the results presented so far in this section is chosen artificially
high in order to achieve convergence of the neoclassical fluxes with a reasonable
computational effort. The neoclassical radial electric field is coupled to the parallel
dynamics and establishes much faster. Hence, we investigate the influence of reducing
the collision frequency which - as a side effect - brings it closer to a realistic value (as
far as our model system can be considered realistic). This is achieved by setting the
parameter νc to 1/3 or 1/10 of its original value, i.e. νc = 1.159 · 10−3 (ν∗(x = 0.5a) =
0.095) and νc = 3.863 ·10−4 (ν∗(x = 0.5a) = 0.029). We will refer to these cases as medium
and low collisionality, respectively.

The turbulent heat fluxes measured in simulations for both collisionalities (Fig. 6.8)
exhibit an interesting behavior: Without the neoclassical source term the energy flux is
reduced with decreasing collision frequency as can be explained by a weaker collisional
damping of zonal flows (see Sec. 5.1). If neoclassical effects are present, however,
this dependency vanishes and we find a flux profile which is very similar for all three
collisionalities considered so far. Hence, the level of turbulent energy transport remains
independent from the collisionality over an order of magnitude. As can be seen in
Fig. 6.8(c) our simulations cover a wide range of collisionalities from close to the
plateau regime down to the definite banana regime. Even if the independence of the
fluxes holds for νc → 0, it is not in contradiction to Ref. [61] and Eq. (6.1) because a
different behavior for the limit νc → 0 and νc = 0 is easily possible11. Furthermore,
a truly collisionless simulation needs to neglect the neoclassical source term, too.
Otherwise, the numerically necessary velocity space hyperdiffusion operator acts as
a crude collision term and any observed neoclassical effects should be considered
spurious.

11A prominent example for such an effect is the difference between the low viscosity limit of the
Navier-Stokes equation and the Euler equation.
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Figure 6.8: Collisionality dependence of turbulent radial heat flux profile and E × B shear
(peaked gradient, averaged over last 500 time units)

When we study the E ×B shear pattern for the low collisionality case in Fig. 6.8(d)
we find again a region of low shear near the peak of the temperature gradient profile
when the neoclassical radial electric field is present.

The neoclassical radial heat fluxes are naturally lower for smaller collisionality as
was demonstrated for the local case in Fig. 4.1 in agreement with analytical predictions.
Especially for Fig. 6.8(b), however, temporal convergence is not assured for the inner
(x/a. 0.5) region. This is not problematic, though, as the radial neoclassical flux is not
the effect causing the modification of the turbulence.

6.1.3 Safety factor effects

The last physical parameter we investigate in gradient-driven simulations is the safety
factor profile q(x). Instead of the monotonically increasing polynomial we now choose
the form:

q(x/a) = 2.400− 0.736x/a− 2.774(x/a)2 + 0.950(x/a)3 + 3.399(x/a)4. (6.2)
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Figure 6.10: Effect of the negative ŝ safety factor profile on radial heat fluxes and E ×B shear
(peaked gradient, averaged over last 500 time units)

In Fig. 6.9 this function is compared with the one used in the global simulations
so far (Eq. (4.10)). When the corresponding magnetic shear ŝ = a

q
∂q
∂x is considered,

the particular feature of the new function is that its derivative and accordingly the
magnetic shear are negative for x/a = 0.0 − 0.6 - sometimes this is called an inverse
shear. This is the logical continuation of the last parameter study in Sec. 5.2 where
we considered a local magnetic shear of 0. The inverse shear profile is used especially
in experimental scenarios which have internal transport barriers (ITBs) [64, 73]. In an
ITB the turbulent transport can be reduced to and below the neoclassical level and the
temperature gradient becomes steep so that nonlocal effects are more relevant. Thus,
physical parameters which correspond to such a barrier are of fundamental interest for
this work. Here, we limit ourselves to the safety factor; all other parameters correspond
to the peaked gradient case with high collisionality and ρ∗ = 1/150 (Fig. 6.2(a)).

Comparing the radial turbulent heat fluxes for simulations with and without the
neoclassical source term gives a peculiar result for this parameter set. As can be seen
in Fig. 6.10(a) the fluxes are almost equal and around the level we found for the other
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peaked-profile cases including neoclassical effects. The profile of the E ×B shear is
consistent with this as neoclassical and non-neoclassical simulation develop an almost
equal level in the region of the temperature gradient profile maximum. While the
agreement of the fluxes and shearing rates for these two simulations is most probably
coincidental, we observe another example where the presence of the neoclassical radial
field seems to strongly weaken the dependency of the turbulence on a plasma or
confinement device parameter.

The neoclassical heat flux (when its source is present) on the other hand is sig-
nificantly higher than for the monotonous q profile. This is not very surprising as
neoclassical fluxes are known to scale with q2ε−3/2 (see Eq. (2.10) and Ref. [28]) and
Eq. (6.2) provides higher values of q in the inner region where the local ε is small.

With an established interaction between neoclassical and turbulent effects in
gradient-driven simulations for sufficiently large ρ∗ we now turn to physically more
comprehensive but also numerically more demanding flux-driven simulations.

6.2 Flux-driven setups

Flux-driven simulations expand the range of physical phenomena we can study by
a number of effects such as self-organization. The heat source is no longer adaptive
with the possibility of acting as a sink but a localized profile with fixed power input
which is undeniably much closer to experimental conditions. As previously mentioned
(see Sec. 3.4.2), this is the natural operation mode of full-f codes. Since this formalism
automatically includes neoclassical effects, a number of results exist on the role they
can play in turbulent flux-driven simulations. With the GYSELA code [74], for example,
it is found that the poloidal rotation profile is dominated by the neoclassical mean
flow and the E ×B shearing rate attributed to it has a similar magnitude as the one
caused by zonal flows [75]. Temperature gradients also tend to establish closer to their
critical values than in gradient-driven simulations so that the level of neoclassical heat
transport can compete with its turbulent counterpart [76]. In GT5D simulations [71,
77] closeness to criticality is observed as well in the form that a significant part of the
turbulent heat flux occurs in the form of transient avalanches.

The heat source in our simulations is an input of fixed power and shape positioned
in the radial region x/a = 0 − 0.4 (essentially a wider and flatter form of the shapes
shown in Fig. 4.5). At the outer edge a Krook type buffer zone is used to dissipate
heat smoothly. The temperature and density profiles are initialized according to
the flat-top gradient profiles of Eq. (4.9) with an amplitude significantly above the
critical gradient for the temperature which accelerates their following evolution. While
the density profile remains static due to the adiabatic electron approximation, the
temperature evolves to adapt to the heat source and its evolution makes an adaption of
the background Maxwellian necessary in our formalism. The threshold we use for this
is |f1/F0| ≥ 0.18. This is a relatively large value but triggering the adaption too often
can lead to undesired numerical artifacts and we analyze simulations in a state when
the last such reset is around 1000 time units past, i.e. the system has evolved to remain
significantly below the threshold at that point. We study a system of ρ∗ = 1/150 for
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Figure 6.11: Flux-driven results in the source-free region (Ŝ0 = 22500, averaged over last 1000
time units); uncertainties according to Sec. 3.5.3

three different power inputs (Ŝ0 = 11250, 22500 and 45000) and examine the result of
including or neglecting neoclassical effects.

In Fig. 6.11 we present the time averaged temperature and heat flux profiles in the
radial region free of sources and sinks x = 0.4− 0.85 for the stronger source and big
ρ∗. As can be seen in Fig. 6.11(a) the temperature gradients for the simulation with
and without neoclassical source are nearly equal with a tendency for a higher gradient
without the neoclassical source. The exception is close to the outer buffer region which
tends to influence the simulation up to x & 0.8. The averaged turbulent heat fluxes
in Fig. 6.11(b) accordingly have a similar magnitude. When the neoclassical source is
present, however, some energy is also transported through the neoclassical flux channel.
Hence, we would expect a slightly lower turbulent energy flux in that case. One possible
explanation is that since neoclassical transport provides an evolution below the critical
gradient, the non-neoclassical system is not as well converged and still consumes more
heating power for temperature increase. Plotting the time evolution of Ti at three
radial positions in Fig. 6.12 we find, in fact, that both cases are not fully converged
yet. The systematically lower temperature in Fig. 6.12(b) compared to 6.12(a), however,
confirms that the non-neoclassical system is evolving more slowly. Nonetheless, we can
gain some interesting insights when observing the spatio-temporal behavior of both
scenarios.

The time-resolved turbulent heat fluxes in Fig. 6.13 present a qualitatively different
behavior depending on the presence of the neoclassical source: Both cases exhibit the
fishbone-like patterns familiar from Fig. 5.4 and Fig. 6.4. As previously mentioned the
direction of these avalanches is related to the sign of the E ×B shear. Sign changes of
the shear can lead to corrugations in the temperature profile in flux-driven simulations
and the resulting pattern has been given the name E ×B staircase [62, 78]. Curiously, in
our simulations the most obvious structure which fulfills the criteria for a stair step is
occurring close to the outer sink region at x ∼ 0.8 in Fig. 6.13(a). The non-neoclassical
simulation (Fig. 6.13(b)) has weaker steps at x ∼ 0.45 and x ∼ 0.6. It is clear that just as
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Figure 6.12: Time evolution of the temperature profile at three radial positions in a flux-driven
simulation (Ŝ0 = 22500)

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
x/a

5000

5100

5200

5300

5400

5500

t/
(a
/c
s
)

Qturb

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

(a) with NC

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
x/a

5000

5100

5200

5300

5400

5500

t/
(a
/c
s
)

Qturb

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

(b) without NC

Figure 6.13: Time-resolved turbulent heat flux in the source-free region (Ŝ0 = 22500)

in gradient-driven simulations the avalanche pattern is fundamentally changed when
neoclassical effects are included.

A phenomenon specific to the flux-driven systems, however, is their closeness to
criticality. When the temperature gradient decreases below the critical level energy
builds up and pushes it beyond criticality again. The collisional Dimits shift softening
of the critical gradient smooths this behavior slightly. Hence, we can reproduce the
observation of Ref. [76] and [71]. Since the neoclassical transport channel has no
critical gradient, its presence will slow down this mechanism: While it is in our case
not sufficiently large to transport all input heat, it provides a leak to the energy buildup.
This shows up rather subtly in Fig. 6.13: Phases with low turbulent transport (Q . 6)
are roughly 90 time units long in Fig. 6.13(a), but last only around 60 time units in
Fig. 6.13(b).

Closeness to criticality is expected to be stronger when we turn our attention to a
system with halved heating power (Ŝ0 = 11250) but otherwise identical parameters.
As can be seen for the time-averaged quantities in Fig. 6.14(a) and (b) the system with
neoclassical effects has both a slightly higher ion temperature gradient and turbulent
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Figure 6.14: Flux-driven results in the source-free region for reduced source amplitude
(Ŝ0 = 11250)

heat flux. This again points to the previously noted different convergence speed between
the two cases which is consistently more severe for a weaker turbulence drive. Due to
this we concentrate on comparing this system to the one with Ŝ0 = 22500. The central
observation is that the turbulent transport almost halves as should be expected for half
power input while the gradient is reduced only by very little. This phenomenon is
known as profile stiffness and a well established observation in experiments [79, 80]. In
the simulations of Chapter 5 we have shown it in its inverse form: When the gradient is
imposed, the level of turbulent transport is extremely sensitive to it.

We can confirm the observed stiffness of the temperature gradient in a simulation
with a stronger source (Ŝ0 = 45000). This also has the advantage that convergence of
the profiles is reached more quickly. Indeed, in Fig. 6.15(a) and (b) we now observe
nearly equal gradient with and without neoclassical source, but part of the radial heat
transport occurs as neoclassical transport in the former case and the turbulent flow is
accordingly smaller. For the time resolved fluxes we again find the well-established
difference in avalanche direction. Furthermore, there now is a clear change to the
intermittency of heat flux bursts: The system with neoclassical effects (Fig. 6.15(c))
appears calmer with phases of low turbulent transport (Q < 5) lasting up to 100 a/cs.
Without the neoclassical channel on the other hand these phases end already after
30-40 a/cs.

Finally, collecting the information from the three heating power scenarios a compar-
ison of the heat flux and gradients at the representative position x/a = 0.6 in Fig. 6.16
demonstrates the described stiffness in a very clear way: The temperature gradient
remains nearly constant while the heat flux at least doubles from the weakest to the
strongest power input.
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Figure 6.15: Flux-driven results in the source-free region for increased source amplitude
(Ŝ0 = 45000)
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Ŝ0

0

1

2

3

4

5

6

Q
/Q

gB

Qnc

Qturb w. NC

Qturb wo. NC

(b) Heat flux

Figure 6.16: Comparison of the time averaged temperature gradients and heat fluxes at x/a = 0.6
for different power inputs
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6.3 Summary

In this chapter radially global gyrokinetic simulations were used to explore the in-
teraction between neoclassical and turbulent effects. In scenarios with fixed gradient
(gradient-driven) it was demonstrated that this interaction only occurs when nonlocal
effects play a role and vanishes for ρ∗ ≤ 1/500. This indicates that the analytical sep-
aration between the two effects in the local limit can be reproduced. It even implies
that treating neoclassical and turbulent transport separately is valid before flux-tube
simulations are justified by the turbulent scaling with ρ∗. This is often assumed to
be the case for modeling of experiments. For larger ρ∗ (or presumably ρ∗eff), however,
including neoclassical effects in a turbulent simulation becomes strongly advisable. It
was shown that the presence of neoclassical effects tends to reduce the dependence
of turbulent transport on plasma parameters such as collisionality and safety factor
profile. A possible explanation for this is that the neoclassical radial electric field
determines the spatial positioning of the zonal flow pattern (similar to the results of
Chapter 5) aligning zones with small E ×B shear with ones of high turbulence drive. It
was also possible to reproduce the phenomenon of radial heat flux avalanches whose
direction follows the sign of the E ×B shearing rate found in simulation results in the
literature.

Finally, systems with fixed power input (flux-driven) were investigated where the
temperature (gradient) profile evolves self-consistently according to a localized heat
source. These simulations are considerably more complex computationally intensive
but allow more insight into self-organization phenomena. It was possible to reproduce
the basic qualitative behavior of results from full-f simulations, such as the occurrence
of intermittent bursts as a transport mechanism for energy because the system is
closer to criticality. The frequency and amplitude of these bursts is modified when the
additional neoclassical transport channel is present. By comparing different energy
input powers the experimentally and theoretically established phenomenon of profile
stiffness was confirmed. However, further and longer simulations need to be performed
to reach a truly self-consistent flux-power balance for our low input power cases. With
the self-consistent steady-state profiles gradient-driven simulations can be performed
in the future in order to better understand the difference between the two.
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Chapter 7

Conclusions

In magnetically confined plasmas for nuclear fusion research two main channels for
the cross-field transport of particles, heat and momentum exist: Neoclassical transport
is driven by collisions and the curvature of the magnetic field. Turbulent transport
arises from microinstabilities driven by the steep temperature and density gradients in
the radial direction. The main goal of this work was to explore and confirm synergies
between neoclassical effects and turbulence in tokamaks. This phenomenon is of
importance for the modeling of small devices and for improved confinement regimes
such as internal transport barriers and the edge barriers found in H-mode operation.
Thus it is connected to one of the key physics tasks for the efficient operation of future
power plants. While the specific situation of such barriers was not investigated, the
foundation for such research was successfully established.

In the following we will review the main findings of this thesis and give prospects
for future research based on them.

7.1 Summary

Gyrokinetic theory and the Gene code

Since the gyrokinetic Vlasov-Poisson equation system constitutes the theoretical model
underlying this work, it was presented in the form as it is numerically solved by the
Eulerian δf code Gene . Special focus was given to the elements crucial for the correct
modeling of neoclassical transport such as the collision operator and features not used
in the simulations of this work were neglected. It was also discussed how the gyrokinetic
equation includes the drift-kinetic limit, which forms the basis of neoclassical theory.

After introducing the basic numerical approach of the Gene code, the two methods
to handle the evolution of the kinetic profiles in global simulations were discussed.
The first one employs an adaptive Krook-type heat source which fixes the time-average
of the gradient profiles to their initial state, giving rise to so-called gradient-driven
simulations. The second method utilizes a localized heat source and allows the kinetic
profiles to evolve consistently to the fixed power input. For these flux-driven simula-
tions, however, the validity of the δf splitting in the underlying equations needs to be
preserved. In the course of this work, the existing basic mechanism for adapting the
background distribution function F0 to the evolved temperature and density profiles
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was tested and refined by implementing, for example, filtering procedures to exclude
gyroradius-scale fluctuations from F0.

Furthermore, radial turbulent and neoclassical particle, energy and momentum
fluxes were calculated from the distribution function. In the case of neoclassical fluxes
in global simulations, care was taken to find a form consistent with the definitions
of standard (local) neoclassical theory. Since the fluxes correspond to physically mea-
surable quantities, means of estimating their uncertainty were discussed, where their
fluctuating nature and temporal autocorrelation are accounted for. The statistically
most sound method was found to be the standard error of the mean based on batch
means. Each batch consists of the flux measurements within a time window of several
(typically five) estimated correlation times. Consequently, all uncertainties given in
this work are based on this method.

Neoclassical equilibria

Before including turbulent fluctuations, purely neoclassical systems were investigated.
As a first step, agreement between neoclassical heat fluxes in local simulations with
analytic predictions for the different collisionality regimes was confirmed over a wide
collisionality range.

It was demonstrated that it is possible to self-consistently calculate the neoclassical
radial electric field in global simulations. Moreover it conforms to the radial force
balance equation. In this context, it was found that it is important to use a von Neumann
boundary condition on the inner edge of the radial simulation domain.

Finally, the tokamak region near the magnetic axis, where the standard assumption
of (radially) thin drift orbits becomes invalid, was studied. A breakdown of stan-
dard local neoclassical theory and the importance of finite-orbit width effects in the
potato-orbit region could be confirmed. Since a comparison with existing theoretical
predictions in this region did not provide satisfying agreement in gradient driven
simulations, flux-driven simulations over neoclassical confinement times were per-
formed. There, indications were found that the potato radius rp is a scale relevant for
the temperature gradient profiles, which establish consistently to the localized fixed
power input.

Interaction between neoclassics and turbulence

The study of the synergies between neoclassical and turbulent transport was carried
out in several steps, with increasing complexity and computational cost per simulation,
when moving from local (flux-tube) to radially global gradient- and finally flux-driven
scenarios.

First, as a simple model, a constant sinusoidal long wavelength electrostatic po-
tential was imposed on local simulations of ion temperature gradient-driven (ITG)
turbulence. This external field can be considered an approximation of the shape and
amplitude of the neoclassical radial electric field found in global simulations. By
numerous nonlinear simulations, a clear connection between the turbulent heat flow
and the external E ×B shearing rate was found. An external shear of small amplitude
(in comparison to the intrinsic shearing rate emerging from the turbulent state) can
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significantly decrease heat transport. More importantly, the dynamics of the intrinsic
shear flows (so-called zonal flows) adapt to the externally imposed radial structure,
even for very weak external fields. Only when the wavelength of the external potential
was chosen short enough, turbulent structures could be observed moving across the
shear pattern. Consequently, they were damped less than by shear of comparable root
mean square value but longer wavelength.

Secondly, the effect of neoclassical contributions (especially the self-consistently
calculated electric field) on global gradient-driven systems was studied. As previously
mentioned, an adaptive heating preserves the time-averaged gradient profiles in these
cases. For scenarios with a normalized ion thermal gyroradius ρ∗ = ρi/a ≥ 1/300,
a significant increase of the turbulent transport was observed – in addition to the
neoclassical contribution to total cross-field transport. At ρ∗ = 1/500 the separation of
neoclassics and turbulence in the local limit was reestablished. Overall, the commonly
found deviation from the gyro-Bohm scaling at high ρ∗ for the turbulent fluxes was
reproduced, while neoclassical transport was found to scale gyro-Bohm-like as expected.
In addition, the presence of neoclassical effects strongly reduced the dependence of
the turbulent transport on physical parameters such as collisionality and safety factor
profile in our simulations. A possible explanation found was that the neoclassical
field aligns zones of low E ×B shear with regions of strong turbulence drive, e.g. the
maximum of the temperature gradient profile.

Finally, similar investigations were performed in flux-driven systems with a local-
ized heat source. Due to closeness to criticality, turbulent transport tended to occur
in intermittent bursts. Amplitude and frequency of the bursts were reduced by the
presence of the neoclassical transport channel. The behavior of scenarios with differing
power input was compared and the widely known phenomenon of profile stiffness
was observed, i.e. the value of the temperature gradient was found to be relatively
independent of the power input.

The central conclusion drawn from this work is that it is possible to include neo-
classical effects in gyrokinetic simulations and that there are a number of physically
relevant scenarios where they modify the turbulent behavior in a significant way and
should not be neglected. As long as the turbulent scaling justifies applying the flux-
tube limit, it is also possible to treat neoclassical effects separately. For gradient-driven
simulations with ρ∗ ≥ 1/300, however, neglecting the neoclassical contribution can
lead to spurious heat flux measurements. This is even more the case for flux-driven
scenarios.

7.2 Outlook

Since the presented work provides a basis of numerical evidence for neoclassical-
turbulence interaction, it presents also a plethora of ways to expand on the fundamental
observations. In the following, a number of concepts that go beyond points mentioned
already in the respective chapters such as more quantitative investigations on the role
of potato orbits and reaching full steady-state in turbulent flux-driven simulations are
collected.
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A very obvious step is to consider electrons no longer as adiabatic but as a fully
gyrokinetic species. This allows to study other types of turbulence such as trapped
electron modes, which exhibit a weaker zonal flow pattern and thus could react dif-
ferently to the neoclassical field. Due to the higher grid resolution and time stepping
requirements, however, this will be a computationally extremely challenging task – the
global computations in this work are quite expensive already. A less computationally
demanding future prospect involves using a shaped magnetic field geometry as it is
used in experimental devices instead of circular concentric flux surfaces. This also
gives the opportunity for investigations on the role of specific shaping parameters
for neoclassical effects. Recently implemented extensions of Gene to include effects
of plasma rotation can also be used to study the impact of rotation on neoclassical
transport and whether it modifies the observed interactions with turbulence. The
connection between the radial electric field and rotation by the radial force balance
supports this idea. Neoclassical transport also plays an important role for the dynamic
of impurities, e.g. tungsten ions, in the plasma. Including them in simulations opens a
wide field for new physical insight.

The more general future goal for this work is, however, to gain a better understand-
ing and ultimately a numerical model of transport barriers both in the core and the
edge. While the relevance of internal transport barriers for a future fusion reactor can
be argued, a successful model of them will be an important step towards understanding
the edge barrier of the H-mode whose fundamental importance is widely accepted.
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Appendix A

Definitions of collision frequencies

When performing benchmarks for neoclassical transport, one of the most important
parameters is oviously the collision frequency, especially the self-collision frequency of
the ions. Unfortunately, this quantity is not uniquely defined: Depending on the source
it includes differing constant multipliers, SI or Gaussian units and the temperature
defined as either T = 1/2mv2

th or T = mv2
th . Here, a number of conversions between

them shall be provided for future reference.
The quantity νc from Eq. (3.3) serves as a good starting point for us as it can be set

as an input parameter in Gene :

νc =
πe4nrefLref lnΛ

23/2T 2
ref

. (A.1)

Notably, it uses Gaussian units. On the other hand, Ref. [9] introduces ion-ion collision
times of the form (using SI):

1
τii

==

√
2

12π3/2ε2
0

niZ
4

m1/2
i T 3/2

i

, (A.2)

1
τi

=
1
√

2

1
τii
. (A.3)

In terms of νc and other normalized quantities (see Sec. 3.3) and converting between SI
and Gaussian units this can be written as:

1
τii

=
8
√

2
3
√
π

n̂iZ
4

m̂1/2
i T̂ 3/2

i

νc
cref

Lref
. (A.4)

The definition for the ion-ion collision time found in Ref. [43] is:

1
τi,V

=
1

6
√
π

niZ
4e4 lnΛ

2πε2
0m

2
i v

3
thi

, (A.5)

where, opposed to the previous expressions, vth =
√
T /m holds. If this is accounted for,

we find that this expression agrees with 1/τi in Eq. (A.3).

93



A. Definitions of collision frequencies

The physically most interesting quantity, on the other hand, is the collisionality ν∗,
which in terms of Ref. [9] is defined as:

ν∗i =
qR0

ε3/2vthi
. (A.6)

Using Eq. (A.4) it can be expressed in Gene normalized quantities:

ν∗i =
8

3
√
π

qR̂0

ε3/2

n̂iZ
4

T̂ 2
i

νc. (A.7)

The advantage of this quantity is that it goes back to the oldest works on neoclassical
theory [28], is used in the Chang-Hinton prediction [49] and is equivalently defined in
the numerical works of Ref. [43] as well as Ref. [81]. Together with its physical meaning
of defining the different regimes of neoclassical transport (see Sec. 2.2.2) this makes it
the ideal quantity for comparing numerical results.

It should be noted here, though, that the Coulomb logarithm lnΛ still provides a
source of discrepancies when different approximations for calculating it are used.
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