First-principles calculation of the thermoelectric figure of merit for [2,2]paracyclophane-based single-molecule junctions

Lade...
Vorschaubild
Dateien
Buerkle_0-289713.pdf
Buerkle_0-289713.pdfGröße: 1.79 MBDownloads: 413
Datum
2015
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Physical Review B. 2015, 91(16), 165419. ISSN 0163-1829. eISSN 1095-3795. Available under: doi: 10.1103/PhysRevB.91.165419
Zusammenfassung

Here we present a theoretical study of the thermoelectric transport through [2,2]paracyclophane-based single-molecule junctions. Combining electronic and vibrational structures, obtained from density functional theory (DFT), with nonequilibrium Green's function techniques allows us to treat both electronic and phononic transport properties at a first-principles level. For the electronic part, we include an approximate self-energy correction, based on the DFT+Σ approach. This enables us to make a reliable prediction of all linear response transport coefficients entering the thermoelectric figure of merit ZT. Paracyclophane derivatives offer a great flexibility in tuning their chemical properties by attaching different functional groups. We show that, for the specific molecule, the functional groups mainly influence the thermopower, allowing us to tune its sign and absolute value. We predict that the functionalization of the bare paracyclophane leads to a largely enhanced electronic contribution ZelT to the figure of merit. Nevertheless, the high phononic contribution to the thermal conductance strongly suppresses ZT. Our work demonstrates the importance to include the phonon thermal conductance for any realistic estimate of the ZT for off-resonant molecular transport junctions. In addition, it shows the possibility of a chemical tuning of the thermoelectric properties for a series of available molecules, leading to equally performing hole- and electron-conducting junctions based on the same molecular framework.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BÜRKLE, Marius, Thomas J. HELLMUTH, Fabian PAULY, Yoshihiro ASAI, 2015. First-principles calculation of the thermoelectric figure of merit for [2,2]paracyclophane-based single-molecule junctions. In: Physical Review B. 2015, 91(16), 165419. ISSN 0163-1829. eISSN 1095-3795. Available under: doi: 10.1103/PhysRevB.91.165419
BibTex
@article{Burkle2015First-30975,
  year={2015},
  doi={10.1103/PhysRevB.91.165419},
  title={First-principles calculation of the thermoelectric figure of merit for [2,2]paracyclophane-based single-molecule junctions},
  number={16},
  volume={91},
  issn={0163-1829},
  journal={Physical Review B},
  author={Bürkle, Marius and Hellmuth, Thomas J. and Pauly, Fabian and Asai, Yoshihiro},
  note={Article Number: 165419}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30975">
    <dc:contributor>Hellmuth, Thomas J.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-05-19T09:42:20Z</dcterms:available>
    <dc:creator>Asai, Yoshihiro</dc:creator>
    <dcterms:title>First-principles calculation of the thermoelectric figure of merit for [2,2]paracyclophane-based single-molecule junctions</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:contributor>Asai, Yoshihiro</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30975"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30975/1/Buerkle_0-289713.pdf"/>
    <dcterms:issued>2015</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-05-19T09:42:20Z</dc:date>
    <dc:contributor>Bürkle, Marius</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Hellmuth, Thomas J.</dc:creator>
    <dc:creator>Bürkle, Marius</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30975/1/Buerkle_0-289713.pdf"/>
    <dc:creator>Pauly, Fabian</dc:creator>
    <dc:contributor>Pauly, Fabian</dc:contributor>
    <dcterms:abstract xml:lang="eng">Here we present a theoretical study of the thermoelectric transport through [2,2]paracyclophane-based single-molecule junctions. Combining electronic and vibrational structures, obtained from density functional theory (DFT), with nonequilibrium Green's function techniques allows us to treat both electronic and phononic transport properties at a first-principles level. For the electronic part, we include an approximate self-energy correction, based on the DFT+Σ approach. This enables us to make a reliable prediction of all linear response transport coefficients entering the thermoelectric figure of merit ZT. Paracyclophane derivatives offer a great flexibility in tuning their chemical properties by attaching different functional groups. We show that, for the specific molecule, the functional groups mainly influence the thermopower, allowing us to tune its sign and absolute value. We predict that the functionalization of the bare paracyclophane leads to a largely enhanced electronic contribution Z&lt;sub&gt;el&lt;/sub&gt;T to the figure of merit. Nevertheless, the high phononic contribution to the thermal conductance strongly suppresses ZT. Our work demonstrates the importance to include the phonon thermal conductance for any realistic estimate of the ZT for off-resonant molecular transport junctions. In addition, it shows the possibility of a chemical tuning of the thermoelectric properties for a series of available molecules, leading to equally performing hole- and electron-conducting junctions based on the same molecular framework.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen