Avian introgression in the genomic era

Lade...
Vorschaubild
Dateien
Ottenburghs_2-vlcyo8x66txa6.pdf
Ottenburghs_2-vlcyo8x66txa6.pdfGröße: 1.49 MBDownloads: 313
Datum
2017
Autor:innen
Ottenburghs, Jente
van Hooft, Pim
van Wieren, Sipke E.
Ydenberg, Ronald C.
Prins, Herbert H.T.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Avian Research. 2017, 8, 30. eISSN 2053-7166. Available under: doi: 10.1186/s40657-017-0088-z
Zusammenfassung

Introgression, the incorporation of genetic material from one (sub)species into the gene pool of another by means of hybridization and backcrossing, is a common phenomenon in birds and can provide important insights into the speciation process. In the last decade, the toolkit for studying introgression has expanded together with the development of molecular markers. In this review, we explore how genomic data, the most recent step in this methodological progress, impacts different aspects in the study of avian introgression. First, the detection of hybrids and backcrosses has improved dramatically. The most widely used software package is STRUCTURE. Phylogenetic discordance (i.e. different loci resulting in discordant gene trees) is another means for the detection of introgression, although it should be regarded as a starting point for further analyses, not as a definitive proof of introgression. Specifically, disentangling introgression from other biological processes, such as incomplete lineage sorting, remains a challenging endeavour, although new techniques, such as the D-statistic, are being developed. In addition, phylogenetics might require a shift from trees to networks. Second, the study of hybrid zones by means of geographical or genomic cline analysis has led to important insights into the complex interplay between hybridization and speciation. However, because each hybrid zone study is just a single snapshot of a complex and continuously changing interaction, hybrid zones should be studied across different temporal and/or spatial scales. A third powerful tool is the genome scan. The debate on which evolutionary processes underlie the genomic landscape is still ongoing, as is the question whether loci involved in reproductive isolation cluster together in ‘islands of speciation’ or whether they are scattered throughout the genome. Exploring genomic landscapes across the avian tree of life will be an exciting field for further research. Finally, the findings from these different methods should be incorporated into specific speciation scenarios, which can consequently be tested using a modelling approach. All in all, this genomic perspective on avian hybridization and speciation will further our understanding in evolution in general.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Admixture, Cline theory, D-statictic, Genomic landscape, Hybridization, Phylogenetic discordance
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690OTTENBURGHS, Jente, Robert KRAUS, Pim VAN HOOFT, Sipke E. VAN WIEREN, Ronald C. YDENBERG, Herbert H.T. PRINS, 2017. Avian introgression in the genomic era. In: Avian Research. 2017, 8, 30. eISSN 2053-7166. Available under: doi: 10.1186/s40657-017-0088-z
BibTex
@article{Ottenburghs2017-12Avian-41221,
  year={2017},
  doi={10.1186/s40657-017-0088-z},
  title={Avian introgression in the genomic era},
  volume={8},
  journal={Avian Research},
  author={Ottenburghs, Jente and Kraus, Robert and van Hooft, Pim and van Wieren, Sipke E. and Ydenberg, Ronald C. and Prins, Herbert H.T.},
  note={Article Number: 30}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41221">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-05T10:02:34Z</dcterms:available>
    <dcterms:title>Avian introgression in the genomic era</dcterms:title>
    <dc:creator>Prins, Herbert H.T.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41221"/>
    <dc:creator>Ydenberg, Ronald C.</dc:creator>
    <dcterms:abstract xml:lang="eng">Introgression, the incorporation of genetic material from one (sub)species into the gene pool of another by means of hybridization and backcrossing, is a common phenomenon in birds and can provide important insights into the speciation process. In the last decade, the toolkit for studying introgression has expanded together with the development of molecular markers. In this review, we explore how genomic data, the most recent step in this methodological progress, impacts different aspects in the study of avian introgression. First, the detection of hybrids and backcrosses has improved dramatically. The most widely used software package is STRUCTURE. Phylogenetic discordance (i.e. different loci resulting in discordant gene trees) is another means for the detection of introgression, although it should be regarded as a starting point for further analyses, not as a definitive proof of introgression. Specifically, disentangling introgression from other biological processes, such as incomplete lineage sorting, remains a challenging endeavour, although new techniques, such as the D-statistic, are being developed. In addition, phylogenetics might require a shift from trees to networks. Second, the study of hybrid zones by means of geographical or genomic cline analysis has led to important insights into the complex interplay between hybridization and speciation. However, because each hybrid zone study is just a single snapshot of a complex and continuously changing interaction, hybrid zones should be studied across different temporal and/or spatial scales. A third powerful tool is the genome scan. The debate on which evolutionary processes underlie the genomic landscape is still ongoing, as is the question whether loci involved in reproductive isolation cluster together in ‘islands of speciation’ or whether they are scattered throughout the genome. Exploring genomic landscapes across the avian tree of life will be an exciting field for further research. Finally, the findings from these different methods should be incorporated into specific speciation scenarios, which can consequently be tested using a modelling approach. All in all, this genomic perspective on avian hybridization and speciation will further our understanding in evolution in general.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2017-12</dcterms:issued>
    <dc:contributor>Ydenberg, Ronald C.</dc:contributor>
    <dc:contributor>Ottenburghs, Jente</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Kraus, Robert</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Kraus, Robert</dc:creator>
    <dc:contributor>van Wieren, Sipke E.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-05T10:02:34Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41221/1/Ottenburghs_2-vlcyo8x66txa6.pdf"/>
    <dc:contributor>Prins, Herbert H.T.</dc:contributor>
    <dc:creator>van Wieren, Sipke E.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41221/1/Ottenburghs_2-vlcyo8x66txa6.pdf"/>
    <dc:creator>Ottenburghs, Jente</dc:creator>
    <dc:creator>van Hooft, Pim</dc:creator>
    <dc:contributor>van Hooft, Pim</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen