A topological refactoring design strategy yields highly stable granulopoietic proteins

Lade...
Vorschaubild
Dateien
Skokowa_2-qc2h4pavsgk80.pdf
Skokowa_2-qc2h4pavsgk80.pdfGröße: 5.96 MBDownloads: 106
Datum
2022
Autor:innen
Skokowa, Julia
Hernandez Alvarez, Birte
Coles, Murray
Ritter, Malte
Nasri, Masoud
Haaf, Jérémy
Aghaallaei, Narges
Xu, Yun
Mir, Perihan
Krahl, Ann-Christin
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Nature communications. Nature Publishing Group. 2022, 13(1), 2948. eISSN 2041-1723. Available under: doi: 10.1038/s41467-022-30157-2
Zusammenfassung

Protein therapeutics frequently face major challenges, including complicated production, instability, poor solubility, and aggregation. De novo protein design can readily address these challenges. Here, we demonstrate the utility of a topological refactoring strategy to design novel granulopoietic proteins starting from the granulocyte-colony stimulating factor (G-CSF) structure. We change a protein fold by rearranging the sequence and optimising it towards the new fold. Testing four designs, we obtain two that possess nanomolar activity, the most active of which is highly thermostable and protease-resistant, and matches its designed structure to atomic accuracy. While the designs possess starkly different sequence and structure from the native G-CSF, they show specific activity in differentiating primary human haematopoietic stem cells into mature neutrophils. The designs also show significant and specific activity in vivo. Our topological refactoring approach is largely independent of sequence or structural context, and is therefore applicable to a wide range of protein targets.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SKOKOWA, Julia, Birte HERNANDEZ ALVAREZ, Murray COLES, Malte RITTER, Masoud NASRI, Jérémy HAAF, Narges AGHAALLAEI, Yun XU, Perihan MIR, Ann-Christin KRAHL, Patrick MÜLLER, 2022. A topological refactoring design strategy yields highly stable granulopoietic proteins. In: Nature communications. Nature Publishing Group. 2022, 13(1), 2948. eISSN 2041-1723. Available under: doi: 10.1038/s41467-022-30157-2
BibTex
@article{Skokowa2022-05-26topol-57761,
  year={2022},
  doi={10.1038/s41467-022-30157-2},
  title={A topological refactoring design strategy yields highly stable granulopoietic proteins},
  number={1},
  volume={13},
  journal={Nature communications},
  author={Skokowa, Julia and Hernandez Alvarez, Birte and Coles, Murray and Ritter, Malte and Nasri, Masoud and Haaf, Jérémy and Aghaallaei, Narges and Xu, Yun and Mir, Perihan and Krahl, Ann-Christin and Müller, Patrick},
  note={Article Number: 2948}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57761">
    <dc:creator>Xu, Yun</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57761/1/Skokowa_2-qc2h4pavsgk80.pdf"/>
    <dc:contributor>Müller, Patrick</dc:contributor>
    <dc:creator>Nasri, Masoud</dc:creator>
    <dc:creator>Skokowa, Julia</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Mir, Perihan</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57761"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-10T08:40:01Z</dcterms:available>
    <dcterms:issued>2022-05-26</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:contributor>Mir, Perihan</dc:contributor>
    <dc:creator>Ritter, Malte</dc:creator>
    <dc:creator>Krahl, Ann-Christin</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Krahl, Ann-Christin</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Ritter, Malte</dc:contributor>
    <dc:contributor>Hernandez Alvarez, Birte</dc:contributor>
    <dc:contributor>Nasri, Masoud</dc:contributor>
    <dcterms:abstract xml:lang="eng">Protein therapeutics frequently face major challenges, including complicated production, instability, poor solubility, and aggregation. De novo protein design can readily address these challenges. Here, we demonstrate the utility of a topological refactoring strategy to design novel granulopoietic proteins starting from the granulocyte-colony stimulating factor (G-CSF) structure. We change a protein fold by rearranging the sequence and optimising it towards the new fold. Testing four designs, we obtain two that possess nanomolar activity, the most active of which is highly thermostable and protease-resistant, and matches its designed structure to atomic accuracy. While the designs possess starkly different sequence and structure from the native G-CSF, they show specific activity in differentiating primary human haematopoietic stem cells into mature neutrophils. The designs also show significant and specific activity in vivo. Our topological refactoring approach is largely independent of sequence or structural context, and is therefore applicable to a wide range of protein targets.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-10T08:40:01Z</dc:date>
    <dc:creator>Hernandez Alvarez, Birte</dc:creator>
    <dcterms:title>A topological refactoring design strategy yields highly stable granulopoietic proteins</dcterms:title>
    <dc:creator>Aghaallaei, Narges</dc:creator>
    <dc:creator>Coles, Murray</dc:creator>
    <dc:contributor>Coles, Murray</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Haaf, Jérémy</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Haaf, Jérémy</dc:creator>
    <dc:contributor>Aghaallaei, Narges</dc:contributor>
    <dc:contributor>Xu, Yun</dc:contributor>
    <dc:contributor>Skokowa, Julia</dc:contributor>
    <dc:creator>Müller, Patrick</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57761/1/Skokowa_2-qc2h4pavsgk80.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen