Design of the
Secure Execution PUF-based Processor (SEPP)

Stephan Kleber!, Florian Unterstein!, Matthias Matousek!, Frank Kargl!,
Frank Slomka®, and Matthias Hiller*

! Institute of Distributed Systems, Ulm University, Germany,
stephan.kleber@uni-ulm.de, florian.unterstein@aisec.fraunhofer.de,
matthias.matousek@uni-ulm.de, frank.kargl@uni-ulm.de
2 Institute of Embedded Systems/Real-Time Systems, Ulm University, Germany,
frank.slomka@uni-ulm.de
3 Institute for Security in Information Technology, Technische Universitéit Miinchen,
Germany, matthias.hiller@tum.de

Abstract. A persistent problem with program execution is its vulner-
ability to code injection attacks. Equally unsolved is the susceptibility
of software to reverse engineering, which undermines code confidential-
ity. We propose an approach that solves both kinds of security problems
by employing instruction-level code encryption combined with the use
of a physical unclonable function (PUF). Our Secure Ezecution PUF-
based Processor (SEPP) architecture is designed to minimize the attack
surface, as well as the performance impact, and requires no significant
changes to the software development process. Our approach supports
distributed systems, as the secure execution environment needs not be
physically available to the developer.

1 Introduction

Code injection, especially when performed remotely, is one of the most effective
strategies for malicious attackers. Since the infamous phrack article “Smashing
The Stack For Fun And Profit” 8] by Aleph One in 1996, which described simple
stack buffer overflows, many additional detection and prevention techniques like
stack canaries or non-executable stacks have been proposed and soon thereafter
been circumvented by more sophisticated attack techniques. It is still an open
security challenge to effectively prevent injection of unauthorized code into an
execution environment.

Goals of a secure and isolated execution environment are (1) to protect
against code injection to prevent malicious actions inside the environment (code
injection) and (2) to prevent genuine code from getting extracted out of its exe-
cution environment to prevent reverse engineering (code confidentiality). In this
paper we present the Secure FEzecution PUF-based Processor (SEPP), a novel
processor architecture which allows secure execution of encrypted programs while
encrypted program images can only be generated with the help of the target pro-
cessor instance itself. Not properly encrypted, code will not execute successfully.
Therefore it cannot be injected remotely.

2 Related Work

To achieve code injection protection and code confidentiality, it is necessary to
maintain control over the execution environment, even if it is physically accessi-
ble to an adversary. Previous approaches used the term isolated execution envi-
ronment (IEE) [|9]. We relate our work to the closest IEE concepts: Compared
to the ezecute-only memory (XOM) architecture [6], our approach does not re-
quire the assumption that main memory or even caches are secure. The AEGIS
secure processor |10} [11] is the first attempt to utilize the challenge-response
(CR) behavior of a PUF. AEGIS requires extensive compiler and OS support,
as well as additional modified hardware like a custom memory controller. Our
approach aims for a smaller trusted computing base (TCB) and better compati-
bility with existing code. OASIS [9] establishes data confidentiality and integrity
with cryptographic keys bootstrapped from a PUF. However, OASIS does not
encrypt the code itself. In general, we aim for a deeper embedding where code
remains encrypted in memory and caches and gets decrypted just within the
execution pipeline. Moreover, our design aims at minimizing not only the TCB,
but also the necessity for changes to known programming models.

Physical unclonable functions (PUFs) evaluate manufacturing variations in
integrated circuits to derive unique secrets inside a device to generate crypto-
graphic keys or authenticate a device in a CR protocol |1}, |5]. Instead of storing
secrets permanently, PUFs reveal their secret only during runtime. Popular PUF
types for key generation are the SRAM PUF |3]| and the Ring-Oscillator (RO)
PUF [7]. In this work, we use a Complementary Index-Based Syndrome cod-
ing (C-IBS) RO PUF implementation [4].

3 Adversary Model

There are two distinct addressed adversary models: For the code confiden-
tiality scenario (e.g., to protect intellectual property in embedded systems), we
assume that the attacker has physical access to the processor and its periph-
eral connections like memory bus lines. The attacker tries to learn parts of the
application code by reading out memory or registers. For the malicious code
injection scenario, we assume an attacker has the ability to place arbitrary data
into the processors main memory.

Attacks like denial-of-service (DoS), e.g. injecting random invalid instruc-
tions, and hardware side-channels are considered subjects of complementary re-
search such as Ascend [2]. We concur with the authors of XOM, AEGIS, OASIS,
and Ascend in assuming that there exists a variety of methods to prevent or im-
pede hardware tampering, like probing or fault-injection. Therefore we consider
the chip itself a tamper-proof packaged piece of hardware and attacks of this
kind are addressed only implicitly.

target system target system
user system

user ?) REG 5 [s A - * I;Efo :
| v ALU

ALU

PC

SR
3NIN3dId

ANIN3dId

{]

/ N

5 5
-] [x]

Data
Memory/Cache IMG
v/ - Memory/Cache
key: | trusted/secure ‘ encrypted ‘ unencrypted
(a) compile mode (b) execute mode

Fig. 1: SEPP architecture

4 Secure Execution PUF-based Processor Architecture

The SEPP architecture consists of two major components: The execution envi-
ronment, where code is securely executed, which we call target system. Its core
is a processor providing runtime decryption of single instructions directly within
the execution pipeline. It includes strict hardware binding of code through uti-
lization of a PUF. For this, we extended the OpenRISC OR1000 architecture by
a PUF module and an instruction decryption module. The other component is
the development machine which we call user system. On the user system, the
user generates programs that will be deployed on the target system.

After a user has compiled code into a program binary on the trusted user
system, he needs to encrypt the binary. The program code is encrypted on basic
block level, using a symmetric cipher in CTR mode, enabling random access to
support execution branches. For this symmetric encryption, a key k., is chosen
by the user. Each basic block is encrypted using k, with the CTR mode nonce
set to the virtual address of the beginning of the basic block. Starting from zero,
the counter is incremented while the nonce stays the same for a basic block.

How a program binary B is bound to a hardware instance is shown in Fig.
The encrypted binary encg, (B) and k, are thereto transmitted to the target
system. In this, k, must remain confidential. By hashing, the encrypted binary
and the security kernel K are bound together. This hash constitutes the challenge
¢ = Hash(KC, ency, (B)). c is then used as input to the PUF, using its properties to
bind K and B to the processor by generating the cryptographic key k, = PUF(c)
as a response. To protect the user key k,, required for program-execution, it is
encrypted using this k,. This public representation of &, we call m = ency,, (k).
This has the advantage that the target hardware is not needed in order to prepare
a binary while retaining the desired security properties.

To minimize the parts of the processor that are required to be trusted, the
decryption module is included directly in the instruction fetch stage of the pro-
cessor’s pipeline. The module continuously pre-computes a keystream during
the execution of a basic block. This keystream is XORed with the incoming en-
crypted instructions, decrypting them. A decrypted instruction is then forwarded
to the instruction decode stage as usual.

To remain self-contained, the correct k, must to be recovered for execution
only from the encrypted 7 inside the program image and k,. The target system
needs not store any program-specific values. Only the same processor instance is
able to generate the correct k, to restore k, = decy, (7). The RO PUF implemen-
tation we utilized for our approach does not provide CR behavior but generates
a single fixed response. CR behavior, however, is required for the generation of
cryptographic keys which are not only bound to the device but also to the pro-
gram binary. We constructed a CR wrapper around the device specific RO PUF-
output s, as an alternative to a CR PUF, so k, = PUF(c) = Hash(s,, ¢).

5 Prototype Implementation

To demonstrate the feasibility of our architecture, we developed a prototype
capable of creating and executing encrypted standalone program images. The
prototype is based on the OpenRISC Reference Platform (ORPSoC) which is
an implementation of OR1000, an open-source RISC architecture with a 32 bit
wide instruction set and a five stage, single issue pipeline. This baseline system
was enhanced with two major modules: the PUF module and the instruction
decryption module. We implemented our design on a Xilinx Spartan-6 LX45
FPGA. The Universal Bootloader Das U-Boot (or U—Boot)ﬂ is used as software
platform. It was modified to implement the functionality of the target system
security kernel, i.e., the generation and execution of encrypted program images
in interaction with the PUF module.

6 Conclusion

In this paper, we have presented SEPP, an architecture that embeds a PUF-based
decryption module deeply into a CPU design in order to prevent injection of ma-
licious code and reverse engineering of programs in embedded systems. Code is
encrypted and thereby bound to single individual CPU instances. As our pro-
totype shows, the envisioned security goals of SEPP can be reached. Compared
to previously proposed solutions, this constitutes a significant step forward in
the level of security and it paves the way for improved performance. Our future
work will focus on the completion of the development environment, operating
system support for our platform, evaluations and performance enhancements.

4 http://www.denx.de/wiki/U-Boot, accessed on 22/02/2014

http://www.denx.de/wiki/U-Boot

References

1]

2]

3]

4]

[5]

7]

18]

[9]

[10]

[11]

Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, Francois-Xavier Stan-
daert, and Christian Wachsmann. “A Formal Foundation for the Security Fea-
tures of Physical Functions”. In: Security and Privacy (SE&P). Symposium on.
IEEE, 2011.

Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas. “A Secure
Processor Architecture for Encrypted Computation on Untrusted Programs”. In:
Scalable Trusted Computing. Proceedings of the Seventh Workshop on. ACM,
2012.

Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, and Pim Tuyls. “FPGA
Intrinsic PUFs and Their Use for IP Protection”. In: Cryptographic Hardware and
Embedded Systems (CHES). 9th International Workshop on. IACR, 2007.
Matthias Hiller, Dominik Merli, Frederic Stumpf, and Georg Sigl. “Complemen-
tary IBS: Application Specific Error Correction for PUFs”. In: Hardware-Oriented
Security and Trust (HOST). International Symposium on. IEEE, 2012.

Stefan Katzenbeisser, Unal Kocabag, Vladimir RoZi¢, Ahmad-Reza Sadeghi, In-
grid Verbauwhede, and Christian Wachsmann. “PUFs: Myth, Fact or Busted? A
Security Evaluation of Physically Unclonable Functions (PUFs) Cast in Silicon”.
In: Cryptographic Hardware and Embedded Systems (CHES). 14th International
Workshop on. IACR, 2012.

David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. “Architectural Support for Copy and Tam-
per Resistant Software”. In: SIGOPS Operating Systems Review 34.5 (Nov. 2000),
pp. 168-177.

Abhranil Maiti and Patrick Schaumont. “Improved Ring Oscillator PUF: An
FPGA-friendly Secure Primitive”. In: Journal of Cryptology 24.2 (2011), pp. 375—
397.

Aleph One. “Smashing the Stack for Fun and Profit”. In: Phrack 7.49 (Nov.
1996). URL: http://www.phrack.com/issues.html?issue=49&id=14 (visited on
08/24/2015).

Emmanuel Owusu, Jorge Guajardo, Jonathan McCune, Jim Newsome, Adrian
Perrig, and Amit Vasudevan. “OASIS: On Achieving a Sanctuary for Integrity
and Secrecy on Untrusted Platforms”. In: Conference on Computer and Commu-
nications Security (CCS). ACM, Nov. 2013.

Edward G. Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srini-
vas Devadas. “AEGIS: Architecture for Tamper-Evident and Tamper-Resistant
Processing”. In: International Conference on Supercomputing. Proceedings of the
17th annual. ACM, June 2003.

Edward G. Suh, Charles W. O’Donnell, Ishan Sachdev, and Srinivas Devadas.
“Design and Implementation of the AEGIS Single-Chip Secure Processor Using
Physical Random Functions”. In: SIGARCH Computer Architecture News 33.2
(May 2005), pp. 25-36.

http://www.phrack.com/issues.html?issue=49&id=14

	Design of the Secure Execution PUF-based Processor (SEPP)

