Insights into cotranslational protein folding and protein quality control systems on ribosomes

Lade...
Vorschaubild
Dateien
Dissertation_Preissler.pdf
Dissertation_Preissler.pdfGröße: 75.31 MBDownloads: 325
Datum
2011
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Upon their synthesis by ribosomes, proteins have to fold into unique three-dimensional structures to become biologically active. Understanding the mechanisms by which newly synthesized proteins acquire and maintain their shapes under cellular conditions is therefore particularly important. In addition, many nascent polypeptides become modified, targeted to membranes, or marked for degradation when their synthesis was defective. For this, all cells
contain specialized factors that directly act on nascent polypeptide chains. Although not much is known about their functional interplay, these factors are thought to establish a cotranslational quality control network for newly made proteins. This work focused on
investigating the principles of de novo protein folding and the cellular strategies to support the fidelity of this process in both, pro- and eukaryotic model organisms. The following results were obtained:

I. Analysis of cotranslational protein folding and ribosome-associated factors in Escherichia coli
(A) This work revealed for the first time the cotranslational folding pathway of a model
nascent polypeptide at the atomic level. In a collaborative effort, NMR spectroscopy was
used to monitor the conformation of the SH3 domain from α-spectrin at sequential stages during its synthesis. The translation of SH3 was therefore site-specifically arrested on ribosomes in Escherichia coli cells to generate 15N,13C-labeled nascent polypeptides. To
provide snapshots of the translation process, nascent chains were designed to either expose the entire SH3 domain or C-terminally truncated versions thereof. The data showed that nascent SH3 remains unstructured during elongation but adopts a native-like conformation
as soon as the entire sequence information is available outside the ribosome. In addition, the ribosome neither imposes conformational constraints nor forms significant contacts with the unfolded nascent SH3 domain. Thus, SH3 folds on ribosomes in a domainwise manner without populating folding intermediates.


(B) The molecular interaction between the bacterial ribosome-associated chaperone Trigger
Factor (TF) and nascent polypeptides was investigated using a site-specific crosslinking
approach. For this, radioactively labeled nascent chains were produced in vitro and
subjected to binding experiments with TF. The contribution of this work was to clone DNA
templates encoding model nascent chains and to generate a suitable in vitro
transcription/translation system, which was derived from Escherichia coli cells, to study the
chaperone activity of TF on ribosomes. The analysis revealed that ribosome-bound TF can
accommodate nascent chains of different lengths and folding states in its interior to protect
them against aggregation or premature degradation. This may explain how TF is able to
assist cotranslational folding of a broad spectrum of nascent proteins.


(C) It has been suggested that SecA-mediated translocation of secretory proteins across the
cytoplasmic membrane of Escherichia coli cells occurs posttranslationally. This work
contributed the key finding that SecA associates directly with ribosomes in vitro. Together
with other results, a new model was proposed, according to which secretory proteins are
recognized already cotranslationally by ribosome-bound SecA to direct them efficiently to the
posttranslational translocation pathway.


II. Analysis of the ribosome-associated protein quality control system of
Saccharomyces cerevisiae
(A) The E3 ubiquitin-protein ligase Not4 is a component of the conserved eukaryotic Ccr4-
Not complex and has been suggested to target stalled nascent polypeptides for degradation.
To investigate whether Not4 plays a role in the ribosome-bound protein quality control
system of Saccharomyces cerevisiae, the interaction of Not4 with ribosomes was analyzed.
The results showed that Not4 and Caf1, another subunit of the complex, associate with
polyribosomes in vivo. Ribosome-association of both factors, however, was dependent on
the presence of nascent polypeptides, suggesting that Not4, or the entire Ccr4-Not complex,
senses the presence of nascent peptides and thus may function in cotranslational protein
quality control. Moreover, deletion of the NOT4 gene caused temperature-dependent
aggregation of a broad range of different protein species and the constitutive upregulation of
heat-shock responsive reporters, indicating folding stress. These data functionally connect
the Ccr4-Not complex to the cellular protein homeostasis network.


(B) In yeast, the stable heterodimeric ribosome-associated complex (RAC) is composed of
the Hsp70 and Hsp40 chaperones Ssz and Zuotin, respectively. RAC acts as cochaperone
for the Hsp70 chaperone Ssb on ribosomes.
(i) To investigate the functional interplay between the Ssb-RAC system and the nascent polypeptide-associated complex (NAC), another ribosome-anchored complex, genetic and biochemical approaches were applied. Deletion of the genes encoding Ssb resulted in the
accumulation of protein aggregates consisting predominantly of ribosomal proteins and
ribosome biogenesis factors. Additionally, the levels of ribosomal particles and actively translating ribosomes were reduced in these cells. These defects were aggravated in nacΔssbΔ cells, suggesting that both, Ssb and NAC, play a role in the regulation of ribosome biogenesis. The present work contributed the quantification of ribosome levels to this study,
as well as experiments showing that ribosomal proteins are specific components of the aggregates formed in ssbΔ and nacΔssbΔ cells.


(ii) To analyze the architecture of the RAC complex, which consists of Ssz and Zuotin,
pulldown experiments were performed showing that the N-terminal region of Zuotin is
sufficient to form a stable interaction with Ssz in vivo. This result complements the findings
obtained by amide hydrogen exchange experiments and mutational analyses. Together, the
data suggest that the mutual stabilization of the highly flexible N-terminus of Zuotin and the
C-terminal domain of Ssz constitutes the molecular basis for RAC complex formation.


(A) To investigate protein aggregation of disease-related Poly-Q (poly-glutamine) proteins, a
new method was developed for generating constructs containing repetitive sequences.
Cloning of repetitive DNA sequences using standard PCR-based methods is challenging due to the lack of specific primer binding sites. Therefore, a PCR-free seamless cloning strategy was designed to assemble highly repetitive nucleotide sequences. By this approach, DNA templates were generated to produce proteins containing defined stretches of consecutive glutamine residues in bacteria. With these proteins an improved assay was established to study the aggregation of Poly-Q polypeptides in vitro.

Zusammenfassung in einer weiteren Sprache

Nach ihrer Synthese durch Ribosomen müssen Proteine in ihre native Struktur falten um
biologisch aktiv zu werden. Der Mechanismus, durch welchen neu synthetisierte Proteine
falten und wie sie in der Lage sind unter zellulären Bedingungen ihre Struktur zu wahren, ist eine wichtige Frage der Molekularbiologie. Zudem werden viele naszierende Polypeptide modifiziert, an Membranen transportiert oder wenn Fehler während der Synthese auftreten für Abbau markiert. Um diese vielfältigen Aufgaben bewerkstelligen zu können, besitzen alle Zellen spezialisierte Faktoren, die direkt mit naszierenden Polypeptidketten interagieren.

Obwohl bislang wenig über ihr funktionelles Zusammenspiel bekannt ist, wird angenommen
dass diese Faktoren ein kotranslationales Qualitätskontrollsystem für neusynthetisierte
Proteinen darstellen. In dieser Arbeit wurden die Prinzipien der de novo Proteinfaltung, sowie
die zellulären Strategien von Pro- und Eukaryonten, welche den effizienten und korrekten
Ablauf dieses Prozesses gewährleisten untersucht. Die folgenden Resultate wurden erzielt:

I. Analyse kotranslationaler Proteinfaltung und ribosomen-assoziierter Faktoren in Escherichia coli
(A) Diese Arbeit beschreibt erstmalig den kotranslationalen Faltungsweg eines naszierenden
Modellproteins auf atomarer Ebene. In einer Kollaboration wurde die Konformation der SH3-
Domäne des Proteins α-Spektrin während aufeinanderfolgenden Stufen ihrer Synthese
mittels NMR-Spektroskopie untersucht. Dazu wurde die Translation von SH3 an definierten
Aminosäurepositionen an Ribosomen in Escherichia coli Zellen arretiert um 15N, 13Cmarkierte
naszierende Polypeptide herzustellen. Um verschiedene Momentaufnahmen des
Translationsprozesses zu erhalten wurden naszierende Ketten erzeugt, welche entweder die
gesamte SH3-Domäne oder C-terminal verkürzte Versionen exponieren. Die Daten zeigten,
dass SH3 während der Elongation unstrukturiert bleibt, aber in die native Struktur faltet
sobald die gesamte Sequenz außerhalb des Ribosoms zur Verfügung steht. Desweitern
konnte gezeigt werden, dass das Ribosom weder die Konformation der entfalteten
naszierenden SH3-Domäne einschränkt, noch signifikante Interaktionen mit ihr eingeht. Die
SH3-Domäne faltet daher domänenweise an Ribosomen ohne Faltungsintermediate zu
bilden.


(B) Mittels einer positions-spezifischen chemischen Quervernetzungsstrategie wurde die
molekulare Interaktion des bakteriellen ribosomen-assoziierten Chaperons Trigger Factor
(TF) mit naszierenden Polypeptiden untersucht. Dazu wurden radioaktiv markierte
naszierende Polypeptidketten in vitro hergestellt und für Bindungsexperimente mit TF
eingesetzt. Diese Arbeit trug dazu bei DNS-Template, welche naszierende Modellketten
kodieren, zu klonieren. Außerdem wurde ein geeignetes, auf Escherichia coli Zellen
basierendes, in vitro Transkriptions-/Translationssystem generiert, um die Chaperonaktivität
von TF an Ribosomen zu studieren. Die Untersuchung zeigte, dass ribosomen-gebundener
TF naszierende Polypeptidketten unterschiedlicher Längen und Faltungszuständen in
seinem Inneren aufnehmen kann, um diese vor Aggregation oder vorzeitigem Abbau zu
schützen. Dies könnte erklären wie TF in der Lage ist die kotranslationale Faltung eines
breiten Spektrums an naszierenden Polypeptiden zu unterstützen.


(C) Es wurde angenommen, dass SecA-abhängige Translokation sekretorischer Proteine
über die Zytoplasmamembran von Escherichia coli Zellen posttranslational erfolgt. Ein
wichtiger Befund dieser Arbeit ist, dass SecA in vitro selbst in der Lage ist an Ribosomen zu
binden. Zusammen mit weiteren Daten konnte ein neues Modell vorgeschlagen werden.
Danach werden sekretorische Proteine schon kotranslational durch SecA an Ribosomen
erkannt, was dazu beiträgt diese effizient dem posttranslationalen Translokationsweg
zuzuführen.


II. Analyse des kotranslationalen Proteinqualitätskontrollsystems von
Saccharomyces cerevisiae

(A) Es wurde beschrieben, dass die E3 Ubiquitin-Protein Ligase Not4, eine Komponente des
Ccr4-Not Komplexes, am Abbau arretierter naszierender Polypeptidketten beteiligt ist. Um
zu untersuchen ob Not4 tatsächlich eine Rolle im Proteinqualitätskontrollsystem an
Ribosomen von Saccharomyces cerevisiae spielt, wurde die Interaktion von Not4 mit
Ribosomen analysiert. Die Ergebnisse zeigten, dass Not4 und Caf1, eine weitere
Untereinheit des Komplexes, mit Polyribosomen assoziieren. Die Ribosomenbindung beider
Faktoren war von der Anwesenheit naszierender Polypeptidketten abhängig. Dies deutet
darauf hin, dass Not4, oder der gesamte Ccr4-Not Komplex, naszierende Ketten erkennt.


Dieser Befund unterstützt die Vermutung, dass der Komplex eine Funktion in der
kotranslationalen Proteinqualitätskontrolle haben könnte. Des Weiteren hatte die Deletion
des NOT4 Gens die temperaturabhängige Aggregation einer großen Bandbreite an
Proteinen sowie eine konstitutive Hochregulierung von Hitzeschockreportern zur Folge. Dies
deutet darauf hin, dass in diesen Zellen Proteinfaltungsstress vorherrscht. Die Daten stellen
somit einen funktionalen Zusammenhang zwischen dem Ccr4-Not Komplex und dem
zellulären Proteinhomeostasenetzwerk her.


(B) In Hefen besteht der stabile heterodimere ribosome-associated complex (RAC) aus den
Hsp70 und Hsp40 Chaperonen Ssz und Zuotin und fungiert als Co-Chaperon für das Hsp70
Ssb.

(i) Mittels genetischer und biochemischer Methoden wurde das funktionelle Zusammenspiel
zwischen dem Ssb-RAC System und dem nascent polypeptide-associated complex (NAC),
einem weiteren ribosomen-gebundenen Komplex, untersucht. Die Deletion der Gene, welche
für Ssb kodieren, führte zur Akkumulation von Proteinaggregaten, welche hauptsächlich aus
ribosomalen Proteinen und Ribosomenbiogenesefaktoren bestanden. Zudem war der Gehalt
an ribosomalen Partikeln und aktiv translatierenden Ribosomen in diesen Zellen reduziert.
Diese Defekte waren jeweils in nacΔssbΔ Zellen verstärkt, was darauf hindeutet, dass Ssb
und NAC eine Rolle in der Regulation der Ribosomenbiogenese spielen. In dieser Arbeit
wurde der Gehalt der Ribosomen quantifiziert und Experimente durchgeführt die zeigten,
dass ribosomale Proteine spezifische Komponenten der Aggregate aus ssbΔ und nacΔssbΔ
Zellen sind.


(ii) Um den Aufbau des RAC Komplexes zu analysieren, welcher aus Ssz und Zuotin
besteht, wurden Pulldown-Experimente durchgeführt die zeigten, dass der N-terminale
Bereich von Zuotin ausreicht um in vivo eine stabile Interaktion mit Ssz einzugehen. Dieses
Resultat ergänzt Ergebnisse aus Amid-Wasserstoffaustausch Versuchen und
Mutationsanalysen. Gemeinsam zeigen die Daten, dass die gegenseitige Stabilisierung des
flexiblen N-Terminus von Zuotin und der C-terminalen Domäne von Ssz die molekulare Basis
für die Bildung des RAC Komplexes darstellt.


III. Entwicklung einer Methode zur Untersuchung von Proteinfaltung und -aggregation
(A) Um die Aggregation von pathogenen Poly-Q (Polyglutamin) Proteinen zu untersuchen,
wurde eine neue Methode für die Herstellung von Konstrukten mit repetitiven Sequenzen
entwickelt. Aufgrund des Fehlens spezifischer Hybridisierungsstellen für Primer ist die
Klonierung von repetitiven DNS-Sequenzen mittels Standard-Klonierungsverfahren
schwierig. Deshalb wurde eine PCR-freie Klonierungsstartegie entwickelt, die es ermöglicht
hochrepetitive Nukleotidsequenzen lückenlos zusammenzufügen. Mit dieser Methode war es
möglich DNS-Template zu generieren, die genutzt werden konnten um Proteine in Bakterien
herzustellen, die definierte Bereiche aufeinanderfolgender Glutamine enthielten. Diese
Proteine konnten darüberhinaus genutzt werden um ein verbessertes Versuchsprotokoll zu
etablieren, welches es erlaubt die Aggregation von Poly-Q Proteinen in vitro zu analysieren.

Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Ribosome, Translation, Protein folding
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690PREISSLER, Steffen, 2011. Insights into cotranslational protein folding and protein quality control systems on ribosomes [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Preiler2011Insig-17414,
  year={2011},
  title={Insights into cotranslational protein folding and protein quality control systems on ribosomes},
  author={Preißler, Steffen},
  note={Teilweise veröffentlicht in:<br /> Eichmann C.*, Preissler S.*, Riek R., Deuerling E. (2010) PNAS<br /> Merz F., Boehringer D., Schaffitzel C., Preissler S., Hoffmann A., Maier T., Rutkowska A., Lozza J., Ban N., Bukau B., Deuerling E. (2008) EMBO J.<br /> Huber D., Rajagopalan N., Preissler S., Rocco M. A., Merz F., Kramer G., Bukau B. (2011) Molecular Cell<br /> Koplin A., Preissler S., Ilina Y., Koch M., Scior A., Erhardt M., Deuerling E. (2010) JCB<br /> Fiaux J., Horst J., Scior A., Preissler S., Koplin A., Bukau B., Deuerling E. (2010) JBC<br /> Scior A.*, Preissler S.*, Koch M., Deuerling E. (2011) BMC Biotechnology<br />},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/17414">
    <dc:contributor>Preißler, Steffen</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17414/2/Dissertation_Preissler.pdf"/>
    <dc:creator>Preißler, Steffen</dc:creator>
    <dcterms:issued>2011</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17414/2/Dissertation_Preissler.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-07T23:25:03Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/17414"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-12-19T11:30:29Z</dc:date>
    <dcterms:title>Insights into cotranslational protein folding and protein quality control systems on ribosomes</dcterms:title>
    <dcterms:abstract xml:lang="eng">Upon their synthesis by ribosomes, proteins have to fold into unique three-dimensional structures to become biologically active. Understanding the mechanisms by which newly synthesized proteins acquire and maintain their shapes under cellular conditions is therefore particularly important. In addition, many nascent polypeptides become modified, targeted to membranes, or marked for degradation when their synthesis was defective. For this, all cells&lt;br /&gt;contain specialized factors that directly act on nascent polypeptide chains. Although not much is known about their functional interplay, these factors are thought to establish a cotranslational quality control network for newly made proteins. This work focused on&lt;br /&gt;investigating the principles of de novo protein folding and the cellular strategies to support the fidelity of this process in both, pro- and eukaryotic model  organisms. The following results were obtained:&lt;br /&gt;&lt;br /&gt;I. Analysis of cotranslational protein folding and ribosome-associated factors in Escherichia coli&lt;br /&gt;(A) This work revealed for the first time the cotranslational folding pathway of a model&lt;br /&gt;nascent polypeptide at the atomic level. In a collaborative effort, NMR spectroscopy was&lt;br /&gt;used to monitor the conformation of the SH3 domain from α-spectrin at sequential stages during its synthesis. The translation of SH3 was therefore site-specifically arrested on ribosomes in Escherichia coli cells to generate 15N,13C-labeled nascent polypeptides. To&lt;br /&gt;provide snapshots of the translation process, nascent chains were designed to either expose the entire SH3 domain or C-terminally truncated versions thereof. The data showed that nascent SH3 remains unstructured during elongation but adopts a native-like conformation&lt;br /&gt;as soon as the entire sequence information is available outside the ribosome. In addition, the ribosome neither imposes conformational constraints nor forms significant contacts with the unfolded nascent SH3 domain. Thus, SH3 folds on ribosomes in a domainwise manner without populating folding intermediates.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;(B) The molecular interaction between the bacterial ribosome-associated chaperone Trigger&lt;br /&gt;Factor (TF) and nascent polypeptides was investigated using a site-specific crosslinking&lt;br /&gt;approach. For this, radioactively labeled nascent chains were produced in vitro and&lt;br /&gt;subjected to binding experiments with TF. The contribution of this work was to clone DNA&lt;br /&gt;templates encoding model nascent chains and to generate a suitable in vitro&lt;br /&gt;transcription/translation system, which was derived from Escherichia coli cells, to study the&lt;br /&gt;chaperone activity of TF on ribosomes. The analysis revealed that ribosome-bound TF can&lt;br /&gt;accommodate nascent chains of different lengths and folding states in its interior to protect&lt;br /&gt;them against aggregation or premature degradation. This may explain how TF is able to&lt;br /&gt;assist cotranslational folding of a broad spectrum of nascent proteins.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;(C) It has been suggested that SecA-mediated translocation of secretory proteins across the&lt;br /&gt;cytoplasmic membrane of Escherichia coli cells occurs posttranslationally. This work&lt;br /&gt;contributed the key finding that SecA associates directly with ribosomes in vitro. Together&lt;br /&gt;with other results, a new model was proposed, according to which secretory proteins are&lt;br /&gt;recognized already cotranslationally by ribosome-bound SecA to direct them efficiently to the&lt;br /&gt;posttranslational translocation pathway.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;II. Analysis of the ribosome-associated protein quality control system of&lt;br /&gt;Saccharomyces cerevisiae&lt;br /&gt;(A) The E3 ubiquitin-protein ligase Not4 is a component of the conserved eukaryotic Ccr4-&lt;br /&gt;Not complex and has been suggested to target stalled nascent polypeptides for degradation.&lt;br /&gt;To investigate whether Not4 plays a role in the ribosome-bound protein quality control&lt;br /&gt;system of Saccharomyces cerevisiae, the interaction of Not4 with ribosomes was analyzed.&lt;br /&gt;The results showed that Not4 and Caf1, another subunit of the complex, associate with&lt;br /&gt;polyribosomes in vivo. Ribosome-association of both factors, however, was dependent on&lt;br /&gt;the presence of nascent polypeptides, suggesting that Not4, or the entire Ccr4-Not complex,&lt;br /&gt;senses the presence of nascent peptides and thus may function in cotranslational protein&lt;br /&gt;quality control. Moreover, deletion of the NOT4 gene caused temperature-dependent&lt;br /&gt;aggregation of a broad range of different protein species and the constitutive upregulation of&lt;br /&gt;heat-shock responsive reporters, indicating folding stress. These data functionally connect&lt;br /&gt;the Ccr4-Not complex to the cellular protein homeostasis network.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;(B) In yeast, the stable heterodimeric ribosome-associated complex (RAC) is composed of&lt;br /&gt;the Hsp70 and Hsp40 chaperones Ssz and Zuotin, respectively. RAC acts as cochaperone&lt;br /&gt;for the Hsp70 chaperone Ssb on ribosomes.&lt;br /&gt;(i) To investigate the functional interplay between the Ssb-RAC system and the nascent polypeptide-associated complex (NAC), another ribosome-anchored complex, genetic and biochemical approaches were applied. Deletion of the genes encoding Ssb resulted in the&lt;br /&gt;accumulation of protein aggregates consisting predominantly of ribosomal proteins and&lt;br /&gt;ribosome biogenesis factors. Additionally, the levels of ribosomal particles and actively translating ribosomes were reduced in these cells. These defects were aggravated in nacΔssbΔ cells, suggesting that both, Ssb and NAC, play a role in the regulation of ribosome biogenesis. The present work contributed the quantification of ribosome levels to this study,&lt;br /&gt;as well as experiments showing that ribosomal proteins are specific components of the aggregates formed in ssbΔ and nacΔssbΔ cells.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;(ii) To analyze the architecture of the RAC complex, which consists of Ssz and Zuotin,&lt;br /&gt;pulldown experiments were performed showing that the N-terminal region of Zuotin is&lt;br /&gt;sufficient to form a stable interaction with Ssz in vivo. This result complements the findings&lt;br /&gt;obtained by amide hydrogen exchange experiments and mutational analyses. Together, the&lt;br /&gt;data suggest that the mutual stabilization of the highly flexible N-terminus of Zuotin and the&lt;br /&gt;C-terminal domain of Ssz constitutes the molecular basis for RAC complex formation.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;(A) To investigate protein aggregation of disease-related Poly-Q (poly-glutamine) proteins, a&lt;br /&gt;new method was developed for generating constructs containing repetitive sequences.&lt;br /&gt;Cloning of repetitive DNA sequences using standard PCR-based methods is challenging due to the lack of specific primer binding sites. Therefore, a PCR-free seamless cloning strategy was designed to assemble highly repetitive nucleotide sequences. By this approach, DNA templates were generated to produce proteins containing defined stretches of consecutive glutamine residues in bacteria. With these proteins an improved assay was established to study the aggregation of Poly-Q polypeptides in vitro.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
December 8, 2011
Finanzierungsart
Kommentar zur Publikation
Teilweise veröffentlicht in:
Eichmann C.*, Preissler S.*, Riek R., Deuerling E. (2010) PNAS
Merz F., Boehringer D., Schaffitzel C., Preissler S., Hoffmann A., Maier T., Rutkowska A., Lozza J., Ban N., Bukau B., Deuerling E. (2008) EMBO J.
Huber D., Rajagopalan N., Preissler S., Rocco M. A., Merz F., Kramer G., Bukau B. (2011) Molecular Cell
Koplin A., Preissler S., Ilina Y., Koch M., Scior A., Erhardt M., Deuerling E. (2010) JCB
Fiaux J., Horst J., Scior A., Preissler S., Koplin A., Bukau B., Deuerling E. (2010) JBC
Scior A.*, Preissler S.*, Koch M., Deuerling E. (2011) BMC Biotechnology
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen