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Abstract. Since counterexamples generated by model checking tools are 
only symptoms of faults in the model, a significant amount of manual 
work is required in order to locate the fault that is the root cause for the 
presence of counterexamples in the model. In this paper, we propose an 
automated method for explaining counterexamples that are symptoms of 
the occurrence of deadlocks in concurrent systems. Our method is based 
on an analysis of a set of counterexamples that can be generated by a 
model checking tool such as SPIN. By comparing the set of counterex
amples with the set of correct traces that never deadlock, a number of 
sequences of actions are extracted that aid the model designer in locating 
the cause of the occurrence of a deadlock. We first argue that the obvious 
approach to extract such sequences which is by sequential pattern mining 
and by contrasting patterns that are typical ·for the deadlocking coun
terexample traces but not typical for non-deadlocking traces, fails due 
to the inherent complexity of the problem. We then propose to extract 
substrings of specific length that only occur in the set of counterexam
ples for explaining the occurrence of deadlocks. We use a number of case 
studies to show the effectiveness of our approach and to compare it with 
an alternative approach to the counterexample explanation problem. 

Keywords: model checking, deadlocks, counterexample explanation, 
anomaly detection, concurrency bugs. 

1 Introduction 

Model checking is an established technique for the automated analysis of hard
ware and software systems. A model checker systematically checks whether a 
formal model M of the system satisfies a formalized property P [2] . If M con
tains a fault so that M does not satisfy P, as a symptom of the fault in the 
model, the model checker generates a counterexample to the satisfaction of P. 
Given that counterexamples are only symptoms of faults in the model, a sig
nificant amount of manual analysis is required in order to locate a fault that 
constitutes a root cause for the presence of the counterexample in the model. 
Model designers need to inspect lengthy counterexamples of sometimes up to 
thousands of events in order to understand the cause of the violation of P by M. 
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Since this manual inspection is time consuming and error prone, an automatic 
method for explaining counterexamples that assist model designers in localizing 
faults in their models is highly desirable. 

In this paper we aim at developing an automated method for explaining coun
terexamples indicating the occurrence of deadlocks in concurrent systems. Our 
method is based on an analysis of a set of counterexamples that can be generated 
by a model checking tool such as SPIN [14]. When SPIN explores exhaustively 
the state space of a model in order to locate all property violating states, it can 
generate a set of counterexamples. We refer to the set of counterexamples that 
show how the model violates a property, as the bad dataset. With the aid of 
SPIN, it is also possible to produce a set of execution traces that do not violate 
the property. We refer to this set of non-violating traces as the good dataset. 

By examining the differences in the traces of the good and bad datasets, we 
extract a number of sequences of actions that aid the model designer in locating 
the cause of the occurrence of a deadlock. Since the extracted sequences of 
actions are those that are common in the bad dataset but not common in the 
good dataset, we refer to them as anomalies. In fact, examining the differences 
between faulty and successful runs is a widely used approach for locating faults 
in program codes [26] . Lewis ' theory of causality and counterfactual reasoning 
provides justification for this type of fault localization approaches [16]. 

A widely adopted paradigm for the semantics of concurrent systems is that of 
an interleaving, which gives rise to a nondeterministic choice between activities 
of the concurrently executing processes [2]. In fact, the interleaving semantics de
termines in which order the actions of the processes that run concurrently in the 
system are executed. System designers tend to think sequentially when designing 
the model of a system. In concurrent systems it is therefore highly probable that 
they have not foreseen some inter leavings that their model encompasses. As a 
consequence, one of the main sources of failure in concurrent systems is unfore
seen interleavings resulting in undesired behavior or unexpected results [2] . The 
anomalies produced by our method, which are given in the form of sequences 
of actions, can reveal to the model designer unforeseen inter leavings that lead 
the system to a deadlock state. Deadlocks occur in a concurrent system when 
processes wait in a circular, non-preemptive fashion for each other and cannot 
make progress [13]. Proving the absence of deadlocks is one of the first sanity 
checks undertaken in the analysis of concurrent systems. 

Although, in this work we only apply our method on the deadlocking coun
terexamples, we maintain that it can easily be extended to other types of reach
ability properties [2]. Our method is not complete which means that it may not 
be able to hint at some causes for the occurrence of a deadlock. It can mainly 
explain an occurrence of a deadlock which is due to an unexpected order of 
execution of actions. 

Related Work. There are a number of works on automatically explaining coun
terexamples using different technical approaches and having different objectives. 
The work documented in [5] using the notion of causality introduced by Halpern 
and Pearl [12] formally defines a set of causes for the failure of a property on 
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a given counterexample trace. For the explanation of a counterexample, this 
method deals with what values on the counterexample cause it to falsify the 
property. In [22] Wang et al. focus on explaining the class of assertion violation 
failures. Their method uses an efficient weakest precondition algorithm which 
is executed on a single concrete counterexample in order to extract a mini
mal set of contradicting word-level predicates. Groce et al. [10] developed a tool 
called explain, which extends the CBMC model checker [15], for assisting users 
in understanding and isolating errors in ANSI C programs based on Lewis' coun
terfactual causality reasoning. Given a counterexample, explain finds the most 
similar successful execution based on a distance metric on execution traces. The 
differences (,,1 s) between the most successful execution and the counterexample, 
after being refined by a slicing step, is given to the programmer as an explana
tion. The distance between executions a and b is measured based on the number 
of the variables to which a and b assign different values. In contrast to the three 
methods cited above, our counterexample analysis method does not consider 
any values that are assigned to variables, instead only the order of execution of 
actions inside execution traces are taken into account. Therefore, we are able to 
give explanations to counterexamples in which the violation of a property is due 
to a specific or·der of execution of actions. Moreover, the other methods are based 
on an analysis of one single counterexample while in our method for extracting 
commonalities we use non-singleton sets of counterexamples. 

The work by Ball et al. [3] compares a counterexample with a set of similar 
correct traces in order to extract single program statements that are only ex
ecuted in the counterexample. These program statements are reported to the 
user as the suspicious parts of the program code that are likely to be the cause 
of the violation of the property. In this method, if a counterexample violates 
a property at some control location c of the program code, then the execution 
traces that reach to c without violating the property are considered as similar 
correct traces. The method has been implemented in the context of the SLAM 
project in which a software model checker that automatically verifies temporal 
safety properties of C programs has been developed [4] . Since this method only 
considers single program statements, it cannot express counterexamples in which 
the violation of a property is due to a specific order of execution of actions. The 
criteria they use for finding similar correct traces are similar to those used by 
the method in [11]. In fact, the method in [11] is most closely related to ours, so 
we provide a detailed comparison of this method with ours in Sect. 6. 

There are a few fault localization techniques based on testing which are anal
ogous to ours and consider the actual order of execution of the statements in 
the program in order to locate the fault in the program code [18] [6]. The work 
of [6] had an important influence on our method. 

Structure of the Paper. Section 2 presents a detailed example to show how an 
unforeseen interleaving can cause a deadlock to occur in the model of a concur
rent system. Section 3 argues that a sequential pattern mining based approach 
for extracting sequences that can explain the occurrence of a deadlock will fail 
due to the inherent complexity of the problem. Section 4 describes our proposed 
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method based on an extraction of substrings of a specific length that only oc
cur in the set of counterexamples for explaining the occurrence of deadlocks. 
We then present the experimental results in Section 5, followed by a detailed 
comparison of our method with the work by Groce and Visser [l1J in Section 6. 
Finally Section 7 concludes with a note on future work. 

2 A Motivating Example 

In this section, using an example case study we illustrate how a deadlock can 
occur due to the specific order of execution of a set of actions in the model 
of a concurrent system. The model we use in this example is taken from the 
BEnchmarks for Explicit Model checkers (BEEM) [20J. It is a Real-time Ethernet 
protocol named Rether. This protocol is a contention-free token bus protocol for 
the data-link layer of the ISO protocol stack. Its purpose is to provide guaranteed 
bandwidth, deterministic and periodic network access to multimedia applications 
over commodity Ethernet hardware. In order to make the original model taken 
from [20J smaller and simpler, we have reduced the values of its parameters as 
follows: 

N = 2 Number of the nodes 
Slots = 3 Number of slots (a bandwidth) 
RT _slots = 1 Maximum number of slots for real-time transmission 

(should be smaller than Slots) 
The Promela code of this model consists of three proctypes: 

1. The Bandwidth proctype, which manages the access of the nodes to the 
real-time transmission. It allocates and frees the real-time transmission slots 
upon receiving reserve and release messages from the nodes. 

2. The Token proctype, which guarantees deterministic and periodic access to 
the bandwidth by handing in a token to the nodes in turn. 

3. The Node proctype, which corresponds to a node in the protocol. It com
municates with the Token and Bandwidth proctypes in order to access the 
bandwidth slots. In our example, only two instances of this proctype, which 
are named Node_O and Node_1, are created at run time. 

In Fig. 1, the last 32 events of a counterexample with 72 events which shows how 
the Rether model goes to a deadlock state are given. The events in this figure are 
displayed along with the name of the proctypes to which they belong. The events 
are, in fact, Promela statements [14J. The name of the events are separated by a 
"." from the name of the proctype to which they belong. 

By manual inspection and using knowledge of the functioning of the model we 
can identify a subsequence of 10 events of the counterexample that can explain 
the occurrence of the deadlock. These 10 events are highlighted by arrows on 
the left hand side of the trace in Fig. 1. In order to understand how this sub
sequence leads the system into a deadlock state we need to inspect the parts 
of the Promela code of the model which include the statements corresponding 
to the 10 events identified above. These parts are given in Fig. 2 in which the 
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1·Bandwidth.release71 
2-Node_O. granted = 0 

3-Bandwldth.ln_RT[IJ==1 
4-Bandwidth.okIO 
~:~~~!~P_·~_kl_o _____ _______________ ... 
6-Node_O,doneIO I 

7-T oken.done 10 
8-Token.i<2 && in_RTliJ==Oii = ii-1i 
9-Token.{Ii==2)) 
10-T oken.(( (NRT _counl >O)&&(nexl== 1))) 
ll -Token.visit_l I0 
12-Node_l .visit_l ?rt 
13-Node_1.((rt==0)) 
14-Node_l .goto finish 
15-Node_1.done 10 
16-Token.done?O 
17 -Token. (((NRT _count>O)&&(next==O))) 
18-Token. visit_ O!O 
19-Node_O. visit_O?rt 
20-Node_0. ((rl ==0)) 
21-Node_O.goto finish 
22-Node_0.doneI0 
23-Token.done?O 
24-T oken.(( NRT _counl==O)) 
25-Token.NRT_count = (3-RT_count) 

26-Token.i = ° 
27-Token·(III==O)&&(ln_RT[IJ==1))) 
28-Token.vl,lt_Oll 
29-Nod._O.vl,~_01rt 

30-Node_O.rt==1 
31-Node_O,cranted==O 
32-Bandwldth.ln_RT[IJ = ()--------- --.... 

Fig. 1. The last 32 events of a counterexample in the Rether model 

statements corresponding to the spotted 10 events are displayed in bold font. 
The numbers inside parenthesis in front of these statements show the number 
of the corresponding event from Fig.l. When events 4 and 5 in Fig. 1, which 
correspond to line 7 of the Bandwidth and line 20 of the Nodc_O proctypes, are 
executed, line 8 of the Bandwidth and line 17 of the Nodc_O proctypes become 
enabled simultaneously. In the trace from Fig. 1, line 17 of the Nodc_O proctype, 
which corresponds to event 6 in this figure is chosen for execution. Following the 
execution of event 30 in Fig. 1, corresponding to line 7 of the Nodc_O proctype, 
control is transfered to line 10 of this proctype which is an if statement. Lines 
11 and 12 of this if statement are enabled simultaneously since line 12 is a goto 
statement and the guard of line 11, grant cd == 0, is true. The value of gmntcd is 
set to zero at event 2 in Fig. 1 and remains unchanged up to event 30. As Fig. 1 
shows, if line 11 , which corresponds to event 31 in this figure, is executed, then 
a deadlock will occur. 

One interesting characteristic of the identified subsequence in Fig. 1 is that 
the 10 events belonging to it do not occur adjacently inside the counterexam
ple. While the first and the last five events occur next to each other, between 
these two groups of events there is a gap of 21 events. This is due to the non
deterministic scheduling of concurrent events due to the interleaving semantics 
implemented in SPIN. As we have seen above, although line 8 of the Bandwidth 



proctype Node_O: 

byte rt=O; 
byte granted=O; 

idle: il 
4 :: visit_O?rt; goto start; (29) 
5 Ii; 

start: if 
7 :: rt==I; goto RT_actlon; (30) 
8 : : rt==O; goto NRT _action; 

9 Ii; 

10 RT_action: if 
11 :: granted==O; goto error_5t; (31) 
12 :: goto finish; 
13 :: atomic {re lease!O; 
14 granted = 0; ] goto wait_ok; (2) 
15 fi; 

16 finish: if 
17 :: done!O; goto idle; (6) 
I g Ii; 

19 walt_ok: if 
20 :: ok10; goto finish; (5) 
21 fi; 

22 error_st: 
23 false; 

proctype Token: 

byte i=O; 

start: if 
:: i ;; 0; goto RT _phase; 
fi; 

5 RT _phase: il 
6 :: d_step (i<2 && in_RT(iJ==O;i = i+l;) goto RT.J'hase; 
7 :: atomic (i==O && in_RTli]==I; (27) 
8 visit_Oil;] goto RT_wait; (28) 
9 :: atomic (i==} &&in_RT[iJ==1;visit_lI1; ] goto RT_wait; 
10 :: j==2; goto NRTJ'hase; 
11 Ii; 

proctype Bandwidth: 

idle: il 
:: reserve7i; goto res; 
:: rel~ase?i; gato rei; (1) 
fi; 

rei: if 
:: atomic (In_RT(IJ==I; (3) 
oklO; (4) 
In_RT(iJ = 0; (32) 
RT_count ::; RT_count-l;) goto idle; 

Fig. 2. Parts of the Promela code of the Rether model 
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proctype was enabled after event 5, due to the non-deterministic execution of 
concurrent actions its execution is deferred to step 32. Dashed lines and thick 
arrows on the right hand side of the Fig. 1 illustrate the gap between the position 
in the trace in which the statement Bandwidth. in_R T(ij= 0 becomes enabled, and 
the position in which it is actually executed. 

The identified subsequence in Fig. 1 explaining the deadlock is an example 
of an unforeseen interleaving. The presumed intention of the model designer is 
that event 5 and 32 be executed in an atomic step, which means they could 
not be interleaved with the actions of other proctypes. However, the proctype 
was implemented in a faulty way, so that its concurrent execution with other 
proctypes allowed the two mentioned events to be executed as a non-atomic 
sequence of events, and hence a deadlock occurred. 

3 Mining Sequential Patterns for Counterexample 
Explanation 

As we have seen above, in an interleaved trace of concurrent events, the events 
belonging to a sequence which reveals an unforeseen interleaving do not neces
sarily occur next to each other. To the contrary, they can occur at an arbitrary, 
unbounded distance from each other. It therefore seems an obvious choice to use 
sequence or sequential pattern mining algorithms [1 J [8J in order to devise error 
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explaining subsequences of concurrent system executions. However, as we will 
argue in this section, this at first sight promising tool fails due to the inherent 
complexity of the problem. 

3.1 Sequential llattern Mining 

We first define a subsequence relationship amongst sequences. 

Definition 1. A sequence TJ = (aO,al,a2, ... ,am ) is a subsequence of another 
sequence p = (ao, aI, a2, ... , an) , which is denoted by TJ ~ p, if there exist integers 
0:::; io < i1 < i2 < i3'" < im :::; n where ao = aio,al = aij,···,am = aim /17]' 

When applying a sequential pattern mining algorithm we consider a dataset of 
sequences, S, and a user defined threshold to decide whether a subsequence is 
frequent or not. The support of a sequence a is defined as the number of the 
sequences of S that a is a subsequence of: 

Definition 2. supports (a) = J{ s Js E S /\a ~ s}J. 

The sequence a is considered a sequential pattern or a frequent ~ubsequence if 
its support is above a user defined threshold: supports (a ) 2: threshold. 

By contrasting the sequential patterns of the bad and the good datasets, we 
can extract patterns that are only frequent in the bad dataset. These patterns 
that are only frequent or common in the bad dataset, reveal anomalies, and 
hence can be indicative to the cause of the occurrence of deadlock, 

anomalies = sequential patterns of the bad dataset \ 

sequential patterns of the good dataset 

(1) 

3.2 Challenges in Applying Sequential Pattern Mining Algorithms 

In general, it can be shown that the problem of mining sequential patterns from 
a dataset of sequences is NP-hard. The complete proof is given in [24], [25]. The 
proof uses the following essential premises and lemmas: 

1. In order to show that the sequential pattern mining problem is NP-hard, it 
is sufficient to prove that the frequent itemsets mining problem [9], which is 
the problem of mining frequent itemsets from a dataset of transactions, is 
NP-hard. This is because the latter problem can be reduced to the former 
one. In the frequent itemsets mining problem, transactions are sets of items. 
An itemset, which is also a set of items, is frequent if the number of the 
transactions of which the itemset is a subset is above a user defined threshold. 

2. In the frequent itemsets mining problem, the dataset of transactions can 
be represented as a bipartite graph G = (U, V, E). U and V, which are the 
two distinct vertex sets of G, correspond to the set of items and the set of 
transactions, respectively. The edge set E = {( u, v) Ju E U and v E V} of G 
represents all the (item, transaction) pairs. 
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3. The problem of enumerating all maximal frequent itemsets from a dataset 
of transactions corresponds to the task of enumerating all maximal bipar
tite cliques in a bipartite graph. A bipartite clique is a complete bipartite 
subgraph of a bipartite graph. 

4. Determining the number of maximal bipartite cliques in a bipartite graph is 
a #P-complete problem [21]. #P-completeness is used to capture the notion 
of the hardest counting problems, just as the concept of NP-completeness 
characterizes the hardest decision problems. 

The above complexity arguments are based on worst-case complexity consider
ations [24] . A number of sequential pattern mining algorithms have been devel
oped that have proven to be efficient in practice with respect to various test 
datasets [1], [23], [19]. However, the datasets that these algorithms have been 
evaluated on are sparse, with an average sequence length of less than 100. The 
densest dataset that an efficient sequential pattern mining algorithm, BIDE, can 
mine with a high support threshold of 90% has an average sequence length of 
258 [23] . 

The characteristics of the bad and the good datasets of a number of Promela 
modeling case studies of concurrent systems are given in Table 1. In this table, 
the first four case studies are taken from [20]. The POTS model was developed 
by us as a sample model with numerous deadlock problems. This model is a 
non-trivial example of a telephony switch which comprises four concurrently 
executing proctypes corresponding to two users and two phone handlers. Each 
user in this model talks to a phone handler for making calls. The phone handlers 
are communicating with each other in order to switch and route user calls. In 
Table 1, the column "#seq." gives the number of the sequences in the bad and 
the good datasets and the columns "avg. seq. len." and "max seq. len." represent 
average and maximum sequence lengths in these datasets, respectively. 

It can be inferred from Table 1 that the bad and the good datasets are highly 
dense with the average sequence length of more than 1000. We conclude that 
mining sequential patterns from the dataset of counterexamples generated from 
typical concurrent system models is intractable due to lengthy sequences and 
dense datasets. 

Table 1. Dataset characteristics 

Model bad ds. 
#seq. avg. seq. len. max seq. len. 

good ds. bad ds . good ds. bad ds. good ds. 

Brp 660 25671 5985 10539 5580 10501 
Rether 1061 26249 73263 134629 63201 134629 

lann 989 20838 5737 12612 6369 12617 
gear 614 10174 1994 4512 3837 4547 

POTS 4109 11316 2995 7977 6134 6736 
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4 Counterexample Explanation Method 

To address the complexity challenges we encountered in mining sequential pat
terns from the bad and the good datasets, we abandon the feature of arbitrary 
distance between the events of a subsequence that we consider to reveal anoma
lies pointing at the causes for the occurrence of a deadlock. As an approximation 
we extract sequences that consist of consecutive events. These sequences are, in 
fact, substrings of the execution traces contained in the good and bad datasets. 
Even though, as we have seen in the example of Sect. 2, a sequence that explains 
how a deadlock occurs is not necessarily the substring of a counterexample, it 
may contain portions which actually occur as substrings of a counterexample. In 
the example of Sect. 2, the sequences (1,2,3,4,5) and (27,28,29,30,31), which 
are portions of the identified subsequence for explaining the occurrence of a 
deadlock, are substrings of the counterexample. As we will explain in this Sec
tion, by extracting substrings from the counterexamples we can reveal parts of 
the sequences that give hints at why a deadlock occurs. 

The basis of our method is that we extract the common substrings of length l 
from the bad dataset and contrast them with those of the good dataset in order 
to reveal anomalies that explain the occurrence of deadlocks, 

anomalies = substrings of length l of the bad dataset\ 

substrings of length l of the good dataset 

(2) 

The length of the substrings, l, which is the parameter of the method, can take 
various values. Since substrings of length l can be extracted from a sequence 
of length n in O(n) time, we avoid scalability problems. As we will see when 
presenting the experimental evaluation, the small value of l = 2 is adequate for 
explaining counterexamples using a fairly large set of case studies. To further 
justify this point, consider how a relatively short substring of length two can be 
indicative for the cause of a deadlock occurrence. In Fig. 3, the counterexample 
of Fig. 1 is given along with a non-failing trace on the right hand side. The given 
traces in this figure only differ in the last two events. The events above the 
horizontal black line are the same both in the counterexample and in the non
failing trace, and only the two events below the line are different . Therefore, the 
small substring (30,31) only occurs in the counterexample. Although (30,31) 
is only a small part of the spotted sequence which explains the occurrence of 
deadlock, (1,2,3,4,5,27,28,29,30,31), it can greatly help the model designer 
by using the knowledge about the functioning of the model to identify the other 
eight events of this anomalous subsequence in the counterexample. In particular, 
the substring (30,31) shows that the variables Node_O.rt and Node_O.granted 
have the values 1 and 0, respectively. The stat ements which affect the values of 
these two variables, can be easily found in the counterexample. The value of the 
variable Node_O.granted becomes ° at step 2 and remains unchanged until the 
end of the trace. The value 1 of the variable N ode_O. rt is due to the value 1 of 



1-Bandwldth.release?! 
2-Node_O. granted = ° 
3·B.ndwldth.in_RT[I) •• 1 
4-Bandwldth.okIO 
S·Node_O.ok?O 
6·Node_O.doneIO 
1-Token.done?O 
g·Token.i<2 && in_RT[i)==O;i = i+1; 
9·Token.((i"2Jl 
10·Token·((INRT_,ount>OI&&lnext .. 1JlI 
ll-Token.visit_l!O 
12-Node_l.visit_l1rt 
ll·Node_I.((rt"OJl 
14·Node_1.goto finish 
15·Node_l .done!O 
16·Token.done10 
17·Token·((INRT_,ount>01&&lnext .. OJlI 
18-Token.visit_OIO 
19·Node_O.visiCOlrt 
20·Node_O·llrt"OJl 
21·Node_O.goto finish 
22-Node_O.doneI0 
21-T oken.done 10 
24·Token.((NRT_,ount"011 
2S·Token.NRT_count = (3-RT_count) 
26-Token.i = 0 
27·Token·IIII .. 01&&lln_RTlij .. IIJl 
28·Token.vlslt_OII 
29·Node_O.visit_O?rt 
3Q.Node_0.rt .. 1 

Bandwldth .release 11 
Node_O. cranted = ° 
Bandwldth.ln_RTlI)"1 
Bandwldth.oklO 
Bandwidth .ok10 
Node_O.doneIO 
T oken.done 10 
Token.i<2 && in_RT[iJ==O;i = i+1; 
Token.((i .. 2)) 
Token.((INRT_,ount>OI&&lnext .. llll 
Token.visit_1 !O 
Node_1.visit_1?rt 
Node_l·ltrt .. OJl 
Node_l.goto finish 
Node_l.done!O 
Token.done?O 
Token·II[NRT_,ount>OI&&lnext .. OIlI 
Token.visit_OIO 
Node_O.visit_D?rt 
Node_O·ltrt"OJl 
Node_O.goto finish 
Node_O.doneIO 
Token.done?O 
Token.IINRT _,ounl"'OIl 
Token.NRT_count = (3-RT-,ount) 

Token.i = ° 
Token.IItI .. OI&&lln_RT[I) .. 11II 
Token.vislt_OII 
Node_O.vlsit_O?rt 
Node_O.rt==1 

31.Node_O.granted==~ B.ndwldth.ln_RTtII = 0 
32·Bandwldth.ln_RT[I) • ° .. '----Node_o. goto finish . 

33 

Fig. 3. Part of a counterexample on the left, its corresponding part from a good trace 
on the right 

the variable in-RT[O} while the value of this variable should be changed to 0 at 
the same step that the variable Node_O.granted gets the value O. 

Mainly based on what we have seen above, we assume that the substrings that 
only occur in the bad dataset, such as (30,31) in the above example, can aid 
the model designer to find the cause of the deadlock occurrence. The following 
subsections describe in detail the steps of our method. 

4.1 Generation of the Good and the Bad Datasets 

For generating the good and the bad datasets, we use the explicit state SPIN 
model checking tool [14]. The default search algorithm that SPIN uses for the 
exhaustive exploration of the state space is depth first search. When SPIN lo
cates the first violating state, it stops the search and reports the path from the 
initial state to the violating state as a counterexample. The presence of one 
counterexample is sufficient to show that the model does not comply with the 
specification. 

There is also an option in SPIN to not stop the search after locating the first 
violating state [14]. With this option, SPIN continues the search up to a given 
depth limit or until all states have been reached in order to locate all property 
violating states. Our current strategy for generating the bad dataset is to use 
this option of SPIN in order to explore the complete state space of the model 
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and to detect all the violating states and their corresponding counterexamples. 
Since the default depth limit in SPIN is 10,000, we increase the depth limit until 
we can be certain that the complete state space has been explored. Since DFS is 
used by SPIN for exploring the state space, each violating state is visited once 
and so only one counterexample per violating state is generated. 

Since the bad dataset contains the traces that violate some cP, the good dataset 
should include the traces that satisfy cP. Such traces can be generated by produc
ing counterexamples to ""'cP because a counterexample that shows the violation 
of the negation of a property actually satisfies that property. This is justified by 
the following lemma: 

Lemma 1. For an execution 1r, if 1r satisfies tp, which is denoted as 1r 1= tp, then 
it holds that 1r 1= tp <=> 1r ~ ....,tp (2]. 

Since the reachability property we consider in this paper is deadlock-freedom, 
we need to find a way to formalize the negation of that property in SPIN. 
Notice that while the absence of deadlock is a safety property, its negation, which 
claims the presence of deadlocks, is a live ness property. As a consequence, the 
counterexamples to the presence of deadlocks are lasso-shaped infinite traces [14J . 

We specify the presence of deadlock property in Promela, the modelling lan
guage of the SPIN model checker, by using a special state predicate named 
timeout. It becomes true when the system blocks, i. e., when no statement in 
the model is executed. We then specify the presence of deadlock property as 
always eventually there will be a deadlock, which can be expressed as requiring 
that always eventually the timeout predicate will become true. SPIN tries to 
generate a counterexample for this property. The resultant counterexample will 
be a lasso-shaped infinite trace that never deadlocks. For the generation of the 
good dataset we also use the SPIN option to not stop the search after generating 
the first counterexample for this property. 

4.2 Contrasting Sequence Sets 

Substrings of length l can be extracted from an execution trace by sliding a 
window of size lover it. Fig. 4 shows the nine possible substrings of length two 
that can be extracted from a trace of length 10 by sliding a window of size two 
over it. This set of substrings of length two, in fact, shows which two events 
occur next to each other in an execution trace. 

Definition 3. Sequence sets can be formally defined as follows: Let 
execution(S) = (al,oo.,an), if the window is l actions wide, the set P(S,l) 
of observed windows are the substrings of length l of S,' 
P(S, l) = {wlw is a substring of S 1\ Iwl = l} (6]. 

As an example, consider S = (abcabcdc) and a window of size l = 2 slid over 
S. The resulting set of sequences of length two, P(S,2), will be: P(S,2) = 
{ab, be, ca, cd, dc} [6J. 
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148.3 39.1 S1.1 165.3 191.5 166.J 141.3 812 197.5 84.2 

LsequencesetJ 

148.3 39.1 
39.1 S1.1 

51.1 165.3 
165.3 191.5 

191.5 166.3 
166.3 141.3 

141.3 83.2 
83.2 197.5 

197.5 34.2 

Fig. 4. Original trace with nine extracted short sequences of length two 

The two following formulas define how to extract common substrings of length 
l from the bad and good datasets, respectively. 

seq_sets(bad, l) = U {Pi(Si, l) ISi E bad, n = Ibadl} 
l ::; i ::;n 

(3) 

seq_sets(good, l) = U {Pi(Si, l)ISi E good, m = Igoodl} (4) 
l :5i::;m 

The result set of the method, which is the set of substrings of length l that only 
occur in the bad dataset, is generated as follows: 

anomalies = seq_sets(bad, l) - seq_sets(good, l) (5) 

The length of the short substrings, l, is the only parameter in computing the 
result set. We shall discuss the impact of choosing different values for l in the 
experimental results seGtion. 

After generating anomalies by using (5), we take the following steps to facili
tate the interpretation of the resulting anomalies for the user. 

1. Since each substring can occur in multiple counterexamples, we extract for 
each substring the counterexample in which it occurs earlier than in other 
counterexamples. Each substring is only a portion of a sequence that explains 
the occurrence of a deadlock, so the model designer needs to identify other 
events of that anomalous sequence in the counterexample in order to under
stand how a deadlock occurs and consequently to localize the faulty part of 
the model. Intuitively, we assume that the substrings that occur earlier are 
closer to the beginning of such anomalous sequences in the counterexamples, 
and hence the user needs to inspect less events in order to identify them. 

2. We rank the substrings based on their location in the extracted counterex
amples in the previous step. Those that occur earlier in a counterexample 
will be ranked higher. It will be easier for the user to locate the sequence that 
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explains the occurrence of a deadlock in counterexamples that are ranked 
higher than in those ranked lower. 

3. Since multiple substrings can occur in a counterexample extracted in step 
one, for each counterexample we also list all the substrings that occur in it. 

The output of the method will be a ranked list of tuples of the form ({ SSi 10 ::; i 
::; max}, ce) in which SSi is a set of substrings generated by (5), 'nwx is the 
number of the substrings generated by (5) and ce is a counterexample containing 
the SSiS. 

Like all other debugging activities in which a check, analyze, fix loop is iterated 
until all the bugs are fixed, our method should also be used as an iterative 
process. 

Evaluation Score. To evaluate the quality of the outputs generated by our 
method we propose a quantitative measure that enables us to compare different 
outputs. We define a score based on the amount of the effort that is required for 
locating a sequence that explains a deadlock occurrence in a counterexample by 
using the output of our method. Since these sequences directly allow the user to 
identify the faulty part of the model, as we assumed above, the computed score 
also reflects the amount of manual effort required for locating the faulty part of 
the model. 

The output of our method consists of a number of substrings, so we first define 
a score for individual substrings. The score of the output will then be the score 
of the substring which is ranked first in the output. The score of a substring is 
defined based on the distance in terms of the number of the events between the 
location of the substring in a counterexample and the first event of a sequence 
that explains the occurrence of a deadlock in the same counterexample. This 
number, in fact, represents the maximum number of events that the user needs 
to inspect in the counterexample in order to find a sequence that explains the 
occurrence of a deadlock. Referring to the example of Sect. 2, the identification of 
such deadlock explaining sequences and their beginnings in the counterexamples 
is done manually by the user. Therefore, the score of a substring depends on 
the manually determined beginning of the deadlock explaining sequence. We 
normalize this distance with respect to the counterexample length. 

The following formulas define how a score is computed for an output of the 
method. In these formulas, explanatory sequence refers to a manually deter
mined sequence that explains the occurrence of a deadlock. If Locce(s'ubstring) 
and Locce (explanatory sequence) represent the location of a substring and the 
location of the start event of an explanatory sequence in a counterexample, re
spectively, and 1 counterexample 1 shows the length of the counterexample, the 
score of a substring will be: 

distance = Locce (substring) - Locce(explanatory sequence) 

scoresubstring = 1 - 1 I 1 counterexamp e 
distance 

(6) 
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For the substring (30,31) in the example of Sect. 2, the score will be ~~, where 30 
is the number of the events between the location of (30,31) and the start of the 
spotted sequence in the counterexample, and 72 is the length of the counterex
ample. If substringl shows the first ranked substring in the output, we define 
the score of the output as: 

scoreoutput = scoresubstring1 
(7) 

5 Experimental Results 

In this section, we present a number of experiments in which we apply our 
counterexample explanation method to the Promela models of a number of con
current systems which we took from [20J. The experiments were performed on a 
2.67 GHz PC with 8 GB RAM and Windows 7 64-bit operating system. In fact, 
the experimental results illustrate how the outputs of our method can aid the 
user to identify the sequences of events in the counterexamples that explain the 
occurrence of a deadlock. We assume that the identified sequences directly allow 
the user to identify the faulty part of the model. This assumption is true for all 
case studies that we used as well as for the example presented in Sect. 2. 

In Table 2, the results of applying our method to six case studies when l = 2 
are given along with the corresponding scores. The name of the corresponding 
Promela file is given inside parentheses in front of the name of the model. The 
average running time of the method for these case studies is 52.44 sec. In this 
table, the last column shows the number of the root causes that can be detected 
by the model designer with the aid of the generated substrings of length two. 
As the numbers in this column show, with this method it is possible to detect 
multiple causes for the occurrence of deadlocks at the same time. Referring to the 
method of the generation of the bad dataset in Sect. 4.1, the counterexamples in 
the bad dataset may represent different causes for the occurrence of a deadlock. 
Therefore, the substrings generated by our method may hint at several causes 
for the occurrence of a deadlock. For example, as Table 2 shows for the Brp 
model, the model designer with the aid of the extracted 6 substrings can detect 
3 different causes for the occurrence of a deadlock. It is, in fact, up to the user 
to realize whether the extracted substrings refer to the same fault or multiple 
faults. 

Table 2. Summary of the results of the method 

Model #l = 2 substrings Score #causes 
Brp(brp.3.pm) 6 1 3 
Modified Brp 6 1 2 

Rether( ret her .4. pm) 24 0.27 15 
lann(lann.l.pm) 8 0.97 2 
gear(gear.l.pm) 21 0.66 14 

train-gate( train-gate. 1. pm) 27 0.78 9 
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By increasing the value of parameter l, the number of the generated substrings 
will also be increased. Consequently, the model designer needs more effort for 
examining them. In Table3, the numbers of the generated substrings for l = 2 
and l = 3 for five case studies are given in the columns "#substrings l = 2" 
and "#substrings l = 3", respectively. The last column in this table shows the 
percentage of increase in the number of the generated substrings. We can see 
in this table that for the last three case studies, the number of the generated 
substrings of length three is significantly larger than those with length two. 
Therefore, the substrings of length three increase the amount of manual effort 
required for inspecting them. From Table 3 we can infer that substrings of length 
two impose less inspection effort on the model designer when analyzing the 
counterexamples. As a consequence, the generation of substrings of length three 
is only done when no substrings of length two can be generated by (5). 

Table 3. Comparison of the number of the substrings with l = 2 and l = 3 

Model #substrings reI. increase 
l = 2l = 3 

Brp(brp.3.pm) 6 6 %0 
Rether( rether.4. pm) 24 24 %0 

lann(lann.l.pm) 8 29 %262.5 
gear(gear.1.pm) 21 35 %66 

train-gate( train-gate. 1. pm) 29 62 %113.8 

In Table 2, the Brp model has the highest score of 1 which means that the 
first ranked substring in the output coincides with the start of a sequence that 
explains a deadlock occurrence. Notice that we use the proposed method as part 
of an iterative debugging process. After each run of the method, aided by the 
generated substrings, the user will try to remove as many causes of deadlock as 
possible. In case the model still contains a deadlock after being modified, the user 
will apply the method again. This procedure can be iterated until all deadlocks 
in the model have been removed. As an example, after the first iteration on the 
Brp model the total number of counterexamples was reduced from 660 to 182 
due to the removal of the root cause of some deadlock. The results achieved by 
applying the method to the modified version of the Brp model in the second 
iteration are given in the second row of Table 2. 

6 Comparison with the Work by Groce and Visser 

The most closely related work to ours is that of Groce and Visser [l1J. It ex
tends Java PathFinder with error explanation facilities. Given a counterexam
ple, their method generates a set of negatives, which are multiple variations of 
that counterexample in which the error occurs, and a set of positives, which are 
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variations in which the error does not occur. They analyze the common features 
of each set and the differences between the sets in order to provide an explanation 
for the counterexample. The focus of their work is on finite counterexamples 
demonstrating the violation of safety properties such as assertion violation and 
deadlock. 

To compare our work with theirs, we implemented the algorithm proposed 
in [11 J for the generation of a set of positives for a given counterexample inside the 
Spinja [7J toolset. The main problem we encountered in applying this algorithm 
to our case studies was that we could not always generate a non-empty set of 
positives. This occurred, for instance, in our experiments with the Brp model. 
Notice that the potential emptiness of the positive set is also mentioned as a 
potential difficulty in practice in [I1J . In our method, on the other hand, we 
consider the complete set of good traces that can be generated with the aid of 
SPIN, and hence we cannot encounter the problem of an empty positive set for 
any case study that does at all reveal a "good" behavior. 

The work in [11 J proposes three different analyses for explaining counterexam
ples, namely transition analysis, invariant analysis and minimal transformation 
analysis between negatives and positives. Among these three analyses, only the 
third one, which takes the order of execution of actions into account, is similar 
to our method and can be used for revealing concurrency problems such as un
foreseen interleavings. In this analysis, the authors of [11 J compare a negative 
and a positive in order to determine the divergent sections of what they refer 
to as a state-action path. These divergent sections along with the associated 
positive and negative form a transformation. In Fig. 5, a negative with 64 events 
along with a positive with 473 events derived for the Rether case study [20], are 
given. Due to space limitations, only the first 20 events and the last 15 events 
of these traces are shown in this figure. The first 19 events are identical both 
in the positive and in the negative, thus the divergent sections start from event 
20 in both traces. These divergent sections last until the end of the positive 
and the negative since they do not share a common portion at the end of their 
traces. Therefore, the transformation generated by [I1J will consist of two traces 
with 45 and 454 events. However, in our method two substrings of length two, 
(369.9,375.9) and (375 .9,9.0), as well as the negative itself with 64 events are 
given to the model designer for further analysis. We conclude that while with 
the transformation analysis of [11 J the model designer needs to inspect traces of 
45 and 454 events, in our method the model designer needs to inspect at most 48 
events in order to understand how a deadlock occurs. 48 is, in fact, the number 
of events between the location of (369.9,375.9) and the event "2.1" which is the 
beginning of the sequence that explains the occurrence of the deadlock in the 
trace. These two locations in the trace are 62 and 15, respectively, and in Fig. 5 
they are connected by arrows and straight lines. In conclusion, our method ap
pears, at least for the case study we considered here, to require less effort on 
behalf of the model designer in order to understand the reason for the occurrence 
of a deadlock than the equivalent analysis according to the work in [I1J. 
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1- 407.11 1- 407.11 
2- 413.11 2- 413.11 
3- 413.11 3- 413.11 
4- 413.11 4- 413.11 
5- 413 .11 5- 413.11 
6- 413.11 6- 413.11 
7- 413.11 7- 413 .11 
8- 413.11 8 - 413.11 
9- 413 .11 9 - 413.11 Common Prefix 
10- 447.11 10- 447.11 
11- 448.11 11- 448.11 
12- 365.10 12- 365.10 
13- 369.10 13- 369.10 
14- 378.10 14- 378.10 
15-·2_1 15- 2.1 
16- 379.10 16- 379.10 
17- 401.10 17- 401.10 
18- 455.11 18- 455'.11 
19- 451.11 19- 451.11 
20- 489 .11 20- 493.11 

50- 407.11 459- 466.11 
51- 413.11 460- 71.3 
52- 413.11 461- 77.3 
53- 413.11 462- 90.3 
54- 413.11 463-107.3 
55- 413 .11 464- 501.11 
56- 413.11 465- 469 .11 
57- 413.11 466- 470.11 
58- 413.11 467-113.4 
59- 447.11 468- 119.4 
60- 448.11 469-132.4 
61- 365.10 470- 149.4 
62-369.-10 471- 501.11 
63- 375_10 472 - 497.11 
64- 9 .1 473- 508.11 

Fig. 5. A negative and a positive in the Rether case study 

7 Conclusion 

We have presented an automated method for the explanation of model check
ing counterexamples demonstrating the occurrence of deadlocks in concurrent 
system models. In particular, we have focussed on deadlock detection using the 
SPIN model checker. By comparing a set of counterexamples with a set of cor
rect traces that never deadlock, we extract a number of ordered sequences of 
actions that prove to point to the root cause of the deadlock occurrence in the 
model. Experimental results showed the effectiveness of our method and dis
cussed measures to reduce the effort of the model designer when localizing the 
root cause for the occurrence of a deadlock in the model. We also compared 
our work extensively to related work, in particular the approach by Groce and 
Visser. 

In future work we plan to reduce the computational effort that om method 
entails by generating subsets of good and bad traces based on some similarity 
measure. We also plan to extend our method to safety properties other than 
deadlock. 
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Finally, we plan to investigate how to apply the proposed method to large 
models where a complete state space exploration is impossible. 
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