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Museum specimens have always provided the most basic informa‐
tion about the spatial distribution of life on earth: which species 
live where and when. These records have formed the basis for our 
biodiversity range maps, biogeography and conservation planning 
(Suarez & Tsutsui, 2004). As the pace of global change accelerates, 
we need more biodiversity data to monitor how species are respond‐
ing, which are most in need of conservation efforts, and what kinds 
of impacts these efforts deliver (Dirzo et al., 2014).

A recent paper by Farley, Dawson, Goring, and Williams 
(2018) discussed ecology's transition into the era of big data 
and showed exponential increases in biodiversity records in the 
Global Biodiversity Information Facility (GBIF) and other museum 

databases. A growing digital archive should put us in a good position 
to monitor change. However, another recent paper by Malaney and 
Cook (2018) showed that traditional museums actually are not keep‐
ing pace. Mammal specimen collecting in the United States reached 
its peak around 1990 and has dropped by a factor of three since 
then, with fewer than 5,000 specimens collected annually in recent 
years. That this is the situation for North American mammals—one 
of the world's best surveyed faunas—sheds stark light on what poor 
resolution incoming specimens will provide to understand changes 
in our global biodiversity. But what, then, explains the mismatch be‐
tween the increases in GBIF data and the decreases in actual spec‐
imen collection?
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Abstract
Given the dramatic pace of change of our planet, we need rapid collection of environ‐
mental data to document how species are coping and to evaluate the impact of our 
conservation interventions. To address this need, new classes of “born digital” biodiver‐
sity records are now being collected and curated many orders of magnitude faster than 
traditional data. In addition to the millions of citizen science observations of species 
that have been accumulating over the last decade, the last few years have seen a surge 
of sensor data, with eMammal's camera trap archive passing 1 million photo‐vouchered 
specimens and Movebank's animal tracking database recently passing 1.5 billion animal 
locations. Data from digital sensors have other advantages over visual citizen science 
observation in that the level of survey effort is intrinsically documented and they can 
preserve digital vouchers that can be used to verify species identity. These novel digital 
specimens are leading spatial ecology into the era of Big Data and will require a big tent 
of collaborating organizations to make these databases sustainable and durable. We 
urge institutions to recognize the future of born‐digital records and invest in proper cu‐
ration and standards so we can make the most of these records to inform management, 
inspire conservation action and tell natural history stories about life on the planet.
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1  | BORN DIGITAL BIODIVERSIT Y

The discrepancy is explained by a new class of biodiversity data 
that is collected electronically or “born digital”. These are not a 
replacement for physical museum specimens, which are useful 
in ways that digital collections can never be, including studies of 
genomic diversity, dietary ecology, disease ecology and morphol‐
ogy, among many other yet undiscovered types of information 
(Holmes et al., 2016). However, born‐digital records are docu‐
menting our biodiversity at a faster pace and higher resolution 
than physical museum specimens ever could. Most of this growth 
is through human observed data, 98% of GBIF vertebrate records 
since 2015 are observations (GBIF, 2018), and as of 2019, 94% of 
all biodiversity records in GBIF were observations. The volume of 
these observations has clearly led to new insight, enabled in part 
by sophisticated data filtering algorithms (Kelling, Yu, Gerbracht, 
& Wong, 2011), but the accuracy of these observations is typically 
impossible to check since most do not have any record that can be 
verified (i.e. no voucher specimen retained as a reference); indeed 
<1% have associated media that could function as a photograph or 
acoustic voucher. Furthermore, Bayraktarov et al. (2019) question 
whether the big unstructured biodiversity data provided by non‐
standardized surveys really mean more knowledge. Approaches 
that do not document details of sampling effort, or give incom‐
plete species records, will be of dubious value for modelling ef‐
forts to establish predictive relationships between species and 
environmental conditions (Bayraktarov et al., 2019; Steger, Butt, & 
Hooten, 2017). Fortunately, two sensor‐driven types of born‐digi‐
tal biodiversity data, camera traps and animal tracking devices, are 
now maturing and coalescing to provide verifiable big data with 
well‐documented sampling protocols and survey effort (Kays, 
Crofoot, Jetz, & Wikelski, 2015; Steenweg et al., 2017). The scale 
of data collected by these sensors has rapidly caught up with mu‐
seums and citizen observations (Figure 1). While not a solution for 
all groups, existing data represent a diversity of bird and mammal 

groups, around the world, including species of conservation con‐
cern (Figure 2).

As a photo‐vouchered spatial record of biodiversity, camera traps 
offer a direct parallel to the museum mammal specimen because the 
identity of the species can be verified in the photograph, potentially 
even automatically through artificial intelligence (He et al., 2016). 
Although not all species can be visually distinguished (Potter, Brady, 
& Murphy, 2018), camera traps are useful for most medium or large 
terrestrial mammals and have recently proven effective for small 
mammals and canopy fauna (Bowler, Tobler, Endress, Gilmore, & 
Anderson, 2016; McCleery et al., 2014). Camera traps also have the 
advantage of clearly recording sampling effort (where they are run 
and for how long), which is typically not known for museum collec‐
tions or citizen science observations. Since building eMammal as a 
repository for camera trap photographs at the Smithsonian in 2012, 
we have seen steady growth of records and by 2019 have > 1 million 
georeferenced, vouchered animal records (Figure 1). To put this in 
perspective, the world's largest physical mammal collection, also at 
the Smithsonian, has just under 600,000 georeferenced mammal re‐
cords spanning 180 years, and the second‐largest mammal collection 
(Museum of Southwestern Biology) has about half that (Dunnum et 
al., 2018). Furthermore, eMammal probably represents a relatively 
small amount of the camera trap data collected in the last decade. 
A new collaborative camera trapping project called Wildlife Insights 
will provide the artificial intelligence and automated analytical tools 
to process and analyse big data efficiently, thereby bringing together 
even more born digital data from around the world for effective and 
more timely monitoring of animal life on Earth.

Modern GPS technology has empowered the animal tracking field 
to grow even faster. For example, the Movebank animal tracking data‐
base we established at the Max Planck Institute of Animal Behaviour 
in 2009 has over 1.5 billion georeferenced animal records (Figure 1). 
Animal tracking data are inherently autocorrelated and so do not 
function as statistically independent occurrences in spatial mod‐
els as museum specimens typically do. However, this more detailed 

F I G U R E  1   Total size of georeferenced 
datasets available for birds and mammals 
from GBIF (museum specimens, 
observations), Movebank (number of 
individual animals tracked, total locations 
tracked) and eMammal (camera trap 
detections). Data available at https​://doi.
org/10.5061/dryad.b42j56r
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picture of how animals use space can help address a wealth of ques‐
tions about habitat suitability, ecological interactions and response 
to human disturbance (Kays et al., 2015). Additionally, new data fu‐
sion statistical techniques are providing the framework to combine 
the fine‐scale inference of animal tracking data with the larger scale 
reference of other biodiversity data (Pacifici et al., 2017). As tracking 
tag technology miniaturizes, we can track smaller and smaller species 
(Kays et al., 2015). For example, the new ICARUS antenna that was 
recently mounted on the International Space Station allows the global 
tracking of 5 g GPS transmitters suitable for tracking 100 g birds with 
GPS accuracy and near global data readout (Wikelski et al., 2007).

2  | USES FOR BORN‐DIGITAL RECORDS

The collection of Born Digital data in the first place is motivated pri‐
marily by spatial ecology, with animal tracking usually considering 

questions at the level of individuals or populations and camera 
trapping assessing populations or communities. The improvement 
in data management and decrease in cost of sensors have enabled 
larger‐scale studies (Kays et al., 2015; Steenweg et al., 2017) and 
the creation of long‐term monitoring projects (Rovero & Ahumada, 
2017). Data sharing across projects, supported by appropriate cyber‐
infrastructure, has also allowed scientists to ask basic questions at a 
global scale, for example, how do humans affect animal movement 
(Tucker et al., 2018). Given their high spatial accuracy, large volume 
and explicit measures of effort, these Born Digital data are expected 
to play a big part in the estimation of Essential Biodiversity Variables 
used to assess progress towards the objectives of the Convention 
on Biological Diversity (CBD) and Sustainable Development Goals 
(SDGs) (Jetz et al., 2019).

In addition to these empirical uses of Born Digital data, we also 
see great potential to use the images and stories of these animals to 
help connect people with nature and inspire them to contribute to 

F I G U R E  2   Geographic and Taxonomic scope of born digital data from animal tracking (Movebank) and camera trapping (eMammal) 
databases. Maps show the number of tracking locations (a, publicly available animal tracking data) or number of animals detected (b, camera 
traps). The colour scale from B also applies to A. The colour and size of squares in graph (c) show the number of detections (camera traps) 
or number of individuals tracked (animal tracking) from orders and families of birds and mammals while (d) shows the number of species 
with born digital data that are classified as Critically Endangered, Endangered or Data Deficient by the IUCN Red Data List. eMammal 
has data from 632 species of birds and mammals from 121 families and 41 orders while Movebank has tracking data from 805 bird and 
mammal species representing 138 families and 45 orders. Movebank also has data from Amphibia, Cephalaspidomorphi, Chondrichthyes, 
Chondrostei, Insecta, Plantae, Reptilia and Teleostei that are not illustrated in these graphs. Taxonomic data are available at https​://doi.
org/10.5061/dryad.b42j56r
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the conservation values that motivate global efforts like CBD and 
SDGs. The stories of individually tracked animals, like Pluie the wolf 
(Yellowstone to Yukon, Locke & Heuer, 2015) and Alice the moose 
(Algonquin to Adirondacks, Braszak, 2017), have already inspired 
large scale conservation efforts. High‐resolution tracking data of 
modern studies are now engaging millions of people to follow the 
migrations of animals in real time through websites or apps (e.g. 
Animal Tracker). Amazing animal pictures from camera traps are now 
shared via social media, websites or books (Kays, 2016) as standard 
public engagement tools for scientists and conservation organiza‐
tions. Born Digital data collection can also be integrated into citizen 
science projects, providing verifiable data to scientists and unique 
experiences for volunteers that can have positive conservation im‐
pacts. For example, Roetman et al. (2017) showed that volunteers 
who used GPS units to track their pet cats movement changed 
their behaviour to limit their pet's hunting of native prey. Similarly, 
Forrester et al. (2016) showed that volunteers who helped run cam‐
era traps for research became advocates for conservation of their 
local fauna.

3  | DIGITAL BIODIVERSIT Y 
INFR A STRUC TURE SUPPORT

As Farley et al. (2018) point out, the transition of a field into the 
era of big data requires the consecutive development of technol‐
ogy to collect the data, statistical tools to analyse them and cy‐
berinfrastructure to manage them. While the development and 
popularization of digital camera traps and miniaturized GPS track‐
ers in the last decade started the boon in born‐digital biodiversity 
data, making efficient use of this information has also required 
new cyberinfrastructure to handle this flood of data. These big 
ecology databases need to be online continuously to enable live 
data streams coming in and collaborative data sharing going out. 
For example, Movebank now has consecutive live feeds from ca. 
5,000 animals via GSM or satellite networks delivering approxi‐
mately 1 million animal locations per day, while eMammal has ca. 
10K camera trap detections uploaded per week. While most sta‐
tistical analyses are performed locally by scientists, there is also a 
need for web‐based analytics to enable real‐time monitoring and 
also make data available to users as diverse as land managers or 
school children (Schuttler et al., 2018).

The cyberinfrastructure and data curation that makes big data 
ecology possible are expensive. Not only do these require extensive 
bandwidth and server space, but also web interfaces and analyti‐
cal tools. A database is never “done” but needs continual support 
to pay for the never‐ending updates that maintain security and con‐
nectivity, not to mention upgrades to support new user needs and 
data streams. The natural history museums that hold our physical 
specimens are one logical home for these cybertools, but broader 
collaboration is needed across government organizations, NGOs, 
universities and research institutes to bear the annual costs of 
supporting born digital big data biodiversity. End users should also 

recognize the value of born digital data and tools to their work and 
expect some payment for services to be part of future funding mod‐
els. Charging for data access would be against the spirit of open data 
and discourage wide use of these resources, particularly for develop‐
ing countries that host much of the planet´s biodiversity. We believe 
that data should be freely ingested and freely provided in standard 
format. However, we suggest it is appropriate to charge for premium 
services such as streamlined ingestion of very large data sets (e.g. 
>1 hz sensor streams), more complicated derived data products or 
feature‐heavy analytic protocols that would not only help sustain 
this cyberinfrastructure, but also widen the potential audience of 
users for these data.

Natural history museums were created as institutions to protect 
physical specimens so they are available to researchers for perpetu‐
ity and to use the objects and science stories to engage and educate 
a broad audience through exhibits and programming. Born‐digital 
biodiversity data has the same potential for research and engage‐
ment value, but instead of shelving and taxidermists, we need to in‐
vest in servers, programmers and apps if we are to make them work 
as long‐term records of planetary change, and inspiration for people 
to care about the natural world.
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