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We experimentally study the phase behavior of a charge-stabilized two-dimensional colloidal crystal which

is subjected to a one-dimensional periodic light field. Such light fields are created by a scanned optical line

tweezer which allows the variation of the periodicity without optical realignments. In order to realize a

wide range of line spacings relative to the lattice constant, we use a suspension of silica particles in

bromobenzene. This colloidal system has a Debye screening length of about 4.6 mm which results in the

formation of crystals with lattice constants up to 20 mm. Because the refractive index of bromobenzene

is larger than that of the colloids, optical gradient forces lead to the attraction of particles at regions

where the intensity is smallest. Depending on the depth and periodicity of the optical potential, we

observe the light-induced assembly of colloids into triangular, rhombic and square phases.

1. Introduction

The investigation of the phase behavior in colloidal monolayers
has a long history in providing deep insights into how matter
organizes to form liquid or crystalline states.1,2 In particular,
phase transitions in two-dimensional systems have attracted
considerable attention, because such systems are also of great
technological importance.3,4 Oen, the transition between a
liquid (disordered) and a crystalline (ordered) state is induced
by variations in the particle pair potential.5,6 In addition,
structural phase transitions can be also triggered by external
periodic elds which enhance the long-range positional order.
While the latter is obvious for two-dimensional substrate
potentials which localize the particles at well-dened positions
in the sample plane,7–9 it is less obvious that a one-dimensional,
periodic substrate potential can also induce two-dimensional
order in a colloidal system. The rst experiments in this direc-
tion have been carried out by Chowdhury, Ackerson and Clark,
who demonstrated the freezing of a colloidal liquid into a
hexagonal crystalline state by application of an optical inter-
ference pattern of periodically spaced lines. When they tuned
the distance of the laser lines to d ¼ a

ffiffiffi

3
p

=2 with a the mean
particle distance, they observed a phase transition from a liquid
into a hexagonal phase as the laser intensity was increased
(laser-induced freezing).10 Later, it has been demonstrated that
a further increase of the laser intensity can lead to reentrant
behavior from a hexagonal phase to a liquid. This is found to be
in agreement with theoretical and numerical studies.11,12

In contrast to the above experiments where the initial phase
(i.e. the phase which formed in the absence of a light pattern)
was a colloidal liquid, here we investigate the response of a
charge-stabilized colloidal crystal with lattice constant a to a
one-dimensional light eld with periodicity d. To obtain a large
range of d/a values, we have used a colloidal suspension of silica
particles in bromobenzene which leads to lattice constants up
to 20 mm. Depending on the intensity, periodicity and even the
width of the light potential, we observe a variety of different
colloidal phases with triangular, rhombic and square order.

2. Materials and methods
2.1 Colloidal suspension

In our experiments we use charged silica spheres with diameter
s ¼ 3.72 mm and a polydispersity less than 5% suspended in an
organic solvent, namely bromobenzene (C6H5Br). These
colloids were purchased as an aqueous suspension from
Microparticles GmbH with a standard deviation size of SD ¼
0.08 mm andmass concentration of 5% w/v. These silica spheres
are hydrophilic and when placed in contact with water acquire a
negative charge due to the dissociation of the silanol group
SiOH to SiO� (surface charge) and H+ as counter ions.13 Before
the colloids are transferred to bromobenzene, the following
steps have to be done carefully to ensure monodispersity and
stability of the colloids. First, a 100 ml sample is prepared in a
glass micro tube where the original solvent is replaced by highly
deionized water with an ionic conductivity of 0.06 mS cm�1. This
process helps to decrease the number of ions in the solvent,
thus enhancing the electrostatic stability of the suspension.
Next, the suspension is centrifuged for 2 minutes at 2000 rpm to
separate the water from the particles. The water is then taken
out and replaced by deionized water. This step is repeated
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several times before the suspension is sonicated for few
minutes. Sonication helps to release coagulated particles which
occurred due to the centrifugation process and therefore
insures monodispersity in the suspension. Then, the water is
evaporated from the suspension under vacuum conditions at
room temperatures. Aer this process, a thin adsorbed layer is
le on the surface of silica particles.13,14 We add 1 ml of bro-
mobenzene to the dried sample and place it in an electrical
shaker for several hours to separate particles that aggregated
during the drying process. At this stage sonication is avoided
since this may cause the degradation of bromobenzene into its
constituents, i.e. benzene and bromine.15 Aer the bromo-
benzene suspension is le for half an hour, aggregates sedi-
ment towards the bottom where they can be easily removed.
Finally, around 100 ml of the aggregate-free suspension is
injected into a sample cell (Hellma) which consists of a fused
silica cuvette with 200 mm height. The cell is then sealed tightly
to avoid contact with air since it will signicantly increase the
ionic concentration in the solvent as a function of time. In a
closed cell, the suspension maintains its properties for a period
of two months.

Bromobenzene is an organic solvent with a refractive index n
¼ 1.56 and a polarity close to the limit of that of apolar liquids.16

Since the density of silica particles is larger than that of bro-
mobenzene, then particles sediment toward the bottom surface
of the cell. Therefore, for particle densities in the range of
F ¼ 0.004–0.006 mm�2 the colloidal system form a two-dimen-
sional charge-stabilized crystal where due to the large Debye
screening length (see below) the triangular crystal have lattice
constants up to 20 mm. Because the out of phase uctuations
account to less than 100 nm, even though particles are 3d
spheres, they can be considered as effective two dimensional.

In order to determine the pair interaction of our experi-
mental system, we prepared several low density samples
(F ¼ 0.002 mm�2) and measured the pair correlation function
g(r). A direct inversion of g(r) for two-dimensional systems is not
possible, therefore we performed some model density func-
tional theory (DFT) calculations17 for a two-dimensional system
of disks that interact via a hard-core Yukawa potential of
the form:

U(r)/kBT ¼ A/r exp(�kr), for r > s (1)

with U(r)¼N, for r < s, A¼ (Z*)2lB[exp(ks/2)/(1 + (ks/2))]
2. Here,

r is the center-to-center particle distance, Z* the effective surface
charge, lB the Bjerrum length, k the inverse screening length
and s the diameter of the particles. In the case of bromo-
benzene (dielectric constant 3 ¼ 5.6) the Bjerrum length is
10 nm.

We employed a recently developed DFT18 for the hard disk
reference system and a perturbation theory treatment for the
so Yukawa repulsion.19 The Yukawa parameters were
obtained by combining two observations: from the experi-
mental particle trajectories we obtained the average number
density and its uctuation in a sub-volume of our system.
From this, it is possible to determine the compressibility of the
uid,19 which for the DFT approach results in an equation that

combines the two Yukawa parameters A and k. Comparing the
measured to the computed g(r), the latter determined from test
particle route DFT calculations, we obtained the Yukawa
parameters, under the constraint of the above obtained
compressibility. Best agreement between experiment and
theory was found for A ¼ 186 mm and k�1 ¼ 4.6 mm which leads
to an effective surface charge Z* ¼ 128. This small value seems
to be reasonable in face of the low polarity solvent. Therefore a
variation of the particle density within the range mentioned
earlier does not considerably change the ionic strength. In
addition, the contribution of the colloidal monolayer to the
overall counter ion concentration is rather small since the
height of our sample cell is 200 mm.

2.2 Creation of one-dimensional periodic light potentials

One dimensional, periodic potentials were formed by scanning
the line focus of a laser beam (l¼ 532 nm) across the sample. As
a result of optical forces20–23 such light patterns act as one-
dimensional potential landscapes acting on the particles.
Experimentally, such light elds were created by deection of a
laser beam by a galvanostatically driven mirror and imaging its
pivot point by a telescope to a cylindrical lens. The latter forms
the initial spherical cross-section of the laser beam (about 3 mm
diameter) into a line with half width of 3.25 mm which is then
imaged into the sample plane (Fig. 1a and b). In order to create
arbitrary line patterns with generally non-sinusoidal shapes, we
have scanned the line focus in jerky leaps across the sample
plane. This is achieved by application of a step like voltage
protocol to the scanner as schematically shown in Fig. 1d. Such
protocols are characterized by the time interval Dt, which
corresponds to the resting time of the laser beam being set to
about 400 ms in our experiments. The height of the steps DV
determines the spacing between adjacent laser lines which was
varied between approximately 6–12 mm. As a result, the laser
line starts from x ¼ 0, goes to one end (+x) in one direction then
follows back the same path in the opposite direction (�x)
passing by x ¼ 0 again. By this it forms a complete cycle by
continuously jumping with the same distance d. The repetition
time of each cycle was set to T ¼ 0.025 s (40 Hz). During that
time the colloidal particle diffuses over a distance L determined
from the mean square displacement L2 ¼ hDx2i ¼ 2DT, with D¼
kBT/6phR the diffusion coefficient (with R the radius of the
particle, h the viscosity of the solvent, T the temperature, and kB
the Boltzmann constant). Under our experimental conditions,
we obtain D¼ 0.104 mm2 s�1 yielding L¼ 0.072 mmwhich is less
than 2% of the half width of the optical trap. Accordingly, our
light potentials can be regarded as quasi-static. The accuracy of
the line position is determined to about 0.03 mm. Compared to
light potentials created by interfering laser beams10,12 this
method allows the in situ control of the periodicity without any
optical realignment. In addition this method allows the crea-
tion of periodic and non-periodic light patterns. This is exem-
plarily shown in Fig. 1c where we created a quasiperiodic
Dodecanacci sequence24 being closely related to 12-fold quasi-
crystals. This sequence is comprised of two length scales, L and
S with L=S ¼ ð1þ ffiffiffi

3
p Þ=2.
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Since the refractive index of bromobenzene is larger than
that of silica (n ¼ 1.42), the colloidal particles will be expelled
from the high intensity regions and attracted towards locations
where the laser pattern has its smallest intensity. To have a
quantitative estimate about the particle–light interaction, we
measured the particle density distribution of a highly diluted
colloidal suspension (F ¼ 0.0003 mm�2) when subjected to the

light potential. Evaluating the particle probability distribution
in the direction perpendicular to the laser lines, and employing
Boltzmann statistics we obtain the depth and width of the laser

Fig. 1 (a) Schematic sketch of the experimental setup with a laser beamwhich is
first reflected on a galvanostatically driven mirror and then directed through a
telescope to a cylindrical lens. (b) Snapshot of the periodic light pattern taken at
the sample position characterized by a period d. (c) Snapshot of a quasiperiodic
pattern characterized by two length scales L and S. (d) Typical step-like voltage
input supplied to the mirror which leads to the intensity pattern shown in (b).

Fig. 2 Amplitude of laser potential acting on colloidal particles of 3.72 mm diameter as a function of the incident laser intensity. The symbols correspond to the
measured data and the dashed line is a linear fit which indicates the linear relationship between V0 and the laser intensity. The inset shows a part of the cross-section of
the potential for a line spacing d ¼ 8.2 mm. It should be emphasized, that in general non-sinusoidal potential cross-sections are obtained. The similarity with a sine
function shown here is a result of the Gaussian intensity distribution of the laser line and the specific line spacing chosen.

Fig. 3 Center region of the g(x,y) illustrating the average nearest particle
distance v and u along the x and y axes respectively, with an average particle
distance a along symmetry lines making angle q ¼ �tan�1(x) with the x-axis.

Table 1 Characterization of different crystalline phases by different order
parameters as defined in the text

Crystal phase\parameter d/a x ¼ u/v q ¼ tan�1(x)

Triangular I 0.86 0.554, 0.600 29�, 31�

Rhombic I 0.85, 0.72 0.600, 0.965 31�, 44�

Square 0.71 0.965, 1.036 44�, 46�

Rhombic II 0.69, 0.51 1.036, 1.000 46�, 59�

Triangular II 0.5 1.660, 1.804 59�, 61�
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potential acting on the particles which is shown in Fig. 2. The
half width of the interaction potential in the inset of Fig. 2 is
4.1 mm which is somewhat larger than the actual half width of
the optical line due to the nite size of the particles.25 As

expected,20,25 the potential amplitude V0 increases linearly with
the laser intensity.

2.3 Characterization of phases

To distinguish between different structural phases obtained in
our experiments we determined the particle-center coordinates
by means of digital video microscopy26 and a particle-tracking
algorithm in order to calculate the corresponding pair correla-
tion functions g(x,y). Fig. 3 shows a schematic illustration of the
central region of g(x,y) together with the trapping potential
indicated by dashed vertical lines. From the distances v and u of
the central particle to its nearest neighbours perpendicular and
along the laser lines respectively, we dene the order parameter
x ¼ u/v which allows us to distinguish different structural
phases according to Table 1.

3. Results and discussions

The experiments discussed in the following were performed
with samples having a particle density r y 0.0057 mm�2. Each
experiment lasted for 16 minutes and was recorded with a rate
of 1 fps.

In the absence of the external potential, at this density the
system forms a spontaneous crystal with random orientation

Fig. 4 Snap shots for the different phases are shown at the top while contour plots of the average density distribution function r(x,y) are shown at the middle and pair
correlation function g(x,y) are shown at the bottom for a potential strength of V0 ¼ 7.2 kBT. [a, b and c] Triangular I phase at a periodicity d¼ 11.6 mm and x¼ 0.588, [d,
e and f] rhombic I phase at d¼ 10.4 mm and x¼ 0.830 [g, h and i], square phase at d¼ 9.58 mm and x¼ 0.995, [j, k and l] rhombic II phase at d¼ 8.5 mm and x¼ 1.217,
[m, n and o] triangular II phase at d ¼ 6.75 mm and x ¼ 1.681. Green lines in r(x,y) help to visualize the structure of each phase. All length scales are normalized by the
lattice constant a of the initial phase.

Fig. 5 Bond Length distribution for the five phases at 7.2 kBT. Triangular I (light
green 2) and triangular II (dark green ⬣) show single peaks while rhombic I (red
D), rhombic II (brown ;) and square phase (blue >) show two peaks.

9233



and a mean lattice constant of about 13.5 mm. Fig. 4 shows the
corresponding snap shots as well as the particle densities and
pair correlations when the periodicity of the laser pattern was
set to values between 6 and 12 mm. Each measurement was
started from a spontaneous crystal (V0 ¼ 0) and the intensity
was slowly increased to 7.2 kBT. Due to this protocol, the
particles can initially exchange between potential lines and the
obtained structures correspond to equilibrium phases. In
Fig. 4(a)–(c) the periodicity is tuned to the triangular commen-
surate case d/a ¼ 0.86. At V0 ¼ 1.5 kBT the crystal aligns
accordingly and eventually forms a perfect triangular I structure
at 7.2 kBT. Fig. 4(d)–(f) correspond to d/a ¼ 0.77. According to

the above denition of phases, under such conditions a
rhombic I phase with x ¼ 0.83 is obtained. Fig. 4(g)–(i) corre-
spond to the square commensurate phase where d/a ¼ 0.71.
Further decrease of the line spacing to d/a ¼ 0.63 leads to the
rhombic phase II Fig. 4(j)–(l) and nally, for d/a ¼ 0.5 a rotated
triangular crystal (triangular II phase) is obtained as in
Fig. 4(m)–(o).The reason for the formation of the different
phases is the counter play between optical trapping forces and
the repulsive pair potential. While the optical forces align the
particles along the potential lines at a given distance d, the
strong electrostatic particle repulsion leads to a registration
between adjacent lines. It is important to realize, that due to the

Fig. 6 r(x,y) and g(x,y) are shown at the top and bottom respectively at a fixed periodicity d ¼ 9.58 mm and different potential strengths for a randomly oriented
triangular crystal. (a and b) at V0¼ 0, (c and d) a disordered state at V0¼ 2.4 kBT, a square phase shown in (e and f) at V0¼ 3.6 kBTand (g and h) at V0¼ 7.2 kBT. All length
scales are normalized by the lattice constant a of the triangular crystal.

Fig. 7 (a) Part of a non-symmetric potential cross-section for a periodicity of 18 mm and a width of the potential wells of 11.5 mm. (b) Snapshot of colloidal particles
superimposed to the potential pattern with potential wells (grey) and laser lines (green). The potential depth was set to 8.3 kBT. Red lines show the colloidal structure
and the inset with the corresponding g(x,y) gives x ¼ 0.85 indicating a rhombic I phase.
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constant total particle density in the sample cell, the particle
line density will change upon variation of the line spacing d. For
example, during the transition from the triangular I to the
square phase, i.e. upon decreasing the distance d, the particle
density along the lines will decrease. Note, that the length of the
laser lines in y-direction is about 3 mm being much smaller
than the extension of the sample cell which allows the exchange
of particles in that direction.

The different phases can be also clearly distinguished by
analysing their bond-length histogram. Bond-lengths were
calculated based on a Delaunay triangulation27,28 that identies
the bonds between each particle and its nearest neighbour.
Fig. 5 shows such normalized histograms for the different
phases taken at V0 ¼ 7.2 kBT. Both, the triangular I and the
triangular II phases show a single peak corresponding to six-
fold coordinated particles at distance a. In contrast, the
rhombic I and II phases show a decrease in the amplitude of the
rst peak and a rise of a second one at a larger distance. The
rst peak corresponds to 4-fold coordinated particles at
distance a and the second peak corresponds to 2-fold coordi-
nated particle at distances between a and less than a

ffiffiffi

3
p

. For the
square phase, also two peaks are observed, one corresponding
to the four nearest neighbours at distance a and a second peak
at distance a

ffiffiffi

2
p

. Due to the quasiperiodic order in two-dimen-
sional systems, in general the second peak of the bond-length
histograms is slightly broader than that of the rst peak.

In Fig. 6 we have investigated how the square phase gradu-
ally forms for a period d ¼ 9.58 mm with increasing the laser
intensity. Starting from a randomly oriented spontaneous
triangular crystal at zero light intensity as shown in Fig. 6a and
b, we observe at V0 ¼ 2.4 kBT an intermediate phase as shown in
Fig. 6c and d. By looking particularly at the pair correlation
function, which indicates the probability to nd a particle at a
certain position, a ring is observed around the center. This is a
signature of an isotropic distribution of the particles and
therefore a liquid state. At the same time four peaks develop on
this ring indicating a higher probability to nd particles at these
positions, giving some local order in the system. Therefore we
describe this phase as a disordered state. This is caused by the
light potential which is, in this case, not strong enough to force
registration of particles and the square phase is not able to form
yet. Increasing the potential strength localizes the particles in
the potential wells and enhances their positional order which
nally leads to a perfect square phase (Fig. 6(e)–(h)).

As already pointed out, the creation of potential landscapes
by a scanned laser line offers several advantages compared to
interference patterns. This includes the creation of non-peri-
odic particle–light potentials as mentioned in Section 2.2, and
also periodic but non-symmetric patterns. The latter is achieved
by replacing the even step-like voltage protocol shown in Fig. 1d
(corresponding to a single distance of the scanned laser lines)
by an uneven step function applied to the voltage controlled
mirror (corresponding to two distances including a small one in
the order of 1 mm). This is exemplarily shown in Fig. 7a, where
we create a non-symmetric particle–light interaction potential
with periodicity of 18 mm and a width of the potential wells of
11.5 mm. Applying this potential with a particle–light interaction

strength of 6 kBT or above to a colloidal crystal of lattice
constant a ¼ 12.5 mm results in the formation of a rhombic I
phase. In contrast to Fig. 4d and e, however, here two rows of
particles are trapped within a single optical potential line where
they are arranged in a zig-zag pattern due to their electrostatic
repulsion. Similar to above, a change in the periodicity of the
light potential will result in a square phase.

4. Conclusion

We have reported on the creation of colloidal crystalline phases
in one-dimensional periodic potential landscapes. In order to
realize a wide range of line spacings relative to the lattice
constant, we use a suspension of silica particles and bromo-
benzene as a solvent. Because the Debye screening length of the
system is about 4.6 mm it results in the formation of crystals
with lattice constants up to 20 mm. In the presence of the laser
pattern, the crystals are stabilized by the competition of optical
and electrostatic forces and thus strongly depend on both the
periodicity and the laser intensity of the light eld. By using
scanning optical tweezers, such potential landscapes can—in
contrast to interference patterns—be controlled in situ without
realignment of optical components.
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