Characterization of disturbed neural crest migration as mechanism of developmental toxicity of prescription drugs

Lade...
Vorschaubild
Dateien
Pallocca_0-395576.pdf
Pallocca_0-395576.pdfGröße: 10.46 MBDownloads: 441
Datum
2017
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

In the last years, different individual human embryonic stem cell-based developmental toxicity test systems have been established and have been proven to offer new possibilities to explore toxicological hazard directly on relevant and non-transformed human cells. A further achievement has been the combination of these assays to comprehensive batteries able to predict human developmental toxicity. In the framework of the European project ESNATS (Embryonic Stem cell-based Novel Alternative Testing Strategies), we developed a test battery which allows the inclusion of any developmental toxicity assay, and that explores the responses of such test systems to a wide range of compounds. As a first step, we selected and characterized a heterogeneous group of compounds with a wide applicability domain, which ranged from environmental pollutants to several prescription drugs. To evaluate the feasibility of the suggested test framework, we performed the initial screen in a well-characterized assay that evaluates ‘migration inhibition of neural crest cells’ (MINC assay), which finally resulted in the identification of 11 hits (e.g. geldanamycin, arsenite, PBDE-99). Next, transcriptome analysis for some selected MINC hits was performed. The transcriptome changes triggered by these substances in human neural crest cells (NCC) were recorded and analyzed. Transcript profiling allowed a clear separation of different toxicants. Furthermore, a diagrammatic system was developed to visualize and compare toxicity patterns of a group of chemicals by giving a quantitative overview of altered superordinate biological processes (e.g. KEGG pathways or overrepresented gene ontology terms). Finally, the transcript data were mined for potential markers of toxicity. We found that the inclusion of transcriptome data largely increased the information from the MINC phenotypic test. As a final step, one of the MINC-positive compounds, the prescription drug interferon-β (IFNβ), was chosen to be further characterized as potential developmental toxicity hazard. We could confirm the adverse effects of IFNβ on NCC migration in different functional assays. The analysis of transcriptome changes suggested a role of altered JAK-STAT signaling in toxicity, which was confirmed by detailed measurements of interferon effects on signaling in the presence of specific kinase inhibitors.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690PALLOCCA, Giorgia, 2017. Characterization of disturbed neural crest migration as mechanism of developmental toxicity of prescription drugs [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Pallocca2017Chara-37669,
  year={2017},
  title={Characterization of disturbed neural crest migration as mechanism of developmental toxicity of prescription drugs},
  author={Pallocca, Giorgia},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37669">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-22T10:25:39Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37669"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-22T10:25:39Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract xml:lang="eng">In the last years, different individual human embryonic stem cell-based developmental toxicity test systems have been established and have been proven to offer new possibilities to explore toxicological hazard directly on relevant and non-transformed human cells. A further achievement has been the combination of these assays to comprehensive batteries able to predict human developmental toxicity. In the framework of the European project ESNATS (Embryonic Stem cell-based Novel Alternative Testing Strategies), we developed a test battery which allows the inclusion of any developmental toxicity assay, and that explores the responses of such test systems to a wide range of compounds. As a first step, we selected and characterized a heterogeneous group of compounds with a wide applicability domain, which ranged from environmental pollutants to several prescription drugs. To evaluate the feasibility of the suggested test framework, we performed the initial screen in a well-characterized assay that evaluates ‘migration inhibition of neural crest cells’ (MINC assay), which finally resulted in the identification of 11 hits (e.g. geldanamycin, arsenite, PBDE-99). Next, transcriptome analysis for some selected MINC hits was performed. The transcriptome changes triggered by these substances in human neural crest cells (NCC) were recorded and analyzed. Transcript profiling allowed a clear separation of different toxicants. Furthermore, a diagrammatic system was developed to visualize and compare toxicity patterns of a group of chemicals by giving a quantitative overview of altered superordinate biological processes (e.g. KEGG pathways or overrepresented gene ontology terms). Finally, the transcript data were mined for potential markers of toxicity. We found that the inclusion of transcriptome data largely increased the information from the MINC phenotypic test. As a final step, one of the MINC-positive compounds, the prescription drug interferon-β (IFNβ), was chosen to be further characterized as potential developmental toxicity hazard. We could confirm the adverse effects of IFNβ on NCC migration in different functional assays. The analysis of transcriptome changes suggested a role of altered JAK-STAT signaling in toxicity, which was confirmed by detailed measurements of interferon effects on signaling in the presence of specific kinase inhibitors.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Pallocca, Giorgia</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37669/3/Pallocca_0-395576.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37669/3/Pallocca_0-395576.pdf"/>
    <dc:creator>Pallocca, Giorgia</dc:creator>
    <dcterms:issued>2017</dcterms:issued>
    <dcterms:title>Characterization of disturbed neural crest migration as mechanism of developmental toxicity of prescription drugs</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
February 15, 2017
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2017
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen