
Enclosure Methods for Systems of Polynomial
Equations and Inequalities

Dissertation

zur Erlangung des akademischen Grades des
Doktors der Naturwissenschaften (Dr. rer. nat.)

an der

Mathematisch-Naturwissenschaftliche Sektion

Fachbereich Mathematik und Statistik

vorgelegt von

Andrew Paul Smith

Tag der mündlichen Prüfung: 5. Oktober 2012
1. Referent: Prof. Dr. Jürgen Garloff, Universität Konstanz und HTWG Konstanz
2. Referent: Prof. Dr. Jon Rokne, University of Calgary

http://nbn-resolving.de/urn:nbn:de:bsz:352-208986

Abstract

Many problems in applied mathematics can be formulated as a system of nonlinear equa-
tions or inequalities, and a broad subset are those problems consisting either partially or
completely of multivariate polynomials. Broadly speaking, an ‘enclosure’ method attempts
to solve such a problem over a specified region of interest, commonly a box subset of Rn,
where n is the number of unknowns. Subdivision (or branch-and-bound) is a commonly-
applied scheme, wherein a starting box is successively subdivided into sub-boxes; sub-boxes
for which a proof of non-existence of a solution can be completed are discarded. As a
component of such, a boundary method attempts to exploit the properties of component
functions over the boundary of a sub-box, without considering their behaviour within it.

Two main types of non-existence proof are considered for polynomial systems over boxes
or sub-boxes. Firstly, the topological degree of a system of equations (considered as a
mapping from Rn to Rn) can be computed over a sub-box, which possesses a root-counting
property. Together with an enclosure for the determinant of the Jacobian, the existence
(or otherwise) of roots in the sub-box can be ascertained. Secondly, and alternatively, a
range-enclosing method can be used to compute a guaranteed outer enclosure for the range
of a multivariate polynomial over a sub-box; if it does not contain zero, a root is excluded.
The Bernstein expansion is used, due to the tightness of the enclosure yielded and its rate of
convergence to the true enclosure. In both cases, interval arithmetic is employed to obtain
guaranteed enclosures and ensure the rigour of these existence tests.

Advances have been made in four main areas. Firstly, an existing recursive algorithm
for the computation of topological degree is investigated in detail, including a complexity
analysis, and algorithmic improvements are proposed. Secondly, a simple branch-and-bound
method for systems of polynomial equations, utilising Bernstein expansion and an existence
test by Miranda, is developed, and alternative subdivision strategies are considered. Thirdly,
a major improvement of the Bernstein expansion itself is achieved with the development of
the implicit Bernstein form, which exhibits greatly improved performance for many cate-
gories of polynomials. Finally, several new methods are developed and compared for the
computation of affine lower bounding functions for polynomials, which may be employed in
branch-and-bound schemes for problems involving inequalities, such as global optimisation
problems. Numerical results and an overview of the developed software are given.

i

Zusammenfassung

Viele Probleme der angewandten Mathematik können als Systeme nichtlinearer Gleichungen
oder Ungleichungen formuliert werden. Eine große Teilmenge davon besteht teilweise oder
vollständig aus multivariablen Polynomen. Die Idee einer Einschließungsmethode löst ein
solches Problem innerhalb einer relevanten Region. Gewöhnlich ist diese Region eine Box-
Teilmenge von Rn, wobei n die Anzahl der Unbekannten ist. Subdivision (oder Branch-and-
Bound) ist ein oft verwendetes Schema, bei dem eine Anfangsbox sukzessiv in Subboxen
unterteilt wird. Subboxen, für die die Nichtexistenz einer Lösung bewiesen werden kann,
werden ausgeschlossen. Als Bestandteil dieses Schemas ist die Randmethode, die versucht
die Randeigenschaften der Komponentenfunktionen bezüglich der Subbox auszunutzen ohne
dabei das Verhalten innerhalb der Subbox zu betrachten.

Die Nichtexistenzbeweise für Systeme polynomer Gleichungen über Boxen oder Subboxen
werden durch zwei Haupttypen beschrieben. Der erste Typ kann durch den topologis-
chen Grad eines Gleichungssystems (als eine Abbildung von Rn auf Rn) über eine Sub-
box beschrieben werden. Diese besitzt die Eigenschaft, die Anzahl der Wurzeln zählen
zu können. Dabei kann die Existenz (oder Nichtexistenz) von Wurzeln in dieser Sub-
box durch die Bestimmung einer Einschließung der Determinanten der Jacobi-Matrix er-
mittelt werden. Als zweiter Grundtyp bildet die Bereichseinschließungmethode, die eine
äußere Einschränkung des Bildbereichs eines multivariablen Polynoms durch eine Sub-
box garantiert. Enthält dieses Intervall nicht Null, so kann auch das Vorkommen einer
Wurzel ausgeschlossen werden. Fokus der Bernstein-Erweiterung ist die Bestimmung präzis-
erer Grenzen für die Einschließung und eine schnellere Konvergenz gegen die exakte Ein-
schließung. Um eine garantierte Einschließung und die Korrektheit dieses Existenz-Tests
sicherzustellen, wird in beiden Fällen die Intervallarithmetik angewandt.

Es wurden Fortschritte in vier Bereichen erzielt. Erstens wurde ein existierender rekur-
siver Algorithmus für die Berechnung des topologischen Grads detailiert untersucht. Dabei
liegt die Betonung auf die Komplexitätsanalyse und algorithmische Verbesserung und Er-
weiterungen. Der zweite Bereich beschäftigt sich zunächst mit einer einfachen Branch-and-
Bound-Methode für polynome Gleichungssysteme. Dafür wurden die Bernstein-Erweiterung
und der Existenz-Test von Miranda verwendet. Weiterhin wurden alternative Strategien
zur Subdivision in Betracht gezogen. Drittens wurde eine wesentliche Verbesserung der
Bernstein-Erweiterung durch die Entwicklung der impliziten Bernstein-Form erzielt. Es
zeigt sich eine starke Verbesserung der Leistung für viele Arten von Polynomen. Ab-
schließend wurden mehrere neue Verfahren für die Berechnung von unteren affinen Gren-
zfunktionen für Polynome entwickelt und miteinander verglichen. Diese neue Verfahren
können für Branch-and-Bound-Verfahren bei Problemen mit Ungleichungen, wie z.B. glob-
ale Optimierungsprobleme, eingesetzt werden. Numerische Ergebnisse und eine Übersicht
der entwickelten Software liegen vor.

ii

Acknowledgements

First and foremost, I would like to warmly thank the two supervisors of this work, Dan
Richardson (during my time in Bath, U.K.) and Jürgen Garloff (during my time in Konstanz,
Germany), for their expert, friendly, and productive supervision and co-operation, as well
as their patience and generosity.

I would like to thank a number of people with whom I have been fortunate enough to
co-write research papers, for their productive co-operation, principally Jürgen Garloff, but
also (in chronological order) Christian Jansson, Ismail Idriss, Laurent Granvilliers, Evgenĳa
Popova, Horst Werkle, and Riad Al-Kasasbeh.

I would like to thank Hermann Schichl and Evgenĳa Popova for making their software
available to me and for their technical assistance. Thanks also to the authors and main-
tainers of the filib++ software package, which I have used extensively.

I would like to thank my family for their love and support; in particular my mother, who
never gave up gently pestering me to complete this thesis during the excessively long hiatus
— I can’t believe it’s finished it, either!

I’d like to pay tribute to a number of people who have helped to keep me (somewhat) sane
during this odyssey in various ways: From the gaming group, I’d like to mention Christoph,
Volker, Jan, Ole, Martin, Stefan, Sünje, Regina, Kris, Tamara, Patrick, and Christine. From
the Institute for Optical Systems (IOS) at the HTWG Konstanz, Dang Le, Alex, David,
Marcus, Thomas, Jan, Andy, Manuel, Klaus, Matthias Franz, as well as several others. I’d
like to thank Dang for his support and motivation during our mutual struggles to write up
our theses! I’d also like to thank several friends in the U.K., Mark, Richard, Phil, Caroline
and Stuart, and Russ for staying in contact (in spite of my frequent silences!) during my
long sojourn in Germany.

I would like to thank a number of people who have helped to arrange financial sup-
port and employment in various ways: at the University of Bath, Dan Richardson; at the
HTWG Konstanz, Jürgen Garloff, Horst Werkle, Florin Ionescu, and Riad Al-Kasasbeh (Al-
Balqa Applied University, Jordan); at the University of Konstanz, Jürgen Garloff, Markus
Schweighofer, Stefan Volkwein, and Rainer Janßen. In particular I would like to thank Riad
for his motivational support and his helpful urging during the final stages of this work, as
well as his friendship and his help with potential future employment.

I would like to gratefully acknowledge several funding agencies that have supported this
work, either directly or indirectly. The University of Bath and the Engineering and Physical
Sciences Research Council (EPSRC), in the U.K., and the University of Konstanz, in Ger-
many, have partially funded my doctoral research with stipendia. The German Research
Foundation (DFG), the German Ministry of Education, Science, Research, and Technol-
ogy, the State of Baden-Württemberg, and the University of Applied Sciences (HTWG)
Konstanz, in Germany, have funded several research projects on which have I have worked
together with Jürgen Garloff; some of that research appears in this thesis.

I would like to thank the two referees, Jürgen Garloff and Jon Rokne, as well as the
oral examiners, for taking the time to review my work. For proofreading, thanks to Volker
Bürkel, Martin Spitzbarth, and Dang Le.

iii

I would like to dedicate this thesis to the memory of my two grandfathers, Frank Smith
and William Brown, both of whom sadly passed away before the completion of this work.

By a serendipitous coincidence, 2012 marks the occasion of the 100th anniversary of both
L. E. J. Brouwer’s proof of the fixed point theorem (and the accompanying introduction of
the Brouwer degree) and S. N. Bernstein’s proof of the Weierstrass approximation theorem
(and the accompanying introduction of the Bernstein polynomials).

iv

Notation

General Notation
conv convex hull
deg Brouwer degree

δ an error term or discrepancy
ε a small number or tolerance
σ an orientation (either equal to +1 or −1)
∂ set boundary
cl set closure
set cardinality
P probability function
E statistical expectation function

Notation for One Dimension
N the set of natural numbers
Z the set of integers
R the set of real numbers
C the set of complex numbers

IR the set of non-empty bounded and closed intervals over R
x a real-valued variable

x = [x, x] an interval from IR; it is delimited with square brackets, an underscore
denotes a lower bound and an overscore an upper bound

I = [0, 1] the unit interval
f : R → R a real-valued function

f : IR → IR an interval-valued function
p : R → R a polynomial
q : R → R a monomial
c : R → R an affine bounding function

l the degree of a polynomial
Bl

i : R → R the ith Bernstein basis polynomial of degree l
ai ith coefficient of a polynomial in power form
bi ith coefficient of a polynomial in Bernstein form (Bernstein coefficient)
bi control point associated with the Bernstein coefficient bi

mid midpoint of an interval
r radius of an interval
w width of an interval

dist (Hausdorff) distance between two intervals(
l
i

)
:= l!

i!(l−i)! (the binomial coefficient)

v

Notation for Multiple Dimensions

n dimension and/or number of variables
m number of functions, usually equal to n

Rn n-ary Cartesian product of R
IRn n-ary Cartesian product of IR

Q[x1, . . . , xn] the set of polynomials in real variables x1, . . . , xn

x = (x1, . . . , xn) a variable taking values from Rn

X = (x1, . . . ,xn) a box in IRn (a Cartesian product of n intervals)
I = [0, 1]n the unit box

s or X±
i a face of a box
L an array of faces

F : Rn → Rn an n-tuple of real-valued functions in n variables
f : Rn → R a real-valued function in n variables

f : IRn → IR an interval-valued function in n interval variables
P : Rn → Rn an n-tuple of multivariate polynomials

p : Rn → R a multivariate polynomial
q : Rn → R a multivariate polynomial or monomial
c : Rn → R a multivariate affine bounding function
g : Rn → R a real-valued function defining an inequality constraint
h : Rn → R a real-valued function defining an equality constraint

H : [0, 1]× Rn → Rn a homotopy between two functions mapping Rn to Rn

l = (l1, . . . , ln) the degree of a multivariate polynomial
i = (i1, . . . , in) a multi-index (an n-tuple of nonnegative integers)

l̂ :=
n

max
j=1

lj (maximum degree by variable)

Bl
i : Rn → R the ith multivariate Bernstein basis polynomial of degree l

ai ith coefficient of a polynomial in power form
bi ith coefficient of a polynomial in Bernstein form (Bernstein

coefficient)
b
[l]{p}X
i ith degree l Bernstein coefficient of p over X

bi control point associated with the Bernstein coefficient bi

0 := (0, . . . , 0) (multi-index)
1 := (1, . . . , 1) (multi-index)
J the Jacobian
Σ the solution set of a system of (polynomial) inequalities
F the set of feasible solutions to an optimisation problem

xi :=
n∏

µ=1
x

iµ
µ (a multi-power / multivariate monomial)

l∑
i=0

:=
l1∑

i1=0
. . .

