Nonlinear response of dense colloidal suspensions under oscillatory shear : mode-coupling theory and FT-rheology experiments

Lade...
Vorschaubild
Dateien
Fuchs_etal.pdf
Fuchs_etal.pdfGröße: 939.26 KBDownloads: 288
Datum
2010
Autor:innen
Siebenbürger, Miriam
Ballauff, Matthias
Reinheimer, Kathrin
Wilhelm, Manfred
Frey, S. J.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Physical Review E. 2010, 82(6). ISSN 1539-3755. Available under: doi: 10.1103/PhysRevE.82.061401
Zusammenfassung

Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in good agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscillatory spectroscopy.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BRADER, Joseph M., Miriam SIEBENBÜRGER, Matthias BALLAUFF, Kathrin REINHEIMER, Manfred WILHELM, S. J. FREY, Fabian WEYSSER, Matthias FUCHS, 2010. Nonlinear response of dense colloidal suspensions under oscillatory shear : mode-coupling theory and FT-rheology experiments. In: Physical Review E. 2010, 82(6). ISSN 1539-3755. Available under: doi: 10.1103/PhysRevE.82.061401
BibTex
@article{Brader2010Nonli-13772,
  year={2010},
  doi={10.1103/PhysRevE.82.061401},
  title={Nonlinear response of dense colloidal suspensions under oscillatory shear : mode-coupling theory and FT-rheology experiments},
  number={6},
  volume={82},
  issn={1539-3755},
  journal={Physical Review E},
  author={Brader, Joseph M. and Siebenbürger, Miriam and Ballauff, Matthias and Reinheimer, Kathrin and Wilhelm, Manfred and Frey, S. J. and Weysser, Fabian and Fuchs, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/13772">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/13772"/>
    <dc:creator>Weysser, Fabian</dc:creator>
    <dc:creator>Brader, Joseph M.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-06-27T17:35:02Z</dc:date>
    <dc:contributor>Wilhelm, Manfred</dc:contributor>
    <dcterms:title>Nonlinear response of dense colloidal suspensions under oscillatory shear : mode-coupling theory and FT-rheology experiments</dcterms:title>
    <dc:creator>Ballauff, Matthias</dc:creator>
    <dc:creator>Wilhelm, Manfred</dc:creator>
    <dc:creator>Reinheimer, Kathrin</dc:creator>
    <dc:contributor>Brader, Joseph M.</dc:contributor>
    <dc:contributor>Siebenbürger, Miriam</dc:contributor>
    <dc:contributor>Reinheimer, Kathrin</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Frey, S. J.</dc:creator>
    <dc:creator>Fuchs, Matthias</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Siebenbürger, Miriam</dc:creator>
    <dc:contributor>Fuchs, Matthias</dc:contributor>
    <dcterms:abstract xml:lang="eng">Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in good agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscillatory spectroscopy.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/13772/2/Fuchs_etal.pdf"/>
    <dcterms:bibliographicCitation>First publ. in: Physical Review E ; 82 (2010). -  061401</dcterms:bibliographicCitation>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-06-27T17:35:02Z</dcterms:available>
    <dc:contributor>Frey, S. J.</dc:contributor>
    <dc:contributor>Weysser, Fabian</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:issued>2010</dcterms:issued>
    <dc:contributor>Ballauff, Matthias</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/13772/2/Fuchs_etal.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen