Local electronic properties of epitaxial graphene nanoflakes on metals and semiconductors

Lade...
Vorschaubild
Dateien
Tesch_2-uorzayqwyx2p4.pdf
Tesch_2-uorzayqwyx2p4.pdfGrรถรŸe: 91.99 MBDownloads: 145
Datum
2018
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfรคhiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsfรถrderung
Projekt
Open Access-Verรถffentlichung
Open Access Green
Sammlungen
Core Facility der Universitรคt Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

The two-dimensional material graphene and its relatives have recently revolutionized the field of solid state physics. Despite its theoretical assessment as a monolayer of graphite since the 1940s, this model 2D system still holds a plethora of open questions with regard to fundamental research as well as technological applications. In order to further the understanding of this exciting material, this thesis is concerned with the study of local structural and electronic properties of graphene. The electronic structure of graphene, marked by the six Dirac cones, i.e. the touching points of valence and conduction band, at the corners of the Brillouin zone, is strongly influenced by the nature of and the interaction with its surroundings. In this thesis, several model systems are chosen, thus enabling the investigation of graphene/metal as well as graphene/semiconductor interfaces. Depending on the substrate under consideration, different in-situ preparation techniques had to be chosen and adjusted for optimal fabrication results. By means of scanning tunnelling microscopy and spectroscopy, the effect of lateral confinement on the energy spectrum of graphene was comparatively studied for extended and constricted graphene nanostructures on the noble metal (111) surfaces of Au and Ag, which were prepared by the intercalation technique on epitaxially grown, well-defined graphene/Ir(111) patches. While extended graphene sheets solely exhibited conventional intervalley scattering, additional features were observed in quasiparticle interference of confined structures. The shape of these features confirmed the strong influence of the flake edge configuration, the presence of defects as well as the coupling to the underlying substrate and was attributed to the inclusion of additional scattering channels between the transverse modes of the confined systems by comparison with tight-binding calculations. Furthermore, the influence of the strongly Rashba-split surface state of BiAg2 on the electronic structure of graphene was investigated, thereby testing whether the proximity to the spin-split BiAg2 might enhance the spin-orbit coupling strength of graphene itself. While no significant splitting larger than the measurement uncertainty could be observed in graphene, an unexpected shift of the BiAg2 surface state was determined and explained by an inward relaxation of the Bi atoms into the thick Ag intercalation layer at the interface triggered by the presence of graphene. Bandstructure investigations of graphene yielded an n-doping similar to the case of graphene/Ag(111) and a Fermi velocity of approxminately 1 ยท 106 m/s. Graphene monolayer growth on semiconducting Ge(110) from an atomic carbon source was established due to the limited catalytic activity and subsequently investigated with the help of several surface sensitive techniques. Depending on the growth temperature, different rotational domains were observed. Only one domain orientation was preserved for annealing temperatures near the substrate boiling point. The associated electronic structure was mapped out with the help of quasiparticle interference on the local scale and by different varieties of photoelectron spectroscopy at the macroscopic scale. Graphene preserved its linear dispersion relation, with a renormalized Fermi velocity at low temperatures attributable to the dielectric constant of Ge. Signatures of a segregation of Sb dopant atoms from the Ge bulk were observed at the interface in both photoelectron and local tunnelling measurements resulting in an n-doping of the flat graphene layer.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwรถrter
Scanning tunnelling microscopy and spectroscopy, Graphene/metals, Graphene/semiconductors, Electronic properties
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690TESCH, Julia, 2018. Local electronic properties of epitaxial graphene nanoflakes on metals and semiconductors [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Tesch2018Local-42169,
  year={2018},
  title={Local electronic properties of epitaxial graphene nanoflakes on metals and semiconductors},
  author={Tesch, Julia},
  address={Konstanz},
  school={Universitรคt Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42169">
    <dcterms:title>Local electronic properties of epitaxial graphene nanoflakes on metals and semiconductors</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42169"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-25T10:54:57Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Tesch, Julia</dc:creator>
    <dcterms:abstract xml:lang="eng">The two-dimensional material graphene and its relatives have recently revolutionized the field of solid state physics. Despite its theoretical assessment as a monolayer of graphite since the 1940s, this model 2D system still holds a plethora of open questions with regard to fundamental research as well as technological applications. In order to further the understanding of this exciting material, this thesis is concerned with the study of local structural and electronic properties of graphene. The electronic structure of graphene, marked by the six Dirac cones, i.e. the touching points of valence and conduction band, at the corners of the Brillouin zone, is strongly influenced by the nature of and the interaction with its surroundings. In this thesis, several model systems are chosen, thus enabling the investigation of graphene/metal as well as graphene/semiconductor interfaces. Depending on the substrate under consideration, different in-situ preparation techniques had to be chosen and adjusted for optimal fabrication results. By means of scanning tunnelling microscopy and spectroscopy, the effect of lateral confinement on the energy spectrum of graphene was comparatively studied for extended and constricted graphene nanostructures on the noble metal (111) surfaces of Au and Ag, which were prepared by the intercalation technique on epitaxially grown, well-defined graphene/Ir(111) patches. While extended graphene sheets solely exhibited conventional intervalley scattering, additional features were observed in quasiparticle interference of confined structures. The shape of these features confirmed the strong influence of the flake edge configuration, the presence of defects as well as the coupling to the underlying substrate and was attributed to the inclusion of additional scattering channels between the transverse modes of the confined systems by comparison with tight-binding calculations. Furthermore, the influence of the strongly Rashba-split surface state of BiAg&lt;sub&gt;2&lt;/sub&gt; on the electronic structure of graphene was investigated, thereby testing whether the proximity to the spin-split BiAg&lt;sub&gt;2&lt;/sub&gt; might enhance the spin-orbit coupling strength of graphene itself. While no significant splitting larger than the measurement uncertainty could be observed in graphene, an unexpected shift of the BiAg&lt;sub&gt;2&lt;/sub&gt; surface state was determined and explained by an inward relaxation of the Bi atoms into the thick Ag intercalation layer at the interface triggered by the presence of graphene. Bandstructure investigations of graphene yielded an n-doping similar to the case of graphene/Ag(111) and a Fermi velocity of approxminately 1 ยท 10&lt;sup&gt;6&lt;/sup&gt; m/s. Graphene monolayer growth on semiconducting Ge(110) from an atomic carbon source was established due to the limited catalytic activity and subsequently investigated with the help of several surface sensitive techniques. Depending on the growth temperature, different rotational domains were observed. Only one domain orientation was preserved for annealing temperatures near the substrate boiling point. The associated electronic structure was mapped out with the help of quasiparticle interference on the local scale and by different varieties of photoelectron spectroscopy at the macroscopic scale. Graphene preserved its linear dispersion relation, with a renormalized Fermi velocity at low temperatures attributable to the dielectric constant of Ge. Signatures of a segregation of Sb dopant atoms from the Ge bulk were observed at the interface in both photoelectron and local tunnelling measurements resulting in an n-doping of the flat graphene layer.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2018</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42169/3/Tesch_2-uorzayqwyx2p4.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42169/3/Tesch_2-uorzayqwyx2p4.pdf"/>
    <dc:contributor>Tesch, Julia</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-25T10:54:57Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalverรถffentl.
Prรผfdatum der URL
Prรผfungsdatum der Dissertation
February 7, 2018
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2018
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitรคtsbibliographie
Ja
Begutachtet
Diese Publikation teilen