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Introduction

A Teichmüller curve is a curve C ⊂ Mg, embedded in the moduli space of

smooth projective curves of genus g, which is totally geodesic for the Teichmüller

metric.

In this thesis we construct a new class of Teichmüller curves, using a char-

acterisation due to Möller [Möl06b]. This involves constructing a suitable one-

dimensional family of smooth projective curves parametrised by the points of a

Teichmüller curve in Mg. We show that our new Teichmüller curves are the last

Teichmüller curves in a larger class of Teichmüller curves constructed in [BM10b].

About candidates for further Teichmüller curves not much is known. A starting

point may be the following observation. The points of a Teichmüller curve embed-

ded in Mg correspond to curves with real multiplication by large totally real number

�elds (see [Möl06b, Theorem 2.7] for a more precise statement). In [Ell01], El-

lenberg constructs three one-dimensional families with this property. However, in

this thesis we show that, except for some special cases, Ellenberg's families do not

de�ne Teichmüller curves. To do this, we interpret them as families over suitable

Hurwitz spaces. We then describe a criterion to check whether a family of curves

does not de�ne a Teichmüller curve by studying the boundary of the associated

Hurwitz space and apply this criterion for exclusion to Ellenberg's families.

We moreover show how to modify Ellenberg's families by passing to an adapted

Hurwitz space in such a way that the criterion for exclusion no longer holds. It

remains open whether this modi�cation indeed produces Teichmüller curves.

Background

The �rst constructions of Teichmüller curves arose in the study of trajectories

of billiard balls on plane polygonal billiard tables P ⊂ R2 ' C. By gluing together

suitable re�ected copies of the table one may just as well study straightened non-

re�ected trajectories on a closed surface X. If one interprets the copies as subsets of

C, then X becomes a compact Riemann surface with a distinguished holomorphic

1-form ω induced by dz on C where z = x + i y is a coordinate on C ' R2.
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The group SL2(R) naturally acts on the moduli space ΩMg of pairs of compact

Riemann surfaces and distinguished non-zero holomorphic 1-forms. If the pair

(X,ω) is stabilised by a lattice in SL2(R), then the projection of the orbit of (X,ω)

to the moduli space Mg is a Teichmüller curve. In this case the corresponding

billiard table is `dynamically optimal', i.e. the trajectories on P are either periodic

or ergodic � provided that they do not end up in a corner of P . Good references

for this approach to Teichmüller curves are e.g. [McM03], [MT02] and [HS06].

In this thesis however we use a di�erent approach to construct Teichmüller

curves. We use a criterion due to Möller [Möl06b]. Rather than considering an

individual pair (X,ω) we consider a one-dimensional family (X, ω)→ S of smooth

genus-g curves equipped with a holomorphic 1-form. Then we ask whether the

image of the moduli map S →Mg, which sends a point b ∈ S to the point of Mg

corresponding to the �bre Xb, is a Teichmüller curve.

The 1-form ω, which is part of the data (X, ω), is a section of the �rst relative

de Rham cohomology H1
dR(X/S). This is an OS-module whose �bres at b ∈ S are

the de Rham cohomology C-vector spaces H1
dR(Xb), consisting of the closed 1-forms

on the �bres Xb modulo exact 1-forms. The relative de Rham cohomology comes

equipped with the Gauÿ-Manin connection ∇, whose contraction ∇(∂/∂s) provides

a way to take the parameter derivative of sections of H1
dR(Z/S) with respect to a

local parameter s on S. In the case that (X, ω) → S de�nes a Teichmüller curve,

ω is a section of a �at rank-2 subbundle E ⊂ H1
dR(X/S), which means that ∇

restricts to a connection on E. Moreover, E is generated as OS-module by ω and

∇(∂/∂s)ω.

Flat rank-2 subbundles of H1
dR(X/S) are the central objects in the criterion of

Möller. They have singularities in the set S−S, which are divided into two types:

elliptic singularities and logarithmic singularities. The conditions in the criterion

of Möller are conditions regarding the nature of the singularities of E, which can be

checked in terms of a certain Fuchsian di�erential equation associated with E � the

Picard-Fuchs equation. How to obtain the Picard-Fuchs equation of E is sketched

in the example on page 3.

Theorem (Möller). If the �rst relative de Rham cohomology H1
dR(X/S) of

a family X → S of smooth curves of genus g contains an indigenous �at rank-2

subbundle E ⊂H1
dR(X/S) such that all points in the boundary S−S are logarithmic

singularities, then the image of S →Mg is a Teichmüller curve.

We roughly explain the ingredients needed in the theorem by discussing an

example, which is a special case of the families that de�ne the new Teichmüller

curves constructed in this thesis.
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Example. We consider the family of smooth projective curves Z → S over

S = P1
C−{0, 1,∞} with coordinate s given by the a�ne equation

z4 = x2(x− 1)2(x− s)3.

Such (families of) curves, which are cyclic covers of the projective line, are called

superelliptic curves. Denote by E ⊂H1
dR(Z/S) the eigenspace of ϕ(x, z) = (x, i ·z)

with eigenvalue i, where i denotes the imaginary unit. More concretely, the 1-forms

ω = z dx
x(x−1)(x−s) and∇(∂/∂s)ω = ω

4(x−s) are generators of E. The section ω satis�es

the relation

∇(∂/∂s)2 ω +
6s− 3

4s(s− 1)
∇(∂/∂s)ω +

1

16s(s− 1)
ω = d

−z
4(x− s)2

= 0 ∈ E.

The associated ordinary linear di�erential operator

L =
(
∂
∂s

)2
+ 6s−3

4s(s−1) ·
(
∂
∂s

)
+ 1

16s(s−1)

on S = P1
C, the so-called Picard-Fuchs operator of ω, is a hypergeometric di�erential

operator with singularities in {0, 1,∞} ⊂ S.
With a singularity of the di�erential equation one may associate a local mon-

odromy matrix (see Appendix). In the case that the matrix is of �nite order, we call

the singularity an elliptic singularity; otherwise we call it a logarithmic singularity.

One checks that, in our example, b ∈ {0, 1} is an elliptic singularity and b = ∞ is

a logarithmic singularity of L.

However, we may reparametrise the family (and hence the Picard-Fuchs opera-

tor) using the relation s = 1
1−t4 . Then one can check that the local monodromy of

the reparametrised Picard-Fuchs operator at the points corresponding to s = 0 resp.

s = 1 become trivial (i.e. the local monodromy is the identity matrix). Moreover,

one can check that these points are no longer singularities of the new di�erential

operator. A translation of these two facts is that the bundle E becomes an indige-

nous bundle with only logarithmic singularities. (This is explained in more detail

in Chapter 3.)

Then another key requirement in the theorem of Möller is that the repara-

metrised superelliptic curve can be smoothly extended over the `removed' singu-

larities. In the present situation, this is not the case, as the superelliptic curve

degenerates at the points corresponding to s = 0 and s = 1 to a singular curve

consisting of two elliptic curves intersecting at one ordinary double point. This is

illustrated in Figure 0.1.

One can check that the reparametrised family admits an automorphism σ of

order two which extends to the degenerate �bres, acting on them as follows. It

maps the left torus in Figure 0.1 to the right one having precisely one �xed point,

namely the ordinary double point. Dividing out the action of σ yields a family of

elliptic curves that smoothly extends to the `removed' singularities. Moreover, one

can check that the indigenous subbundle of the relative de Rham cohomology of the
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Figure 0.1. Contracting the loops yields the degeneration over
s = 0 resp. s = 1.

reparametrised family `descents' to the relative de Rham cohomology of the quotient

family. Then the theorem of Möller implies that the image of the associated moduli

map is a Teichmüller curve.

There are of course more superelliptic curves from which one can construct

Teichmüller curves similar to the quotient construction explained above. In this

thesis we describe all possible types of such superelliptic curves (see Proposition

3.3.2). A large class of Teichmüller curves `coming from' these superelliptic curves

is constructed in [BM10b] and completed by our new Teichmüller curves. The

constructions used for this all �t into the following general set-up.

Given a �nite group G, we denote by H
(4)
G the Hurwitz space of G-covers with

ordered branch locus of cardinality 4. Let H ⊂ G be an arbitrary subgroup. Choose

a connected component S ⊂H
(4)
G , which in this case is an (a�ne) curve. Denote by

S →Mg the map which sends a point b ∈ S, corresponding to a G-cover Y → P1
C,

to the quotient curve X := Y/H. Then one can ask whether the image of S →Mg

is a Teichmüller curve or not.

One way to answer this question is to verify the conditions of the Theorem of

Möller, which involves the construction of a family X → S of smooth curves over

S or a suitable unrami�ed cover of S. If the Hurwitz space H
(4)
G is a �ne moduli

space, then one may take the corresponding universal family; otherwise one needs

to pass to a suitable unrami�ed cover.

As already mentioned earlier, a starting point for �nding candidates for families

that de�ne Teichmüller curves is the fact that they parametrise curves with real

multiplication by a large �eld. In [Ell01] the following families with this property

are constructed.
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Theorem (Ellenberg). (i) If p is a prime congruent to 1 (mod 4), then there

exists a one-dimensional family XEll,4 → S of smooth C-curves of genus (p− 1)/4

with real multiplication by the index-4 sub�eld of Q(ζp).

(ii) If p is a prime congruent to 1 (mod 6), then there exists a one-dimensional

family XEll,6 → S of smooth C-curves of genus (p − 1)/6 with real multiplication

by the index-6 sub�eld of Q(ζp).

(iii) If p and q are distinct odd primes, then there exists a one-dimensional family

XEll,pq → S of smooth C-curves of genus (p − 1)(q − 1)/2 with real multiplication

by the �eld Q(ζp + ζ−1
p ).

Since Ellenberg's families parametrise curves with real multiplication and are

constructed as quotients of families over a Hurwitz space of metacyclic covers (i.e.

we are in the above general set-up), it is therefore natural to ask whether they

de�ne Teichmüller curves. We answer this question in the second main part of this

thesis.

Results of this thesis

In the �rst main part of this thesis we construct the following new class of

Teichmüller curves. Note that the case m = 4 is discussed in the example on page

3.

Theorem 3.3.8. Let m > 2 be an integer and S = P1
C−{0, 1,∞} with coor-

dinate s. Consider the family of (smooth projective) superelliptic curves Z → S

given by the a�ne equationZ : z2m = xm(x− 1)m(x− s)m+2, if m is odd,

Z : zm = xm/2(x− 1)m/2(x− s)(m+2)/2, otherwise.

Then after a suitable base change π : T → S = P1
C the superelliptic curve extends

to a semistable curve ZT̃ over T̃ = T−π−1(∞) and admits an automorphism σ of

order two such that the quotient X := ZT̃ /〈σ〉 de�nes a Teichmüller curve, i.e. the

image of T̃ →Mg, b 7→ [Xb], is a Teichmüller curve, embedded in the moduli space

of smooth curves of genus

g =

m−1
2 , if m is odd,⌊
m
4

⌋
, otherwise.

This is the last Teichmüller curve `coming from' families of superelliptic curves

by a certain quotient construction (see Summary 3.3.10). Together with the Teich-

müller curves constructed in [BM10b] this provides a complete classi�cation of

such Teichmüller curves.
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In the second main part of this thesis we consider the one-dimensional families

from [Ell01]. We show that, except for some special cases, they do not de�ne

Teichmüller curves (see Theorem 4.3.5, Remark 4.3.6 and Subsection 3.3.2).

Theorem 4.3.5. (i) Let XEll,m → S, with m = 4 resp. m = 6, be the family

from part (i) resp. (ii) of the theorem of Ellenberg. Unless p = m + 1, the family

does not de�ne a Teichmüller curve. In the case that p = m + 1, the family is a

non-trivial family of elliptic curves, i.e. the image of the moduli map S → M1 is

dense. In particular, the image is a Teichmüller curve.

(ii) For any two distinct odd primes p and q, the family XEll,pq → S from part (ii)

of the theorem of Ellenberg does not de�ne a Teichmüller curve.

An Ellenberg family XEll,m → S (for m = 4, 6) is constructed as quotient

of a family Y → S of Galois covers of P1
C with metacyclic Galois group G =

Z/pZoZ/mZ. (The quotient is taken modulo Z/mZ.) In this thesis we adapt the

family Y → S in order to overcome the obstructions given by the boundary of the

associated Hurwitz space.

Theorem 4.5.11. There is a one-dimensional family Ỹ → S of Galois covers

of P1
C with semidirect Galois group G̃ = (Z/pZ)2 o Dm that factors through the

family Y → S with the following property. The quotient X̃Ell,m := Ỹ/Dm → S has

no �bres that are singular curves of compact type.

Moreover, we decompose the relative de Rham cohomology H1
dR(X̃Ell,m/S)

into rank-2 subbundles and re�ne the criterion on the boundary of the Hurwitz

space to exclude some of the rank-2 subbundles. The remaining bundles may be

candidates for indigenous bundles to satisfy the conditions from the theorem of

Möller (see Summary 4.6.8).

Overview

This thesis is organised as follows.

In Chapter 1 we gather well-known facts regarding the theory of Hurwitz spaces,

mostly without giving proofs. The goal is to present (and adapt) the theory in a

consistent way, just as much as we need it throughout this thesis. Hurwitz spaces

are coarse moduli spaces for branched covers of the Riemann sphere. We explain

the construction of the Hurwitz space H
(4)
G of Galois covers of P1

C with Galois group

G and four branched points (equipped with an ordering of the branch points). It

is constructed as a covering space of the space of branch loci. The monodromy

representation (called Hurwitz monodromy) of the corresponding covering projec-

tion can be described by an action of the Hurwitz braid group on Nielsen tuples

(see Proposition 1.3.4). The orbits of this action are in bijection with the points

in the boundary H
(4)
G −H

(4)
G which parametrise covers between semistable curves,
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so-called admissible covers (see Proposition 1.4.1). The quotients of these covers

by subgroups H ⊂ G are described in Proposition 1.5.6. This description is used in

Chapter 3 and Chapter 4 to check whether the H-quotient of a curve parametrised

by the boundary H
(4)
G −H

(4)
G is smooth or not.

In Chapter 2 we study the �rst relative de Rham cohomology H1
dR(Y/S) of a

one-dimensional family Y → S of smooth genus-g curves. It comes equipped with

the Gauÿ-Manin connection, which can be made explicit by a Fuchsian di�erential

equation � the Picard-Fuchs equation. The main part of Chapter 2 is Section 2.3,

in which we decompose H1
dR(Y/S) into subbundles that are invariant under the

Gauÿ-Manin connection, using representation theory. We restrict to the case needed

in this thesis, namely to families of Galois covers Y → P1
S having a semidirect

Galois group G = AoH with A abelian. We moreover describe which subbundles

E ⊂H1
dR(Y/S) `descent' to the relative de Rham cohomology of the quotient curve

Y/H. In other words, we describe when the Picard-Fuchs equation corresponding

to E can be recovered in the relative de Rham cohomology of the quotient Y/H.

In Chapter 3 we consider �at rank-2 vector bundles on a smooth projective

connected C-curve S, i.e. OS-modules E equipped with a logarithmic connection ∇.
This is a generalisation of the notions introduced in Chapter 2. We recall some def-

initions (elliptic and logarithmic singularities as well as indigenous bundles), which

we need to formulate the Theorem of Möller (Theorem 3.1.13). We show how one

can `remove' the elliptic singularities of a �at vector bundle by applying a suitable

base change (see Lemma 3.1.8). In the case of superelliptic curves Z → S, we cal-

culate the order of vanishing of the Kodaira-Spencer map associated with isotypical

rank-2 subbundles E ⊂ H1
dR(Z/S). The order of vanishing `measures' whether E

is indigenous (Lemma 3.3.1). In Proposition 3.3.2 we �nd all types of superellip-

tic curves whose relative de Rham cohomology contains a rank-2 subbundle that

can be pulled back to an indigenous bundle. In Remark 3.3.3, Remark 3.3.5 and

Remark 3.3.6 we recall from [BM10b] how to produce Teichmüller curves using

these indigenous bundles. It turns out that there is one (and only one) case that

has not been treated yet, see Proposition 3.3.7 (iii). This case yields our new class

of Teichmüller curves (Theorem 3.3.8).

Using the classi�cation of all superelliptic curves that provide indigenous bun-

dles (given in Proposition 3.3.2), we explain in Subsection 3.3.2 why Ellenberg's

pq-family XEll,pq does not de�ne a Teichmüller curve.

Chapter 4 deals with the two remaining one-dimensional families of curves

XEll,4 and XEll,6. They are quotients of certain metacyclic Galois covers by the

second cyclic factor of the Galois group. More precisely, we consider families of

Galois covers Y
Z/pZ−−−→ Z

Z/mZ−−−−→ P1
C that are compositions of an m-cyclic cover of

P1
C branched at four points and an étale p-cyclic cover. In Section 4.2 we show that

XEll,4 andXEll,6 are essentially the only quotients of metacyclic covers of the above
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form such that their relative de Rham cohomology splits into rank-2 subbundles

all of which carry a �ltration (Proposition 4.2.1). This is a necessary condition

for a �at subbundle to be indigenous. However, in Section 4.3 we prove that,

except for some special cases, none of the subbundles satisfy the conditions from

the theorem of Möller by studying the boundary of the Hurwitz space of metacyclic

covers (Theorem 4.3.5). For this we show that the family (after an unrami�ed base

change if necessary) degenerates at some point in S−S to a singular semistable

curve of compact type. Then [Möl11, Proposition 2.4] (resp. Lemma 4.3.1) implies

that the image of S → Mg is no Teichmüller curve. In Section 4.4 we describe

the parameter space of Ellenberg's families more precisely via the corresponding

Hurwitz monodromy. In Section 4.5 we show how to adapt Ellenberg's families

such that the above criterion for exclusion on the boundary of the Hurwitz space

no longer holds (Theorem 4.5.11). The �bres of the adapted families are constructed

as follows. The automorphism group of Z is a dihedral group Dm = Z/mZ o 〈σ〉,
but σ does not lift to Y . We lift the automorphism σ to the Galois closure Ỹ → P1

C.

Our adapted family then is obtained by taking the quotient of Ỹ → P1
C by Dm. An

analogous construction was used in [BM10b] to construct Teichmüller curves. In

our situation, it remains open whether our adaptation indeed produces Teichmüller

curves. In Section 4.6 we re�ne the above criterion for exclusion to �nd rank-2

subbundles of the relative de Rham cohomology of the adapted family that may

be candidates for indigenous bundles to satisfy the conditions from the theorem of

Möller (see Theorem 4.6.6 and Summary 4.6.8).
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Chapter 1
Hurwitz spaces

1.1. Families of covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2. Nielsen tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3. Hurwitz spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4. Degeneration of covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5. Quotient covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

In this chapter we recall the theory of Hurwitz spaces which we adapt for our

purposes, following mainly [RW06], [Wew98], [Völ96], [FV91]. We describe the

boundary of Hurwitz spaces, which parametrises covers between semistable curves,

so-called admissible covers (see Proposition 1.4.1). In Proposition 1.5.6 we describe

the quotients of these covers. This description is needed in Chapter 3 and Chapter

4 in order to check whether a degeneration is smooth or not.

Throughout this chapter S denotes a scheme over C and G a �nite group.

1.1. Families of covers

We introduce the notion of a family of covers over a parameter space S. We

want the members of this family to have r ordered branch points. The reason for

this is that � in the case that the members are branched covers of the Riemann

sphere � we may describe them by ordered Nielsen tuples (cf. Section 1.2).

Definition 1.1.1. (i) A smooth curve X over S is a smooth and proper

morphism X → S such that the �bre Xs = X ×S SpecC over any geometric point

s : SpecC→ S is connected and one-dimensional.
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12 1. HURWITZ SPACES

(ii) Let X and Y be smooth curves over S. A map π : Y → X is called a cover

over S if it is a �nite, �at and surjective S-morphism

Y
π // 88X // S.

We write Aut(π) = {h ∈ AutS(Y); π ◦h = π} for the group of automorphisms that

leave π �xed.

The pullback πb : Yb →Xb, given by the �bre product

Yb

πb
��

// Y

π
��

Xb

��

// X

��
SpecC b // S

is a cover over C. That is why we may interpret π as a family of covers with

parameter space S.

Definition 1.1.2. We say that two covers π : Y → X and π′ : Y′ → X′

over S are (weakly) isomorphic if there exist S-isomorphisms h : Y
∼−→ Y′ and

m : X
∼−→X′ such that m ◦ π = π′ ◦ h.

Y
∼

h

//

π ��

Y′

π′��
X

∼
m
// X′

Definition 1.1.3. For a geometric point y : SpecC → Y the rami�cation

index ey is the order of the stabiliser of y in Aut(π). The branch locus of π is the

smooth relative divisor D ⊂X over S such that

(i) the natural map D → S is �nite and étale,

(ii) the restriction of π to the open subset X−D is étale,

(iii) for every geometric point x : SpecC→ D there is a geometric point y : SpecC→
Y with π(y) = π ◦ y = x and rami�cation index ey > 1.

Remark 1.1.4. In the following we are interested in the case that the divisor

D ⊂ X is split,. i.e. the image of r pairwise disjoint sections x1, . . . , xr : S → X.

In this case we write D = {x1, . . . , xr}. The degree deg(D/S) of the split divisor

is constant and equals r. The sections xi : S →X are called branch points of π.

Definition 1.1.5. By a G-cover of X over S we mean a pair (π, µ) where

• π : Y →X is a cover over S,

• Aut(π) acts transitively on every (geometric) �bre of π.

• µ : G
∼−→ Aut(π) is an isomorphism.
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Remark 1.1.6. The pullback πb : Yb → Xb is a G-cover over C whose iso-

morphism G
∼−→ Aut(πb) is given by restricting the automorphisms in G to Yb. In

other words, we may interpret π as a family of G-covers with parameter space S.

In the sequel we identify G = Aut(π) and drop µ from the notation (π, µ).

Definition 1.1.7. Two G-covers π : Y → X and π′ : Y′ → X′ over S are

said to be (weakly) isomorphic if there exist S-isomorphisms h : Y
∼−→ Y′ and

m : X
∼−→X′ such that m ◦ π = π′ ◦ h and g ◦ h = h ◦ g for all g ∈ G.

We always consider weak isomorphisms of covers, if not stated otherwise.

Definition 1.1.8. A cover (resp. G-cover) with ordered branch locus is a

cover (resp. G-cover) whose branch locus is a split divisorD = {x1, . . . , xr} together
with a choice of a bijection α : {1, . . . , r} ∼−→ {x1, . . . , xr}.

We usually assume that xi = α(i), drop α from the notation and simply write

D = (x1, . . . , xr) for the ordered branch locus of the cover.

1.2. Nielsen tuples

Let π : Y → P1
C be aG-cover with ordered branch locusD of cardinality |D| = 4.

In this section we consider π as a �nite non-constant holomorphic map between

connected compact Riemann surfaces and D as a set of four pairwise distinct points

on the Riemann sphere P1
C together with a choice of a bijection α : {1, . . . , 4} ∼−→ D.

In this set-up we recall from [Völ96, Chapter 4] a correspondence between

G-covers of P1
C with ordered branch locus and so-called Nielsen tuples in

Er(G) := {g = (g1, . . . , g4) ∈ G4; G = 〈g1, · · · , g4〉, g1 · · · g4 = 1, gi 6= 1}.

The restriction of π to π−1
(
P1
C−D

)
is a covering projection with respect to the

analytic topology. We �x a point x0 ∈ P1
C−D and set d := |π−1(x0)|, the degree of

π. It is well known that there exists a presentation

π1

(
P1
C−D,x0

)
= 〈γ1, . . . , γ4; γ1 · · · γ4 = 1〉(1.2.1)

of the fundamental group of P1
C−D, where γi is represented by a simple closed

loop winding around the missing point xi = α(i) as illustrated in Figure 1.1. In

particular the order of factors in γ1 · · · γ4 is given by the bijection α.

x3

x2

x1

x4

γ1
γ2

γ3
γ4

Figure 1.1.
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We denote by [γi]y the unique endpoint of the lift of γi to a path in Y with

initial point y.

Definition 1.2.1. By mπ(γi)(y) = [γi]y a left action

mπ : π1

(
P1
C−D,x0

)
→ Sym

(
π−1(x0)

)
,

called the monodromy of π, is de�ned. The image mπ(γi) is called the local mon-

odromy of π at xi. The subgroup Mon(π) := 〈mπ(γ1), . . . ,mπ(γ4)〉 of Sym
(
π−1(x0)

)
is called the monodromy group of π.

Note that we use the convention to compose loops and permutations from left

to right.

Remark 1.2.2. We will use the notion local monodromy also for covers of

curves of positive genus. However we refrain from introducing a precise de�nition

as we will only deal with conjugacy classes of the local monodromies in that case.

For every y ∈ π−1(x0) there exists a unique surjective homomorphism

Φy : π1

(
P1
C−D,x0

)
� G(1.2.2)

such that Φy(γi) ∈ G = Aut(π) maps [γi]y to y [Völ96, Proposition 4.19]. Note

that (1.2.2) induces a right action G→ Sym(π−1(x0)) on the �bre π−1(x0), which

coincides with the opposite action of the monodromy action de�ned in De�nition

1.2.1.

For y′ ∈ π−1(x0) the homomorphism Φy′ is the composition of Φy with an inner

automorphism of G. By this, we have associated with the G-cover π with ordered

branch locus D = (x1, . . . , x4) the Nielsen tuple

gπ := (Φy(γ1), . . . , Φy(γ4)) ,

given up to uniform conjugation with elements in G.

For a �xed quadruple D of pairwise distinct points in P1
C, we denote by

HD,G := {π : Y
G−→ P1

C; D = ordered branch locus of π}/ ∼

the set of weak isomorphism classes of G-covers Y → P1
C with ordered branch locus

D. Further, we call

Ni4(G) := E4(G)/G,

where G acts via uniform conjugation, the inner Nielsen class of G. For more

details we refer to [FV91, Section 1.1].

The following proposition is well known. For a proof, see e.g. [Völ96].

Proposition 1.2.3. The association π 7→ gπ induces a bijection of sets

HD,G
∼−→ Ni4(G).
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Remark 1.2.4. Let π : Y → P1
C be a G-cover with ordered branch locus

D = (x1, . . . , x4) and associated Nielsen tuple g = (g1, . . . , g4). Then the transitive

action of the Galois group G = Aut(π) on π−1(xi) corresponds to the natural right

action

G→ Sym(〈gi〉\G)(1.2.3)

on the right cosets in 〈gi〉\G. The reason is that the group 〈gi〉 is the stabiliser of
a point in π−1(xi) [Sza09, Proposition 3.4.5].

Definition 1.2.5. If π : Y → P1
C is a G-cover with ordered branch locus

of cardinality 4 and Nielsen tuple gπ = (g1, g2, g3, g4), we call the quadruple of

non-trivial conjugacy classes

C =
(

ClG(g1),ClG(g2),ClG(g3),ClG(g4)
)

in G the rami�cation type of π.

We write HD,G,C ⊂HD,G for the set of weak isomorphism classes of G-covers

Y → P1
C with ordered branch locus D and rami�cation type C. Moreover, we de�ne

for C = (C1, . . . , C4) the subset

E4(G,C) := {g = (g1, . . . , g4) ∈ G4; G = 〈g1, . . . , g4〉, g1 · · · g4 = 1, gi ∈ Ci}

of E4(G). Note that we consider ordered branch loci and hence we do not allow the

conjugacy classes Ci to be permuted.

Corollary 1.2.6. The association π 7→ gπ induces a bijection of sets

HD,G,C
∼−→ Ni(G,C) := E4(G,C)/G,

where G acts via uniform conjugation.

Remark 1.2.7 (Non-Galois case). Similarly, for a transitive subgroup G of

Sd and a quadruple C = (C1, . . . , C4) of conjugacy classes in G, we may consider

the absolute Nielsen class

Niabs
4 (G) := E4(G,C)/NSd(G),

where NSd(G) is the normaliser of G in Sd acting on E4(G,C) by uniform conjuga-

tion. Denote by D = (x1, . . . , x4) a �xed tuple of four pairwise distinct points in P1
C.

Then Niabs
4 (G) is in one-to-one correspondence with the set of weak isomorphism

classes of degree-d covers of P1
C with ordered branch locus D and monodromy group

G such that the its local monodromy %i ∈ G at xi is an element of Ci (see [FB82]

where we take NSd(G) as group Ḡ from that paper).

1.3. Hurwitz spaces

Hurwitz spaces are parameter spaces for covers of P1
C. In this section we intro-

duce Hurwitz spaces as complex manifolds that cover the space of ordered branch
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loci, following [RW06, Section 3]. Moreover, we describe the monodromy of the

corresponding covering projection. We restrict to the case of four branch points.

We consider P∗ := P1
C−{0, 1,∞} and put Dλ := (0, 1, λ,∞). Then we write

H
(4)
G :=

∐
λ∈P∗

HDλ,G

for the set of weak isomorphism classes of G-covers of P1
C with ordered branch locus

of cardinality 4. We call H
(4)
G the (reduced) Hurwitz space of G-covers of P1

C with

ordered branch locus of cardinality 4.

Remark 1.3.1. We consider the map

Ψ : H
(4)
G → P∗

that sends an isomorphism class in H
(4)
G represented by a G-cover with branch

locus Dλ to its third branch point λ. We can endow the set H
(4)
G with a topology

such that it is a covering space of the Riemann surface P∗ (which may be shown

analogous to [RW06, Proposition 3.2]). In particular, H
(4)
G is a Riemann surface.

A consequence of Proposition 1.2.3 is the following.

Corollary 1.3.2. Any �bre of Ψ is in bijection with Ni4(G).

Definition 1.3.3. We call Ψ the branch locus map. The monodromy (cf.

De�nition 1.2.1) of Ψ is called Hurwitz monodromy.

By Corollary 1.3.2, the Hurwitz monodromy induces an action of the funda-

mental group of P∗

π1

(
P∗, λ

)
→ Sym

(
Ni4(G)

)
(1.3.1)

on Nielsen tuples, which we describe more precisely, following [FV91, Section 1.3].

Denote by Qi the standard generators of the Hurwitz braid group H4 with four

braids verifying the relations

QiQj = QjQi for i, j ∈ {1, 2, 3} with |i− j| > 1,(1.3.2)

QiQi+1Qi = Qi+1QiQi+1 for i ∈ {1, 2},(1.3.3)

Q3Q2Q
2
1Q2Q3 = 1.(1.3.4)

The pure Hurwitz braid group H(4) is the kernel of the projection H4 → S4 that

maps Qi to the transposition (i, i+1). It is well known that H(4) is the fundamental

group of

U(4) =
{

(x1, . . . , x4) ∈
(
P1
C
)4

xi 6= xj for i 6= j
}
.

Moreover, there is an isomorphism

H(4) ∼−→ π1(P∗, λ) = 〈b1, b2, b3; b1b2b3 = 1〉(1.3.5)
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given by Q2Q2
1Q
−1
2 7→ b1, Q2

2 7→ b2 and Q2
3 7→ b3, where b1, b2, b3 are represented

by simple closed loops winding around 0, 1 and ∞, respectively (see Figure 1.2).

b1 = Q2Q2
1Q
−1
2

0 1 λ ∞

b2 = Q2
2

0 1 λ ∞

b3 = Q2
3

0 1 λ ∞

Figure 1.2.

Proposition 1.3.4. The Hurwitz monodromy (1.3.1) is given by

[g1, g2, g3, g4] · b2 = [g1, g
g2g3
2 , gg23 , g4], [g1, g2, g3, g4] · b3 = [g1, g2, g

g3g4
3 , gg34 ],

where [·] expresses that we work with Nielsen tuples modulo G and we use the

convention gh = hgh−1 for g, h ∈ G. Using b1 = b−1
3 b−1

2 , we may calculate

[g1, g2, g3, g4] · b1.

The analogous result for unordered branch loci is proved in [FV91]. The proof

of Proposition 1.3.4 is analogous. We sketch the idea of the proof. The braid action

H4 → Sym(G4) given by

(g1, . . . , g4) ·Qi = (g1, . . . , gi−1, gi · gi+1 · g−1
i , gi, gi+2, . . . , g4).(1.3.6)

naturally induces an action on Ni4(G). In [FV91, Section 1.4] it is shown that

the braid action (1.3.6) describes the monodromy action of the branch locus map

Ψ̃ : Hin
4,G → U4, where U4 = {D ⊂ P1

C; |D| = 4} and Hin
4,G denotes the Hurwitz

space of G-covers Y → P1
C with unordered branch loci of cardinality 4, where two

covers π : Y → P1
C and π′ : Y ′ → P1

C are isomorphic if and only if there is an

isomorphism h : Y
∼−→ Y ′ such that π = π′ ◦ h.

The braid action (1.3.6) is illustrated in Figure 1.3 and Figure 1.4. A loop based

at D = {x1, . . . , x4} ∈ U4 is visualised by four `simultaneous' paths in P1
C between

the points x1, . . . , x4 ∈ P1
C. These are the branch points of a G-cover π ∈ Ψ̃−1(D),

and they move `simultaneously' along these paths. (We have visualised the loop

given by Q2, where the branch points x1 and x4 remain at their position.) Recall

that we may associate with a G-cover a Nielsen tuple g = (g1, . . . , g4) such that

it holds gi = Φy(γi), where the γi are the standard generators of π1(P1
C−D,x0),

x0 6∈ D, from (1.2.1) and Φy is given as in (1.2.2). The topology on Hin
4,G is such

that the loops γi are deformed continuously when the points xi move along a loop

in U4.

As in [RW06, Section 2.5] there is a natural map Hin
4,G → Hred

4,G to the re-

duced Hurwitz space Hred
4,G of weak isomorphism classes of G-covers with unordered

branch loci of cardinality 4. The �bres of the corresponding branch locus map

Hred
4,G → U4/PGL2(C) are still in bijection with Ni4(G) and the monodromy ac-

tion of Hred
4,G → U4/PGL2(C) is also given by (1.3.6).



18 1. HURWITZ SPACES

x3

x2

x1

x4

Q2

γ1

γ2

γ3
γ4

Q2 ∈ B4 x2

x3

x1

x4

γ1

γ3

γ3γ2γ
−1
3

γ4

Figure 1.3.

Up to now we have described the situation for unordered branch loci. We now

consider the (reduced) Hurwitz space of G-covers H
(4)
G with ordered branch loci.

It corresponds to the reduced Hurwitz space with unordered branch loci via the

following commutative diagram.

H
(4)
G

��

// Hred
4,G

��
P∗ // U4/PGL2(C)

The map P∗ → U/PGL2(C) is given by `forgetting the order'. This shows that

the monodromy action (1.3.1) in Proposition 1.3.4 is induced by the action of the

generators b2 = Q2
2 resp. b3 = Q2

3 of the pure Hurwitz braid group H(4).

γ4

γ3γ2
0 1 λ ∞

b3 = Q2
3

γ3γ4γ3γ
−1
4 γ−1

3

γ3γ4γ
−1
3

λ ∞

Figure 1.4. Note that we compose loops from left to right.

Remark 1.3.5. Let C = (C1, . . . , C4) be a quadruple of conjugacy classes in

G. We write

HG,C :=
{
π : Y

G−→ P1
C; gπ ∈ C

}/
∼

for the subset of H
(4)
G consisting of the G-covers of P1

C with ordered branch locus

of cardinality 4 and rami�cation type C. Note that the braid action in Proposition

1.3.4 sends tuples in Ni4(G) to tuples whose components are conjugated in G.

Therefore the monodromy of the restriction Ψ : HG,C → P∗ is the action

π1(P∗)→ Sym (Ni(G,C))

given by the same formulas as in Proposition 1.3.4.
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Remark 1.3.6. Let A be an abelian group and C a quadruple of conjugacy

classes in A such that Ni(A,C) 6= ∅. Since conjugation in abelian groups is trivial,

we conclude that HA,C ' P∗.

Remark 1.3.7 (Non-Galois case). Let G ⊂ Sd be a transitive subgroup and

C = (C1, . . . , C4) a quadruple of conjugacy classes in G. Similar to Remark 1.3.1,

we can introduce a branch locus map

Ψ ′ : Hd,G,C → P∗

for the Hurwitz space Hd,G,C of (possibly non-Galois) of weak isomorphism classes

of degree-d covers of P1
C all of which have

(i) ordered branch locus (0, 1, λ,∞),

(ii) monodromy group G,

(iii) and the local monodromy %i at xi is an element of Ci.

Then the monodromy of Ψ ′ is the action

π1

(
P∗, λ)→ Sym

(
Niabs

4 (G)
)

given by the formulas in Proposition 1.3.4, but [·] expresses that we work with

isomorphism classes of Nielsen tuples modulo the normaliser NSd(G) of G in Sd

(see Remark 1.2.7).

For examples of computations of Hurwitz monodromies we refer to Section 4.4.

1.3.1. Moduli of covers. We interpret the Hurwitz space H
(4)
G (and its sub-

sets HG,C) as coarse moduli space of G-covers following [RW06].

Denote by H(4)
G (·) the contravariant functor from schemes over C to sets that

sends

• a C-scheme S to the set

H
(4)
G (S) =

{
Y

G−→ P1
S with ordered branch locus of cardinality 4

}/
∼

of weak isomorphism classes of G-covers,

• a morphism β : T → S to the pullback

β∗ : H
(4)
G (S)→ H

(4)
G (T ), [π] 7→ [πT ]

given by the �bre product

YT

πT
��

// Y

π
��

P1
T

//

��

P1
S

��
T

β // S

The functor H(4)
G (·) is coarsely represented by a C-scheme H (see [RW06, Theorem

2.1]). The analyti�cation of H is just the Hurwitz space H
(4)
G . In the case that the
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centre

Z(G) = {g ∈ G; gh = hg for all h ∈ G}

of G is trivial, i.e. Z(G) = {1}, the scheme H is a �ne moduli space representing

the functor H(4)
G (·) ([RW06, Corollary 2.2]). In particular, there exists a unique

G-cover

V
G−→ P1

H

over H with ordered branch locus of cardinality 4 such that the �bre Vb → P1
C at

any C-rational point b ∈ H is weakly isomorphic to the G-cover parametrised by

b. We call V
G−→ P1

H the universal family over the Hurwitz space H.

1.4. Degeneration of covers

Let G be a �nite group and C a quadruple of non-trivial conjugacy classes

in G. Recall that HG,C denotes the Hurwitz space parametrising G-covers of P1
C

branched at four ordered pairwise disjoint points x1 = 0, x2 = 1, x3 = λ, x4 = ∞
with rami�cation type C (see De�nition 1.2.5).

The Hurwitz space HG,C admits a natural compacti�cation HG,C as a moduli

space of admissible G-covers ([RW06], [Wew98]). In our situation HG,C is a

curve and HG,C as curve is the smooth compacti�cation of HG,C. The notion

admissible covers goes back to [HM82]. Admissible covers over a �eld (here C)
are �nite maps between semistable curves (i.e. projective connected reduced curves

having at most ordinary double points as singularities). For our purposes we do

not need the de�nition of admissible covers. It su�ces to describe the boundary

HG,C−HG,C in terms of degenerate Galois covers. For the de�nition and more

details we refer to [Wew98], [Wew99] or [RW06, Section 5].

Recall that we have a cover, called branch locus map,

Ψ : HG,C →M
(4)
0 ' P1

C−{0, 1,∞}

which sends a G-cover to the branch point x3 = λ. The cover Ψ extends to a

branched cover Ψ : HG,C → P1
C. For simplicity we only describe the �bre Ψ−1(0) ⊂

HG,C−HG,C. The �bres above 1 and ∞ may be described similarly.

Fix λ ∈ P1
C−{0, 1,∞} and recall that we may associate with any point in the

�bre Ψ−1(λ) ⊂ HG,C a Nielsen tuple g = [g1, g2, g3, g4] ∈ Ni(G,C), depending on

the choice of generators γ1, γ2, γ3, γ4 of π1(P1
C−{0, 1,∞, λ}, x0).

If λ moves to 0, the e�ect on γ1, γ2, γ3, γ4 is described by contracting a loop

γ homeomorphic to (γ2γ4)−1 = γ1γ2γ3γ
−1
2 ∈ π1(P1

C−{0, 1,∞, λ}, x0) with 0, λ in

its interior and 1,∞ in its exterior. The contraction produces a semistable genus-0

curve P consisting of two projective lines P 1 and P 2 intersecting in one ordinary

double point ξ such that the exterior of γ specialises to P 1 (i.e. 1,∞ ∈ P 1) and

the interior of γ specialises to P 2 (i.e. 0, λ ∈ P 2). On P 1 the interior of γ becomes

the interior of a simple closed loop γξ = γ1γ2γ3γ
−1
2 winding around ξ. On P 2 the
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γ3

γ4

γ1

γ2

γ

P 1

γ21

γ1

0

γ4

∞

γ2γ3γ
−1
2

λ

P 1

γ−1
ξγξ ξ

1
γ2

∞
γ4

0

γ1

λ
γ2γ3γ

−1
2

P 1 P 2

Figure 1.5. Degeneration.

exterior of γ becomes the interior of a simple closed loop γ−1
ξ winding around ξ.

In other words, for λ → 0 the branch points 0 and λ of the cover parametrised by

Y

P 1 P 1

1

g2

∞
g4

λ

g2g3g
−1
2

0

g1

ξ

gξ
resp. g−1

ξ

Figure 1.6. Degeneration.

λ coalesce in ξ on P 1 with local monodromy gξ = g1g2g3g
−1
2 , whereas on P 2 the

branch points 1 and ∞ coalesce in ξ with local monodromy g−1
ξ . This is illustrated

in Figure 1.5 and Figure 1.6.

Proposition 1.4.1. (i) There is a bijection between the set of points in

Ψ−1(0) ⊂ HG,C−HG,C and the set of orbits under the action of the braid b1 =

Q2Q2
1Q
−1
2 from Proposition 1.3.4 on the set Ni(G,C).

(ii) We may describe the bijection from (i) explicitly. Let g = [g1, g2, g3, g4] ∈
Ni(G,C). The admissible G-cover Y → P corresponding to the orbit of g satis�es:

The restriction Y |P i of Y to a cover over P i is an induced cover Y |P i = IndGGi Y i,

where Y i is a suitable connected component of Y and Y i → P i is a Gi-cover with

G1 = 〈g2, g4〉, G2 = 〈g1, g2g3g
−1
2 〉

and rami�cation type

C1 =
(

ClG1
(gξ), ClG1

(g2), ClG1
(g4)

)
,

C2 =
(

ClG1
(g1), ClG2

(g2g3g
−1
2 ), ClG2

(g−1
ξ )
)
.

Here we have g−1
ξ = g2g4 and the inertia groups of points in Y above ξ ∈ P 1 ∩ P 2

are conjugate to 〈gξ〉.

Proof. This is shown in [Wew98, Proposition 4.3.2]. �

An example for calculating degenerations is given in Chapter 4, Example 4.3.3.

Remark 1.4.2 (Induced cover). We recall the notion of induced covers (fol-

lowing [Sza09, Construction 3.5.2]). Let G be a �nite group and H a subgroup of
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G. Let Y → P1
C be a H-cover. We construct a cover whose covering space consists

of [G : H] copies of Y indexed by the left cosets of G such that the action of G

on the covering space is the one that is induced by the action of H on Y . More

precisely, we consider the topological product

IndGH Y := (G/H)× Y,

where G/H is equipped with the discrete topology. We �x a complete system of

representatives R ⊃ {1} for G/H and put

`Y := {`} × Y, for ` ∈ R.

(All `Y , ` ∈ R, are isomorphic.) By abuse of notation we often write Y = {1}×Y .
Note that for all y ∈ Y and ` ∈ R a point `y := (`, y) ∈ `Y ⊂ IndGH Y is given.

Now we de�ne an action of G on IndGH Y . Let ` ∈ R and y ∈ Y . For all g ∈ G we

have g` ∈ sH for some s ∈ R. Since s−1g` ∈ H, by

g(`y) := g`y := s · s−1g`(y) ∈ sY

a faithful action of G on IndGH Y is given and the projection

IndGH Y → IndGH Y/G ' P1
C

is called the (in general disconnected) G-cover induced by Y
H−→ P1

C.

1.5. Quotient covers

Let π : Y → P1
C be a G-cover with ordered branch locus D = (x1 = 0, x2 =

1, x3 = λ, x4 = ∞) and associated Nielsen tuple (g1, g2, g3, g4) ∈ Ni4(G). Let

H be an arbitrary index-d subgroup of G. The cover π factors through a cover

ε : X := Y/H → P1
C.

Y

$$

π // P1
C

X = Y/H

ε

::

Let x0 ∈ P1
C−D and write π1(P1

C−D,x0) → Sym(ε−1(x0)) for the monodromy

of ε (see De�nition 1.2.1). We denote by %1, %2, %3, %4 ∈ Sym(ε−1(x0)) = Sd the

images of the generators γ1, γ2, γ3, γ4 of π1(P1
C−D,x0) from (1.2.1), i.e. the local

monodromies of ε in x1, x2, x3, x4.

Proposition 1.5.1. There exists a bijection of sets ε−1(x0) ' G/H such

that the permutation %i ∈ Sym(ε−1(x0)) ' Sym(G/H) maps a left coset `H ∈ G/H
to the left coset g−1

i `H.

Proof. Let y ∈ π−1(x0). Then π−1(x0) = {gy; g ∈ G} and the monodromy

of π is given by

π1(P1
C−D,x0) � Mon(π) ⊂ Sym(π−1(x0)), γi 7→ [gy 7→ g−1

i gy].
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This implies that ε−1(x0) = {`Hy; ` ∈ G/H} and the monodromy of ε is given by

π1(P1
C−D,x0) � Mon(ε) ⊂ Sym(ε−1(x0)), γi 7→ %i = [`Hy 7→ g−1

i `Hy].

The proposition follows since ε−1(x0) = {`Hy; ` ∈ G/H} ' G/H. �

Remark 1.5.2. Let xi ∈ D be a rami�cation point. The �bre ε−1(xi) consists

of the orbits of the H-action on π−1(xi). Such an orbit is represented by an orbit

of the right action of H on 〈gi〉\G (see Remark 1.2.4). In other words, the �bre

ε−1(xi) is represented by double cosets in 〈gi〉\G/H. Now let 〈gi〉`H ∈ 〈gi〉\G/H
be such a representative. One easily checks that the left action of 〈gi〉 on G/H

has as stabiliser of `H the set `H`−1 ∩ 〈gi〉. Therefore the orbit of `H has length

e` := ord gi
|`H`−1∩〈gi〉| , and e` is the rami�cation index of the point represented by `.

With these rami�cation indices one could calculate the genus of Y/H.

Alternatively, one may also calculate the genus of Y/H using the following

lemma.

Lemma 1.5.3 (Riemann-Hurwitz). Let Y → P1
C be a G-cover with ordered

branch locus D = (x1, . . . , x4) and associated Nielsen tuple (g1, . . . , g4) ∈ Ni4(G).

Let H be an arbitrary subgroup of G. Then the genus of Y/H equals

g(Y/H) = 1 + [G : H]− 1

2 · |H|
·
∑

i=1,...,4
`∈G/〈gi〉

|H ∩ 〈`gi`−1〉|.

Proof. The stabiliser of ` ∈ G/〈gi〉 under the left action of the group H on

G/〈gi〉 equals H ∩〈`gi`−1〉. Hence, by the Riemann-Hurwitz genus formula applied

to Y → Y/H, we have

2 · g(Y )− 2 = (2 · g(Y/H)− 2) · |H|+
∑

i=1,...,4
`∈G/〈gi〉

(|H ∩ 〈`gi`−1〉| − 1).

On the other hand, by the Riemann-Hurwitz formula applied to Y → P1
C, we have

2 · g(Y )− 2 = −2 · |G|+
∑

i=1,...,4

[G : 〈gi〉] · (|〈gi〉| − 1).

Combining the two formulas yields

g(Y/H) = 1− |G||H| −
1

2·|H| ·

∑
i,`

(|H ∩ 〈`gi`−1〉| − 1) +
∑
x

|G|
|〈gi〉| · (|〈gi〉| − 1)


= 1− [G : H]− 1

2·|H| ·

∑
x

|G|+
∑
x,`

|H ∩ 〈`gi`−1|

 ,

which implies the statement. Note that we have used that |G|
|〈gi〉| =

∑
`∈G/〈gi〉 1. �

Notation 1.5.4. Let % ∈ Sd be a permutation consisting of ν1 + · · · + νr

cycles. Suppose that νi of the cycles have length ei (i = 1, . . . , r). Then we denote

by ClSd(eν11 · · · eνrr ) the conjugacy class of % in Sd.
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Example 1.5.5. Let m ≥ 3 be an odd integer and de�ne n := 2m. Let

π : Y → P1
C be a G-cover with

G = 〈ϕ, σ; ϕn = σ2 = 1, σϕσ = ϕ−1〉

and associated Nielsen tuple

(g1, g2, g3, g4) = (ϕm+2, σ, ϕm, ϕ2σ) ∈ Ni4(G).

We consider the quotient cover ε : Y/H → P1
C with H = 〈σ〉 and �x a point

x0 ∈ P1
C−D. Note that Mon(ε) ' G since the normal closure of H ⊂ G (i.e. the

intersection of all normal subgroups of G containing H) is G. We make the identi-

�cation ε−1(x0) = {ϕkH; k = 1, . . . , n}. One easily checks that

g−1
1 ϕkH = ϕk+m−2H, g−1

2 ϕkH = ϕ−1H, g−1
3 ϕkH = ϕk+mH, g−1

4 ϕkH = ϕ−k+2H.

The local monodromies (%1, %2, %3, %4) ∈ (Sn)4 of ε at (x1, x2, x3, x4) are given by

%1(k) ≡ k +m− 2, %2(k) ≡ −k, %3(k) ≡ k +m, %4(k) ≡ −k + 2 (mod n),

respectively. Both %2 and %4 are of order 2 with precisely two �xed points, respec-

tively. Moreover, %1 is of order n and %3 is of order two without �xed points. In

other words,

%1 ∈ ClS2n(n1), %2, %4 ∈ ClS2n(122m−1), %3 ∈ ClS2n(2m).

(see Notation 1.5.4). Using the Riemann-Hurwitz genus formula, we conclude that

the genus of X = Y/H equals g(X) = m−1
2 .

Degeneration of quotient covers. Let Y → P1
C be a G-cover branched at

four points with associated Nielsen tuple (g1, g2, g3, g4) ∈ Ni(G). Let (%1, %2, %3, %4) ∈
(Sd)

4 = Sym(G/H)4 be the quadruple of local monodromies of the quotient X :=

Y/H → P1
C (Proposition 1.5.1).

As in Section 1.4, the branch locus map Ψ : H
(4)
G → P1

C−{0, 1,∞} extends to a

branched cover Ψ : H
(4)

G → P1
C. Write

Y → P = P 1 ∪ P 2

for the admissible G-cover in Ψ−1(0) ⊂H
(4)

G −H
(4)
G corresponding to (g1, g2, g3, g4)

(in the sense of Proposition 1.4.1) given by the subgroups

G1 = 〈g2, g4〉, G2 = 〈g1, g2g3g
−1
2 〉

of G. Put gξ := (g2g4)−1.

We de�ne the subgroups

Σ1 = 〈%2, %4〉, Σ2 = 〈%1, %
−1
2 %3, %2〉

of Sym(G/H) and denote by Σ`i the group consisting of the restrictions of the

permutations in Σi to the double cosets in {g`H; g ∈ Gi}.
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Proposition 1.5.6. We consider the quotient

X := Y /H → P = P 1 ∪ P 2.

(i) There is a bijection between the irreducible components of the restriction X|P i
and the double cosets Gi\G/H. The irreducible component X

`

i corresponding to the

double coset Gi`H is a cover of P i with monodromy group Σ`i .

(ii) The local monodromies at three branch points of X
`

1 → P 1 are the restrictions

of

%2, %4, %ξ := (%4%2)−1 ∈ Sym(G/H)

to {g`H; g ∈ Gi}, where %ξ is the local monodromy at the ordinary double point

ξ ∈ P 1 ∩ P 2.

(iii) The local monodromies at the three branch points of X
`

2 → P 1 are the restric-

tions of

%1, %
−1
2 %3%2, %

−1
ξ ∈ Sym(G/H)

to {g`H; g ∈ Gi}, where %−1
ξ is the local monodromy at ξ.

(iv) The number of ordinary double points of X equals |〈gξ〉\G/H|.

Proof. This can be easily proved using the description given in Proposition

1.4.1. �

Example 1.5.7. We keep the notations from Example 1.5.5 and calculate

the admissible cover X = Y /H → P 1 ∪ P 2 corresponding to (g1, g2, g3, g4) =

(ϕm+2, σ, ϕm, ϕ2σ). We have G1 = 〈g2, g4〉 = 〈ϕ2, σ〉 and G2 = 〈g1, g2g3g
−1
2 〉 = 〈ϕ〉.

Therefore G1\G/H = {G1ϕ
`H; ` = 1, 2} and G2\G/H = {G2ϕ

`H; ` = 1}. We

conclude that the restriction X|P 1
consists of two irreducible components X

1

1, X
2

1,

and that the restriction X|P 2
consists of one irreducible component. The restriction

of %2, %4 and %ξ := (%2%4)−1 to {ϕkH; k odd} are the local monodromies of X
1

1 →
P 1 where %ξ is the local monodromy at the ordinary double point ξ ∈ P 1 ∩ P 2..

Using Notation 1.5.4, the restriction of (%4, %2, %ξ) is a tuple in(
ClSm(112(m−1)/2), ClSm(112(m−1)/2), ClSm(m1)

)
.

The restrictions of (%4, %2, %ξ) to {ϕkH; k even} are the local monodromies of

X
2

1 → P 1. They form a tuple in(
ClSm(112(m−1)/2), ClSm(112(m−1)/2), ClSm(m1)

)
.

The permutations (%−1
ξ , %2%3%

−1
2 , %1) in Sym(G/H) are the local monodromies of

X2 → P 2 and form a tuple in(
ClSn(m2),ClSn(2m),ClSn(n1)

)
.

The Riemann-Hurwitz genus formula implies that g(X
1

1) = g(X
2

1) = 0 and g(X2) =
m−1

2 . Figure 1.7 illustrates the admissible cover X → P 1 ∪ P 2. Note that we may
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P 1 x2
x4

ξ

P 2x3
x1

g(X2) = m−1
2

g(X
1
1) = 0

g(X
2
1) = 0

Figure 1.7. Degeneration of ε

contract the irreducible components X
1

1 and X
2

1 of genus 0, and obtain a smooth

curve X2.

Remark 1.5.8. The degeneration X described in Example 1.5.7 is the �bre

of the curve X → T from Theorem 3.3.8 at b = 0.
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In this chapter we discuss a special class of �at vector bundles (a notion intro-

duced in Chapter 3): the �rst de Rham cohomology of a family of smooth curves

equipped with the Gauÿ-Manin connection. Most of the arguments are not needed

in Chapter 3, but may help to understand the notion of a �at vector bundle and

the calculation made in Chapter 3.

Roughly speaking, the Gauÿ-Manin connection `is' the parameter derivation of

1-forms on a family of curves with respect to the parameter of this family ([KO68]).

It can be made explicit by a Fuchsian di�erential equation � the Picard-Fuchs

equation. This is discussed in Section 2.2. In Section 2.2.1 we describe Picard-

Fuchs equations `coming from' superelliptic curves. For more details on the classical

theory of Fuchsian di�erential equations we refer to Appendix A.

The main part of this chapter is Section 2.3, where we decompose the de Rham

cohomology of families of metacyclic covers into isotypical components. In Chapter

3 and 4 we decompose de Rham cohomologies in exactly this way.

2.1. The relative de Rham cohomology

Let S be a smooth projective connected curve over C and S ⊂ S the complement

of �nitely many C-rational points. Let f : Y → S be a smooth curve, i.e. f is

27
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a proper and smooth morphism of relative dimension 1 with connected geometric

�bres. We may interpret Y as a family of smooth curves parametrized by S. The

genus g of the �bres of f is constant since S is connected.

The higher direct image sheaf R1f∗C can be identi�ed with the local system on

S whose �bre at b ∈ S is the �rst de Rham cohomology C-vector space H1
dR(Yb),

consisting of closed 1-forms on Yb modulo exact forms. We write

H1
dR(Y/S) := R1f∗C⊗C OS

for the associated OS-module, which we call the relative de Rham cohomology of

Y → S. It comes equipped with the Gauÿ-Manin connection

∇ : HdR(Y/S)→HdR(Y/S)⊗OS Ω1
S , ∇(ω ⊗ f) = ω ⊗ df,

an additive map satisfying the Leibniz rule

∇(fω) = ω ⊗ df + f∇(ω)

for local sections f and ω of OS and H1
dR(Y/S), respectively. For more details we

refer to [BP02, Sections 1 and 2].

We now suppose that AutS(Y) contains a subgroup G such that Y/G ' P1
S .

We �x a quadruple C = (Cl(g1), . . . ,Cl(g4)) of conjugacy classes in G. Moreover

we suppose that π : Y
G−→ P1

S is a G-cover with (ordered) branch locus (x1 = 0, x2 =

1, x3 = λ, x4 = ∞) such that the local monodromy of π|Yb in xi(b) is an element

of Cl(gi) for all i = 1, . . . , 4 and b ∈ S. This is exactly the situation we consider in

Chapter 3 and 4

We explain how to decompose the de Rham cohomology H1
dR(Y/S) into G-

isotypical components.

Lemma 2.1.1. Let Y and X be smooth C-curves and Y → X a G-cover

branched at 4 points with local monodromies g1, . . . , g4 (see Remark 1.2.2). Let øY

be the character of the representation G → GL(H1
dR(Y )) induced by the action of

the Galois group on Y . Then

øY = 2 · 1+ (2 · g(X)− 2) · IndG〈1〉 1+

4∑
i=1

(
IndG〈1〉 1− IndG〈gi〉 1

)
.

This character only depends on the conjugacy classes of g1, . . . , g4 in G, but not on

the individual representatives.

Proof. This follows completely analogous to [Ell01, Proposition 1.3]. �

Remark 2.1.2 (Isotypical decomposition). Write øYb for the character of

the representation

G→ GL
(
H1

dR(Yb)
)

(2.1.1)
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induced by the Galois action G on Yb. By Lemma 2.1.1 we have ø := øYb = øYb′

for all b, b′ ∈ S and the �bre-wise decomposition of H1
dR(Yb) into G-isotypical

components induces the decomposition

H1
dR(Y/S) =

⊕
θ∈Irr(G)

Eθ,(2.1.2)

into isotypical components Eθ := H1
dR(Y/S)θ, whose �bres at b ∈ S are the θ-

isotypical components of H1
dR(Yb) (i.e. the direct summand of those irreducible

subrepresentations of H1
dR(Yb) having character θ). Here, Irr(G) denotes the set

of irreducible G-characters. The Gauÿ-Manin connection restricts to a connection

∇ : Eθ → Eθ⊗Ω1
S since the action of G on Y is de�ned over S (see [Kat81, Section

I]).

Recall from [Ser77] that the number of irreducible subrepresentations of G→
H1

dR (Yb)) having character θ ∈ Irr(G) equals

nθ := 〈ø, θ〉G,

where 〈·, ·〉G is the scalar product on the set of G-characters given by

〈v, w〉 := |G|−1 ·
∑
g∈G

v(g) · w(g).

For a subgroup H ⊂ G we write

(Eθ)
H ⊂H1

dR(Y/S)

for the H-invariant submodule. The character of G→ GL(Eθ) is nθ · θ and we have

rank (Eθ)
H

= nθ · 〈1,ResH θ〉H ,

where 1 denotes the trivial character.

2.2. Picard-Fuchs equations

The goal of this section is to recall from [BP02, II.9] (in [BDIP02]) and

[Pet86, Section 6] how a family of smooth projective curves with one parameter

gives rise to a Fuchsian di�erential equation on the parameter space of the family,

called Picard-Fuchs equation.

Let S be a smooth projective connected curve over C and S ⊂ S the complement

of �nitely many C-rational points. Moreover let f : Y → S be a smooth curve, i.e. f

is a proper and smooth morphism of relative dimension 1 with connected geometric

�bres. For a local parameter s at a point in S regular and non-zero on S, we denote

by

∇( ∂∂s ) : H1
dR(Y/S)

∇−→H1
dR(Y/S)⊗ Ω1

S
1⊗D−−−→H1

dR(Y/S)⊗ OS = E,

where D(ds) = 1, the contraction of ∇ against ∂
∂s . We choose a section ω of

H0(Y,Ω1
Y/S) and let p be the smallest integer such that ω,∇(∂/∂s)ω, . . . ,∇(∂/∂s)p



30 2. THE DE RHAM COHOMOLOGY OF FAMILIES OF SMOOTH CURVES

are linearly dependent in H1
dR(Y/S). Then there exist unique sections c0, . . . , cp−1

of OS such that ∇(∂/∂s)p ω + cp−1 · ∇(∂/∂s)ω + · · ·+ c0 ω = 0.

Definition 2.2.1. The corresponding ordinary di�erential operator

L :=
(
∂
∂s

)p
+ cp−1 ·

(
∂
∂s

)p−1
+ c1 ·

(
∂
∂s

)
+ · · ·+ c0

is called the Picard-Fuchs operator associated with ω.

Let E ⊂H1
dR(Y/S) be the submodule generated ω,∇(∂/∂s)ω, . . . ,∇(∂/∂s)p−1.

The Gauÿ-Manin connection restricts to a connection on E. The section ω of E is

called cyclic section of E.

We describe the local system Sol(L) of solutions of L more precisely. Denote

by E∨ the dual of E equipped with the dual connection given by

〈∇(∂/∂s)ω, γ〉+ 〈ω,∇∨(∂/∂s) γ〉 = ∂/∂s〈ω, γ〉,

where 〈·, ·〉 : E×E∨ → OS is the corresponding pairing. In particular, for any section

ω of E and any horizontal section γ of E∨ (i.e. γ is a section of ker∇∨) the derivative
with respect to s of 〈ω, γ〉 is

∂
∂s 〈ω, γ〉 = 〈∇(∂/∂s)ω, γ〉.(2.2.1)

Then one easily checks that

L(ω, γ〉) = 〈∇(∂/∂s)p ω + cp−1 · ∇(∂/∂s) ω + · · ·+ c0 ω, γ〉 = 0.

Remark 2.2.2. This de�nes an isomorphism

ker∇∨ ∼−→ Sol(L), γ 7→ 〈ω, γ〉.

In other words, the horizontal sections of E∨ `are' the solutions of the Picard-Fuchs

di�erential equation L = 0.

Let f be a nowhere zero section of OS . Note that a section ω is a cyclic section

E if and only if f · ω is a cyclic section of E. If we denote by L′ the Picard-Fuchs

operator constructed via f · ω, then

L′ (f · 〈ω, γ〉) = L′ (〈f · ω, γ〉) = 0.

By Appendix A, De�nition A.0.13, L and L′ are projectively equivalent. Therefore,

in the following we speak of the Picard-Fuchs operator L of E, meaning `given up

to projectively equivalence'.

Remark 2.2.3. Let L be the Picard-Fuchs operator of E and suppose that

p = 2. Then ordb c1(s) ≥ −1 and ordb c0(s) ≥ −2 ([BP02, Lemma 9.3]). Hence,

the singularities of L are all regular, i.e. L is a Fuchsian di�erential operator (see

Appendix A for the de�nition in case of second order di�erential equations).
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2.2.1. An example: a class of superelliptic curves. A well-known exam-

ple of a Picard-Fuchs equation is the one given by a holomorphic section of the de

Rham cohomology of a superelliptic curve. This is also discussed in more detail in

Chapter 3.

Definition 2.2.4. We denote by S = P1
C the projective line with coordinate

s and set S = P1
s−{0, 1,∞}. Let (σ1, σ2, σ3, σ4) ∈ Q4 with 0 < σi < 1 and∑4

i=1 σi ∈ N and denote by n the least common multiple of the denominators of

σ1, σ2, σ3, σ4. We put ai = n·σi for i = 1, . . . , 4 and consider the (smooth projective)

superelliptic curve π : Z → S birationally determined by the a�ne equation

Zs : zn = xa1(x− 1)a2(x− s)a3 .(2.2.2)

The tuple (σ1, σ2, σ3, σ4) is referred to as the type of the superelliptic curve.

Let A ⊂ AutS(Z) be the cyclic subgroup of order n such that ϕ ∈ A acts on

Z via

ϕ∗x = x, ϕ∗z = χ(ϕ) · z,(2.2.3)

where χ ∈ Hom(A,C∗) is a �xed injective character. Note that χ generates the

group of irreducible A-characters, i.e.

Irr(A) = Hom(A,C×) = {χ0 = 1, χ, χ2, . . . , χn−1}.

The projection

Z → P1
S , (x, z) 7→ x

is an A-cover with ordered branch locus of cardinality 4 such that the �bresZb → P1
C

have rami�cation type

C = (ClA(ϕa1),ClA(ϕa2),ClA(ϕa3),ClA(ϕa4))

for some �xed generator ϕ of A (see De�nition 1.2.5). As an immediate consequence

of Remark 2.1.2 we have a decomposition

H1
dR(Z/S) =

n−1⊕
k=1

Ek,(2.2.4)

such that the �bre of the submodule Ek ⊂ H1
dR(Z/S) at any b ∈ S is the χk-

isotypical component of H1
dR(Zb). Note that for the trivial character χ0 (i.e.

kerχ0 = A) we have E0 = (E0)
A with �bres at b ∈ S the relative de Rham co-

homologies H1
dR(Zb)

A = H1
dR(Yb/A) = H1

dR(P1
C) = {0}. That is why the sum in

(2.2.4) starts with k = 1. For k ∈ {1, . . . , n − 1} let s(k) be the number of ai

unequal to 0 modulo n/ gcd(k, n). Then rank Ek = s(k)− 2 ([BM10b, Lemma 4.1

(a)]). In particular, rank Ek ∈ {0, 2}.

Remark 2.2.5. Note that Ek may be considered as a subbundle of the

ker(χk)-invariant module H1
dR(Z/S)ker(χk), which we may identify with the de
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Rham cohomology of the quotient curve Z/ ker(χk). This quotient is also a cyclic

cover of P1
S . It is therefore no restriction to describe only the components Ek

where χk is an injective character. Moreover, replacing z by zk for some k with

gcd(k, n) = 1 replaces χ by χk and the σi by kσi (mod 1). For convenience we

will in the following only consider the component E1. We drop the index from the

notation, and write E = E1.

Lemma 2.2.6. If σ1 + σ2 + σ3 + σ4 = 2, then the di�erential form

ω :=
z dx

x(x− 1)(x− s)

de�nes a cyclic section of E and the associated Picard-Fuchs operator is the hyper-

geometric di�erential operator

L =

(
∂

∂s

)2

+
(A+B + 1) s− C

s (s− 1)
·
(
∂

∂s

)
+

AB

s (s− 1)
,

where A = 1− σ3, B = 2− (σ1 + σ2 + σ3) and C = 2− (σ1 + σ3).

Proof. This is shown in [Bou05, Lemma 1.1.4]. The statement follows from

the identity

∇(∂/∂s)2 ω +
(A+B + 1) s− C

s (s− 1)
∇(∂/∂s)ω +

AB

s (s− 1)
ω = d

xσ1(x− 1)σ2

(x− s)2−σ3

and the fact that the right hand side is an exact 1-form on Zs. �

Remark 2.2.7. Suppose that σ1 + σ2 + σ3 + σ4 = 2. The local exponents

of L at the singularities 0, 1 and ∞ is given by the following Riemann scheme (see

Appendix A, Example A.0.14):
0 1 ∞
0 0 A

1− C C −A−B B


Let π : T → S ⊂ S be a cover unbranched outside {0, 1,∞}. Let c ∈ T with

π(c) = b = 0 be a rami�cation point with rami�cation index e Denote by π∗E the

pullback of E via π. If ω is a cyclic section of E, then π∗ω is a cyclic section of π∗E.

We describe the pullback locally around the singularity b = 0 ∈ S more precisely,

in order to see how the local exponents behave under pullback. Similar calculation

are made in Chapter 3 in order to `remove' so called elliptic singularities of L (see

Lemma 3.1.8). Let s be a local parameter at b = 0 and t a local parameter at c,

satisfying s = te. Using the chain rule we conclude that

π∗ ◦ ∂
∂s =

(
1

e·te−1 · ∂∂t
)
◦ π∗,

π∗ ◦
(
∂
∂s

)2
=
(

1
e2·t2e−2 ·

(
∂
∂t

)2 − e−1
e2 t2e−1 · ∂∂t

)
◦ π∗.
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Together with the relation L 〈ω, γ〉 = 0, for γ ∈ ker∇∨, one easily checks that

〈π∗ω, γ〉 is a solution of

π∗L : ( ∂∂t )
2 + Pk · ∂∂t +Qk

where

Pk =

(
1 + e(A+B

)
· te + e (1− C)− 1

t(te − 1)
, Qk =

e2AB · te−2

te − 1
.

A standard calculation (e.g. using the Frobenius method [Yos87, I.2.5]) shows that

the local exponents of π∗L at c ∈ π−1(0) are the ones from L at b = 0 multiplied

by e. Similar arguments apply for the singularities 1 and ∞.

2.2.2. Abelian covers. Let T be a smooth projective connected curve over C
and T ⊂ T the complement of �nitely many C-rational points. Let A be an abelian

group and suppose that

Y
A−→ P1

T

is an A-cover over T . As in Remark 2.1.2 we have a decomposition

H1
dR(Y/T ) =

⊕
χ∈Irr(A)

Eχ ,(2.2.5)

where Eχ denotes the χ-isotypical component of H1
dR(Y/T ). We remark that

Irr(A) = Hom(A,C×), since A is abelian.

We now describe the component Eχ more precisely. We pass to the quotient

Z′ := Y/ kerχ and note that A′ := A/ kerχ ' imχ is a cyclic group. Given

χ ∈ Hom(A,C×), we denote by χ̄ ∈ Hom(A′,C×) the irreducible cyclic A′-character

given by

χ̄(ϕ · kerχ) = χ(ϕ)

for all ϕ ∈ A. It is injective by construction. Note that
(
Eχ
)kerχ

= Eχ is the

χ̄-isotypical component of the ker(χ)-invariant module H1
dR(Y/T )ker(χ), which we

may identify with H1
dR(Z′/T ).

In other words, H1
dR(Y/T ) decomposes into isotypical components `coming

from suitable cyclic subcovers'.

Lemma 2.2.8. Let χ ∈ Irr(A) such that Z′ = Y/ kerχ is the pullback of a

superelliptic curve

Z : zn = xa1(x− 1)a2(x− s)a3

over S = P1
C−{0, 1,∞} with n = |A′| via an étale cover π : T → S. As in Remark

2.2.5 we may and do renormalise a1, a2, a3, a4 such that

ϕ̄∗x = x, ϕ̄∗z = χ̄(ϕ̄) · z

for ϕ̄ ∈ A′ ⊂ AutT (Z′). If σ1 +σ2 +σ3 +σ4 = 2, then the Picard-Fuchs operator of

E is the pullback of the hypergeometric di�erential operator L from Lemma 2.2.6.
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Proof. Note that χ̄ is injective by construction. By Lemma 2.2.6 the Picard-

Fuchs operator of the χ̄-isotypical component of H1
dR(Z′/T ) is the hypergeometric

di�erential operator L. The rest follows from Remark 2.2.7. �

2.3. Families of covers with semidirect Galois group

Let T be a smooth projective connected curve over C and T ⊂ T the comple-

ment of �nitely many C-rational points. Let Y
G−→ P1

T be a G-cover and suppose

that G is a semidirect product of a subgroup H by an abelian subgroup A (i.e.

G = A · H, A is normal in G and A ∩ H = {1}). The goal of this section is to

describe Picard-Fuchs equations on the parameter space T of the quotient curve

X = Y/H. Our approach is similar to that used in [Ell01, Section 2] to exhibit

curves with real multiplication.

As a �rst step we describe how H acts on H1
dR(Y/T ). Instead of considering

the decomposition into A-isotypical components, we consider the `coarser' decom-

position

H1
dR(Y/T ) =

⊕
θ∈Irr(G)

Eθ.(2.3.1)

into G-isotypical components.

We recall from [Ser77, Section 8.2] the description of the irreducible characters

of a semidirect product G = AoH with A an abelian (normal) subgroup.

Notation 2.3.1. (i) For h ∈ H and χ ∈ Irr(A) = Hom(A,C×), we write χh

for the irreducible A-character given by χh(a) = χ(h−1ah) for a ∈ A. This de�nes
an action of H on Irr(A). We denote by Hχ resp. H(χ) the stabiliser resp. the

orbit of χ ∈ Irr(A).

(ii) We write Gχ := AoHχ. For χ ∈ IrrA and ξ ∈ Irr(Hχ) we set

θχ,ξ = IndGGχ(χ · ξ),

where (χ · ξ)(ah) := χ(a)ξ(h) for a ∈ A and h ∈ Hχ.

The following lemma is proven in [Ser77, Proposition 25].

Lemma 2.3.2. Let G = A o H be a semidirect product of H by an abelian

group A. All irreducible G-characters are of the form θχ,ξ. Moreover, θχ,ξ = θχ′,ξ′

if and only if χ′ ∈ H(χ) and ξ = ξ′.

Using this description of the irreducible G-characters, we can write (2.3.1) as

follows.

Proposition 2.3.3. Let Y
G−→ P1

T be a G-cover with G = A o H and A

abelian. Then we have a decomposition

H1
dR(Y/T ) =

⊕
χ∈Irr(A)/H
ξ∈Irr(Hχ)

Eχ,ξ ,
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where Eχ,ξ denotes the θχ,ξ-isotypical component. Moreover,

Eχ,1 =
⊕

h∈H/Hχ

Eχh ,

where Eχh denotes the χh-isotypical component of H1
dR(Y/T ).

Proof. The decomposition of H1
dR(Y/T ) follows from Lemma 2.3.2 and (2.3.1).

For the decomposition of Eχ,1, using [Ser77, Proposition 22], one checks that

ResA θχ,1 = ResA IndGGχ(χ · 1) =
∑

s∈A\G/Gχ

IndAA∩sGχs−1 χs =
∑

h∈H/Hχ

χh.

This proves the proposition. �

Remark 2.3.4. Suppose that rank Eχ = 2 and that ω is a cyclic section of

E. Then for all h ∈ H the submodules Eχh have the same Picard-Fuchs operators.

The reason is that, for h ∈ Hχ, it holds

ϕhω = hϕhω = hχh(ϕ)ω = χh(ϕ) · hω,

i.e. hω is an eigenvector of ϕ with eigenvalue χh(ϕ); or � in other words � a section

of Eχh . Moreover, as the automorphisms in H are de�ned over T it follows that

L(〈hω, γ〉) = h · L(〈ω, γ〉) = 0

(see [Kat81, Section I]).

We now consider the quotient curve

X := Y/H → T

and describe how the decomposition in Proposition 2.3.3 behaves modulo H. Note

that (Eχ,ξ)H is a submodule of the H-invariant module H1
dR(Y/T )H , which we may

identify with the de Rham cohomology H1
dR(X/T ).

We set

nχ,ξ := 〈ø, θχ,ξ〉G,

where ø denotes the character of the representation G → GL
(
H1

dR(Yb)
)
, see Re-

mark 2.1.2.

Lemma 2.3.5. We have

rank (Eχ,ξ)
H

=

nχ,ξ, if ξ ∈ Irr(Hχ) is trivial,

0, otherwise.
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Proof. We have rank (Eχ,ξ)
H

= nχ,ξ · 〈1, θχ,ξ〉H and

〈1,ResH θχ,ξ〉H =
∑

`∈H\G/Gχ

〈
1, IndHH∩`Gχ`−1(χ · ξ)

〉
H

=
〈
1, IndHHχ ξ

〉
H

= 〈1, ξ〉Hχ

=

1, if ξ = 1,

0, otherwise.

Here we have used [Ser77, Proposition 22] for the �rst equality and |H\G/Gχ| = 1

for the second one. �

Proposition 2.3.6. Let Y
G−→ P1

T be a G-cover with G = A o H and A

abelian. Write X = Y/H. Then

H1
dR(X/T ) = H1

dR(Y/T )H =
⊕

χ∈Irr(A)/H

(Eχ,1)
H
,

where Eχ,1 is the θχ,1-isotypical component of H1
dR(Y/T ).

Proof. This follows from Lemma 2.3.5 and Proposition 2.3.3. �

Remark 2.3.7. Let Eχ be the χ-isotypical component of H1
dR(Y/T ). In

Chapter 3 and Chapter 4 we are interested in the case that we have rank Eχ =

rank(Eχ,1)H , which is equivalent to the condition that Hχ = {1}. In this case,

suppose that ω is a cyclic section of Eχ. Then (Eχ,1)H and Eχ have the same

Picard-Fuchs operator. This may be seen as follows. The section η :=
∑
h∈H hω of

Eχ,1 =
⊕

h∈H/Hχ Eχh is �xed by the action of H. Hence, it is a section of (Eχ,1)H .

Denote by L the Picard-Fuchs operator on Eχ, with solutions 〈ω, γ〉, γ ∈ ker∇∨.
As the automorphisms in H are de�ned over T it follows that

Lχ(〈η, γ〉) =
∑
h∈H

h · Lχ(〈ω, γ〉) = 0.

(see [Kat81, Section I]). If we additionally assume that there exists a character

χ ∈ Irr(A) such that Z′ = Y/ ker(χ) is the pullback of a superelliptic curve as

in Lemma 2.2.8, then the Picard-Fuchs operator of (Eχ,1)H is the pullback of a

hypergeometric di�erential operator.

In Chapter 3 we want that the type (σ1, σ2, σ3, σ4) of the superelliptic curve is

such that we have a very special hypergeometric di�erential equation (see Proposi-

tion 3.3.2 or [BM10b, Proposition 4.2]).

2.3.1. Description of the de Rham cohomology. In this subsection we

compute the ranks of the components (Eχ,1)H of H1
dR(X/T ) from Proposition 2.3.6

under the following additional assumption.
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We suppose that the G-cover Y → P1
T as in the beginning of Section 2.3 is a

cover with four branch points such that all �bres Yb → P1
C have rami�cation type

C = (Cl(g1),Cl(g2),Cl(g3),Cl(g4)) , g1 · · · g4 = 1, G = 〈g1, . . . , g4〉.

We now compute nχ,1 = rank(Eχ,1)H for χ ∈ Irr(A). Note that

nχ,1 = 〈ø, θχ,1〉G · 〈1,Res θχ,1〉H = 〈ø, θχ,1〉G

(see Remark 2.1.2 and Lemma 2.3.5).

For χ ∈ Irr(A), i ∈ {1, . . . , 4} and ` ∈ 〈gi〉\G/Gχ we put

ki,`χ :=

1, A ∩ 〈`gi`−1〉 ⊂ kerχ,

0, otherwise.

Proposition 2.3.8. It holds n1,1 = 0 and for χ 6= 1 we have

nχ,1 = 2 · |H(χ)| −
∑

i=1,...,4
`∈Gχ\G/〈gi〉

ki,`χ .

Proof. Lemma 2.1.1 implies that

nχ,1 = 〈ø, θχ,1〉G = 2 · 〈1, θχ,1〉G + 2 · 〈IndG〈1〉 1, θχ,1〉G −
4∑
i=1

〈IndG〈gi〉 1, θχ,1〉G.

Obviously,

〈1, θχ,1〉G =

1, if χ = 1,

0, otherwise,

and 〈
IndG〈1〉 1, θχ,1

〉
G

= 〈1,Res θχ,1〉〈1〉 = θχ,1(1) = |H(χ)|,

by [Ser77, Theorem 13]. Moreover, by [Ser77, Theorem 13, Proposition 22] it

follows that〈
IndG〈gi〉 1, θχ,1

〉
G

= 〈1,Res θχ,1〉〈gi〉 =
∑

`∈〈gi〉\G/Gχ

〈1,Res(χ · 1)〉Gχ∩〈`gi`−1〉.

The character (χ · 1) ∈ Irr(Gχ) is trivial on Gχ ∩ 〈`gi`−1〉 if and only if

A ∩ 〈`gi`−1〉 ⊂ kerχ.(2.3.2)

Hence, 〈1,Res(χ · 1)〉Gχ∩〈`gi`−1〉 = ki,`χ . Note that, if χ = 1, then (2.3.2) holds for

all i = 1, . . . , 4 and |H(χ)| = 1. �

Summary 2.3.9. Proposition 2.3.6 yields a decomposition of H1
dR(X/T )

which at most consists of the H-invariants of the θχ,ξ-isotypical components with

ξ = 1. With Proposition 2.3.8 one can compute the ranks of these components

(some of them may equal 0). For χ ∈ Irr(A) with Hχ = {1}, the component

(Eχ,1)H ⊂ H1
dR(X/T ) and the χ-isotypical component Eχ ⊂ H1

dR(Y/T ) have the

same Picard-Fuchs operator (provided that a cyclic sections exists, of course).
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A Teichmüller curve is a curve C ⊂ Mg, embedded in the moduli space of

curves of genus g, which is totally geodesic for the Teichmüller metric. Sometimes

the normalization of C, together with the corresponding generically injective map

to Mg is called a Teichmüller curve instead. In this chapter we do not work with

the de�nition, but use a characterisation due to Martin Möller ([Möl06b]) instead.

Further good references for more details are [Möl11] and [Möl13].

In [BM10b] a class of Teichmüller curves associated with superelliptic curves

is constructed. In this chapter we review this construction, and classify all Teich-

müller curves that may be constructed in this way. Indeed, we �nd a new class of

Teichmüller curves not treated in [BM10b].

3.1. Flat vector bundles

In this section we recall from [BW06] some generalities on �at vector bundles.

For more details we refer to [Kat70] and [BP02]. In Chapter 2 we have already seen

an example of a �at vector bundle `coming from geometry', namely the relative de

Rham cohomology equipped with the Gauÿ-Manin connection. In the second part

of this section we reformulate a theorem of Martin Möller [Möl06b, Theorem 5.3],

which characterises Teichmüller curves, in the terminology of �at vector bundles.

Throughout this section let S be a smooth projective connected curve over C
and S ⊂ S the complement of �nitely many C-rational points S′ = {b1, . . . , br}.

39
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Moreover we denote by

Ωlog
S := Ω1

S/C(S′)

the sheaf of di�erential 1-forms on S with at most simple poles in the points S′.

Definition 3.1.1. A �at vector bundle E is an OS-module together with a

connection

∇ : E→ E ⊗OS
Ωlog
S .

We call the points in S′ marked points of E. A �at subbundle E′ ⊂ E is a submodule

of E such that ∇ restricts to a connection E′ → E′ ⊗ Ωlog
S .

Recall that a connection ∇ is an additive map, satisfying the Leibniz rule

∇(fω) = ω ⊗ df + f∇(ω),

for local sections f and ω of OS and E, respectively.

In this section we only consider the case of �at vector bundles of rank 2.

Remark 3.1.2. Let b ∈ S and s a local parameter at b. In the following we

identify derivations in DerC(OS,b) with homomorphisms in HomOS
(Ωlog

S ,OS).

(i) If b ∈ S is not a marked point, then the derivation ∂/∂s `is' the homomorphism

D : (Ωlog
S )b → OS,b with D(ds) = 1. The so-called contraction

∇(∂/∂s) : Eb
∇−→ Eb ⊗

(
Ωlog
S

)
b

1⊗D−−−→ Eb ⊗ OS,b

de�nes a C-linear endomorphism of the stalk Eb at b.

(ii) If b ∈ S′ is a marked point, then the derivation s∂/∂s `is' the homomorphism

D : (Ωlog
S )b → OS,b with D(ds

s ) = 1. The contraction

∇(s∂/∂s) : Eb
∇−→ Eb ⊗

(
Ωlog
S

)
b

1⊗D−−−→ Eb ⊗ OS,b

de�nes a C-linear endomorphism of the stalk Eb which �xes the submodule mbEb.

Here mb denotes the maximal ideal of the local ring OS,b.

Definition 3.1.3. Let b ∈ S′ be a marked point and s a local parameter at b.

(i) We de�ne the local monodromy operator µb of E at b as the C-linear endomor-

phism of Eb/mbEb ' C2 induced by ∇(s∂/∂s).

(ii) The local exponents αb, βb of E at b are de�ned as the eigenvalues of µb.

(iii) If µb = 0 we call b a regular point of (E,∇). If µb 6= 0 we call b a regular

singularity of (E,∇) and we distinguish two cases. If µb is not semisimple, then

αb = βb and µb is conjugate to (
αb 0

1 αb

)
.
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In this case, we say that∇ has logarithmic monodromy at b, and that b is logarithmic

singularity of (E,∇). If µb is semisimple, then µb is conjugate to(
αb 0

0 βb

)
.

In this case, we say that ∇ has toric monodromy at b, and that b is an elliptic

singularity of (E,∇).

Remark 3.1.4. (i) We may represent ∇(s∂/∂s) on Eb by a 2 × 2-matrix

P (s) ∈M2,2,(OS,b) with coe�cients in OS,b. This is the de�nition of a regular singu-

larity b of E in [Kat70, Section 11]. Then the local monodromy µb ∈ End(Eb/mbEb)

is represented by the 2× 2-matrix P (0) with coe�cients in C.
(ii) The local exponents of E at b ∈ S′ do not depend on the particular choice of

the local parameter s at b (see [Kat70, Section 12]).

(iii) If µb = 0, then

∇ : E→ E ⊗ Ω1
S/C(S′−{b})

is a connection that makes E a �at vector bundle with markings S′−{b}. That

means we can `unmark' such points b.

In Chapter 2 we have already seen an example of a �at vector bundle: the

relative the Rham cohomology of the Legendre family of elliptic curves.

Example 3.1.5. Let f : Z → S = P1
s−{0, 1,∞} be the Legendre family of

elliptic curves over C birationally determined by

Zs : z2 = x(x− 1)(x− s).

The holomorphic 1-form

ω1 =
z dx

x(x− 1)(x− s)
on Zs (s 6= 0, 1,∞) and the 1-form

ω2 =
ω1

2(x− s)

on Zs with a pole in x = s form a basis of the de Rham cohomology C-vector space
H1

dR(Zs) of dimension dimH1
dR(Zs) = 2 · g(Zs) = 2 ([GH78, Section 3.5]). The

above description of ω1 and ω2 de�nes a basis of the OS-module H1
dR(Z/S), the

relative de Rham cohomology, with �bres

H1
dR(Z/S)⊗ (OS,b/mb) = H1

dR(Zb).

It extends to an OS-module E with S = P1
C, the Deligne extension (see [Del70,

Proposition II.5.2]), and comes equipped with the Gauÿ-Manin connection

∇ : E→ E ⊗ Ωlog
S
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which satis�es ∇(∂/∂s)ω1 = ω2 on S. In E the Picard-Fuchs equation

∇(∂/∂s)2 ω +
2s− 1

s(s− 1)
· ∇(∂/∂s)ω +

1

4s(s− 1)
ω = 0 ∈ E

holds (see Lemma 2.2.6), where s is a local parameter at 0. Then one easily

checks that the matrix of ∇(s∂/∂s) on the stalk E0 with respect to the basis

(ω1,∇(s∂/∂s)ω1) equals

P (s) =

(
0 −s

4(s−1)

1 −s
s−1

)
.

Therefore

P (0) =

(
0 0

1 0

)
and ∇ has a logarithmic singularity at 0. The local exponents are α0 = β0 = 0.

Remark 3.1.6. The monodromy µb may be interpreted as a monodromy

operator in classical sense as follows. The horizontal sections of the dual (E∨,∇∨)

of (E,∇) are the solutions of the Picard-Fuchs equation on E, which is introduced

in Section 2.2 (see Remark 2.2.2). The fact that all singularities of E are regular

yields that the corresponding Picard-Fuchs equation is Fuchsian ([Del70, Propo-

sition II.5.2] or [BP02, Lemma 9.3]). If b ∈ S′ is a regular singularity, then the

numbers exp(2πiαb) and exp(2πiβb) are the eigenvalues of the local monodromy

matrix (De�nition A.0.11) of the Picard-Fuchs equation, where αb and βb are the

local exponents of E at b ([Kat70, Remark 12.3]). Note that the notions `lo-

cal exponent', `elliptic singularity' and `logarithmic singularity' do also exist for

Picard-Fuchs equations. However they are not completely consistent with the no-

tions introduced in this Chapter (see Remark A.0.12 or [Hon81, Appendix]).

Definition 3.1.7. Let b ∈ S′ be a marked point of a �at vector bundle

(E,∇). We say that the monodromy µb is quasi-unipotent (resp. unipotent) if the

local exponents of E at b are rational numbers (resp. integers).

Using standard results on solutions of Fuchsian di�erential equations one eas-

ily shows that De�nition 3.1.7 corresponds to the usual notions for the local mon-

odromy matrices of the corresponding di�erential equation (from Remark 3.1.6).

The following lemma interprets the notions of De�nition 3.1.7 in our context in

the case of elliptic singularities. It shows how elliptic singularities may be removed

by a suitable base change.

Lemma 3.1.8. Let b ∈ S−S be an elliptic singularity of a �at vector bundle

(E,∇) of rank 2. Assume that the monodromy at b is quasi-unipotent. Let e be

the least common multiple of the denominators of the local exponents (αb, βb). Let

π : T → S be a cover and c ∈ T with π(c) = b a rami�cation point of π with

rami�cation index e. Then π∗(E|S) extends to a �at vector bundle on T which is

regular at c.
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In the situation of Lemma 3.1.8, we call e = eb the order of the local monodromy

at b.

Proof of Lemma 3.1.8. Let s be a local parameter at b. The point b is a

regular singularity in the terminology of [Kat70]. From [Kat70, Theorem 12.0] it

follows that (after possibly modifying Eb) there exists a basis (ω1, ω2) of Eb such

that the matrix P (s) = (pij) of ∇(s∂/∂s) with respect to this basis satis�es

P (0) =

(
αb 0

0 βb

)
, 0 ≤ αb ≤ βb < 1.(3.1.1)

The matrix P (0) is semisimple, since b is elliptic. Let t be a local parameter at

c satisfying s = te. The de�nition of e implies that eαb and eβb are integers. An

easy calculation using the chain rule yields that the matrix of ∇(t∂/∂t) on the

OT ,c-module with basis (t−eαbπ∗ω1, t
−eβbπ∗ω2) is

P ∗(t) =

(
e(π∗p11 − αb) ete(βb−αb)π∗p12

ete(αb−βb)π∗p21 e(π∗p22 − βb)

)
.

From (3.1.1) it follows that P ∗(0) = 0. We extend π∗(E|S) to a bundle Ẽ over

π−1(S) ∪ {c} by de�ning Ẽc as the OT c -module with basis (t−eαbπ∗ω1, t
−eβbπ∗ω2).

The fact that P ∗(0) = 0 means exactly that Ẽ has a regular point at c. �

Definition 3.1.9. A �ltration on a �at vector bundle (E,∇) of rank 2 con-

sists of a line subbundle Fil1 E ⊂ E such that Gr1 E := E/Fil1 E is also a line bundle.

With such a �ltration Fil1 E ⊂ E we associate a Kodaira�Spencer map, de�ned as

Θ : Fil1 E ↪→ E
∇→ E ⊗ Ωlog

S � Gr1 E ⊗ Ωlog
S .

Remark 3.1.10. In the case that E ⊂H1
dR(Y/S) is a �at rank-2 subbundle

of a de Rham cohomology, we may consider the bundle E ∩ H0(Y,Ω1
Y/S). Note

that in general this does not de�ne a �ltration in the sense of De�nition 3.1.9, since

the rank of E ∩H0(Y,Ω1
Y/S) need not to be 1.

Definition 3.1.11. An indigenous bundle on S with regular singularities in

a �nite set S−S of marked points is a �at vector bundle of rank 2 satisfying the

following two conditions.

(i) There exists a �ltration Fil1 E such that the corresponding Kodaira�Spencer

map is an isomorphism.

(ii) The local monodromy at all marked points b ∈ S−S is non-trivial, i.e. µb 6= 0.

Remark 3.1.12. (i) By Lemma 3.1.8 all singularities of a �at vector bundle

E with only unipotent monodromies are either regular points or logarithmic. If, in

addition, E is indigenous, condition (ii) from De�nition 3.1.11 implies that the set

S ⊂ S is chosen as large as possible, i.e. the set of marked points S′ is exactly the

set of logarithmic singularities of E.
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(ii) In the following we always choose S as large as possible, if not stated otherwise.

(iii) The �ltration in De�nition 3.1.11 is unique [BW06, Proposition 2.2 (i)].

(iv) The local system corresponding to an indigenous bundle is called maximal Higgs

([BM10b, Section 2], [BM10a, Section 1]).

In the rest of this section we consider �at vector bundles `coming from geom-

etry'. Let f : Z → S be a smooth curve over S, i.e. f is a proper and smooth

morphism of relative dimension 1 with connected geometric �bres. We may inter-

pret Z as a family of smooth curves parametrised by S. The genus g of the �bres

of f is constant since S is connected.

The relative de Rham cohomology H1
dR(Z/S) comes equipped with the Gauÿ-

Manin connection ∇. It is known that (H1
dR(Z/S),∇) extends to a �at vector

bundle on all of S, the Deligne extension (see [Del70, Proposition II.5.2]). All its

local monodromy matrices are quasi-unipotent ([Kat70, Theorem 14.1]). Suppose

we are given a �at subbundle E ⊂ H1
dR(Z/S) of rank 2 (i.e. ∇ restricts to a con-

nection on E). Throughout this chapter, the Deligne extension of E to a �at vector

bundle on S is still denoted by E. Suppose that Fil1 E := E|S ∩H0(Z/S,Ω1
Z/S) is a

�ltration in the sense of De�nition 3.1.9. The construction of the Deligne extension

also includes the extension of Fil1 E to S.

We now can formulate the criterion we use to construct Teichmüller curves.

The result is essentially a reformulation of [Möl06b, Theorem 5.3].

Theorem 3.1.13 (Möller). Let S be a smooth projective connected C-curve
and S ⊂ S the complement of �nitely many C-rational points. Let f : Z → S

be a smooth curve of genus g. Assume that there exists a �at rank-2 subbundle

E ⊂ H1
dR(Z/S) whose Deligne extension, still denoted by E, satis�es the following

conditions.

(i) The bundle E is an indigenous bundle.

(ii) All points in S−S are logarithmic singularities of E.

Then the image of the moduli map

S →Mg, b 7→ [Zb],

which maps a point b to the moduli point of the corresponding �bre in the moduli

space Mg of curves of genus g, is a Teichmüller curve.

Proof. All local monodromies of E outside the logarithmic ones are unipotent

as they are regular points of E. The condition that E is indigenous means that the

Higgs bundle of Z → S has a rank-2 Higgs subbundle with maximal Higgs �eld as

required in [Möl06b, Theorem 5.3]. �

Suppose we are given a smooth curve f : Z → S. Let E ⊂H1
dR(Z/S) be a �at

subbundle of rank 2 such that Fil1 E := E ∩H0(Z,Ω1
Z/S) is a �ltration on E in the

sense of De�nition 3.1.9. The criterion of Theorem 3.1.13 does not apply directly
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in the case that E has elliptic singularities. In this chapter we discuss possibilities

to modify the family such that the criterion applies.

Let b ∈ S−S be an elliptic singularity. The local exponents αb, βb are rational

numbers. Therefore Lemma 3.1.8 implies that there exists a cover π : T → S,

which is branched at b, such that π∗(E|S) extends to a �at vector bundle Ẽ which

has regular points above b. We put T := π−1(S). The condition that Ẽ is indigenous

translates to the condition that the Kodaira-Spencer map associated with Fil1 E is

an isomorphism at any point c ∈ T−T with π(c) = b. This condition may be

checked in terms of the local exponents αb, βb of b ([BM10b, Proposition 3.2]).

Of course, the key requirement in the condition of Theorem 3.1.13 is that the

family ZT := Z⊗S T → T extends to a smooth curve over the inverse image of the

elliptic points. For the families of superelliptic curves that we consider in Section

3.2 the Legendre family of elliptic curves is the only one where this is satis�ed.

For the other families of superelliptic curves, ZT extends to a family of semistable

curves over T . Our candidates for Teichmüller curves will be quotients of ZT by a

�nite group of T -automorphisms.

3.2. A class of superelliptic curves

In this section we recall some facts on �at vector bundles of rank 2 `coming

from' superelliptic curves, i.e. cyclic covers of the projective line. We restrict to the

case of four branch points.

We denote by S = P1
C the projective line with coordinate s and set S =

P1
s−{0, 1,∞}. Let (σ1, σ2, σ3, σ4) ∈ Q4 with 0 < σi < 1 and

∑4
i=1 σi ∈ N and

denote by N the least common multiple of the denominators of σ1, σ2, σ3, σ4. We

put ai = N · σi for i = 1, . . . , 4. Let Z denote the smooth S-curve birationally

determined by the a�ne equation

zN = xa1(x− 1)a2(x− s)a3 .

The curve Z is a superelliptic curve of type (σ1, σ2, σ3, σ4) (see Section 2.2.1). The

corresponding N -cyclic cover

Z → P1
S , (x, z) 7→ x

is exactly branched at the sections

x1 = 0, x2 = 1, x3 = s, x4 =∞ : S → P1
S .

The Galois group Gal(Z/P1
S) ' Z/NZ acts as ϕ∗z = χ0(ϕ)z for ϕ ∈ Z/NZ,

where χ0 : Z/NZ→ C∗ is an injective character.

Remark 3.2.1. The Galois group Z/NZ acts naturally on the relative de

Rham cohomology H1
dR(Z/S). For every irreducible character χ : Z/NZ→ C×,

we denote by Eχ the χ-isotypical part. Then (Eχ,∇) is a �at subbundle of the
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�at vector bundle (H1
dR(Z/S),∇) ([Kat81, Section I]). As in Remark 2.2.5, in the

following we only consider the isotypical component of H1
dR(Z/S) with respect to

the injective character χ0. This is no restriction as we are only interested in so-

called geometrically primitive Teichmüller curves ([Möl06a, De�nition 2.4]). We

drop the index from the notation, and write E = Eχ0
. We also write E for the

Deligne extension of E to S.

In Chapter 2 in Lemma 2.2.6 we have already given a description of the �at

vector bundle (E,∇). We recall this description and give more details.

Lemma 3.2.2. (i) We have rank(E) = 2.

(ii) The subbundle Fil1 E := E ∩ H0(Z,Ω1
Z/S) de�nes a �ltration in the sense of

De�nition 3.1.9 if and only if σ1 + σ2 + σ3 + σ4 = 2.

(iii) If the condition from (ii) is satis�ed the di�erential form

ω :=
zdx

x(x− 1)(x− s)

de�nes a generically non-vanishing section of Fil1 E. It satis�es

∇(∂/∂s)2 ω +
(A+B + 1)s− C)

s(s− 1)
· ∇(∂/∂s)ω +

AB

s(s− 1)
ω = 0

in E, where A = 1− σ3, B = 2− (σ1 + σ2 + σ3), and C = 2− (σ1 + σ3).

(iv) The singularities of E are {0, 1,∞} = S−S, which are all quasi-unipotent. The

singularity b ∈ {0, 1,∞} is logarithmic if and only if
σ1 + σ3 = 1 if b = 0,

σ2 + σ3 = 1 if b = 1,

σ1 + σ2 = 1 if b =∞.

Proof. Parts (i), (ii), and (iii) are proved in [Bou05, Section 1.1]. The fact

that all singularities are quasi-unipotent is a general fact (see [Kat70, Theorem

14.1]). In the case of superelliptic curves this may also be deduced from (iii). The

rest follows from (iii) by a direct computation. �

3.3. Bouw-Möller curves

In [BM10b] a class of Teichmüller curves associated with superelliptic curves is

constructed. In this section, we review this construction, and classify all Teichmüller

curves that may be constructed in this way.

As a �rst step, we determine all types such that E from Remark 3.2.1 is an

indigenous bundle. More precisely, for each type (σ1, σ2, σ3, σ4) we consider covers

π : T → S which are unbranched in S = P1
s−{0, 1,∞} such that π∗E has no elliptic

singularities (see Lemma 3.1.8). We then determine for which types the pullback

π∗E is indigenous, by checking whether the Kodaira-Spencer map vanishes nowhere

on T .
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The following lemma describes the order of vanishing of the Kodaira-Spencer

map. It is basically a reformulation of [BM10b, Proposition 3.2].

For b ∈ {0, 1,∞} we set

(3.3.1) βb =


σ1 + σ3 − 1 if b = 0,

σ2 + σ3 − 1 if b = 1,

σ1 + σ2 − 1 if b =∞.

Write eb ∈ N for the denominator of βb if βb 6= 0, i.e. when b is an elliptic singularity

(see Lemma 3.2.2 (iv)). It turns out that eb is the order of the local monodromy at

b.

Lemma 3.3.1. Assume that σ1 + σ2 + σ3 + σ4 = 2, i.e. Fil1 E := E ∩
H0(Z,Ω1

Z/S) de�nes a �ltration in the sense of De�nition 3.1.9.

(i) The Kodaira-Spencer map associated with Fil1 E does not vanish at the points

b /∈ {0, 1,∞} and the logarithmic singularities.

(ii) Let b ∈ {0, 1,∞} be an elliptic singularity of E. Let π : T → S be a cover which

is branched at b with rami�cation index eb. Then π∗(E|S) extends to a �at vector

bundle Ẽ over T such that all points in π−1(b) are regular points of Ẽ. Moreover,

there exists a �ltration on Ẽ such that the order of vanishing at c with π(c) = b of

the associated Kodaira-Spencer map is

eb|βb| − 1.

Note that we choose the set of marked points as small as possible (see Remark

3.1.12). Hence the regular points in π−1(b) are not contained in the set of marked

points of Ẽ.

Proof of Lemma 3.3.1. First we assume that b ∈ S. Let ω be as in Lemma

3.2.2 (iii), and write ω′ := ∇(∂/∂s)ω. To prove the lemma, we use the description

of the de Rham cohomology as di�erentials of the second kind modulo exact dif-

ferentials ([GH78, Section 3.5]. For the case of superelliptic curves, see [Bou05,

Section 1]). A direct calculation shows that ω′ has a simple pole in x = s. It

follows that ω = (ω, ω′) generate the free OS,b-module Eb. We conclude that the

Kodaira-Spencer map corresponding to the �ltration Fil1 E ⊂ E does not vanish

at s = b. This proves (i) for b /∈ {0, 1,∞}. If b = 0 is an logarithmic singularity,

then ω = (ω,∇(s∂/∂s)ω) is a basis of E0, i.e. the Kodaira-Spencer map does not

vanish at b = 0. The proof in the case that b ∈ {1,∞} is a logarithmic singularity

is similar.

Now let b ∈ {0, 1,∞} be an elliptic singularity. Again we only consider the case

b = 0 as the other cases are similar. Using Lemma 3.2.2 (ii) one easily computes

that the matrix of ∇(s∂/∂s) acting on the OS,b-module with basis (ω,∇(s∂/∂s)ω)
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equals (
0 p1

1 p2

)
=

(
0 −sAB/(s− 1)

1 (−(A+B)s+ C − 1)/(s− 1)

)
,

where A, B, C are given as in Lemma 3.2.2 (iii). From this it follows that the

local exponents of E at b = 0 are (αb, βb) = (0, 1 − C) = (0, σ1 + σ3 − 1). In

particular, the denominator eb of βb is the order of the local monodromy at b. If

βb < 0, an easy calculation shows that the matrix of ∇(s∂/∂s) with respect to

(s−βbω,∇(s∂/∂s) (s−βbω)) equals(
0 −β2

b + p2βb + p1

1 −2βb + p2

)
and the local exponents are (0,−βb). Therefore, in the following, we assume that ω

is chosen such that βb > 0. Since 0 ≤ σi < 1 it follows from (3.3.1) that 0 ≤ βb < 1.

Let t be a local parameter at c with π(c) = b satisfying s = te. From Lemma

3.1.8 it follows that π∗(E|S) extends to a �at vector bundle with a regular point

at c. In the proof of Lemma 3.1.8 we have seen that a basis of the stalk Ẽc is

given by η1 = π∗ω, η2 = t−eβπ∗∇(s∂/∂s)ω, where (Fil1 Ẽ)b = 〈η1〉. As we choose
the set of marked points as small as possible, the regular points in π−1(b) are not

contained in the set of marked points of Ẽ. Hence, in order to calculate the order

of vanishing at c ∈ π−1(b) of the Kodaira-Spencer map we consider the contraction

against ∂/∂t (not the contraction against t∂/∂t). An easy calculation shows that

∇(∂/∂t)η1 = eteβb−1η2. Therefore the order of vanishing of the Kodaira-Spencer

map is eβb − 1. �

An indigenous bundle de�ning a Teichmüller curve in the sense of Theorem

3.1.13 has at least one logarithmic singularity. (This follows from a result of

[Vee89], reformulated in our terminology, cf. [McM03, Proposition 2.2].) In

the following, we therefore always assume that E has a logarithmic singularity in

b = ∞. Since 0 < σi < 1 are rational numbers such that σ1 + σ2 + σ3 + σ4 is an

integer, it follows from Lemma 3.2.2 (iv) that b =∞ is a logarithmic singularity of

E if and only if

(3.3.2) σ1 + σ2 = σ3 + σ4 = 1.

By Lemma 3.2.2 (ii), this condition also implies that E admits a �ltration in the

sense of De�nition 3.1.9.

To be able to apply the criterion of Theorem 3.1.13 we have to pass to a suitable

cover π : T → S = P1
s which removes the elliptic singularities. The cover we are

looking for has rami�cation of order eb at the elliptic singularities b ∈ {0, 1,∞},
and is unrami�ed at the regular points of E. At the logarithmic singularities we

allow arbitrary rami�cation. Since we have at least one logarithmic singularity, at

b =∞, it is clear that such a cover exists.
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Lemma 3.3.1 (ii) implies that the pullback π∗(E|S) extends to an indigenous

bundle over T all of whose marked points are logarithmic singularities if and only if

the local exponents of E at the points b ∈ {0, 1} that are elliptic singularities satisfy

(3.3.3)
1

eb
= |βb| =

σ1 + σ3 − 1 if b = 0,

σ2 + σ3 − 1 if b = 1,

where eb is the order of the local monodromy at b. The same criterion has been used

in [BM10b]. This yields that we can restrict to the following types of superelliptic

curves.

Proposition 3.3.2. A type (σ1, σ2, σ3, σ4) satis�es (3.3.2) and (3.3.3) if

and only if we are in one of the following cases, up to permuting the indices in such

a way that (3.3.2) remains valid.

(i) E has three logarithmic singularities:

(σ1, σ2, σ3, σ4) = (1
2 ,

1
2 ,

1
2 ,

1
2 ).

(ii) E has two logarithmic singularities and one elliptic singularity with order of

local monodromy e = m:

(σ1, σ2, σ3, σ4) = (m−1
2m , m+1

2m , m−1
2m , m+1

2m ).

(iii) E has one logarithmic singularity and two elliptic singularities with order of

local monodromy e = m and e = n, respectively:

(σ1, σ2, σ3, σ4) = (nm−m+n
2mn , nm+m−n

2mn , nm+m+n
2mn , nm−m−n2mn ),

where (m,n) 6= (2, 2).

Proof. This is an easy calculation. �

Let Z be the superelliptic curve over S = P1
s−{0, 1,∞} with one of the types

from Proposition 3.3.2. Now the key requirement in Theorem 3.1.13 is that the

pullback ZT extends smooth curve over the inverse images of the elliptic singulari-

ties.

Remark 3.3.3. In Case (i) of Proposition 3.3.2, the curve Z = ZT is the

Legendre family

Z : z2 = x(x− 1)(x− s)

of elliptic curves. (We have T = S.) The rank-2 bundle E = H1
dR(Z/S) has

logarithmic singularities at all points in {0, 1,∞}. Clearly, Z is smooth outside

the logarithmic singularities. Therefore the Legendre family de�nes a Teichmüller

curve. This is the only superelliptic curve in our set-up (with the restrictions made

in Remark 3.2.1) that de�nes a Teichmüller curve without further modi�cations.

Note that the Legendre family is semistable at s = 0 and s = 1, but not

at s = ∞ [Ked08, Example 4.1.4]. The reason is that the local exponents of
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H1
dR(Z/S) at S−S are not all integers. After normalising the local exponents

(αs, βs) at s = 0 and s = 1 to (αs, βs) = (0, 0), the Riemann scheme (see Appendix

A) of the Picard-Fuchs operator of H1
dR(Z/S) equals

0 1 ∞
0 0 1/2

0 0 1/2

 .
For more details on the normalisation of local exponents we refer to [Yos87, 2.6].

For the Cases (ii) and (iii) of Proposition 3.3.2, the following lemma shows that

ZT extends to a semistable curve over

T̃ := T−π−1(∞),

but not necessarily over the logarithmic singularities in π−1(∞).

Lemma 3.3.4. Let Z be a superelliptic curve over S = P1
s−{0, 1,∞} whose

type (σ1, σ2, σ3, σ4) satis�es (3.3.2). Let π : T → S = P1
s be a cover that removes all

elliptic singularities of E, i.e. it has rami�cation of order eb at the elliptic singulari-

ties. Then the pullback ZT extends to a semistable curve ZT̃ over T̃ = T−π−1(∞).

Proof. Formula (3.3.1) implies that C(T ) ⊃ C(s, sσ1+σ3 , (s−1)σ2+σ3). Choose

c ∈ T with π(c) = b = 0. Let N be the least common multiple of the denominators

of σ1, σ2, σ3, σ4, and put ai := Nσi, i = 1, . . . , 4. Then the superelliptic curve ZT

is given by the a�ne equation

ZT : zN = xa1(x− 1)a2(x− s)a3 ,(3.3.4)

where we consider s ∈ C(T ) as a function on T . Write A := ÔT ,c. It su�ces to

construct an extension of ZT to SpecA = SpecC[[t]] where t is a local parameter at

c. As C(T ) contains sσ1+σ3 , we can introduce new a�ne coordinates x̃ and z̃ with

sx̃ = x and sσ1+σ3 z̃ = z. In terms of these coordinates we obtain

ZT : z̃N = x̃a1(sx̃− 1)a2(x̃− 1)a3 .(3.3.5)

This is an alternative a�ne equation for ZT , away from s = 0. Together we obtain

a model ZT of ZT over SpecA that consists of the equations (3.3.4) and (3.3.5)

identi�ed via the relations sx̃ = x and sσ1+σ3 z̃ = z on the generic �bre. We also

obtain a �nite map ZT →PT , where PT is given by the coordinates x and x̃ with

the relation sx̃ = x. The special �bre ZT ,c = ZT ⊗A A/(t) may be described as

follows. The special �bre PT ,c consists of two irreducible components P
1

0 and P
2

0

which are the projective lines with coordinates x resp. x̃. The branch points x = 1

and x = ∞ specialise to P
1

0 and the branch points x = 0 and x = s specialise

to P
2

0. The components P
1

0 and P
2

0 intersect in a unique point ξ with coordinate

x = 0 and x̃ =∞, which is an ordinary double point of PT ,c. For i = 1, 2 let Z
i

0 be
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the restriction of ZT ,c to P
i

0. Note that Z
i

0 is the smooth projective, but possibly

disconnected curve, given by the equations

Z
1

0 : zN = xa1+a3(x− 1)a2 ,

Z
2

0 : z̃N = (−1)a2 x̃a1(x̃− 1)a3

One checks that all points of Zt,c above ξ are ordinary double points as well. (The

cover ZT ,c → PT ,c is a so-called admissible cover. For more details we refer to

[Wew98] or [Wew99].) The computations for the case that b = 1 are analogous.

�

Except for Case (i) of Proposition 3.3.2, the semistable curve ZT̃ constructed

in Lemma 3.3.4 has singular �bres over the `removed' elliptic singularities and we

cannot directly apply Theorem 3.1.13. In the following remarks we explain how to

modify the family ZT̃ → T̃ in order to produce Teichmüller curves.

Remark 3.3.5. In Case (ii) of Proposition 3.3.2, a quotient of ZT̃ by a

suitable �nite group of T̃ -automorphisms yields the Teichmüller curves found by

Veech [Vee89]. For a description of this quotient construction we refer to [BM10b,

Section 5]. In addition, we remark the following. Let

(σ1, σ2, σ3, σ4) =
(
m−1
2m , m+1

2m , m−1
2m , m+1

2m

)
.

In the case that m is an even integer, this yields a superelliptic curve over S =

P1
s−{0, 1,∞} given by the a�ne equation

Z : z2m = xm−1(x− 1)m+1(x− s)m−1.

In the case that m is an odd integer, this yields a superelliptic curve given by the

a�ne equation

Z : zm = x(m−1)/2(x− 1)(m+1)/2(x− s)(m−1)/2.(3.3.6)

In [BM10b, Section 5] the authors consider the superelliptic curve given by the

a�ne equation

ZBM : z2m = x(x− 1)2m−1(x− s).

For i = m±1, the χi-isotypical component of H1
dR(ZBM/S) is an indigenous rank-2

subbundle. (Note that there is a typo in [BM10b, Lemma 5.1]: �i = (n + 1)/2�

should read �i = (n+ 2)/2� and �L((n− 1)/2)� should read �L((n− 2)/2)�.) In the

case that m is an even integer, this yields the same curve and indigenous bundle

as in our construction. In the case that m is an odd integer, the character χi with

i = m ± 1 is not injective, and Eχi is a subbundle of the de Rham cohomology of

the quotient curve ZBM/ kerχi. This quotient is the superelliptic curve given by

(3.3.6).
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Remark 3.3.6. Case (iii) of Proposition 3.3.2 is considered in [BM10b,

Section 6]. There the authors consider Klein's four group H̃ = 〈σ, τ〉 acting on

P1
x ×C S by

σ(x) =
s(x− 1)

x− s
, τ(x) =

s

x
.

Passing to the pullback via π : T → S as in Lemma 3.3.4, the group H̃ lifts to

the Galois closure Y of ZT
Z/NZ−−−→ P1

T
H̃−→ P1

T given by a commutative diagram of

the following form, where Zτ
T denotes the conjugate of ZT under τ and ẐT is the

maximal subextension to which τ lifts.

Y

!!}}
ZT

  

Z/NZ

��

Zτ
T

~~

Z/NZ

��

ẐT

��
P1
T

H̃
��

P1
T

The pullback π is exactly the one that removes the elliptic singularities of π∗E.

Moreover, in [BM10b] it is checked that the quotient X = Y/H̃ extends to a

smooth curve over the removed elliptic singularities and that H1
dR(X/T ) contains

a �at subbundle isomorphic to π∗E. Thus, X de�nes a Teichmüller curve in the

sense of Theorem 3.1.13.

The following proposition shows that if (and only if) m = n this construction

also works for 〈σ〉 ⊂ H̃ without passing to the Galois closure Y. This produces a

new class of Teichmüller curves not treated in [BM10b].

Proposition 3.3.7. Let Z be the superelliptic curve over S = P1
s−{0, 1,∞}

with type

(σ1, σ2, σ3, σ4) = (nm−m+n
2mn , nm+m−n

2mn , nm+m+n
2mn , nm−m−n2mn ), (m,n) 6= (2, 2)

from Case (iii) of Proposition 3.3.2, given by the a�ne equation

Zs : zN = xa1(x− 1)a2(x− s)a3 ,

where N is the least common multiple of the denominators of σ1, σ2, σ3, σ4, and

ai = Nσi for i = 1, . . . , 4. Let π : T → S = P1
C be a cover as in Lemma 3.3.4,

i.e. it is unrami�ed in S, has rami�cation index e = m resp. e = n over b = 0 resp.
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b = 1, and suitable rami�cation index over b = ∞. Let ZT̃ be the extension of the

pullback ZT to a semistable curve over T̃ = T−π−1(∞).

(i) The group AutT (ZT ), where T = π−1(S), contains an automorphism σ of order

2 with

σ(x, z) =

(
s(x− 1)

x− s
, sσ1+σ3(s− 1)σ2+σ3

x (x− 1)

z (x− s)

)
.

Fix a generator ϕ of the Galois group Z/NZ ⊂ AutT (ZT ) of the N -cyclic cover

ZT → P1
T given by projection onto x. Then σϕσ = ϕ−1.

(ii) The T -automorphism σ extends to an T̃ -automorphism of ZT̃ .

(iii) The quotient

X := ZT̃ /〈σ〉 → T̃

is a smooth curve (after replacing σ by ϕ−1σ if necessary) if and only if m = n, i.e

(σ1, σ2, σ3, σ4) = (1
2 ,

1
2 ,

m+2
2m , m−2

2m ), m 6= 2.

Proof. The existence of σ is shown in [BM10b, Lemma 6.4] and one easily

checks that σϕσ∗z = χ0(ϕ−1) · z, where χ0 : Z/NZ→ C× is the injective character

such that ϕ∗z = χ0(ϕ)z. This proves (i).

Denote by ZT̃ the semistable curve from Lemma 3.3.4 and write X = ZT̃ /〈σ〉.
Denote by Zb → P b the restriction of ZT̃ to the admissible cover over b ∈ {0, 1} ⊂
S−S. Let Z1

b be the restriction of Zb to the irreducible genus-0 component P
1

b of

P b to which the branch points x1 = 0 and x3 = λ specialise, and let Z
2

b be the

restriction of Zb to the irreducible genus-0 component P
2

b of P b to which the branch

points x2 = 1 and x4 =∞ specialise.

It is easy to check that the automorphism σ extends to an automorphism of

ZT of order 2 with

σ|
Z

1
b
: Z

1

b
∼−→ Z

2

b , b ∈ {0, 1}.

A necessary condition for X to be smooth over b ∈ {0, 1} is that g(Z
1

0) = g(X0) =

g(X1) = g(Z
1

1). The Riemann-Hurwitz genus formula applied to the cyclic covers

Z
1

0 → P
1

0 and Z
1

1 → P
1

1 implies that

gcd(Nm , N) = gcd(a1 + a3, N) = gcd(a2 + a3, N) = gcd(Nn , N).

Therefore, m = n, i.e. the type (σ1, σ2, σ3, σ4) is given as stated in the proposition.

For the converse direction we suppose that m = n 6= 2. Let b ∈ {0, 1}. The

�bre of Zb → P b over the ordinary double point of P b consists N/m ≤ 2 points,

where

N/m =

2, if m is odd,

1, if m is even.

If the �bre consists of N/m = 1 points, then obviously σ �xes this point. If the

�bre consists of N/m = 2 points, say {z0, z1}, then ϕ2 �xes the points in {z0, z1}.
Hence, either σ or ϕ−1σ �x both z0 and z1. After replacing σ by the ϕ−1σ if
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Z
2
b

Z
1
b

〈σ〉

〈σ〉

X0 ' Z
1
b ' Z

2
b

Figure 3.1. m = n odd, i.e. Nm = 2.

necessary, we conclude that σ �xes all points in the �bre over the ordinary double

point. Therefore Xb = Zb/〈σ〉 ' Z1
b is smooth. Note that g(X0) = g(X1) since

m = n. This proves the proposition. �

For an odd integer m the smoothness of Xc with π(c) = 0 may also be deduced

from Example 1.5.7.

Theorem 3.3.8. Let Z be a superelliptic curve of type

(σ1, σ2, σ3, σ4) = (1
2 ,

1
2 ,

m+2
2m , m−2

2m ), m 6= 2.

Consider the smooth curve X = ZT̃ /〈σ〉 → T̃ over T̃ = T−π−1(∞) constructed in

Proposition 3.3.7. Then the image of the moduli map

T̃ →Mg, c 7→ [Xc]

is a Teichmüller curve.

Proof. To prove the theorem we apply Theorem 3.1.13, i.e. we show that the

Deligne extension of H1
dR(X/T̃ ) contains a �at subbundle isomorphic to π∗E. Note

that Proposition 3.3.2 implies that

(i) π∗E is an indigenous bundle,

(ii) all points in π−1(∞) are logarithmic singularities of π∗E.

The group G = Z/NZ o 〈σ〉 ⊂ AutT (ZT ) is a dihedral group of order 2N . (In

particular, G is a semidirect product as required in Section 2.3.) We have cho-

sen the �at vector bundle E ⊂ H1
dR(Z/S) as the χ0-isotypical component where

χ0 : Z/NZ → C× is an injective irreducible character (see Remark 3.2.1). The

curve ZT is the pullback of a superelliptic curve over S = P1
s−{0, 1,∞} of type

(σ1, σ2, σ3, σ4) = ( 1
2 ,

1
2 ,

m+2
2m , m−2

2m ) with
∑4
i=1 σi = 2. By Proposition 2.3.6 we have

a decomposition

H1
dR(X/T ) =

⊕
χ∈Irr(Z/NZ)/〈σ〉

(Eχ,1)
〈σ〉(3.3.7)

and, for χ = χ0, the component (Eχ,1)〈σ〉 is isomorphic to π∗E. (An isomorphism

π∗E
∼−→ (Eχ,1)〈σ〉 is induced by ω̃ 7→ ω̃ + σω̃.) �
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Remark 3.3.9. The genus of X is

g =


m−1

2 , if m is odd,

m̃, if m = 2 + 4m̃,

m̃, if m = 4m̃.

We summarise the results of this section.

Summary 3.3.10. The only indigenous bundles `coming from superelliptic

curves' are those having one of the types in Proposition 3.3.2. In Case (i) the

superelliptic curve is the Legendre family of elliptic curves and de�nes a Teichmüller

curve. In Case (ii) the only possible Teichmüller curves de�ned by quotients of ZT

are the Teichmüller curves found by Veech (see [BM10b, Section 5] and Remark

3.3.5). In Case (iii), the corresponding N -cyclic cover Z → P1
S is branched at

four points. Therefore the automorphisms of P1
S that are invariant on the set of

branch points of Z → P1
S form a subgroup of H̃ = 〈σ, τ〉 ' (Z/2Z)2. If m 6= n,

then one must apply the construction in [BM10b, Section 6]. If m = n, then

our construction and the construction in [BM10b, Section 6] produce Teichmüller

curves. By this we have classi�ed all Teichmüller curves that may be produced by

Theorem 3.1.13 with �at vector bundles `coming from a superelliptic curve' (under

the restrictions made in Remark 3.2.1).

3.3.1. Description of the de Rham cohomology. In this subsection we

describe the decomposition

H1
dR(X/T ) =

⊕
χ∈Irr(Z/NZ)/〈σ〉

(Eχ,1)
H
.

used in the proof of Theorem 3.3.8 in (3.3.7) more precisely. We compute

nχ,1 := rank (Eχ,1)
H

using Proposition 2.3.8.

Denote by Z the superelliptic curve with type given as in Theorem 3.3.8, and

by ϕ a �xed generator of the corresponding N -cyclic cover Z → P1
S .

Lemma 3.3.11. We have

nχ,1 =

2, χ(ϕ2) 6= 1 6= χ(ϕm),

0, otherwise.

Proof. Let χ ∈ Irr(A)−{1}. Clearly, it holds χ(ϕ2) = 1 if and only if χ(ϕ) =

χ(ϕ−1) = χσ(ϕ), which holds if and only if Hχ = H, i.e. Gχ = G. In this case one

checks that

nχ,1 = 2 · |H(χ)| −
4∑
i=1

ki,1χ = 2− 1− 1− 0− 0 = 0.
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In all other cases, we have Hχ = 〈1〉, Gχ = A and

nχ,1 = 2 · |H(χ)| − k1,1
χ − k2,1

χ − k3,1
χ − k3,σ

χ − k4,1
χ − k4,σ

χ

If χ(ϕm) = 1, then one checks that nχ,1 = 4 − 1 − 1 − 1 − 1 − 0 − 0 = 0 and if

kerχ∩{ϕ2, ϕm} = ∅, then one checks that nχ,1 = 4− 1− 1− 0− 0− 0− 0 = 2. �

From this one may also deduce the genus of X.

3.3.2. Ellenberg's pq-family. In Chapter 4 we consider the one-dimensional

families of curves with real multiplication constructed in [Ell01, Corollary 4.5]. El-

lenberg's construction in Case (6) of [Ell01, Corollary 4.5] yields a family of curves

of genus (p−1)(q−1)
2 with real multiplication by Q(ζpq + ζ−1

pq ). The construction in

[BM10b, Section 6] corresponding to Case (iii) of Proposition 3.3.2 for m = p and

n = q also yields a family of curves of genus (p−1)(q−1)
2 with real multiplication by

the same �eld. However, this is a di�erent one. We brie�y explain why Ellenberg's

family does not de�ne a Teichmüller curve.

For distinct odd primes p and q, Ellenberg considers a family

ZEll 〈ϕ〉−−→ P1
T

〈σ〉−−→ P1
T

of Galois covers whose Galois group is a dihedral group with re�ection σ and ro-

tation ϕ of order pq. Ellenberg shows that the quotient ZEll/〈σ〉 yields a family

of curves with real multiplication by the �eld Q(ζpq + ζ−1
pq ). The dihedral cover

ZEll → P1
T is branched at four points with rami�cation type given by the conju-

gacy classes

(ClDpq (σ),ClDpq (σ),ClDpq (ϕ
p),ClDpq (ϕ

q))

in Dpq = 〈ϕ, σ〉 ([Ell01, Section 3]). This implies that the cyclic cover ZEll 〈ϕ〉−−→ P1
S

has type

(σ1, σ2, σ3, σ4) = (1
q ,

q−1
q , 1

p ,
p−1
p ).

This type equals none of the types in Proposition 3.3.2, even up to permutation

of the σi's and uniform substitution of σi by k · σi (mod 1) for some integer k.

This implies that, for none of the rank-2 subbundles Eχ ⊂ H1
dR(ZEll/S) where

χ : Z/pqZ→ C× is an irreducible character, the Riemann scheme of local exponents

is of the form 
0 1 ∞
0 0 γ

±1/m ±1/n γ


for some n,m ∈ N.
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In [Ell01, Corollary 4.1] three families of curves with real multiplication are

constructed. One may ask whether the families constructed by Ellenberg de�ne

Teichmüller curves because Teichmüller curves parametrise curves with real mul-

tiplication [Möl06b, Theorem 2.7]. The Jacobians of the curves parametrised by

Ellenberg's families have real multiplication by a �eld K such that [K : Q] equals

the genus g of the parametrised curves, i.e. K is as large as possible for an abelian

variety of dimension g. Ellenberg classi�es families of curves with this property

that can be constructed as quotients Y/H of certain metacyclic covers

Y
A−→ Z

H−→ P1
C.

The two families discussed in this chapter are the only one-dimensional families

from [Ell01] that we have not analysed in the context of Teichmüller curves yet.

The third family we have already discussed in Subsection 3.3.2. In Section 4.2 we

show that the de Rham cohomologies of the two remaining Ellenberg families split

into �at rank-2 subbundles all of which carry a �ltration in the sense of De�nition

57
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3.1.9 (page 43). This is a necessary condition for a �at subbundle to be indigenous.

However, in Section 4.3 we show that none of the subbundles satis�es the conditions

from Theorem 3.1.13 (page 44) by studying the boundary of a suitable Hurwitz

space.

Similar to the situation in [BM10b] there is an automorphism of Z that does

not lift to Y . In Section 4.5 we lift this automorphism to the Galois closure. An

analogous construction was used in [BM10b] to construct Teichmüller curves. In

our situation we show that by this construction the above criterion for exclusion

no longer holds. Moreover, we �nd rank-2 subbundles of the de Rham cohomology

of the adapted families that are `good' candidates for indigenous bundles to satisfy

the conditions from Theorem 3.1.13.

4.1. Ellenberg's families

In this section we introduce certain families of metacyclic covers, namely the

composition of an étale cyclic cover with a cyclic cover of P1
C. The two Ellen-

berg families mentioned in the introduction of this chapter are quotients of special

families of such metacyclic covers.

Let m ≥ 2 be an integer and p ≡ 1 (mod m) a prime number. Suppose that

α ∈ {1, . . . , p− 1} represents an element in F×p of order m. Then

(4.1.1) G = Gp,m := 〈ϕ,ψ; ϕp = ϕm, ψϕψ−1 = ϕα〉

is the presentation of a semidirect product AoH with A = 〈ϕ〉 and H = 〈ψ〉. Such
groups are called metacyclic groups. One easily veri�es the relation

(4.1.2) ψkϕ` = ϕ`α
k

ψk

in G for all integers k and `.

Definition 4.1.1. Fix a quadruple (σ1, σ2, σ3, σ4) ∈ Q4 such that 0 < σi < 1

and
∑4
i=1 σi is an integer. Denote by m the least common multiple of the denom-

inators of σ1, σ2, σ3, σ4. Put ai = mσi for i = 1, . . . , 4. A cover of P1
C is called

metacyclic of type (σ1, σ2, σ3, σ4) if it is an element of the Hurwitz space HG,C of

G-covers with ordered branch locus where G = Gp,m is a metacyclic group as in

(4.1.1) and

C =
(
ClG(ψa1),ClG(ψa2),Cl(Gψ

a3),ClG(ψa4)
)

a quadruple of conjugacy classes in G.

Note that (ϕψa1 , ψa2 , ψa3 , ψa4ϕ) ∈ Ni(G,C). In particular, metacyclic covers

of type (σ1, σ2, σ2, σ3) exists indeed.

Proposition 4.1.2. There exists a one-dimensional universal family

Y
G−→ P1

S → S := HG,C
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of metacyclic covers of type (σ1, σ2, σ3, σ4), i.e. Y is an S-scheme such that the �bre

Yb → P1
C at any C-rational point b ∈ S is isomorphic (in the sense of De�nition

1.1.7) to the G-cover parametrised by b.

Proof. Let g = ϕkψ` be an element of the centre of G. From Relation (4.1.2)

it follows that (a) gψ = ψg if and only if k ≡ 0 (mod p), and that (b) gϕ = ϕg if and

only if ` ≡ 0 (mod m). Therefore the centre of G is trivial and the Hurwitz space

HG,C is a �ne moduli space (see Section 1.3.1 or [RW06, Corollary 4.12]). �

The universal family of metacyclic covers of type (σ1, σ2, σ3, σ4) factors through

Y
A−→ Z := Y/A

H−→ P1
S ,

where Y
A−→ Z is an étale cyclic A-cover and Z

H−→ P1
S is a cyclic H-cover. The

rami�cation type of the �bres Zb → P1
C is given by the quadruple(

ClH(ψa1),ClH(ψa2),ClH(ψa3),ClH(ψa4)
)

of conjugacy classes in H. Throughout this chapter we keep these notations.

We now consider the smooth curveX := Y/H over S. Note that if (σ1, σ2, σ3, σ4)

is either ( 1
4 ,

3
4 ,

1
2 ,

1
2 ) or ( 1

3 ,
2
3 ,

1
2 ,

1
2 ), then X → S is the one-dimensional family of

curves from [Ell01, Corollary 4.1] with real multiplication by Q(ζ
(m)
p ), where m is

the least common multiple of the denominators of σ1, σ2, σ3, σ4.

Definition 4.1.3. We will use the notation XEll := Y/H → S in case that

(σ1, σ2, σ3, σ4) ∈
{(

1
4 ,

3
4 ,

1
2 ,

1
2 ), ( 1

3 ,
2
3 ,

1
2 ,

1
2

)}
and call XEll an Ellenberg family.

Note that in the following the notation X → S without the superscript `Ell'

denotes the quotient of a family of metacyclic covers with arbitrary type.

4.2. The de Rham cohomology of Ellenberg's families

In this section we �nd all universal families of metacyclic Gp,m-covers such

that the de Rham cohomology of their H-quotients splits into isotypical rank-2

bundles with a �ltration (in the sense of De�nition 3.1.9). It turns out that these

are essentially the families considered in [Ell01, Corollary 4.5 (2) and (3)]. The

arguments in this section are similar to the ones of [Ell01] in a slightly di�erent

set-up.

Let

Y
G //

A ��

P1
S

Z

H

??

be the universal family of metacyclic covers of type (σ1, σ2, σ3, σ4) over S = HG,C

with G = Gp,m and C as in Section 4.1.
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Recall that G = AoH = 〈ϕ〉o 〈ψ〉 is a metacyclic group, and that we denote

by Irr(A) the set of of irreducible A-characters on which H acts by χψ(ϕ) = χ(ϕα)

for χ ∈ Irr(A). Moreover, we write 1 for the trivial character.

We consider the quotient

X = Y/H → P1
S .

The goal of this section is to prove the following proposition.

Proposition 4.2.1. The relative de Rham cohomology of X = Y/H splits

into �at subbundles

(4.2.1) H1
dR(X/S) =

⊕
χ∈Irr(A)/H

χ 6=1

Eχ,

where every Eχ is isomorphic (as a �at vector bundle with Gauÿ-Manin connection)

to the χ-isotypical component of H1
dR(Y/S) and

rank Eχ = g(Z)− 2.

In particular, rank Eχ = 2 if and only if

(σ1, σ2, σ3, σ4) ∈
{(

1
4 ,

3
4 ,

1
2 ,

1
2 ), ( 1

3 ,
2
3 ,

1
2 ,

1
2

)
,
(

1
3 ,

1
3 ,

2
3 ,

2
3

)}
,(4.2.2)

up to permuting the indices. In this case Eχ ∩H0(X,Ω1
X/S) de�nes a �ltration in

the sense of De�nition 3.1.9.

As in Section 2.3 the subbundles Eχ in (4.2.1) will be the H-invariants of the

G-isotypical decomposition of H1
dR(Y/S). Note that, in Proposition 4.2.1, rank Eχ

does not depend on the choice of χ ∈ Irr(A) with χ 6= 1.

The following lemma describes the irreducible characters of the metacyclic

group G = Gp,m (cf. [Ser77, Proposition 25], [Ell01, Section 2]). We use the

notation θχ,ξ = IndGGχ(χ · ξ) from Notation 2.3.1.

Lemma 4.2.2. Let θ be an irreducible character of G = Gp,m. Then one of

the following cases occurs.

(i) There exists a character ξ ∈ Irr(H) with

θ(ah) = θ1,ξ(ah) = ξ(h) for a ∈ A, h ∈ H

(ii) There exists a non-trivial character χ ∈ Irr(A)/H with

θ = θχ,1 = IndGA χ

As an immediate consequence (see also Proposition 2.3.6), we can decompose

(4.2.3) H1
dR(X/T ) 'H1

dR(Y/T )H =
⊕

χ∈Irr(A)/H
χ6=1

(Eχ,1)
H
,
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into submodules, where Eχ,1 is the θχ,1-isotypical component of H1
dR(Y/T ). More-

over, we have that

Eχ,1 =
⊕
h∈H

Ẽχh ,

where Ẽχh denotes the χh-isotypical component of H1
dR(Y/S). (Here {χh; h ∈ H}

is the H-orbit of χ.) Note that rank(E1,1)H = 0, by Proposition 2.3.8.

Lemma 4.2.3. We have

rank(Eχ,1)H = 2g(Z)− 2

for χ ∈ Irr(A) with χ 6= 1.

This could be deduced from the formulas in Chapter 2 (Proposition 2.3.8).

However, in this special case we �nd it easier to give a direct self contained argu-

ment.

Proof of Lemma 4.2.3: Denote by øY the character of the representation

G→ GL(H1
dR(Y/S)) induced by the action of G on Y and put nχ,1 = 〈øY , θχ,1〉G.

The character of G→ GL(Eχ,1) is nχ,1 · θχ,1. Therefore,

rank(Eχ,1)H = nχ,1 · 〈1,ResH θχ,1〉H .

For χ 6= 1 we have

〈1,ResH θχ,1〉H = 〈1, IndAH∩A(χ · 1)〉H = 〈1, χ〉〈1〉 = 1.

Here we have used [Ser77, Proposition 22] and |H\G/A| = 1 for the �rst equality.

Moreover, since Y
A−→ Z is étale, we have

ResAøY = 2 · 1+ (2g(Z)− 2) · IndA〈1〉 1,

by Lemma 2.1.1. This implies that

nχ,1 = 〈øY , θχ,1〉G = 〈ResAøY , χ〉A

= 2 · 〈1, χ〉A + (2g(Z)− 2) · 〈IndA〈1〉 1, χ〉A = 2g(Z)− 2.

�

We put Eχ := (Eχ,1)H . In the following lemma we check when rank Eχ = 2,

i.e. 2g(Z) = 2.

Lemma 4.2.4. We have g(Z) = 2 if and only if we are in one of the following

situations, up to permuting the indices.

(i) (σ1, σ2, σ3, σ4) ∈ ( 1
4 ,

3
4 ,

1
2 ,

1
2 )

(ii) (σ1, σ2, σ3, σ4) ∈ ( 1
3 ,

2
3 ,

1
2 ,

1
2 )

(iii) (σ1, σ2, σ3, σ4) ∈ ( 1
3 ,

1
3 ,

2
3 ,

2
3 )

Proof. Suppose that g(Z) = 2. The Riemann-Hurwitz genus formula implies

g(Z) = m + 1 − 1
2

∑4
i=1 gcd(m, ai), where m is the least common multiple of the
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denominators of σ1, σ2, σ3, σ4. Since 0 < σi < 1, we have gcd(m, ai) ≤ m
2 . More-

over, gcd(m, ai) = m
2 for at most two i ∈ {1, . . . , 4}, since gcd(m, a1, a2, a3, a4) = 1.

Therefore gcd(m, ai) ≤ m
2 + m

2 + m
3 + m

3 = 5m
3 . Thus, g(Z) = 2 implies that

m ≤ 6. Now one easily checks that the only possibilities are the ones stated in the

lemma. For the converse direction one easily veri�es the Riemann-Hurwitz genus

formula. �

Remark 4.2.5. Note that a metacyclic Gp,3-covers of type ( 1
3 ,

1
3 ,

2
3 ,

2
3 ) are

factors of suitable metacyclic Gp,6-covers of type ( 1
3 ,

2
3 ,

1
2 ,

1
2 ).

Y

Gp,3=Ao〈ψ2〉 ��

Gp,6=Ao〈ψ〉
// P1
S

P1
S

Z/2Z

??

Therefore XEll = Y/〈ψ〉 is a quotient of Y/〈ψ2〉. Hence, the case that m is odd is

covered by the case that m is even.

For the remainder of this section we consider the case that

(σ1, σ2, σ3, σ4) ∈
{

( 1
4 ,

3
4 ,

1
2 ,

1
2 ), ( 1

3 ,
2
3 ,

1
2 ,

1
2 ), ( 1

3 ,
1
3 ,

2
3 ,

2
3 )
}
.

Our goal is to check whether in this case

Eχ = (Eχ,1)H ⊂H1
dR(Y/S)H 'H1

dR(XEll/S)

carries a �ltration in the sense of De�nition 3.1.9. The key of the proof will be that

Eχ,1 =
⊕

h∈H Ẽχh decomposes into rank-2 χh-isotypical components of H1
dR(Y/S)

all of which carry �ltration. This �ltration `descents' to H1
dR(X/S) (see the proof

of Proposition 4.2.1).

Remark 4.2.6. Let χ ∈ Irr(A) with χ 6= 1. Write Ẽχ, H0(Y,Ω1
Y/S)χ resp.

H0(Yb,Ω1
Yb

)χ for the χ-isotypical component of H1
dR(Y/S), H0(Y,Ω1

Y/S) resp.

H0(Yb,Ω1
Yb

). If

dimH0(Yb,Ω
1
Yb)χ = 1

for all b ∈ S then Fil1 Ẽχ := H0(Y,Ω1
Y/S)χ = Ẽχ ∩H0(Y,Ω1

Y/S) is a �ltration in

the sense of De�nition 3.1.9, with Fil1 Ẽχ ⊗ (OS/mb) = H0(Yb,Ω1
Yb

)χ.

Lemma 4.2.7. Let χ ∈ Irr(A) be non-trivial. Then we have

dimH0(Yb,Ω
1)χ = 1.

Proof. This follows from Lemma [Bou01, Lemma 4.3] applied to the étale

cyclic cover Yb
A−→ Zb where g(Zb) = 2, by Lemma 4.2.4. �

We are now ready prove Proposition 4.2.1.
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Proof of Proposition 4.2.1: Decomposition (4.2.1) is given by decomposi-

tion (4.2.3) where Eχ = (Eχ,1)H ⊂ H1
dR(Y/S)H is considered as a submodule of

H1
dR(X/S). By Lemma 4.2.4, rank Eχ = 2 if and only if (4.2.2) holds. In this

case, Lemma 4.2.7 implies that the χ-isotypical component of H1
dR(Y/S), which

we denote by Ẽχ, carries the �ltration H0(Y,Ω)χ in the sense of De�nition 3.1.9.

Since Hχ = {1}, we conclude that dim
(
H0(Y,Ω1)χ,1

)H
= dimH0(Y,Ω1)χ = 1,

i.e. Eχ = (Eχ,1)H also carries a �ltration. More precisely: let ω be a section of the

�ltration H0(Y,Ω1)χ ⊂ Ẽχ and consider the section

η :=
∑
h∈H

h∗ω

of Eχ,1 =
⊕

h∈H Ẽχh . By de�nition, η is �xed under the action of H and hence a

section of Eχ = (Eχ,1)H ⊂H1
dR(X/S). In particular, it is a section of the �ltration

on Eχ = (Eχ,1)H . Moreover, as in Remark 2.3.7 we conclude that Ẽχ ⊂H1
dR(Y/S)

and Eχ = (Eχ,1)
H ⊂ H1

dR(X/S) have the same Picard-Fuchs operator. (The sec-

tions ω and η are cyclic sections of Ẽχ and Eχ, respectively.) Therefore, (Ẽχ,∇) and

(Eχ,∇) are isomorphic as �at vector bundles. This proves the proposition. �

4.3. Ellenberg's families do not de�ne Teichmüller curves

Let Y
G−→ P1

S be the universal family of metacyclic covers (introduced in Propo-

sition 4.1.2) of type

(σ1, σ2, σ3, σ4) ∈
{

( 1
4 ,

3
4 ,

1
2 ,

1
2 ), ( 1

3 ,
2
3 ,

1
2 ,

1
2 )
}

over the Hurwitz space S = HG,C with

G = Gp,m =
〈
ϕ,ψ; ϕp = ψm = 1, ψϕψ−1 = ϕα

〉
, A = 〈ϕ〉, H = 〈ψ〉,

where m is the least common multiple of the denominators of σ1, σ2, σ3, σ4, and

C = (ClG(ψa1),ClG(ψa2),Cl(Gψ
a3),ClG(ψa4))

with ai = mσi for i = 1, . . . , 4. The ordered branch locus of Y → P1
S is given by

D = (x1 = 0, x2 = 1, x3, x4 =∞) with xi : S → P1
S pairwise disjoint.

Write S := HG,C for the Hurwitz space of admissible G-covers and Ψ : S → P1
C

for the extension of the branch locus map S → P1
C−{0, 1,∞} that maps a cover

having ordered branch locus (x1 = 0, x2 = 1, x3 = λ, x4 = ∞) to its third branch

point λ ∈ P1
C−{0, 1,∞}.

In this section we show (in Theorem 4.3.5) that there is no �at rank-2 subbundle

of the Deligne extension of H1
dR(XEll/S) that satis�es the conditions from Theorem

3.1.13. This implies that the image of the moduli map S 7→Mg, b 7→ [XEll
b ], is no

Teichmüller curve (see [Möl06b] or [Möl11, Theorem 2.2]).
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In order to show that there is no such subbundle, we �nd a point b ∈ S−S
where XEll

b is a singular curve, but of compact type, i.e. the dual graph of its

irreducible components is a tree. In this case, we can apply the following lemma.

Lemma 4.3.1. Let V → U be a semistable curve over a (possibly a�ne)

smooth connected C-curve U . Denote by Ũ ⊂ U the set of points where the �bres

are smooth curves and suppose that Ũ is a dense open subset of U .

(i) Let b ∈ U be a point such that Vu is of compact type. Then b is a regular point

of the Deligne extension of any �at subbundle of H1
dR(V/Ũ).

(ii) Suppose that V → U has a �bre Vb that is a singular curve of compact type.

Then there is no �at subbundle E ⊂H1
dR(V/Ũ) of rank 2 whose Deligne extension

satis�es the conditions from Theorem 3.1.13.

Proof. This is shown in [Möl11, Proposition 2.4]. We recall the proof in our

set-up.

(i) Since Vb is of compact type, the generalised Jacobian of Vb is an abelian variety.

Since the cohomology of a curve is the same as that of its Jacobian, it follows in

this case that

H1
dR(Vb) = H1

dR(V 1)× · · · ×H1
dR(V δ)

where V 1, . . . , V δ are the irreducible components of Vb. This implies that b is a reg-

ular point of the Deligne extension of H1
dR(V/Ũ), and hence of any �at subbundle,

as well.

(ii) Let E be the Deligne extension of an arbitrary rank-2 subbundle of H1
dR(V/Ũ).

Assume that E satis�es the condition from Theorem 3.1.13. On the one hand, the

fact that Vb is a singular curve implies that b is a marked point of E and therefore

a logarithmic singularity. On the other hand, as Vb is of compact type, the point b

must be a regular point of E. This is a contradiction.

�

The following lemma describes the boundary Ψ−1(0) ⊂ S−S as admissible

G-covers. The �bres Ψ−1(1) and Ψ−1(∞) may be described similarly. For our

arguments, we actually do not need to describe the boundary S−S = HG,C−HG,C

as admissible G-covers. We only need their quotients (Lemma 4.3.4). However the

description of the admissible G-covers helps to understand how to choose b ∈ S−S.
Namely, it corresponds (in the sense of Proposition 1.4.1) to the Nielsen tuple (4.3.1)

on page 66.

Lemma 4.3.2. The admissible G-covers parametrised by the C-rational points
in Ψ−1(0) ⊂ S−S are covers Y → P of a genus-0 curve which consists of two

projective lines P 1 and P 2 intersecting in precisely one ordinary double point ξ ∈
P 1 ∩ P 2. The restriction of Y → P to the component P i (i = 1, 2) is the (possibly
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disconnected) G-cover induced by a Gi-cover Y i
Gi−−→ P i where Y i is a suitable

connected component of Y and one of the following cases occurs.

(i) G1 = G2 = G.

(ii) G1 = G, G2 = H or vice versa.

The rami�cation type of Y i → P i (i = 1, 2) is given by

C1 =
(

ClG1
(ψ−1), ClG1

(ψa2), ClG1
(ψa4)

)
,

C2 =
(

ClG2
(ψa1), ClG2

(ψa3), ClG2
(ψ)
)
,

where ClG1(ψ−1) resp. ClG2(ψ) describes the rami�cation at the ordinary double

point ξ.

Proof. Every Nielsen tuple in Ni(G,C) may be represented by a tuple of the

form

(g1, g2, g3, g4) = (ϕv1ψa1 , ψa2 , ϕv3ψa3 , ϕv4ψa4)

after a suitable uniform conjugation. Such a tuple corresponds by Proposition 1.4.1

to an admissible G-cover. The lemma follows as one easily checks that

G1 = 〈g2, g4〉 = 〈ψa2 , ϕv4ψa4〉,

G2 = 〈g1, g2g3g
−1
2 〉 = 〈ϕv1ψa1 , ϕv3α

a2
ψa3〉.

Here we have used that αa3 = −1 since a3 = m
2 . In any case, Gi contains an

element of order m, i.e. Gi ⊃ H. The case that G1 = G2 = H does not occur

since this would imply that (g1, g2, g3, g4) = (ψa1 , ψa2 , ψa3 , ψa4) ∈ Ni(G,C), which

contradicts the condition that G = 〈g1, g2, g3, g4〉. The other cases stated in the

proposition occur indeed (see Example 4.3.3). �

P 1∞1ξP 2 0 λ

Ȳ1

ϕȲ1

ϕ2Ȳ1

ϕ3Ȳ1

ϕ4Ȳ1

Ȳ2

P 2 0 λ ξ P 1∞1

Ȳ2 Ȳ1

Figure 4.1. left �gure: G1 = H, G2 = G, right �gure: G1 =
G2 = G.

Example 4.3.3. (i) Let [g1, g2, g3, g4] = [ϕψa1 , ψa2 , ψa3 , ϕψa4 ] ∈ Ni(G,C).

Then both G1 = 〈ψa2 , ϕψa4〉 and G2 = 〈ϕψa1 , ψa3〉 contain an element of order p,

i.e.

G1 = G2 = G.
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(ii) Let [g1, g2, g3, g4] = [ϕψa1 , ψa2 , ϕ−1ψa3 , ψa4 ] ∈ Ni(G,C). Then

G1 = 〈ψa2 , ψa4〉 = H, G2 = 〈ϕψa1 , ϕ−α
a2
ψa3〉 = G.

(iii) Let [g1, g2, g3, g4] = [ψa1 , ϕ−α
a2
ψa2 , ϕ2ψa3 , ϕψa4 ] ∈ Ni(G,C). Then

G1 = 〈ϕ−α
a2
ψa2 , ϕψa4〉 = G, G2 = 〈ψa2 , ψa3〉 = H.

For m = 4 and p = 5, Figure 4.1 shows the admissible G-covers for the Cases

(ii) and (iii). For Case (ii), Figure 4.2 illustrates the process of degeneration with

respect to the complex topology by contracting the inverse images of a suitable

loop.

Figure 4.2. G1 = H and G2 = G

In Case (ii) of Example 4.3.3, the following lemma describes the H-quotient

X := Y /H → P

of the admissible G-cover Y → P that corresponds in the sense of Proposition 1.4.1

to the Nielsen tuple

[g1, g2, g3, g4] = [ϕψa1 , ψa2 , ϕ−1ψa3 , ψa4 ] ∈ Ni(G,C).(4.3.1)

Lemma 4.3.4. Denote by P 1 the irreducible component of P to which the

branch points x2 = 1 and x4 = ∞ specialise, and denote by P 2 the irreducible

component to which the branch points x1 = 0 and x3 = λ specialise.

(i) The restriction of X to P 1 consists of p−1
m irreducible components X

`

1, ` =

1, . . . , p−1
m , of genus 1 and one irreducible component X

0

1 of genus 0.

(ii) The restriction of X to P 2 consists of one irreducible component of genus 0.

(iii) Let X
′
be the curve obtained by contracting all irreducible components of genus

0 which intersect the rest of X in one ordinary double point. Then X
′
is singular

if and only if p 6= m+ 1.

Proof. Fix λ ∈ P1
C−{0, 1,∞} and let Y → P1

C be the G-cover corresponding

to the Nielsen tuple [g1, g2, g3, g4] = [ϕψa1 , ψa2 , ϕ−1ψa3 , ψa4 ] ∈ Ni(G,C). Let X :=

Y/H → P1
C be the H-quotient. We write (%1, %2, %3, %4) ∈ Sym(G/H)4 for the local



4.3. ELLENBERG'S FAMILIES DO NOT DEFINE TEICHMÜLLER CURVES 67

monodromies of X → P1
C at (x1 = 0, x2 = 1, x3 = λ, x4 =∞), which are described

by the natural action of the local monodromies g−1
i on the left cosets

G/H = {ϕ`H; ` = 0, . . . , p− 1}

(see Proposition 1.5.1). More precisely, if we identify G/H with {1, . . . , p} via the

isomorphism given by ϕ`H 7→ `, then

%1(`) = (1− `)α, %2(`) = −`α−1,

%3(`) = −`− 1, %4(`) = −`

modulo p.

Using Proposition 1.5.6 with G1 = H and G2 = G we conclude that the

restriction X1 := X|P 1
consists of |G1\G/H| = p−1

m + 1 irreducible components,

and the restriction X2 := X|P 2
consists of |G2\G/H| = 1 irreducible component.

To calculate the local monodromies of the cover X
`

1 → P 1 = P1
C represented by

a double coset G1ϕ
`H we proceed similar to Proposition 1.5.6, i.e we restrict %2,

%4 and

%ξ(`) := (%4%2)−1(`) = `α (mod p)

to the orbit {`αk; k = 0, . . . ,m − 1} ⊂ {0, . . . , p − 1} of cardinality m (if ` 6= 0)

resp. to the orbit {0} ⊂ {0, . . . , p− 1} of cardinality one (if ` = 0). (Note that we

compose the permutations %2 and %4 from right to left.)

The irreducible component X
0

1 of X1 is a degree-1 cover of P 1 = P1
C with trivial

local monodromies, i.e. g(X
0

1) = 0.

We now describe the irreducible components X
`

1 of X1 represented by a double

coset G1ϕ
`H with ` 6= 0. The restrictions of %2 to {`αk; k = 0, . . . ,m− 1} consists

P 1∞1ξP 2 0 λ

g(X
0
1) = 0

g(X
1
1) = 1

g(X
2
1) = 1

g(X
3
1) = 1

g(X2) = 0

Figure 4.3. H-quotient for m = 4 and p = 13.

of gcd(m, a1) orbits of length m
gcd(m,a1) , the restrictions of %4 consists of m

2 orbits

of length 2, and the restrictions of %ξ consists of one orbit of length m. Using this

description of the cycle types, the Riemann-Hurwitz genus formula implies that

g(X
`

1) = 1 for all ` 6= 0.

A similar calculation shows that g(X2) = 0. Part (iii) is an immediate conse-

quence of (i) and (ii). �
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After applying a suitable base change T → S we can assume that the pullback

YT = Y×S T extends to a semistable curve over T whose �bre over Ψ−1(0) is given

as in Lemma 4.3.2. To simplify notation, we replace T by S and write Y → S for

this semistable extension.

We then consider the semistable curve XEll := Y/H over S. Unless p = m+ 1,

in Lemma 4.3.4 we have shown that there is a singular �bre XEll
b of compact type

(i.e. the dual graph of its irreducible components is a tree). We use this fact in

order to show thatXEll does not de�ne a Teichmüller curve in the sense of Theorem

3.1.13.

Theorem 4.3.5. Suppose that p 6= m + 1. Then the Deligne extension of

every �at subbundle E ⊂ H1
dR(XEll/S) of rank 2 has a regular point b ∈ S such

that the �breXEll
b is singular. In particular, XEll → S does not de�ne a Teichmüller

curve in the sense of Theorem 3.1.13.

Proof. Choose b ∈ S−S as in Example 4.3.3 (ii). Lemma 4.3.4 implies that

XEll
b is a singular curve of compact type. The rest follows from Lemma 4.3.1 and

[Möl11, Theorem 2.2]. �

Remark 4.3.6. We now consider the case that p = m+1. Then XEll → S is

a curve of genus 1. Let S̃ be its smooth locus. Since XEll has at least one singular

�bre (e.g. the H-quotient of the cover on the right hand side in Figure 4.1) it follows

that the image of S̃ →M1 ' A1
j sending b ∈ S̃ to the j-invariant of XEll

b is not a

point. Hence the map is dominant and we conclude that the image is a Teichmüller

curve.

4.4. The Hurwitz monodromy of Ellenberg's families

In this section we describe the Hurwitz monodromy of the branch locus map

Ψ : HG,C → P∗ (introduced in Section 1.3) for the case that HG,C is the Hurwitz

space of metacyclic covers of type (σ1, σ2, σ3, σ4). We use the formulas from Section

1.3, Proposition 1.3.4. Recall that the group G and the tuple C are given by

G = 〈ϕ,ψ; ϕp = ψm = 1, ψϕψ−1 = ϕα〉, A = 〈ϕ〉, H = 〈ψ〉,

C = (ClG(ψa1),ClG(ψa2),Cl(Gψ
a3),ClG(ψa4)) ,

where m is the least common multiple of the denominators of σ1, σ2, σ3 and σ4 as

well as p ≡ 1 (mod m) is a prime number, α ∈ {1, . . . , p− 1} represents an element

in F×p of order m and ai = mσi for i = 1, . . . , 4. Our approach in Section 4.4.1 is

analogous to that of [Bou04, Section 3].

In Section 4.4.2 we consider the Hurwitz space of (non-Galois) degree-p cov-

ers of P1
C with ordered branch locus of cardinality 4 and monodromy group G.

This Hurwitz space parametrises the H-quotients of the metacyclic covers of type

(σ1, σ2, σ3, σ4). Since the moduli map S → Mg associated to an Ellenberg family
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XEll → S factors through such a Hurwitz space, the description of its Hurwitz

monodromy describes the image of the moduli map more precisely.

4.4.1. Hurwitz monodromy of metacyclic covers. Let Γ ⊂ GL2(Fp) be

the subgroup generated by the matrices

B2 =

(
αa2+a3 0

αa2+a3(αa2 − 1) 1

)
, B3 =

(
1 α−a2(αa4 − 1)

0 αa3+a4

)
.

Put B1 := (B2B3)−1. As in [Völ93, Lemma 3] resp. [Bou04, Section 3], we show

that the Hurwitz monodromy right action

π1(P1
C−{0, 1,∞}) = 〈b1, b2, b3; b1b2b3 = 1〉 → Sym (Ni(G,C))

from Proposition 1.3.4 is given by the action Γ → GL2 (Fp) where Bi acts on the

row vectors in F2
p by right multiplication.

Proposition 4.4.1. (i) There is a bijection of sets between Ni(G,C) and

the set

W := F2
p−{(0, 0)}

/
〈αI〉

of equivalence classes of row vectors, where I ∈ GL2(Fp) denotes the identity matrix,

and the subgroup 〈αI〉 ⊂ GL2(Fp) acts by right multiplication.

(ii) If g ∈ Ni(G,C) corresponds to (v1, v2) ∈W , then g · bi ∈ Ni(G,C) corresponds

to (v1, v2) ·Bi ∈W .

Proof. (i) After a suitable uniform conjugation, every Nielsen tuple in Ni(G,C)

may be represented by a tuple of the form

g = (g1, . . . , g4) = (ψa1 , ϕv1ψa2 , ϕv3ψa3 , ϕv2ψa4) ,(4.4.1)

where v3 is uniquely determined by v1 and v2 via the relation g1 · · · g4 = 1, i.e.

v3 ≡ −v1α
−a2 − v2α

a3 (mod p).

Nielsen tuples of the form (4.4.1) are equivalent if and only if there exits an in-

teger k such that their components are conjugated by ψk, respectively. Such a

uniform conjugation of a Nielsen tuple means replacing the exponents vi by αkvi.

Therefore, g 7→ (v1, v2) de�nes the wanted bijection. Note that (0, 0) 6∈ W , as

〈ψa1 , ψa2 , ψa3 , ψa4〉 6= G.

(ii) Let g be a Nielsen tuple corresponding to (v1, v2) ∈W . Using (4.1.2), page 58,

and the formulas from Proposition 1.3.4 one easily calculates that g ·bi corresponds
to (v1, v2) ·Bi. �

Example 4.4.2. (i) Suppose that

(σ1, σ2, σ3, σ4) =
(

1
4 ,

3
4 ,

1
2 ,

1
2

)
,
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i.e. m = 4. Then

B2 =

(
α 0

1− α 1

)
, B3 =

(
1 −2α

0 1

)
, B1 = (B2B3)−1 =

(
α− 2 2α

1 + α 1

)
.

Note that B1 and B2 represent matrices in GL2(Fp)/〈αI〉 of order 4, respectively,

and B3 represents a matrix of order p. For i = 1, 2, 3, let %i be the image of

bi under the Hurwitz monodromy π1(P1
C−{0, 1,∞}) → Sym(Ni(G,C)). In the

following we determine the cycle type of %3. For %1 and %2 similar calculations

apply. By Proposition 4.4.1, the cycles of %3 are described by the B3-orbits in

W = F2
p−{(0, 0)}/〈αI〉. Since

B`3 =

(
1 −2α`

0 1

)
,

the vectors (v1, v2) and (v1, v2) ·B`3 are equivalent modulo 〈αI〉 if and only if there

exists an integer k ∈ {0, . . . , 3} such that

(αk − 1) v1 ≡ 0, (αk − 1) v2 ≡ −2α`v1 (mod p).

If v1 ≡ 0 (mod p), i.e v2 6≡ 0 (mod p), then a solution is given by k = 0 and ` = 1.

If v1 6≡ 0 (mod p), we must choose k ≡ 0 (mod m). Then ` = p. Note that

w := |W | = p2−1
4 ,

and that the 〈αI〉-orbit of (v1, v2) ∈ F2
p−{(0, 0)} has length 4. Hence, %3 consists

of (p − 1)/4 cycles of length one and (p − 1)/4 cycles of length p. Using Notation

1.5.4, we have

%3 ∈ ClSw

(
1(p−1)/4 · p(p−1)/4

)
.

Similarly, one checks that

%1, %2 ∈ ClSw

(
1(p−1)/2 · 4(p−1)2/16

)
.

The Riemann-Hurwitz genus formula implies that

g(HG,C) = 1 +
7(p− 1)2

8
.

(ii) Suppose that

(σ1, σ2, σ3, σ4) =
(

2
6 ,

4
6 ,

1
2 ,

1
2

)
,

i.e. m = 6. Then

B1 =

(
−2− α −1− α

2 1

)
, B2 =

(
α5 0

2α 1

)
, B3 =

(
1 1 + α

0 1

)
and one can show that

%1, %2 ∈ ClSw

(
1(p−1)/3 · 6(p−1)2/36

)
, %3 ∈ ClSw

(
1(p−1)/6 · p(p−1)/6

)
,
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where w = p2−1
6 . The Riemann-Hurwitz genus formula implies that

g(HG,C) = 1 +
11(p− 1)2

12
.

Note that in both examples the Hurwitz space HG,C is also connected since p

divides the order of Γ (see [Bou04, Proposition 3.5]).

4.4.2. Hurwitz monodromy of Ellenberg's families. We return to the

general situation with arbitrary type (σ1, σ2, σ3, σ4). Every metacyclic G-cover

Y → P1
C of type (σ1, σ2, σ3, σ4) with ordered branch locus (x1 = 0, x2 = 1, x3 =

λ, x4 =∞) factors through

Y → X := Y/H
ε−→ P1

C.

Lemma 4.4.3. The quotient cover ε : X = Y/H → P1
C is a degree-p cover

branched at (x1, x2, x3, x4) having monodromy group Mon(ε) ' G. The local mon-

odromy of ε at xi is an element of

C∗i = ClSp

(
11δ

(p−1)/δi
i

)
, δi =

m

gcd(m, ai)
.

Proof. The degree of ε is [G : H] = p. Since the normal closure of H ⊂ G is

G, we have an isomorphism

Mon(ε) ' G.(4.4.2)

By Proposition 1.5.1, the local monodromy %i of ε at xi is given by the natural

left action of g−1
i on G/H. It su�ces to consider the case that gi = ψa with

a ∈ {1, . . . ,m− 1}. One checks that

g−1
i ϕ`H = ψ−aϕ`H = ϕ`α

−a
H

using (4.1.2). Therefore, %i(`) = `α−a is a permutation of order δ = m
gcd(m,a) with

precisely one �xed point. �

Remark 4.4.4. The Riemann-Hurwitz genus formula implies that

g(Y ) = p · κ+ 1, g(Y/H) =
p− 1

m
· κ,

where κ = m− 1
2 ·
∑4
i=1 gcd(m, ri).

We may view the group G as a transitive subgroup of Sym(G/H) = Sp, where

g ∈ G `is' the permutation that sends `H to g−1`H. Moreover we identify G with

Mon(ε) by the isomorphism (4.4.2). With these identi�cations made, the cover

ε : X = Y/H → P1
C from Lemma 4.4.3 has monodromy group G and its local

monodromy %i at xi is an element of ClG(ψai). Therefore it is parametrised by the

Hurwitz space Hd,G,C of weak isomorphism classes of degree-p covers of P1
C all of

which have

(i) ordered branch locus of cardinality 4,
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(ii) monodromy group G,

(iii) and the local monodromy %i at xi is an element of ClG(ψai).

As a consequence of Lemma 4.4.3 we have a map

HG,C →Hp,G,C

that sends a G-cover Y → P1
C in HG,C to the branched cover ε : Y/H → P1

C in

Hp,G,C (see [FV91, Section 1.2]).

Our goal is to calculate the Hurwitz monodromy of the branch locus map

Hp,G,C → P1
C−{0, 1,∞},

that sends a cover with ordered branch locus (0, 1, λ,∞) to the third branch point

λ. We use the formulas given in Proposition 1.3.4, but with a stronger equivalence

relation for Nielsen tuples (see Remark 1.3.7).

Remark 4.4.5. There exist ψ̃ ∈ Sp and α̃ ∈ F×p of order p − 1 such that

ψ̃(p−1)/m = ψ and α̃(p−1)/m = α. Furthermore, the group N := 〈ϕ, ψ̃〉 ⊂ Sp is the

normaliser of G in Sp.

As in Proposition 4.4.1 we conclude that the Hurwitz monodromy right action

π1(P1
C−{0, 1,∞}) = 〈b1, b2, b3; b1b2b3 = 1〉 → Sym

(
Niabs(G,C)

)
may still be described by the matrices B1, B2, B3 ∈ GL2(F2

p). But in comparison

to Proposition 4.4.1 the equivalence relation on F2
p is stronger, namely modulo

〈α̃I〉 ⊃ 〈αI〉.

Proposition 4.4.6. (i) There is a bijection of sets between Niabs(G,C) and

the set

W̃ := F2
p−{(0, 0)}

/
〈α̃I〉

of equivalence classes of row vectors, where I ∈ GL2(Fp) denotes the identity matrix

and the subgroup 〈α̃I〉 ⊂ GL2(Fp) acts by right multiplication.

(ii) If g ∈ Niabs(G,C) corresponds to (v1, v2) ∈ W̃ , then g · bi ∈ Niabs(G,C)

corresponds to (v1, v2) ·Bi ∈ W̃ .

Proof. The proof is essentially the same as the one for Proposition 4.4.1. The

only di�erence is that the uniform conjugation of g = (ψa1 , ϕv1ψa2 , ϕv3ψa3 , ϕv2ψa4)

by ψ̃ results in replacing the exponents vi by α̃vi. �

Example 4.4.7. (i) Suppose that

(σ1, σ2, σ3, σ4) =
(

1
4 ,

3
4 ,

1
2 ,

1
2

)
,

i.e. m = 4. Choose B1, B2, B3 ∈ GL2(Fp) as in Example 4.4.2. For i = 1, 2, 3, let %i

be the image of bi under π1(P1
C−{0, 1,∞}) → Sym(Niabs(G,C)). By Proposition

4.4.1, the cycles of %3 are described by the B3-orbits in W̃ = F2
p−{(0, 0)}/〈α̃I〉,
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where α̃ ∈ F×p is given as in Remark 4.4.5. The vectors (v1, v2) and (v1, v2) ·B`3 are

equivalent modulo 〈α̃I〉 if and only if there exists an integer k ∈ {0, . . . , p− 1} such
that

(α̃k − 1) v1 ≡ 0, (α̃k − 1)v2 ≡ −2α`v1 (mod p).

If v1 ≡ 0 (mod p), i.e. v2 6≡ 0 (mod p), a solution is given by k = 0 and ` = 1. All

tuples of the form (0, v2) are equivalent in W̃ . Hence, %3 has one cycle of length

one. If v1 6≡ 0 (mod p), we must choose k ≡ 0 (mod p − 1). In this case, ` ≡ 0

(mod p). Note that

w̃ := |W̃ | = p2 − 1

p− 1
= p+ 1.

We conclude that

%3 ∈ ClSw̃
(
11 · p1

)
.

Similar calculations imply

%1, %2 ∈ ClSw̃

(
12 · 4(p−1)/4

)
.

The Riemann-Hurwitz formula implies that

g(Hp,G,C) =
p− 1

4
− 1

(ii) Suppose that

(σ1, σ2, σ3, σ4) =
(

2
6 ,

4
6 ,

1
2 ,

1
2

)
,

i.e. m = 6. With B1, B2, B3 ∈ GL2(Fp) as in Example 4.4.2, one can show that

%1, %2 ∈ ClSw̃

(
12 · 6(p−1)/6

)
, %3 ∈ ClSw̃

(
11 · p1

)
,

where w̃ = p+ 1. The Riemann-Hurwitz genus formula implies that

g(Hp,G,C) =
p− 1

3
− 1.

4.5. The Bouw-Möller construction for Ellenberg's families

We have shown that Ellenberg's families introduced in Section 4.1 do not de�ne

Teichmüller curves in the sense of Theorem 3.1.13 (for p 6= m+1). This is somewhat

similar to the situation in the following remark.

Remark 4.5.1. Consider the superelliptic curve Y over S = P1
C−{0, 1,∞}

of type (σ1, σ2, σ3, σ4) as in Proposition 3.3.2 (iii) for m 6= n. Let E be the Deligne

extension of the rank-2 subbundle of H1
dR(Y/S) from Remark 3.2.1. After a suitable

base change T → S we can assume that the elliptic singularities of E become regular

points (see Lemma 3.1.8) and AutT (YT ) contains a dihedral group Z/NZ o 〈σ〉
with re�ection σ (as in Proposition 3.3.7 (i)). For m 6= n neither the superelliptic

curve YT nor X := YT /〈σ〉 extend to a smooth curve over all regular points of

E (see Proposition 3.3.7 (iii)). However there is an automorphism τ ∈ AutT (P1
T )

that is invariant on the set of branch points of the cyclic cover YT
Z/NZ−−−→ P1

T ,
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but does not lift to YT . In [BM10b] the authors pass to the Galois closure Ỹ of

YT
Z/NZ−−−→ P1

T

〈σ,τ〉−−−→ P1
T and show that X̃ := Ỹ/〈σ, τ〉 de�nes a Teichmüller curve.

In the situation of the present chapter, where we consider metacyclic covers

Y
A−→ Z

H−→ P1
C, the group Aut(Z) contains a dihedral group H o 〈σ〉. However,

σ does not lift to an automorphism of Y . We now follow an approach which is

motivated by that of [BM10b] discussed in Remark 4.5.1.

Let

Y
Gp,m //

A ��

P1
C

Z

H

??

be a metacyclic cover with Galois group

Gp,m := 〈ϕ,ψ; ϕp = ϕm, ψϕψ−1 = ϕα〉, A = 〈ϕ〉, H = 〈ψ〉

of type

(σ1, σ2, σ3, σ4) ∈
{(

1
4 ,

3
4 ,

1
2 ,

1
2 ), ( 1

3 ,
2
3 ,

1
2 ,

1
2

)}
(see De�nition 4.1.1). Recall that m is the least common multiple of the denomi-

nators of σ1, σ2, σ3, σ4, and that p is a prime with p ≡ 1 (mod m).

Suppose that (x1 = 0, x2 = 1, x3 = λ, x4 =∞) is the branch locus of Y → P1
C.

Let σ ∈ Aut(Z) be a lift of the automorphism of P1
C of order 2 that is given by

x1 7→ x2 and x3 7→ x4, i.e. σ is a re�ection in the dihedral group Dm = 〈ψ, σ〉 =

H o 〈σ〉.
Let Ỹ be the Galois closure of Y

A−→ Z
〈ψ,σ〉−−−→ P1

C. If we put ϕ1 := ϕ and

ϕ2 := σϕ1σ, then Ỹ is a G̃-cover of P1
C, where G̃ is generated by ϕ1, ϕ2, ψ, σ,

satisfying

ϕp1 = ϕp2 = ψm = σ2 = 1, σψσ = ψ−1, ϕ1ϕ2 = ϕ2ϕ1,

σϕ1σ = ϕ2, ψϕ1ψ
−1 = ϕα1 , ψϕ2ψ

−1 = ϕα
−1

2 .

We de�ne

Ã := 〈ϕ1, ϕ2〉, H̃ := 〈ψ, σ〉.

This construction is illustrated by the following commutative diagram, where Y σ →
P1
C → P1

C denotes the metacyclic cover with with Galois group 〈ϕ2〉 o 〈ψ〉 of type
(σ2, σ1, σ4, σ3). This construction is completely analogous to the construction in
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[BM10b] on page 159.

Ỹ
〈ϕ2〉

~~

〈ϕ1〉

!!
Y

〈ϕ1〉   

Y σ

〈ϕ2〉}}
Z

〈ψ〉
��

P1
C

〈σ〉
��

P1
C

Recall that Nielsen tuples g̃ = (g̃1, g̃2, g̃3, g̃4) associated with such G̃-covers must

satisfy g̃1g̃2g̃3g̃4 = 1. This implies that the rami�cation type of Ỹ
G̃−→ P1

C is

C̃ =
(

ClG̃(σ), ClG̃(ψ−1σ), ClG̃(ψa1), ClG̃(ψm/2)
)
,

where

a1 = σ1 ·m =

1, if m = 4,

2, if m = 6.

Lemma 4.5.2. A Nielsen tuple in Ni(G̃, C̃) may always be represented by a

tuple of the form

g̃ = (g̃1, g̃2, g̃3, g̃4) =
(
σ, ϕi1ϕ

−iα
2 ψ−1σ, ϕk1ψ

a1 , ϕ
(k−i)α
1 ϕi2ψ

m/2
)
,(4.5.1)

with (i, k) 6≡ (0, 0) (mod p). The tuple is given up to uniform conjugation with

ψm/2. In particular, we have a bijection

Ni(G̃, C̃) '
(
F2
p−{(0, 0)}

)
/〈−I〉,

where we divide out the action of −I ∈ GL2(Fp). (Here I is the identity matrix.)

Proof. Let g̃ = (g̃1, g̃2, g̃3, g̃4) ∈ Ni(G̃, C̃). After a suitable uniform conjuga-

tion we may represent the Nielsen tuple by

g̃ = (σ, v2ψ
−`σ, v3ψ

`a1 , v4ψ
m/2),

where v2, v3, v4 ∈ Ã = 〈ϕ1, ϕ2〉 and ` ∈ {−1, 1}. Note that the centraliser ZG̃(σ) =

〈σ, ψm/2, ϕ1ϕ2〉 is exactly the set that �xes the �rst component with respect to

uniform conjugation. Since σ ∈ ZG̃(σ), after a further uniform conjugation by σ if

necessary, we may assume that the representative is of the form

g̃ = (σ, v2ψ
−1σ, v3ψ

a1 , v4ψ
m/2).
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Suppose that v3 = ϕx1ϕ
y
2. After another uniform conjugation by (ϕ1ϕ2)−y(1−αa1 )−1

in ZG̃(σ) we �nd a representative of the form

g̃ = (σ, v2ψ
−1σ, ϕk1ψ

a1 , v4ψ
m/2).

One checks that v2ψ
−1σ ∈ ClG̃(ψ−1σ) if and only if v2 = ϕi1ϕ

−iα
2 ψ−1σ for some

i ∈ {0, 1, . . . , p − 1}. The relation g̃1 · · · g̃4 = 1 implies that v4 = ϕ
(k−i)α
1 ϕi2ψ

m/2.

This implies that we may choose the representative as in (4.5.1), which is given up to

the remaining conjugation with ψm/2 ∈ ZG̃(σ). Note that G̃ = 〈g̃1, g̃2, g̃3, g̃4〉 if and
only if (g̃1, g̃2, g̃3, g̃4) is represented by a tuple of the form (4.5.1) with (i, k) 6≡ (0, 0)

(mod p). This proves the lemma. �

The following proposition shows the existence of a non-trivial family of G̃-covers

with rami�cation type C̃.

Proposition 4.5.3. There exists a one-dimensional universal family

Ỹ → P1
HG̃,C̃

→HG̃,C̃

of G̃-covers with rami�cation type C̃, i.e. a scheme Ỹ over HG̃,C̃ such that the

�bre Ỹb → P1
C at any C-rational point b ∈ HG̃,C̃ is isomorphic (in the sense of

De�nition 1.1.7) to the G̃-cover parametrised by b.

Proof. It is easy to check that the centre of G̃ is trivial. Hence the Hurwitz

space HG̃,C̃ is a �ne moduli space (see [RW06, Corollary 4.12]). �

After passing to a suitable unrami�ed cover S → HG̃,C̃, we may assume that

the pullback ỸS → S extends to a semistable curve over S. To simplify notation,

we write Ỹ instead of ỸS for the extension of ỸS to S. Moreover we may choose

the extension in such a way that the action of H̃ extends to Ỹ.

In this section we consider the adapted Ellenberg family

X̃Ell := Ỹ/H̃ → S with H̃ = 〈ψ, σ〉.

(Since X̃Ell is de�ned as quotient of a semistable curve by a �nite group, X̃Ell is a

also semistable.)

Recall that the (non-adapted) Ellenberg familiesXEll → S discussed in Section

4.3 do not de�ne Teichmüller curves because of the following reason. There is a

point b ∈ S−S such that the �bre XEll
b is a singular curve of compact type (see

Theorem 4.3.5). In this section we show that this is not the case for the adapted

Ellenberg families X̃Ell → S (see Theorem 4.5.11).

As a �rst step we analyse the �bres of X̃Ell → S more precisely. Let b ∈ S−S
andX = X̃Ell

b the �bre at b. Write δ for the number of irreducible components and γ

for the number of singularities of X. In the following subsections we systematically

check whether the �bres of X̃Ell over S−S are

(i) of compact type, i.e. 1− δ + γ = 0,
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(ii) a Mumford curve, i.e. 1− δ + γ = g(X),

(iii) or none of the two.

Remark 4.5.4. (i) The genus of the �bres of X̃Ell → S is constant and

equals

g(X̃Ell) =
p2 − 1

2m
− p− 1

2
.

This is a straight forward computation, e.g. one may use Lemma 1.5.3. For p =

m + 1 the genus equals g(X̃Ell) = 1. Otherwise, the smallest genus is given for

p = 13 and m = 6. In this case, we have g(X̃Ell) = 8.

(ii) Suppose that X is the �bre of X̃Ell over an arbitrary point b ∈ S−S. Denote

by X1, . . . , Xδ the irreducible components of X. Then

g(X) = g(X̃Ell) =

δ∑
i=1

g(Xi) + 1− δ + γ,

where γ is the number of singularities of X.

4.5.1. Degenerations at λ ∈ {0, 1}. We denote by

Ψ : HG̃,C̃ → P1
C

the extension of the branch locus map HG̃,C̃ → P1
C−{0, 1,∞} that sends a G̃-cover

with ordered branch locus (0, 1, λ,∞) to its third branch point λ. In this subsection

we prove the following theorem.

Proposition 4.5.5. The �bres of X̃Ell → S over Ψ−1({0, 1}) are either

Mumford curves or smooth. In particular, there is no point b ∈ S−S over Ψ−1({0, 1})
such that X̃Ell

b is a singular curve of compact type.

Remark 4.5.6. The case λ = 0 is completely analogous to the case λ = 1.

In the following we only consider the case λ = 1.

We write X → P for the H̃-quotient of the admissible G̃-cover parametrised

by points in S−S over Ψ−1(1) ⊂HG̃,C̃−HG̃,C̃. Suppose that the admissible cover

corresponds (in the sense of Proposition 1.4.1) to a Nielsen tuple

g̃ = (g̃1, g̃2, g̃3, g̃4) =
(
σ, ϕi1ϕ

−iα
2 ψ−1σ, ϕk1ψ

a1 , ϕ
(k−i)α
1 ϕi2ψ

m/2
)

in Ni(G̃, C̃), normalised as in (4.5.1) with (i, k) 6≡ (0, 0) (mod p). Let γ be the

number of singularities of X, and δ the number of irreducible components of X.

We write P 1 for the irreducible component of P to which the branch points x1 = 0

and x4 = ∞ specialise, and we write P 2 for the irreducible component of P to

which the branch points x2 = 1 and x3 = λ specialise.

Lemma 4.5.7. If (k − i)α ≡ i (mod p), then 1 − δ + γ = g(X), i.e. in this

case X is a Mumford curve.
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Proof. Since (k−i)α ≡ i (mod p) it follows that g̃ξ = g̃2g̃3 = ϕi1ϕ
(k−i)α
2 ψm/2σ

is an element of order 2. This implies that G̃1 = 〈g̃1, g̃4〉 is the direct product of two
cyclic groups of order 2 generated by g̃4 and σ. Moreover, the group G̃2 = 〈g̃2, g̃3〉
is isomorphic to a dihedral group of order 2m∗ with

m∗ =
m

a1
=

4, if m = 4,

3, if m = 6,

generated by the rotation g̃3 of order m∗ and the re�ection g̃2.

Proposition 1.5.6 states that |G̃1\G̃/H̃| is the number of irreducible components

of X above P 1, |G̃2\G̃/H̃| is the number of irreducible components of X above P 2

and |〈g̃ξ〉\G̃/H̃| is the number of singularities of X.

To compute |G̃1\G̃/H̃|, note that the set of right cosets G̃1\G̃ may be repre-

sented by G̃1ϕ
x
1ϕ

y
2ψ

z with x, y ∈ {0, . . . , p− 1} and z ∈ {0, . . . , m2 − 1}. Burnside's
lemma (for orbit-counting) states that

|G̃1\G̃/H̃| =
1

2m

∑
h∈H̃

∣∣∣{G̃1` ∈ G̃1\G; G̃1`h = G̃1`
}∣∣∣ .

One checks that h = 1 ∈ H̃ �xes p2m
2 cosets, h = ψm/2 ∈ H̃ �xes m

2 cosets, h =

ψtσ ∈ H̃ �xes p cosets for t = 0, . . . ,m− 1 in case that m = 6 (resp. h = ψtσ ∈ H̃
�xes 2p cosets for t = 0, 2 in case that m = 4). The other elements of H̃ do not �x

any coset. Hence

|G̃1\G̃/H̃| =
(p+ 1)2

4
.

Similar calculations show that

|〈g̃ξ〉\G̃/H̃| =
p(p+ 1)

2
, |G̃2\G̃/H̃| =

p2 − 1

2m∗
+
p+ 1

2
.

By Proposition 1.5.6, it holds

1− δ + γ = 1− |G̃1\G̃/H̃| − |G̃2\G̃/H̃|+ |〈g̃ξ〉\G̃/H̃|

=
p2 − 1

2m
− p− 1

2
= g(X̃Ell) = g(X).

�

Lemma 4.5.8. Suppose that (k − i)α 6≡ i (mod p).

(i) The number of irreducible components of X over P 2 equals 1.

(ii) We have that 1− δ + γ = 0.

(iii) All irreducible components of X over P 1 have genus 0.

In particular, after contracting all irreducible genus-0 components of X which in-

tersect the rest of X in one singularity, the curve X becomes a smooth curve.

Proof. (i) One checks that G̃1 := 〈g̃1, g̃4〉 ' Fpo(Z/2Z×Z/2Z) is a metabelian

group with normal factor the p-cyclic group 〈ϕ1ϕ
−1
2 〉 and second factor the di-

rect product of two cyclic groups generated by ϕκ1ϕ
κ
2ψ

m/2 and σ, where κ ≡
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((k − i)α + i)2−1 (mod p). (We have chosen κ in such a way that ϕκ1ϕ
κ
2ψ

m/2

and σ commute.) Moreover G̃2 := 〈g̃2, g̃3〉 = 〈ϕ1, ϕ2, ψ
a1 , σ〉 is either G̃ (in case

that m = 4) or an index-2 subgroup of G̃ (in case that m = 6). In any case, we

have that

|G̃2\G̃/H̃| = 1

which equals the number of irreducible components of X over P 2 (see Proposition

1.5.6).

(ii) Similar to the proof of Lemma 4.5.7, using Burnside's lemma (for orbit-counting),

one computes that

|G̃1\G̃/H̃| = |〈g̃ξ〉\G̃/H̃| =
p+ 1

2
.

Hence

1− δ + γ = 1− |G̃1\G̃/H̃| − |G̃2\G̃/H̃|+ |〈g̃ξ〉\G̃/H̃|

= 1− p+ 1

2
− 1 +

p+ 1

2
= 0.

(iii) It remains to check that all irreducible components of X over P 1 have genus 0.

Let Y → P be the admissible G-cover over Ψ−1(1) ⊂ HG̃,C̃−HG̃,C̃ corresponding

to g̃ (as in Proposition 1.4.1). Note that we may restrict this G-cover to a G̃1-cover

Y 1 → P 1 ' P1
C with rami�cation type (ClG̃1

(g̃4),ClG̃1
(g̃1),ClG̃1

(g̃ξ)) such that all

irreducible components over P 1 are copies of Y 1. The Riemann-Hurwitz formula

reads

2g(Y 1)− 2 = −2 · |G̃1|+ |G̃1|
ord g̃4

· (ord g̃4 − 1) + |G̃1|
ord g̃1

· (ord g̃1 − 1)

+ |G̃1|
ord g̃ξ

· (ord g̃ξ − 1)

= −2,

since ord g̃1 = ord g̃4 = 2 and ord g̃ξ = 2p in this case. Hence g(Y 1) = 0. The

irreducible components of X over P 1 are quotients of IndG
G̃1

(Y 1) and therefore

genus-0 curves.

�

Proof of Proposition 4.5.5: Lemma 4.5.7 and Lemma 4.5.8 prove the the-

orem. �

4.5.2. Degenerations at λ = ∞. We now consider the �bre of X̃Ell over

Ψ−1(∞) ⊂ HG̃,C̃−HG̃,C̃ corresponding (in the sense of Proposition 1.4.1) to a

Nielsen tuple

(4.5.2) g̃ = (g̃1, g̃2, g̃3, g̃4) =
(
σ, ϕi1ϕ

−iα
2 ψ−1σ, ϕk1ψ

a1 , ϕ
(k−i)α
1 ϕi2ψ

m/2
)
,

in Ni(G̃, C̃) with (i, k) 6≡ (0, 0) (mod p).

Proposition 4.5.9. Let X̃Ell
b be a �bre of X̃Ell → S at a point b ∈ S−S

over Ψ−1(∞) corresponding to g̃ as in (4.5.2). Write δ for the number of irreducible
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components of X̃Ell
b and γ for the number of singularities of X̃Ell

b . Then

1− δ + γ =

g(X̃Ell)− p−1
m 6= 0, if i ≡ 0 or k + i

∑a1
r=1 α

r ≡ 0 6≡ i (mod p),

g(X̃Ell), otherwise.

In particular, there is no point b ∈ S−S over Ψ−1({∞}) such that X̃Ell
b is (a

singular curve) of compact type.

Proposition 4.5.9 follows from the succeeding lemma, using δ = |G̃1\G̃/H̃| +
|G̃2\G̃/H̃| and γ = |〈g̃ξ〉\G̃/H̃|.

Lemma 4.5.10. (i) The elements

gξ := g̃3g̃4 = ϕi1ϕ
−iα
2 ψ−1, g−1

ξ = ϕ−iα1 ϕi2ψ

have order m.

(ii) The group generated by g̃1 and g̃2,

G̃1 := 〈g̃1, g̃2〉 = 〈g̃ξ, σ〉 ' Dm,

is a dihedral group of order 2m generated by the rotation g̃ξ of order m and the

re�ection σ.

(iii) The group generated by g̃3 and g̃4,

G̃2 := 〈g̃3, g̃4〉 =


〈ϕ2〉o 〈ϕ−iα1 ψ〉, if k + i

∑a1
r=1 α

r ≡ 0 6≡ i (mod p)

〈ϕ1〉o 〈ψ〉, if i ≡ 0 (mod p)

〈ϕ1, ϕ2〉o 〈ψ〉, otherwise,

is a metabelian group.

(iv) We have

|G̃1\G̃/H̃| =
p+ 1

2

(
p− 1

m
+ 1

)
.

|G̃2\G̃/H̃| =


p−1
m + 1, if i ≡ 0 or k + i

∑a1
r=1 α

r ≡ 0 6≡ i (mod p),

1 otherwise.

|〈g̃ξ〉\G̃/H̃| =
p2 − 1

m
+ 1.

Proof. The proof of the lemma is similar to the proofs of Lemma 4.5.7 and

Lemma 4.5.8. �

Theorem 4.5.11. The adapted Ellenberg family X̃Ell := Ỹ/H̃ → S has no

�bres that are singular curves of compact type.

Proof. This follows from Proposition 4.5.5 and Proposition 4.5.9. �
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4.6. The de Rham cohomology of the adapted Ellenberg families

Our next goal is to �nd `good' candidates for �at rank-2 subbundles Ẽ of the

Deligne extension of H1
dR(X̃Ell/S) such that we may choose a set of marked points

of Ẽ

(i) all of which are logarithmic singularities,

(ii) the curve X̃Ell is smooth over the non-marked points,

(iii) the bundle Ẽ is indigenous.

We have checked whether the degenerations in Ψ−1({0, 1,∞}) are Mumford

curves, smooth or none of the two.

Notation 4.6.1. Write S
∗
for the set of points b ∈ S−S such that X̃Ell

b is

neither a Mumford curve nor smooth.

We have shown in Proposition 4.5.5 and Proposition 4.5.9 that the set S
∗
is

exactly the set of points in S−S over Ψ−1(∞) ⊂ HG̃,C̃−HG̃,C̃ corresponding (in

the sense of Proposition 1.4.1) to a Nielsen tuple

g̃ = (g̃1, g̃2, g̃3, g̃4) =
(
σ, ϕi1ϕ

−iα
2 ψ−1σ, ϕk1ψ

a1 , ϕ
(k−i)α
1 ϕi2ψ

m/2
)

in Ni(G̃, C̃) with i ≡ 0 or i 6≡ 0 ≡ k + i
∑a1
r=1 α

r (mod p).

Suppose that Ẽ is a �at rank-2 subbundle of the Deligne extension of the relative

de Rham cohomology H1
dR(X̃Ell/S). Choose b ∈ S−S and denote by X1, . . . , Xδ

the irreducible components of X̃Ell
b . Write Ẽ|b = Ẽb/mbẼb for the �bre of Ẽ at

b. Here mb denotes the maximal ideal of the local ring OS,b. We consider the

submodule

Ẽ|comp
b := Ẽ|b ∩

(
H1

dR(X1)× · · · ×H1
dR(Xδ)

)
⊂ Ẽ|b

of the �bre of the Deligne extension of H1
dR(X̃Ell/S) at b . We call Ẽ|comp

b the

component part of Ẽ at b.

Lemma 4.6.2. If

Ẽ|comp
b = Ẽ|b(4.6.1)

then b is a regular point of (Ẽ,∇).

This is a direct generalisation of Lemma 4.3.1, which we have used in Theorem

4.3.5 to show that the (non-adapted) Ellenberg families XEll → S do not de�ne

Teichmüller curves.

Remark 4.6.3. Let b ∈ S
∗
and X = X̃Ell

b the �bre of X̃Ell
b at b. Write

X1, . . . , Xδ for the irreducible components of X and γ for the number of singular-

ities of X. Let Ẽ be an arbitrary �at rank-2 subbundle of the Deligne extension of

H1
dR(X̃Ell/S)
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(i) If X is a Mumford curve, then H1
dR(X1)× · · · ×H1

dR(Xδ) = {0}. Therefore it
holds Ẽ|comp

b = {0}.
(ii) If X is a smooth curve, then Ẽ|comp

b = Ẽ|b and b is a regular point of Ẽ.

In the following we decompose H1
dR(X̃Ell/S) into �at rank-2 subbundles iso-

morphic to Ã-isotypical subbundles of H1
dR(Y/S) and exclude those subbundles

whose Deligne extension at some point b ∈ S
∗
equals its component part at b.

(Since this implies that the subbundle has a regular point b whereas X̃Ell
b is a

singular curve.) The remaining subbundles are `good' candidates to satisfy the

conditions from Theorem 3.1.13.

First we describe the G̃-isotypical decomposition of H1
dR(X̃Ell/S). We write

χι,κ ∈ Irr(Ã) for the irreducible character of Ã = 〈ϕ1, ϕ2〉 given by

χι,κ(ϕx1ϕ
y
2) = ζιx+κy

p

and identify Irr(Ã) with F2
p via the bijection given by χι,κ 7→ (ι, κ). The group

H̃ = 〈ψ, σ〉 acts on Irr(Ã) by

ψ(ι, κ) = (ια, κα−1), σ(ι, κ) = (κ, ι).

This is the action introduced in Notation 2.3.1. One checks that the stabiliser H̃χ

of χ = χι,κ is

H̃χ =


H̃, if (ι, κ) = (0, 0),

〈ψrσ〉, if (ι, κ) = (ι, ιαr) 6= (0, 0),

〈1〉, otherwise.

Moreover, we write H̃(χ) for the orbit of χ = χι,κ and de�ne G̃χ := Ão H̃χ.

As in Lemma 2.3.2 (or [Ser77, Section 8.2]) we conclude that all irreducible

G̃-characters are of the form

θχ,ξ := IndG̃
G̃χ

(χ · ξ), χ ∈ Irr(Ã), ξ ∈ Irr(H̃χ).

Moreover, θχ,ξ = θχ′,ξ′ if and only if χ′ ∈ H̃(χ) and ξ = ξ′.

We consider the set of irreducible Ã-characters with trivial stabiliser, indexed

by the set

µ =
{

(ι, κ) ∈ F2
p; ιαr 6≡ κ (mod p) for all r = 0, . . . ,m− 1

}
/ ∼,

where we divide out the action of H̃. In the following, we often write χ ∈ µ when

we mean that χ = χι,κ ∈ Irr(Ã)/H̃ with (ι, κ) ∈ µ.

Proposition 4.6.4. The relative de Rham cohomology H1
dR(X̃Ell/S) splits

into �at subbundles

H1
dR(X̃Ell/S) =

⊕
χ∈µ

Ẽχ,(4.6.2)
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where every Ẽχ has rank 2 and is isomorphic (as a �at vector bundle with Gauÿ-

Manin connection) to the χ-isotypical component of H1
dR( Ỹ/S).

Proof. Proposition 2.3.6 yields

H1
dR(X̃Ell/S) =

⊕
χ∈Irr(Ã)/H̃

(Ẽχ,1)H̃ ,

where Ẽχ,1 denotes the isotypical component of H1
dR( Ỹ/S) with respect to θχ,1 ∈

Irr(G̃). Let χ ∈ µ ⊂ Irr(Ã)/H̃ and put Ẽχ := (Ẽχ,1)H̃ . We now compute rank Ẽχ =

rank(Ẽχ,1)H̃ . We check that for all ν = 1, . . . , 4 and all ` ∈ Gχ/〈g̃ν〉 it holds

Ã ∩ 〈`g̃ν`−1〉 = {1} ⊂ kerχ. Moreover,

|G̃χ\G/〈g̃2〉| = |G̃χ\G/〈g̃1〉| = |G̃χ\G/〈g̃4〉| = m,

|G̃χ\G/〈g̃3〉| = 2a1 =

2, if m = 4,

4, if m = 6.

Using the notation from Section 2.3.1, we compute that

rank
(
Ẽχ,1

)H̃
= nχ,1 = 2 · |H̃(χ)| −

∑
ν=1,...,4

`∈Gχ\G/〈g̃ν〉

kν,`χ = 2.

The decomposition (4.6.4) follows since one computes that

1
2 ·
∑
χ∈µ

rank Ẽχ = |µ| = p2 − 1

2m
− p− 1

2
= g(X̃Ell)

(see Remark 4.5.4 (i)).

It remains to check whether Ẽχ is isomorphic to the χ-isotypical component of

H1
dR( Ỹ/S). The cover Ỹ/ ker(χ) → Z = Ỹ/〈ϕ1, ϕ2〉 is an étale p-cyclic cover of

a genus-2 curve. Let Eχ of H1
dR( Ỹ/S) be the χ-isotypical component. It may be

considered as a subbundle of the ker(χ)-invariant module H1
dR( Ỹ/S)ker(χ), which

we may identify with the de Rham cohomology of the quotient curve Ỹ/ ker(χ).

Now we proceed as in the proof of Proposition 4.2.1. Using Lemma 4.2.7, we

conclude that Eχ ⊂ H1
dR( Ỹ/S)ker(χ) carries a �ltration in the sense of De�nition

3.1.9. Moreover, we conclude that the submodule Ẽχ = (Ẽχ,1)H̃ of H1
dR( Ỹ/S)H̃ '

H1
dR(X̃Ell/S) and the χ-isotypical component Eχ of H1

dR( Ỹ/S) are isomorphic as

�at vector bundles. (An isomorphism Eχ
∼−→ Ẽχ = (Ẽχ,1)H̃ is induced by sending a

section ω of Eχ to the section
∑
h∈H hω.) �

The following lemma simpli�es the situation. Note that S
∗ ⊂ Ψ−1(∞).

Lemma 4.6.5. Let b ∈ S∗, i.e. X := X̃Ell
b is neither smooth nor a Mumford

curve. Write X → P for the corresponding admissible cover. Then the irreducible

components of X over the irreducible component P 1 of P to which the branch points

x1 = 0 and x2 = 1 specialise have genus 0.
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Proof. The cover X → P is the H̃-quotient of an admissible G̃-cover Y → P .

The restriction of Y to the component P 1 is given by Y |P 1
= IndG̃

G̃1
(Y 1) where

Y 1 → P1
C is a G̃1-cover of type (g̃1, g̃2, g̃ξ) with

(g̃1, g̃2, g̃ξ) = (σ, ϕi1ϕ
−iα
2 ψ−1σ, ϕi1ϕ

−iα
2 ψ−1), G̃1 = 〈g̃1, g̃2〉 ' Dm,

where ord g̃ξ = m (see Lemma 4.5.10). Thus, the Riemann-Hurwitz genus formula

reads

2g(Y 1)− 2 = −2 · |Dm|+
|Dm|
ord g̃1

(ord g̃1 − 1) +
|Dm|
ord g̃2

(ord g̃2 − 1)

+
|Dm|
ord g̃ξ

(ord g̃ξ − 1)

= −2,

i.e. g(Y 1) = 0. The lemma follows since the irreducible components of X → P over

P 1 are quotients of IndG
G̃1

(Y 1). �

Theorem 4.6.6. Let χ ∈ µ, i.e. χ = χι,κ is the irreducible A-character given

by

χ(ϕx1ϕ
y
2) = ζιx+κy

p with ιαr 6≡ κ (mod p) for r = 0, . . . ,m− 1.

Denote by Ẽχ ⊂H1
dR(X̃Ell/S) the corresponding isotypical component from Decom-

position (4.6.2) in Proposition 4.6.4. Let b ∈ S−S be such that the �bre X̃Ell
b is a

singular curve. Then

Ẽχ|comp
b =

{0}, if ι · κ 6≡ 0 (mod p),

Ẽχ|b, otherwise.

Proof. We only consider the admissible G̃-cover Y → P parametrised by

points b ∈ S∗ over HG̃,C̃−HG̃,C̃ (see Notation 4.6.1). We can restrict to that case,

since Ẽχ|comp
b = {0} automatically holds in the case that X̃Ell

b is a Mumford curve

(see Remark 4.6.3 (i)). Let X = Y /H̃. Lemma 4.6.5 implies that

Ẽχ|comp
b = (Ẽb/mbẼb) ∩H1

dR(X2),

where X2 is the restriction of X to the irreducible components over P 2 to which

the branch points x3 = λ and x4 =∞ specialise.

Let Y 2 be the restriction of Y to the irreducible components over P 2. Let Y
0

2

be an irreducible component such that Y 2 = IndG̃
G̃2

(Y
0

2). Hence the character øG̃
of the representation G̃ → GL(H1

dR(Y 2)) (induced by the Galois action of G̃ on

Y 2) equals øG̃ = IndG̃
G̃2
øG̃2

where

øG̃2
= 2 · 1+ IndG〈1〉 1−

3∑
ν=1

IndG〈hν〉 1

(by Lemma 2.1.1).
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Similar to Section 2.3.1 we compute that

rank
(
Ẽχ|comp

b

)H̃
= 〈øG̃, θχ,1〉G̃ = 2 · 〈IndG̃

G̃2
1, θχ,1〉G̃ + |H̃(χ)| −

∑
ν=1,2,3

`∈G̃χ\G̃/〈hν〉

kν,`χ

with

kν,`χ =

1, if Ã ∩ 〈`hν`−1〉 ⊂ kerχ,

0, otherwise.

Note that the choice of χ implies that χ has a trivial stabiliser in H̃, i.e. G̃χ = Ã.

Then it is easy to check that kν,`χ = 1 for all ν = 1, 2, 3 and all ` ∈ G̃χ\G̃/〈hν〉.
Moreover,

3∑
ν=1

|G̃χ\G̃/〈hν〉| = 2 + 2a1 +m.

Then

|H̃(χ)| −
∑

ν=1,2,3

`∈G̃χ\G̃/〈hν〉

kν,`χ = 0.

Therefore

1
2 · rank

(
Ẽχ|comp

b

)H̃
= 〈IndG̃

G̃2
1, θχ,1〉G̃ = 〈ResÃ IndG̃

G̃2
1, χ〉Ã.

Proposition 22 in [Ser77] implies that

〈ResÃ IndG̃
G̃2

1, χ〉Ã =
∑

`∈Ã\G̃/G̃2

〈IndÃ
Ã∩`G̃2`−1 1, χ〉Ã

= 〈IndÃ〈ϕ1〉〈1, χ〉Ã + 〈IndÃ〈ϕ2〉 1, χ〉Ã.

The last equality follows by the description of G̃2 in Lemma 4.5.10. (Note that

b ∈ S
∗
means that g ∈ Ni(G̃, C̃) is normalised as Lemma 4.5.2 with i ≡ 0 or

i 6≡ 0 ≡ k+i
∑a1
r=1 α

r (mod p).) The restriction χ̄1 := χ|〈ϕ1〉 is the trivial character

if and only if ι ≡ 0 (mod p). Similarly, the restriction χ̄2 := χ|〈ϕ2〉 is the trivial

character if and only if κ ≡ 0 (mod p). We conclude that

〈IndÃ〈ϕ1〉 1, χ〉Ã + 〈IndÃ〈ϕ2〉 1, χ〉Ã =
∑
v=1,2

〈1, χ̄v〉〈ϕv〉 =

0, if ι · κ 6≡ 0 (mod p),

1, otherwise.

�

Remark 4.6.7. The number of (ι, κ) ∈ µ with ι · κ 6= 0 equals the di�erence

g(X̃Ell)− (1− δ + γ) =
p− 1

m

(cf. Proposition 4.5.9).

We summarise the result of this section.
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Summary 4.6.8. We consider the �at rank-2 vector bundles (Ẽχ,∇) in the

decomposition

H1
dR(X̃Ell/S) =

⊕
χ∈µ

Ẽχ

from Proposition 4.6.4 and assume that p 6= m + 1. Let χ = χι,κ ∈ µ with

χ(ϕx1ϕ
y
2) = ζιx+κy

p such that

ι · κ ≡ 0 and ιαr 6≡ κ (mod p) for r = 0, . . . ,m− 1.

Theorem 4.6.6 implies that the �bre of the bundle Ẽχ at a point b ∈ S−S where X̃Ell
b

is a singular curve is contained in the component part of H1
dR(X̃Ell

b ), i.e. Ẽχ|comp
b =

Ẽχ|b. Lemma 4.6.2 therefore implies that b is a regular point of Ẽχ, whereas X̃Ell
b

is a singular curve. Hence Ẽχ does not satisfy the conditions from Theorem 3.1.13.

On the other hand, all characters χ = χι,κ ∈ µ with χ(ϕx1ϕ
y
2) = ζιx+κy

p where

ι · κ 6≡ 0 and ιαr 6≡ κ (mod p) for r = 0, . . . ,m− 1(4.6.3)

satisfy Ẽχ|comp
b = {0} for all b ∈ S−S where X̃Ell

b is a singular curve.

To determine whether X̃Ell de�nes a Teichmüller curve it remains to show the

following.

(i) The fact that Ẽχ|comp
b = {0} implies that Ẽχ has a logarithmic singularity in b.

(ii) There exists a character χ ∈ µ which satis�es (4.6.3) such that the Kodaira-

Spencer map of Ẽχ is an isomorphism.



Appendix A
Fuchsian di�erential equations

We brie�y recall some basic facts about the classical theory of Fuchsian di�er-

ential equations on P1
C. For more details we refer to [Beu07] and [Yos87].

We consider the ordinary linear di�erential operator over C(s) of order 2 given

by

L :=
(
∂
∂s

)2
+ c1 ·

(
∂
∂s

)
+ c0

where c0, c1 ∈ C(s) and ∂
∂s is the standard derivation.

Definition A.0.9. (i) A point b ∈ S := P1
C is called singularity of L if for

some i ∈ {0, 1} we have ordb(ci) < 0. We write S′ ⊂ S for the (�nite) set of singular

points of L and S ⊂ S for its complement.

(ii) We say that a singularity b ∈ S′ is regular if both ordb(c1) ≥ −1 and ordb(c0) ≥
−2.

(iii) We call L a Fuchsian di�erential operator if all of its singularities are regular.

(iv) The solution sheaf of L, denoted by Sol(L), is the local system on S whose �bre

at b ∈ S (with local parameter λ) is the two-dimensional C-vector subspace of C[[λ]]

consisting of the Taylor series solutions in of L = 0 around b.

Fix b0 ∈ S and let γ ∈ π1(S, b0). By analytical continuation of solutions along

the loop γ an isomorphism Sol(L)b0
∼−→ Sol(L)b0 of the stalk at b0 is induced. Let

Mγ ∈ GL2(C) be the corresponding matrix representation with respect to a �xed

basis for Sol(L)b. Then

π1(S, b0)→ GL2(C), γ 7→Mγ .(A.0.4)

is a representation of π(S, b0). All choices of a basis for Sol(L)b0 provide conjugate

representations, i.e. the map (A.0.4) and its image are de�ned up to conjugation in

GL2(C).

Definition A.0.10. (i) The representation (A.0.4) is calledmonodromy rep-

resentation of L.

(ii) The image of (A.0.4) is called monodromy group of L.

87
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Definition A.0.11. Let S′ = {b1, . . . , bn} be the set of singularities of L

and �x a presentation

π1(S, b) = 〈γ1, . . . , γn ; γ1 · · · γn = 1〉,

where γi is represented by a simple closed loop winding around the `missing` point

bi such that the only singularity of L contained inside of γ is bi.

(i) The matrix Mγi is called local monodromy of L in bi.

(ii) We say that bi is an elliptic singularity if

Mγi ∼

(
e2πiα 0

0 e2πiβ

)
.

(iii) We say that bi is an logarithmic singularity if

Mγi ∼

(
e2πiα 1

0 e2πiα

)
.

(iv) Let λ denote a local parameter at b ∈ S′ and write c0 =
∑∞
k=−2 c

0
k · λk and

c1 =
∑∞
k=−1 c

1
k · λk. The two complex solutions of the equation

λ(λ− 1) + λ · c1−1 + c0−2 = 0

are called local exponents of L in b.

(v) The table 
b1 . . . bn

eb11 . . . ebn1

eb12 . . . ebn2


of local exponents ebi1 , e

bi
2 corresponding to the singularities bi ∈ S′ is called Rie-

mann scheme.

Remark A.0.12. (i) Let b ∈ S′ and denote by e1, e2 the local exponents of

L in b. Then the (possibly equal) complex numbers exp(2πi · e1) and exp(2πi · e2)

are the eigenvalues of the local monodromy Mγ in b.

(ii) Note that in De�nition A.0.11 (ii) we allow that the local exponents are integers,

i.e.Mγ is the identity matrix. In Chapter 3, De�nition 3.1.3 we introduce the notion

`local exponent' for �at vector bundles, which is not completely consistent with the

de�nition in this chapter. If the local exponents of a �at vector bundle at a point

with toric monodromy both equal 0, then b is a regular point. However, if the local

exponents of a Fuchsian di�erential equation at an elliptic singularity both equal

0, then b is a so called apparent singularity. For more details we refer to [Yos87,

Section 3.4].

Definition A.0.13. Let L1 and L2 be two Fuchsian di�erential operators.

The operators L1 and L2 are said to be projectively equivalent if there exists f ∈ C[s]



such that for all b0 ∈ S it holds ordb0(f) = 0 and Sol(L2)b0 consists of the elements

of Sol(L1)b0 multiplied by the Taylor series expansion of f at b0.

Example A.0.14. The hypergeometric di�erential operator on S := P1
C is

the Fuchsian di�erential operator

L =
(
∂
∂s

)2
+

((A+B + 1) s− C)

s(s− 1)

(
∂
∂s

)
+

AB

s(s− 1)
, A,B,C ∈ C(A.0.5)

with exactly three regular singularities in S′ = {0, 1,∞} and corresponding Rie-

mann scheme 
0 1 ∞
0 0 A

1− C C −A−B B

 .
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Zusammenfassung

Teichmüller-Kurven sind Geodäten im Modulraum Mg der kompakten Rie-

mannschen Flächen vom Geschlecht g. In dieser Arbeit beschäftigen wir uns mit

einer Konstruktionsmethode für Teichmüller-Kurven, welche eine Charakterisierung

von Möller [Möl06b] benutzt. Hierbei wird eine eindimensionale Familie von

kompakten Riemannschen Flächen konstruiert, deren Fasern zu Punkten einer

Teichmüller-Kurven in Mg korrespondieren. Eine solche Familie liegt vor, wenn

ihre erste relative de Rham Kohomologie ein indigenes Rang-2-Unterbündel ent-

hält, dessen Markierungen allesamt logarithmische Singularitäten sind [Möl06b,

Theorem 5.3] .

Mit diesem Ansatz wird in der vorliegenden Arbeit eine neue Klasse von Teich-

müller-Kurven konstruiert. Diese reiht sich ein in eine gröÿere Klasse von Teichmül-

ler-Kurven von Bouw und Möller [BM10b]. Wir zeigen, dass dies insgesamt eine

vollständige Klassi�kation aller Teichmüller-Kurven liefert, die man mittels einer

gewissen Quotientenkonstruktion und mittels indigener Unterbündel der relativen

de Rham Kohomologie von superelliptischen Kurven konstruieren kann (vorausge-

setzt man interessiert sich nur für sogenannte primitive Teichmüller-Kurven).

Für weitere Kandidaten für Familien, die Teichmüller-Kurven liefern, gibt es

nicht viele Ansatzpunkte. Ein möglicher Ansatzpunkt ist, dass die Fasern solcher

Familien Kurven sind, die reelle Multiplikation mit groÿen total reellen Zahlkörpern

besitzen. In [Ell01] werden von Ellenberg eindimensionale Familien mit dieser

Eigenschaft konstruiert; und zwar nach dem gleichen Muster nach dem auch die

oben genannten Familien konstruiert werden. Daher ist die Frage, ob diese Fami-

lien Teichmüller-Kurven liefern, naheliegend. In dieser Arbeit zeigen wir jedoch,

dass dies � auÿer in ein paar wenigen Ausnahmefällen � nicht der Fall ist. Dazu

werden die Ellenbergschen Familien als Familien über geeigneten Hurwitz-Räumen

interpretiert. Hurwitz-Räume sind Modulräume für Galois-Überlagerungen der Rie-

mann Sphäre. Wir zeigen wie man durch Untersuchen des Randes des entsprechen-

den Hurwitz-Raums ausschlieÿen kann, dass eine Familie eine Teichmüller-Kurve

liefert und wenden dieses Ausschlusskriterium auf die Ellenbergschen Familien an.

Des Weiteren konstruieren wir eine modi�zierte Variante der Ellenbergschen

Familien und zeigen, dass in diesem Fall das Ausschlusskriterium auf dem Rand

des entsprechenden Hurwitz-Raums nicht erfüllt ist. Ob diese modi�zierten Fa-

milien tatsächlich Teichmüller-Kurven liefern, kann jedoch nicht allein anhand des

Hurwitz-Raums � also mit den Methoden, die in dieser Arbeit entwickelt werden �

entschieden werden.
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