Evolution of the extended LHC protein superfamily in photosynthesis

Lade...
Vorschaubild
Dateien
Engelken.pdf
Engelken.pdfGröße: 9.88 MBDownloads: 674
Datum
2010
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

In photosynthesis, sunlight interacts with colorful photosynthetic pigments like the chlorophylls, carotenoids and phycobilines. The first two of these pigments can be bound by members of the extended light-harvesting complex (LHC) protein superfamily and are organised in order to take on functions in the collection of or in the defense against sunlight. The extended LHC superfamily comprises several protein families, like the LHCs, the photosystem II subunit S (PSBS), the red algal lineage chlorophyll a/b-binding (CAB)-like proteins (RedCAP), and several LHC-like proteins. Some of these groups are very old, likely over two billions of years, and they show a characteristic distribution across different groups of photosynthetic organisms, like cyanobacteria, red algae, algae with secondary plastids, green algae or plants.

In this work we aim to distangle the evolutionary history of this complex protein superfamily and to use the results to inform functional studies of different LHC-like proteins in plants and diatoms. After careful searches of homologous protein sequences in public sequence databases, we developed a coherent classification system of the different protein families in part based on hidden Markov model analyses. With this approach, we identified many new LHC-like proteins including several from the model plant species Arabidopsis thaliana and described new families, like the RedCAP from red algae and complex algae with red plastids, and new subfamilies of two-helix proteins from glaucophytes, red algae, diatoms and plants. A group of newly found RedCAP and LHC-like proteins from the diatom Phaeodactylum tricornutum was of sufficient interest for functional follow-up experiments, done by collaborators. The results of these mRNA expression and cellular targeting experiments in combination with evolutionary analyses were used to make inferences about possible functions of these proteins.

Results from reverse genetics experiments on the LHC-like one-helix proteins (OHP) 1 and 2 done by others in the Adamska lab were interpreted in an evolutionary framework. Specifically, ohp1 and ohp2 knock out mutants of A. thaliana were extremely sensitive to light so that they had to be grown under very low light conditions and on sugar-supplemented medium. This pointed to fundamentally important functions of these proteins in photoprotection of photosystem I, a point that could be supported by their taxononomic distributions and conservation patterns across algae and plants.

The main result of this work was an improved model for the evolution of the extended LHC protein family. By adjusting different phylogenetic methods to our questions, we showed that LHC and PSBS, as well as other eukaryotic three-helix proteins, have evolved independently, contrary to previous suggestions. Likely, they were derived from a pool of two-helix stressenhanced proteins (SEPs). Over the last billions of years and in an still ongoing process, adaptational processes including the evolution of new protein functions, origin of novel protein
families and secondary losses of others, as well as lineage-specific family expansions have shaped this protein superfamily. This has allowed algae and plants to survive and thrive in a multitude of environments, hereby changing our planet forever.

Zusammenfassung in einer weiteren Sprache

Bei der Photosynthese interagiert Sonnenlicht mit farbigen photosynthetischen Pigmenten wie den Chlorophyllen, Carotenoiden und Phycobilisomen. Die ersteren beiden dieser Pigmente können von Vertretern der erweiterten Lichtsammelkomplex (LHC) Proteinsuperfamilie gebunden werden und sind so ausgerichtet, dass sie im Sammeln von Licht oder in der Abwehr von zuviel Sonnenlicht funktionieren können. Die erweiterte LHC Superfamilie umfasst mehrere Proteinfamilien wie die LHCs, Photosystem Untereinheit S (PSBS), die chlorophyll a/bbindenden
RedCAP sowie mehrere LHC-ähnliche Proteine. Manche dieser Gruppen sind sehr alt, wahrscheinlich über zwei Milliarden Jahre, und zeigen eine charakteristische Verteilung über verschiedene Gruppen von photosynthetischen Organismen, wie beispielsweise den Blaualgen, Rotalgen, Algen mit sekundären Plastiden, Grünalgen und Landpflanzen.

Diese Arbeit ist der Versuch, die Evolutionsgeschichte dieser komplexen Proteinsuperfamilie aufzuschlüsseln und hierauf verschiedene funktionelle Studien verschiedener LHC-ähnlicher Proteine aus Pflanzen und Kieselalgen aufzubauen und zu interpretieren. Nach eingehender Suche aller homologen Sequenzen in öffentlichen Sequenz-Datenbanken, haben wir ein Klassifizierungsschema der verschiedenen Proteinfamilien entwickelt, das sich unter anderem auf "Hidden Markov Model" Analysen stützt. Über diesen Ansatz wurden zahlreiche neue LHCähnliche Proteinsequenzen identifiziert. Darunter waren mehrere aus dem Modelorganismus Arabidopsis thaliana und neue Familien wie die RedCP aus Rotalgen und Algen mit sekundären roten Chloroplasten und neue Unterfamlien von Zwei-Helix Proteinen aus Glaucophyten, Rotalgen, Kieselalgen und Pflanzen. Eine Gruppe neuer RedCAP und LHC-ähnlicher Proteine aus der Kieselalge Phaeodactylum tricornutum boten sich für funktionelle Anschlussexperimente an, die von Kooperationspartnern durchgeführt wurden. Die Ergebnisse dieser mRNA Expressions und zellulären Lokalisationsexperimenten in Verbindung mit Analysen ihrer Evolution wurden dazu verwendet, etwas über die mögliche Funktion dieser Proteine auszusagen.

Ergebnisse von Experimenten der reversen Genetik an den LHC-ähnlichen Einhelix-Proteinen OHP1 und 2 - vom Adamska Labor durchgeführt - wurden in einem evolutionären Rahmen interpretiert. Im besonderen, ohp1 und ohp2 Knockout Mutanten waren so lichtempfindlich, dass sie nur unter extremen Schwachlichtbedingungen und auf mit Zucker
ergänztem Nährmedium wuchsen. Dies war ein Hinweis auf fundamental wichtige Funktionen dieser Proteine bei der Photoprotektion von Photosystem I, was durch ihre taxonomische Verbreitung sowie ihre Konservierungsmuster in Algen und Pflanzen unterstrichen wurde.

Das Hauptergebnis dieser Arbeit war ein verbessertes Modell der Evolution der erweiterten LHC Protein Superfamilie. Indem wir verschiedene phylogenetische Methoden auf unsere Fragen zugeschnitten haben, konnten wir zeigen, dass LHC und PSBS sowie andere eukaryotische Dreihelix-Proteine unabhängig voneinander entstanden sind, was im Widerspruch zu früheren Modellen steht. Wahrscheinlich entstanden sie aus einer Reihe verschiedener Zwei-Helix Stress-induzierter Proteine (SEPs). Im Laufe der vergangenen Jahrmilliarden hat sich die Superfamlie in adaptativen Prozessen verändert, welche die Evolution von neuen Proteinfamilien und den Verlust andere Familien sowie linienspezifischer Expansionen von Proteinfamlien beinhalteten. Dies hat Algen und Pflanzen ermöglicht, in einer Vielzahl natürlicher Umgebungen zu leben und damit unseren Planeten für alle Zeiten verändert.

Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
photosynthesis, comparative genomics, light-harvesting complex protein, early light induced protein, LHC, ELIP
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690ENGELKEN, Johannes, 2010. Evolution of the extended LHC protein superfamily in photosynthesis [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Engelken2010Evolu-19355,
  year={2010},
  title={Evolution of the extended LHC protein superfamily in photosynthesis},
  author={Engelken, Johannes},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19355">
    <dcterms:title>Evolution of the extended LHC protein superfamily in photosynthesis</dcterms:title>
    <dcterms:issued>2010</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Engelken, Johannes</dc:contributor>
    <dc:creator>Engelken, Johannes</dc:creator>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19355"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-21T12:31:04Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">In photosynthesis, sunlight interacts with colorful photosynthetic pigments like the chlorophylls, carotenoids and phycobilines. The first two of these pigments can be bound by members of the extended light-harvesting complex (LHC) protein superfamily and are organised in order to take on functions in the collection of or in the defense against sunlight. The extended LHC superfamily comprises several protein families, like the LHCs, the photosystem II subunit S (PSBS), the red algal lineage chlorophyll a/b-binding (CAB)-like proteins (RedCAP), and several LHC-like proteins. Some of these groups are very old, likely over two billions of years, and they show a characteristic distribution across different groups of photosynthetic organisms, like cyanobacteria, red algae, algae with secondary plastids, green algae or plants.&lt;br /&gt;&lt;br /&gt;In this work we aim to distangle the evolutionary history of this complex protein superfamily and to use the results to inform functional studies of different LHC-like proteins in plants and diatoms. After careful searches of homologous protein sequences in public sequence databases, we developed a coherent classification system of the different protein families in part based on hidden Markov model analyses. With this approach, we identified many new LHC-like proteins including several from the model plant species Arabidopsis thaliana and described new families, like the RedCAP from red algae and complex algae with red plastids, and new subfamilies of two-helix proteins from glaucophytes, red algae, diatoms and plants. A group of newly found RedCAP and LHC-like proteins from the diatom Phaeodactylum tricornutum was of sufficient interest for functional follow-up experiments, done by collaborators. The results of these mRNA expression and cellular targeting experiments in combination with evolutionary analyses were used to make inferences about possible functions of these proteins.&lt;br /&gt;&lt;br /&gt;Results from reverse genetics experiments on the LHC-like one-helix proteins (OHP) 1 and 2 done by others in the Adamska lab were interpreted in an evolutionary framework. Specifically, ohp1 and ohp2 knock out mutants of A. thaliana were extremely sensitive to light so that they had to be grown under very low light conditions and on sugar-supplemented medium. This pointed to fundamentally important functions of these proteins in photoprotection of photosystem I, a point that could be supported by their taxononomic distributions and conservation patterns across algae and plants.&lt;br /&gt;&lt;br /&gt;The main result of this work was an improved model for the evolution of the extended LHC protein family. By adjusting different phylogenetic methods to our questions, we showed that LHC and PSBS, as well as other eukaryotic three-helix proteins, have evolved independently, contrary to previous suggestions. Likely, they were derived from a pool of two-helix stressenhanced proteins (SEPs). Over the last billions of years and in an still ongoing process, adaptational processes including the evolution of new protein functions, origin of novel protein&lt;br /&gt;families and secondary losses of others, as well as lineage-specific family expansions have shaped this protein superfamily. This has allowed algae and plants to survive and thrive in a multitude of environments, hereby changing our planet forever.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19355/2/Engelken.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-21T12:31:04Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19355/2/Engelken.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
July 22, 2010
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen