Bioinspired Chiral Template Guided Mineralization for Biophotonic Structural Materials

Lade...
Vorschaubild
Dateien
Xiong_2-10mb10w8hohri7.PDF
Xiong_2-10mb10w8hohri7.PDFGröße: 2.31 MBDownloads: 60
Datum
2022
Autor:innen
Wu, Wanlin
Lu, Canhui
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Advanced Materials. Wiley. 2022, 34(51), 2206509. ISSN 0935-9648. eISSN 1521-4095. Available under: doi: 10.1002/adma.202206509
Zusammenfassung

Nature provides numerous biomineral design inspirations for constructing structural materials with desired functionalities. However, large-scale production of damage-tolerant Bouligand structural materials with biologically comparable photonics remains a longstanding challenge. Here, an efficient and scalable artificial molting strategy, based on self-assembly of cellulose nanocrystals and subsequent mineralization of amorphous calcium carbonate, is developed to produce biomimetic materials with an exceptional combination of mechanical and photonic properties that are usually mutually exclusive in synthetic materials. These biomimetic composites exhibit tunable mechanics from "strong and flexible", which exceeds the benchmark of natural chiral materials, to "stiff and hard", which is comparable to natural and synthetic counterparts. Especially, the biomimetic composites possess ultrahigh stiffness of 2 GPa in their fully water-swollen state-a value well beyond hydrated crab exoskeleton, cartilage, tendon, and stiffest synthetic hydrogels, combined with exceptional strength and resilience. Additionally, these composites are distinguished by the tunable chiral structural color and water-triggered switchable photonics that are absent in most artificial mineralized materials, as well as unique hydroplastic properties. This study opens the door for a scalable synthesis of resilient biophotonic structural materials in practical bulk form.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
540 Chemie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690XIONG, Rui, Wanlin WU, Canhui LU, Helmut CĂ–LFEN, 2022. Bioinspired Chiral Template Guided Mineralization for Biophotonic Structural Materials. In: Advanced Materials. Wiley. 2022, 34(51), 2206509. ISSN 0935-9648. eISSN 1521-4095. Available under: doi: 10.1002/adma.202206509
BibTex
@article{Xiong2022-10-08Bioin-59107,
  year={2022},
  doi={10.1002/adma.202206509},
  title={Bioinspired Chiral Template Guided Mineralization for Biophotonic Structural Materials},
  number={51},
  volume={34},
  issn={0935-9648},
  journal={Advanced Materials},
  author={Xiong, Rui and Wu, Wanlin and Lu, Canhui and Cölfen, Helmut},
  note={Article Number: 2206509}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59107">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-10T13:39:00Z</dcterms:available>
    <dc:creator>Lu, Canhui</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-10T13:39:00Z</dc:date>
    <dc:creator>Xiong, Rui</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59107/1/Xiong_2-10mb10w8hohri7.PDF"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59107"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dcterms:abstract xml:lang="eng">Nature provides numerous biomineral design inspirations for constructing structural materials with desired functionalities. However, large-scale production of damage-tolerant Bouligand structural materials with biologically comparable photonics remains a longstanding challenge. Here, an efficient and scalable artificial molting strategy, based on self-assembly of cellulose nanocrystals and subsequent mineralization of amorphous calcium carbonate, is developed to produce biomimetic materials with an exceptional combination of mechanical and photonic properties that are usually mutually exclusive in synthetic materials. These biomimetic composites exhibit tunable mechanics from "strong and flexible", which exceeds the benchmark of natural chiral materials, to "stiff and hard", which is comparable to natural and synthetic counterparts. Especially, the biomimetic composites possess ultrahigh stiffness of 2 GPa in their fully water-swollen state-a value well beyond hydrated crab exoskeleton, cartilage, tendon, and stiffest synthetic hydrogels, combined with exceptional strength and resilience. Additionally, these composites are distinguished by the tunable chiral structural color and water-triggered switchable photonics that are absent in most artificial mineralized materials, as well as unique hydroplastic properties. This study opens the door for a scalable synthesis of resilient biophotonic structural materials in practical bulk form.</dcterms:abstract>
    <dc:creator>Cölfen, Helmut</dc:creator>
    <dc:creator>Wu, Wanlin</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59107/1/Xiong_2-10mb10w8hohri7.PDF"/>
    <dc:contributor>Wu, Wanlin</dc:contributor>
    <dc:contributor>Lu, Canhui</dc:contributor>
    <dc:contributor>Xiong, Rui</dc:contributor>
    <dc:contributor>Cölfen, Helmut</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2022-10-08</dcterms:issued>
    <dcterms:title>Bioinspired Chiral Template Guided Mineralization for Biophotonic Structural Materials</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
PrĂĽfdatum der URL
PrĂĽfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen