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Abstract It has been a while since the literature on the pricing kernel puzzle was
summarized in Jackwerth (Option-implied risk-neutral distributions and risk-aversion,
The Research Foundation of AIMR, Charlotteville, 2004). That older survey also
covered the topic of risk-neutral distributions, which was itself already surveyed in
Jackwerth (J Deriv 2:66–82, 1999). Much has happened in those years and estimation
of risk-neutral distributions has moved from new and exciting in the last half of the
1990s to becoming a well-understood technology. Thus, the present survey will focus
on the pricing kernel puzzle, which was first discussed around 2000. We document
the pricing kernel puzzle in several markets and present the latest evidence concerning
its (non-)existence. Econometric studies are detailed which test for the pricing kernel
puzzle. The present work adds much breadth in terms of economic explanations of the
puzzle. New challenges for the field are described in the process.
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1 Introduction and a simple model of the pricing kernel

The pricing kernel m is of fundamental concern to all of modern finance as it is the
basis for all pricing:

E[m R] = 1 (1)

where E[] is the expectation under the physical (true) probabilities p across states and
R is the return in each state. The pricing kernel m is the ratio of state prices π and
physical probabilities p or, alternatively, of discounted risk-neutral probabilities (q/Rf)

and physical probabilities:

m = π

p
= q

R f p
(2)

The pricing kernel informs us on how we need to adjust payoffs X such that we can
take simple expectations in order to obtain the price of the security. It thus contains
important information about the investor’s assessment of different states: payoffs in
states associated with low wealth/consumption are valued highly (m is large).

We can appreciate the link between the pricing kernel and preferences in a simple
one-period economy. The representative investor maximizes the expected value of
end of period utilities of consumption U(Ci) in states i, where the investor is endowed
with an initial wealth of w0 and the utility function is concave. The investor can
choose to collect hi units of wealth in state i and, in equilibrium, consumption needs to
equal collected wealth in each state. The optimization problem, including the budget
constraint, reads then as:

max
Ci ,hi

E [U (C)] = max
Ci ,hi

N∑
i=1

piU (Ci )

s.t.
N∑

i=1

hiπi ≤ w0

and Ci = hi for i = 1, . . . , N , (3)

where pi are the physical probabilities in states i and πi are the state prices. Assuming
an interior solution, we write the first order conditions as:

πi = piU ′(hi )

λ
for i = 1, . . . , N , (4)

where λ is the Lagrange multiplier associated with the budget constraint. Note that
neither the pricing kernel (mi = πi/pi = U ′(hi )/λ) nor the risk-free rate are so far
uniquely identified. To achieve such identification, we assume that the representative
agent needs to hold all securities in equilibrium so that the collected wealth hi needs
to equal w0Ri , where Ri is the return on the market in state i. Then,

πi = piU ′(w0 Ri )

λ
for i = 1, . . . , N . (5)
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Summing up across states and further assuming the existence of a risk-free security

means that the sum
∑N

i=1 πi = (1/R f ) =
∑N

i=1 pi U ′(w0 Ri )

λ
, where R f is one plus the

risk-free rate. This allows us to identify λ and to express the pricing kernel, while
substituting for λ, as:

mi = πi

pi
= U ′ (w0 Ri )

R f
∑N

k=1 pkU ′ (w0 Rk)
for i = 1, . . . , N . (6)

Equation (6) informs us that the pricing kernel is proportional to marginal utility. Any
insight into the pricing kernel thus translates into knowledge about aggregate investor
preferences in our economy. In particular, standard concave utility functions, such as
power and exponential utility, lead to positive and monotonically decreasing pricing
kernels.

Empirically, it emerges that estimated ratios of risk-neutral and physical probabil-
ities often exhibit non-decreasing parts. Such findings constitute the pricing kernel
puzzle, and we will return to it promptly in the next section.

A second line of research uses market data to infer the (parametric) utility function
of a representative investor. A starting point is the equity premium puzzle of Mehra and
Prescott (1985). Here, a stylized economy with a representative investor economy with
power utility is being calibrated to market data. The resulting risk aversion coefficients
tend to be much too high when compared to survey based estimates. This literature has
been continued in Kocherlakota (1996) and Mehra (2008), with international evidence
added in Pozzi et al. (2010) and Dimson et al. (2012). Closely related is the work by
Bartunek and Chowdhury (1997) who use power utility and Benth et al. (2010) who
use exponential utility instead; both papers calibrate to options data.

2 The pricing kernel puzzle

We are more interested in a third approach, the direct estimation of the pricing kernel
m via Eq. (2), which uses as inputs the physical distribution and the option-implied
risk-neutral distribution. Bates (1996a, b) points out that the two stochastic processes
seem to be incompatible. Finally, Jackwerth (2000), Ait-Sahalia and Lo (2000), and
Rosenberg and Engle (2002) estimate the empirical pricing kernel by dividing the
risk-neutral distribution by the physical distribution. They document the surprising
result that the pricing kernel is locally increasing while a simple model such as the
one in Eq. (6) suggests a monotonically decreasing pricing kernel. The pricing kernel
puzzle was born.

We now document the pricing kernel puzzle in a worked example, which broadly
follows Jackwerth (2000, 2004) and draws on additional papers to make basic points
about the empirical implementation of the pricing kernel puzzle. The full range of
papers on the topic will be surveyed in Sect. 3.

To start our investigation, we need an asset, which is highly correlated with overall
wealth in the economy. For the US, the S&P 500 index is the asset of choice as it
is seen as a reasonable proxy for the market return even though it does not cover all
investment opportunities of a representative investor. It also comes with a deep and
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liquid market for options on the index, which we will need momentarily. Studying
Eq. (2), we require three quantities, (one plus) the risk-free rate R f , the risk-neutral
probabilities p, and the physical probabilities q. Estimation of the interest rate is an
easy task as the discounting effect is small over the typical horizons of 30–60 days.

2.1 How to estimate the risk-neutral distribution q?

Rubinstein’s (1994) seminal article allowed for the first time to recover risk-neutral,
option-implied distributions. Jackwerth and Rubinstein (1996) extended and applied
that technique to the S&P 500 index options. Taking the last step of finding the empir-
ical pricing kernel through dividing the risk-neutral probability distribution by the
physical distribution seems obvious in retrospect but was not quite so clear at the time.

Estimation of the risk-neutral distribution is by now a well-established field of
research and a large literature covers it, from which we summarize some papers in
Table 1.

Given a sufficiently large cross section (more than 10 option strike prices), most
methods perform relatively similarly and yield the desired risk-neutral distributions
where one typically uses the SPX options on the S&P 500 index with maturities of
30–60 days.

Table 1 We list some papers on the extraction of risk-neutral densities from option prices and the use of
such densities

Name of paper Comments

Papers covered in the text

Rubinstein (1994) First risk-neutral density fit

Jackwerth and Rubinstein (1996) Extended fit based on smoothness criterion

Jackwerth (2004) Survey and new “fast and stable” method

Haerdle et al. (2015) Analyzes the effect of errors in the raw data; kernel
based method

Papers not covered in the text

Jackwerth (1999) Survey

Bahra (1997) Survey, mixture of two lognormals

Melick and Thomas (1997) Mixture of three lognormals

Ait-Sahalia and Lo (1998) Kernel regression of implied volatilities

Bliss and Panigirtzoglou (2002, 2004) Splines, based on Shimko (1993)

Figlewski (2010)

Fengler and Hin (2015) B-splines

Ludwig (2015) Neural networks

EZB (2011) Applications using risk-neutral densities

Carr et al. (2002) Based on CGMY Levy-process

David and Veronesi (2014) Risk-neutral volatilities and macro variables

Martin (2017) Expected market return and risk-neutral volatility

Christoffersen et al. (2013) Survey on forecasting with risk-neutral information
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In the recent literature, curve fitting of the implied volatility has become the most
popular starting point for backing out risk-neutral distributions. To illustrate, we review
the fast and stable curve fitting approach of Jackwerth (2004). First, the option prices
observed in the market are converted to implied volatilities {σ̄i }I

i=1, where σ̄i denotes
the Black-Scholes implied volatility of an option with strike price Ki . Second, one
chooses a smoothness parameter λ and solves the following optimization problem to
obtain an implied volatility curve {σ }J

j=1 on a fine grid:

min
σi

�4

2 (J + 1)

J∑
j=0

(
σ ′′

j

)2 + λ

2I

I∑
i=0

(σi − σ̄i )
2 (7)

The coarseness of the grid is given by �, which defines the distance between two
consecutive strike prices, and σ ′′

j denotes the numerical approximation to the second
derivative of the implied volatility curve. Equation (7) has a straightforward closed
form solution for {σ }J

j=1, see Jackwerth (2004). By varying over λ one can choose a
reasonable trade-off between smoothness (sum of the second derivatives over j) and
fit (sum of the squared errors over i). Finally, the smooth implied volatilities curve is
translated back to a call option price curve, whose second derivative is the compounded
risk-neutral density:

q(Ki ) = R f
∂2Callprice(K )

∂K 2 |K=Ki (8)

The relationship in Eq. (8) was first established in Breeden and Litzenberger (1978).
Care needs to be taken in implementing Eq. (8), as a smooth solution depends

heavily on the spacing �. Using a $5 spacing as in the market data leads to jagged
solutions, see for example Barone-Adesi and Dall’O (2010). Using half or a quarter
of $5 leads to much better results.

Turning attention from the impact of spacing to the impact of pricing errors, Haerdle
et al. (2015) pick up on the older work of Bliss and Panigirtzoglou (2002) and analyze
the impact of errors in option prices or implied volatilities on the empirical pricing ker-
nel. Both the risk-neutral distribution and the physical distribution are being obtained
through kernel based techniques, which allows Haerdle et al. (2015) to describe the
uniform confidence bands around the empirical pricing kernel in statistical terms.

In Fig. 1 we present representative risk-neutral distributions for the S&P 500 in the
US, the DAX 30 in Germany, the FTSE 100 in the UK, and the Nikkei 225 in Japan.
We also depict the physical distributions, which we discuss next.

2.2 How to estimate the physical distribution p?

Those physical distributions in Fig. 1 are based on 38- to 45-day, non-overlapping
returns of the S&P 500 index within moving, 4-year historical windows. The hori-
zons of the returns (38–45 days) are chosen such that they match the maturity of the
underlying options. The returns are then smoothed through a kernel density estimator
where the bandwidth is chosen according to Silverman’s (1986) rule of thumb.
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Fig. 1 Risk-neutral and actual distributions. The actual distributions are calculated with the same return
horizon as the time-to-expiration of the options. For the US we used the historical sample from Sep 2, 1997
to Aug 15, 2003, for Germany from Jan 2, 1997 to Oct 9, 2003, for the UK from Jan 2, 1997 to Oct 9, 2003,
and for Japan from Jan 5, 1998 to Oct 10, 2003. Returns are reported as 1 plus the rate of return

Kernel densities do not rely on any distributional assumptions except the stationarity
of the returns and were used in Jackwerth (2000, 2004) and Ait-Sahalia and Lo (2000).
However, in the presence of time-varying volatility and structural breaks, more recent
papers have turned to GARCH models. Thus, Rosenberg and Engle (2002), Barone-
Adesi et al. (2008), and Barone-Adesi and Dall’O (2010) all fit the Glosten et al.
(1993) GARCH model (GJR GARCH) to historical returns.1

In particular, the daily log return rt is modeled as the sum of a constant μ and an
error term εt :

rt = ln

(
St

St−1

)
= μ + εt (9)

The error term is given by εt = ztσt , where zt is standard normal and the volatility
process σt is recursively defined by:

1 For the fit of a continuous time Levy-processes see Carr et al. (2002).
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σ 2
t = κ + γ σt−1

2 + αεt−1
2 + 1(εt−1<0)ζ εt−1

2 (10)

where κ, γ, α, and ζ are model parameters, which are usually estimated by maximum
likelihood. In contrast to ordinary GARCH models, the GJR GARCH can account
for the leverage effect by treating positive and negative shocks differently through the
indicator function 1(εt−1<0).

A perennial problem for estimating the physical distribution is the so-called Peso
problem. What if the historical returns do not include an event (say a crash), but
investors have longer memories and incorporate such fears into their subjective dis-
tributions? Luckily, Jackwerth (2000) argues that a peso problem cannot explain the
pricing kernel puzzle, since for the first 4 years past the crash, the crash is “visible” in
the physical distribution based on the historical returns. Still, the results do not change
compared with periods where the crash is no longer visible because, on the date of
the investigation, the crash lies more than 4 years into the past. In a theoretical setting,
Ziegler (2007) confirms the point that a Peso problem cannot explain the pricing kernel
puzzle. See Sect. 4.1 for details.

2.3 Possible shapes of the pricing kernel and statistical evidence

After dividing the risk-neutral distribution by the physical distribution, we obtain
the empirical pricing kernels, which are depicted in Fig. 2. Note the tilde-shaped
hump around at-the-money, which is inconsistent with Eq. (6) according to which the
empirical pricing kernel is monotonically decreasing in returns since it is proportional
to the marginal utility of a risk-averse investor. For such a risk-averse investor, utility
is concave and marginal utility is decreasing. Moreover, equilibrium is ruled out as a
non-decreasing pricing kernel implies the existence of a portfolio that stochastically
dominates the market, see Sects. 5 and 6. A non-decreasing pricing kernel hence
clashes with our basic intuitions and contradicts most standard market models. The
violation of monotonicity has been labeled as the “pricing kernel puzzle,” and we will
investigate possible explanations in Sect. 5.

When looking at the empirical pricing kernels from the beginning of this research
area, one observes various shapes at different points in time. Figure 3 shows a tilde-
shaped pricing kernel in 1993, a u-shape in 1999, and w-shaped pricing kernels in
2004 and 2013.

To understand the different shapes, we refer to the empirical findings of Cuesdeanu
(2016), who examines the S&P 500 from 1988 to 2015 and finds that (i) missing out-
of-the money calls, (ii) misestimated subjective probabilities, and (iii) a time varying
variance risk premium all contribute to the empirical shapes. (i) If deep out-of-the-
money calls cannot be observed, one has to make assumptions about the right end of the
implied volatility curve. The right end of the pricing kernel then reacts very sensitively
to small changes in the implied volatility curve. However, when deep out-of-the-money
calls are observed, the pricing kernel turns out to be increasing at the right end. (ii) The
time-series model for estimating the subjective density matters in particular for the
right end of the pricing kernel. Models with a fat right tail and thus a pricing kernel,
which decreases at the right end, fit the data more poorly than models with a thin right



296

US Germany

UK Japan

45-Day options on Aug 15, 2003 40-Day options on Oct 11, 2003 

38-Day options on Oct 14, 2003 41-Day options on Oct 11, 2003 

45-Day Return on the S&P 500 index

0

1

2

3

4

5

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

m
*

40-Day Return on the DAX index

0

1

2

3

4

5

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

m
*

38-Day Return on the FTSE 100 index

0

1

2

3

4

5

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

m
*

41-Day Return on the Nikkei 225 index

0

1

2

3

4

5

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

m
*

Fig. 2 Empirical pricing kernels. Typical post-1987 stock market crash implied pricing kernels. The pricing
kernels are calculated as the ratio of the option implied risk-neutral distribution and the historical smoothed
return distribution. Returns are reported as 1 plus the rate of return

tail and thus a pricing kernel, which increases at the right end. Hence, issues (i) and
(ii) imply either w- or u-shaped pricing kernels as opposed to tilde-shaped ones. (iii)
Last, obtaining sometimes w-shaped and sometimes u-shaped pricing kernels can be
explained by a time varying variance risk premium. Pricing kernels tend to be u-shaped
in times of high uncertainty (variance risk premium is high) and w-shaped in calm
periods (variance risk premium is low). Moreover, tilde-shaped pricing kernels tend
to emerge during calm periods when no out-of-the-money calls are observed, the fit
to these options is poor, or the right tail of the subjective density is overestimated.
Finally, monotonically decreasing pricing kernels can emerge during volatile periods
when no out-of-the-money calls are observed or the fit to these options is poor.

2.4 Economics of the pricing kernel puzzle

Now that we have established the pricing kernel puzzle, we turn to the economics
of the puzzle and its solutions. Taking the pricing kernel puzzle to be literally true,
however, seems like a naïve interpretation. In that case, the representative investor of
the simple economy in Sect. 1 would need to have a convex segment in the utility
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Fig. 3 Empirical pricing kernels at different points in time. The figure shows a tilde-shaped pricing kernel
in 1993, panel A, a u-shaped pricing kernel in 1999, panel B, and w-shaped pricing kernels in 2004 and
2013, panel C and D the subjective distributions are estimated by a GJR-GARCH(1,1) and the risk-neutral
densities are obtained by the fast and stable method of Jackwerth (2004) as introduced in Eq. (7)

function, akin to the Friedman and Savage (1948) utility function in Fig. 4.2 For a
representative investor, this is hard to reconcile with equilibrium. It would mean that
the representative investor was better off by not investing into states of world, where the
index pays off when the utility function is convex. Rather, the representative investor
would prefer a lottery over the two adjacent states (0.9 and 1.1 on the return axis of
Fig. 4) where the utility function turns concave again. But such avoidance of states jars
with the notion that the representative investor needs to hold all assets by definition.
Rather, security prices need to adjust so that the representative investor is willing to
hold all assets in equilibrium. This point is made more rigorously in Hens and Reichlin
(2013).

Looking at the equilibrium problem for a different angle, Beare (2011) works
out, based on some earlier results by Dybvig (1988), measure preserving derivatives

2 Note that Friedman and Savage (1948) introduced their utility function for individuals and not for the
representative investor. In particular, their concern was with small stakes gambling such as buying a lottery
ticket. Chetty and Szeidl (2007) provide a microeconomic motivation for Friedman–Savage utility via
consumption commitments (e.g. housing), for which the spending cannot easily be adjusted. Again, this is
a model of individual investors, and it is not obvious that the convexities would survive aggregation to a
representative investor. See Ingersoll (2014) for related results on another partially convex utility function,
namely cumulative prospect theory.
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Fig. 4 Friedman and Savage (1948) utility function. We depict a utility function along the lines of Friedman
and Savage (1948) with concave–convex–concave segments in the return dimension as a solid curve. We
also depict the concavified version of the utility function in the center by a dashed curve

which any investor should prefer to investing into the market (see also Rieger 2011).
Their prices are less than the price of the market in times where the pricing kernel
puzzle exists, and Beare and Schmidt (2015) show that returns on an option portfolio
exploiting this circumstance actually stochastically dominate market returns. While
such disequilibrium could well exist for some period in time, it is hard to see how such
a situation could persist unabated ever since the crash of 1987.

There exists a close connection between pricing kernels and the concept of stochas-
tic dominance, which expresses dominance relations between probability distributions
on which all investors of a certain class agree. Our setting of positive and decreasing
pricing kernels uses the class of risk-averse investors (i.e., those with concave util-
ity functions), and the corresponding concept is the one of second order stochastic
dominance.

We look at solutions in more detail in Sect. 4. Based on the above reservations
about single state variable models, much interest centers on multiple state variable
models, where the pricing kernel is monotonic in several dimensions such as index
return and volatility. Projecting the multivariate pricing kernel onto the index return
dimension can then lead to the pricing kernel puzzle. A promising alternative approach
is the demand based model of Bollen and Whaley (2004), who explicitly model the
portfolio insurance demand of investors for out-of-the-money puts on the index. In
particular, their model can reconcile the moderate implied volatility smiles for stocks
with the steep smiles for the index.

The pricing kernel puzzle also touches on a number of related economic concepts.
First, Eq. (1) governs not only index returns but also index option returns. We can thus
also investigate vestiges of the pricing kernel puzzle in option returns; a discussion
which we follow in Sect. 3.2. Second, a complementary aspect to the pricing kernel
puzzle is the problem of bounds on option prices, detailed in Sect. 5. Here, the maximal
and minimal option prices are found, which are still consistent with a class of particular
pricing kernels (say, those of risk-averse investors). Rather than focusing on the pricing
kernel exactly consistent with observed option prices (the focus of the pricing kernel
puzzle), the interest here is on the most restrictive class of pricing kernel, which can
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just explain observed option prices. The classes of pricing kernels (say, those of risk-
averse investors) often have alternative expressions in terms of stochastic dominance
relations (here, of second order stochastic dominance).

Finally, we mention two applications of the pricing kernel puzzle. Kostakis et al.
(2011) use the option-implied, risk-neutral distribution for the S&P 500 index and
the assumption of an exponential or power utility to obtain forward-looking physical
distributions. They basically apply the methodology of Bliss and Panigirtzoglou (2004)
to a dynamic asset allocation problem. The risk aversion coefficient is iteratively
estimated up to time t in order to make a prediction of the physical distribution at time
t+1. They find that the forward-looking physical distributions produce better portfolios
than the historical distributions, even though the approach ignores the pricing kernel
puzzle by design.3 It would be interesting to see if a more flexible pricing kernel would
outperform the pricing kernels based on exponential and power utility functions.

3 Does the pricing kernel puzzle exist?

Most of the work on the pricing kernel puzzle investigates the S&P 500 index, and
there are recent additions to this literature. The pricing kernel puzzle exists in the
returns on the index and also in the returns on options on the index. A large number of
studies have subsequently investigated if the pricing kernel puzzle also exists in other
indices and have largely confirmed this finding for a number of large indices (e.g. the
DAX and the FTSE). Little is known about the time-series properties of the pricing
kernel puzzle. Finally, we turn to investigations of the pricing kernel puzzle in markets
other than index markets. The main issue here is that the pricing kernel is now the
projection of the economy-wide pricing kernel onto the space of returns investigated
(say returns on gold). Depending on the correlation between the index (proxying for
aggregate wealth) and gold (as a possible return under investigation), the projected
pricing kernel might not exhibit any puzzling behavior.

3.1 Yes, the pricing kernel puzzle exists in index markets

Three early papers establish the pricing kernel puzzle. Using monthly S&P 500 index
options from 1986 through 1995, Jackwerth (2000) suggested to approximate the
risk aversion function −U′′(Ri)/U′(Ri)) directly as (p′/p)−(q′/q), which is a positive
function as long as the utility function is concave and marginal utility is positive.
The risk aversion function turns out to be more complicated as opposed to the more
straightforward pricing kernel (Eq. 2). A number of robustness checks confirm the
result that the empirical risk aversion functions are u-shaped and negative around
at-the-money during the post-87-crash period, while they are mainly positive and
decreasing during the pre-crash period. As a (locally) negative risk aversion function
implies a (locally) increasing pricing kernel, the pricing kernel puzzle emerges.

3 Zdorovenin and Pezier (2011) use a close variant, too, and are subject to the same critique as Kostakis
et al. (2011).
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Ait-Sahalia and Lo (2000) derived the pricing kernel independently of Jackwerth
(2000) as the ratio of the risk-neutral distribution (obtained via the method of Ait-
Sahalia and Lo 1998) and the physical distribution obtained through a kernel based
estimator. Based on half-yearly returns during the year 1993 they can document the
pricing kernel puzzle. The authors very graciously delayed publication so that their
paper would not appear in print before the publication of Jackwerth (2000) which was
started earlier but was long delayed at the journal.

The third of the canonical models, which are typically cited to establish the pricing
kernel puzzle, is Rosenberg and Engle (2002). Using monthly data from 1991 to 1995
on the S&P 500 index options, they start by obtaining the physical distribution from
the parametric GJR GARCH model of Glosten et al. (1993) fitted to historical returns.
They next specify the pricing kernel parametrically, which allows them to obtain the
risk-neutral distribution and thus derive model-implied option prices. The parameters
of the pricing kernel are optimized such that the sum of squared option pricing errors
is being minimized. A monotonically decreasing pricing kernel is being fitted, but
mispricing can be much reduced when more flexible functional forms for the pricing
kernel are allowed, leading to the pricing kernel puzzle yet again.

3.1.1 Testing the pricing kernel puzzle

The canonical models provide bounds around the pricing kernel estimates simply
based on the sample variation of the inputs, namely, historical returns and option
prices, and those bounds do not constitute formal tests of monotonicity. Using the
bounds suggests that the estimated pricing kernels exhibit local increases exceeding
those bounds. The main finding of Jackwerth (2000) is presented in his Fig. 3 where the
risk aversion functions are negative by more than two standard deviations. Ait-Sahalia
and Lo (2000) provide the 5 and 95% quantiles around their pricing kernel, and, by
visual inspection, the upper quantile at an index value of 400 is very close to the lower
quantile at an index value of 435. While this argument is not a formal statistical test, it
is still highly suggestive of the presence of the pricing kernel puzzle. Rosenberg and
Engle (2002) document the pricing kernel puzzle in their Fig. 6, which shows a clear
local increase in the pricing kernel beyond the two standard deviation bounds.

A careful study of small sample noise in both the physical and the risk-neutral
distribution is Leisen (2014).4 He finds that spurious non-monotonicities can arise for
simulations of power utility pricing kernels. The problem is particularly relevant if the
physical distribution is based on historical samples of only 48 monthly returns, and
the situation improves much once a GARCH(1,1) model is estimated. Also, the risk-
neutral distributions are based on Ait-Sahalia and Lo’s (2000) kernel-based method,
which is noisier than other methods for backing out risk-neutral distributions from
option prices.

The complicated issue of formally testing for locally increasing segments of the
estimated pricing kernel has been taken up in Golubev et al. (2014) under the strong
assumption of iid realized returns. The idea is to map the problem to an exponential

4 See also Lioui and Malka (2004) for reported differences due to using either only call or only put options.
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model and check for pricing kernel monotonicity between any two realized returns in
the sample. The fairly complicated test then considers the joint distribution of mono-
tonicity violations across all possible combinations of observed returns. Applying
their test to the DAX index during the summers of 2000, 2002, and 2004, monotonic-
ity could be rejected at the 10% significance level in 2002, but not for the years 2000
and 2004.

Another test is Haerdle et al. (2014), which uses the market model of Grith et al.
(2017). Here, the pricing kernel is parameterized as two decreasing segments with
some breakpoint where the pricing kernel jumps up or down. Comparing GMM esti-
mates of the restricted model (the two segments join smoothly in a decreasing manner)
versus the unrestricted model, the authors employ a so-called D-test and reject pricing
kernel monotonicity in typically four out of five cases.

A further attempt at designing a formal statistical test is Beare and Schmidt (2014)
who base their test on the equivalence of the monotonicity of the pricing kernel and
the concavity of the ordinal dominance function. The latter function is the cumulative
risk-neutral distribution of the quantile function of the physical distribution. They find
that in about half the months from 1997 to 2009, the pricing kernel puzzle can be
detected at the 5% significance level. We collect tests in Table 2.

Cuesdeanu and Jackwerth (2017) suggest a simpler test based on risk-neutral
distributions, which have been divided by some pricing kernel to find the physical
probability distributions at each observation date. Working out the quantiles of the
observed market returns under the physical cumulative distribution function, the quan-
tiles throughout the sample should be standard uniformly distributed, see Bliss and

Table 2 We list statistical tests of pricing kernel monotonicity

Name of paper Comments

Papers covered in the text

Jackwerth (2000) Using in-sample two standard deviation bounds

Ait-Sahalia and Lo (2000) 5 and 95% quantiles

Rosenberg and Engle (2002) Using in-sample two standard deviation bounds

Leisen (2014) Theoretical and simulated aspects of noise in pricing
kernel estimation

Golubev et al. (2014) Assumes iid returns; formal test of monotonicity
violations

Haerdle et al. (2014) Tests for increasing breakpoint between two decreasing
segments of the pricing kernel

Beare and Schmidt (2014) Concavity test of the ordinal dominance function

Cuesdeanu and Jackwerth (2017) Test for uniformity of the percentiles of observed returns
under the physical cumulative distribution function

Papers not covered in the text

Shive (2003) Bootstrap test

Shive and Shumway (2004) Bootstrap test

Patton and Timmermann (2010) Monotonic relation test for asset returns. Has not been
used empirically
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Panigirtzoglou (2004), Diebold et al. (1998) and Diebold et al. (1999). The authors
then optimize several test statistics of uniformity while either restricting or not restrict-
ing the pricing kernel to be monotonically decreasing. The discrepancy in optimized
test statistics can then be tested against its simulated distribution. Cuesdeanu and Jack-
werth (2017) confirm the presence of the pricing kernel puzzle in the S&P 500 index
options data from 1987 to 2015.5 Note that the paper, as opposed to the earlier canon-
ical studies (which mix backward-looking estimates of the physical distribution with
forward-looking risk-neutral distributions in order to finally find the empirical pricing
kernel as the ratio q/p), uses only forward-looking data, namely, the physical returns
are forward-looking and no longer based on historical samples.

3.1.2 Further studies on the S&P 500, other indices, and time series properties of
the pricing kernel puzzle

Most of the initial studies use the S&P 500 index. We summarize a number of follow-
up studies on the S&P 500 and other indices (DAX 30, FTSE 100, and others) in
Table 3.

Song and Xiu (2016) add information about the VIX level when estimating empiri-
cal pricing kernels for the S&P 500 using kernel based methods akin to Ait-Sahalia and
Lo (2000). They confirm the pricing kernel puzzle unconditionally, but cannot estab-
lish it conditionally on high or low VIX levels. Thus, they speculate that stochastic
volatility could be driving the pricing kernel puzzle but find that standard stochas-
tic volatility option pricing models cannot generate the observed patterns.6 See also
Sect. 4.2 which suggests solutions to the pricing kernel puzzle based on volatility as
a second state variable.

Very interesting are the following two studies on the DAX which try to explain the
time series properties of the pricing kernel puzzle. First, Giacomini et al. (2008) use tick
data for the DAX from January 1999 to April 2002 and fit a GARCH model in order
to obtain the physical distribution. The risk-neutral distribution estimation follows
Ait-Sahalia and Lo (2000). Then, time series of simple statistics of the pricing kernel
plus the absolute and relative risk aversion functions at different maturities are being
calculated and subjected to a principle component analysis. The principle components
are finally regressed on returns on the DAX and on changes in at-the-money implied
volatility. The main result seems to be the rather obvious finding that large changes in
implied volatility lead to more volatile and time-varying pricing kernels.

Similarly, but using a slightly different technique, Grith et al. (2013) use DAX data
between April 2003 and June 2006. They fit a smoothing polynomial to the implied
volatilities, translate those into option prices, and use Breeden and Litzenberger (1978)

5 Compare Linn et al. (2014), who can only establish the pricing kernel puzzle for the FTSE 100 but not for
the S&P 500. Cuesdeanu and Jackwerth (2017) attribute this result to (i) a lack of scaling so that the physical
distributions of Linn et al. (2014) are not integrating to one and (ii) a mismatch in their optimization (based
on moments of the uniform distribution via GMM) and their measurement of fit (based on the Cramer van
Mises statistic).
6 In particular, they find that the empirical volatility pricing kernel is u-shaped; a fact that is not captured
by any option pricing model so far. A related observation by Boes et al. (2007) is that that the risk-neutral
distribution, conditional on a low spot volatility, does not exhibit negative skewness.
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Table 3 We list empirical papers, which document the pricing kernel puzzle in index markets

Name of paper Market studied Comments

Papers covered in the text

Jackwerth (2000) S&P 500 Locally increasing pricing
kernel

Ait-Sahalia and Lo (2000) S&P 500 Locally increasing pricing
kernel

Rosenberg and Engle (2002) S&P 500 Locally increasing pricing
kernel

Song and Xiu (2016) S&P 500 Also use information on VIX

Giacomini and Haerdle (2008) DAX Locally increasing pricing
kernel

Grith et al. (2013) DAX Locally increasing pricing
kernel

Coval and Shumway (2001) S&P 500 Use of option returns and not
prices

Broadie et al. (2009) S&P 500 Use of option returns and not
prices

Chaudhuri and Schroder (2015) S&P 500 Use of option returns and not
prices

Bali et al. (2017) S&P 500 Use of option returns and not
prices

Bakshi and Madan (2007) S&P 500 Use of option returns and not
prices

Bakshi et al. (2010) S&P 500 Use of option returns and not
prices

Papers not covered in the text

Figlewski and Malik (2014) S&P 500 Locally increasing pricing
kernel

Hill (2013) S&P 500 Locally increasing pricing
kernel

Yang (2009) S&P 500

Audrino and Meier (2012) S&P 500 Uses B-splines for the pricing
kernel

Carr et al. (2002) 13 stocks and 8 indices,
including S&P 500

Fits Levy-processes,
u-shaped pricing kernel

Wu (2006) S&P 500 Extends Carr et al. (2002)

Belomestny et al. (2017) DAX

Dittmar (2002) 20 industry portfolios u-shaped pricing kernel

Schweri (2010) 30 industry portfolios u-shaped pricing kernel

Shive (2003) S&P 500, DAX, FTSE Locally increasing pricing
kernel

Shive and Shumway (2004) S&P 500, DAX, FTSE, OMX
Sweden

Locally increasing pricing
kernel in the unconstrained
version



304

Table 3 continued

Name of paper Market studied Comments

Shive and Shumway (2009) S&P 500, DAX, AMEX
Japan

Subsumes Shive (2003) and
Shive and Shumway
(2004), same results

Fengler and Hin (2015) S&P 500 Locally increasing pricing
kernels on one day for
several maturities

Golubev et al. (2014) DAX Locally increasing pricing
kernel in 6/2002, but not in
6/2000 or 6/2004

Detlefsen et al. (2010) DAX Locally increasing pricing
kernels in bear, “sideways,”
but not bull market

Haerdle et al. (2014) International cross sections of
20 stocks each

Locally increasing pricing
kernel

Liu et al. (2009) FTSE Locally increasing pricing
kernel

Perignon and Villa (2002) CAC 40 France Locally negative risk aversion
function, implying the
puzzle

Coutant (1999) CAC 40 France u-shaped risk aversion
function

to obtain risk-neutral distributions. The physical distributions are based on 2 years’
worth of historical returns via kernel density estimation. Finally, power utility functions
are extended with four additional parameters (additive and multiplicative parameters
inside and outside the power function) to allow for non-monotonic pricing kernels.
Changes in these parameters and the location of the peak of the pricing kernel are being
regressed on changes in the credit spread, the yield curve slope, and the short interest
rate, as well as the underlying return. The authors conclude from the correlations
between those macro variables and the additional shape parameters that the locally
risk loving behavior is pro-cyclical as the hump of the empirical pricing kernel seems
to be more pronounced in calm periods.

3.2 Yes, the pricing kernel puzzle exists in index option returns

So far we studied the pricing kernel puzzle in terms of returns of the underlying
security, often a broad index such as the S&P 500. But Eq. (1), which we repeat here,
also holds for option returns:7

E [m R] = 1 (11)

7 For a study on forecasting option returns, see Israelov and Kelly (2017).
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The return on a call option (Rcall) with strike price K is the payoff (S − K)+ divided
by the price of the option, which is E[m(S − K)+]. We thus start our discussion by
looking at the expected return on a call option under the physical measure:

E [Rcall ] = E
[
(S − K )+

]
E

[
m (S − K )+

] (12)

Under the assumption of a monotonically decreasing pricing kernel, call returns should
be positive and increasing in moneyness as, intuitively speaking, the pricing kernel
in the denominator shifts mass to the region where the call payoff is zero. A stronger
result is presented in Coval and Shumway (2001): the expected return on a call should
be greater than the expected return on the underlying, which broadly holds in the data.8

Coval and Shumway (2001) derive the relation between the derivative of the expected
call price with respect to the strike price and the covariance between the pricing kernel
and the asset price:

∂ E[Rcall ]
∂K

= − Cov[E[m|s], S − K |S > K ]
c

, (13)

where c is a positive term that depends on the pricing kernel and the underlying but
does not influence the result. From Eq. (13) and assuming that the pricing kernel is
negatively correlated with the underlying, it becomes clear that expected call returns
will be increasing in the strike price. This monotonicity result, and the fact that a call
with a strike price of zero corresponds to the underlying, explains why the expected
call return should exceed the return on the underlying.

The authors then investigate returns on option straddles and find evidence of priced
volatility risk, which they cannot reconcile with power utility for the representative
investor. This evidence is consistent with the pricing kernel puzzle but does not outright
prove the case. Broadie et al. (2009) caution using unscaled option returns, which tend
to be so noisy that one cannot even reject the assumption that the returns were being
generated by the Black-Scholes model. Such findings strongly suggest scaling option
returns in a suitable way (e.g. straddles as above or by standardizing betas as in
Constantinides et al. 2013).

Chaudhuri and Schroder (2015) extend the results of Coval and Shumway (2001)
by showing that the pricing kernel is only monotonically decreasing if (conditional)
expected returns on certain option positions (called “log-concave” and encompassing
long calls, puts, butterfly spreads, and others) increase in the strike price. They confirm
the pricing kernel puzzle based on data for the S&P 500 index but fail for individual
stock options. This is expected due to the much flatter implied volatility smiles of the
individual stock options. Another extension in Bali et al. (2017) looks at the higher
risk-neutral moments of option returns. Song (2012) applies the ideas of Coval and

8 Branger et al. (2011) do not confirm their result in more recent data, thus documenting the presence of
the pricing kernel puzzle in the data. They further argue that stochastic volatility, stochastic jump option
pricing models, which also have jumps in the volatility process, can explain those call option returns.
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Shumway (2001) to returns on options on volatility in the case of u-shaped pricing
kernels.

Bakshi and Madan (2007) present a market model where the pricing kernel is u-
shaped since a group of pessimistic investors are shorting the market index. In addition,
these investors buy call options as an insurance against a rising index and, hence, are
willing to pay a premium for the calls; for more details, see Sect. 4.1. Consistent
with such market model, Bakshi et al. (2010) find evidence for a positive dependence
between short-selling activity and expected call returns. Looking again at Eqs. (12
and 13), it is clear that a u-shaped pricing kernel directly implies that expected returns
of call options with a strike above a certain threshold are negative and decreasing in
the strike price. Bakshi et al. (2010) document evidence for such a u-shaped pricing
kernel.9

3.3 No, the pricing kernel puzzle does not exist with overly restricted pricing
kernels

While the canonical early papers backed out the pricing kernel, other researchers tried
to find the forward looking physical probabilities by assuming a functional form for the
pricing kernel. However, imposing severe restrictions on the pricing kernel can lead
to estimates which will than no longer exhibit the pricing kernel puzzle despite its
presence in the data. E.g., Chernov and Ghysels (2000) fitted the Heston (1993) model
to S&P500 index returns and option prices. While the paper provides expressions
for the pricing kernel, it is not immediately clear that the pricing kernel puzzle can
be generated altogether, given the restrictive choice of only two constant risk premia
(one for the market and one for volatility), which account for the parameter differences
between the physical and the risk-neutral versions of the model. We collect papers,
which overly restrict the pricing kernels in Table 4.

A second line of investigation, which specifies the utility function to be of power
or exponential type, is also inherently not able to document the pricing kernel puz-
zle. The leading exponents are Bliss and Panigirtzoglou (2004) who start out with
the risk-neutral distribution obtained from option prices, which they change into the
physical distribution through division by the pricing kernel, which is given by the
marginal utility of either a power or exponential utility function. As the parametric
utility functions lead to monotonically decreasing pricing kernels, Bliss and Panigirt-
zoglou (2004) could not document the pricing kernel puzzle even if it were present in
the data.

The prevailing thought is that only one of the three quantities, namely risk-neutral
probabilities, physical probabilities, and the pricing kernel, can be backed out from
the other two. Yet Ross (2015) argues that it would be preferable to use only risk-
neutral information, as that is well estimated, and infer both the forward looking
physical distribution and the pricing kernel. His insight is that this can be achieved if
all risk-neutral transition probabilities are known, as opposed to only the risk-neutral

9 The empirical evidence is consistent with Branger et al. (2011); compare for the theoretical results also
Chaudhuri and Schroder (2015).
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Table 4 Models with overly restricted pricing kernels

Name of paper Type of constraint Comments

Papers covered in the text

Chernov and Ghysels (2000) SVSJ

Bliss and Panigirtzoglou (2004) POWER/EXP

Ross (2015) ROSS RECOVERY

Jackwerth and Menner (2015) ROSS RECOVERY Tests Ross (2015)

Jensen et al. (2016) ROSS RECOVERY

Papers not covered in the text

Pan (2002) SVSJ Extends Bates (2000)

Bates (2008) SCSJ

Santa-Clara and Yan (2010) SVSJ

Duan and Zhang (2014) POWER/EXP

Weber (2006) POWER/EXP Uses collateralized debt
obligations

Backus et al. (2011) POWER/EXP Assumes that the Merton (1976)
model holds

Kang and Kim (2006) POWER/EXP

Benth et al. (2010) POWER/EXP

Bates (2012) POWER/EXP

Coutant (2000) POWER/EXP Based on the CAC 40 France

Lioui and Malka (2004) POWER/EXP Based on the TA-25 Israel

Stutzer (1996) MAX ENTROPY Extended by Alcock and Smith
(2014) using Haley and Walker
(2010)

Barone-Adesi et al. (2008) RND SHAPE Contradicted by the very similar
paper Barone-Adesi et al.
(2013), which finds the puzzle

Barone-Adesi and Dall’O (2010) RND SHAPE

Sala (2016) RND SHAPE

Sala and Barone-Adesi (2016) RND SHAPE

Audrino et al. (2015) ROSS RECOVERY

Jensen et al. (2016) ROSS RECOVERY

Types of constraint are stochastic volatility, stochastic jump models (SVSJ), power and exponential utility
(POWER/EXP), maximum entropy approaches (MAX ENTROPY), shape restrictions on the risk-neutral
density (RND SHAPE), and Ross (2015) recovery based approaches (ROSS RECOVERY)

distribution. The difference is that the risk-neutral distribution is one single distribution
emanating from the initial (known) state and indicating the (risk-neutral) probability
of moving to a future state. The risk-neutral transition probabilities are richer and also
indicate the risk-neutral probabilities of moving from all hypothetical initial states to
all future states, see Fig. 5.

While the approach is theoretically very appealing, Ross (2015) requires some
strong assumptions, which severely restrict possible pricing kernels, even though those
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Fig. 5 Risk-neutral
probabilities versus risk-neutral
transition probabilities. In panel
A we depict the typical situation
of a tree emanating from today’s
initial state (1) and moving to
several future states (0, 1, and 2).
In panel B, we depict the data
requirements of Ross (2015)
where, in addition, one also
needs to know the (hypothetical)
transition probabilities from
alternative states today (0 and 2)
to all future states
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assumptions do not outright preclude the existence of the pricing kernel puzzle.10

Jackwerth and Menner (2015) study the empirical implementation of the Ross (2015)
recovery and find a number of intractable problems. Such problems lead to poorly
estimated pricing kernels and physical probability distributions. Jackwerth and Menner
(2015) test these physical distributions based on the realized returns, which supposedly
stem from them, and strongly reject the proposed physical distributions,11 whereas
the assumption that physical distributions can be estimated by using historical return
distributions cannot be rejected.

Jensen et al. (2016) develop a recovery framework that makes no assumption on
the underlying probability distribution and allows for a closed-form solution. Practical
implementation relies only on current option prices for different maturities, and, hence,
there is no need for a full matrix of transition distributions as in the Ross (2015)
model. Empirically, they find that their recovered physical return distribution has some
predictive power, although they stress that their empirical implementation primarily
has an illustrative purpose. Applying the Berkowitz (2001) test to the realized returns,
they reject the hypothesis that the recovered distribution is equal to the true physical
distribution.

10 Carr and Yu (2012) replace the assumptions on the utility function of a representative investor by
assuming that the dynamics of the numeraire portfolio under the physical measure are being driven by a
bounded diffusion. Walden (2017) extends Ross (2015) recovery to unbounded diffusion processes and
Huang and Shaliastovich (2014) to the state dependent, recursive preferences of Epstein and Zin (1989).
Schneider and Trojani (2015) suggest recovery based on assumptions on the signs of risk premia on different
moments of market returns.
11 This point is also made in Borovicka et al. (2015) who attribute these problems to “misspecified recovery,”
which happens when the pricing kernel has non-trivial martingale components.
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3.4 No, the pricing kernel puzzle does not exist in non-index asset markets

First a word of caution on computing the empirical pricing kernel for non-index assets
altogether. If one adheres to some notion of preferences over consumption, then a
concentration on the index makes much sense. After all, consumption should be cor-
related with wealth and that in turn is driven to a large extent by the evolution of large
indices such as the S&P 500. But considering an asset such as gold makes much less
sense. As always, one investigates the projection of the economy-wide pricing kernel
onto a particular return dimension (here gold). But as gold has a low correlation with
the stock market and thus with consumption and wealth, we have no clear prediction
of the shape of such projected pricing kernel in the gold dimension: a low gold price
is not related to low stock market prices (poor state of the world, low consumption,
high risk aversion) nor is the opposite true for high gold prices. Thus, pricing kernels
on non-index assets might well turn out to be disappointingly flat and with little room
for interpretation. We summarize such approaches in Table 5.

The situation would be different for asset classes more highly correlated with the
index. Moreover, for a careful, bivariate analysis of the pricing kernel puzzle, one

Table 5 We list papers, which present projected pricing kernels in non-index markets

Name of paper Market studied Comments

Papers covered in the text

Jackwerth and Vilkov (2017) S&P 500 and Volatility
(VIX)

Bivariate model

Ni (2009) Equities Monotonically decreasing
pricing kernels

Chaudhuri and Schroder (2015) Equities Locally increasing pricing
kernels

Figlewski and Malik (2014) Exchange traded funds Locally increasing pricing
kernels

Papers not covered in the text

Shive and Shumway (2009) Commodities u-shaped projected pricing
kernels

Haas et al. (2012) Foreign exchange Use transformation of Liu
et al. (2007)

Li and Zhao (2009) Interest rates (Libor) Use estimator of Ait-Sahalia
and Duarte (2003)

Liu et al. (2015) Interest rates (Libor)

Kitsul and Wright (2013) Inflation (TIPS) u-shaped projected pricing
kernels

Song and Xiu (2016) Volatility (VIX) u-shaped projected pricing
kernels

Bakshi et al. (2015) Volatility (VIX) u-shaped projected pricing
kernels

Chernov (2003) Index, equities, gold,
interest rates (T-bills)

Estimates the pricing kernel
in several dimensions
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would need to estimate bivariate risk-neutral distributions, which is exceedingly dif-
ficult as there are few options written on both assets at the same time (knowing only
options on one asset and options on the other asset separately is typically not enough),
and bivariate physical distributions. Jackwerth and Vilkov (2017) have recently made
inroads here in estimating the bivariate risk-neutral distribution on the S&P 500 and
the VIX, using longer-dated options to circumvent the above problem in this special
set-up.

Considering non-index asset classes, the individual stocks take up a halfway posi-
tion as they are the constituents of the index. Ni (2009) and Chaudhuri and Schroder
(2015) analyze individual stock options within the S&P 500. Chaudhuri and Schroder
(2015) find evidence of return patterns compatible with the pricing kernel puzzle and
criticize the earlier paper of Ni (2009), which cannot find such evidence, for method-
ological reasons. Details can be found in Sect. 3.4. Similarly, the work of Figlewski
and Malik (2014) is based on option data on exchange traded funds having the S&P
500 as an underlying. Due to the high correlation with the S&P 500, we do not really
view this exchange traded fund as a non-index asset. Not surprisingly, their work finds
non-monotonic pricing kernels. By considering exchange traded funds that aim to
provide (i) twice the return on a long position in the S&P 500 and (ii) twice the return
on a short position, they also contribute to the literature on heterogeneous investors
and the pricing kernel puzzle, see Sect. 4.1.

4 Solutions

Considering the empirical evidence and the statistical tests so far, it emerges that the
pricing kernel puzzle seems to be present in the data. We will now investigate models
which try to explain the pricing kernel puzzle. We start with models using only a single
state variable, then the important class of models with more than one state variable,
before turning to behavioral and sentiment models, and finally to ambiguity aversion
models. We collect such models in Table 6.

4.1 Models with a single state variable

Another way of extending the simple setting of Sect. 1 is to replace the representative
investor with several (classes of) heterogeneous investors. In the simplest case, there
are two groups of investors, pessimists believing that the mean return will turn out
to be low and optimists believing that the mean return will turn out to be high. We
depict such a situation in Fig. 6, where the aggregated subjective distribution then turns
out to be bi-modal. Given a typical risk-neutral distribution, the pricing kernel puzzle
obtains. Note that the pricing kernel puzzle critically depends on the bi-modality of the
subjective distribution. Adding more moderate groups of investors in the center would
undo the bimodality and could result in monotonically decreasing pricing kernels.
Hence, such extremely bimodal subjective distributions seem to be unrealistic, and
the main challenge in this strand of the literature is to formally derive the three objects
of interest (m, p, and q) under aggregation.
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Table 6 Models of the pricing kernel puzzle

Name of paper Type of model Comments

Papers covered in the text

Brown and Jackwerth (2012) SINGLE STATE

Bakshi and Madan (2007) SINGLE STATE

Ziegler (2002) SINGLE STATE

Ziegler (2007) SINGLE STATE

Hens and Reichlin (2013) SINGLE STATE

Figlewski and Malik (2014) SINGLE STATE

Grith et al. (2017) SINGLE STATE

Christoffersen et al. (2013) SEVERAL STATES

Chabi-Yo (2012) SEVERAL STATES

Bakshi et al. (2015) SEVERAL STATES

Garcia et al. (2003) SEVERAL STATES

Chabi-Yo et al. (2008) SEVERAL STATES

Bollen and Whaley (2004) BEHAVIORAL

Garleanu et al. (2009) BEHAVIORAL

Kliger and Levy (2009) BEHAVIORAL

Polkovnichenko and Zhao (2013) BEHAVIORAL

Dierkes (2013) BEHAVIORAL

Chabi-Yo and Song (2013) BEHAVIORAL

Gollier (2011) AMBIGUITY

Kang et al. (2014) AMBIGUITY

Drechsler (2013) AMBIGUITY

Cuesdeanu (2016) AMBIGUITY

Papers not covered in the text

Bakshi et al. (2010) SINGLE STATE Based on Bakshi and Madan
(2007), u-shaped pricing kernel

Ziegler (2002) SINGLE STATE Similar to Ziegler (2007) but with
only two extreme investors

Siddiqi and Quiggin (2016) SINGLE STATE

Haerdle et al. (2009) SINGLE STATE Early version of Grith et al.
(2017)

Detlefsen et al. (2010) SINGLE STATE

Babaoglu et al. (2016) SEVERAL STATES Based on Christoffersen et al.
(2009), u-shaped pricing kernel

Bollerslev and Todorov (2011) SEVERAL STATES u-shaped pricing kernel

Dittmar (2002) SEVERAL STATES
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Table 6 continued

Name of paper Type of model Comments

Kiesel and Rahe (2017) SEVERAL STATES

Yamazaki (2017) SEVERAL STATES u-shaped pricing kernel

Han and Turvey (2010) SEVERAL STATES

Lundtofte (2010) SEVERAL STATES Locally increasing pricing kernel

Andreou et al. (2014) BEHAVIORAL Based on Han (2008)

Hodges et al. (2008) BEHAVIORAL

Gemmill and Shackleton (2005) BEHAVIORAL

Type of model refers to models with a single state variable (SINGLE STATE), models with several state
variables (SEVERAL STATES), behavioral models (BEHAVIORAL), and ambiguity aversion models
(AMBIGUITY)
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Fig. 6 Hypothetical pricing kernels with investor heterogeneity. We depict a risk-neutral distribution (q,
scaled up 30 times for better readability) and a subjective distribution (p, also scaled up 30 times for better
readability). The subjective distribution is a mixture of the beliefs of the pessimists (low expected mean
return) and the optimists (high expected mean return). The pricing kernel m obtains as the ratio of risk-
neutral by subjective probabilities. For simplicity and ease of depiction, we assume a zero interest rate

Bakshi and Madan (2007) assume heterogeneity in beliefs in a complete market.
Investors have different subjective distributions (instead of homogeneous belief in the
physical distribution); consequently, investors expecting positive returns are long in
the market, while investors expecting negative returns are short. The aggregation of
both groups of investors can lead to a u-shaped pricing kernel.

Ziegler (2002) uses a very similar set-up and can show that even the risk-neutral
distribution can become bi-modal, if the beliefs are strongly heterogeneous.12 He
documents negative relative risk aversion functions, consistent with the pricing kernel
puzzle.

12 In such setting, Shefrin (2008a, b) coins the term sentiment for the ratio of the mixture of the different
subjective distributions and the physical distribution. His ideas become clearer when one assumes that the
shapes of the subjective distributions and the physical distributions remain the same but the mean is low
for the pessimists, high for the optimists, and in between for the physical distribution, see Shefrin (2008b,
Fig. 1).



313

Ziegler (2007) examines a complete market with multiple investors and assumes
that the index is a good proxy for consumption. His results indicate that neither (i)
aggregation of (heterogeneous) preferences, (ii) misestimation of beliefs, nor (iii) het-
erogeneous beliefs can lead to reasonable explanations of the pricing kernel puzzle. He
shows that, given reasonable individual utility functions, aggregation of heterogeneous
preferences alone cannot explain the puzzle as the economy-wide risk-aversion inher-
its the behavior of the individual risk-aversions. In order to deal with misestimated
beliefs, the stochastic volatility, stochastic jump model of Pan (2002) is considered.13

Fitting the model to the data and assuming that investors have homogeneous beliefs but
cannot estimate them correctly, Ziegler (2007) argues that the resulting misestimation
is too severe to be credible.

When allowing for heterogeneity among beliefs, Ziegler (2007) needs a large share
of investors with very pessimistic beliefs to explain the puzzle. Hence, a fat left tail
can only be captured if some investors expect extremely negative returns. However, a
setting with three groups of investors is only capable of generating the pricing kernel
puzzle if two of the groups are unrealistically pessimistic. Ziegler (2007) then already
suggests that a solution of the pricing kernel puzzle needs to go beyond the rather
simple setting of a complete, frictionless market with a single state variable.

In a two dates exchange economy with a finite number of states, Hens and Reichlin
(2013) systematically examine violations of three basic assumptions of their model
(namely, risk-averse behavior, unbiased beliefs, and complete markets). All three relax-
ations can then generate the pricing kernel puzzle. Quite obviously, allowing for a
partially convex utility function (e.g., Friedman and Savage 1948) will generate the
pricing kernel puzzle by design. However, a representative investor would not allo-
cate wealth to states where the utility function is convex, and the relaxation is thus
unrealistic.

Biased beliefs are modeled in two ways by Hens and Reichlin (2013). First, as
humans tend to overweigh less probable extreme events, beliefs could be systemat-
ically distorted according to the model of Tversky and Kahneman (1992). Second,
beliefs could be biased as different investors fashion different subjective forward-
looking distributions based on the same historical return distribution. In isolation,
both types of biased beliefs are incapable of explaining the puzzle. However, by com-
bining both types, the authors can generate the pricing kernel puzzle, although only at
the cost of assuming a negative expected mean return for the representative investor.
Finally, Hens and Reichlin (2013) introduce background risk as a form of market
incompleteness. In a simple four state example, two investors facing background risk
individually can generate the pricing kernel puzzle.

The plausibility of heterogeneous beliefs and preferences is considered in Figlewski
and Malik (2014) from an empirical point of view. The authors examine options on an

13 Although the model captures stochastic volatility and jumps, the risk-aversion functions turn negative for
high return states, implying a u-shaped pricing kernel. Such behavior contradicts the standard assumption
of a risk-averse representative investor. This leads to the question, if stochastic volatility, stochastic jump
models are typically incapable of fitting the historical risk-neutral and physical distribution simultaneously,
or if the assumptions on the functional form of the risk-premium parameters are mis-specified in such
models.
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exchange traded fund replicating the S&P 500 (SPY), on one that aims to provide the
return on a two-times long position in the index (SSO), and on one that aims to provide
the return on a two-times short position (SDS). Presumably, optimistic investors will
buy the SSO fund; pessimistic investors the SDS. The paper then studies two extreme
cases: (i) pricing kernels could be the same but not subjective distributions or (ii)
pricing kernels could differ but all investors share the belief in the same physical
distribution. It turns out that setting (i) explains the data better. Unfortunately, the
set-up does not allow for intermediate settings between the extreme cases. Last, it is
suggested that preferences within each group should be constant over time and the
daily change in expectations stems from a change in the risk-neutral distributions.

As opposed to many of the above papers, which use equilibrium approaches to
aggregate the individual investors’ utility functions to a market-wide pricing kernel,
some authors use rather ad-hoc assumptions in order to aggregate utility functions.
Grith et al. (2017) piece together the pricing kernel from many segments, which
(between reference points) are decreasing but can jump upwards at the reference points.
Investors are allowed to have different reference points. Given a sufficient number of
such reference points, the authors can generate a flexible pricing kernel specification,
which can exhibit increasing parts. One can study its piece-wise nature in their Figs. 2
and 3 in detail. In their empirical section they find that the local maximum of the
pricing kernel near at-the-money is more pronounced when the variance risk premium
is low.

In conclusion, it seems rather hard to explain the pricing kernel puzzle with only one
state variable. Moreover, there is always the nagging doubt of how a locally increasing
segment of the pricing kernel can be reconciled with equilibrium. A representative
investor would not want to hold securities that pay off in such states, and models
with several (groups of) investors need to have rather strongly diverging beliefs (very
pessimistic investors vs. rather optimistic ones), while ignoring the large mass of
moderate investors in the middle.

4.2 Models with several state variables

One way out is being hinted at by Brown and Jackwerth (2012) who introduced the
(weighted) average historical volatility as a new variable. While it is still determinis-
tically driven by the return process (which technically makes it a single state variable
model), it opens up the perspective of introducing additional state variables. The pric-
ing kernel would then exist across those several dimensions, and the pricing kernel
projected onto the return dimension might then exhibit the pricing kernel puzzle.14

To illustrate the additional flexibility in modeling economies when using multiple
state variables, consider the situation with two state variables in Fig. 7, which is adapted
from Brown and Jackwerth (2012).

14 A number of papers show that such additional state variables seem to be empirically needed in order to
explain option prices, see for example Buraschi and Jackwerth (2001), Coval and Shumway (2001), and
Constantinides et al. (2013).
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Fig. 7 Hypothetical pricing kernels depending on the second state variable volatility. We graph the simplest
setting where volatility can take either of two values and we have a pricing kernel (m-high) in the high
volatility state and another one (m-low) in the low volatility state. As wealth decreases or increases, the
likelihood of being in the high volatility state increases, while for unchanged wealth (returns around 1) the
likelihood of being in the low volatility state increases. Taking expectations of m over the two volatility
states yields the desired empirical pricing kernel m*

Here it is assumed that the pricing kernel depends not only on the return (first state
variable) but also on a second state variable. The most prominent choice of such a
second state variable in the literature is probably volatility and therefore we stick to
volatility in this example. In particular, it is assumed that volatility can either be high
(m-high, with long dashes) or low (m-low, with short dashes). When returns are both
very high or very low, volatility tends to be high, and the pricing kernel of the high
state dominates. When returns are close to 1, volatility tends to be low, and the pricing
kernel of the low state dominates. In line with the empirical evidence in Song and Xiu
(2016), we model the conditional pricing kernels to be monotonically decreasing in
returns. Taking the expectation over volatility yields a non-decreasing pricing kernel
m* (solid line, with black squares) even though the two conditional pricing kernels
were monotonically decreasing in returns.

Christoffersen et al. (2013) stay close to the above idea and extend the Heston
and Nandi (2000) model by introducing a variance risk premium in addition to the
equity risk premium. Similar to the setting of Fig. 7, the pricing kernel is now a
function of returns and volatility. When projected onto returns only, by construction, a
u-shaped pricing kernel emerges whenever the variance premium is negative. Fitting
this GARCH model to the historical time series and cross sections of Wednesday
options on the S&P 500 from 1996 to 2009 while allowing for a variance premium,
and hence for a u-shaped pricing kernel, improves the risk-neutral and physical fit
substantially. The quadratic functional form of the pricing kernel is rigidly assumed
by the model and at times does not fit the empirical tilde-shaped pricing kernel in the
empirical section of their paper.

Chabi-Yo (2012) shows that a recursive small-noise expansion results in a pric-
ing kernel that incorporates stochastic volatility, stochastic skewness, and stochastic
kurtosis, while an ordinary Taylor expansion would lead to a pricing kernel, which
is a polynomial in the market return. Using French’s 30 monthly industry portfolios,
he recovers the higher moment preferences of the representative investor. His empir-
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ical pricing kernel is a function of volatility and return. Holding volatility fixed, it is
monotonically decreasing in the market return. Yet, when projected onto the market
return only, the empirical pricing kernel shows the puzzling behavior. For robustness,
he shows that the pricing kernel projected onto the market return exhibits a similar
shape if it is estimated with the S&P 500 option data rather than industry portfolio
returns.

While most of the literature on heterogeneous beliefs and the pricing kernel focused
on disagreement on the expected return (see e.g. Ziegler 2007; Hens and Reichlin
2013), Bakshi et al. (2015) consider heterogeneity with respect to future volatility and
allow the investors with exponential utility to have different levels of risk-aversion,
too. As a result, they obtain a u-shaped pricing kernel in the volatility dimension from
options on VIX. In contrast, most standard models imply that the pricing kernel is
monotonically increasing in volatility. Therefore, the model could potentially solve
the pricing kernel puzzle as returns around zero are associated with low volatility,
and low volatility on the other hand is associated with an increasing pricing kernel.
Unfortunately, the paper does not explore this intriguing aspect.

Garcia et al. (2003) first introduced regime switches in the fundamental state vari-
ables of an equilibrium model and used this model to price options. Extending this
work, Chabi-Yo et al. (2008) show that the pricing kernel puzzle can be explained by
regime-switches in some latent state variable, which in turn drives fundamentals (the
joint distribution of the pricing kernel and returns). Their model uses two preference
specifications. For one a recursive Epstein and Zin (1989) utility and, alternatively, an
external habit model with state dependence in the beliefs, which is based on Veronesi
(2004) and Campbell and Cochrane (1999).15 The intuition is that, conditional on
the latent state variable, the pricing kernel is not violating the standard monotonicity
assumption, whereas a projection of the pricing kernel onto returns leads to a locally
increasing pricing kernel. Indeed, a simulation with hypothetical parameters can repro-
duce the desired shapes for the conditional and unconditional pricing kernels. One can
note in the figures that the modeled pricing kernels often do not match the empirical
pricing kernels in shape and magnitude. A more full-fledged empirical exercise might
be able to improve the fit.

4.3 Behavioral and sentiment models

After first looking at demand based models, we next turn to models with probability
weighting.

4.3.1 Demand based models

Bollen and Whaley (2004) come tantalizingly close to tackling the pricing kernel puz-
zle in their study of demand for out-of-the-money put options. They first establish that

15 Benzoni et al. (2011) offer a similar model but do not show the model pricing kernel in the return
dimension, and one cannot easily determine if it exhibits the pricing kernel puzzle; the pricing kernel in the
dimension of consumption is monotonically decreasing by assumption.
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the physical distributions for individual stocks and for the S&P 500 index are not that
different. They then turn to the implied volatility smiles, which are mildly u-shaped
for individual stock options and steeply skewed for the index. Their explanation is
that strong investor demand for portfolio insurance exists for out-of-the-money index
puts, but is weaker for individual stock option puts. The high demand for out-of-the-
money index puts by institutional investors is only met with supply by the market
makers at rather high prices, moving the implied volatilities up, and causing the steep
smile. Having thus explained the cause of the steep index smile, they unfortunately do
not connect their story to the pricing kernel puzzle, even though just one final argu-
ment is required. Namely, as the steep index smile leads to a left-skewed, leptokurtic
risk-neutral distribution, the pricing kernel puzzle emerges once the risk-neutral dis-
tribution is being divided by the more normally distributed physical distribution. For
the individual stock options, the mild smile leads to rather normally distributed risk-
neutral distribution in the dimension of individual stock returns, and, thus, the pricing
kernel puzzle does not emerge when dividing by the physical distribution.

Motivated by these empirical results, Garleanu et al. (2009) develop a demand
based option pricing model by departing from no-arbitrage principles, considering the
options market as being separated from the underlying, and highlighting the impor-
tance of the market maker. In the presence of jumps and stochastic volatility, market
makers cannot fully hedge their exposures and will demand higher prices for options
paying off in states where hedges are critical. Hence, the resulting implied volatility
smile is increasing in regions where hedging is more difficult for the market maker,
which mainly concerns out-of-the-money puts. Similarly to Bollen and Whaley (2004),
they find that option end-users are typically long index puts and short single stock calls.
Again, an explicit treatment of the pricing kernel is missing.

4.3.2 Models with probability weighting functions

Kliger and Levy (2009) revert the direction of investigation by starting with the pricing
kernel puzzle, using power utility, and backing out the implied physical distribution
from the risk-neutral distribution. As a result, the implied physical distribution inherits
the left-skewed and leptokurtic shape of the risk-neutral distribution, which is incom-
patible with the physical distribution derived from bootstrapped past S&P 500 returns.
Thus, they introduce a probability weighting function in order to reconcile the implied
physical distribution with the bootstrapped distribution. The estimated probability
weighting functions are inverse-S-shaped in their sample from 1986 to 1995.

To illustrate how probability weighting influences the pricing kernel, we extend the
one period pricing kernel from Eq. (6) along the lines of Polkovnichenko and Zhao
(2013):

mi = qi

R f pi
= U ′ (w0 Ri ) Z (Pi )

R f
∑N

k=1 pkU ′ (w0 Rk) Z (Pk)
for i = 1, . . . , N . (14)

Here, Z is a probability weighting function, which applies on the cumulative prob-
ability Pi of return Ri . Note that again the numerator is state dependent while the
denominator is constant. Hence, the shape of the pricing kernel is no longer propor-
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tional to marginal utility but to the product of marginal utility and the probability
weighting function Z . The probability weighting function in Polkovnichenko and
Zhao (2013) stems from Prelec (1998) and is fully described by the parameters β and
α:

Z(P) = exp
(− (−β log(P))α

)
(15)

Polkovnichenko and Zhao (2013) repeat the study of Kliger and Levy (2009) on
more recent data, using power utility with a risk aversion coefficient of two, and,
for the physical distribution, using an EGARCH model based on past returns. Their
probability weighting functions can be S-shaped (2004–2006) or inverse-S-shaped
(during the remaining years from 1996 to 2008). The former suggests that investors
overweigh probabilities in the center of the distribution and underweigh the tails, while
the pattern reverses for the latter. It is somewhat puzzling that the pricing kernel puzzle
tends to be rather stable through time but yields in this setting very different probability
weighting functions. The model also does not account for learning; investors do not
pay attention to the fact that the physical distribution, as it is being revealed in realized
returns, looks different from the reweighted distribution.

Dierkes (2013) makes a nice point about the lack of identification in Polkovnichenko
and Zhao (2013), as the utility function cannot be derived separately from the weighting
function. He suggests an intriguing solution by fitting several maturities at the same
time. That allows the utility function to be the same for all maturities but the weighting
function scales with maturity. Empirically, Dierkes (2013) then finds the weighting
function to be inverse-S-shaped and the utility function to be convex–concave around
the zero percent return.

Chabi-Yo and Song (2013) confirm the findings of Polkovnichenko and Zhao (2009)
and document that the probability weighting functions are heavily time-varying, even
if they use the VIX as a conditioning variable. They thus extend the model and apply
probability weighting to both the return and volatility dimensions of the index in a two
period setting. Using S&P 500 and VIX options, they find inverse-S-shaped probability
weighting functions, which are now much more stable in comparison with the single
state variable model.

4.4 Ambiguity aversion models

Here, we propose a novel approach based on the smooth ambiguity aversion model of
Klibanoff et al. (2005). The model nests on the one hand the traditional expected utility
setting as the ambiguity aversion approaches ambiguity neutrality and on the other
hand the maximin utility approach as the ambiguity aversion goes to infinity.16 Gollier
(2011) already mentions that the pricing kernel puzzle can emerge in a smooth ambi-
guity aversion setting, although without explicitly deriving the formulas and without
detailed examples, which we are providing here. Kang et al. (2014) achieve similar
results with a model where the representative investor is worried that some worst case

16 For a survey of ambiguity aversion and its relevance for asset pricing, see Epstein and Schneider (2010).
For an alternative formulation of ambiguity aversion through Choquet expected utility, see Bassett et al.
(2004).
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stock price process with lower drift might be realized. Drechsler (2013) extends the
model of Liu et al. (2005) where a representative agent faces uncertainty aversion
regarding jumps in the endowment process. It would be interesting to explicitly cali-
brate these models to option data and see if such economies imply a non-monotonic
pricing kernel.

4.4.1 The theoretical pricing kernel under ambiguity aversion

We re-derive our simple economy from Sect. 1, Eqs. (3–6) in the setting of Klibanoff
et al. (2005). They assume that there are M of the above economies (called an ambiguity
setting), each with a probability pj of occurring for j = 1,…,M. Our representative
investor is thus solving the following problem:

max
Ci j ,hi j

E [U (C)] = max
Ci j ,hi j

M∑
j=1

p jφ

(
N∑

i=1

pi jU
(
Ci j

))

s.t.
M∑

j=1

N∑
i=1

hi jπi j ≤ w0

and Ci j = hi j for i = 1, . . . , Nand for j = 1, . . . , M, (16)

where Ci j is the consumption in state i of ambiguity setting j, hi j is the chosen wealth,
φ is a utility function across ambiguity settings which operates on the expected util-
ity achieved in each ambiguity setting, pij is physical probability of state i occurring
in ambiguity setting j, and w0 is the initial wealth. Note that the physical proba-
bility of being in state i is the sum of (pij pj) across ambiguity settings j. We defer
the derivation to Internet Appendix.KMM and only state the resulting pricing ker-
nel:

mi = 1∑M
j=1 p j pi j

×
∑M

j=1 p j φ
′ (∑N

k=1 pk j U (w0 Rk)
)

pijU ′(w0 Ri )

R f
∑M

j=1
∑N

s=1 p j φ
′
(∑N

k=1 pkj U (w0 Rk)
)

psj U
′(w0 Rs)

for i = 1, . . . , N

(17)

We can readily interpret the pricing kernel formula in comparison to the simple case
without ambiguity.17 There, the pricing kernel is the ratio of marginal utility and
expected marginal utility. In the setting with ambiguity aversion, the pricing kernel is
the scaled marginal utility in each state divided by a modified expected marginal utility.
We explain the modification of expected marginal utility first and then the scaling of
the pricing kernel. For the modified expectation, the probabilities of the expectation

17 Unfortunately, we cannot easily analyze the derivative of the pricing kernel with respect to returns. The
resulting expressions are intractable and cannot be nicely segregated into, say, an income and a substitution
effect.
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(pij pj) are being distorted by the marginal ambiguity utility φ′(
∑N

k=1 pkjU (w0 Rk)).
The resulting quantities are no longer probabilities, i.e. they will not add to one.
Thus, the pricing kernel needs to be scaled in order to correct for the modification.
The scaling factor is the fraction in front of the marginal utility term in Eq. (17).
It turns out to be the ratio of the sum of the probabilities (pij pj), which are again

being distorted by φ′(
∑N

k=1 pkjU (w0 Rk)) and the sum of the probabilities themselves
(pij pj).

4.4.2 The pricing kernel puzzle in a model of ambiguity aversion

Here we use Eq. (17) with power utilities and parameters η for the ambiguity aversion
and γ for the risk aversion, respectively. We set w0 to 1. The following choice for U(x)
satisfies the assumption of Klibanoff et al. (2005) that two utility values need to be
independent of γ , here, U(1) = 0 and U(2) = 1.18 The investors are ambiguity averse
if η > γ .

φ (x) = x1−η − 1

1 − η
; U (x) = x1−γ − 1

21−γ − 1
(18)

Further, we model the 30-day return being lognormally distributed with an annualized
mean of 0.10. Numerical details are relegated to the Internet Appendix.KMM. The
investors are ambiguous with respect to annualized volatility, which we assume to be
lognormally distributed with mean log 0.19 and standard deviation 0.10.

We depict the resulting pricing kernel with η = 6 and γ = 4 in Fig. 8 and it matches
quite nicely the empirically observed u-shaped pricing kernels, see for example Fig. 3,
panel B. The physical probability distribution (sum of the probabilities pij pj) has, at
an annual horizon, a mean of 0.10, standard deviation of 0.19, skewness of 0.00, and
kurtosis of 3.12.

The next extension is to introduce large negative jumps (− 0.20 annualized mean
and 0.30 standard deviation) where the investor exhibits ambiguity aversion across the
probability of such jumps occurring. The return distribution without crashes is modeled
being lognormally distributed with an annualized mean return of 0.12 and a volatility
of 0.19. Finally, the conditional probabilities pij are obtained by mixing the return
distribution without the crashes with the jump distribution. The probabilities for the
occurrence of a jump then determine the appropriate weights for the two distributions
such that the pij add up to 1 for a fixed j.

The pricing kernel in Fig. 9 with η = 7 and γ = 6 exhibits now a tilde shape. In
comparison to the pricing kernels observed in the empirical literature, however, see
for example Fig. 2, the hump in the center is shifted slightly to the left.

Thus, a simple one-period ambiguity aversion model can exhibit the pricing kernel
puzzle. It turns out that ambiguity aversion over volatility generates u-shaped pricing
kernels. Ambiguity aversion over the probability of large crashes generates tilde-
shaped pricing kernels and can explain the hump of the empirical pricing kernel puzzle

18 Note that alternatively, one could also use U (x) = x1−γ −1
1−γ

with γ ∈ (0, 1) but the above formulation
allows for a great range of risk aversion coefficients.
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Fig. 8 The pricing kernel with ambiguity over volatilities. The pricing kernel based on the Klibanoff et al.
(2005) model with ambiguity over volatilities, projected onto returns

Fig. 9 The pricing kernel with ambiguity over market crashes. The pricing kernel based on the Klibanoff
et al. (2005) model with ambiguity over market crashes, projected onto returns

at the center. Cuesdeanu (2016) extends this ambiguity aversion model by introducing
ambiguity over volatility and jumps simultaneously. He finds that this allows for w-
shaped pricing kernels as well.
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5 Bounds on option prices

The literature on bounds on option prices takes a different perspective on the pricing
kernel puzzle. The pricing kernel puzzle is about analyzing the empirical pricing
kernel, given risk-neutral and physical distributions, where the pricing kernel turns
out to be non-decreasing in returns. Turning the problem around, one can ask what are
the highest and lowest option prices still compatible with a monotonically decreasing
pricing kernel? This approach was developed in Perrakis and Ryan (1984) with the
restrictions that the pricing kernel has to be positive and decreasing, and that it prices
the stock and the bond and one reference option traded in the market. The resulting
linear program then looks (for a call option with given strike price K) as follows:

Max/Min E[m (R · S − K)+]
s.t. E[m 1] = B

E[m R · S] = S
E[m (R · S − K◦)+] = C(K◦)
m > 0, m decreasing in wealth R · S,

(19)

where S is the initial stock price, B the unit bond price, and K◦ the strike price of the
observed reference option. Dividends are assumed to be zero for ease of exposition. A
long literature ensued which extends the above linear program approach, adding e.g.
bid/ask spreads and transaction costs, see the survey of Constantinides et al. (2008).

The resulting bounds are driven by pricing kernels which tend to be extreme, exhibit-
ing steep drops after almost flat sections. Cochrane and Saa-Requejo (2000) address
the problem of such unrealistic pricing kernels. They essentially work within the above
set-up while also restricting the volatility of the pricing kernel, which leads to smoother
pricing kernels and tighter bounds. Bernardo and Ledoit (2000) offer an alternative
restriction by limiting the ratio of expected gains and expected losses of a security;
ruling out that securities are priced much too low or high compared to their fair value.19

Pyo (2011) achieves this goal by the ad-hoc restriction that price deviations are limited
by deviations of observed prices from model prices based on a predetermined (power)
pricing kernel.

The earlier papers solved the linear program explicitly and were thus limited in the
complexity of the linear program, e.g., they could only handle one reference option and
extending it to two was already a difficult task. Relying simply on computer solutions
to the linear program, Constantinides et al. (2009) can compute bounds for S&P 500
index options while taking into account all observed options as reference assets and
even formulating the linear program over two steps instead of one. Further, they use
the analytical bounds from Constantinides and Perrakis (2002) for continuous, inter-
mediate trading and proportional transaction costs. Empirically, they find a substantial
number of options to be located outside their bounds, consistent with the pricing ker-
nel puzzle. Wallmeier (2015) replicates their work and finds far fewer violations. This

19 Marroquin-Martinez and Moreno (2013) extend Cochrane and Saa-Requejo (2000) and Bernardo and
Ledoit (2000) to settings with stochastic volatility and find the resulting bounds to be tighter than in the
original papers.
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difference comes about as Wallmeier (2015) uses option implied information from just
hours ago to adjust the physical distribution, while Constantinides et al. (2009) rely on
information further into the past. The concern is that using more recent option implied
information will eventually move the physical distribution so close to the risk-neutral,
that one can no longer detect bound violations.

More interesting is the question if, using the earlier information of Constantinides
et al. (2009), one can profitably trade based on bound violations. That exercise can
be found in Constantinides et al. (2011), now using options on futures on S&P 500
and employing the analytical bounds of Constantinides and Perrakis (2007), which
are suitable for these American options. The results suggest that trading strategies
involving out-of-bounds options are superior to pure stock-and-bond strategies for all
risk-averse investors.

6 Conclusion and outlook

In our survey of the pricing kernel puzzle, we recount the history, starting with the
canonical papers which around the year 2000 divided risk-neutral distributions of
S&P 500 returns by the physical distributions. These empirical pricing kernels exhib-
ited increasing sections, which are inconsistent with simple representative investor
models with a single state variable. Evidence from indexes in other countries and
other periods finds the same puzzling behavior. We also discuss the (sparse) literature,
which cannot detect the pricing kernel puzzle in the data and try to understand the
reasons.

A number of statistical tests suggest the presence of the pricing kernel puzzle. What
is still missing is a critical analysis and comparison of the several tests which so far
exist. Are their assumptions realistic? Are certain tests better than others? There is still
no agreement on which test to use as the standard test of the pricing kernel puzzle.

Much room is given to the potential explanations of the pricing kernel puzzle,
starting with simple one-state-variable formulations and then moving to more complex
settings. Similarly to the tests, many of the solutions are stand-alone model with little
empirical validation. Mostly, they concentrate on a calibration, which, using some
stylized facts, exhibits the pricing kernel puzzle. Much work is still needed in sorting
through the alternative models and grading them according to their compatibility with
the data. Ideally, some of the solutions might be joined in a nested model, allowing for
a proper test of the different features. It would be interesting to know more about the
true mechanism of what drives the pricing kernel puzzle. Interesting research along
those lines is trying to explain the time-series patterns of the pricing kernel puzzle
(e.g., its severity) using explanatory variables. This challenging work is still in its
infancy and, as of now, still underwhelming.

For a glimpse into the future of the pricing kernel puzzle, one might want to con-
sider the bivariate estimation of risk-neutral and physical distributions in Jackwerth
and Vilkov (2017). Those bivariate risk-neutral distributions can normally only be
obtained with the help of options written on both assets simultaneously, but Jackwerth
and Vilkov (2017) were able to achieve this feat in the dimensions of index returns
and volatility employing longer-dated options on the S&P 500. Dividing the two dis-
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tributions into each other allows one to extract for the first time a bivariate pricing
kernel.
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