Critical force in active microrheology

Lade...
Vorschaubild
Dateien
Gruber_2-1s5vb8kfbtf5m7.pdf
Gruber_2-1s5vb8kfbtf5m7.pdfGröße: 1.07 MBDownloads: 332
Datum
2020
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Physical Review E. American Physical Society (APS). 2020, 101(1), 012612. ISSN 2470-0045. eISSN 2470-0053. Available under: doi: 10.1103/PhysRevE.101.012612
Zusammenfassung

Soft solids like colloidal glasses exhibit a yield stress, above which the system starts to flow. The microscopic analogon in microrheology is the untrapping or depinning of a tracer particle subject to an external force exceeding a threshold value in a glassy host. We characterize this delocalization transition based on a bifurcation analysis of the corresponding mode-coupling theory equations. A schematic model that allows analytical progress is presented first, and the full physical model is studied numerically next. This analysis yields a continuous dynamic transition with a critical power-law decay of the probe correlation functions with exponent −1/2. To compare with simulations with a limited duration, a finite-time analysis is performed, which yields reasonable results for not-too-small wave vectors. The theoretically predicted findings are verified by Langevin dynamics simulations. For small wave vectors we find anomalous behavior for the probe position correlation function, which can be traced back to a wave-vector divergence of the critical amplitude. In addition, we propose and test three methods to extract the critical force from experimental data, which provide the same value of the critical force when applied to the finite-time theory or simulations.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Statistical physics, microrheology, colloids
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690GRUBER, Markus, Antonio M. PUERTAS, Matthias FUCHS, 2020. Critical force in active microrheology. In: Physical Review E. American Physical Society (APS). 2020, 101(1), 012612. ISSN 2470-0045. eISSN 2470-0053. Available under: doi: 10.1103/PhysRevE.101.012612
BibTex
@article{Gruber2020-01-30Criti-48453,
  year={2020},
  doi={10.1103/PhysRevE.101.012612},
  title={Critical force in active microrheology},
  number={1},
  volume={101},
  issn={2470-0045},
  journal={Physical Review E},
  author={Gruber, Markus and Puertas, Antonio M. and Fuchs, Matthias},
  note={Article Number: 012612}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48453">
    <dc:creator>Gruber, Markus</dc:creator>
    <dc:creator>Puertas, Antonio M.</dc:creator>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2020-01-30</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48453/3/Gruber_2-1s5vb8kfbtf5m7.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48453/3/Gruber_2-1s5vb8kfbtf5m7.pdf"/>
    <dc:creator>Fuchs, Matthias</dc:creator>
    <dc:contributor>Puertas, Antonio M.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-31T10:29:34Z</dc:date>
    <dc:contributor>Fuchs, Matthias</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48453"/>
    <dc:contributor>Gruber, Markus</dc:contributor>
    <dcterms:title>Critical force in active microrheology</dcterms:title>
    <dcterms:abstract xml:lang="eng">Soft solids like colloidal glasses exhibit a yield stress, above which the system starts to flow. The microscopic analogon in microrheology is the untrapping or depinning of a tracer particle subject to an external force exceeding a threshold value in a glassy host. We characterize this delocalization transition based on a bifurcation analysis of the corresponding mode-coupling theory equations. A schematic model that allows analytical progress is presented first, and the full physical model is studied numerically next. This analysis yields a continuous dynamic transition with a critical power-law decay of the probe correlation functions with exponent −1/2. To compare with simulations with a limited duration, a finite-time analysis is performed, which yields reasonable results for not-too-small wave vectors. The theoretically predicted findings are verified by Langevin dynamics simulations. For small wave vectors we find anomalous behavior for the probe position correlation function, which can be traced back to a wave-vector divergence of the critical amplitude. In addition, we propose and test three methods to extract the critical force from experimental data, which provide the same value of the critical force when applied to the finite-time theory or simulations.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-31T10:29:34Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen