Impact of metal contamination in silicon solar cells

Lade...
Vorschaubild
Dateien
Coletti_159167.pdf
Coletti_159167.pdfGröße: 429 KBDownloads: 612
Datum
2011
Autor:innen
Coletti, Gianluca
Bronsveld, Paula C. P.
Warta, Wilhelm
Macdonald, Daniel
Ceccaroli, Bruno
Wambach, Karsten
Quang, Nam Le
Fernandez, Juan M.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Advanced Functional Materials. 2011, 21(5), pp. 879-890. ISSN 1616-301X. Available under: doi: 10.1002/adfm.201000849
Zusammenfassung

The impact of the transition metals iron, chromium, nickel, titanium and copper on solar-cell performance is investigated. Each impurity is intentionally added to the silicon feedstock used to grow p-type, directionally solidified, multicrystalline silicon ingots. A state-of-the-art screen-print solar-cell process is applied to this material. Impurities like iron, chromium and titanium cause a reduction in the diffusion length. Nickel does not reduce the diffusion length significantly, but strongly affects the emitter recombination, reducing the solar-cell performance significantly. Copper has the peculiarity of impacting both base-bulk recombination as well as emitter recombination. Two models based on the Scheil distribution of impurities are derived to fit the degradation along the ingot. Solar-cell performances are modelled as a function of base-bulk recombination and emitter-bulk recombination. The model fits the experimental data very well and is also successfully validated. Unexpectedly, the distribution of impurities along the ingot, due to segregation phenomena (Scheil distribution), leaves its finger-print even at the end of the solar-cell process. A measure of impurity impact is defined as the level of impurity that causes a degradation in cell performance of less than 2% up to 90% of the ingot height. The advantage of this impurity-impact metric is that it comprises the different impurities’ physical characters in one single parameter, which is easy to compare.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
silicon, solar cells, impurities, feedstock, contaminations
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690COLETTI, Gianluca, Paula C. P. BRONSVELD, Giso HAHN, Wilhelm WARTA, Daniel MACDONALD, Bruno CECCAROLI, Karsten WAMBACH, Nam Le QUANG, Juan M. FERNANDEZ, 2011. Impact of metal contamination in silicon solar cells. In: Advanced Functional Materials. 2011, 21(5), pp. 879-890. ISSN 1616-301X. Available under: doi: 10.1002/adfm.201000849
BibTex
@article{Coletti2011Impac-15916,
  year={2011},
  doi={10.1002/adfm.201000849},
  title={Impact of metal contamination in silicon solar cells},
  number={5},
  volume={21},
  issn={1616-301X},
  journal={Advanced Functional Materials},
  pages={879--890},
  author={Coletti, Gianluca and Bronsveld, Paula C. P. and Hahn, Giso and Warta, Wilhelm and Macdonald, Daniel and Ceccaroli, Bruno and Wambach, Karsten and Quang, Nam Le and Fernandez, Juan M.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15916">
    <dcterms:title>Impact of metal contamination in silicon solar cells</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15916/2/Coletti_159167.pdf"/>
    <dc:creator>Hahn, Giso</dc:creator>
    <dc:contributor>Bronsveld, Paula C. P.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Fernandez, Juan M.</dc:contributor>
    <dc:contributor>Macdonald, Daniel</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-26T13:20:06Z</dc:date>
    <dc:creator>Fernandez, Juan M.</dc:creator>
    <dc:creator>Macdonald, Daniel</dc:creator>
    <dc:contributor>Quang, Nam Le</dc:contributor>
    <dcterms:abstract xml:lang="eng">The impact of the transition metals iron, chromium, nickel, titanium and copper on solar-cell performance is investigated. Each impurity is intentionally added to the silicon feedstock used to grow p-type, directionally solidified, multicrystalline silicon ingots. A state-of-the-art screen-print solar-cell process is applied to this material. Impurities like iron, chromium and titanium cause a reduction in the diffusion length. Nickel does not reduce the diffusion length significantly, but strongly affects the emitter recombination, reducing the solar-cell performance significantly. Copper has the peculiarity of impacting both base-bulk recombination as well as emitter recombination. Two models based on the Scheil distribution of impurities are derived to fit the degradation along the ingot. Solar-cell performances are modelled as a function of base-bulk recombination and emitter-bulk recombination. The model fits the experimental data very well and is also successfully validated. Unexpectedly, the distribution of impurities along the ingot, due to segregation phenomena (Scheil distribution), leaves its finger-print even at the end of the solar-cell process. A measure of impurity impact is defined as the level of impurity that causes a degradation in cell performance of less than 2% up to 90% of the ingot height. The advantage of this impurity-impact metric is that it comprises the different impurities’ physical characters in one single parameter, which is easy to compare.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15916/2/Coletti_159167.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Coletti, Gianluca</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15916"/>
    <dc:creator>Bronsveld, Paula C. P.</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Wambach, Karsten</dc:creator>
    <dcterms:bibliographicCitation>Advanced Functional Materials ; 21 (2011), 5. - S. 879-890</dcterms:bibliographicCitation>
    <dc:creator>Quang, Nam Le</dc:creator>
    <dcterms:issued>2011</dcterms:issued>
    <dc:contributor>Warta, Wilhelm</dc:contributor>
    <dc:creator>Warta, Wilhelm</dc:creator>
    <dc:contributor>Wambach, Karsten</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-26T13:20:06Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Coletti, Gianluca</dc:creator>
    <dc:creator>Ceccaroli, Bruno</dc:creator>
    <dc:contributor>Hahn, Giso</dc:contributor>
    <dc:contributor>Ceccaroli, Bruno</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
PrĂĽfdatum der URL
PrĂĽfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen