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Abstract

Making the interaction of human subjects with technical systems more intu-
itive is a quickly emerging interdisciplinary field of research. One important
aspect of this field is the surveillance of the user by the respective system and
thus enabling it to estimate distinct user states. Thus, a technical system is en-
abled to adapt better to the context of the situation and also to the respective
needs of the subject. A key factor for this development is the availability of af-
fordable sensory equipment such as cameras and microphones but also physi-
ological measuring devices together with increasing computational power and
the according methods of analysis and classification.

The automatic recognition of user states in human-computer interaction poses
a great challenge to statistical pattern recognition for several reasons: The mea-
surements of the different sensors are inherently heterogeneous in their tech-
nical properties, for example considering sample rates, range of values or res-
olution. A further issue is that in real world scenarios, the different categories
occur often in an imbalanced distribution, which makes it difficult to estimate
sound models for the underrepresented classes. Another important aspect is
the fact that the true state of a subject is generally not entirely observable from
the outside, which makes the design of corpora that study human-computer
interaction extremely difficult. This leads in many cases to weakly or subjec-
tively defined class labels by either using human test persons that annotate the
collected material manually or by using externally triggered stimuli that are
designed to elicit distinct predefined states.

In order to approach the recognition of user states in human-computer inter-
action, the multi-modal and the temporal properties of the application are ex-
ploited in this work. For this purpose, different information fusion architec-
tures based on multiple classifier system approaches and temporal integration
techniques are introduced and discussed. Besides this, the incorporation of
unlabeled data into the training of the classifier is a compelling issue since one
is generally short of training data as described earlier. This work will intro-
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duce a partially supervised learning approach, that combines unsupervised
and supervised learning in order to extend the amount of usable data. Finally,
the problem of imbalanced class distributions is tackled by a class weighting
mechanism in the training of support vector machines, which increases the
loss for the underrepresented class. The approaches are further extensively
evaluated on publicly available multi-modal data collections.
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Zusammenfassung

Die Verbesserung der Interaktion menschlicher Benutzer mit technischen Sys-
temen ist eine interdisziplinärer wissenschaftlicher Bereich, der in der jünge-
ren Vergangenheit eine verstärkte Aufmerksamkeit erfahren hat. Ein wichtiger
Teilbereich dieses Forschungsfeldes ist die Beobachtung des Benutzers durch
das technische System und die Ableitung vordefinierter Nutzerzuständen dar-
aus. Dadurch kann ein solches technisches System sich besser auf den situa-
tiven Kontext und die jeweiligen Bedürfnisse eines menschlichen Interakti-
onspartners ausrichten. Ein wichtiger Baustein zum Erreichen dieses Ziels ist
die Verfügbarkeit von preisgünstiger Sensorik, wie beispielsweise Mikrophone
oder Videokameras aber auch von Apparaten zur Aufnahme physiologischer
Signale, sowie der gestiegenen Rechenleistung moderner Computer und des
methodischen Fortschritts in der Entwicklung intelligenter Algorithmen.

Die automatische Erkennung von Nutzerzuständen in der Mensch-Maschine
Interaktion ist aus folgenden Gründen eine große Herausforderung für die be-
stehenden Methoden der statistischen Mustererkennung: Die verschiedenen
Messgrößen aus der einzelnen Sensoren sind stark heterogen in ihren jeweili-
gen Eigenschaften wie der Abtastrate, den Wertebereichen oder Auflösungen.
Eine weitere Problemstellung bei der Bearbeitung von Problemstellungen, wie
sie tatsächlich in der praktischen Anwendung auftreten, ist dass die jeweili-
gen Kategorien üblicherweise nicht gleich-verteilt auftreten, was die Erstel-
lung adäquater Modelle für die unterrepräsentierten Klassen erschwert. Wei-
terhin ist der tatsächliche Zustand eines Benutzers in einer Interaktion nicht
vollständig von außen erfassbar, was die Erstellung von Korpora zur Erfor-
schung diesen Aspekt der Mensch-Computer Interaktion äußerst schwierig.
Dieser Umstand führt in vielen Fällen zu nur schwach oder subjektiv definier-
ten Klassenlabels indem entweder menschliche Annoteure die Daten händisch
mit Kategorien versehen oder durch die Verwendung von extern getriggerten
Stimuli, die bestimmte vordefinierte Zustände elizitieren sollen.

In dieser Arbeit werden die multi-modalen und temporalen Charakteristika
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der Mensch-Computer Interaktion zur Erkennung von Nutzerzuständen in
dieser Anwendung ausgenutzt. In diesem Rahmen werden verschiedene Ar-
chitekturen der Informationsfusion, basierend auf den Technologien der Mehr-
klassifikatorsysteme und der temporalen Integration vorgestellt und numer-
isch evaluiert. Darüber hinaus ist die Verwendung ungelabelter Daten in der
Trainingsphase von Klassifikatoren da in den meisten Anwendungen Train-
ingsdaten, wie oben beschrieben, nur knapp vorhanden ist. Im Folgenden wird
ein teil-überwachtes Lernverfahren vorgestellt, das unüberwachte mit über-
wachten Verfahren kombiniert um die Gesamtheit der verwendbaren Daten
zu vergrößern. Ein weiterer Punkt der Arbeit ist die Analyse unbalancierter
Klassenverteilungen durch die Einarbeitung eines Gewichtungsverfahrens in
die Trainingsphase von Support Vektor Maschinen mittels einer modifizierten
Fehlerfunktion, die die Gewichtung der unterrepräsentierten Klasse erhöht.
Die numerische Evaluation der Methodik wird im Folgenden auf verschiede-
nen öffentlich verfügbaren multi-modalen Datensätzen durchgeführt.

iv



Contents

Abstract i

Zusammenfassung iii

Contents v

1 Introduction 1
1.1 Multi-modal Classification Architectures . . . . . . . . . . . . . . 1
1.2 Affective States in Human-Computer Interaction . . . . . . . . 2
1.3 Acted versus Real-World Corpora . . . . . . . . . . . . . . . . . . 4
1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Basic Methodical Principles 11
2.1 Basic Unsupervised Learners . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Dissimilarity Measures . . . . . . . . . . . . . . . . . . . . 11
2.1.2 k-means Clustering . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Gaussian Mixture Models . . . . . . . . . . . . . . . . . . 18
2.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Basic Supervised Learners . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Linear Models for Classification . . . . . . . . . . . . . . . 23
2.2.2 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Support Vector Machine . . . . . . . . . . . . . . . . . . . 29
2.2.4 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Learning under Uncertainty . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 Uncertainty Calculi . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 How to Measure Uncertainty . . . . . . . . . . . . . . . . 37
2.3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Learning From Multiple Sources . . . . . . . . . . . . . . . . . . 40
2.4.1 Fusion Methods . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.2 Techniques of Classifier Combination . . . . . . . . . . . 45
2.4.3 Construction of Meaningful Ensembles . . . . . . . . . . 48

v



2.4.4 Classifier Selection . . . . . . . . . . . . . . . . . . . . . . 51
2.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Partially Supervised Learning . . . . . . . . . . . . . . . . . . . . 52
2.5.1 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.2 Generative Models . . . . . . . . . . . . . . . . . . . . . . 53
2.5.3 Self-Training . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.4 Co-Training . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.5 Transductive Learning . . . . . . . . . . . . . . . . . . . . 58
2.5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Applications and Data Collections 61
3.1 EmoRec Data Collection . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.2 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1.3 Physiological Channels and Features . . . . . . . . . . . . 68

3.2 “AVEC 2011” Data Collection . . . . . . . . . . . . . . . . . . . . 73
3.2.1 Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.2 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.3 Audio Features . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.4 Video Features . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Pascal 2 “mind reading” data set . . . . . . . . . . . . . . . . . . 81
3.3.1 Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Methodological Advancements 87
4.1 Multi-modal Decision Fusion . . . . . . . . . . . . . . . . . . . . 87

4.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1.2 Multi-modal Fusion Architectures in Audio Visual Ap-

plications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2 Using Unsupervised Learning to Improve Supervised Classifi-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.1 Proposed Partially Supervised Learning Algorithm . . . 93
4.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Highly Imbalanced Class Distributions . . . . . . . . . . . . . . . 98
4.3.1 Extending the F2-SVM to Imbalanced Class Distributions 98
4.3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Numerical Evaluation 103
5.1 Classifier Performance Assessment . . . . . . . . . . . . . . . . . 103

5.1.1 Error Rate and Receiver Operating Characteristics . . . . 103
5.1.2 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Audio-Visual Classification Experiments . . . . . . . . . . . . . . 106

vi



5.2.1 Classification of Facial Expressions . . . . . . . . . . . . . 107
5.2.2 Classification of Spoken Utterances . . . . . . . . . . . . . 108
5.2.3 Evaluation of Multi-modal and Temporal Fusion Archi-

tectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Partially Supervised Evaluations on the EmoRec Corpus . . . . 121
5.3.1 Classification of the Individual Physiological Channels . 121
5.3.2 Evaluation of the Combined Classifier . . . . . . . . . . . 127
5.3.3 The Influence of Unlabeled Data Samples . . . . . . . . . 130
5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4 Support Vector Machines for Unbalanced Class Distributions . . 136
5.4.1 Construction of Individual Classifiers . . . . . . . . . . . 137
5.4.2 Classifier selection and fusion using genetic algorithms . 138
5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6 General Discussion 143
6.1 Information Fusion Architectures in HCI . . . . . . . . . . . . . . 144
6.2 Annotation of Data in the Context of HCI . . . . . . . . . . . . . 144
6.3 Feasibility of Unlabeled Data in Classification . . . . . . . . . . . 146
6.4 Integration into a Greater System . . . . . . . . . . . . . . . . . . 146
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 Summary of the Contributions 149
7.1 Multi-modal and Temporal Fusion . . . . . . . . . . . . . . . . . 149
7.2 Partially Supervised Learning in Human-Computer Interaction 151
7.3 Imbalanced Classes . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Appendices 155

A Partially Supervised Results for Standard Data Sets 157
A.1 COIL-100 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.2 “Obst” Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.3 Iris Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
A.4 Ionosphere Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . 166

B Supplemental Results for the Temporal Integration 169
B.1 Classification of ES-6 versus ES-4 . . . . . . . . . . . . . . . . . . 171
B.2 Classification of ES-2 versus ES-4 . . . . . . . . . . . . . . . . . . 172
B.3 Classification of ES-6 versus ES-5 . . . . . . . . . . . . . . . . . . 173
B.4 Classification of ES-2 and ES-6 versus ES-5 and ES-4 . . . . . . . 174

List of Figures 175

List of Tables 185

vii



List of Algorithms 187

Bibliography 189

Acknowledgments 215

viii



1 Introduction

1.1 Multi-modal Classification Architectures

The development of technical systems which are suited to make interactions of
humans with technical systems more intuitive is a quickly emerging interdisci-
plinary field of research. One important aspect of this field is the surveillance
of the user by the respective system in order to enable it to estimate distinct
user states. Knowledge on these states allows the technical system to adapt
better to the respective needs of a subject in the context of the situation. A key
factor for these developments is the availability of affordable sensory equip-
ment such as cameras and microphones, but also physiological measuring de-
vices that are attached to a subject’s skin like electrodes to quantify the skin
conductance or an electromyograph to measure muscle contractions. This de-
velopment is also pushed forward by an increase of technical capabilities for
instance in an increasing miniaturization of computer hardware or in compu-
tational power, which comprises not only faster CPUs but also an increase of
the capacity of storage devices and the available memory of computers. This
makes it feasible to create intelligent computer programs that provide an ad-
ditional value for the user, for example to better consult, monitor and teach
the subject in the course of certain tasks. In order to study this subject multi-
faceted multi-modal corpora in the context of human-computer interaction are
required and are now becoming feasible that allow to study statistical models
for their analysis and to develop classifiers for the prediction of complex user
states. An illustrative example for the multifaceted and comprehensive nature
of possible multi-modal corpora of human-computer interaction is shown in
Figure 1.1.

However, the automatic recognition of user states in human-computer interac-
tion still poses great challenges to statistical pattern recognition techniques for
several reasons. The measurements of the different sensors are inherently het-
erogeneous in their technical properties, for example considering sample rates
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2 Chapter 1. Introduction

or resolution. In addition to that, the features that are computed from the raw
data are very heterogeneous in their technical properties such as the respective
time granularity but also in their individual informativeness for a classifier.
Furthermore, the different categories are not only sparsely available but they
occur often in imbalanced class distribution in real world scenarios. These
circumstances make it particularly difficult to derive sound models for the un-
derrepresented classes. Another important aspect is the fact that the true state
of a subject is generally not entirely observable from the outside, which makes
the design of corpora, that study human-computer interaction extremely diffi-
cult. This fact leads in many cases to weakly or subjectively defined class labels
by either using human test persons, that annotate the collected material manu-
ally or by using externally triggered stimuli that are designed to elicit distinct
predefined states.

In order to approach the recognition of user states in human-computer inter-
action, the multi-modal and the temporal properties of the application are ex-
ploited in this work. For this purpose, different information fusion architec-
tures based on multiple classifier system techniques and temporal integration
approaches are introduced and discussed. In addition to this, the incorpora-
tion of unlabeled data into the training of the classifier is a compelling issue as
one is generally short of training data as described earlier.

This work will introduce a partially supervised learning approach, that com-
bines unsupervised and supervised learning in order to extend the magnitude
of usable data. Finally, the problem of imbalanced class distributions is ad-
dressed using a class weighting mechanism in the classifier training, which
increases the loss for the underrepresented class.

1.2 Affective States in Human-Computer Interaction

Novel human-computer interfaces make use of the detection of human emo-
tions as described for example by Picard et al. (2001b) in her very forward-
looking book. This is also reflected in past and ongoing interdisciplinary re-
search projects like the EU project Semaine1, the Companions Project2, or the
Transregional Collaborative Research Centre SFB/TRR 62 Companion-Techno-
logy for Cognitive Technical Systems3, that is established at the universities of
Ulm and Magdeburg.

The research in the field of human emotions is very prominently emanated
from Darwin (1978) and Ekman and Friesen (1978), amongst others, who de-

1www.semaine-project.eu/
2www.companions-project.org
3www.sfb-trr-62.de/

www.semaine-project.eu/
www.companions-project.org
www.sfb-trr-62.de/


1.2. Affective States in Human-Computer Interaction 3

Figure 1.1: Depiction of a multi-modal recording of human-computer interaction. It shows
how multifaceted the different channels and annotations can be in this application. The picture
contains multiple camera views on the subject, representations of the recorded audio signal as
the respective energy and as mfcc coefficients and two different physiological signals i.e., skin
conductance and respiration. Furthermore, various annotations to the interaction, for example
speaker turns or certain subject behavior, are displayed in the figure as colored blocks. Taken
from (Schels et al., 2013a).

fined six prototypical basic emotions that are supposed to be universal for all
human beings. These emotions, which are often called “the big six” are: “hap-
piness”, “anger”, “fear, “sadness”, “surprise” and “disgust”. The work of Ek-
man and co-workers provides well defined categories, that are well established
in the literature. However, they are unfortunately not likely to occur in a full
blown shape in human-computer interaction — if at all.

An alternative approach is modeling the human emotions in a continuous,
multivariate space, where each point in space resembles an affective state.
A prominent example for a continuous emotional space is the so called PAD
space (Russell, 2003; Russell and Barrett, 1999), where the upper case letters
stands for “pleasure”, “arousal” and “dominance”. In short, the different di-
mensions are defined in the following way (Mehrabian, 1996): the term plea-
sure is described as “positive vs. negative affective states”, arousal as “mental
alertness and physical activity” and dominance “as a feeling of control and
influence over one’s surroundings and others”. However, these dimensions
are far from being fixed and different versions of the concepts are possible, for
example Fontaine et al. (2007) define four different dimensions, that they call
“arousal”, “expectancy”, “power” and “valence”.

A categorization of human emotions, that is in between the concept of basic
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satisfaction

happiness

elation

prideanger

hostility

contempt

disgust

shame/guilt

boredom

sadness

anxiety surprise

interest

hope

relief

high control

low control

positivenegative

Figure 1.2: The Geneva Emotion Wheel enables to choose categories from a circular label sys-
tem with different intensities. Adapted from (Scherer, 2005).

emotions and a continuous space by allowing intensities for a greater number
of categories is the Geneva emotional wheel by Scherer (2005). Hereby the
different categories are arranged in a circular layout and the intensity of a label
can be encoded by the distance from the center of the circle.

An important issue for the creation of affective data collections is the elicitation
of emotions in a distinct scenario. There is a huge amount of literature on this
matter and different approaches of induction of emotion were implemented in
the past. The most prominent of these are the acting of facial expressions, the
narration of stories, the presentation of distinct movie clips or images or the
difficulty of a given task to solve (Kierkels et al., 2009; Lang et al., 1993; Lisetti
and Nasoz, 2004; Soleymani et al., 2008; Stemmler, 1989; Wright and Dill, 1993).
A comprehensive summary of different studies in this context is provided by
Lisetti and Nasoz (2004).

1.3 Acted versus Real-World Corpora

An important question in the context of the research for the recognition of
human emotions or user states in human-computer interaction is the design
of matching corpora, that enable the development of suitable models. There
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Figure 1.3: Sample images from the acted Cohn-Kanade Comprehensive Database for Facial
Expression Analysis displaying different basic emotions (Kanade et al., 2000). The last image
of a sequence resembles the full blown facial expression.

are two general approaches in the literature for the recording of such kinds
of corpora: They are either recorded in a controlled environment with many
constraints for the actors, that conduct predefined actions or alternatively the
recordings can be conducted with naı̈ve test persons in an unconstrained in-
teraction with an interlocutor.

There are various prominent examples for acted emotional corpora like the
Berlin database of emotional speech (Emo-DB) introduced by Burkhardt et al.
(2005), which resembles short sentences, that are spoken by professional actors
or the Cohn-Kanade Comprehensive Database for Facial Expression Analysis
(Kanade et al., 2000), where subjects are portrayed at a frontal view in short
video clips, which are instructed to perform certain facial expressions.

An example for an acted audio visual data collection is the eNTERFACE cor-
pus (Martin et al., 2006), where the subjects are confronted with a situation
that is supposed to elicit a specific emotional reaction in the basic emotion cat-
egories. Finally, the Magdeburger Prosodie Korpus by Wendt and Scheich (2002)
is a collection of pseudo words that are uttered by actors in the different ba-
sic emotions in order to reduce correlations with the semantics of an existing
word.

The automatic recognition based on these kinds of data collections has been
proven to be very successful in the literature rendering high recognition rates
with many classes (compare e.g., Scherer et al., 2007; Schels et al., 2009; Schmidt
et al., 2010; Schuller et al., 2010; Vlasenko et al., 2007; Wagner et al., 2007).
However, as mentioned before, the applicability of these results in real world
scenarios is rather limited.



6 Chapter 1. Introduction

Hence there are several successful attempts to design affective corpora, that
capture a more realistic interaction with technical interlocutors. Many of these
corpora are designed under the wizard of Oz (Woz) paradigm (Kelley, 1983),
where the technical system, that interacts with the subject, is directly controlled
by the experimenter, that guides the subject deliberately through the prede-
fined experimental procedure.

An example for this kind of data collection is the EmoRec corpus that has been
recorded at Ulm University (Walter et al., 2011; Hrabal et al., 2012), where a
subject solved multiple rounds of a puzzle game where different stimuli are
presented to the subject in order to elicit defined emotional reactions.

A further corpus that can be found in the literature is the AVEC 2011 corpus,
that is derived from the SEMAINE project4 (Schuller et al., 2011). The data has
been recorded from subjects, that conduct a relatively unconstrained dialog
with an artificial avatar. These avatars are designed to have different characters
in order to provoke distinct reactions from the test persons.

Another corpus that comprises recordings from a Woz experiment is the so
called “Last Minute” corpus which is collected at the University of Magdeburg
(Rösner et al., 2012). For this corpus, the subject uses a dialog system in order
to pack a suitcase for a voyage for which the final destination is revealed only
at the very end of the experiment. This procedure is supposed to induce a
stressful experience for the human interlocutor as the final destination does
normally not match the items the user chose in his suitcase.

The PIT corpus5, that is also recorded at the Ulm University, adds a further
human interlocutor to the experimental setting, that is restricted to a two party
interaction in the previous examples (Strauss et al., 2008; Scherer, 2011). The
technical system is supporting one main human user to find a suitable restau-
rant for a meeting with the second person.

Conducting classification experiments on these corpora is a much more chal-
lenging task for a statistical classifier, and much lower classification rates are
reported in the literature (Schels et al., 2012a; Krell et al., 2013; Schuller et al.,
2011). The EmoRec and the AVEC 2011 corpora, that are labeled in a multivari-
ate emotional space are investigated in this thesis.

1.4 Outline of the Thesis

An outline of the thesis is provided in this following section. Chapter 2 de-
scribes the general methodological surroundings of the work in statistical pat-

4http://www.semaine-project.eu/
5http://www.uni-ulm.de/in/pit.html

http://www.semaine-project.eu/
http://www.uni-ulm.de/in/pit.html


1.4. Outline of the Thesis 7

tern recognition. It starts in Section 2.1 by introducing basic unsupervised
learning techniques. Both, prototypical and probabilistic approaches are de-
scribed. Also, a short description of hierarchical cluster algorithms is given.

Basic supervised machine learning approaches are subsequently described in
Section 2.2. This comprises linear classification approaches like the linear least
squares classifier and the perceptron. Also, nonlinear extensions like the multi-
layer perceptron and the support vector machine with non-linear kernel ap-
proaches are briefly described. Furthermore tree-based learning techniques
are introduced in this section together with the random forest algorithm as an
extension based on ensemble learning techniques.

An important building block of this work is the classification under uncer-
tainty. This technique is described in Section 2.3. This comprises a review of
the techniques to measure uncertainty of classifier decisions. Further, the direc-
tions for the processing of uncertain or fuzzy decisions and their incorporation
in classification architectures are outlined.

Another major block of the thesis is based on multiple classifier systems. This
technique is reviewed in Section 2.4. One important question in this context,
that will be addressed, is how to construct a meaningful classifier ensemble.
This comprises different approaches to generate diverse classifier teams, which
is an important requirement for an ensemble to improve over the best mem-
ber of the team. Further, the combination of individual classifiers will be ad-
dressed: this comprises fixed rule combiners and trainable fusion mappings,
that are capable to render more complex combination architectures. Another
important field of research in the context of multiple classifier systems that will
be addressed here, is the selection of informative classifiers.

Section 2.5 will discuss the literature on the basic techniques of the incorpora-
tion of unlabeled data into the training of a statistical classifier, i.e., the general
field of partially or semi-supervised learning. The approaches, that are de-
scribed there comprise semi-supervised learning from generative models, self-
training and co-training. Furthermore, a brief overview over the transductive
support vector machine will be given.

In Chapter 3, the applications of human-computer interaction, that are used in
this work to evaluate the developed classification approaches are introduced.
This comprises mainly three corpora of recordings of human subjects, that are
interacting with a technical system. The first data collection is the EmoRec wiz-
ard of Oz experimental corpus, which is described in Section 3.1. In this cor-
pus the user is instructed to solve a task in a voice controlled human-computer
interaction scenario, and the experimenter guides the subject through a man-
ifold of emotional states by presenting distinct stimuli to the subject. A dis-
tinguishable feature of this corpus is the circumstance, that not only the audio
and video channels, but also a manifold of different physiological signals are
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recorded.

The AVEC 2011 corpus is described as a second relevant data collection for this
work in Section 3.2. In this corpus, the subject is conducting a conversation
with an affectively colored virtual agent. Other than in the EmoRec corpus,
the emotional labels for classification are annotated by human raters. This
annotation is conducted by human labelers in four different labels, namely
“arousal”, “expectancy”, “power” and “valence”.

The last corpus, that is used in this work is the Pascal 2 mind reading com-
petition data set, which is described in Section 3.3. Here the EEG signal of a
subject is recorded while visual stimuli are presented in a quick sequence. The
task for the subject is to recognize an underrepresented image class, which fol-
lows a so-called oddball paradigm. Thus, a P300 EEG pattern is elicited, which
is subject for detection in this application.

In Chapter 4 the methodical contributions of this thesis are outlined. The tem-
poral characteristics of audio-visual emotion recognition in non-acted corpora
is investigated in Section 4.1. Further, the classifier fusion in temporal pro-
cesses is investigated with respect to on which stage, the multi-modal classifier
combination is optimally conducted. This Chapter is based on the following
publications: (Schels et al., 2014a, 2013a,b, 2012a, 2009; Schels and Schwenker,
2010; Glodek et al., 2013a, 2012b, 2011; Meudt et al., 2013; Scherer et al., 2012a,
2011; Schmidt et al., 2010; Walter et al., 2011; Schwenker et al., 2010).

In Section 4.2, a novel approach for the partially supervised learning is intro-
duced. Here an unsupervised density estimation is used to compute a new
representation for the data. In this step additional unlabeled data is used to
render a better estimate of the distribution of the data. Based on this, a super-
vised classifier is constructed. This method and its evaluation is published in
(Schels et al., 2014b, 2012b, 2011).

A third contribution is given in Section 4.3. Here, a support vector machine
is adapted to be able to reflect highly imbalanced class distributions by in-
tegrating class-weights into the training process. The adapted SVM and its
numerical evaluation is published in (Schels et al., 2013c, 2010).

The methods are evaluated in Chapter 5 in the context of human-computer
interaction using the data collections, that are mentioned earlier. For this pur-
pose, the evaluation of a statistical classifier is an important issue, which is dis-
cussed in Section 5.1. The multi-modal fusion algorithms are evaluated using
the AVEC 2011 corpus and the audio-visual part of the EmoRec data collection
in Section 5.2. In Section 5.3, the physiological parts of the EmoRec corpus
are used to evaluate the partially supervised approach. It is especially qual-
ified for the evaluation of approaches using unlabeled data as the extraction
of physiological features requires generally longer time scales than the audio-
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visual parts. This circumstance leads to fewer feature vectors per time step
and makes it even more compelling to use additional data for the training of a
classifier. Finally, the adapted SVM is evaluated in Section 5.4 in the context of
the detection of the P300 EEG pattern.

In Chapter 6, a summary and discussion of the work and its integration into
the broader picture is given. Also, further future directions will be discussed
there. Finally, the summary of the major contributions of the thesis is provided
in Chapter 7.





2 Basic Methodical Principles

2.1 Basic Unsupervised Learners

In this thesis techniques of unsupervised learning are integrated in the training
of a classifier. This is aiming at incorporating unlabeled data into the classifi-
cation process. Under the terms unsupervised learning or clustering, different
approaches to statistical learning from data without a distinct teacher signal
are assembled. A crucial aspect, which has a strong influence on the outcome
of the approaches is the definition of an appropriate dissimilarity measure.
These measures rate the degree of alikeness of data samples and they are ad-
dressed in Section 2.1.1. The remainder of the chapter introduces different pop-
ular clustering techniques, namely the k-means algorithm for sum of squares
approaches, hierarchical clustering techniques and mixture models in sections
2.1.2 – 2.1.4. Finally a brief discussion, summarizing the most important key-
points, is conducted in Section 2.1.5.

2.1.1 Dissimilarity Measures

Dissimilarity measures assess the degree of alikeness (or unlikeness) of two
samples (Theodoridis and Koutroumbas, 2009). Formally a dissimilarity mea-
sure is given by a function defined on pairs of samples from a data set X, that
are mapped to a real number:

d : X× X → R.

Further a minimal value d0 < ∞ is required (typically d0 = 0), that is assigned
for the distance for any data sample x ∈ X to itself:

∃d0 ∈ R : −∞ < d0 ≤ d(x, y) < ∞, ∀x, y ∈ X

d(x, x) = d0, ∀x ∈ X.

11
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A dissimilarity measure is called a metric dissimilarity measure if the follow-
ing two equations hold: The minimal value d0 is returned if and only if the
dissimilarity is computed between a sample and itself:

d(x, y) = d0 ⇔ x = y.

Further the measure must suffice the triangle equation, which implies that the
shortest distance between two points is a straight line:

d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X.

Prominent weighted metric dissimilarity measures for l dimensional real val-
ued vectors are defined from the following equation by the choice of the pa-
rameter p:

dp(x, y) = p

√√√√ l

∑
i=1

wi|xi − yi|p.

Further the parameters wi ≥ 0 for all i = 1, . . . , l can be chosen to allow the
weighting of certain dimensions accounting to a concrete application. How-
ever in most of the literature and applications, the dimensions are equally
weighted and the wi are uniformly set to 1.

For p = 1, the weighted Manhattan distance is given by

d1(x, y) =
l

∑
i=1

wi|xi − yi|.

This corresponds to a summation of the (weighted) distances in the different
dimensions.

Setting p = 2 and wi = 1 for all i = 1, . . . , l, yields the famous Euclidean
distance:

d2(x, y) =

√√√√ l

∑
i=1

(xi − yi)2.

Most of the applications use this very intuitive measure to compute the dis-
similarity of samples.

A further prominent dissimilarity measure, that is derived from the above
form is the weighted l∞ norm, which is defined for p = ∞ as follows:

d∞(x, y) =
l

max
1≤i≤l

wi|xi − yi|.

This is equal to the largest absolute value of the differences in the individual
dimensions.

Analogously to dissimilarity measures, a similarity measure is defined using
a maximal value of similarity s0. The most prominent similarity measures are
the inner product and the correlation coefficient.
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2.1.2 k-means Clustering

The k-means algorithm is an iterative approach to minimize the following term
(Bishop, 2006; Jain et al., 1999):

J =
N

∑
n=1

K

∑
k=1

rnk‖xn − ck‖2.

In the above equation the variable rnk ∈ {0, 1} equals 1 if the n-th data point
xn is assigned to the k-th cluster center ck. The algorithm hence aims at finding
values for rnk and ck, that minimize the term J.

This problem can be solved by iteratively computing assignments of the data to
the nearest cluster and re-computing the clusters based on the new assignment
until some stopping criterion is met.

Let cj(t) be the j-th cluster center for j = 1, . . . , k at the t-th iteration and Cj(t)
the set of data samples, that are members of this cluster. In the beginning of
the algorithm, a suitable initialization for the clusters has to be set and hence
the following computations have to be conducted:

cj(t) =
1

‖Cj(t)‖ ∑
xµ∈Cj(t)

xµ, j = 1, . . . , k. (2.1)

Based on this, new memberships are computed by choosing the cluster repre-
sented by the prototype, that is closest to the respective samples:

Cj(t + 1) =
{

xµ

∣∣∣∣‖xµ − cj(t)‖ = min
j=1,...,k

‖xµ − cj(t)‖
}

, j = 1, . . . , k. (2.2)

Equations 2.1 and 2.2 are then alternately evaluated until a stopping criterion,
such as a maximal amount of iterations or the adaption of the centers is ap-
propriately small, is met. The algorithm iteratively computes k arithmetic pro-
totypes as means of the vectors in a cluster. An illustrative example for the
partition of a two dimensional data set that is clustered into four partitions is
shown in Figure 2.1.

An important issue for the k-means algorithm is the choice of the initial values
for the partitions as the approach is vulnerable to local optima. A naı̈ve ini-
tialization of the parameters is for example to sample randomly k data points
from the training set as centers for the first iteration. However, the literature
states that using k randomly chosen partitions of the data to compute the first
cluster centers from is a better strategy (Theodoridis and Koutroumbas, 2009).
Other strategies include a repeated execution of the algorithm in order to find
an optimal clustering.
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x1

x2

Figure 2.1: Example of partitions that are computed with k-means for 4 centers.

A further input to the algorithm, that is subject to an optimization is the num-
ber of cluster centers (Fraley and Raftery, 1998; Berkhin, 2002). Again, eval-
uating different parameter settings in multiple runs to find an optimum is a
widely applied strategy (Theodoridis and Koutroumbas, 2009).

The k-means algorithm is a comparably elementary clustering approach, which
makes it feasible in many applications. However, due to the computations of
the averages, the result is sensitive for outliers in the data. This leads naturally
to extensions of the algorithms, such as the k-medoids algorithm, where indi-
vidual data points from the training set are used as prototypes. This reduces
this sensitivity at the cost of an increased computationally complexity.

2.1.3 Hierarchical Clustering

Rather than computing a single partitioning of the given data as described
earlier, multiple so-called nested clusterings are computed in hierarchical clus-
tering (Johnson, 1967). Hierarchical clustering constructs a tree structured hi-
erarchy of clusterings, that is defined the following way: Let X = {x1, . . . , xN}
be a set of N data points. Based on this, a partition of the data with m clus-
ters is defined as C = {C1, . . . , Cm}, with Cj ⊆ X, Cj 6= ∅ and Ci ∩ Cj = ∅
for i 6= j. Further, two clusterings, say Ci, which comprises k clusters and Cj,
having k′ clusters with k > k′, are called nested (Ci @ Cj), if every cluster of
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x1

x2

C2

C1 C3

Figure 2.2: Complete (dashed lines) and single linkage (solid lines) distances for a sample data
set with three clusters.

Ci is a subset of a cluster in Cj (Theodoridis and Koutroumbas, 2009). Hence,
the hierarchical approaches construct all possible partitions using pre-defined
distance measures including the trivial clusterings, where all samples are in
the same cluster and where every sample has its own cluster.

The two main techniques to compute a hierarchical clustering are the agglom-
erative clustering and the complementary divisive clustering. In divisive clus-
tering, the nested clusterings are computed based on the clustering, that com-
prises all available samples C = {X}. In every iteration of the algorithm a
cluster is split into two separate clusters, such that a dissimilarity measure
for the resulting partition is maximized. Contrary, the agglomerative cluster-
ing versions start with partitions where every data sample is assigned to its
own cluster C = {{x1}, . . . , {xN}}. By iteratively combining the most similar
clusters, partitioning is coarsened step by step until one big cluster is formed
including every data point (Theodoridis and Koutroumbas, 2009).

For the agglomerative clustering approaches the similarity between two clus-
ters is measured with certain distance measures. A manifold of different mea-
sures are proposed in the literature that are mostly derived by choosing differ-
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ent parameters ai, aj, b and c for the following term (Webb, 2002):

di+j,k = aidik + ajdjk + bdij + c|dik + djk|. (2.3)

This defines the distance di+j,k of the cluster Ck to the union of the clusters Ci
and Cj based on the distance dik of clusters Ci and Ck, the distance djk Cj and
Ck, the distance of the clusters that are to be combined dij. Based on these
distances, the order of combination of the clusters is determined in different
approaches.

By choosing ai = aj = 1
2 , b = 0 and c = −1

2 the so-called single linkage
approach is rendered. Thus, the distance between two clusters equals the
distance between their respective closest members. Hence only a single link
between the clusters is required. Unfortunately, the method is vulnerable to
so-called chaining effects: If — in principle distant — clusters are connected
via a trace of chaining samples, it is possible that they are fused before other
clusters are combined, even if intuitively different combinations are favorable
(compare also Webb 2002, Figure 10.5). In other words elongated clusters are
preferred (Theodoridis and Koutroumbas, 2009).

The somewhat complementary approach is the complete linkage algorithm
(Defays, 1977). There, the distance between two clusters is computed using
the samples in two clusters, that are the most distant from each other. The
parameter setting for Equation 2.3 to render a complete linkage approach is
ai = aj =

1
2 , b = 0 and c = 1

2 . The complete linkage approach favors more
compact partitions than the single link clustering. Hence, if such a behavior is
desirable, this algorithm is preferable (Theodoridis and Koutroumbas, 2009).

An illustrative example for the single linkage and the complete linkage dis-
tance calculations is sketched in Figure 2.2. The two dimensional data set is
already partitioned into three clusters. The single link approach uses the dis-
tances of nearest neighbors of the respective clusters for the computation of
the distances (solid line), whereas the complete linkage uses the samples, that
have the farthest distance (dashed lines) (Webb, 2002).

In principle, many different approaches are thinkable and described in the
literature (Hartigan, 1975). For example, the centroid of each cluster can be
used for the computation of distances. This is rendered by setting ai =

ni
ni+nj

,

aj =
nj

ni+nj
and b = − ninj

(ni+nj)2 and c = 0. Here, ni and nj are the numbers

of samples in clusters i and j, that are combined. A further prominent ap-
proach is based on minimizing the variance ai =

ni+nk
ni+nj+nk

, aj =
nj+nk

ni+nj+nk
and

b = − nk
ni+nj+nk

and c = 0 (Ward, 1963). Approaches like the group average
and the median hierarchical clustering algorithms are described for example
in (Webb, 2002) or (Theodoridis and Koutroumbas, 2009).



2.1. Basic Unsupervised Learners 17

Data points

D
is

ta
nc

e
d

0 1 2 3 4 5 6 7 8 9 10

Figure 2.3: Dendrogram for the single linkage algorithm with a cut-off level for three clusters
marked with a dashed line.
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A special feature of hierarchical clustering is the possibility to visualize the
cluster tree using so-called dendrograms. A dendrogram is a tree diagram,
where every data sample is assigned to a leaf of the tree in the x-axis (compare
Figure 2.3). On the y-axis, the distance of the clusters is displayed. If two
clusters are fused at a distance d, an edge is drawn between the two clusters
at y = d, which is the new representative for the new cluster. The number of
clusters in a data set can be relatively intuitively determined. For example in
Figure 2.3 the dashed horizontal line marks a clustering of eleven data points
with three partitions.

2.1.4 Gaussian Mixture Models

A probabilistic approach to clustering is the Gaussian mixture model (GMM)
(Bishop, 2006; Kriegel et al., 2011). The clusters are described in this approach
using multiple probability density functions, that are implemented using multi-
variate Gaussians.

A Gaussian mixture model is formally defined as a linear superposition of K
Gaussians N (µk, Σk) with means µk and covariances Σk (Bishop, 2006):

p(x|π, µ, Σ) =
K

∑
k=1

πkN (x|µk, Σk).

The πk form the weights of the individual Gaussians with the following con-
straints:

0 ≤ πk ≤ 1;
K

∑
k=1

πk = 1.

A Gaussian distribution is completely defined by its mean and the covariance
matrix:

N (x|µ, Σ) =
1

((2π)
l
2 |Σ| 12 )

exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
.

Here l denotes the dimensionality of the data. A simple example for a one
dimensional Gaussian mixture model with two components is shown in Figure
2.4. The single Gaussians F (blue) and G (red) are combined using 0.7 · F(x) +
0.3 · G(x) to form the darkish yellow probabilistic density function in Figure
2.4.

Gaussian mixture models are commonly trained using the so-called expecta-
tion maximization (EM) algorithm (Dempster et al., 1977). As the name sug-
gests, the algorithm is composed of alternations of the expectation and the
maximization steps. In the expectation step the current model is evaluated
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p(x)

F(x)
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0.7 · F(x) + 0.3 · G(x)

Figure 2.4: A Gaussian mixture model with two mixtures in one dimension.

with the given data to compute the posterior probabilities p(x|πi, µi, Σi) for
the components. The outcome is then used to iteratively re-estimate the pa-
rameters of the mixture model.

After the initialization of a model with K components, the responsibility γ for
a data point xn of the k-th component is computed (E-Step):

γ(znk) = p(z = k|xn) =
πkN (xn|µk, Σk)

∑K
j=1 πjN (xn|µj, Σj)

.

Based on γ, the model is re-estimated using the following equations (M-Step):

µnew
k =

1
Nk

N

∑
n=1

γ(znk)xn

Σnew
k =

1
Nk

N

∑
n=1

γ(znk)(xn − µnew
k )(xn − µnew

k )

πnew
k =

Nk
N

with Nk =
N

∑
n=1

γ(znk).

Hence the new centers µnew
k of the Gaussians are computed from the average of

the data weighted by the responsibility, that is assigned to the particular com-
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ponent. The new covariance matrix Σnew
k is computed analogously by comput-

ing a standard covariance but with a weighting mechanism with respect to the
responsibility of the component for the data samples. The new weights for the
components πnew

k are computed using the over-all normalized responsibility
of the individual component.

The E and M-steps are iterated until a stopping criterion is met. This is often
based on the log likelihood of the data for the present model, which is com-
puted as follows:

ln p(X|µ, Σ, π) =
N

∑
n=1

ln

{
K

∑
n=1

πkN (xn|µk, Σk)

}
.

If the likelihood decreases beyond a certain threshold during the iterations,
the algorithm terminates. Alternatively a maximum number of runs of the
approach can be defined. Combinations of both strategies are also commonly
implemented.

The EM-algorithm is closely related to the k-means algorithm described in Sec-
tion 2.1.2. The k-means is commonly used to find a proper initialization for
the means of the Gaussian mixture components. This should mitigate the gen-
eral liability to local minimums. A further issue in the context of the GMM
is that the number of components have to be determined in advance (Fraley
and Raftery, 1998). A popular technique to find an optimal model is to con-
duct multiple runs with different parameters and to choose the optimal, for
example with respect to the likelihood.

In order to mitigate the computational complexity, different constraints can be
applied to the covariance matrix of the models. One possible approach is to
allow only entries on the diagonal of the matrix and the rest of the matrix is
set to zero. Thus, the variance of the resulting Gaussians are bound to the axis
and skewed probability densities are not possible. In order to further constrain
the covariance matrix, all entries of the diagonal can be restricted to a single
number. This constraint is called a spherical covariance matrix as the resulting
Gaussian has hence the shape of a hypersphere in the feature space.

A method to improve the probability densities under the utilization of ensem-
bles of GMM has recently been published by Glodek et al. (2013b). Different
configurations for the models, for the covariance and the number of centers
are used in this approach in order to integrate the individual errors out in the
combination of the single models. It has been shown experimentally, that this
technique can improve over other approaches for the estimation of probability
density functions.
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2.1.5 Discussion

In this chapter, unsupervised learning or clustering is described. Based on the
definition of a dissimilarity measure in Section 2.1.1, the k-means algorithm
is introduced in Section 2.1.2. Further, hierarchical clustering is discussed in
Section 2.1.3 together with the concept of the dendrogram, which is a powerful
means to visualize clustering results. The Gaussian mixture model is described
in Section 2.1.4 as a clustering technique based on probabilistic models. The
EM-algorithm is commonly used for the training of the model.

This chapter covers only a small part of the rich literature on unsupervised
learning. Other prominent techniques are for example the learning vector
quantization (Kohonen, 1998) and the neural gas clustering (Martinetz and
Schulten, 1991). A further unsupervised technique, that is commonly used
for dimensionality reduction is the principal component analysis, that is con-
ducted by computing the eigenvectors of the covariance matrix of the data.
These eigenvectors span a new basis for the given data. The different ap-
proaches are extensively discussed in the textbooks, for example in (Webb,
2002; Bishop, 2006; Theodoridis and Koutroumbas, 2009) only to mention some.

There is a manifold of different applications for the described unsupervised
learning (Theodoridis and Koutroumbas, 2009).

• The grouping of entities can be used for the generation and testing of
hypotheses.

• A prominent application is data reduction: For example if data is con-
veyed over a slow channel it can be beneficial not to transmit every data
sample, but it may be enough send the index of the nearest prototype.

• A further application is the generation of so-called codebooks. Here, dif-
ferent clusters are formed to characterize a distinct concept. Constructing
such codebooks for multiple concepts allows to conduct a classification
process.

In this work unsupervised learning will be used as a means to implement a
partially supervised learning process as described in Section 5.3. This com-
prises an unsupervised preprocessing step, that incorporates unlabeled data
in order to conduct a re-encoding of the labeled data, that is henceforth used
for a supervised classification.
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2.2 Basic Supervised Learners

For supervised machine learning techniques a teacher signal is added to the
training samples. This makes it feasible to construct classifiers, that assign
categorical labels to patterns, that are not a member of the training set. A
statistical classifier is a function f , that maps data samples x ∈ X to one of C
predefined categories or labels y ∈ Y. Hence, f is formally defined as follows:

f : X → Y.

Thus, the input space X is subdivided into multiple regions Ωi, i = 1, . . . , C,
where the decision for the samples within the region is made in favor for class
yi. The boundaries of the Ωi are called decision boundary (Webb, 2002).

In order to obtain such a function, labeled data samples (xi, yi) are presented
to the model. For the optimization to a given data set, a so called loss func-
tion is defined, that is minimized during the training of the classifier. The loss
function is defined via the so called loss matrix (Webb, 2002; Bishop, 2006):

λji =
(

cost of f (x) = yi, when x ∈ yj
)

j,i=1,...,C .

Typically, the cost for correct classifications is zero and the cost for a misclassi-
fication is greater than zero. In principle different confusions can be weighted
differently in this context.

Based on this, the conditional risk to assign the pattern x to the class yi is de-
fined as follows (Webb, 2002):

li(x) =
C

∑
j=1

λji p(yj|x).

Here p(yj|x) is the conditional probability of class yj given the data point x and
C is the number of classes. Integrating over the regions Ω1, . . . ΩC returns the
over-all expected costs:

r =
C

∑
i=1

∫
Ωi

C

∑
j=1

λji p(yj|x)p(x)dx.

A typical process for the construction and evaluation of a statistical classi-
fier is depicted in Figure 2.5. The input samples are conducted through an
application-specific preprocessing and feature extraction step (compare Chap-
ter 3). Based on the respective feature representations, the classifier is con-
structed for example based on the techniques described in the following sec-
tions. Above the training procedure the testing protocol is depicted, which is
separated from the training classifier by the means of the input samples. Its
specific steps are however determined in the respective training steps of the
figure.
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Figure 2.5: The principle process of statistical pattern recognition: The training procedure
defines the preprocessing, the feature extraction and the learning of the classifier. The testing of
the resulting classifier is separated from the training procedure in order to asses its performance
correctly. Adapted from Jain et al. (2000).

2.2.1 Linear Models for Classification

A simple and well established technique to construct a classifier is the utiliza-
tion of a linear discriminant function (Bishop, 2006):

y(x) = wTx + b,

where the parameter b is called bias and w is the weight vector. The vector w
is multiplied with the data sample x using the inner product. The parameter
b is called bias. Classification is conducted in this context by comparing the
y(x) to 0. If y(x) ≥ 0, x is classified as C1 and as C2 otherwise. An illustrative
example for such a linear classifier is given in Figure 2.6 as a single unit with
input x, weight vector w and bias b producing the output y.

The model is only applicable, if the problem is linearly separable, which is a
major limitation of this type of classifier as this is generally not the case in
real world applications. The most prominent example for a problem, that is
not feasible using a single linear discriminant function is obviously the well-
known Xor-problem (Minsky and Papert, 1972).

The two class linear classifier can be extended to problems with C classes by
either constructing C− 1 classifiers, which are separating the samples of each
class from the data points, that are not in this class (one-vs.-rest), or alterna-
tively a discriminative function could be created for every pair of classes and
a voting is conducted to make a decision (one-vs.-one). A further variant is to
use a one out of C coding of the data using a C dimensional vector with an
entry unequal to zero at the respective position.

There are different approaches in the literature to find suitable parameters w
and b described here. The following sections will introduce two important
techniques to learn them from a given training set. This comprises pseudo in-
verse algorithms, that creates the least squares solution, which is a fast and effi-
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Figure 2.6: A linear model for classification.

cient way to compute a linear classifier, and the perceptron learning algorithm,
that is a historically important approach for the machine learning community.

2.2.1.1 Least Squares Solution

For the linear least squares solution a classifier is constructed by solving the
following linear equation (Bishop, 2006):

y(x) = ŴTx̂.

This equation pools the k = 1, . . . , C individual linear equations for each class:
yk = wT

k x + wk0. As usual x is the training data and the wk comprises the
weights for the dimensions, that are stored in the k-th column of W. In the
matrix notation, the bias wk0 is set as an additional entry in this column, that
finds its corresponding entry in the new input vector x̂ with a 1 at the respec-
tive entry. The matrix X is unfortunately not invertible in most cases and hence
the so called Moore-Penrose pseudo-inverse (Penrose, 1955) is applied.

W = (XTX)−1XTY = X+Y

For the computation of the pseudo-inverse X+, the matrix X is defined with
the training data samples x̂n in its rows. Further, Y stores the respective labels
in the one out of C coding. This results in the following classifier (Bishop,
2006):

y(x) = WTx̂ = TT (X+
)T

2.2.1.2 Perceptron

A further interesting way to construct a linear classifier for a two class prob-
lem is the perceptron learning algorithm (Rosenblatt, 1962). The leaning of the
linear model is conducted by iteratively presenting the training data. Again,
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the function y(x) = wTx + b is used to create a classifier and the target classes
T for a sample x are defined to govern in {−1, 1}.
Thus, the weights at iteration t, i.e., w(t), are adapted to w(t+1) by adding the
sample vector to the weight vector, discounted by a learning rate η.

w(t+1) = w(t) + η(T − y)x.

The bias parameter b is analogously augmented as follows:

b(t+1) = b(t) − η(T − y).

A classification of a new sample is hence conducted with this model with the
so called Heaviside transfer function:

f (y) =
{

1, y ≥ 0
0, y < 0.

An illustration of the learning process is shown in Figure 2.7. The encircled
white data sample is presented to the perceptron and a misclassification is de-
tected (1). The normal of the separating hyperplane is adapted according to
the presented sample (2). Finally, the new linear classifier is obtained (3) and
the whole process is repeated.

It has been proven that the perceptron learning algorithm converges if the un-
derlying problem is linearly separable. If this is not the case it can be forced
to converge, for example by discounting the learning rate with the number of
iterations.

2.2.2 Multilayer Perceptron

The multilayer perceptron (MLP) overcomes the limitation of the single per-
ceptron of depending on linearly separable problems to find a decision bound-
ary by using a layered structure of multiple units (Bishop, 2006; Webb, 2002).
An MLP with two layers is shown in Figure 2.8. It comprises one hidden layer,
an output layer and an input layer, that is commonly not counted as an in-
dependent layer because no computation is conducted here. Each unit in a
layer receives its input from every unit of the preceding layer and distributes
its output to every unit in the subsequent layer.

The j-th individual unit in the first hidden layer is represented by the weights
w(1)

ij for i = 1, . . . , D. In this context, D equals the dimension of the input vector
x. Further, wj0 is additive bias value. Thus, the intermediate output of the unit
is given by the following term (Bishop, 2006):

a(1)j =
D

∑
i=0

w(1)
ji xi + w(1)

j0 .
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(1)

(2)

(3)

x1

x2

Figure 2.7: An illustrative example for the perceptron learning rule. The black and white
circles resemble the data samples, that are labeled in two classes. The encircled white sample
is presented to the learning algorithm (1) and the normal vector of the decision boundary is
shifted with respect this point (2). This renders the new boundary (3).

The value of a(1)j is then further processed by a squashing function σ:

yj = σ(a(1)j ).

Unlike the perceptron, where the Heaviside function is applied, the units in the
MLP use a differentiable transfer function for example the logistic function:

σ(a) =
1

1 + exp(−βa)
, β > 0.

This can be interpreted as the probability of the respective neuron to fire. In
principle, other differentiable functions can be used such as the hyperbolic tan-
gent or a linear function, as it is often used for the output layer.

Following the structure given in Figure 2.8, the output of the k-th neuron of
the output layer of a neural network with one hidden layer is given by the
following term (Bishop, 2006):

yk(x, w) = σ

(
M

∑
j=0

w(2)
jk h

(
D

∑
i=0

w(1)
dj xi

))
.
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x1

x2

x3

x4

...

xD

y1

y2

y3

...

yK

...

... ...

w(2)
jk

w(1)
dj

input layer hidden layer output layer

Figure 2.8: Multilayer perceptron having one hidden layer. The input x = (x1, . . . , xD) to
the network is provided via the input layer. The hidden layer is implemented using sigmoid
neurons with weights w(1)

dj . The output layer is resembled of linear units, that incorporate the

weight vectors w(2)
jk . The respective bias parameters are omitted in this image for simplicity.

Adapted from (Webb, 2002).



28 Chapter 2. Basic Methodical Principles

Here h and σ are the transfer functions for the hidden layer and the output
layer. The dimensionality of the input data equals D, the size of the hidden
layer equals M and the weight for the units in the first and second layers are
denoted with a superscript index.

The training of a MLP is usually conducted by minimizing the mean square
error between the actual output of the network y for the data sample xn and
the teacher signal tn:

E(w) =
1
2

N

∑
n=1

(y(xn, w)− tn)
2 .

This minimization is normally carried out using a gradient descent and error
back-propagation (Rumelhart et al., 1986). That means, that the weights of the
network at iteration i are adjusted to w(i+1) by traversing into the direction
of the negative derivative of the error with respect to the value of w with a
learning rate η:

w(i+1) = w(i) − η∇E
(

w(i)
)

.

As the transfer functions in all layers are chosen to be differentiable, this ap-
proach is feasible and the deduction of the learning rules can be found in most
of the textbooks on neural networks and pattern recognition such as (Bishop,
2006) or (Webb, 2002).

The MLP has been proven to be a universal function approximator if enough
units are provided in the hidden layers (Hornik, 1991; Cybenko, 1992). How-
ever, as the gradient descent is a greedy optimization technique, it is very likely
that the gradient descent stops in a local optimum. This makes a proper initial-
ization of the weights crucial. Furthermore, there are several important param-
eters that have to be configured externally, such as the learning rate η, the num-
ber of neurons in the hidden layer and the number of hidden layers. Another
issue considering the gradient descent is that the learning algorithm could con-
verge slowly when the derivatives are close to zero, for example when the error
curve has the shape of a plateau or the sigmoid functions are in the saturation
areas.

There are many approaches to improve over the plain gradient descent algo-
rithm. For example a momentum term can be integrated into the learning for-
mula in order to also use the ∆w of the preceding iteration in the current rep-
etition (Qian, 1999; Rumelhart et al., 1986). A further prominent extension is
RPROP by Riedmiller (1994), implementing an approach, that aims at making
the step size independent of the current magnitude of the gradient by using
only the sign of the gradient together with the learning rate.
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Figure 2.9: Definition of the margin of a linear SVM. The decision boundary (solid black line)
is defined by maximizing the margin (dashed lines), which is defined by the support vectors
(SV) denoted as encircled samples.

2.2.3 Support Vector Machine

The support vector machine (SVM) is one of the recently most frequently used
classification technique (Bennett and Campbell, 2000; Schölkopf et al., 2000;
Schölkopf and Smola, 2001). The key idea for this approach is to find a sepa-
rating hyperplane in the feature space, where the margin is maximized. The
margin is defined as the distance of the decision hyperplane of the SVM to the
nearest data sample as it is sketched in Figure 2.9. The definition of the margin
is motivated by the structural risk considerations in statistical learning theory
(Vapnik, 1998, 1999), which is defined in order to assert a good generalization
of the classifier. This margin is formed by the so called support vectors (SV),
that are used to describe the classifier, the SV are denoted as encircled data
points in Figure 2.9.

In principle, the SVM is defined as a linear classifier in the feature space, that
can be augmented to nonlinear problems by using a nonlinear feature space
mapping φ(x) (Cortes and Vapnik, 1995)

y(x) = wTφ(x) + b. (2.4)

The parameters w and b are defined as described earlier as weights and bias for
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linear classifiers. Further, is x the input sample and y the classification result.
The classifier is defined for two-class problems, that are given as training data
(x1, . . . , xn) with target labels (t1, . . . , tn). The labels are defined to be in the
set {−1,+1}. The extension to multiple classes can be conducted by one-vs.-
one or one-vs.-rest approaches. In the following the SVM will be theoretically
introduced first in the linear case and the extension to nonlinear problems will
be discussed afterwards.

The separating hyperplane in Equation 2.4 is defined by setting y(x) = 0. Fur-
ther, the margin is formally defined by 1/‖w‖. Hence, maximizing the margin
can be conducted by minimizing ‖w‖ under the following constraint (Webb,
2002):

ti(wTxi + b) ≥ 1.

This can be conducted using the Lagrange multipliers a = a1, . . . , an with ai ≥
0, resulting in the following objective function (Webb, 2002):

L(w, b, a) =
1
2
‖w‖2 −

N

∑
n=1

an

{
tn(wTxn + b)− 1

}
.

This equation is commonly called the primal form. It is solved by differentiat-
ing L with respect to w and b. This returns the following constraints (Bishop,
2006):

w =
N

∑
n=1

antnxn

0 =
N

∑
n=1

antn.

Substituting these results in the primal form yields the dual representation of
the SVM (Webb, 2002):

L̃(a) =
N

∑
n=1

an −
1
2

N

∑
n=1

N

∑
m=1

anamtntmxT
n xm.

The dual form is maximized subject to ai ≥ 0 and ∑N
i=1 aiti = 0. This is a

quadratic optimization problem with N variables, that can be solved using
standard techniques such as quadratic programming. The dual representation
is in many cases easier to optimize (Bishop, 2006). Further, this formulation
using the inner product can be used to extend the SVM to nonlinear problems
as we will see later in this section. The support vectors are thus given by those
samples xi, where the respective Lagrange multiplier is not equal to 0. The
classifier is then constituted by

y(x) =
N

∑
n=1

antnxTxn + b.
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The above described SVM obviously relies on linearly separable classification
problems, that may not be the case in most applications. Hence the defini-
tion of the margin is normally augmented in order to allow a certain amount
of margin violations. Thus, new parameters, the so called slack variables,
ξ1, . . . , ξN are introduced, reflecting the degree of violation of the respective
data sample. This is done by setting ξi = 0 if xi is classified correctly, 0 < ξi ≤ 1
if the sample xi is on the correct side of the hyperplane but violates the margin
and ξi > 1 if the respective sample xi is misclassified. Hence the equation for
the margin is altered to

C
N

∑
n=1

ξn +
1
2
‖w‖2.

The new parameter C is used to adjust the impact of margin violations and has
to be set externally (Thiel, 2010). This new formulation also yields a modified
primal form of the SVM

L(w, b, a) =
1
2
‖w‖2 + C

N

∑
n=1

ξn −
N

∑
n=1

an

{
tn(wTxn + b)− 1 + ξn

}
−

N

∑
n=1

µnξn.

This is transformed into the dual form by also differentiating with respect to
ξi, i = 1, . . . , N. The respective deductions can be found in pattern recognition
and machine learning textbooks, for example (Webb, 2002; Bishop, 2006).

As mentioned before, the SVM can be further extended to solve nonlinear clas-
sification problems. This is conducted by mapping the original data into a new
feature space by a fixed transformation φ:

y(x) = wTφ(x) + b.

This new feature space can easily have a higher dimensionality than the origi-
nal data and thus it is more likely, that the data set is linearly separable (Cover,
1965). Hence, the dual representation is transformed to the following equation
(Bishop, 2006):

L̃(a) =
N

∑
n=1

an −
1
2

N

∑
n=1

N

∑
m=1

anamtntmφ(xn)
Tφ(xm).

The scalar product φ(xn)Tφ(xm) in not necessarily computed explicitly, but can
be replaced by a so called kernel function (Schölkopf and Smola, 2001). These
kernels k(xn, xm) implicitly compute the inner product in the feature space,
which is commonly called “kernel trick”. In order to construct a valid kernel
function, the so called Mercer’s conditions have to be fulfilled (Vapnik, 1998):

k(xn, xm) = k(xm, xn)
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∫
k(xn, xm) f (xn) f (xm)dxidxj ≥ 0

with ∫
f 2(x)dx < ∞.

Prominent kernels, beside the linear kernel xT
n xm, are the polynomial kernel

(1 + xT
n xm)p and the RBF kernel exp(−‖xm − xn‖2 /σ2) with σ 6= 0 (Webb,

2002). These kernels incorporate additional parameters, i.e., the degree of the
polynomial p and the variance of the RBF function σ2, that have to be chosen
externally. The optimization of these parameters has to be adequately incorpo-
rated into the training procedure such that over-fitting is avoided.

In the standard version, the SVM is only able to process crisp class labels in
both, the training procedure and the class retrieval for test samples. How-
ever, there exist a variety of different extensions to the SVM, that soften that
constraint and incorporate probabilistic or fuzzy labels in the training of the
classifier and the classification of an unseen sample (Thiel, 2010). The most
prominent approach to obtain a probabilistic class assignment for a test sam-
ple is introduced by Platt (1999a):

p(t = 1|y) = 1
1 + exp(Ay + B)

.

A and B are usually optimized with respect to the least squared error (Platt,
1999b) of the estimates to the true (probabilistic) labels and the distance to the
hyperplane.

There are also attempts to incorporate fuzzy memberships into the deduction
of the hyperplane (Lin and D., 2002; Huang and Liu, 2002). A rather intuitive
method is proposed by Thiel et al. (2007), who incorporate the information
about fuzzy labels as an additional factor into the slack term

C
N

∑
n=1

(ξ+n m+
n + ξ−n m−n ) +

1
2
‖w‖2.

The new variables m+
n and m−n store the fuzzy memberships for the n-th data

sample. The punishment of margin violations are thus regulated proportional
to the membership of the respective class.

This kind of fuzzy SVM has been very successfully applied in several difficult
applications such as the voice quality classification (Scherer et al., 2013), dis-
crimination of facial expressions (Thiel, 2010; Schels and Schwenker, 2010) and
emotional spoken utterances Thiel et al. (2007).
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x1 > θ1 ∨ x1 ≤ θ1?

x2 > θ2 ∨ x2 ≤ θ2?

Leaf 1 Leaf 2

x2 > θ3 ∨ x2 ≤ θ3?

x1 > θ4 ∨ x1 ≤ θ4?

Leaf 3 Leaf 4

Leaf 5

Figure 2.10: A sample decision tree. The threshold values θ1, . . . , θ4 are used to partition the
data space in a tree based structure. The decision for a new sample is made in the leafs of one
of the five leafs. Adapted from (Bishop, 2006).

2.2.4 Decision Trees

Decision trees construct a binary tree classifier, where each node represents a
threshold decision for a dimension of the data. These thresholds define the
path to different leaf nodes of the tree, that represent the various categories.
Such a decision tree is depicted in Figure 2.10, where the variables x1 and x2
are processed in a tree with four nodes and five leafs. In every node a threshold
θi is evaluated for the respective variable and the left or right path is taken as
denoted by the symbol ∨. The decision tree resembles a set of rules, which
are used to implement a classifier. This makes this approach appealing for
some applications since these rules are easier to interpret than, for example,
the weight vectors in neural networks or SVM. On the other hand the decision
tree is restricted to due to its construction to a tile-like structure as depicted in
Figure 2.11. There, the representation of leafs in a decision tree based coarsely
on Figure 2.10 is depicted. The class regions are rectangular areas in a two
dimensional space, that mark the areas for the different categories.

The decision tree is constructed by iteratively determining the optimal feature
split by defining the decrease in impurity (Webb, 2002):

∆Q = Q(t)−
(

Nleft
N

Q(tleft) +
N − Nleft

N
Q(tright)

)
where Q is an impurity measure and N and Nleft are the numbers of samples in
the parental node and the left child node. In order to construct a valid impurity
measure, the following constraints must hold (Breiman et al., 1984; Raileanu
and Stoffel, 2004): It is maximal if the relative frequency of the classes for the
samples in the partition is equal to 1/C, with C being the number of classes.
Further it has to be minimal if all samples of the respective partition are of one
class. And finally, it has to be a symmetric function of its inputs.
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Leaf 1
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Leaf 3 Leaf 4

Leaf 5

θ1 θ4

θ2

θ3

x1

x2

Figure 2.11: Partition of a 2-dimensional space into five different regions for the decision tree
depicted in Figure 2.10. Adapted from (Bishop, 2006).

The simplest impurity measure, that is used for decision trees is the misclassi-
fication index:

Qmis(p) = 1−max
j

pj.

Here p = p1, ..., pC denotes the relative frequencies of the C classes in the data
set. A further measure is the well-known Gini index, that is used in Breiman’s
classification and regression trees (CART) (Breiman et al., 1984):

QGini(p) = 1−
C

∑
k=1

p2
k.

The entropy impurity measure is applied in the well-known ID3 (Quinlan,
1986) and its derivative the C4.5 (Quinlan, 1993) algorithm:

Qent = −
C

∑
k=1

pk log2 pk.

However, growing the tree until full purity in the nodes is achieved may re-
turn an over-trained classifier. Hence so called pruning techniques have been
developed, that revert some steps of the training of a tree in order to obtain a
proper generalization. Most of these approaches use a validation set on which
the generalization is tested for the decision tree. However, we will see that
pruning is not necessary when constructing a random forest (Breiman, 2001)
as an ensemble approach composed of multiple decision trees, which will be
discussed in Section 2.4.
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2.2.5 Discussion

Supervised learning has proven to render reliable classifiers in many applica-
tions (Webb, 2002; Bishop, 2006; Theodoridis and Koutroumbas, 2009). How-
ever, the approaches in this chapter rely on a carefully engineered training
set with thoroughly labeled data in well defined classes (Bache and Lichman,
2013). But in many real world applications, it is relatively easy to collect data,
for example with cameras and microphones, but the annotation of well-defined
categories is very expensive or even not directly possible (Walter et al., 2011;
Scherer et al., 2012a), which is circumvented for example by subjective annota-
tion (Schuller et al., 2011) or global labeling (Walter et al., 2011). This typically
renders a very weak classification performance. In order to still obtain robust
classifier outputs, the plain statistical model has to be augmented towards the
combination of information from multiple sources, which will be reviewed in
Section 2.4, partially supervised learning, which will be addressed in Section
2.5 and the temporal integration of intermediate decisions in a time sequence,
that will be discussed in Section 5.2.

A further prominent challenge for statistical pattern recognition is the fact that
the distribution of classes is in many cases unbalanced, i.e., there are many
samples available for some classes and only few for others. This is sometimes
addressed by using under or oversampling techniques (Kubat and Matwin,
1997; Chawla et al., 2002). A further approach is to incorporate weights into
the loss function for the training process such that misclassification of the mi-
nority class is punished more severely than the majority class. This is further
addressed in Section 5.4 of this thesis.

2.3 Learning under Uncertainty

Uncertainty is a powerful concept, which becomes increasingly important in
computer science (Bishop, 2006; Thiel, 2010) and will be addressed in the fol-
lowing. It will be used for the combination of multiple classifier systems and
the stabilization of intermediate classification results. In this chapter, the basic
concepts for the classification under uncertainty are presented. In Section 2.3.1,
the basic uncertainty calculi are introduced. The estimation of an uncertainty
value from a classifier is discussed in Section 2.3.2. An outlook for popular
applications of uncertainty measures is given in Section 2.3.2. A discussion of
the matter is given in Section 2.3.4.
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2.3.1 Uncertainty Calculi

In this section probability theory and the Dempster-Shafer theory of evidence
are described exemplarily for the different ways to use uncertainty measures.

2.3.1.1 Probability Theory

The most frequent way to model uncertainty is to use probability theory. The
triplet (Ω, A, p) is called probability space for a universe Ω, which is the set
of possible outcomes, A is a so called σ algebra and p is a probability measure
(Spies, 1996). A σ algebra is defined as a set of subsets of Ω, that is not empty
and is closed under complementation and countable unions. The probability
measure p has to fulfill the so called Kolmogorov axioms:

• Non-negativity: p(Ai) ≥ 0 ∀Ai ∈ A

• Unitary: p(Ω) = 1

• σ-additivity: p(∪i∈I Ai) = ∑i∈I p(Ai) for any countable many events
Ai ∈ A, that are pairwise disjoint.

The conditional probability of an event A given the event B is then defined as:

p(A|B) = p(A ∩ B)
p(B)

with p(B) > 0

A and B are statistically independent if the probability of A given B equals the
probability of A solely: p(A|B) = p(A) holds. Hence, the joint probability
equals the product of the individual probabilities of the events p(A ∩ B) =
p(A)p(B).

Further, the so called sum and product rules are as follows:

sum rule: p(A) = ∑
B

p(A ∩ B)

product rule: p(A, B) = p(B|A) · p(A)

Based on the product rule and the symmetry of p, the fundamental Bayes the-
orem is derived:

p(A|B) = p(B|A) · p(A)

p(B)
.

In the context of the Bayes theorem, p(A|B) called probability of A given B or
a posterior probability and p(A) and p(B), which is used as a normalization
factor, are called prior probabilities.
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2.3.1.2 Dempster-Shafer Theory of Evidence

A further theory for the incorporation of uncertainty and information fusion,
that is often considered an extension of Bayesian theory is the theory of evi-
dence by Dempster (1968) and Shafer (1976). The basics of the theory are based
on the so called frame of discernment Ω, which is the set of elementary events,
that are disjoint and complete. For every element of the power set of Ω, a basic
probability assignment m : 2Ω → [0, 1] is defined. The following constraints
hold on m:

m(∅) = 0 and ∑
A∈2Ω

m(A) = 1,

where ∅ is the empty set. Based on this the belief in a hypothesis A can be
expressed based on the probability mass of the supporting subsets B ⊆ A with
B 6= ∅. Thus the belief function bel : 2Ω → [0, 1] is defined as the summation
over the probability mass of B:

bel(B) = ∑
A⊆B

m(A).

In order to combine two basic probability assignments m1 and m2, different
rules of combination have been proposed. The most prominent is the orthogo-
nal sum or Dempster’s rule of combination is defined as follows:

m1 ⊕m2 = m12(C) = K ∑
A,B:A∩B=C

m1(A) ·m2(B).

The variable K is a normalization factor, that is defined by

K−1 = 1− ∑
A,B:A∩B=∅

m1(A) ·m2(B) = ∑
A,B:A∩B 6=∅

m1(A) ·m2(B).

The theory of evidence is able to distinguish between having no knowledge
about a hypothesis and not supporting a hypothesis. Further, a believe assign-
ment can not only be given to elementary hypothesizes but also to coarser sets
of individual hypotheses.

2.3.2 How to Measure Uncertainty

An important issue in the context of classification is to derive a suitable fuzzy
or probabilistic result from a statistical classifier. A standard approach to de-
rive a valid probabilistic classifier answer is to normalize the outputs of a con-
tinuous classifier such as a neural network (Kuncheva, 2004). One way to that
is the so called soft-max function:

g′j(x) =
exp(gj(x))

∑C
k=1 exp(gk(x))

.
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Here, gj, j = 1, . . . , C is the output for the j-th class for a sample x and C is the
number of classes. This asserts, that all new class memberships g′j are in [0, 1]
and the values sum up to one.

A variant for two-class problems is to use the logistic link function to normalize
the output. This yields for class 1 the following squashed probabilistic results
for a sample x:

g′1(x) =
1

1− exp(−g1(x))
.

Hence for class 2, the new probabilistic value g′2 is given by

g′2(x) = 1− g′1(x).

The outputs of the original classifier can also be treated as a further optimiza-
tion problem for a statistical learner. For example the above described method
can be extended using a fermi function, that can be optimized for a given prob-
lem:

g′1(x) =
1

1− α exp(−βg1(x))
.

Platt (1999b) proposed an effective method to optimize α and β, that is fre-
quently used for SVM. Here the distance to the separating hyperplane is used
to rate the confidence of a classification.

A further possibility, that is often used in the literature is to create multiple
diverse classifiers, which is often called classifier ensemble (compare Section
2.4 for an elaborate discussion) and use the agreement of the ensemble as con-
fidence measure. Krogh and Vedelsby (1995) use the variance of individual
classifiers around a weighted mean value as confidence, which they call ambi-
guity a:

a(x) = ∑
α

wα (Vα(x)− V̄(x))2 .

Here, Vα is the α-th individual classifier and the mean classifier answer for
sample x is denoted as V̄(x). Hansen et al. (1997) use a voting approach to com-
pute a classification uncertainty, which they call consensus value. Concretely,
they normalize the number of votes for the winner class with the number of all
classifiers.

There are also attempts to model the confidence of a classification on a lower
level from the quality of the data. For example, Poh et al. (2007) use global
parameters in a human face verification system by explicitly modeling states,
where the classification performance will be good or bad. Such a parameter
could be “good illumination” versus “bad illumination”. Further, Thiel (2010)
describes an approach to weight the decision of a system for the recognition
of facial expressions by the over-all movement in the individual images of a
video.
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2.3.3 Applications

Incorporating uncertainty values in a classification process has been studied
and evaluated in many different real word scenarios. Especially for challeng-
ing problems and larger classification architectures, it is beneficial to postpone
making a crisp decision as long as possible.

Another common application for probabilistic class memberships is the field
of classifier fusion (Kuncheva, 2004; Schels et al., 2009). For the combination
of information of multiple sources, it is crucial to have an accurate probability
estimate. This enables to correct decisions of individual classifiers, that are
possibly wrong (compare Section 2.4 for an introduction in MCS).

A widely used technique using uncertainty measures is the classification us-
ing reject options (Chow, 1970; De Stefano et al., 2000). This means, that if
the classifier shows uncertainty values over a distinct threshold, no decision is
drawn. This implies, that making no classification at all is a better option than
triggering a false alarm. Such approaches have been successfully evaluated by
Glodek et al. (2012a,b) on the AVEC 2011 data collection for the recognition
of affective states from audio-visual data. Further a smoothing technique has
been applied in order to still return results for all time steps.

A variant of the multiple classifier fusion is the integration of intermediate
classification results of the same model over a time period. This often enables
one to still render a good classification result, even if the direct results are very
weak (Schels et al., 2012a; Glodek et al., 2012a). This follows the assumption,
that the respective phenomena, i.e., class labels, in a non-stationary process do
not change quickly over time. A systematical evaluation of the temporal inte-
gration in the context of audio-visual emotional data collections is conducted
in Section 5.2.

Another application is the integration of unlabeled data into a supervised clas-
sification process in the framework of partially or semi-supervised learning
(Zhu, 2005). Measuring confidences is also crucial in this process: Often, the
unlabeled data is classified by some pre-trained model and according to the
confidence, the data is added to a training set of the same or a different classi-
fier (Blum and Mitchell, 1998; Hady, 2011). In active learning, the most uncer-
tain classification is selected to conduct a query to an expert.

However, at a certain step in an information processing system, a crisp deci-
sion is normally mandatory. This can be the case, when an action has to be
conducted in a bigger architecture or for computing a profane classification
accuracy.
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2.3.4 Discussion

In this section, different techniques for the incorporation of uncertainty into
a statistical classification process are discussed. Besides the two probabilistic
calculi, that are presented here, namely probability theory and the Dempster-
Shafer theory of evidence, additional approaches are possibility theory (Zadeh,
1999) or fuzzy logic (Hajek, 2010), amongst others.

An important issue is to estimate a valid uncertainty value for a classification
result. In many cases, a normalization approach is conducted to compute a
value, that can be interpreted as a probability from a continuous output. It is
also feasible to optimize a function with respect to the given training data as
it is often utilized with the probabilistic SVM (Platt, 1999b). But there are also
techniques to independently estimate the reliability of the classification of a
data point, for example by judging the quality of the underlying feature.

Even though there are intuitive techniques to estimate the uncertainty of a
decision it is not completely sure if a meaningful value is returned. That
means that a classifier can easily make a confident decision, that is neverthe-
less wrong. However it is crucial for many applications like multiple classifier
fusion and semi-supervised learning to have reliable predictions of the prob-
ability of class memberships. One of the main future challenges in computer
science is to incorporate uncertainty and probabilistic principles not only into
pattern recognition approaches but also into artificial intelligence architectures
(Bishop, 2006).

2.4 Learning From Multiple Sources

Information from multiple sources is naturally provided in many pattern recog-
nition applications. This can be originated from using different sensors or fea-
ture extraction approaches. In this section the combination of different chan-
nels or classifier outputs is discussed in the context of multiple classifier sys-
tems.

2.4.1 Fusion Methods

In the following, different popular techniques for the combination of individ-
ual sources of information are discussed. One possible very coarse taxonomy
of fusion approaches is the principle of late, where the combination is con-
ducted after the classification of the individual channels, and early fusion,
where the classification is conducted after the combination on a feature or data
level. A further interesting point in the context of feature and decision combi-
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Figure 2.12: Early fusion: The combination of the inputs is conducted before the classification.

nation arises from the temporal nature of many real world applications. This
can improve the classification for problems, where the alternation of the classes
is relatively slow.

2.4.1.1 Early Fusion

In early fusion, the combination of the data or the features, that are provided
by the individual information sources, for example different modalities or dif-
ferent feature views on the data, is conducted beforehand the learning of the
classifier. This setting is depicted in Figure 2.12. The most straightforward
approach to implement an early fusion is to concatenate the individual fea-
ture vectors. This setting is studied for example by Wimmer et al. (2008) and
Wagner et al. (2011) in the context of human-computer interaction.

A further prominent approach to implement an early fusion of feature vec-
tors is the GMM supervector (Campbell et al., 2006; Schels and Schwenker,
2010). Here, a so called universal background model, which is basically a
GMM, is trained class-indifferently using all available data. This model is then
adapted for every sequence using maximum a posteriori adaptation using the
features of the respective time series. The concatenation of the centers of the
adapted background model form then the combined representation. Bocklet
et al. (2010) use a combination of both techniques, where supervectors are com-
puted for multiple features and these results are then concatenated.

Early fusion can help to improve the classification performance. However,
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there are several drawbacks, that have to be considered for early fusion. One
issue is that the resulting concatenated feature vector may have an extensive
length, which may not be reflected in the size of the training set and as a result
may also lead to over-fitting, runtime or memory issues. Further, especially
when different feature extraction approaches are used, the concatenation may
lead to different scalings of the entries in the over-all vector. Consider for ex-
ample, when in image processing color and orientation histograms are com-
bined, then the same value of different entries may have divergent meanings.

Simple concatenation may not work when sequences of different sample rates
are considered. This makes pooling approaches, i.e., combining multiple fea-
tures of a kind with one other, necessary in order to overcome these differences.
Wagner et al. (2011) argue, that early fusion does not allow the incorporation of
missing data. If a feature vector is absent, the whole classification is nullified.

2.4.1.2 Late Fusion

The other possibility to conduct the fusion of multiple sources is to carry out
the classification on every feature type separately and combining the individ-
ual decisions afterwards. This setting is displayed in Figure 2.13. The combi-
nation of classifiers is a vivid field of research in the pattern recognition com-
munity (Kuncheva, 2004; Sansone et al., 2011). Different names for this kind
of architecture are “ensemble learning”, “multiple classifier systems” (MCS) or
“classifier combination”.

This approach is generally more flexible than early fusion, mitigating many of
the drawbacks that are mentioned there. The combination is performed on a
very compact representation, i.e., the respective labels. The classification can
in principle still be conducted in parts, when a particular feature fails. On the
other hand, the need for separate classifiers imposes additional computational
efforts.

Dietterich (2000) sketches in his influential paper three main reasons, why mul-
tiple classifier systems can improve classification over the most accurate indi-
vidual classifier.

• One argument for MCS are of statistical nature: In many applications,
there are too few training data to compute the true hypothesis. Hence it
is likely, that multiple hypotheses that are of equal accuracy on the given
data are estimated. Hence it may be safer to combine different models to
average out the classification error.

• Further, computational reasons in the training of the individual classi-
fiers are as follows: Many machine learning techniques use greedy opti-
mization approaches, that suffer from local minimums. Prominent exam-
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Figure 2.13: Late fusion: Each feature is classified separately and the individual results are
then combined adequately.

ples for such learning algorithms are the gradient decent approaches for
neural networks and the greedy splitting techniques for decision trees.
Again, the combination of the locally optimal hypotheses can help to ap-
proach towards the global optimum.

• Lastly, there are representational arguments for MCS: The true hypoth-
esis for a given application might not be in the respective hypothesis
space. For example a nonlinear decision boundary cannot be captured
by a linear classifier. However the combination of multiple linear mod-
els may accomplish the task. In principle, many theoretical models are
able to approximate every arbitrary function, such as neural networks
with enough hidden units. However, as training data is only available
in finite quantities, the models are not able to reach the global optimum.
An example for this setting is depicted in Figure 2.14, where two linear
classifiers can reflect the decision border for the data better than each in-
dividually.

In (Dietterich, 2000), decent graphical illustrations of these reasons are deliv-
ered, which are often reproduced, for example in (Kuncheva, 2004). Kuncheva
(2004) further states that there is of course no guarantee, that the combination
of classifiers can outperform the best individual classifier.
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x1

x2

Figure 2.14: Using a combination of decision borders with few degrees (dashed lines) of freedom
can render classification of data with complexer structures (as denoted by the gray solid line),
for example by classifying a sample as “black” if both models classify it “black” and “white”
otherwise.
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2.4.2 Techniques of Classifier Combination

In the following, different approaches of classifier combination are discussed.
The major difference for these approaches is whether a fixed combination rule
is used for the fusion (Kittler et al., 1998) or the combiner is adapted by an
additional training (Schwenker et al., 2006).

2.4.2.1 Combination with a Fixed Rule

The most straightforward and rather popular rule for the combination of dis-
crete classes is the majority voting. Kuncheva (2004) discusses different vari-
ants of this rule, but the most popular is defined as follows:

combined decision = arg max
c

L

∑
i=1

dic.

Here, L is the number of individual classifiers and C is the number of classes.
Further, dij equals 1 if the i-th classifier is voting for class j and 0 otherwise.

Kuncheva (2004) provides an expectation value for the accuracy of majority
voting for odd numbers of individual classifiers L.

Acc =
L

∑
m=bL/2c+1

(
L
m

)
pm(1− p)L−m.

Here, p is the probability of a correct decision for every classifier on all data
points x. The combined output will be correct, if more than bL/2c classifiers
are correct. This holds true for two class problems. For more classes, the com-
bined accuracy may be even higher.

Other approaches rely on probabilistic class memberships dc(x) = P(ωc|x),
which is the probability of class ωc given the data point x. They are esti-
mated from continuous outputs of the individual classifiers as uncertainty val-
ues. Hence, let the output of the j-th classifier for a data point x be defined
as Dc(x) = (d1c(x), . . . , dLc(x)) . Based on this, the most prominent fixed rule
combination rules are defined as follows (Dietterich, 2000):

• Product rule:

µc(x) =
L

∏
i=1

dic(x).

For this rule, the individual classifiers are regarded as statistically inde-
pendent, i.e., conditionally independent given the class label. This can
be achieved, for example by using features, that are as independently as
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possible. An intuitive example is to use fingerprint and facial images for
identity verification. An important issue of the approach is that if one
classifier returns a fuzzy value of zero, the final decision may be biased
disproportional to a distinct result.

• Average rule:

µj(x) =
1
L

L

∑
i=1

dij(x).

When using this rule, the decisions of the individual classifiers are also
supposed to be independent. Additionally, a random noise on the com-
putation of the confidence values of the classification is accounted to by
the average. Such a setting is present, when the individual classifiers are
trained on different subsets of a training set or when diverse features are
sampled for the construction of the classifiers.

• Maximum rule:
µj(x) = max dij(x).

This rule chooses the decision of the most confident classifier for a class
as the combined result. It is generally intuitive, but it depends on reliable
confidence estimates for the combination. For example, classifiers that
are able to reflect more subtle confidence distributions may be overruled
by others that are for example only capable of returning zero or one as
a result. A prominent example is the combination of multiple binary
classifiers to adapt to a multi-class problem, for example one-against-rest
combination of SVM (Tax and Duin, 2002). The maximum rule is equal
to the logical “or” in the fuzzy logic.

• Minimum rule:
µj(x) = min dij(x).

Analogous to the maximum rule, the minimum rule is equal to the “and”
in fuzzy logic. This rule is hardly ever used in applications, but com-
monly described in the literature.

The product and average rule are investigated theoretically by Kittler et al.
(1998) from a Bayesian perspective. Further a formal description of the bound-
aries of the classification errors for these combiners are given by Kuncheva
(2002b).

2.4.2.2 Combination using Trainable Mappings

Beside the fixed rule combiners, the classifier combination can be conducted
using trainable fusion mappings (Duin, 2002; Kamel and Wanas, 2003). Kun-
cheva (2004) further divides these approaches into class conscious combiners,
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that computes the combined result only within the different classes and class
indifferent combiners. The simplest class conscious combiner is the weighted
average:

µj(x) =
1
L

L

∑
i=1

widij(x).

Here, it is commonly assumed that the weights are wi ≥ 0 and that they add
up to one: ∑L

i=1 wi = 1.

Class indifferent combiners use also computations between different labels in
order to compute the over-all result. A very prominent variant of this class of
combiners are the decision templates (Kuncheva, 2004), which are defined via
the so called decision profile of the classifiers:

DP(x) =


d11(x) . . . d1j(x) . . . d1c(x)

...
...

...
di1(x) . . . dij(x) . . . dic(x)

...
...

...
dL1(x) . . . dLj(x) . . . dLc(x)


Here, the dij(x) are the output for the j = 1, . . . , c classes of the i = 1, . . . , L
classifiers for a data sample x. The decision template for class j is then defined
as follows:

DTj =
1
Nj

∑
zk∈ωj
zk∈Z

DP(zk).

In this equation, ωj is defined as the set of the samples of class j that are mem-
bers of the training set Z and Nj is its magnitude.

For classification of a new sample x, a distance measure, for example the Eu-
clidean distance, between the sample’s decision profile DP(x) and the decision
templates for the classes is computed. The over-all classification result is de-
fined by the smallest distance decision template (Kuncheva et al., 2001). Thus,
a linear mapping for the classifier fusion function is defined.

Further linear mappings, for example the least squares pseudo inverse solu-
tion, associative memory and naı̈ve Bayes are described by Schwenker et al.
(2006). They showed that these mappings and also the decision templates in-
corporate the confusion matrices of the individual classifiers.

In principle, any classification approach can be used for the fusion layer. This
reflects the viewpoint of Kuncheva (2004), that the classifier fusion is only a
new pattern recognition in an intermediate feature space, i.e., the outputs of
the individual classifiers.
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An important meta-technique in the literature for the construction of classifier
ensembles is stacking (Wolpert, 1992). The individual classifiers are trained on
different subsets of the training data. The combining layer is then trained on
the data that is held out of the training process for the classifiers.

Duin (2002) gives recommendations for the usage of trainable classifiers: If the
individual classifiers are not over-trained and valid confidences are available,
then a fixed combining rule should be preferred. Hence the full training set can
be used for the individual classifiers. If the base classifiers are trained weakly,
i.e., so that the classifier output is only weakly correlated with the true label,
on the whole available training set it is suggested to construct a further trained
mapping based on the same data. If the training data is split into two pieces,
the individual classifiers can be trained as good as possible. One part of the
data is hence used for the training of the classifiers and the other one for the
construction of the combiner.

2.4.3 Construction of Meaningful Ensembles

The concept of diversity is crucial for the construction of working classifier en-
sembles. In Section 2.4.3.1, the term diversity is defined and measure for it are
introduced. In Section 2.4.3.2, techniques for the creation of diverse ensembles
are explained.

2.4.3.1 Classifier Diversity

In order to improve an ensemble of classifiers over the best individual classi-
fier, the members of the classifier team do not only have to show high individ-
ual accuracies, but the individual classifiers also have to be diverse according
to (Ruta and Gabrys, 2005). This means that it is beneficial for the individual
classifiers to not all agree on a distinct result, especially when the classification
is wrong.

In the literature, a manifold of possible diversity measures (Kuncheva and
Whitaker, 2003) are described, of which the most important are the following
three:

• A measure of diversity can be defined based on the entropy

E =
1
N

N

∑
j=1

1
(L− dL/2e) min

(
l(zj), L− l(zj)

)
,

l(zj) = ∑L
i=1 yji, the number of correct classifiers for a data sample zji.
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• The Kohavi-Wolpert variance (Kohavi and Wolpert, 1996) is accordingly
defined as

KW =
1

NL2

N

∑
j=1

l(zj)(L− l(zj)).

• The κ statistics of inter-rater agreement (Fleiss, 1981) is a popular measure
in psychology and related fields of research. It is defined as follows:

κ = 1−
1
L ∑N

j=1 l(zj)
(

L− l(zj)
)

N(L− 1) p̄(1− p̄)
.

Here, p̄ = 1
NL ∑N

j=1 ∑L
i=1 yji is the average accuracy of the individual clas-

sifiers. The variable l(zj) is defined above.

The relationship between the diversity measures and the ensemble accuracy
is not so straight forward (Kuncheva, 2003b). Kuncheva and Whitaker (2003)
conducted experimental evaluations for different measures with respect to the
ensemble accuracy. They use scatter plots of the accuracy of the majority voting
fusion against various diversity measures. One finding of these evaluations is
that when using a pairwise diversity measure, the values for the classifier team
should show similar pairwise dependencies in order to render a feasible en-
semble. Furthermore there is a threshold for the measures, where the authors
found an improvement of the classification for all cases. However, finding the
classifier team with the highest diversity does not necessarily result in an opti-
mal accuracy.

Nevertheless, there exist a variety of approaches, that construct ensembles us-
ing diversity measures. For example Giacinto and Roli (2001) use a diversity
measure as distance matrix for a hierarchical clustering approach. The clusters
with the least pairwise diversity are joined iteratively until a predefined num-
ber of L individual classifiers are reached. The center of a cluster consists for
example of the most accurate individual classifier in the partition.

Brown and Kuncheva (2010) conducted an error decomposition of the ensem-
ble error for majority voting into the individual error component and terms for
a “good” and a “bad” diversity. These terms improve or degrade the combined
classification. The decomposition is stated as follows:

Emaj = Eind −
1
T ∑

vT1≤ T+1
2

(T − vT1)p(v) +
1
T ∑

vT1< T+1
2

vT1p(v).

In this equation, Emaj and Eind are the combined and the individual errors, T
is the number of individual classifiers, which is assumed to be odd. The t-th en-
try of the binary vector v is set to one, when the classification of the data sample
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x by the t-th classifier is correct and zero otherwise. Further, 1 = (1, 1, . . . , 1)T

of length S. Hence the ensemble is correct if S+1
2 individual classifiers decide

correctly and the good diversity is hence modeled with S− vT1, which is the
number of incorrect classifications. The bad diversity is the amount of correct
classifications when the ensemble is wrong. The summation over all possible
cases of v corresponds to an integration over the data space.

2.4.3.2 Approaches to Create Diverse Classifier Teams

In the literature, there are four main techniques to create diverse classifier en-
sembles, that are summarized by Kuncheva (2003a).

• The most popular approach is to manipulate the training set by restrict-
ing the data, that is used to construct the respective individual classifier.
The easiest way is to split the data randomly into subsets. A more elabo-
rate technique is boosting (Freund and Schapire, 1997), where an iterative
classifier training of the individual classifiers is conducted, where more
and more weight is given to the samples that are in a sense harder to clas-
sify. A further prominent technique is bagging (Breiman, 1996), where a
uniform sampling with replacement is conducted to choose the samples
for the respective individual classifier. A variant of this is adaptive re-
sampling (Bauer and Kohavi, 1999), where a distribution is used for the
sampling of the data, that is adapted to focus on the samples, that are
harder to classify such that these data points will occur more often in the
training sets.

• The manipulation of the feature set is also used to construct ensembles.
An examples for that is the random subspace method (Ho, 1998), where
random sampling of features is conducted to construct independent de-
cision tree classifiers. Breiman (2001) combines random feature selection
with bagging for the well established random forest algorithm. In some
cases there are naturally different feature views on the data, for example
by using different extraction techniques. Using these features for indi-
vidual classifiers can form a successful ensemble (compare e.g., Schels
et al., 2009).

• As a third technique to create a diverse classifier team, different base clas-
sifier approaches can be used. For example in (Woods et al., 1997), four
different (locally) optimal classifiers, i.e., an artificial neural network, a
decision tree and a Bayes classifier amongst others, are used to form a
successful ensemble.
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Figure 2.15: The construction of a successful classifier ensemble can be conducted on the fea-
tures, the training set, the individual classifiers and the combiner.

• Kuncheva (2003a) states a fourth approach, where the individual classi-
fiers are given in advance and the challenge is to pick a proper combina-
tion scheme, that ought to be adapted properly.

2.4.4 Classifier Selection

Classifier selection is the process to choose the most adequate individual clas-
sifiers rather than a combination of them (Kuncheva, 2004). This selection can
also be based on a so called regional competence. This competence is for ex-
ample computed using a validation set by evaluating the accuracy for the k
nearest neighbors of a sample (Woods et al., 1997). Note that the selection of
the best classifier can be easier affected by over-training of the individual clas-
sifiers.

An example for such classifier selection techniques is the well known mixture
of experts algorithm (Jordan and Jacobs, 1994). Here, a gating network that
reflects the local competence of the individual classifiers, is constructed during
the training of the over-all classifier system. Further combinations of classifier
selection and classifier combination are for example described in (Kuncheva,
2002a).

2.4.5 Discussion

Combining multiple classifiers is a powerful concept for pattern recognition.
This chapter introduced this technique in several aspects. Fixed rule and train-
able combiners were introduced and discussed to some extent. Further, differ-
ent arguments were given why a combination of classifiers can improve over
the best individual classifier.

A very important concept in this context is the classifier diversity. Several well-
known measures of diversity are discussed and a theoretical analysis for a sim-
pler classifier fusion scheme is given.
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2.5 Partially Supervised Learning

For statistical training of a classifier, it is crucial to have carefully labeled ex-
ample samples at hand. Unfortunately, this annotation is often very time con-
suming and expensive as human experts have to make a thorough label as-
signment. Hence it is an interesting research question how unlabeled data can
be appropriately used in this context. The process of incorporating unlabeled
data into a supervised classification process is here called partially or semi-
supervised learning.

Active learning is a technique, that still includes a human expert into the train-
ing of a classifier. This expert is queried by the algorithm only for the most
informative samples, that are not yet labeled, in order to keep the annotation
overhead low. Other approaches aim at replacing the expert by labeling the
data for the classifier itself (self-training) or teaching other classifiers by label-
ing data in turns (co-training).

Further semi-supervised approaches rely on the cluster assumption: The re-
spective classes are clustered together in areas of high sample density. The
decision border is then assumed to be located in regions of the feature space,
where only few samples occur. Examples for that are the semi-supervised
learning with generative models, the EM algorithm and the transductive SVM.
This SVM tries to find the optimal large margin classifier by determining labels
for previously unlabeled data, which is often resembled by the test data. For a
comprehensive overview, the reader is referred to (Zhu, 2005).

2.5.1 Active Learning

Active learning is a popular technique for the learning of a classifier using un-
labeled data (Settles, 2009), where the most informative sample from the unla-
beled data is selected by the algorithm and passed to a human expert (Cohn
et al., 1996) and the classifier is adapted accordingly. For the algorithm to work
properly and to minimize the labeling efforts, it is crucial in this area to conduct
a reliable sampling of the unlabeled data.

One approach in the literature is uncertainty sampling, where the sample, that
inherits the least confident classification result is selected. One rule to select a
sample for the new training set x∗ is as follows:

x∗ = arg max
x

(1− Pθ(ymax|x))

for all data points x and a probabilistic model θ and ymax = arg maxy Pθ(y|x).
This is commonly related to the distance of the samples to the decision prob-
lem. This setting is displayed in Figure 2.16 for a two class problem.
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Figure 2.16: Selecting the most informative unlabeled samples, that are located closest to the
decision border for active learning.

In order not to lose the information for the classification result of other classes
the above definition is extended to the so called margin sampling:

x∗ = arg min
x

Pθ(y1|x)− Pθ(y2|x).

It measures the confidence using the difference of the most confident class y1
and the second most confident class y2.

A further possible approach to measure the confidence for active learning in
the literature is based on ensemble learning. As mentioned before, the agree-
ment of the individual classifiers is used for confidence measure. This is in the
semi-supervised learning literature often called query by committee (QBC).
Further, well known ensemble techniques such as boosting and bagging are
adapted to implement an efficient strategy for the selection of the data (Abe
and Mamitsuka, 1998).

2.5.2 Generative Models

One of the early approaches to partially supervised learning is to utilize ad-
ditional unlabeled data in the well established EM algorithm (Baluja, 1999;
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Nigam et al., 2000) and thus iteratively estimate generative models more ac-
curately than using only the labeled data (Cooper and Freeman, 1970; Gane-
salingam, 1989). The resulting model is hence used as a classifier. In Figure
2.17, an illustrative example for this setting with two Gaussian components is
given: The model can be estimated more accurately using all available data,
labeled and unlabeled. Most commonly it is conducted by the following steps
described in Algorithm 2.1.

Algorithm 2.1: Semi supervised learning using generative models (Nigam
et al., 2006).
Input:

• a set L of labeled training examples

• a set U of unlabeled examples

Output: Learnt classifier model θ
Estimate an initial model using the labeled data, solely L;
while log likelihood improves do

• Label the additional unlabeled samples U according to P(cj|xi, θ′);

• Re-estimate the model parameters given the new component
memberships using the maximum a-posteriori estimation
θ′ = arg maxθ P(X, Y|θ)P(θ);

At first, an initial model is trained using only the labeled samples. Using
this model, the unlabeled data is classified and the generative models are re-
estimated using this additional information. This procedure is repeated until
some stopping criterion is met, for example until the likelihood of the models
does not increase any more or for a predefined number of iterations.

A major issue for the EM algorithm in general is that it is likely to get stuck in
a local maximum. A further assumption that is made in the semi-supervised
learning with generative models is that there has to be a correspondence of
classes and components. In principle, any generative model such as Gaussian
mixture models, naı̈ve Bayes and hidden Markov models can be used in this
context.

2.5.3 Self-Training

One of the most straight forward semi-supervised learning approaches is the
so called self-training (Rosenberg et al., 2005). For this learning technique, a
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(a) Only few labeled data are available
in two classes denoted as white and
black points.
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(b) The resulting generative model
sketched by contour lines. The
respective class border is also shown.
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(c) Additional unlabeled data are given
given as smaller, grayish filled circles.
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(d) Exploiting unlabeled data renders a dif-
ferent, more intuitive model and re-
spective class border.

Figure 2.17: Estimating a generative model with two components with labeled and unlabeled
samples.
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Figure 2.18: Sample selection for self-training. The distance from the decision border is used
as confidence measure.

classifier is used to iteratively label the unlabeled data set U. In every iteration
the most confident samples with respect to a qualified confidence measure are
added to the labeled training set L of the classifier. Afterwards, the classifier is
retrained using the new training set.

Figure 2.18 shows an example of the sample selection in a self-training setting
using a linear classifier with the distance to the decision border as confidence
measure. It also shows a major drawback of the approach as the selected sam-
ple is too far away from the interesting areas of the input space to be informa-
tive for the classifier.

An important aspect for the successful application of self-training is to have
a correct measure of confidence in order to prevent adding noise (i.e., classi-
fication errors) to the training data. Especially, exploration towards the deci-
sion border increases the risk of adding misclassified samples to the training
data. Also chaining effects, that are caused by outliers in the data, can alter
the method. Thus it is possible, that an unintuitive, and probably erroneous,
decision function is learned using this approach as it is illustrated in (Hady,
2011, p. 80).
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Figure 2.19: An illustrative argument why co-training works: Two different classifiers are
constructed for subsets of the feature space. The classifier on the right hand side of the figure
selects the unlabeled data point that is confidently labeled as “black”, by the distance to its
decision border. This sample is very informative for the classifier on the left hand side and
results in an adaptation of the classifier (dashed line).

2.5.4 Co-Training

A more powerful alternative to self-training is the so called co-training (Blum
and Mitchell, 1998; Ling et al., 2009). In co-training, additional data is added
to the training set of a classifier by another one and vice versa. The key idea
of the approach is that for the different classifiers, an unlabeled data point,
that is confident for one classifier can be informative for another one. This
circumstance is addressed in Figure 2.19 for two classifiers on different feature
sets on a two class problem. The basic algorithm to conduct co-training is
outlined in Algorithm 2.2.

To achieve such a setting, the classifiers have to be independent, given the class
label. A prominent technique to achieve this is to use different feature views
(i.e., representations) of the data. This is called in the literature multi-view
co-training (Hady et al., 2010b). The optimal case here is of course when the
different views occur naturally, for example by the usage of different feature
extraction techniques. Alternatively, multiple so called views can be created
by randomly sampling elements from the original feature vector (Nigam and
Ghani, 2000). In the literature, there are many different techniques to generate
multiple views from a single one that try to find optimal splittings based on
different criteria (Feger and Koprinska, 2006).

Another crucial parameter of co-training is the accuracy of the base classifiers.



58 Chapter 2. Basic Methodical Principles

Algorithm 2.2: Co-training (Blum and Mitchell, 1998).
Input:

• a set L of labeled training examples

• a set U of unlabeled examples

Output: Learnt classifier model
Create a pool U′ of examples by choosing u samples at random from U;
for k iterations do

Use L to train a classifier h1 that considers only the x1 portion of x;
Use L to train a classifier h2 that considers only the x2 portion of x;
Allow h1 to label p positive and n negative examples from U′;
Allow h2 to label p positive and n negative examples from U′;
Add these self-labeled examples to L;
Randomly choose 2p + 2n examples from U to replenish U′;

If the “teacher” classifier is wrong in its labeling of the samples, that are added
to the training data of the other, the performance is degrading. Hence, ensem-
ble techniques are used to improve classification accuracy in order to reduce
noise. For example the multiple classifiers can be constructed and data are
added to every classifier’s training set in turn by the combined ensemble of
the remaining ones (Hady and Schwenker, 2010).

2.5.5 Transductive Learning

A further technique to incorporate unlabeled data in classification approaches
is transductive learning (Vapnik, 1998), where the given test cases are em-
ployed as additionally available unlabeled samples. In inductive learning, a
separating decision boundary is explicitly defined as a function on the whole
possible space. In contrast to that, a transductive learner attempts to find an
optimal assignment of categories only on the given data. Hereby the cluster
assumption is exploited: It is more likely for a separating decision border to be
in low density regions of the space. This means that the classes are clustered
together separately.

The most common transductive learning approach is the transductive support
vector machine (TSVM) (Chapelle and Zien, 2005), that aims at finding a low
density region by maximization of the margin on all available data, labeled
and unlabeled. The margin of the TSVM, that has to be minimized, is hence
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Figure 2.20: Using only the labeled data samples, that are depicted as white and black circles
leads to a different large margin classifier than using unlabeled data. Adapted from (Vapnik,
2006).
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defined as (Joachims, 2006)
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∈ {−1,+1}.
Here, the variables (x1, . . . , xn) denote the n data samples together with the
given labels (y1, . . . , yn). The samples (x∗1 , . . . , x∗k ) are the testing data or addi-
tional unlabeled data. The goal is now to find a labeling (y∗1 , . . . , y∗k), where the
margin is maximal.

Figure 2.20 gives a graphical example, why the TSVM works: Using the ad-
ditional data (gray circles) the optimization renders a different separating hy-
perplane than using the labeled samples only. According to the cluster as-
sumption the decision border computed with the unlabeled data is more opti-
mal than the one that is rendered using an inductive SVM only for the labeled
training data.

2.5.6 Discussion

In this section, the common approaches to incorporate unlabeled data into the
training of a statistical classifier have been described. The dominant approach
is to iteratively label samples from the given data and add them to the training
set. The classifier is then trained again in a supervised fashion using also the
new data. Co-training extends this technique to a multiple classifier scheme,
which is used to mutually label data.

Conducting a semi-supervised classifier training procedure does not guaran-
tee by any means, that the performance is improved over a solely supervised
classifier (Cozman and Cohen, 2002). Measuring classification confidences cor-
rectly is crucial in this context. These uncertainty values are further used to
access the quality of a classification of a sample. If the classifier returns a
high confidence for a false classification, self-training and co-training will fail.
Hence, using these techniques, it is in general only feasible to improve a clas-
sifier, that is already relatively accurate (Hady, 2011).



3 Applications and Data Collections

In order to study classification architectures in human-computer interaction,
the investigation of suitable corpora for classifier design and validation is man-
datory. In the following sections three data collections of interactions of human
subjects with a computer that are used for the numerical evaluations in this
thesis are outlined. Two of these corpora are publicly available for research
purposes and the third one was compiled in the context of the SFB/TRR 62
at the Ulm University. The EmoRec and the AVEC 2011 corpora comprise ses-
sions of unconstrained human-computer interaction (compare Sections 3.1 and
3.2), while the third data base is composed of recordings of electroencephalog-
raphy (EEG) of a subject conducting a visual selection task (compare Section
3.3).

There exist only few other multi-modal corpora of affective human-computer
interaction as it is shown for example by Palm and Glodek (2013). The AVEC
2011 data base and the EmoRec corpus are however most fit for the experi-
ments, that are conducted in this work. Limitations that are restricting the
feasibility for the investigation of realistic interaction scenarios is for instance
the fact that there are only short clips of several dozens seconds in some data
collections as it is the case for example in the well-known humaine data base
(Douglas-Cowie et al., 2007). For other corpora, the respective affective anno-
tations are at the present still subject to debate as for example in the last minute
corpus (Rösner et al., 2012). Another issue, that jeopardizes the feasibility of
a data collection is that it may not be publicity available. An example for that
is the so called Nimitek corpus (Gnjatović and Rösner, 2010). There are further
corpora that are recorded in the context of human-computer interaction that
are in principle interesting, but not recorded or labeled under an emotion the-
oretic paradigm. Prominent cases for such corpora are the venerable SmartKom
data base (Wahlster, 2006) and the Pit-corpus (Scherer et al., 2009).
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3.1 EmoRec Data Collection

The EmoRec data collections were recorded in the context of the Transregional
Collaborative Research Centre SFB/TRR 62 “Companion-Technology for Cog-
nitive Technical Systems”1 in the section of Medical Psychology of the Ulm
University under the supervision of Prof. Harald C. Traue. The purpose of
the experiments was the elicitation of realistic emotions in a human-computer-
interaction-scenario by presenting distinct stimuli to the test persons while
they were conducting a given task. A major feature of the data is that a many
different modalities, namely physiological channels, audio and video, were
recorded for analysis.

3.1.1 Recordings

The key idea of the EmoRec recordings is to guide a subject through the PAD
space of emotions. The PAD model (Russell, 1980) defines a continuous anno-
tation space of emotions using the dimensions pleasure, arousal and dominance.
This model defines different octants in the three-dimensional space, that are
graphically displayed in Figure 3.1. Using this model an emotional state can
be mapped to a distinct location in the space that is spanned by these dimen-
sions. In this data collection, the PAD space is simplified into eight octants (for
example “low pleasure, high arousal, low dominance” versus “high pleasure,
low arousal, high dominance”) in order to render distinguishable emotional
states.

For the recordings, the test persons were seated alone in a closed room in front
of a computer screen displaying a memory training task. This task was to solve
multiple games of Concentration2. Here cards are faced downwards on a table
– or a computer screen in this setting – and the player has to find pairs of
cards showing the same image by successively turning over two cards. After
every round the cards are turned downwards again, except if a pair of cards
is uncovered. After that, a new round of the game begins. An example of
the experimental setting and the computer screen as it is displayed to the test
person is shown in Figure 3.2. Overall, 152 subjects passed the experiment in
three successive inquiries. The test persons are between 20 and 75 years of age,
and 31 % of the them are male and 69 % are female.

In order to turn a card, the participant was instructed to utter its coordinates
on the board to the voice controlled dialog system: for example “A 1”, “C 4”
and so on. To provide an operational system to the user, the speech recogni-
tion, the selection of the card and the feedback of the system were emulated in

1www.sfb-trr-62.de
2http://en.wikipedia.org/wiki/Concentration_(game)

www.sfb-trr-62.de
http://en.wikipedia.org/wiki/Concentration_(game)
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Figure 3.1: The PAD model spans a 3-dimensional space, which can be divided into eight
distinct octants. Adapted from (Walter et al., 2013).
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Figure 3.2: The content of the computer screen as it is displayed to a test person: in the middle
the cards that have to be turned are shown. The coordinates on the upper and left-hand side are
used to reference the individual card by voice. The upper part displays the feedback given by
the wizard together with the remaining time for the task.
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Figure 3.3: A test person undergoing the EmoRec memory test. The EMG electrodes are
attached on the forehead and on the cheek. On the left hand of the subject, the BVP-senor is
attached to the middle finger and the SCL sensor is placed near the wrist. The subject also
wears the cap that locates the EEG-electrodes on the subject’s skull. Taken from (Walter et al.,
2013).

a so called Wizard-of-Oz (WoZ) setting (Kelley, 1983). The system, the test per-
son is interacting with, is remotely controlled by a human experimenter using
another computer in a separate room. In this way, a fully operational cognitive
technical system that can adequately respond to the user is simulated. WoZ ex-
periments are commonly used to study human-computer interaction without
spending too much time for the implementation of the logic but still rendering
a powerful and flexible setup. This experimental paradigm also allows to pro-
vide functionalities for a framework that are not yet fully implemented in an
autonomous computer program.

Six physiological measures were recorded from the subjects together with the
spoken utterances and a video portraying the subject’s face frontally (compare
Figure 3.3). The heart rate variability (HRV) is measured using an optical de-
vice that is attached to a finger. The subject’s heartbeats are deduced from the
translucence of the finger using a light source and a photo cell. To measure
the respiration (Resp) of the subject, a special belt around the chest is used that
expands or contracts when the subjects inhales or exhales. Furthermore the
skin conductance level (SCL) is measured using electrodes on the back of a
hand, where constant electrical current of 10 µA is conducted. The electric re-
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PAD + - + + - + + + - - - - - + - + - +

Intro ES-1 ES-2 ES-3 ES-4 ES-5 ES-6
approx. approx. approx. approx. approx. approx.

1.5 min 3 min 3 min 5 min 3 min 4 min 5 min

time −→
Figure 3.4: Experimental procedure for the EmoRec recordings: After a short introduction of
the task, the subject is guided through six emotional experimental sequences (ES-1 to ES-6).
The respective label in PAD space are given in the top line of the figure in terms of pluses (+) and
minuses (-), where a plus signifies a high and minus a low value for the respective dimension.
In short the emotional progression aims at “positive” states in the beginning succeeded by a
more “negative” state and ending positively again.

sistance of the skin is augmented by the sweat a test person oozes. Hence the
transpiration of the subject is measured by the electrical conductivity between
the electrodes. For two facial muscles an electromyography (EMG) is conducted:
the musculus corrugator supercilii and the musculus zygomaticus major (Van Box-
tel, 2010). The electrodes are placed over the eyebrow and the cheek of the
subject. These electrodes measure the electrical potentials, that arise on mus-
cle contractions (approx. 500 µV). The musculus corrugator supercilii shifts the
eyebrow downwards on contraction. It is also used for wrinkling the forehead.
The musculus zygomaticus major pulls the corner of the mouth upwards and
outwards of the face. Finally, an electroencephalography (EEG) is recorded.
The test persons wear a cap that fixates the electrodes on its skull during the
experiment. The EEG recordings in this corpus are however not considered in
this thesis.

In the literature, physiological signals are described as strong evidences for
emotional processes, in particular for the arousal of a subject (Picard et al.,
2001b; Stemmler et al., 2001; Christie and Friedman, 2004). For example is the
frequency and the amplitudes of the SCL deflections, that are characteristic for
this signal, a hint for the arousal of the subject. The same holds true for the
heart rate of a person.

There has been work of other groups on classifying physiological signals, for
example as described by Kim and André (2008). They use the playback of
pieces of music that have a high personal value for the test subject to elicit four
different category of emotions that are constituted by the quadrants of the 2-
dimensional valence-arousal space. Here, the classification is conducted in a
leave-one-sample-out procedure, which yields high recognition rates.
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3.1.2 Annotations

Successive tasks were used to induce different emotional states to the subject
in the order sketched in Figure 3.4 (Walter et al., 2011). To do so, different stim-
uli were presented to the subject. The system responses, that are designed to
elicit negative emotions were amongst others dispraise, time pressure to the
subject by setting a maximal duration for the task and wrongly or delayed ex-
ecution of commands. Furthermore, the system asks the subjects to cancel the
task. The respective stimuli for positive emotions were for example praising
the subject or presenting an easier game with fewer cards. By these means,
the subjects were passed through six experimental sequences (ES), which in-
duce different states in the PAD space. The respective targeted affective subject
states are indicated in the top row of Figure 3.4. The ES last about 3-5 minutes
each depending on the difficulty of the board of the game. Before the exper-
iment begins a short explanation of the task is given, which is depicted with
the term “Intro”. The subsequent ES-1 and ES-2 are designed to induce “high
pleasure”, “low arousal” and “high dominance”. ES-1 is also inserted that the
subjects get used to the task and sometimes further instructions are given by
the experimenter. ES-3 is designed as a transition to the subsequent “negative”
sequences. ES-4 and ES-5 are labeled as “low pleasure”, “low arousal”, “low
dominance” and “low pleasure”, “high arousal”, “low dominance”. ES-5 lasts
a little longer than the preceding sequences as the board is bigger and it takes
more time to solve the task. Finally, the “positive” sequence ES-6 , which trans-
lates into “high pleasure”, “low arousal” and “high dominance” in the PAD
space, is conducted to release the test persons happily from the experiment.

The classification task posed by this corpus is to discriminate the samples of
ES-2 and ES-5. These two experimental sequences are designed to elicit rather
complementary emotions: “high pleasure/low arousal/high dominance” ver-
sus “low pleasure/high arousal/low dominance”, or short: Positive vs. neg-
ative emotion. The dimensional labels of the ES are given in the top row of
the Figure 3.4. The according stimuli, presented to the subject were praises
and a small board of concentration and hence an easy game for the positive
sequence. In case of the negative class, the user is given a bigger board and
only displeasing feedback: for example the user is criticized for his execution
of the game and the subject is exposed to time pressure. Figure 3.2 displays
the screen content, that is shown to the test subject. Beside the card board, a
judgment of the performance of the subject and a timer is presented to the user.
This procedure is designed to embed the antagonizing sequences ES-2 and ES-
5 into a continuous experiment and leaving enough time between them. A
detailed description of the experiment can be found in (Walter et al., 2013).
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3.1.3 Physiological Channels and Features

From the SCL, the Resp, the BVP and the two EMG signals, various features
were extracted on different time scales. Before the feature extraction, the data
has to be carefully preprocessed. The physiological sensors show strong long
term characteristics during the experiments for different reasons such as sen-
sors may slide a little bit on the skin or the gel, that establishes the conductiv-
ity between the skin and the electrode might gradually dry out. Furthermore
the sensors are also sensitive to electromagnetic noise from the surroundings.
In general, a slow low- or band-pass filter is applied together with a linear
piece-wise detrend (i.e., subtracting piecewise a linear least-squares-fit from
the respective chunk of the data) of the time series at a 10 second basis.

The features introduced in the following were inspired by the ones described
by Kim and André (2008) and were implemented in the course of Markus
Kächele’s Diploma Thesis (Kächele, 2011) at the Institute of Neural Informa-
tion Processing of the Ulm University.

3.1.3.1 Heart Rate-related Features

Before the computation of the features a preprocessing step is conducted: after
the detrending of the signal, a low pass filter at 5 Hz is applied. All heart
rate related features are computed based on a 25 s time window with a 12 s
offset. This duration is a trade-off between defining a window that is short
enough to fit several windows in an ES and the requirement to enclose multiple
heartbeats to compute meaningful statics.

The key to characterize the heart rate from the recorded blood volume pulse is
to find the well known QRS complex in the signal as described for example in
(Kamath and Ananthapadmanabhayuyu, 2007; Krikler, 1990). An example for
a QRS complex is shown in Figure 3.5. In order to automatically compute the
QRS timings an algorithm based on discrete wavelet transformation and mor-
phological filters was used (Rudnicki and Strumiłło, 2007; Pan and Tompkins,
1985)

Based in this, the standard deviation of the RR intervals in a time window is de-
fined as the first basic feature (Simson, 1981). Further, the heart rate variability
(HRV) is defined as the derivation of length of RR intervals (Malik, 1996). The
standard deviation of the HRV in a time window is used as a second feature (Say-
ers, 1973). The NN50 index counts the number successive RR intervals that
differ more than 50 ms. When the NN50 is normed with the length of the RR
interval sequence, the so called pNN50 is defined. The pNN50 is used as a
third feature for classification (Mietus et al., 2007). The RMSSD is defined as
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Figure 3.5: The QRS complex in the HRV data. Adapted from (Kächele, 2011).

the square root of the mean squared differences of successive RR intervals:

RMSSD =

√
∑N−1

i=1 (RR(i)− RR(i + 1))2

N − 1

Another heart rate related feature is based on the approximate entropy (ApEn)
that was defined by Pincus (1991) and applied to physiological data for exam-
ple by Richman and Moorman (2000) and Pincus and Goldberger (1994). In
order to define the ApEn suppose N measurements u(1), u(2), . . . , u(N) are
given. Based on these N −m + 1 data windows of length m are defined as fol-
lows: x(i) = u(i), u(i + 1), . . . , u(i + m− 1). Furthermore a distance measure
d (x(i), x(j)) is defined:

d (x(i), x(j)) = max
k=1,...,m

(|u(i + k− 1)− u(j + k− 1)|) .

Hence, the relative frequency to find a vector with distance r is defined as

Cm
i (r) =

(number of j such that d (x(i), x(j)) ≤ r)
N −m + 1

.

With

Φm(r) =
∑N−m+1

i=1 log Cm
i (r)

N −m + 1
,
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Figure 3.6: Poincaré plot of for the RR-intervals for a real subject of the EmoRec corpus. The
two principal axis of the ellipse are sketched in red. Taken from (Kächele, 2011).

the approximate entropy is defined as:

ApEn(m, r, N) = Φm(r)−Φm+1(r).

In order to define meaningful features, the parameters m and r are set to 2 and
0.2 according to the literature.

The recurrence rate is defined using the so called recurrence plot (Eckmann
et al., 1987). Suppose a time series X = x(1), x(2), . . . , x(n) and the set of all
possible sub-sequences Ym = ym(1), ym(2), ...ym(n − m + 1) of length m > 0.
Then a recurrence plot is defined as the matrix that contains 1 at position (i, j),
if ‖ym(i)− ym(j)‖ < r. Hence, the recurrence rate REC is defined as (Mewett
et al., 1999):

REC(m) =
| {(i, j)|‖ym(i)− ym(j)‖ < r} |

(n−m + 1)2 .

Here, the parameters are set to m = 2 r = 2σ, where σ is the standard deviation
of the samples in the time window.

Another feature of the heart rate is derived from the so called Poincaré plot (Kar-
makar et al., 2011). Here, the duration of an RR interval is plotted against the
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length of the succeeding RR interval (compare Figure 3.6). The quotient of the
two principal axis of the ellipse that is computed via least squares optimiza-
tion to the data points is uses as feature as proposed for example by Kim and
André (2008).

Further features are computed from in the frequency domain using the power
spectral density (Baumert et al., 1995). Following the approach of Kim and
André (2008) three separate frequency bands are defined: the “very low” (i.e.,
0.003–0.04 Hz), the “low” (i.e., 0.04–0.15 Hz) and the “high” (i.e., 0.15–0.4 Hz)
frequency band. The average of the high and the average of the low frequency
bands were used together with the ratio of the two as features for classification.

3.1.3.2 Respiration-related Features

Features from the subject’s respiration are measured using long time windows
of 20 s duration with an offset of 10 s as the respiratory patterns of inhaling
and exhaling are in general repeated for about 15–25 cycles per minute (Boiten
et al., 1994; Bloch et al., 1991). As pre-processing steps, a linear detrending
approach and a low pass filter with a cut-off frequency of 0.15 Hz (Kim and
André, 2008) are applied to the raw data.

The first two features that are calculated are the mean and the standard deviation
of the first derivative of the pre-processed signal (Kim and André, 2008). Fur-
ther features are derived from the inter-peak statistics of the signal: the mean
and the standard deviation of the duration of the breath intervals. Using the
inter-peak timings, a Poincaré analysis analogous to the one described in Sec-
tion 3.1.3.1 is conducted. Hence the ratio of the main axes of the resulting ellipse
is used as further feature.

Another feature is the breathing volume of the subject, which is straightforward
defined as the following integral

BV(i) =
∫ peaki

valleyi

|resp(x)|dx.

It equals the area under the curve from the valley of the ith breath to its peak.
As the sensors return discrete values for each sample time-step the equation
degenerates to the mean of the absolute values between a valley and the re-
spective peak.

3.1.3.3 EMG-related Features

The contraction or relaxation of the muscle is perceivable in an oscillation of
the EMG signal. Thus, a band-pass filter at 20–120 Hz is applied to filter out
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Figure 3.7: A typical SCL curve with multiple spikes. Adapted from (Kächele, 2011).

high and low frequency noise (Bruns and Praun, 2002). Two different kinds of
features were computed on a 5 s and 20 s sliding window with offsets 2 s and
10 s. The mean of first and second derivatives were used as features using the
shorter time windows.

Based on the 20 s time windows, a power spectrum density analysis (Christensen
and Fuglsang-Frederiksen, 1986) was conducted. For that purpose, the spec-
trum from 20 Hz to 120 Hz was divided into 8 equal frequency bands with
a 50 % overlap each. For each frequency band, the mean spectral power was
used together with the ratio of the mean spectral power of the highest and the
lowest frequency band.

3.1.3.4 SCL-related Features

The signal derived from the SCL shows spikes that are rapidly rising on a stim-
ulus and are after climaxing comparably slowly declining (Darrow, 1937). An
exemplary plot for an SCL signal is displayed in the Figure 3.7. It is also pos-
sible that further spikes occur before the latter is relieved, and hence, a super-
position of the signals is observable. In order to properly capture the phenom-
ena, high frequency noise is removed with a low pass filter at 0.2 Hz (Kim and
André, 2008).
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For the pre-processed signal an inter-peak statistics, i.e., the durations between
two successive peaks, was computed. In a 20 s sliding window with an offset
of 10 s the number of peak occurrences is determined. The result is further nor-
malized with the length of the window and used as a first SCL feature. The
second feature is the average peak magnitude in the window.

Additionally features using the derivative of the signal are used. To ensure
that positive and negative gradients do not nullify each other, the negative
derivatives are set to 0. Hence, the mean and the standard deviation of the first
and second derivative are calculated in a 5 s window with a 2 s offset.

3.2 “AVEC 2011” Data Collection

In the following the data set provided with the Audio/Visual Emotion Chal-
lenge (AVEC) 2011 that was held in conjunction with the ACII 2011 workshop
is described (Schuller et al., 2011; McKeown et al., 2010). The data collection
is a subset of the “SEMAINE” data set was collected to study human interac-
tion with a virtual agent, that was recorded in connection to the EU project
having the same name3. For this project a so called Sensitive Artificial listener
(Douglas-Cowie et al., 2008) was developed. Test persons were recorded while
interacting with a 3D animated virtual character, that is designed to show and
elicit certain affective behaviors (Douglas-Cowie et al., 2008):

• Prudence “who aims to make people pragmatic”

• Poppy “who aims to make people happy”

• Spike “who aims to make people angry”. A sample image of this avatar
is shown in Figure 3.8.

• Obidiah “who aims to make people gloomy”

The system had several dialogs prepared in order to encourage the participant
to interact, for example letting the character say thing like “Go on, tell me
your news” or “Have you done anything interestingly lately?” (Schröder et al.,
2012). Furthermore certain phrases are designed for the respective affective
color of the avatar, for example “Don’t get too excited” for Obidiah and “Life’s
a war, you’re either a winner or a loser” for Spike (Schröder et al., 2012).

The part of the SEMAINE data, that is used the AVEC 2011 is called “Solid
SAL” in (Wöllmer et al., 2013), which indicates that it is recorded in a WoZ
setting. Over-all three sub-challenges were proposed within the AVEC 2011

3http://www.semaine-project.eu

http://www.semaine-project.eu
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Figure 3.8: A test person interacting with the Sensitive Artificial Listener. The virtual char-
acter “Spike” (right-hand side) is designed to aim to make people angry (McKeown, 2011).

competition: an audio challenge on word-level, a video challenge on frame-
level and an audiovisual also on video frame-level.

The recorded data was labeled in four affective dimensions: arousal, expectancy,
power and valence. A brief explanation of the labels is given in Section 3.2.2.
Two of the categories were annotated at a time using the so called “FEEL-
TRACE” tool (Schröder et al., 2000). Here, a two dimensional canvas was pre-
sented to the labeler and by moving a pointer in the appropriate direction a
continuous label is set. The annotations of the raters have been averaged for
each dimensions resulting in a real value for each time step. Subsequently, the
labels are binarized using a threshold equal to the mean of each dimension
for all sessions. Every recording was annotated by at least two but no more
than eight raters. Along with the sensor data and annotation, a word-by-word
transcription of the spoken language was provided which partitions the dialog
into conversational turns in which the participant and the machine agent are
alternating. For the evaluation of the challenge only arousal was taken into ac-
count as classification of the other dimensions yielded poor results4. The data
was partitioned into training set, development set and test set (compare Table
3.1) of 31 or 32 interactions of several minutes duration each.

3.2.1 Recordings

Audio and video material is available in over-all 63 recordings from 13 differ-
ent subjects (compare Table 3.1). The data is partitioned for the official chal-

4http://sspnet.eu/avec2011/

http://sspnet.eu/avec2011/
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Table 3.1: Technical overview of the AVEC 2011 recordings. Taken from (Schuller et al., 2011).

Train Development Test Total
Sessions 31 32 32 95
Frames 501277 449074 407772 1358123
Words 20183 16311 13856 50350
Total duration (h:m:s) 2:47:10 2:29:45 2:15:59 7:32:54
Avg. word duration (ms) 262 276 249 263

lenge into a train, development and test set. The general technical setup of the
recordings is described in the following.

The video channel was recorded in the following configuration:

• approximately 50 frames per second

• 780 × 580 pixels camera resolution

• 8 bits for three color channels

The audio channel was recorded as in the following setup:

• sample rate of 48 Hz

• 24 bits per sample

An elaborate synchronization using hardware triggers for cameras, that were
also recorded as a wave signal to synchronize the audio channel was realized
for the corpus. Please refer to (Lichtenauer et al., 2009) for a detailed descrip-
tion of the set-up. This enabled a frame-wise annotation of the data. A further
label, that is provided with the corpus is the timings of the uttered words and
also the conversational turns of the interlocutors.

3.2.2 Annotations

The labels the used in the SEMAINE data base originate from a questionnaire
study by Fontaine et al. (2007), where certain terms were assigned to affective
labels. Precisely, 24 terms, that are frequently used by researchers in affective
sciences and also in daily life (for example “anger”, “sadness”, “irritation”)
were presented to test persons. The task was to rate those terms according to
144 so called “emotion features”, for example “pressed lips together”, “felt at
ease” and “caused by chance”. The categorization was conducted in nine steps
from “extremely unlikely” to “extremely likely”, i.e., a rating how probable a
distinct emotion feature is for a presented term has to be estimated. Over-all
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the study has been conducted with 531 participants form Belgium, the United
Kingdom and Switzerland.

The resulting 24× 144 data matrices are analyzed using a principal component
analysis. The top 4 principal components define 4 affective dimensions (in or-
der of importance): “evaluation-pleasantness”, “potency-control”, “activation-
arousal” and “unpredictably”. The scores of the new dimensions for the fea-
tures are found in (Fontaine et al., 2007). Further, in (Fontaine et al., 2007) the
embedding of the emotional terms into the new space is displayed graphically,
which provides a further insight into the semantics of the labels.

3.2.3 Audio Features

For the audio analysis we extracted a variety of standard features, that are used
for spoken language understanding and transmission. They are for example
prominently described in speech processing textbooks (Huang et al., 2001) or
(Wendemuth, 2004). The extracted features are the fundamental frequency,
LPC, MFCC coefficients and finally RASTA-PLP.

3.2.3.1 Fundamental Frequency ( f0) and Energy

From each speech segments the f0 values are extracted, using the f0 tracker
available in the ESPS/waves+5 software package. This f0 track as well as the
energy of the plain wave signal is extracted from 32 ms frames with an offset
of 16 ms.

3.2.3.2 Linear Predictive Coding Coefficients

The extraction of linear predictive coding coefficients (LPC) is an auto regres-
sive approach, where the n− th sample of a time series is approximated using
a function of the p preceding samples (Atal and Hanauer, 1971):

ŝn =
p

∑
k=1

αksn−k.

The prediction error E is hence defined as

En = sn − ŝn = sn −
p

∑
k=1

αksn−k.

5http://www.speech.kth.se/software/
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Setting the partial derivatives for the coefficients αk to zero is a straightforward
way to optimize the error. As the matrix of coefficients is symmetric and posi-
tive definite, this can be computed efficiently.

LPC are still widely applied in speech processing, for example speech recogni-
tion and speech synthesis. One reason for this is that they are easily computed
as, unlike other more computationally elaborate features, no Fourier analysis
has to be conducted.

For the speech classification in this work, 8 LPC were computed for time win-
dows of 32 ms length with an offset of 16 ms.

3.2.3.3 Mel Frequency Cepstral Coefficients

The mel frequency cepstral coefficients (MFCC) are computed as suggested by
Fang et al. (2001):

1. The short term power spectrum is computed using the discrete Fourier
transformation from windows of speech.

2. The frequency axis of the power spectrum is converted to mel-frequency:

M( f ) = 2595 log
(

1 +
f

100

)
.

3. Triangular band pass filters are applied and the log energy of every filter
output is computed.

4. The de-correlated cepstral coefficients are computed using discrete cosine
transform (DCT):

MFCCi =
N

∑
k=1

Xk cos
(

Xi

(
k− 1

2

)
π

N

)
.

Here, i = 1, 2, . . . , M is the number of cepstrum coefficients, Xk, k =

1, 2, . . . , N is the logarithm of the energy of the kth filter.

Using the triangular filters in mel-scale, i.e., higher densities of filters with
smaller bandwidths for lower frequencies than for higher frequencies, is a fea-
ture, that is adopted from the human ear (Davis and Mermelstein, 1980). The
0-th coefficient remains often unconsidered as it can be seen as the average
energies of each frequency band (Fang et al., 2001). Furthermore, M � N is
chosen in order to conduct a compression of the signal (Fang et al., 2001).

In this thesis, 20 MFCC coefficients per time window of length 32 ms with an
offset of 16 ms are extracted.
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3.2.3.4 Relative Spectral Perceptual Linear Predictive Coding

The perceptual linear predictive coding (PLP) is a further technique to compute
characteristics for speech signals (Hermansky, 1990; Robinson and Dadson,
1956). The PLP is computed as described by Hermansky (1990):

A so-called “critical band filtering”, that is similar to the triangular filtering
described earlier is conducted. Sometimes trapezoidal filter banks are used
instead of triangular filters. Then, an equal loudness pre-emphasis, is applied
following the findings of Robinson and Dadson (1956), who model the human
perception of loudness for different frequencies as follows:

E(w) = 1.151 ·
√

(w2 + 144 · 104) · w2

(w2 + 16 · 104) · (w2 + 961 · 104)
,

where w is the frequency and E is the perceived loudness. Then an intensity-
loudness conversion is conducted that further accounts for the nonlinear rela-
tion between the intensity and the perceived loudness by applying the cubic
root for the amplitudes. Subsequently the inverse discrete Fourier transform
is applied, and finally an autoregressive approach is conducted analogously to
the LPC mentioned earlier.

The relative spectral (RASTA) extension for the PLP was introduced by Her-
mansky et al. (1992). This makes the result more robust to linear spectral distor-
tions, for example different microphones. To do so, a logarithm is taken after
the critical band analysis. After the RASTA filtering, the result is transformed
back from the logarithmic domain using the exponential function.

Over-all 257 coefficients were computed every 16 ms for windows of length
32 ms.

3.2.4 Video Features

In order to process the video channel, the well-known computer expression recog-
nition toolbox (CERT) by Littlewort et al. (2011) is used. A screen-shot of this
toolbox is shown in Figure 3.9, where it is applied to a subject from the AVEC
2011 data collection. CERT computes human emotion related categories from
subjects that look approximately frontally into the camera as it is the case for
the data described in Sections 3.1 and 3.2.

CERT returns 6 high-level descriptions for an input video:

• A probability value for the six basic emotions each (i.e., anger, fear, sad-
ness, happiness, disgust and surprise) according to Ekman (1993).
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Figure 3.9: Screen capture of the CERT software for a sequence taken from the “AVEC 2011”
data collection. The respective subject is depicted on the left hand side of the figure. The values
for the categories, that are extracted from the video are plotted on the right side of the figure.

• Intensities for 19 action units, that are defined in (Ekman and Friesen,
1978). Examples for prominent action units are shown in Table 3.2 and
Figure 3.10.

• A smile detector with intensity.

• A detector whether the subject wears glasses.

• An estimate of the subjects gender.

• 2D position of 10 facial reference points.

• 3D estimation of head pose (yaw, pitch and roll).

The classification is conducted in several steps (Littlewort et al., 2011), that are
described in the following. First a face detector using a Viola-Jones cascade
(Viola and Jones, 2001) is applied. Based on this, 10 facial regions, i.e., inner
eye corners, outer eye corners and eye centers, the nose tip, left mouth corner,
right mouth corner and the center of the mouth, are detected using a further
classifier cascade. Additionally a post-processing step using a linear regression
based on a human labeled data set is conducted to improve the segmentation.
Using these characteristic 10 positions, the bounding box, that is returned by
the cascade is rotated in order to estimate a better fit for the face. Subsequently,
72 Garbor filters are computed for 8 orientations and 9 spatial frequencies from
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Table 3.2: Ekman and Friesen (1978) define the Facial Action Coding System (FACS), that
assigns codes to the contractions of the facial muscles. The table shows different important
FACS codes and their correspondent facial movement. Taken from http: // www. cs. cmu.

edu/ afs/ cs/ project/ face/ www/ facs. htm .

AU code Peculiarity
1 Inner Brow Raiser
2 Outer Brow Raiser
4 Brow Lowerer
5 Upper Lid Raiser
9 Nose Wrinkler

10 Upper Lip Raiser
12 Lip Corner Puller
14 Dimpler
15 Lip Corner Depressor
17 Chin Raiser
20 Lip stretcher
6 Cheek Raiser
7 Lid Tightener

18 Lip Puckerer
23 Lip Tightener
24 Lip Pressor
25 Lips part
26 Jaw Drop

http://www.cs.cmu.edu/afs/cs/project/face/www/facs.htm
http://www.cs.cmu.edu/afs/cs/project/face/www/facs.htm
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Figure 3.10: A famous example for the assignment of action units to facial regions. The FACS
codes signify different contractions of the muscles of the face (compare right hand side of the
figure). A facial expression can hence be denoted by an enumeration of FACS codes. Taken
from (Littlewort et al., 2009).

every image. A linear SVM is trained for the detection of action units (AU) us-
ing mostly publicly available data sets such as the “Cohn Kanade Comprehen-
sive Data Set for Facial Expressions” by Kanade et al. (2000). The intensities
mentioned before are given as the distance to the decision hyperplane of the
respective SVM, which is a popular technique to estimate the confidence of a
classifier as described in Section 2.3.1. The smile detection is conducted using
Haar-like features and a boosting approach. To obtain an estimate for the ba-
sic emotion, a logistic regression, that maps the estimates for the intensities for
the AU to the 6 classes. This mapping is trained only on the Cohn-Kanade data
collection, that incorporates an annotation of both AU and basic emotion.

In this work the outputs of the CERT software are used as features to further
classify the emotional categories of the AVEC 2011 and the EmoRec data. The
output of the modules “Basic Emotions 4.4.3” (i.e., Ekman’s basic emotions),
“FACS 4.4” and “Unilaterals” (i.e., the selection of AU shown in Table 3.2) and
“Smile Detector” are considered. Thus an over-all 36-dimensional vector for
every frame was obtained. CERT obviously only delivers sound values in case
the face of a subject is recognized. Due to the unrestricted settings of analyzed
corpora (subjects may turn away or leave the visual range of the camera) fea-
tures and hence classification results may be missing for certain samples.

3.3 Pascal 2 “mind reading” data set

This section describes a corpus that comprises EEG signals, that were recorded
from a subject in a visual selection task using a computer screen. Even though
the corpus was compiled in a human-computer interaction scenario, it inherits
a number of special features by which it is distinguished from the previous
ones. Unlike the other data collection, only a single modality is captured in
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this corpus even though multiple electrodes are used that deliver a signal. A
further property is that due to the elicitation method that is used, the two dif-
ferent classes occur very imbalanced in the corpus. Finally, the corpus inherits
a very strict timing of the classes by the succession of the presentations of the
images on the screen.

3.3.1 Recordings

In the past few years brain computer interfaces became part of the most promi-
nent applications in neuroscience (Chumerin et al., 2009). In the present study
the goal is to investigate the possibility to automatically determine whether a
human subject has just seen a target on a presented image by solely analyzing
the event related potentials (ERP), that are recorded using electroencephalog-
raphy (EEG). ERP typically reflect cognitive processes in the brain that follow
a more or less strict timely pattern that can be visualized by filtering and av-
eraging ERP signal recordings (Gray et al., 2004). A prototypical EEG progres-
sion can be seen in Figure 3.11. Well established states that are passed dur-
ing this information process resembled in the signal are the P100, N200 and
the well known P300, all named after their voltage and approximate delay of
the stimulus-response (Gray et al., 2004; Dujardin et al., 1993). Furthermore,
actual amplitudes and latencies in the typical ERP such as the N200 or the
P300 are dependent on factors such as the subjects attention, age, the stimu-
lus modality (for example audio or visual), and the frequency of the stimulus
(Dujardin et al., 1993). Another source of ERP are motor signals which corre-
spond to a task related physical action of a subject, for example pressing a but-
ton. Such a potential may be even further delayed after the stimulus and the
aforementioned patterns. These bio-electrical phenomena are normally over-
laid with heavy noise, that is caused inevitably even by subtle movements of
a test person (for example heartbeats). To make the actual ERP visible a de-
noising technique called ensemble averaging (Sörnmo and Laguna, 2005) is
applied in physiology: for all sequences of a category, the subsequent sam-
ples after a stimulus are averaged. In the present investigation visual stimuli
were presented by following a typical oddball paradigm: the non target (back-
ground) type stimuli were presented very frequently, whereas the targets were
displayed very rarely. According to Dujardin et al. (1993) this type of experi-
mental setup should lead to a prominent P300 representation in the EEG.

Originating from these findings, it is compelling to design a machine classifier
capable of detecting the subject’s recognition of a target stimulus by monitor-
ing the bio-electrical EEG stream. This particular setup imposes several chal-
lenges: the oddball recording technique of the data requires a special treatment
due to the skewed distribution of classes. Heavily imbalanced datasets require
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Figure 3.11: Schematic presentation of the succession of bio-electrical artifacts after a stim-
ulus. The letter denotes the sign of the voltage whereas the following number indicates the
approximate delay after the trigger (plot adapted from Birbaumer and Schmidt, 2006).

special treatment in order to mitigate the over-representation of a class. Pop-
ular techniques are under- and over-sampling of the training set with respect
to the categories or the usage of error functions that account for skew distribu-
tions of classes (Japkowicz, 2000; Zhou and Liu, 2006). Also, the noisy nature
of the employed sensors can impair the recognition performance. Methods de-
signed to improve robustness in low signal to noise ratio conditions include
low pass filtering but also information or data fusion (Kuncheva, 2002a). In
this particular domain of information fusion various possibilities to ensure ro-
bustness can be applied.

In this study, the dataset provided by the “Machine Learning for Signal Pro-
cessing 2010 Competition: Mind Reading6” is utilized. The goal of the com-
petition is the classification of stimuli by analyzing EEG recordings. For these
recordings, satellite images were presented in a fast sequence to a test person,
who was instructed to push a button when a surface to air missile (SAM) site
was shown. The images were shown to the subject in a resolution of 500×500
pixels for 100 ms. The data is presented in 75 blocks of 37 images leading to
a total number of 2775 images. Each block is separated by a pause ended by
the subject independently. However, only a marginal fraction of the images
are actual triggers (i.e., a SAM site is shown) such that the task of identification

6http://www.bme.ogi.edu/~hildk/mlsp2010Competition.html
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Figure 3.12: Feature extraction procedure: the subsequent half of a second is processed in time
and frequency domain. Overall, 16× 5× 2 = 160 different features per partition (see Figure
3.13) are passed to the classification architecture.

can be seen as a typical oddball paradigm task (Segalowitz et al., 2001). Out
of the 58 triggers only 48 triggers were identified by the subject within a rea-
sonable time window after the presentation of the satellite image containing
an actual missile site. For the testing and training only the EEG data recorded
after these 48 correctly identified triggers are used in order to ensure that the
subject has actually found the target and therefore generating a meaningful
EEG phenomenon.

The EEG data consists of 64 channels in total that are recorded with a sam-
pling rate of 256 Hz. The sensors are arranged as it is shown in the center of
Figure 3.13. Along with the data from these 64 electrodes the onset time of the
pressed space bar and the type of displayed image (“trigger” or “no trigger”)
are provided in the dataset.

3.3.2 Features

In order to prepare the data for classification five different features were ex-
tracted locally from every EEG channel. The samples of a time window of
500 milliseconds following each image trigger event were isolated for subse-
quent analysis. This could also be conducted using unsupervised learning for
sequential data like for example described in (Genolini and Falissard, 2010).
The frame length of 500 milliseconds was chosen in order to fully capture the
typical ERP (as depicted in Figure 3.11). The features for the analysis of the
ERP were computed in both, the frequency and the time domain (Picton et al.,
2000). To obtain a first feature, the first two principal components upon this
sequence of samples were calculated using a PCA.

Four more features were generated by applying the fast Fourier transformation
(FFT) on the aforementioned windows. The real and imaginary part of the re-
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Figure 3.13: Positions of the 64 electrodes on the scalp of the subject (Image adapted from
http: // www. biosemi. com ). The small images (1–9) surrounding the main layout illus-
trate the defined partitions of the 64 EEG channels (gray regions), that will be the inputs to the
classifiers of the multiple classifier system.

http://www.biosemi.com
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sulting frequency spectrum were utilized separately to form a second and third
feature. The amplitude and the phase shift of the particular frequencies were
computed to form a fourth and fifth characteristic features. All these values
were separately passed to a further principal component analysis, projecting
the data on the two components, having the highest variance.

Figure 3.12 displays the basic steps of this feature extraction procedure. Fea-
tures from both time and frequency domain are extracted from the subsequent
500 ms after a stimulus, leading to five different representations for every sen-
sor signal. For these values the first to principal components are computed to
render a compressed representation. In order to yield meaningful features for
the classifier the resulting feature vectors are pooled for the individual types by
defining nine overlapping partitions as shown in Figure 3.13. Thus, we gain
robustness by combining multiple feature channels as well as by combining
the outputs of several independent classifiers (compare Section 5.4).

A comprehensive overview of the competition can be found in (Hild et al.,
2010). Many different classifier approaches have been evaluated in this con-
text with the support vector machine being the most frequent one. Also, the
concept of bagging has been widely used. Thus performances of up to 0.82
area under the ROC curve (AUC) have been reached. For a description of the
top-scoring approaches please refer to (Leiva and Martens, 2010; Iscan, 2010;
Labbé et al., 2010).



4 Methodological Advancements

In this chapter, the methodological developments of this work are described.
Section 4.1 comprises approaches for the multi-modal and temporal fusion in
the context of human-computer interaction. An approach for the partially su-
pervised learning for uncertain teacher signals is presented in Section 4.2. Fur-
ther, an adaptation to imbalanced classes of the fuzzy-input fuzzy-output SVM
is described in Section 4.3. Finally, the developments are summarized and dis-
cussed in Section 4.4.

4.1 Multi-modal Decision Fusion

Many pattern recognition applications are solved in a “one sample” classifica-
tion approach like for example the recognition of hand written digits or on a
basis of small hand designed snippets (Kanade et al., 2000). The application
of continuous emotion recognition in human-computer interaction, that is tar-
geted in this work, requires a classification architecture, that reflects also the
temporal structure of the labels. A further property of the application is that
it is inherently multi-modal since the human emotions are conveyed in a man-
ifold of different channels, such as facial expressions, verbal utterances and
gestures. This can improve the over-all classification performance, but it also
requires a proper combination approach.

4.1.1 Related Work

Wöllmer et al. (2013) have approached the problem in using the so called
Long Short-Term Memory network introduced by Hochreiter and Schmidhu-
ber (1997), which is a recurrent network that is controlled by “gates”. These
gates control the input and the output of the recurrent memory units. Further a
“forget gate” is used to clear these units. The multi-modal fusion is conducted

87
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there by either using the different channels as inputs to a single network or by
creating a network per modality and then conduct a late fusion by averaging
the outcomes.

Scherer et al. (2012b) study multi-modal fusion in a multi party dialog appli-
cation using both hidden Markov models (Rabiner, 1989) and echo state net-
works (Jaeger and Haas, 2004). An echo state network is a recurrent network,
that is basically trained by randomly defining a network structure. The train-
ing data is then “driven” through this network. Using the outputs of this pro-
cess, a pseudo inverse is trained to create a mapping to the given labels. For
both classification approaches, the multi-modal fusion is conducted after the
separate classification of the different modalities. This is done by either sum-
ming the log likelihoods of the individual models or by summing up the out-
put of the recurrent network together with a temporal smoothing procedure.

A further multi-modal fusion approach, incorporating the temporal properties
of a problem is the Markov fusion network (Glodek et al., 2014, 2012a). It
is based on Markov chains and it is defined by different potentials that set
constraints for the output such as the outputs of the network shall not differ
too strongly over time. The multi-modal combination is conduced based on a
previous classification of the individual channels with a confidence value.

4.1.2 Multi-modal Fusion Architectures in Audio Visual Ap-
plications

In this section, the two main fusion schemes are proposed to investigate the
multi-modal fusion together with temporal integration of intermediate results.
The particular challenges that arise from the application of human-computer
interaction lie in the inherent properties of the respective modalities.

The video channel provides a new sample at a relatively high rate compared,
for example to the rate of the utterances of the subjects or the physiological
features. For each of these frames a new feature vector is computed, for which
a classification result is derived. However, it is relatively likely that this sen-
sor fails to return a meaningful result for example because the face tracker is
not able to work properly. Reasons for this can be occlusions or the subject is
turning away from the camera.

The audio channel provides in principle its data in an even higher sample rate.
However, in order to compute a meaningful and compact feature for the rep-
resentation of the spoken language, a time windowing approach is used as de-
scribed in Section 3.2.3. However, it has been shown that, in order to conduct
a successful speech classification, the time granularity should at least be com-
parable to utterance or word length. A further property of the audio channel
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is that feature vectors are not provided regularly: If the subject is not speaking,
the channel cannot be used.

For all approaches in this section, it is assumed that the individual modalities
are already classified appropriately. This classification is assumed to return
a class decision together with a confidence for this classification. As we will
see in Section 5.2, only weak classification performances are achieved using
only one of the different modalities. Hence the combination approaches show
promising improvements for the accuracy in these kinds of applications.

4.1.2.1 Multi-Modal Fusion after Temporal Integration

The first approach is mainly to conduct the temporal integration before the
combination of the modalities Dietrich et al. (2001) as it is denoted in Algo-
rithm 4.1. The algorithm is provided with the precomputed decision for the
n = 1, . . . , N different continuous modalities, for example represented as a
posteriori probabilities Pn

t = (pn
t (1), . . . , pn

t (C)) together with a predefined
time window length W as input.

Algorithm 4.1: Conducting multi-modal fusion after temporal integration
Data:

• Pn
t for n = 1, . . . , N modalities and t = 1, . . . , T frames,

• W window size

foreach wt = (Pn
t−W/2, . . . , Pn

t , . . . , Pn
t+W/2)n=1,...,N do

foreach n = 1, . . . , N do
temporal integration, for example πn

t = 1
W+1 ∑t+W/2

s=t−W/2 Pn
s ;

multi-modal fusion: for example Πt =
1
N ∑N

n=1 πn
t ;

Result: Πi Combined Decision for each time window

Based on this, every sample is embedded into the surrounding samples by
defining the time window as wn

i = (Pn
i−W/2, . . . , Pn

i , . . . , Pn
i+W/2). These in-

termediate classification results are then combined appropriately, for example
by applying the average fusion rule. Applying that to all available modali-
ties leads to N new temporally integrated decisions. This procedure is itera-
tively conducted for every data sample that is incoming for classification. The
new decisions for the different modalities generally improve over the deci-
sions, that they are based on because the labels in the underlying application
are not changing quickly. The size of the time window is determined by the
annotation of the data: slow changes in the label allow longer time windows
whereas quickly changing labels demand for smaller windows.
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The temporally integrated decisions for the individual channels are finally fur-
ther combined to form the over-all result, for example using the average fusion
rule. This asserts an equal weight for every channel in the final combination. It
is noteworthy that this may be the case even though there are potentially dif-
ferently amounts of decisions in some results than others. The general struc-
ture of this information-fusion procedure is depicted in Figure 4.1(a) as a block
diagram.

4.1.2.2 Multi-Modal Fusion before Temporal Integration

As an alternative, the multi-modal fusion can be conducted before the tempo-
ral integration Dietrich et al. (2001) as it is formally denoted in Algorithm 4.2.
Analogously to Section 4.1.2.1 the inputs to the algorithm are the intermediate
decisions on a fine granularity with the confidences Pn

i for the n = 1, . . . , N
different continuous modalities.

Algorithm 4.2: Conducting temporal integration after the combination of the
modalities
Data:

• Pn
t for n = 1, . . . , N modalities and t = 1, . . . , T frames,

• W window size

foreach wt = (Pn
t−W/2, . . . , Pn

t , . . . , Pn
t+W/2)n=1,...,N do

foreach j = t−W/2, . . . , t + W/2 do
multi-modal fusion: for example π j = 1

N ∑N
n=1 Pn

j ;
/* If a modality fails, it is omitted from the fusion */

temporal integration: for example Πt = 1
W+1 ∑t+W/2

s=t−W/2 πs;

Result: Πi combined decision for each time window

Again, the time window of size W is defined for the t-th decision in the n-th
channel as wn

t = (Pn
t−W/2, . . . , Pn

t , . . . , Pn
t+W/2). In this approach, the decisions

for every frame in the individual modality’s time window are combined with
the decisions of the other modalities for the respective time step. This is for
example conducted by applying the average combination rule. There may be
cases where one or more or even all modalities do not provide a classification
result for the reasons sketched above. Then the combined decision is drawn
from using the available results only. If no decision is accessible at all, the
respective time slot is omitted from the computations. This fusion step lays
more weight on the modality that returns more decisions in the time window
as non-available decisions are treated as mentioned before.
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(a) Block-diagram of the architecture “multi-modal fusion after temporal integration”:
The N classifiers are evaluated separately for each time-step in the respective win-
dow and a temporal integration is conducted. Subsequently, the multi-modal fusion
of the integrated results is conducted and the final classification result for a time
window is obtained.
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(b) Block-diagram of the architecture “multi-modal Fusion before temporal inte-
gration”: For each time-step ti each of the N classifiers is evaluated and the
decisions are combined in a multi-modal fusion step. Afterwards, a tem-
poral integration step of the combined results is conducted using a time
window approach and the final result is hence obtained.

Figure 4.1: Multi-modal classification architectures.
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After the multi-modal fusion, a temporal integration step is conducted based
on these intermediate results. Thus, an over-all classification decision is ren-
dered for a time step. It is possible, that for a particular time window no de-
cision can be made if all channels fail to render a classification, for example if
the subject turns away from the camera and it does not speak. Then the de-
cision of the previous window is assigned to the current window, exploiting
the assumption, that the labels do not change quickly. The information-fusion
architecture is graphically outlined in Figure 4.1(b) as a block diagram.

4.2 Using Unsupervised Learning to Improve Su-
pervised Classification

The annotation of corpora in the affective computing domain is particularly
expensive, since the true emotional state of a subject is not entirely observable
from the outside. This makes it very compelling for researchers to incorporate
additional unlabeled data into the training of a statistical classifier. Recent
research has been conducted using the above described techniques in the field
mainly for the recognition of human emotions from speech. For example self
training is studied in (Deng and Schuller, 2012) and (Esparza et al., 2012) on
acted and non-acted data sets. Active learning is successfully conducted in
(Zhang and Schuller, 2012) and also in (Esparza et al., 2012). A co-training
approach is implemented for several corpora in (Zhang et al., 2013), confirming
that adding more unlabeled data to the training does not necessarily improve
classification and it can also be degraded under certain conditions.

This section introduces a learning algorithm that incorporates unlabeled data
into the classification of the experimental sequences of the EmoRec corpus.
With an application like the EmoRec corpus at hand, where a whole session
of data with a relatively long duration is recorded but only comparably small
sub sequences are explicitly annotated in the respective classes, it is appealing
to use all available data, labeled and unlabeled, in the training of a statisti-
cal classifier. This is particularly desirable if the labeled data is only rarely
available. This is also the case for the EmoRec corpus as the individual experi-
mental sequences are relatively small and there are several feature approaches
for the physiological domain, that require a time window of several seconds as
described in Section 3.1.3.

A further distinct property of this kind of application is that the classifiers, that
are naı̈vely constructed on single feature vectors and only the labeled data are
very weak in their performance (Walter et al., 2011; Schels et al., 2012a). Hence
one approach for the improvement of the classification performance, beside
the information fusion techniques described in Section 4.1, is the incorporation
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of unlabeled data into the training process.

4.2.1 Proposed Partially Supervised Learning Algorithm

In this section an approach to use techniques of unsupervised learning in com-
bination with unlabeled data to improve the supervised learning procedure is
proposed. The key idea is to neglect the actual class labels of the samples and
to process all available data using an unsupervised learning step (compare Al-
gorithm 4.3). The actual classification problem is solved by a further learning
step. Based on the previously attained partitioning of the data, a distance mea-
sure of the cluster centers and the data samples is evaluated. This distance
could either be computed by a distance measure with respect to a cluster cen-
ter if a partitioning algorithm is used, or the posterior probability of a mixture
component of a fitted generative model. This results in a new representation of
the data of the same dimensionality as number of cluster centers. Based on this
new feature vector, a classification on the initial label is conducted using stan-
dard supervised machine learning approaches. In principle, different cluster-
ing approaches or density estimators can be used together with any compatible
distance.

To classify an unseen data sample, it has to be transformed into the new rep-
resentation. This is done analogously to the training procedure by calculating
the distances to the centers: These values are computed with respect to the
computed local density or the respective prototype and the obtained new rep-
resentation is classified.

Another important property of the proposed approach is that the dimension-
ality of the features can be increased by choosing the number of cluster centers
k bigger than the original dimensionality. This makes it easier for a machine
learning algorithm to find a linear decision border according to Cover’s theo-
rem (Cover, 1965).

An example for the benefits of such a classification approach is given in Figure
4.3, where the partially supervised approach is evaluated for a varying num-
ber of prototypes and compared to standard pattern recognition techniques.
Here the COIL 100 database was used, which comprises 7200 images of 100
different objects form different viewing angles. In order to simulate a par-
tially labeled setting, for 92 % of the data the actual class label was removed.
This means, that approximately 5 samples per class remained labeled. The
features used are color histograms and orientation histograms. The ten fold
cross-validation experiments show that in this configuration the pseudo in-
verse classifier, the linear and the RBF kernel SVM render 0.51, 0.42 and 0.39
error. The partially supervised approach using the pseudo inverse classifier to-
gether with a k-means algorithm and the Euclidean distance outperforms the
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x1

x2

(a) A new (gray) sample has to be classi-
fied into the black or the white class.

x1

x2

(b) Using probability desity estimation
(repsective centers denoted as rectan-
gles) with labeled and unlabeled data,
the gray sample is more likely in the
“black” sample cloud.

x1

x2

(c) The data is re-encoded with respect the
distance to the centers of the probabil-
ity density function. Based on the new
representation, a supervised classifier
is constructed using the available la-
beled examples.

Figure 4.2: The basic idea of the partially supervised approach summarized in an illustrative
example.
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Algorithm 4.3: Proposed algorithm in pseudo code.
Data:

• Labeled data L = (l)i=1...NL

• Respective labels Y = (y)i=1...NL

• Unlabeled data U = (u)j=1...NU

• Number of cluster centers k,

Compute k local densities or prototypes p1, . . . , pk using L ∪ U ;
foreach l ∈ L do

l′ = Gp1,...,pk(l);
G is a distance or similarity measure
Examples:

1. Gp1,...,pk(l) = (‖ pi − l ‖)k
i=1

2. Gp1,...,pk(l) =
(

exp(− ‖pi−l‖2
σi

)
)k

i=1

3. Gp1,...,pk(l) =
(
min(‖ pi − l ‖2, ‖ pj − l ‖2)

)k
i<j=1

Train classifier F on ((l′)i=1...NL ,Y);
Result: Classifier F;
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Figure 4.3: Error rates for the Coil dataset regarding only 8 % of the available as labeled. The
errors for the partially supervised approach is plotted against the number of cluster centers.
The pseudo inverse classifier is used together with k-means and the Euclidean distance. Also,
error rates for pseudo inverse solely and linear and RBF kernel SVM are given.

purely supervised approach at more than 180 components on. At 250 compo-
nents, the error decreases to 0.36. Hence, the partially supervised approach
is able to capture the distribution of the data more precisely than it is possi-
ble without the unlabeled data. This holds especially, when the classification
problem is hard, for example when the number of training samples is small.

4.2.2 Related Work

An important source for the incorporation of unlabeled data is of course the
extensive literature of semi-supervised learning as for example described in
Section 2.5. However, most of these techniques such as self and co-training
heavily rely on a initially high accuracy as the classified samples are added to
the training set of the models. Adding noise to this set degrades the perfor-
mance of the model potentially dramatically. Active learning is in this context
particularly expensive as the categories may be only weakly defined (Walter
et al., 2011; Krell et al., 2013; Siegert et al., 2012)

The approach is related to the initialization of radial basis function networks
in supervised classification (Kestler et al., 1995; Ros et al., 2007). Hereby, the
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aim is to stabilize the results of the training procedure and also to speed up
the process. A typical approach is to pre-train the hidden RBF-layer in an
unsupervised fashion by clustering or vector quantization (Schwenker et al.,
1994, 2001). Afterwards, the network is finally adapted to the labels by either
solely creating a linear mapping for the output layer or back propagation for
the whole network. The unsupervised step in our approach can be regarded
as some sort of initialization of a “hidden layer” using all available data. Thus,
the distributions of data can be estimated more reliably. After that, a second
output layer is created with only the labeled data at hand.

A further analogous approach is the bag-of-visual-words approach that is to
some extent popular in computer vision (Qiu, 2002). It is inspired by the com-
mon bag-of-words approach of the natural language processing. The words
in this context are learned using unsupervised clustering or vector quantiza-
tion, forming a vocabulary or codebook. Based on this codebook the images
are represented as bags of the occurring prototypes, which are passed to a
supervised classification process. A major difference to the approach that is
proposed here is that the data sets for the training of the codebooks and the
training of the classifier are not the same. A further possibility to use code-
books to pre-process features for the training of a classifier is the discretization
of the feature space using cluster analysis as it is for example conducted in
(Vogt and André, 2009). This can have positive effects for training sets incor-
porating only few samples per class.

The classification of human physiological signals for the detection of emotional
categories has been carried out previously in different scenarios. If the classi-
fication is conducted subject dependent for one recording session on a single
feature vector basis, the classification performances are generally high (Kim
and André, 2008). However this setting makes it likely to run into artifacts of
the sensors characteristic over time, i.e., samples that are near to each other are
likely to have the same label and also a similar sensor characteristic. This does
not necessarily relate to the intended phenomena.

Others use different tasks, that are separated but still in one session to train
and test a classifier (Hrabal et al., 2012). This mitigates the temporal artifacts
but still avoids the variances that may occur when detaching and re-attaching
the senor devices to the subject’s skin.

Picard et al. (2001a) consider the issue of classification of physiological mea-
surements for one subject but for different days. This is done by introducing
a so called “day matrix” to the feature vectors, which is encoding the time in
which the data is recorded. It is basically a matrix that has a nonzero value
only on entries, representing the respective day. Thus, an increase of the di-
mensionality of the data is conducted, that makes it easier to linearly classify
the data as described in (Picard et al., 2001a).
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4.3 Highly Imbalanced Class Distributions

In data sets, that are collected in many real world scenarios, the distribution of
classes is often not balanced for example because it is more difficult to gather
samples of a distinct class than of other classes. In this section, an extension
of the fuzzy input fuzzy output (F2) SVM is proposed, where the weights that
are used to implement the fuzzy membership values in the slack term of the
SVM are modified. The main idea for the adaptation to imbalanced classes is to
punish misclassification of the over-represented categories are more severely
than those of the under-represented classes.

4.3.1 Extending the F2-SVM to Imbalanced Class Distributions

In this section, the modifications to the SVM concerning the proposed loss term
for imbalanced classification tasks are outlined. The class weights for every
data sample are given in two N-dimensional vectors m+ and m− which con-
tain the relative proportions of the two opposing classes in the training data
and hence m+ + m− = (1, . . . , 1). The goal is then to maximize a soft-margin,
stated as

argmin
w,b,ξ+,ξ−

1
2
||w||2 + C

N

∑
n=1

(ξ+n m+
n + ξ−n m−n ) (4.1)

where n = 1, . . . , N denotes the index of the training samples and ξ+ and ξ−

are linear slack variables penalizing a sample being misclassified. The param-
eter C controls the penalty of incorrect class assignments. The minimization
problem of Equation 4.1 is optimized subject to the constraints

wTφ(xn) + b ≥ 1− ξ+n (4.2)

wTφ(xn) + b ≥ −(1− ξ−n ) (4.3)
ξ+n ≥ 0 (4.4)
ξ−n ≥ 0 (4.5)

where w and b describe the orientation and the bias of the hyperplane, and
φ(.) denotes a transformation of xn ∈ Rn into a potentially higher dimensional
Hilbert space H. The corresponding Lagrangian of this optimization problem
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defined by (4.1) – (4.5) is given by:

L(w, b, ξ+, ξ−) =
1
2
||w||2 + C

N

∑
n=1

(ξ+n m+
n + ξ−n m−n )

−
N

∑
n=1

α+n ((w
Tφ(xn) + b)− 1 + ξ+n )

+
N

∑
n=1

α−n ((w
Tφ(xn) + b) + 1− ξ−n )

−
N

∑
n=1

β+
n ξ+n

−
N

∑
n=1

β−n ξ−n .

Differentiating the Lagrangian with respect to the Lagrangian multipliers and
w, b, ξ+, ξ− and subsequently eliminating the parameters of the hyperplane
and the slack variables results in the dual Lagrangian:

L̃(α+, α−) =
N

∑
n=1

α+n +
N

∑
n=1

α−n −
1
2

N

∑
n=1

N

∑
m=1

(α+n − α−m)(α
+
m − α−n )k(xn, xm), (4.6)

where the kernel function is defined by k(xn, xm) = φ(xn)Tφ(xm) and the max-
imization problem is now constrained to:

N

∑
n=1

(α+n − α−n ) = 0, with

0 ≤ α+n ≤ Cm+
n , and

0 ≤ α−n ≤ Cm−n .
(4.7)

In order to satisfy the Karush-Kuhn-Tucker conditions, properties

α+, α−, β+, β− ≥ 0

,

α+n ((w
Tφ(xn) + b)− (1− ξ+n )) = 0, (4.8)

α−n ((w
Tφ(xn) + b) + (1− ξ−n )) = 0, (4.9)
β+

n ξ+n = (Cm+
n − α+n )ξ

+
n = 0, (4.10)

β−n ξ−n = (Cm−n − α−n )ξ
−
n = 0, (4.11)

∀n = 1, . . . , N,
(4.12)
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and properties (4.2) – (4.5) hold. A numerical solution can be computed using
the sequential minimal optimization (SMO) approach introduced by Platt (1999a).

Once the Lagrangian multipliers α+ and α− have been found, the parameters
w and b of the hyperplane are determined by:

w =
N

∑
n=1

(α+n − α−n )φ(xn), and

b =
1

2NM+
∑

n∈M+

(
1− ∑

l∈S+
(α+n − α−n )k(xn, xm)

)

+
1

2NM−
∑

n∈M−

(
(−1)− ∑

l∈S−
(α+n − α−n )k(xn, xm)

)
,

(4.13)

where S+ (S−) is the set of support vectors α+n > 0 (α−n > 0) andM+ (M−) is
the set of unbounded support vectors with α+n < Cm+

n (α−n < Cm−n ). According
to equations (4.10) and (4.11) ξ+n (ξ−n ) = 0 if the sample n is in the setM+ (M−).
The bias parameter b is averaged by using Karush-Kuhn-Tucker conditions
(4.8) and (4.9) to obtain a numerically stable solution.

A class decision can then be obtained by y = sign(wTx + b). To extend the
SVM to a probabilistic output, the distance d(x) of the input x to the hyper-
plane is mapped to ỹ(x) ∈ (0, 1) using a sigmoid function (Platt, 1999b) with
parameter a

ỹ(x) = (1 + exp(−a · d(x)))−1

can be minimized according to the mean square error on the training data.
Since m+

n = 1−m−n only m+
n needs to be considered and the following equation

is optimized:

E =
1
N

N

∑
n
(ỹ(xn)−m+

n )
2,

which can be accomplished by a linear regression technique.

4.3.2 Related Work

Many real world applications in pattern recognition need to deal with im-
balanced training sets. Common techniques to mitigate this issue are over-
sampling of the underrepresented classes or under-sampling of the overrep-
resented classes (Japkowicz, 2000; Zhou and Liu, 2006). Another approach to



4.4. Discussion 101

highly imbalanced data sets is utilizing a particular loss function in the cho-
sen classifier design such as individual cost terms for each class. Such a loss
function penalizes misclassification of underrepresented classes more severely
than others. In the following, such a loss term is incorporated into the com-
mon formulation of the support vector machine (Schölkopf and Smola, 2001)
as for example proposed in (Osuna et al., 1997). This approach has proven
to be feasible under different circumstances as fuzzy-input fuzzy-output support
vector machine technique as described by Thiel et al. (2007).

4.4 Discussion

Recent developments in computer science allow distinct applications to push
the frontier forward to more subtle categories in human-computer interaction.
One important factor for this is that different sensors to capture a subject and
its surroundings are becoming cheaper and more accessible for everyday pur-
poses. These sensors do not only comprise cameras and microphones but also
physiological measurements from the subject’s body. Further, storing mea-
surements is also becoming cheaper, making it easier to construct learning al-
gorithms for more complex categories like user states. This goes along with the
development in computer memory capacities and computation speeds, that al-
lows to develop and implement statistical models and classifiers on these data.

This availability of data results on the other hand in data collections that com-
prise not clearly defined categorizations and segmentations. This results in
very hard classification tasks that provide noisy data distributions that cannot
easily be separated into classes that are shipped with the data. These classes
are furthermore in parts not as profoundly defined as in other technical appli-
cations, which is further discussed in Chapter 3. This originates for example
from categories, that are globally defined over a distinct period of time as it
is the case with the EmoRec data collection and one cannot be sure that this
assumption is met in the whole segment. Another example is the AVEC 2011
data collection, which provides four different emotional categories that are not
too easily accessible in practice. This holds particularly true for this application
as the emotional dimensions only occur in comparably low degrees. A further
issue in this context is that the different classes appear in many real world
applications unevenly distributed. This originates from the fact, that the un-
derlying experiments are commonly not arbitrarily repeatable (using dispraise
for the elicitation of emotions may serve as an example for this) or the experi-
mental setting does not allow even class distributions, for example the oddball
paradigm mentioned in Section 3.3.

These challenges have to be addressed appropriately in the classification pro-



102 Chapter 4. Methodological Advancements

cedures. The relatively high noise level in the distributions of the data that is
described earlier demands for base classifiers that have comparably few de-
grees of freedom. One major technique that allows to still render complexer
class boundaries is the multi-modal combination of independent channels.
Usually in multiple classifier system only different feature views for the re-
spective samples are available, which makes is arguable if the independence
assumptions that are often made in the classifier fusion are met in reality. By
using completely different sensor devices, this assumption can be asserted
stronger and the combination is generally more promising. A further distinct
feature of these applications is that the data is naturally available in time series
for which the different categories do not change too quickly over time. This
makes the temporal integration of intermediate results a very promising ap-
proach. Both approaches have to incorporate the fact that the sample rate for
the data and hence the rate of feature vectors can vary considerably for differ-
ent sensor types. Finally for the problem of imbalanced class distributions, the
incorporation of weights for the respective training data points is a promising
approach. The weights are designed to punish misclassifications of the lesser
represented class more severely than others.

The approaches, that have been introduced in this chapter will be numerically
evaluated in Chapter 5. The multi-modal and temporal information fusion ap-
proaches will be tested using the EmoRec and AVEC 2011 corpora of human-
computer interaction (see Section 5.2) . This comprises the whole AVEC data,
that includes audio and video channels and also the audio-visual part of the
EmoRec data collection in order to allow for a fair comparison. The physiolog-
ical part of the EmoRec will be used for the evaluation of the partially super-
vised learning approach, that is described in Section 4.2 (compare Section 5.3).
This part of EmoRec is well suited for the approach as the individual features
are computed on a relatively long timely basis, which makes the extension of
the underlying data for the statistics promising. Additional experiments for
this approach on benchmark data sets are presented in the Appendix. The pro-
posed SVM for the imbalanced class problems will be evaluated in Section 5.4.
This evaluation will be conducted on the PASCAL 2 mind reading competition
data collection.



5 Numerical Evaluation

This chapter resembles the numerical evaluation of the methods, that are de-
scribed in Chapter 4 in the context of human-computer interaction. Before the
presentation of the actual numbers, the used performance measures and sta-
tistical testing protocols are described in Section 5.1. Afterwards in Section 5.2
the multi-modal and temporal information fusion architectures are evaluated
by the means of the audio-visual parts of the EmoRec and the AVEC 2011 cor-
pora. In Section 5.3 unlabeled data is incorporated in the classification of the
physiological part of the EmoRec corpus as described earlier. Finally, the SVM
incorporating the class weighting mechanism is evaluated on the PASCAL 2
mind reading competition corpus. This evaluation is described in Section 5.4.

5.1 Classifier Performance Assessment

In this section the issue of numerically evaluating a statistical classifiers is dis-
cussed. It will focus on the relevant measures and the usage of data for that
purpose will be discussed.

5.1.1 Error Rate and Receiver Operating Characteristics

The most common and intuitive performance measure for a classification task
is the error rate. It is briefly the relative amount of misclassified samples in
a data set. In order to formally introduce this measure, the notation is bor-
rowed from Webb (2002): Let Y = {yi, i = 1, . . . , N} be the training data for
a classifier, where each sample is defined as yi = (xi, zi). These samples com-
prise a feature vector xi, i = 1, . . . , N and the corresponding class labels zi,
i = 1, . . . , N in a vector notation. Further is the function ω(z) the categorical
class label of z and the output for a sample xi of the classifier that is trained
using Y is denoted as η(xi, Y). The loss function Q(ω(z), η(x, Y)) is defined as
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True label

Predicted label True positive False positive
False negative True negative

1 1
(a) Confusion matrix with definition of true positive (TP) and

false positive (FP) classifications.

P(z1|x)

P(z2|x)

Decision border

(b) Shifting the decision border yields dif-
ferent TP and FP values.

0

1

1

P(TP)

P(FP)

(c) The plot of TP against FP for
the possible decision borders
returns the ROC curve.

Figure 5.1: The logic of the ROC curve (Theodoridis and Koutroumbas, 2009).

follows:

Q(ω(z), η(x, Y)) =
{

1, if ω(z) 6= η(x, Y)
0, otherwise.

Based on this the apparent error rate is defined as the average loss for the N
data samples (Webb, 2002):

eA =
1
N

N

∑
i=1

Q(ω(zi), η(xi, Y)).

Error rate is obviously underestimating the error of the classifier, particularly
for applications using models with many degrees of freedom together with
only few data samples. It converges however to the true error rate if infinitely
many data samples are drawn from the distribution of the data.

A further widely applied performance measure for two class problems is de-
rived from the so called receiver operating characteristic (ROC) (Theodoridis
and Koutroumbas, 2009). It is defined using the confusion matrix for the clas-
sification as it is displayed in Figure 5.1(a). There, the values for the true pos-
itive (TP) classifications and the false positive (FP) classification are taken and
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test train train train fold 1

train test train train fold 2

train train test train fold 3

train train train test fold 4

Figure 5.2: Example for 4-fold cross validation: The data are split in folds of equal size and in
every run a different fold is left out of the training (white) of the classifier and used subsequently
for its testing (green) (Bishop, 2006).

varied by incorporating a classification threshold. This threshold is shown in
Figure 5.1(b) for a two class problem that is displayed for Gaussian distribu-
tions. It represents the decision boundary, which is set to classify every sample
left of the border as a member of the negative class and right of the border as
a member of the positive class. By moving the threshold as indicated in the
figure from left to right different configurations of the classifier are sampled
and thus different pairs of TP and FP values are obtained. The ROC curve is
thus created by plotting the relative TP values against the FP values, which
typically renders a curve like the one displayed in Figure 5.1(c). The diagonal
in of the table this figure indicates the border between classification results:
Points above this line indicate classifiers, that are better than random guess-
ing and points under the line indicate weak classifiers equal to or worse than
random guessing. In order to access the quality of the classifier the area un-
der the ROC curve (AuC) is a well-known measure. The larger this area, the
better is the discriminative power of the underlying classifier (Bradley, 1997;
Landgrebe and Duin, 2008). Especially, when the data collection comprises
a highly imbalanced class label distribution the area under the ROC curve is
considered an appropriate performance measure (compare e.g., Chawla, 2005;
Fawcett and Flach, 2005).

5.1.2 Cross-Validation

The issue of the correct estimation of the true error rate of a classifier is com-
monly approached using so called holdout estimates (Webb, 2002). The most
common technique in this context is k-fold cross-validation, where the avail-
able data is split into k folds of equal magnitude as exemplified in Figure 5.2
for a 4-fold cross-validation setting. In k different training and classification
runs, the k-th fold is left out of the training of the classifier for which only the
k− 1 remaining folds are used. The data that is held out of the training is then
used for the evaluation. This procedure is repeated for each of the k folds.
The resulting error rate is then defined as the average error of the folds. This
is formally defined using the previously outlined notation as follows (Webb,



106 Chapter 5. Numerical Evaluation

2002):

eCV =
1
N

N

∑
j=1

Q(ω(zj), η(xj, Yj)).

In this equation Yj denotes the training set where the sample xj is held out.

A common issue in this context is the optimization of additional classifier com-
bination schemes or meta parameters of the classifiers for example the variance
of a RBF kernel function. For these optimizations an additional validation set
is generally necessary in order to avoid over-fitting on the training set but more
importantly not to use the test set for such optimization.

In the context of human-computer interaction and related topics, a further ap-
plication specific partitioning of the available data is the subject-independent
evaluations and the subject-dependent partitions (Huang and Lee, 1993; Schuller
et al., 2005). In subject-dependent settings samples of a subject are present in
both, the training and the test sets, whereas for the subject independent exper-
imental settings the samples of a subject are only either in the test or in the
training set. The subject independent classification poses obviously a greater
challenge for a statistical classifier.

This if further intensified in the context of physiological signals, when the
study that led to the underlying corpus has a strict temporal protocol. This
is the case for example when different task have to be executed in a fixed row
(compare e.g., Valstar et al., 2013) or the stimuli that are presented in defined
sections of the experiment (compare e.g., Walter et al., 2013). The temporal
characteristics of many physiological sensors, that originate for example from
a drying of the gel of the sensor pads or the pads slip slightly out-of-place
over time, leads generalization issues when conducting a leave one sample
out strategy within a single session for the evaluation of a statistical classifier.
Hence it is mandatory to use at least different sessions, when dealing with such
a scenario or follow a subject independent evaluation strategy.

5.2 Audio-Visual Classification Experiments

In this section, the evaluation of the multi-modal and temporal fusion architec-
tures are conducted on the EmoRec and the AVEC 2011 corpora by the means
of classification experiments. The implementation of the precise approaches
for the classification of the features extracted from the audio and video chan-
nels is described in Section 5.2.2 for the audio channel and in Section 5.2.1
for the video channel. Based on these individual classifications of the modali-
ties, the multi-modal information fusion architectures that were introduced in
Section 4.1.2 are systematically evaluated in Section 5.2.3 with respect to differ-
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Figure 5.3: Steps for the classification of facial expressions.

ent time granularities. The respective findings are finally discussed in Section
5.2.4.

5.2.1 Classification of Facial Expressions

As mentioned before, the feature calculation for the video channel is conducted
using the CERT tool box (compare Section 3.2.4). The subjects in the employed
data are more or less looking directly into the camera and hence the tool box
yields relatively stable values. Normally, one feature vector per frame is re-
turned. But there are also cases, when no feature is returned. The most fre-
quent reason for this is the failure of the face tracker. An obvious cause for
this is that the subject is facing away from the camera. Further, glasses and ex-
cessive beards and also the facial electrodes of the EMG recording devices can
sometimes disturb the video feature extraction. In these cases the respective
frame location remains unset.

The output of the modules “Basic Emotions 4.4.3” (i.e., Ekman’s basic emo-
tions), “FACS 4.4” and “Unilaterals” and “Smile Detector” are considered (com-
pare Section 3.2.4). Thus, a 36-dimensional vector for every frame is obtained.

The classification for this channel is conducted using linear least squares clas-
sifiers. Multiple of these classifiers were constructed using a bagging approach
with 100 individual classifiers. Thus, complexer decision borders can be con-
structed despite of the simple base classifier. The class decision is computed
using voting of the base classifiers. The classification uncertainty is captured
by the standard deviation of the respective outputs of the individual classifiers.
This base model with only few degrees of freedom turns to be very effective,
as the distribution of classes for this channel is normally very noisy as seen for
example in Figure 3.9. The obvious reason for this is that the expressions are
very subtle in spontaneous non-acted emotional data. The general procedure
of the classification of the video is depicted in Figure 5.3.

Still, the video channels renders a relatively weak classification performance in
this application. As elaborated in Section 3.2.4, the models used by the CERT
software are trained using acted emotional data sets. Because the occurrence of
affective states in the considered data collections are much more subtle, the re-
sulting feature vectors render a noisy class distribution, which makes discrim-
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Figure 5.4: Using HMM to transform sequences into feature vectors of uniform length.

inative analysis difficult. Preliminary experiments showed that more complex
classifiers struggle to construct meaningful class borders in this context. For
example the optimization of SVM tends to assign all training samples to one
class, regardless of the true class value. The false classification are thus treated
as margin violations (compare Section 2.2.3). The proposed configuration of
the base classifier using linear least squares pseudo inverse together with the
ensemble learning scheme is hence designed to overcome this issue and still
construct a meaningful classifier.

5.2.2 Classification of Spoken Utterances

A challenge for the classification of spoken utterances is that verbalized words
have naturally different lengths. One way to circumvent this to conduct clas-
sification on a very low frame based level. For example in (Schels et al., 2012a)
the raw MFCC frames on 250 ms time slices were used, amongst others, di-
rectly for the classification of utterances. But this straight forward approach
does not seem to provide sufficient information to construct meaningful classi-
fiers. In this work an utterance based representation using HMM and multiple
features is applied. Thus the sequences of audio features is transformed into
a single feature vector of uniform length, that can be processes by standard
machine learning techniques.

A distance-matrix for a set of sequences M = {S1, . . . , Sn} is constructed using
the following algorithm (Smyth, 1997):

1. Train one HMM λi per sequence Si ∈ M

2. Calculate the log likelihoods Li,j = log P(Si|λj) for every sequence with
respect to every HMM. In order to mitigate the effects that are caused by
the duration of a sequence, the log likelihood is normed using its length.

3. Finally, the distance between two sequences is d(j, i) = 1
2(Li,j + Lj,i)

The result of this algorithm is a n× n symmetric distance matrix. Bicego et al.
(2003) have proposed a generalization of this method by reducing the number
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of HMM to “reference” sequences. This means that only m < n sequences
are randomly sampled from the available data and only for these HMM are
constructed. Instead of computing the mean of the two log-likelihoods Li,j and
Lj,i, the log-likelihood of the reference models is used normalized by the length
of the sequence: xij =

1
|Si| log P(Si|λj), where Si is the i-th sequence and λj the

model of the j-th samples sequence. The concatenation of these values X = xij,
i = 1, . . . , n and j = 1, . . . , m creates a new feature vector for every sequence
that is of uniform length. This is a computational alleviation especially for big
databases. The algorithm is depicted as a block diagram in Figure 5.4.

An alternative for this approach is for example dynamic time warping (Wen-
demuth, 2004), that is widely used for audio processing for example in speech
recognition (Rabiner and B.-H., 1993) and bio-acoustics (Dietrich, 2003). The
HMM based method was however successfully used in affective computing
using speech for example in (Schels et al., 2013b; Glodek et al., 2012b,a).

The five different audio features, that are described in Section 3.2.3 — namely
MFCC, RASTA-PLP and LPC together with energy and f0 are processed sepa-
rately in three “groups” of feature in the HMM preprocessing. For each group,
m = 75 sequences were randomly selected. This value is used in order to keep
it computationally feasible. The resulting 3 feature vectors per utterance are
then concatenated and form the final feature.

Based on this, a random forest classifier with 50 individual trees is constructed.
The number of single classifiers was not systematically optimized, but rather a
sensible number in the trade-off between computational expense and degrees
of freedom. The uncertainty measure, that is used for classification is the rela-
tive number of trees, that vote for a class.

The choice of a complexer classification model compared to the approach cho-
sen for video material is made as the different audio features together with the
HMM-based utterance time granularity potentially constitute a more informa-
tive modality. This means that for the video modality 25 new feature vectors
are potentially available every second, whereas the audio modality provides a
new feature vector in a much slower rate approximately based on a few sec-
onds. A further characteristic of the Random Forest technique is that it pro-
vides an intuitive uncertainty measure via the agreement in the ensemble of
trees. Hence this approach renders a rather robust classifiers provided enough
trees as individual classification trees are defined (compare Section 2.2.4).
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5.2.3 Evaluation of Multi-modal and Temporal Fusion Archi-
tectures

In the following, the numerical evaluation of the audio-visual classification ar-
chitectures on the publicly available AVEC 2011 corpus and also on the EmoRec
II corpus is presented. The evaluations comprise the classification of the audio
and video channels solely and the two proposed information fusion architec-
tures.

5.2.3.1 “AVEC 2011” Data Collection

All experiments are conducted in a strict subject independent 4-fold cross valida-
tion, i.e., the subjects that are in the training set do not occur in the respective
test set. The different combinations of classifier decisions are evaluated for this
corpus on all four available labels.

Arousal

Figure 5.5 displays the results of the audio-visual classification for the category
“arousal”. It shows the classification error for the four approaches with respect
to the size of the employed time window in seconds.

On the single frame level (far left on the plot), the classification errors are rel-
atively high, for both the single modalities and their combinations. The audio
channel (blue line) shows a smaller error of 38 % compared to the video (red
line) with 43 %. Both types of combinations are suited in the middle at around
40 % error (cyan and purple).

When applying longer time windows in the integration step, the error de-
creases until approximately 70 s to 80 s. the audio classifier still yields lower
errors of 29 % compared to the video classifier at 36 % error. This is despite the
fact that there are intrinsically more decisions for the video frames available.
The combination of the modalities shows in both cases errors between the in-
dividual modalities. Combining the modalities after the temporal integration
with a channel renders better classification results compared to the case, where
it is conducted the other way round: 31 % versus 33 % error. A reason for this
is the low performance of the video classifier, that inflicts the over-all result.
Especially, when the channels are combined on a frame level, the impact of the
quicker video modality is comparably high. For time windows, that are longer
than 80 s, the classification error increases again.

The subject’s arousal is obviously conveyed mostly over the voice of the spea-
ker. This is in accordance to the literature, where simple thresholds for the
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Figure 5.5: Audio-visual classification error versus the time window size for the category
“arousal” on the AVEC 2011 corpus.

energy of the voice signal are sometimes used for the categorization of the
activation of a speaker (compare e.g., Johnstone and Scherer, 1999).

Expectancy

The evaluation for the category “expectancy” is shown in Figure 5.6. Analo-
gous to the previously described category arousal the different classifier fusion
approaches are evaluated with respect to the size of the employed time win-
dow size.

For this label, the classification on a single frame is even worse than for the
label arousal. For the audio channel an error rate of 45 % is computed. The
video channel renders only slightly better results with an error of 44 %. The
combination of the classifiers yields approximately equal error rates.

When increasing the time window, the error decreases in almost all cases ex-
cept, when only the audio channel is used. The video channel improves con-
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Figure 5.6: Audio-visual classification error versus the time window size for the category
“expectancy” on the AVEC 2011 corpus.

siderably to about 39 % error at approximately 30 s time window and its per-
formance degrades again for window sizes longer than 60 s (compare red plot
in Figure 5.6).

Varying the window size has only marginal effects on the classification perfor-
mance. Figure 5.6 shows evidences, that larger time windows are beneficial
for the audio channely. However, the classification errors are still high for big
window sizes.

The combination of the modalities for the approach, where the temporal inte-
gration is conducted after the frame-wise combination further improves over
the video classifier (compare purple line in Figure 5.6). It also depends only
on shorter time windows than for the single modality. The optimum region is
already obtained at approximately 20 s with 37 % error. At around 45 s, the
error increases again — also slightly earlier than for the video classifier solely.

The classifier fusion approach, where the temporal integration is conducted
first (compare Figure 5.6, cyan plot) renders a lower classification performance
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than both, the video and the other combination method. For very long time
windows, this approach reaches an optimal performance for window sizes of
95 s. Here, 38 % error is rendered.

Conducting the fusion of the channels first lays more weight on the video clas-
sifier, that is more accurate for this label. Hence, the combination method out-
performs the other one. It also outperforms the video classifier solely, which is
here the best individual classifier.

Long time windows for the audio classifier render an improvement for this
channel, such that the classifier fusion, where the temporal integration is con-
ducted first (and the weights for the channels are equal) yields also compara-
bly good results. However, for these time windows the underlying data are
reduced noticeably and this result might not be conclusive.

Power

The results for the label “power” are similar in a sense to the ones for the label
expectancy. The evaluation is summarized in Figure 5.7, where the error rate
for the approaches is plotted against the size of the respective time window.

Initially, both, the audio and the video classifier share an error rate of approx-
imately 44 % to 45 %. As before, the video classifier can benefit from longer
time windows, but there is no clear optimum observable. The error is reduced
quickly first and from 60 s on the improvement slows considerably down. At
around 100 s, the error tilts down again, which might be an artifact of the exces-
sive window duration. Analogous as mentioned before, the underlying data
set size is also smaller for these window sizes and this might be an artifact of
that circumstance.

The audio classifier is not at all benefiting from longer time windows. The
error is constantly at approximately 44 % for all window sizes.

The combination of both classifiers yields the same error rates as the individual
modalities at a frame basis. But both approaches can benefit from growing time
windows. Conducting the combination of the channels before the temporal
integration reaches an optimal window size at 30 s to 40 s with an error rate of
35.5 %. For long time windows the curve follows the one for the video channel
as this modality tends to overrule the audio as described before.

The combination approach, where the temporal integration is conducted first,
the error drops slower compared to the other fusion approach. The error shows
no sharp optimal temporal resolution and stay at a saturation value of 36.5 %
error from window sizes of approximately 50 s on.

Generally, this category is a fine example for how the combination of tempo-
ral classifiers can improve over different modalities and temporal granularity.
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Figure 5.7: Audio-visual classification error versus the time window size for the category
“power” on the AVEC 2011 corpus.

Even though the audio classifier renders a comparably bad classification ac-
curacy, the combination improves over the best individual classifier for this
category. A reason for that is that not only the individual accuracy is crucial
for the classifier fusion but also the classifiers’ diversity on the samples. Fur-
ther, the uncertainty measure that is used to access the quality of a respective
decision has to output sound values, for example returning wrong decisions
with a high certainty.

Valence

The last category, that is provided with the AVEC 2011 corpus is the label “va-
lence”. The audio-visual classification results for this label are displayed in
Figure 5.8.

For the single frame classification, the audio channel is rendering a comparably
high error rate of 44 %. The video classifier and the combination of classifiers
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Figure 5.8: Audio-visual classification error versus the time window size for the category
“valence” on the AVEC 2011 corpus.
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yields slightly better results with approximately 42 % error.

All classifiers improve, when the time window is increasing. Again, the video
classifier benefits more and renders a minimal classification error of 37 %,
while the audio classifier is only slightly improved to 42.5 %. Both unimodal
approaches reach the maximum performance at relatively small time windows
of approximately 15 s. While the results for audio are more or less stable for
further increasing window sizes, the video classifier decreases in performance,
when the time granularity is more than 35 s.

The combination of the classifiers cannot improve over the best individual clas-
sifier in this case. Conducting the fusion over the channels before the temporal
integration shows identical error rates for window lengths of less than 25 s.
From 15 s on, a minimal error of 37 % is accomplished. When the window is
grown beyond 25 s, the error increases quicker compared to video solely and
an error equal to audio is measured.

Conducting the temporal integration first only improves over the audio solely
classification until window sizes of less than 55 s. The optimal error for this
approach is rendered at approximately 18 s to a total of 40 %. Here the optimal
region is relatively sharp and the errors increase quickly again with the length
of the time window to even higher rates than the audio solely.

Results on the AVEC 2011 Corpus from the Literature

Classification results for the AVEC 2011 data set are obviously generated in the
course of the name giving challenge, and they are summarized by Wöllmer
et al. (2013). The form of the respective result is however strongly influenced
by the experimental constraints imposed by the challenge organizers. For ex-
ample, the classification performance for the audio and audio-visual parts of
the challenge are only calculated on a word level granularity. Further, parti-
tions of the data that were used for the evaluation of the classifier performance
were, unlike it is the case in the experiments above, not subject independent.
This makes the task easier for the machine learner and the respective classifi-
cation rates are higher for reasons stated earlier.

The winner of the AVEC was determined by the accuracy of the classification
results that were submitted for the category arousal as the respective numbers
were the larger compared to the others. The highest accuracy for this label on
the audio data on word level with 60.9 % correctly classified was achieved by
Ramirez et al. (2011) using latent-dynamic conditional random fields and by
Glodek et al. (2011) using an ensemble approach with hidden Markov mod-
els as individual classifiers and an MLP as trainable classifier fusion scheme
simultaneously. Further participants of the challenge used for example SVM
for the on word level and thus rendered an accuracy of 59.8 % for the category
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arousal (Sayedelahl et al., 2011). Pan et al. (2011) used an AdaBoost approach
for the classification of the category arousal on a word basis and thus rendered
an accuracy of 57.6 %. Using GMM based classifiers 55.3 % accuracy were
achieved by Kim et al. (2011) on the same task. Finally, Cen et al. (2011) used
a so-called extreme learning approach for the challenge rendering an accuracy
of 52.0 %.

The organizers of the challenge also report classification results on the corpus
incorporating the previous outcomes of the challenge participants (Wöllmer
et al., 2013). They evaluate many variations of the recurrent long short-term
memory network (Hochreiter and Schmidhuber, 1997), rendering a large va-
riety of results on the data set. They reported for arousal on audio data on a
word level the highest accuracy of 71.2 % on the test set. In the same experi-
ment the accuracy for the other labels were 57.3 % for expectancy, 57.4 % for
power and 68 % for valence.

5.2.3.2 EmoRec II

As already pointed out in Section 3.1, the EmoRec II corpus is slightly different
compared to the AVEC 2011 corpus. The respective categories are not labeled
manually in a session to form alternating segments with the same label, but
they are embedded as whole experimental sequences into the over all sessions
(compare Figure 3.4). That means for our type of experiment, that the window
sizes can potentially grow beyond the border of the explicitly labeled parts.
Further the sample size remains unaffected by the size of the window for clas-
sification.

ES-2 versus ES-5

The results of the experiments with the EmoRec II corpus are summarized in
Figure 5.9. Analogous to the earlier described evaluations on the AVEC cor-
pus, the error of the two unimodal classifiers (red for video and blue for audio
solely) and their multi-modal combinations (cyan and purple) are shown for
different window sizes for the temporal integration.

The accuracy of the individual classifiers for the EmoRec corpus are quite sim-
ilar to the AVEC results for the single frame classification. The audio classifier
renders slightly better results with an initial error of 40 %, while the video and
the combination on this granularity perform worse at about 45 % error.

Increasing the size of the time window for the individual modalities decreases
the error until 35 % for the audio channel for window sizes longer than 70 s.
The errors remain at this level for larger windows of up to 90 s. Beginning
from that length, the error slightly increases again.
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Figure 5.9: Audio-visual classification error versus the time window size for ES-2 versus ES-5
on the EmoRec II corpus
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For the video channel, the improvement is less than for the audio. For win-
dow sizes of approximately 15 s, the error is optimal for this modality at 41 %.
Larger windows increase the error — even beyond the initial value for a single
frame.

Combining the individual classifiers improves over the video classifier for both
approaches. The audio classifier, resembling the best individual classifier in
this case, is also outperformed when the temporal integration is conducted be-
fore the fusion of the classifiers. For this approach the maximal performance
is reached using relatively long window sizes of more than 140 s to 30 % error.
Using window sizes of more than 170 s increases the error again slightly. The
time windows are significantly longer than in the previous cases. For the un-
derlying corpus for this experiment, the different categories do not alternate
as quickly as it is the case for manually labeled data. Thus, the classification
based on longer lasting processes is possible and, as the experiments show,
beneficial.

Conducting the channel fusion cannot outperform the audio classifier for equal
time windows. The minimum error is yielded for time windows of approxi-
mately 20 s. Here 41 % recognition error is achieved. The error remains at
that level until the window size grows bigger than 60 s. Starting from there,
the performance decreases, but the error remains smaller than for the video
classifier for the same time window length.

Additional Results Based on EmoRec II

In principle, the experimental setting, that is used in EmoRec II offers more
combinations of more or less similar two-class problems (compare Figure 3.4).
In principle, these experiments can be conducted additionally for the combina-
tions of experimental sequences ES-4 versus ES-6, as preferred by Hrabal et al.
(2012), ES-2 versus ES-6, ES-4 versus ES-5 and the unification of ES-2 and ES-6
versus both, ES-4 and ES-5 (i.e., the “positive” against the “negative” experi-
mental sequences).

The results for these settings are provided as comparison of supplemental eval-
uations in the appendix of this work in sections B.1 to B.4. The obtained curves
are, however, less conclusive than the one for ES-2 versus ES-5, which is dis-
cussed in Section 5.2.3.2. One reason for this is that when adding the two other
sessions to the data, the embedding of the sessions in the over-all recording
is not optimal any more. For example the ES-6 is the last session in a record-
ing, making symmetrical time windows impossible. Further, ES-4 is directly
adjacent to ES-5 and closer to ES-2 than it is the case for ES-5.
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5.2.4 Discussion

In this section, the spatio-temporal characteristics of the nature of human emo-
tions in affective computer interaction are investigated. In order to do that,
a time windowing technique was systematically evaluated together with the
combination of classification results for the audio and the video channel in
episodes of human-computer interaction.

The major finding of these experiments is that the classification performance
is optimal for relatively long time scales. Very prototypical characteristics for
the error curves have been obtained for the AVEC 2011 data set. The error is
in many cases decreasing starting from high error rates on a frame level to a
minimum error for time windows of 15 s to 80 s, depending on the emotional
label. This shows, that the underlying human processes are passing on a rela-
tively slow time scale, especially compared to the raw sensor sampling rates,
which are commonly around 16 kHz for audio and 25 to 50 frames per second
for video. Also compared to emotional phenomena in the psychological liter-
ature, these time scales are relatively long, for example for skin conductance,
the respective peak in the signal occurs approximately 4 s after the eliciting
event.

These findings are further confirmed by analogous experiments conducted on
the EmoRec II corpus. The time windows that show minimal error rates ap-
pear at coarser time granularities, which is due to the global labeling of the
experiment. This results in even longer time windows than in the AVEC 2011
corpus.

The performance of combining the audio and video channel improves in three
out of five cases over the best uni-modal classifier. The evaluations show,
that the fusion is most successful, when it is not the case, that one classifier
is clearly outperforming the other. For example for the label “arousal”, the au-
dio is clearly rendering lower error rates than the video channel as seen in the
Figure 5.5. Hence, the fusion is not able to improve over that by combining
a relatively weak classifier. On the other hand, when the performances of the
classifiers are more similar, the improvement of the combinations is noticeable.
Exemplary the reader is referred to the experiments for the labels “expectancy”
and “power”. The results for these evaluations are shown in the figures 5.6 and
5.7. Here, the classifiers render more similar classification rates and the fusion
improves over the best classifier, which is based on the video data.

The question concerning the optimal information fusion approach in human-
computer interaction, i.e., is the temporal integration before or after the combi-
nation over the modalities optimal, depends heavily on the performance of the
individual modality and thus on the respective label. When the classifier based
on the video feature performs better, the combination method, where frame-
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wise results are averaged is optimal. Thus, the over-all result is biased towards
the result of the video classifier. When the slower audio classifier yields better
error rates, the temporal integration is conducted before the multi-modal com-
bination. This is the case for example for the dimension arousal in the AVEC
corpus and the EmoRec II corpus, in which the weight of the features is equal
and both channels are potentially improved over time separately.

Considering the channels, it is notable, that for arousal and similar classes the
audio classifier is a more accurate classifier. This holds also for the EmoRec
corpus as ES-2 corresponds to “low” arousal while for ES-5 the arousal is set
to “high” as described in Section 3.1.1. For the rest of the classes in the AVEC
corpus the facial expressions are more informative than the nonverbal commu-
nication.

5.3 Partially Supervised Evaluations on the EmoRec
Corpus

The partially supervised learning algorithm described in Section 4.2 is evalu-
ated on the physiological part of the EmoRec corpus. This corpus is especially
well suited for this kind of learning approach as only few labeled data samples
for the physiological channels are available. This originates from the long time
scales that are required for the extraction of meaningful features from this type
of signal compared for example to the audio and video channel. The evalua-
tion of the classification of the individual physiological channels is presented
in Section 5.3.1. From these individual classification results a combined multi-
modal classifier is constructed and its evaluation is described in Section 5.3.2.
Subsequently, in Section 5.3.3 the question concerning how much additional
data is needed to improve the over-all classification is addressed. Finally, a
broader discussion of the findings in the context of the evaluations is presented
in Section 5.3.4.

5.3.1 Classification of the Individual Physiological Channels

The features described in Section 3.1.3 are extracted not only from different
modalities but also in different time scales. Hence, 6 individual base classifiers
were defined, grouping the data by the type of feature and by the size of the
time window: For the EMG, features that govern in time domain (derivatives
of the signal and related) are grouped together (8 features) as well as features
obtained from the power spectrum (3 features). Also for the skin conductance,
two groups of features were defined for classification: The statistics over the
derivatives are processed in a different classifier (4 features) than the statistics
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of the peaks of the signals (9 features). In case of BVP and respiration such a
partitioning is not necessary as the time windows of all extracted features are
the same (10 and 6 features).

In order to compute the new representation, the three different settings de-
scribed in Section 4.2 Algorithm 4.3 were evaluated:

• k-means clustering and Euclidean distance:

Gp1,...,pk(l) = (‖ pi − l ‖)k
i=1

• Gaussian mixture models (GMM) together with EM-algorithm using the
posterior per mixture component:

Gp1,...,pk(l) =
(

exp(−‖ pi − l ‖2

σi
)

)k

i=1

• k-means clustering and distance based on pairwise distance measure:

Gp1,...,pk(l) =
(
min(‖ pi − l ‖2, ‖ pj − l ‖2)

)k
i<j=1

For these approaches, the number of centroids has been varied from 1 to 30.

Based on this, the supervised part of the classification has been conducted us-
ing the Moore-Penrose pseudo inverse:

Vi = Y lim
α→0+

CT
i (CiCT

i + αI)−1.

Hereby, C is the co-variance matrix of the training data X̂, Y is the matrix of the
respective labels and I is the identity matrix. A bagging approach with a bag of
100 individual classifiers is followed (Breiman, 1996). The classification exper-
iments are conducted using a leave one subject out strategy. Every experiment
was repeated 10 times to capture the variances that are created by the clus-
tering procedure. Using such an elementary base classifier enables us to pro-
cess noisy data as it is the case in the present application without over-fitting.
However, using the bagging approach enables to still capture complexer class
borders.

As reference for the experiments, a conventional supervised classification is
analogously conducted. Here the bag of 100 pseudo inverses is also used is
computed directly using only the available labeled data, i.e., the data of the
respective experimental sessions. The temporal integration and the fusion over
the channels is conducted as described above.

The performance of the model with respect to the number of centers in the
pre-processing step, i.e., the complexity of the resulting network, is outlined
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(a) Fast EMG features.
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(b) Slow EMG features.

Gp1,...,pk(l) = (‖ pi − l ‖)k
i=1

Gp1,...,pk(l) =
(

exp(− ‖pi−l‖2
σi

)
)k

i=1
Gp1,...,pk(l) =

(
min(‖ pi − l ‖2, ‖ pj − l ‖2)

)k
i<j=1

purely supervised reference

Legend:
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(c) Fast skin conductance features.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of cluster centers

Er
ro

r
ra

te

(d) Slow skin conductance features.

Gp1,...,pk(l) = (‖ pi − l ‖)k
i=1

Gp1,...,pk(l) =
(

exp(− ‖pi−l‖2
σi

)
)k

i=1
Gp1,...,pk(l) =

(
min(‖ pi − l ‖2, ‖ pj − l ‖2)

)k
i<j=1

purely supervised reference

Legend:
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(e) Heart rate variability.
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(f) Respiration.

Gp1,...,pk(l) = (‖ pi − l ‖)k
i=1

Gp1,...,pk(l) =
(

exp(− ‖pi−l‖2
σi

)
)k

i=1
Gp1,...,pk(l) =

(
min(‖ pi − l ‖2, ‖ pj − l ‖2)

)k
i<j=1

purely supervised reference

Legend:

Figure 5.10: Error rates together with the standard deviation of 10 runs for the individual
classifiers for different number of centers. The fully supervised reference for the respective
feature is given as a black line.
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in figures 5.10 and 5.11. There, the confusion rates of the classifiers are shown
together with standard deviation of the repetitions of the experiment.

For the individual channels, the recognition rates are generally low as dis-
played in Figure 5.10. However, the proposed method is able to outperform the
purely supervised method in 3 of the 6 cases as displayed in the three figures
5.10(a), 5.10(b) and 5.10(c). The different unsupervised techniques yield ap-
proximately the same results, except for GMM where the error is often higher
as seen in the figures 5.10(b), 5.10(d) and 5.10(f).

In detail, the following observations can be made: considering the purely su-
pervised approach, the features can be subdivided into two groups. The clas-
sifiers based on the following three features perform comparably well:

• Using the “slow” SCL features the lowest over-all error of 41.2 % is a-
chieved (compare Figure 5.10(d), black line).

• Respiration with an average error of 44.9 % (compare Figure 5.10(f), black
line).

• BVP showing an average error of 45.1 % (compare Figure 5.10(e), black
line).

The second group comprises the cases, where the error rates that are computed
using the supervised classifier are relatively high:

• “Fast” SCL features with an average error of 47.0 %, compare Figure
5.10(c), black line.

• “Fast” EMG features with an average error of 47.9 %, compare Figure
5.10(a), black line.

• The “slow” EMG having an error rate of 48.0 %, compare Figure 5.10(b),
black line.

These results show that there is a tendency for the classifiers, that are based on
longer time windows yield higher classification rates. This is especially artic-
ulated considering the SCL related classifiers: the features on 20 s basis show
the best classification result, while the ones based on 5 s are comparably worse.
The poor results for the EMG on both time scales are relatively surprising, as
the respective mount points of the sensors are very intuitively chosen for the
estimation of emotion. Furthermore, the EMG is an exception for the fact, that
longer time windows enhance the classification performance. The channels of
BVP and respiration are somewhat in the middle. They appear to be not di-
rectly connected to the emotional state, at least in cases of small occurrences as
it is the case in the application at hand.
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Based on this, the effects of the proposed partially supervised method are de-
scribed in the following. Here, also two main groups of cases are observed:
On the one hand, there are three cases, where the supervised result is outper-
formed and on the other hand in three cases the result is approximately equal
or for one case even a little worse.

An improvement for the classification can be observed for both EMG features.
The error can be reduced to approximately 45 % as it can be seen in the figures
5.10(a) and 5.10(b). The necessary number of components varies around 10
to 20 centers. Generally the two approaches, that are based on the k-means
approach yield stable results beginning at about 10 components. The one based
on GMM is stable at about 20 mixtures for 5 s features but it does not converge
for the features on 20 s basis. Here, no improvement can be observed. One
reason for this could be that there is not enough data to estimate a proper co-
variance matrix, which arises from the bigger time windows.

A further case that shows an improvement is the fast SCL, which is denoted
in the Figure 5.10(c). An improvement from 44 % to 45 % can be achieved for
this feature. The approaches based on k-means show stable results using 6 to
7 centers. Again the GMM depends on a higher number of mixtures: Using 15
components a stable classification result is rendered.

However, there are also cases of classifiers, where no clear effect is observed.
For respiration and the slow SCL, the approaches based on k-means yield sim-
ilar results as the supervised case described above. This circumstance is out-
lined in the figures 5.10(f) and 5.10(d). Again, the GMM based approach leads
to a decrease of the classification performance to error rates of 45 % and 48 %.
Further, this approach shows a relatively high variance for the SCL. A reason
for this could be that the longer time windows result in fewer feature vectors
per time unit. Thus, it might be harder to estimate a correct covariance matrix.

In case of BVP, all variants show a comparably low performance. The error
rate is around 48 % for all approaches as denoted in the Figure 5.10(e). For the
approach using GMM the error rate increases around 13 mixture components.

A further observation is that weak performing classifiers can be improved us-
ing unlabeled data, whereas the ones, that show a comparably higher classifi-
cation rate cannot benefit.

5.3.2 Evaluation of the Combined Classifier

To render a combined result of all available features a windowing technique is
applied: From the outputs of the 6 classifiers a combined decision is computed
on a one minute basis. The decisions of a classifier are collected in a time
window of one minute length. This means that a final decision for a one minute
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σi
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supervised

Figure 5.11: Error rates together with the standard deviation of 10 runs for different unsu-
pervised techniques and numbers of cluster centers for the combined classifier. The classical
pseudo-inverse classifier is given as supervised reference as the black line.



5.3. Partially Supervised Evaluations on the EmoRec Corpus 129

time window is formed of 5, 6 or 30 decisions, depending on the offset that is
used for the extraction of the feature:

• 5 decisions based on HVP features (12 s offset per frame),

• 6 decisions based on the respiration (10 s offset per frame),

• 6 decisions for the EMG features of 20 s window and 10 s offset,

• 30 decisions for the EMG features of 5 s window and 2 s offset,

• 6 decisions for SCL features, that are computed on 20 s window and 10 s
offset and

• 30 decisions for SCL features, that are computed on 5 s window and 2 s
offset.

The decisions are first averaged within their respective channel and in a second
step the fusion of the combined decisions for the channels is delivered. Thus,
the approach accounts for the fact that the features of the different channels are
computed in different temporal resolutions. Further, the temporal integration
can improve individual classifiers to contribute positively to the over-all result.

A purely supervised reference approach is also evaluated. Here, the results,
that are given by the supervised classifier are used to render a comparable
result. The temporal integration and the fusion over the channels is conducted
as described above.

The result of this combination shows promising results for both, the fusion
of the individual decisions and the utilization of unlabeled data as well. The
error rates of the three approaches and for different numbers of components
are shown in Figure 5.11. The combined result for the conventional supervised
classifier is shown in this figure as a black line.

The combination of the supervised classifiers results in a slight improvement
of the best individual classifier from 41.0 % to 40.2 %.

However, the partially supervised alternatives are able to outperform this re-
sult in all cases at different numbers of components showing errors of as low
as approximately 34 % (compare Figure 5.11, error plots). From about 13 to 15
components on, the supervised classifier is constantly outperformed.

The combined partially supervised classifier based on k-means and the Eu-
clidean distance appears to be the most stable alternative. It outperforms the
supervised approach at 10 centers and more and enters a saturation at an error
rate of 34 % from 20 components on. The variance in the results is comparably
small and using more centers does not increase the performance any more.
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The second approach based on k-means using the pair-wise computation of
distances is outperforming the supervised approach using fewer components
at 8 centers. One reason is that the dimensionality of the new feature vector is
increasing quicker than in the earlier case (i.e., k(k− 1)/2 versus k) and hence
it is more likely to find a linear separation hyperplane. However, when adding
more centers the error rates increase together with the variance of the results.

Finally, the GMM based approach is showing the worst performance of the
three approaches. The supervised case is still outperformed at approximately
12 to 18 centers, but only error rates of about 38 % are reached. Further, the
variances are generally high in this case. The fact, that the individual classi-
fiers show a worse performance than it is the case for the other approaches is
obviously affecting the combined result.

For all partially supervised approaches, the combination of the different chan-
nels together with the temporal integration of the individual channels renders
an improvement over the best individual classifier.

Generally, the variances between the classification rates for the individual sub-
jects are very high in all cases. The standard deviations for the combined clas-
sifiers are on average 0.26, 0.21 and 0.25. For the individual classifiers the de-
viations range from 0.12 to 0.21. There are subjects that are relatively easy to
classify and do improve with increasing number of centers and others that are
by any means not classified correctly and do not improve. On the other hand,
the inter subject variances are also high for the supervised approach: from 0.12
to 0.22 for the individual classifiers and 0.26 for the combined classifier.

5.3.3 The Influence of Unlabeled Data Samples

The above evaluation investigates the complexity of the over-all network with
respect to its complexity (i.e., number of centers). Another question is how
and how much of the unlabeled data can improve the classification. In order
to provide insights into that, leave one subject out classification experiments
in 50 repetitions are conducted, where the number of unlabeled samples in the
preprocessing step is varied. Figure 5.12 shows the error rates for the approach
using k-means clustering together with the Euclidean distance for numbers of
cluster centers form 13 to 18. This distance measure was chosen as it turned out
to be the most feasible one in the earlier experiments and 13 to 18 components
were used here as this are the numbers of centers, where the improvement
takes place. The figure also shows the results for the combined classifier. The
x-axis shows the fraction of the whole available data, that is used as unlabeled.
Please note that the axis is logarithmically scaled in order to show the measure-
ments between 1 % and 10 % of usage of the data. The number of available data
per feature type is shown in Table 5.1.
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Figure 5.12: Error rates for different ratios of all available data, that are used for the preprocess-
ing for the combined classifier using k-means clustering together with the Euclidean distance.
The classification is conduced using 13 to 18 centers. Every experiment was repeated 50 times.

Table 5.1: Over-all number of samples per feature type. Also the dimensionality of the respec-
tive feature vector is displayed.

Feature type Number of
available samples

Feature
dimensionality

Fast EMG 43972 4
Slow EMG 13427 18
Fast skin conductance 43972 8
Slow skin conductance 13427 5
BVP 9065 10
Respiration 13427 6
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The first conclusion, that can be drawn is that the error is around 40 % for all
cases, when very few data is used: when at around 1 % of the over-all un-
labeled data is added in the training set of the clustering procedure. In the
interval from 1 % to approximately 2.5 %, the error rapidly drops for all ap-
proaches, a little more for the cases, where a higher number of components is
used. Here, an optimum is reached, especially for cases with small numbers
of components. Adding more data affects the classification performance of the
system, especially for 13, 14 and 15 components. The other approaches remain
more or less stable on a low error level.

At first glance, the figure of 2.5 % is low. But please recall, that in this data set
that equals approximately 1000 to 225 data points, depending on the number
of samples available for the respective feature. The amount of samples for the
different features is summarized in Table 5.1.

The results for the same experiment for the individual classifiers are shown in
Figure 5.13. These results are unfortunately less conclusive than the ones for
the combined classifier. In most of the cases, there is a local optimum for the
error when between 1 % and 10 % of the available unlabeled samples are used.

5.3.4 Discussion

The goal of this work is to introduce a new learning approach that can incor-
porate unlabeled samples in applications with noisy data and class distribu-
tions. An unsupervised machine learning step as been integrated beforehand
a supervised classification approach for this purpose. Using the prototypes
or densities yielded from the cluster analysis, a new encoding of the data is
computed, which is used then for the labeled data for classification

The method was evaluated using the classification of emotional states using
physiological signals. The application provided us with labeled data for the
times the elicitation process was conducted and also with data from other ex-
perimental sequences, which was regarded as unlabeled. Two different unsu-
pervised learning strategies have been evaluated in this context: k-means as a
prototypical and GMM as a generative approach. Furthermore, three distance
measures were used to compute a new encoding based on the local densities.

The results for the individual classifiers show relatively low performances and
the improvement over the purely supervised approach, if any, appears to be
small. However, the combination of classification results in a time window
and over the channels yields a noticeable improvement of the classification.
From this, it can be concluded, that the decisions from the respective individual
classifiers are more diverse (Kuncheva and Whitaker, 2003) than the ones of
the purely supervised version. The lowest error rates are achieved at about
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(a) Fast EMG features.

10−2 10−1 100
0.42

0.43

0.44

0.45

0.46

0.47

0.48

Ratio of unlabeled data

Er
ro

r
ra

te

(b) Slow EMG features.

13 components
14 components

15 components
16 components

17 components
18 components

Legend:



134 Chapter 5. Numerical Evaluation

10−2 10−1 100
0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

Ratio of unlabeled data

Er
ro

r
ra

te

(c) Fast skin conductance features.
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(d) Slow skin conductance features.
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(e) Heart rate variability.
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Figure 5.13: Error rates for different ratios of all available data, that are used for the prepro-
cessing for the individual classifiers for each feature type using k-means clustering together
with the Euclidean distance. The classification is conduced using 13 to 18 centers. Every
experiment was repeated 50 times.
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15 prototypes and more. This includes that the dimensionality of the data is
approximately doubled.

Adding additional data the way it is conducted in the present experiments, i.e.,
data, that is not explicitly from the same categories, is of course only promising
under certain conditions. If the samples of data resolved into clearly delimited
classes, where the probability density functions for the different categories are
non-overlapping and adding data from a very different partition would hardly
be reasonable. But in many real world applications, this optimal setting for a
classifier is not actually present: Often the data decomposes into severely over-
lapping distributions. There are also applications, where the particular classes
are not (yet) irrevocably defined or such a definition is simply not possible due
to distinct properties. Both circumstances are at hand in the application de-
scribed earlier: On the one hand, the features that can be extracted from the
physiological signals can be considered relatively weak for the inter individ-
ual classification. Obviously the physiology heavily depends on the individual
subject. On the other hand, even though the induction of the intended emo-
tion succeeds in the average case, it is not guaranteed by any means that every
particular sample is correctly labeled.

A further step for this approach could be to label the unlabeled samples accord-
ing to the computed local densities. An intuitive way could be to use fuzzy
memberships according equal to the labels of the samples in the respective
clusters. Hence one could further improve the supervised part of the work.

5.4 Fuzzy Output Support Vector Machines for Un-
balanced Class Distributions

This particular setup imposes several challenges: the oddball recording tech-
nique of the data requires a special treatment due to the skewed distribution
of classes. Heavily imbalanced datasets require special treatment in order to
mitigate the over-representation of a class. Popular techniques are under- and
over-sampling of the training set with respect to the categories or the usage
of error functions that account for skew distributions of classes (Japkowicz,
2000; Zhou and Liu, 2006). Also, the noisy nature of the employed sensors can
impair the recognition performance. Methods designed to improve robust-
ness in low signal to noise ratio conditions include low pass filtering but also
information or data fusion (Kuncheva, 2002a). In this particular domain of in-
formation fusion various possibilities to ensure robustness can be applied. In
our approach, robustness is achieved by combining multiple feature channels
as well as by combining the outputs of several independent classifiers.

Further, a decision fusion procedure was implemented and a comparison be-
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tween the genetic algorithm based classifier selection and a standard averaging
fusion approach was conducted. Generally, the combination of classifiers suc-
ceeded in improving the over-all performance. This can be interpreted as a
indication for the beneficial diversity of these classifiers in combination with
others.

This evaluation showed that in this application the relatively computationally
expensive search procedure did not bring significant improvement. Neverthe-
less, there may be an advantage in the selection process regarding the com-
plexity of the classifier. Discarding some of the available classifiers reduces
the efforts that have to be spent not only on the classifier fusion step, but also
these classifiers obviously do not have to be evaluated. This reduction comes
with the drawback of a costly search procedure which is, however, conducted
off-line prior to testing. Furthermore, the fact that there are no tremendous dif-
ferences concerning the length of the bins in the histogram might as well be an
argument to explain, that skipping the classifier procedure does not decrease
the performance.

5.4.1 Construction of Individual Classifiers

Before the computed features are classified using the proposed machine learn-
ing approach, the EEG channels were partitioned into nine overlapping areas
containing up to 18 channels at a time. Eight partitions are chosen as coherent
slices and the ninth one is defined as the horizontal and vertical cutoff of the
EEG device’s layout (see Figure 3.13 for an overview). These partitions were
defined from a machine learning point of view rather than from physiology:
thus, one can provide more information for individual classifiers than using
only one electrode, but it is still possible to conduct decision fusion. For every
partition, the features extracted from the respective electrodes were concate-
nated to form a new feature. Thus, a feature level fusion approach is realized
and by doing so the individual classifiers that are constructed based on this
representation are supposed to get informative input.

Subsequently, the resulting 45 sets of channels – due to the combination of
the five kinds of features with the nine partitions – were trained and classi-
fied separately. Preliminary cross validation experiments for k-nearest neigh-
bors, multi layer perceptrons and various types of SVM showed, that weighted
SVM – with Gaussian kernel – outperforms the others by the area under the
ROC curve (AUC). The SVM that conducts the classification is trained using
a Gaussian kernel. As described in Section 4.3, a loss term was integrated in
this SVM approach tackling the issue of the imbalanced training and test sets
as only 48 positive samples are available opposed to as many as 2700 negative
samples. The performance of the classifiers is determined by the AUC. The
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results of this first classification step are ranging from a classification perfor-
mance of 0.478 AUC, which is close to random, to 0.836 AUC. An overview of
the performances of all constructed classifiers is depicted in Table 5.2, showing
the average of 15 six-fold cross-validation rounds.

It can be observed from Table 5.2 that the individual performance depends on
the chosen feature extraction approach. Especially the features extracted from
the real part of the FFT and from time domain results in strong performances,
while features from phase shift reveal rather weak performances. On the other
hand the actual partition seems to be less important considering this measure:
the variability in the columns is relatively small compared to the previously
mentioned findings.

5.4.2 Classifier selection and fusion using genetic algorithms

Algorithm 5.1: Multiple classifier system for the classification of ERP
Input:

• Set C of individual classifiers with |C| = n

• Individual classification rates on the validation set

Randomly generate a pool of classifier teams of size k as binary vectors
r ∈ {1, 0}k and ri = 1 if the classifier a member of the team;

for 1 . . . N iterations do

1. Cross-over: split of the binary vectors and re-combination

2. Mutation: bit-flip with probability p

3. Evaluation of the performance of the new classifier teams

4. Selection: choose the k fittest classifier teams

Output: The optimal team of classifiers on the validation set

In order to further enhance the performance of the proposed classifier, a de-
cision fusion step was implemented to combine the obtained outputs. An
averaging classifier fusion was applied for the combination of the individual
classifiers because of stability reasons (Kittler et al., 1998). In order to find a
suitable combination of classifiers, a basic genetic search algorithm approach
was implemented as described in Algorithm 5.1. The classifier selection was
optimized locally in every cross validation run: a validation set – i.e., the data
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of one fold of the training data – is left beside in the training of the individual
classifiers and the fitness of the classifier ensembles is determined and opti-
mized on this set. For the subsequent experiments, the number of maintained
individual solutions and the maximum number of epochs were set to 10.

Table 5.3: Results of the classifier fusion and the classifier selection approaches in terms of
area under ROC curve. The results including the classifier selection step are based on 76
search attempts. The results without classifier selection are computed with 15 separate 6-fold
cross validations. The standard deviation of the conducted runs is given in parentheses.

Fusion procedure AuROC
classifier fusion/selection with GA 0.860 (0.074)
classifier fusion solely 0.853 (0.081)
best individual classifier 0.836 (0.065)
random forest with class weighting 0.789 (0.047)

Results for this averaging classifier fusion approach are reported in Table 5.3
with and without classifier selection procedure. Using classifier selection, com-
binations of classifiers, which further increased the area under the performance
were found: The performance of the classifier selection process on the test set is
0.860 AUC while the actual performance when skipping the selection process is
marginally smaller (0.853 AUC). Both approaches do actually outperform the
optimal individual classifier showing the highest performance (see Table 5.2) .
These results reveal that the classifier selection step does only yield marginal
benefits in this particular application.

The number of selections of the 45 individual classifiers in 4050 classifier selec-
tion experiments is depicted in Figure 5.14. Even though the discriminant mes-
sage of this figure may be subtle one could argue that the features computed
from the amplitudes of the FFT (green) and maybe the phase shift (cyan) or
the real part (blue) are selected more often than the others. Especially in case
of Phase shift features this is surprising, because these features show relatively
poor performances in Table 5.2.

In order to compare the proposed approach to state of the art classification
techniques the experiment has also been conducted using Breiman’s random
forest (Breiman, 2001) extended as proposed by Chen et al. (2004), which takes
into account the imbalanced class distribution by weighting with respect to the
frequency of the classes. The random forest classifier has been trained using
500 individual trees. These results are also listed in Table 5.3. It can be observed
that this state of the art approach is outperformed by the proposed SVM in this
application.
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Figure 5.14: Number of appearances of a particular classifier being selected: the x-axis depicts
the different partitions of the electrodes using digits 1 to 9 and for the 5 feature types that are
color encoded: real and imaginary parts of the FFT are plotted in blue and red, amplitude and
phase shift are plotted in green and cyan and finally the feature in time domain is shown in
black. The y-axis shows the number of selections.

5.4.3 Discussion

An information fusion approach to discover ERP in EEG data recorded using
an oddball paradigm is described and numerically evaluated in this section.
Firstly 45 individual classifiers were trained using various feature extraction
strategies and a low level information fusion technique defining partitions of
EEG electrodes. Utilizing this first fusion step, the individual classifiers could
be constructed to reveal a good performance even though the underlying data
is noisy and the distribution of the isolated features of a channel are heavily
overlapping.





6 General Discussion

The goal of this thesis was to contribute to the field of human-computer in-
teraction by making the communicational process more intuitive and more ac-
cessible for a human user of a system. The dialog with a computer is adapted
to more humanly ways of interaction, that are very common in inter human
communication but are up to the present times not taken into account in the
interaction with technical systems. Besides the increasing computing and stor-
age capabilities, that are available as the technical development advances, the
availability of cheap sensor devices makes it feasible to reach that goal. These
sensors are very prominently audio and video devices, but also recording de-
vices for physiological signals such as skin conductance or electromyography.

Different novel approaches for the classification of user states in human-com-
puter interaction have been proposed in this work and they were extensively
evaluated based on various data collections. The focus of the thesis is on the
estimation of emotional states in real world affective corpora during the inter-
action with a technical system. One issue in this context is the investigation of
information fusion architectures to combine classifications of multi-modal and
continuous affective computer interactions into a unified categorization. Fur-
ther, the incorporation of unlabeled data into the classification process is inves-
tigated to improve unreliable classifiers, that are generally obtained in natural
human-computer interaction. Thus, the classification of physiological signals
can to some extent be extended from subject-dependent to inter-individual af-
fect recognition.

Another contribution of the work lies in the learning of statistical classifiers
in the context of imbalanced class distributions in training sets as it regularly
is the case in human-computer interaction. It is implemented by the means
of a class weighting mechanism into the fuzzy-input fuzzy-output SVM. The
algorithm has been evaluated on a corpus of EEG signals, where the recording
paradigm results automatically in very imbalanced class distributions. Also, a
decision fusion scheme and a classifier selection approach were realized and
evaluated on the same data.
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6.1 Information Fusion Architectures in HCI

The human-computer interaction is approached in this work by the means of
statistical pattern recognition and the combination of individual classifiers in
multiple classifier systems. This architecture relies specifically on independent
individual classifiers, that are most likely obtained if the underlying features
are per se independent. This is particularly the case when the application pro-
vides different sensors as it is the case here as outlined earlier. A unique chal-
lenge in this context is posed by the varying inherent technical properties of
the different data sources such as their sample rates and their respective scales.
This demands for more complex fusion architectures compared to traditional
classification problems as they can be found in many benchmark data sets.

Beside the multi-modal fusion over different sensory outputs, the temporal in-
tegration of intermediate classification results of one channel helps to increase
the recognition performance. It has been shown in this thesis, that the differ-
ent emotional categories show a relatively distinct optimal time granularity in
which the classification error is minimal. This can also be used to gain a deeper
understanding of the underlying emotional concepts, revealing in which fre-
quency the different categories may alternate in a free human-computer inter-
action.

This differs obviously between the concrete applications, however it was shown
that the optimal classification rates are rendered in a relatively slow frequency
compared for example to the sample rates of the different sensors. A further in-
sight into the emotional label system in a realistic human-computer interaction
scenario is that the different categories are conveyed in a different intensity by
the individual modalities. For example the label arousal is detected most suc-
cessfully using only the audio signal whereas considering the other labels the
facial expression analysis is generally more successful.

6.2 Annotation of Data in the Context of HCI

The evaluation of the approaches is conducted mainly using corpora of af-
fective human-computer interaction, namely the EmoRec and the AVEC 2011
corpora. These kinds of data collections lead the way towards a new under-
standing of human-computer interaction by incorporating the emotional di-
mensions of human communication into the over-all process. This marks a
starting point for a broader and deeper integration of artificial technical sys-
tems into the everyday interaction with computers in the future and the under-
lying concepts are still under debate. The two main approaches to the design of
an expressive corpus under relatively unrestricted conditions are also reflected



6.2. Annotation of Data in the Context of HCI 145

in the employed data sets: One possibility to record an affective corpus, which
will be referred as “global” labeling, is the usage of predefined stimuli, that are
presented to a test subject.

Such stimuli are commonly implemented as feedback from the system, for ex-
ample praise from the technical interlocutor or delayed reactions, which the
subject is interacting with. Hence, stimuli that are thought to elicit similar re-
actions of the user are presented in blocks to produce continuous sequences
of the same category. This global approach inherits several unique features,
that makes it favorable for some researchers: It does not require any post-hoc
labeling procedure, which is often expensive and vulnerable to errors and it
asserts that the experimenter retains the control over the recording. However,
the approach comprises also particular drawbacks, that have to be taken into
account: It is not feasible to assert the success of the individual stimulus to
elicit the desired emotional state. This makes the resulting label uncertain,
even in the ground truth of the data, which makes the training of a classifier a
challenging task. In principle, it can be said, that it is very easy to frustrate a
user by emulating a broken user interface or by overburdening the user with
unsolvable tasks. Eliciting other reactions is unfortunately by far more diffi-
cult.

A further property that is often encountered in these kinds of corpora is that
the experimental setup follows a distinct temporal order, resulting in an order
of segments, that are labeled in the same class. The complementary approach,
which might be analogously called local, is to manually label the material after
it is collected. This makes it easier to provide a recording scenario, that allows
a free interaction of the user with the provided artificial interlocutor. Also,
no inherent temporal structure of the data is given by the experimenter, which
makes it easier for an automatic classification system to avoid to fall for tempo-
ral artifacts. However, this labeling procedure is unfortunately expensive and
prone to errors as the true emotional state of a subject is not easily accessible
for an external person, if at all.

This demands for the usage of multiple labelers for the same recording, hoping
that the labeling errors can be averaged out by doing so. This further increases
the costs of labeling and corpora that are labeled by more than three subjects
are relatively rare. Another issue that arises in the labeling procedure is in the
timing of the succeeding labels. As the recordings are naturally provided in
time sequences, the segmentation is a non-trivial problem, which can result in
skewed label traces. In summary, it can be stated that the resulting annota-
tions, and hence the teacher signals for a training process, are weakly defined
compared to other pattern recognition applications.
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6.3 Feasibility of Unlabeled Data in Classification

The general difficulties in the annotations of real-world affective corpora and
the fact that there is commonly only few data for the different subjects avail-
able in the training sets makes it appealing to use additional unlabeled data
in the training in the classifier. Unfortunately classical approaches of semi-
supervised learning rely on base classifiers, that show initially a high recog-
nition rate in order to avoid to add false classifications to the training set of
the classifiers. In this thesis a more robust approach to incorporate unlabeled
data into the training process by conducting a clustering approach or density
estimation on all available data in order to compile a new representation of the
data by computing the distances to the different centers.

It has been shown experimentally that the approach improves over a purely
supervised approach for noisy class distributions and only few labeled data
samples at hand. Together with the combination of the classifier outputs from
multiple modalities and their temporal integrations, the partially supervised
approaches are distinctly suited for the application of human-computer inter-
action.

6.4 Integration into a Greater System

The recognition rates, that can be achieved in unconstrained human-computer
interaction scenarios are unfortunately still by far lower than the ones that are
rendered for acted data in comparable classification studies. This originates
mainly from the fact, that the acted data collections reflect a wide variety of
expressions, that comprise mainly full blown occurrences of emotions. How-
ever, these full blown expressions are not likely to occur in realistic everyday
interactions between humans interlocutors and are even more unlikely in in-
teractions with computers.

The term “emotion” is a broadly defined term, that is obviously not the only
factor, that is and will be important for the interaction with technical systems
and the definition and recognition of more complex user states as an input to
an interface. Further relevant information could be long-term goals of the user,
specific tasks that have to be conducted by the means of a technical system, the
interaction history of a user with different devices and of course traditional
direct inputs to an application.

The automatic recognition of the human emotional categories should hence be
viewed in the context of a greater framework, which integrates the over-all
interaction and assistance for a task, that is relevant for the user. This implies
for the over-all system that it may not be necessary to query a new classification
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for the emotional user state at every technically possible instant of time.

A very intuitive way to conduct this is to access the certainty of the individual
decisions of a decision by maintaining fuzzy values further after the respective
information fusion steps, that are passed to the next level of processing. The
classification could thus be rejected by the application if the certainty of the
decision is smaller than a threshold, that could also be dynamically adjusted.
Another promising approach is to incorporate feedback from the application
into the classification. Such a feedback could be, for example, a newly labeled
sample, that is passed to a re-training mechanism in order to improve or per-
sonalize a distinct classifier.

Another alternative is to exploit high-level knowledge about the application in
order to improve the classification performance. This technique is also well-
suited to avoid false alarms, that are likely to disturb a natural interaction with
the system. A very intuitive example for that is that the design of an interaction
process favors different expressions compared to others, for example when a
difficult step of a task has to be conducted inherently for the application. This
could be incorporated into the classifier by manipulating the prior probabilities
of the different categories, which is also a thinkable approach to conduct an
adaption of the classification system to a specific user.

6.5 Conclusion

The incorporation of the results of the affective computing community into
next generation user interfaces is still an open issue for research. It is partic-
ularly non-trivial to find obvious actions for a traditional computer interface,
which is designed in a conservative imperative paradigm, which neglects ev-
ery kind of subtle form of non-verbal communication. However, future inter-
faces for technical systems will embrace the user much more, than it is possible
in the present technologies. The recent developments in the computer sciences
and related fields of research aim at the incorporation of such new categories
into the interaction of users with technical systems. This is a highly interdis-
ciplinary objective, which is challenging for both, the pattern recognition and
the psychological parts of this undertake. This thesis is intended to be a part
of this development to bring the human and the technological counterparts of
new user interfaces closer together.





7 Summary of the Contributions

Novel user-interfaces for human-computer interactions will bring the com-
munication with a technical system beyond the present question and answer
paradigm. This will be enabled by the means of new input modalities and
additional sensory channels such as microphones, cameras and various physi-
ological sensors. The additional information is processed according to psycho-
logical shindigs from the emotion theory and also the well-known patters in
physiological signals, such as the ERP in EEG signals.

In the following, the three main contributions of this thesis in this context are
summarized. In Section 7.1, the contributions in the context of temporal and
multi-modal fusion architectures are outlined together with the results of the
numerical evaluations on two affective corpora. Further in Section 7.2, the con-
tributions in the context of the incorporation of unlabeled data for unreliable
classifiers is summarized. Also, the findings of the numerical evaluations for
the proposed approach in the context of subject-independent classification of
physiological signals are outlined. Finally, the contributions for the training of
statistical classifiers with training sets having an imbalanced class distribution
are described in Section 7.3. This comprises the extension of the fuzzy SVM to
imbalanced classes and its evaluation in the context of the detection of ERP in
EEG data.

7.1 Multi-modal and Temporal Fusion

In order to detect user states in human-computer interaction multi-modal de-
cision fusion architectures were proposed and evaluated using the AVEC 2011
and the EmoRec corpora (Schels et al., 2014a, 2013a,b, 2012a, 2009; Schels and
Schwenker, 2010; Glodek et al., 2013a, 2012b, 2011; Meudt et al., 2013; Scherer
et al., 2012a, 2011; Schmidt et al., 2010; Walter et al., 2011; Schwenker et al.,
2010). These fusion architectures comprise a combination of the decisions of
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different sensory channels but also the temporal integration of preliminary de-
cisions in time series. The evaluations were conducted to investigate the size
of the time windows that are optimal for the detection of the user states and
also the optimal order for the combination of the modalities.

The temporal integration of the intermediate classification results turned out
to be successful in all experiments, drastically reducing the classification error
for the individual modalities for longer time scales. However there are differ-
ences in the results for the different corpora, that were investigated. There is
a clearly optimal time window for the recognition of the different categories
in the AVEC 2011 corpus. These vary from approximately 10 s to up to 70 s.
For the EmoRec corpus, even longer time windows render optimal results for
the discrimination of the experimental sequences. In this case the optimum is
not so clearly observable but after 100 s – 120 s the performance of the classifier
does not increase further. An argument for these differences are the differences
in the recording paradigms of the corpora: The EmoRec labels are set globally
over a distinct period of time which leads to longer labels compared to the
manually set labels in the AVEC corpus.

The temporal integration experiment clearly shows that the classes do not
change very quickly over time, which allows longer time granularities. Also,
the intermediate frame-wise classifications are comparably weak, such that
many individual decisions are needed to improve the final result. A rather
notable result is that the optimal recognition error is rendered on comparably
longer time scales than it is reported for more direct physiological reactions
to external stimuli. For example compared to the approximately four seconds
time window that is needed for the skin conductance to react after an exter-
nal stimulus in the literature. Improving the individual classifiers using this
approach also makes multi-modal fusion more promising.

The results of these multi-modal fusion experiments are in their details depen-
dent on the different applications and the respective categories. The category
arousal is clearly better conveyed by the voice of the subject than using the
facial expression and hence the combination of the audio classification with
the video does not decrease the classification error. For the labels expectancy
and power the multi-modal fusion improves over the best individual classi-
fier: In both cases, combining first the audio and video classification results
and conducting the temporal integration afterwards on the combined decision
is the more eligible approach. This results from the fact the video classifica-
tion is more reliable than the classification based on the audio solely and this
approach gives more weight to modality, that provides its samples more fre-
quently. The category valence is clearly better classified using the video signal
compared to the audio classification. The combination of the two modalities
does unfortunately not improve the over all classification. For experiments on
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the EmoRec data set, the audio classifier performs better than the one based
on the video, which can be explained by the arousal, that is in the definition of
the experimental sequences. However the facial expressions also render bet-
ter results compared to only arousal in AVEC corpus. One reason for that is
that the valence parameter also is varied in the experimental sequences. The
combination of the two modalities further improves the classification by giv-
ing equal weights to the different channels. This reflects the comparably good
performance of the classifiers.

In summary, it can be stated that the different affective categories are conveyed
in different ways: Some are better recognized using the audio channel and
others are better classified on the video channel. In all cases, the integration
of multiple succeeding decisions improves the classification of the affective
state. The success of the multi-modal fusion depends notably on the respec-
tive label. One important factor is the performance of the individual channels,
which should not differ too much on average. But not only the individual per-
formance is important in order to improve over the best individual classifier
but also a certain diversity of the classifiers and together with correct confi-
dence estimates are important for the combination.

7.2 Partially Supervised Learning in Human-Com-
puter Interaction

A further contribution is in the field of partially supervised learning in the con-
text of human-computer interaction (Schels et al., 2013a, 2014b, 2012a,b, 2011;
Hady et al., 2010a). The estimation of probability densities or cluster proto-
types under the usage of additional unlabeled data was used as pre-processing
for a further supervised training step. This can be viewed as a classification
network with one hidden layer that is trained in an unsupervised fashion
based on additional unlabeled data. The approach allows the usage of differ-
ent clustering techniques and a variety of distance measures for a re-encoding
of the data. The complexity of the resulting network can be regulated by the
number of cluster centers or density components in the unsupervised learning
approach. A further important parameter for the approach is the amount of
additional unlabeled data, that is provided to the training process.

The approach was evaluated using the physiological part of the EmoRec cor-
pus. This corpus provides, besides the physiological data, audio and video
recordings. However, it is particularly compelling to use additional data for
the subject independent classification of the physiological part as the features
are computed on a longer time scale, which results in fewer data. The other
channels are sampled in the order of milliseconds, which leads to a denser dis-
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tribution of data. Also, a decision fusion approach, where the classification re-
sults for different channels are temporally integrated and afterwards combined
over the different physiological channels is implemented. Thus, the approach
incorporating the unlabeled data is outperforming the purely supervised ref-
erence approach.

The approach has been investigated with respect to the complexity of the re-
sulting network and how the unlabeled data improves the classification. It
has been shown, that the error of the classification decreases with the number
of centers. The re-encoding approaches, that render a higher dimensionality
for the representation of the data have lower error for fewer centers. A fur-
ther notable result is that the variant based on k-means clustering is the most
stable investigated approach over the number of centers. It converges for ap-
proximately 20 center at an average error of 34 %. Using a GMM as the un-
supervised step together with the a posteriori probability for the individual
components, the classification error decreases lesser. A reason for that could
be in the estimation of the covariance matrices, for which usually lots of data
is required.

Secondly, the amount of additional unlabeled data samples that are necessary
to improve the classification is investigated. In principle up to 9,000–50,000
unlabeled data points from the additional experimental sequences and the dif-
ferent subjects are available. However it is shown that after comparably few
samples, the error does not decrease further. This is concretely the case after
incorporating approximately 2 – 3 % of the available data, which corresponds
approximately 180–800 samples, depending on the channel and the feature
type. For this sample size, the underlying distribution of the data seems to
be adequately estimated for the subsequent classification.

The results for these individual classifiers that are defined for mainly the dif-
ferent physiological channels, are also outlined in the experimental section.
However, the results for these classifiers are not as conclusive as the ones for
the combined classifier. This shows again, that not only the accuracy of the
individual classifier is important for a multiple classifier system, but also the
diversity of the classifier team. Thus, the combination of the classifiers bears
the opportunity to correct false decisions for the individual channels.

7.3 Imbalanced Classes

Many data collections, that represent real world problems have to deal with the
problem that the distribution of classes is not balanced for all classes (Schels
et al., 2013c, 2010). Hence a class based weighting algorithm is developed, that
is derived from the fuzzy input fuzzy output SVM in order to mitigate the
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imbalanced class distributions in the training process of a classifier. The fuzzy
SVM uses weights for the class membership of a sample in the loss function
to find an optimal hyperplane. In this work the weighting mechanism was
adapted to define a higher loss value for the samples in the underrepresented
classes.

The algorithm was evaluated using the Pascal 2 mind reading competition data
collection, which comprises a recording of EEG. For this data, the P300 ERP is
elicited using the oddball paradigm, which means that the target stimuli is
presented only sparsely compared to the background patterns. This paradigm
naturally results in imbalanced class distributions. Additional to that, a multi-
ple classifier system is constructed, where different feature approaches and dif-
ferent overlapping partitions of EEG electrodes are used to obtain diverse clas-
sifiers. This renders relatively accurate individual classifiers and gives the op-
portunity to improve over the best individual classifier. The combined classi-
fier outperforms the best individual classifier and also competing approaches.
This is further supported by the fuzzy output of the SVM where confidence
values are used for the estimation of the class memberships. A subsequent
classifier selection procedure was conducted on a validation set, which led to
no further increase in performance. One reason for this is that a further valida-
tion set for the selection has to be split from the initial training set, which leads
to a decrease of accuracy for the individual classifiers.
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A Partially Supervised Results for
Standard Data Sets

In this chapter of the appendix, the results of a further evaluation for Algo-
rithm 4.3 are shown for different standard benchmark data collections, which
are mostly retrieved from the well-known UCI Machine Learning Repository
(Bache and Lichman, 2013). The used data sets from this source are namely:

• “Ionosphere”1: 351 samples; 2 classes

• “Iris”2: 150 samples; 3 classes

• “COIL-100”3 (Nene et al., 1996): 7200 samples; 100 classes

• “Fruits” (Fay, 2007): 840 samples in 7 classes.

For the evaluation of the partially supervised approach a predefined portion
of the data is regarded as unlabeled by neglecting the given label for the re-
spective samples. This portion is varied as seen in the different sub-figures
of figures A.2, A.4, A.5 and A.6. The number of cluster centers is also varied
in order to examine the architecture for partially supervised approach, which
is plotted over the x-axis of the sub-figures. The supervised stake in the ap-
proach is implemented using a Moore-Penrose pseudo inverse linear classifier.
For comparison, classification experiments are also conducted only using the
labeled portion of the data sets. Three different classification approaches are
evaluated in this context: a further purely supervised Moore-Penrose pseudo
inverse, a support vector machine using a linear kernel and an additional SVM
using a RBF kernel. Generally the supervised pseudo inverse classifier renders
lower classification rates than the linear SVM, which renders itself lower classi-
fication rates than the nonlinear RBF SVM. The partially supervised approach

1http://archive.ics.uci.edu/ml/datasets/Ionosphere
2http://archive.ics.uci.edu/ml/datasets/Iris
3http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
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yields generally speaking equal or sometimes higher recognition rates if the
number of cluster centers is large enough. However, when the number of clus-
ter centers approaches or is equal to the number of labeled data samples, the
drops dramatically, which is a phenomenon, that is well established in the lit-
erature, compare for example (Hoyle, 2011; Schäfer and Strimmer, 2005). The
mathematical reason for this lies in the fact that for this setting, the number of
non-zero eigenvalues that are small is increased.
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A.1 COIL-100 Data Set

The Columbia University Image Library (COIL-100) is used as one data set
for the evaluation of the partially supervised algorithm. It comprises visual
images of 100 different objects taken from 72 defined point of views. The res-
olution of the images is 128× 128 pixels. Samples taken from the COIL-100
library are shown in Figure A.1. Following (Fay, 2007), color histograms of
size 24 were extracted from each of the color channels of the images. Concate-
nating the three resulting histograms yields a feature vector of size 72.

Figure A.1: Sample images from the COIL-100 data collection (Nene et al., 1996).

The numerical evaluations of on the COIL-100 library are presented in Figure
A.2 for different portions of data for which the labels are removed. The ac-
curacy of the classification increases generally when additional labeled data
is added to the training set. However, the partially supervised approach suf-
fers lesser from the absence of the labeled data than the purely supervised
approached, that are also evaluated. Only, when the number of labeled sam-
ples is approximately equal to the number of prototypes in the setup, it can
be clearly observed, that the pseudo-inverse is failing (compare Figures A.2(a)
for 70 prototypes and Figure A.2(b) for 140 prototypes). Adding more labeled
samples to the training set significantly improves the accuracy as seen in fig-
ures A.2(c) and A.2(d). In these cases, the accuracy of the partially supervised
approach outperforms the linear classifiers and shows approximately the same
performance as the RBF SVM.
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(a) Classification results for the COIL-100 data set for different
number of prototypes when 1 % are labeled.
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(b) Classification results for the COIL-100 data set for different
number of prototypes when 2 % are labeled.
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(c) Classification results for the COIL-100 data set for different
number of prototypes when 10 % are labeled.
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(d) Classification results for the COIL-100 data set for different
number of prototypes when 15 % are labeled.

Figure A.2: Numerical evaluations of the four classification approaches on the COIL-100 data
set for different portions of the training data provided with labels.



162 Appendix A. Partially Supervised Results for Standard Data Sets

A.2 “Obst” Data Set

The “Obst” or Fruits data collection was assembled in the context of the EU
project “MirrorBot” (Wermter et al., 2005). Its goal was to construct a robot,
that is capable of identifying and grasping fruits on a table. Hence the data
collection comprises images of seven different fruits, i.e., green apples, lemons,
oranges, red apples, red plums, tangerines and yellow plums. The fruits were
photographed under different angles, varying light conditions and different
positions in the picture in a resolution of 346×288 pixels and every object was
portrayed 120 times. Analogous to the COIL data set, color histograms with
24 bins for each of the three RGB color channels were created Fay (2007). The
concatenation of the resulting histograms renders a feature of dimensionality
72.

Figure A.3: Sample images from the “Obst” data collection: green apple, lemon, orange, red
apple, red plum, tangerine and yellow plum (from top left to bottom right) (Fay, 2007).

The results of the numerical evaluation for a different number of prototypes
are shown in figures A.4(a) and A.4(b) for portions of labeled data of 0.5 and 1
in the training set. It can be seen in the figure A.4, that the classification task is
much easier than the COIL-100 data collection. When only half of the training
data is labeled, the partially supervised algorithm performs equal to the linear
SVM for smaller numbers of prototypes and equal to the RBF SVM for higher
number of components. At around 380 components, the pseudo-inverse clas-
sifier, that is situated on the unsupervised procedure fails as mentioned earlier.
When a label is provided for all the available training (Figure A.4(b)) the accu-
racy increases with the number of components and converges around the ac-
curacy of the RBF SVM at 95 %. The pseudo-inverse classifier is outperformed
from approximately 100 prototypes and the linear SVM from 150 prototypes
on.
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(a) Classification results for the “Obst” data set for different number
of prototypes when 50 % are labeled.
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(b) Classification results for the “Obst” data set for different number
of prototypes when 100 % are labeled.

Figure A.4: Numerical evaluations of the four classification approaches on the “Obst” data set
for different portions of the training data provided with labels.
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A.3 Iris Data Set

The Iris data collection is a very prominent data set hosted in the UCI reposi-
tory, describing three different types of iris plants, namely Iris Setosa, Iris Ver-
sicolour and Iris Virginica. The features that are available for this data set are
the petal and sepal widths and lengths, which provides a four-dimensional
feature vector for each sample.

The numerical evaluations for this data set are shown in Figure A.5 for portions
of 0.4 and 1 of the available training set labeled. It can be observed that the clas-
sification task is comparable easy to solve, rendering high accuracies. In Figure
A.5(a) the number of prototypes in the partially supervised algorithm is varied
and its accuracy is compared to the other classification approaches for 40 % of
the available data labeled. It can be observed, that the accuracy increases with
the number of prototypes until the instabilities of the pseudo-inverse occur as
mentioned earlier. After that the accuracy increases again and converges at the
error rate of the linear SVM. The RBF SVM is outperformed at approximately
90 prototypes. A similar situation is observable when the whole training set
is labeled as it can be seen in Figure A.5(b). Again, the linear SVM performs
best in this setting but the RBF SVM is very close to it in terms of accuracy.
The purely supervised pseudo-inverse approach is only slightly improved us-
ing more labeled data. Considering the partially supervised algorithm, the
accuracy increases until 15 prototypes are used and converges around the per-
formance of the two SVM approaches.
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(a) Classification results for the Iris data set for different number of
prototypes when 50 % are labeled.
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(b) Classification results for the Iris data set for different number of
prototypes when 100 % are labeled.

Figure A.5: Numerical evaluations of the four classification approaches on the Iris data set for
different portions of the training data provided with labels.
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A.4 Ionosphere Data Set

The Ionosphere data set is a popular benchmark data set, that is also located
at the UCI machine learning repository. It comprises radar measurements of
16 radar antennas if different frequencies. This data set constructs a two class
problem, where the class label signifies whether the radar is reflected by the
ionosphere or not. This is labeled as “bad” and “good” in the data collection.
The data set provides a 34 dimensional feature vector, that is characterizing the
radar pulses.

The results of the numerical evaluation for this data set is shown in Figure A.6.
Figure A.6(a) shows the results when 20 % of the training set are annotated. It
is shown that the partially supervised approach shows an approximately equal
accuracy compared to the RBF SVM for a high number of prototypes. Figure
A.6(b) shows slightly higher over-all accuracies when the labeled portion of
the training data is increased to 50 %. The curve for the partially supervised
approach is slightly smoother and the increase of the error is shifted to the right
as the number of samples for the pseudo-inverse is increased. In Figure A.6(c),
the whole training set of the Ionosphere data set is provided with labels. It can
be seen, that the accuracy increases quickly to the level of accuracy of the RBF
SVM for this setting. The linear SVM and the supervised pseudo-inverse show
still an inferior classification accuracy.
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(a) Classification results for the “Obst” data set for different number
of prototypes when 20 % are labeled.
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(c) Classification results for the Ionosphere data set for different
number of prototypes when 100 % are labeled.

Figure A.6: Numerical evaluations of the four classification approaches on the Ionosphere data
set for different portions of the training data provided with labels.





B Supplemental Results for the
Temporal Integration

The numerical evaluation of the information fusion techniques in Section 5.2
focused only on the discrimination of the two experimental sequences ES-2
and ES-5. However, there are further experimental sequences in the over-all
sessions, that have been recorded in the experiments as displayed in Figure B.1.

In this chapter of the appendix, the analogous classification experiments, that
were previously conducted with respect to ES-2 and ES-5, are executed with
the inclusion of the ES-4 and ES-6 for the sake of completeness. These experi-
mental sequences are labeled as “low pleasure, high arousal” and “high plea-
sure low arousal”. The following figures display the classification experiments
analogously to the Figure 5.9 in Section 5.2 as plots of the error rate against
the size of the time window for the temporal integration. The error rates for
the audio and video channels solely and two different fusion approaches are
shown. The results for ES-6 versus ES-4, as it is for example conducted by Hra-
bal et al. (2012), are displayed in Figure B.2, the analogous experiment for the
ES-2 versus ES-4 are shown in Figure B.3, and the experiments for ES-6 versus

PAD + - + + - + + + - - - - - + - + - +

Intro ES-1 ES-2 ES-3 ES-4 ES-5 ES-6
approx. approx. approx. approx. approx. approx.

1.5 min 3 min 3 min 5 min 3 min 4 min 5 min

time −→
Figure B.1: Experimental procedure for the EmoRec recordings: After a short introduction of
the task, the subject is guided through six emotional experimental sequences (ES-1 to ES-6).
The respective label in PAD space are given in the top line of the figure in terms of pluses (+) and
minuses (-), where a plus signifies a high and minus a low value for the respective dimension.
In short the emotional progression aims at “positive” states in the beginning succeeded by a
more “negative” state and ending positively again. Reproduction of Figure 3.4

169
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ES-5 are seen in Figure B.4. Finally, fusion experiments for the unification of
the “similar” experimental settings ES-2 and ES-6 and also ES-5 and ES-6 are
shown in Figure B.5.

The results of these experiments are less conclusive than the original one for
ES-2 versus ES-5 as the error decreases only slowly for larger time window
in Figures B.2 and B.4 or not at all as seen in Figures B.3 and B.5. A reason
for this result could be that the new classes are not as uniformly embedded
in the experimental recording as the originals ES-2 and ES-5. This has effects
on the technical side of the experiment as the reliable classification of the ex-
perimental sequences relies on relatively large time windows. For example,
ES-6 is directly at the end of a recording, which makes difficult to accumulate
over larger time windows. Another example is given for the discrimination of
ES-5 and ES-6, that are in a direct neighborhood to each other and larger time
windows will obviously affect the classification.

A merely psychological problem of experimental sequences, that are tempo-
rally near to each other originates from the fact, that the affective states of the
subjects do not change very quickly in this experiment. Hence it is possible,
that the effect of the presented stimuli did not (yet) have an effect on the state of
the subject or the targeted states of the previous experimental sequences may
continue to have an effect until the present time step. Unfortunately, these
speculations can not be verified as the true internal state of the subject is not
inferable.
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B.1 Classification of ES-6 versus ES-4
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Figure B.2: Audio-visual classification error versus the time window size for ES-6 versus ES-4
on the EmoRec corpus. The audio data does not provide enough information to discriminate the
two experimental sequence and this does not change for larger time windows. The classification
of the video material renders slightly better classification results and the combination of the
intermediate results in a time window improves the classification with the size of the window.
The multi-modal fusion approaches do not further improve the accuracy and follow more or less
the curve for the video classification, which is not surprising as the performance for the audio
data is poor.
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B.2 Classification of ES-2 versus ES-4
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Figure B.3: Audio-visual classification error versus the time window size for ES-2 versus ES-
4 on the EmoRec corpus. The classification accuracy for the video data is rather low and it
does unfortunately not improve for larger time windows. The classification of the audio data
renders slightly lower errors but it also does not improve for larger time windows. Only one of
the competing fusion architectures improves the accuracy of the classification: combining the
modalities after the temporal integration (cyan) renders an increasing accuracy for larger time
windows, however this does not improve significantly over the audio classification alone. The
second fusion approach shows no significant effect for the error of the classification.
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B.3 Classification of ES-6 versus ES-5
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Figure B.4: Audio-visual classification error versus the time window size for ES-6 versus ES-5
on the EmoRec corpus. The audio classification renders only high errors for the discrimination
of these experimental sequences. This does unfortunately not improve for larger time windows.
The classification based on the video data of the corpus renders slightly lower error rates, espe-
cially for larger time windows. There seems to be a very flat optimal region for time windows as
the error increases for very long windows. The fusion approaches do have no or only little effect
for the error rates. The variant, where the temporal integration is conducted first follows more
or less the curve for the video data. The other fusion architecture, i.e., first the combination of
the modalities and the temporal integration afterwards, renders even higher error rates.
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B.4 Classification of ES-2 and ES-6 versus ES-5 and
ES-4
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Figure B.5: Audio-visual classification error versus the time window size for the unifications
of ES-2 and ES-6 versus ES-5 and ES-4 on the EmoRec corpus. The classification based on
the video data renders no meaningful classification results with an error of 0.5. This does not
improve for larger time windows. The classification of the audio data shows slightly lower error
rates, which are merely decreasing a little bit for when increasing the window size. The fusion
approaches do hence not improve over the best individual classifier. They follow either the curve
for the video data solely or lie in the middle of the curves for the two individual modalities.
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Campbell, N., Edlund, J., de Kok, I., Poppe, R., and Traum, D., editors, Joint
Proceedings of the IVA 2012 Workshops, pages 25–32. Otto von Guericke Uni-
versität Magdeburg. (Cited on page 96.)

Simson, M. (1981). Use of signals in the terminal QRS complex to identify
patients with ventricular tachycardia after myocardial infarction. Circulation,
64(2):235–242. (Cited on page 68.)

Smyth, P. (1997). Clustering sequences with hidden Markov models. In Pro-
ceedings of Advances in Neural Information Processing Systems (NIPS), volume 9,
pages 648–654. The MIT Press. (Cited on page 108.)

Soleymani, M., Chanel, G., Kierkels, J., and Pun, T. (2008). Affective charac-
terization of movie scenes based on multimedia content analysis and user’s
physiological emotional responses. In International Symposium on Multimedia,
pages 228–235. IEEE. (Cited on page 4.)

Sörnmo, L. and Laguna, P. (2005). Bioelectrical Signal Processing in Cardiac and
Neurological Applications. Elsevier, Burlington, MA, 1 edition. (Cited on
page 82.)

Spies, M. (1996). Wahrscheinlichkeit. In Strube, G., Becker, B., Freska, C., Hahn,
U., Opwis, K., and Palm, G., editors, Wörterbuch der Kognitionswissenschaft.
Klett-Cotta. (Cited on page 36.)

Stemmler, G. (1989). The autonomic differentiation of emotions revisited: Con-
vergent and discriminant validation. Psychophysiology, 26(6):617–632. (Cited
on page 4.)

Stemmler, G., Heldmann, M., Pauls, C. A., and Scherer, T. (2001). Constraints
for emotion specificity in fear and anger: The context counts. Psychophysiol-
ogy, 38(2):275–291. (Cited on page 66.)

Strauss, P.-M., Hoffmann, H., Minker, W., Neumann, H., Palm, G., Scherer, S.,
Traue, H., and Weidenbacher, U. (2008). The PIT corpus of german multi-
party dialogues. In Proceedings of the Sixth International Language Resources
and Evaluation (LREC’08), pages 2442–2445. (Cited on page 6.)

Tax, D. M. J. and Duin, R. P. W. (2002). Using two-class classifiers for mul-
ticlass classification. In 16th International Conference on Pattern Recognition,
volume 2, pages 124–127. IEEE. (Cited on page 46.)



BIBLIOGRAPHY 211

Theodoridis, S. and Koutroumbas, K. (2009). Pattern Recognition. Academic
Press, Burlington, MA, 4-th edition. (Cited on pages 11, 13, 14, 15, 16, 21, 35,
104, and 179.)

Thiel, C. (2010). Multiple Classifier Systems Incorporating Uncertainty. PhD thesis,
Universität Ulm. (Cited on pages 31, 32, 35, and 38.)

Thiel, C., Scherer, S., and Schwenker, F. (2007). Fuzzy-input fuzzy-output
one-against-all support vector machines. In Knowledge-Based Intelligent In-
formation and Engineering Systems 2007, pages 156–165. Springer. (Cited on
pages 32 and 101.)

Valstar, M., Schuller, B., Smith, K., Eyben, F., Jiang, B., Bilakhia, S., Schnieder,
S., Cowie, R., and Pantic, M. (2013). Avec 2013: The continuous audio/visual
emotion and depression recognition challenge. In Proceedings of the 3rd ACM
International Workshop on Audio/Visual Emotion Challenge, AVEC ’13, pages 3–
10. ACM. (Cited on page 106.)

Van Boxtel, A. (2010). Facial emg as a tool for inferring affective states. In
Proceedings of Measuring Behavior, pages 104–108. (Cited on page 66.)

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley, New York. (Cited on
pages 29, 31, and 58.)

Vapnik, V. N. (1999). The Nature of Statistical Learning Theory. Springer, New
York. (Cited on page 29.)

Vapnik, V. N. (2006). Transductive inference and semi-supervised learning. In
Chapelle, O., Schölkpf, B., and Zien, A., editors, Semi-Supervised Learning,
pages 33–55. The MIT Press. (Cited on pages 59 and 177.)

Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of
simple features. Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’01), 1:511–518. (Cited on page 79.)

Vlasenko, B., Schuller, B., Wendemuth, A., and Rigoll, G. (2007). Frame vs.
turn-level: Emotion recognition from speech considering static and dynamic
processing. In Proceedings of the 2nd international conference on Affective Com-
puting and Intelligent Interaction (ACII’07), pages 139–147, Berlin, Heidelberg.
Springer-Verlag. (Cited on page 5.)
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folge: Michael Glodek, Markus Kächele, Stefan Scherer, Steffen Walter,
Friedhelm Schwenker, Miriam Schmidt, Georg Layher, Tobias Brosch,
Stephan Tschechne, Heiko Neumann, Günther Palm, David Hrabal, Ro-
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