ln∑
in=0

(a nested sum)(
l
i

)
:=

n∏
µ=1

(lµ
iµ

)
(the generalised binomial coefficient)

vi

Contents

1 Introduction 1
1.1 Systems of Nonlinear Equations . 3
1.2 Systems of Polynomial Inequalities . 4
1.3 Global Optimisation Problems . 4
1.4 Outline . 5

Part I: Background and Existing Work 8

2 Interval Analysis 9
2.1 Interval Arithmetic . 10

2.1.1 Elementary Definitions . 11
2.1.2 Idealised Interval Arithmetic . 11
2.1.3 Operational Definitions . 12
2.1.4 Overestimation and the Dependency Problem 12
2.1.5 Further Operational Definitions . 13
2.1.6 Relations on Intervals . 15
2.1.7 Interval Functions . 15
2.1.8 Computer Implementation . 16

2.2 Interval Enclosures . 17
2.3 Interval Algorithms . 18

2.3.1 Branch-and-Bound Methods . 18
2.3.2 Interval Newton Methods . 19
2.3.3 Matrix Methods . 19
2.3.4 Other Interval Methods . 20

3 Bernstein Expansion 21
3.1 Fundamentals . 22

3.1.1 Bernstein Basis Polynomials . 22
3.1.2 Bernstein Form . 24
3.1.3 Basis Conversion . 25
3.1.4 Generalised Bernstein Form . 27

3.2 Properties of the Bernstein Coefficients . 27
3.2.1 Vertex Values . 27
3.2.2 Face Values . 28
3.2.3 Linearity . 29
3.2.4 Range Enclosure . 29

vii

Contents

3.2.5 Sharpness . 29
3.2.6 Convex Hull . 29
3.2.7 Inclusion Isotonicity . 30
3.2.8 Partial Derivatives . 32

3.3 Algorithms . 32
3.3.1 Computation of Bernstein Coefficients 32
3.3.2 Subdivision . 33
3.3.3 Degree Elevation . 35
3.3.4 Bernstein Coefficients of Partial Derivatives 35

3.4 Mean Value Bernstein Form . 35
3.5 Bézier Curves . 37

4 Topological Degree 38
4.1 The Brouwer Fixed Point Theorem . 38
4.2 Brouwer Degree . 39

4.2.1 Properties of the Brouwer Degree . 40
4.2.2 Example . 41

4.3 Algorithms for Computing Topological Degree 42
4.3.1 Integration over the Boundary . 42
4.3.2 Triangulation of the Boundary . 42

4.4 The Recursive Method . 43
4.4.1 Faces of a Box . 43
4.4.2 Scope . 44
4.4.3 Overview . 44
4.4.4 Detailed Algorithm . 48
4.4.5 Example . 51

5 Systems of Polynomial Equations 53
5.1 Applications . 54

5.1.1 Example System . 56
5.2 Types of Solutions . 56
5.3 Methods of Solution . 57

5.3.1 Categorisation of Methods . 58
5.3.2 Newton Methods . 59
5.3.3 Interval Newton Methods . 60
5.3.4 Elimination (Symbolic) Methods . 61
5.3.5 Continuation (Homotopy) Methods . 62
5.3.6 Subdivision Methods . 63
5.3.7 Combined Methods . 64

6 Problems Involving Polynomial Inequalities 65
6.1 Systems of Polynomial Inequalities . 65
6.2 Constrained Global Optimisation . 67

viii

Contents

Part II: Contributions 70

7 Computation of Topological Degree 71
7.1 Open Questions . 71

7.1.1 Face Processing Strategy . 73
7.1.2 Overlap Elimination Strategy . 74

7.2 Analysis of the Algorithm . 76
7.2.1 Schematic . 77
7.2.2 Metrics and Notation . 77

7.3 Abstract Analysis (Face Subdivision) . 83
7.3.1 Best and Worse Case Analysis . 83
7.3.2 Basic Operations . 84
7.3.3 Linear Systems in R2 . 84
7.3.4 Linear Systems in R3 . 84
7.3.5 Linear Systems in Rn . 93
7.3.6 Nonlinear Systems in Rn . 94

7.4 Data Analysis . 94
7.5 Subdivision Strategy . 97

7.5.1 Theoretical Optimal Strategy . 98
7.5.2 Worst Case Analysis . 103
7.5.3 Robustness of Subdivision Strategies 105
7.5.4 Worthwhile Subdivision — A Realistic Strategy 105
7.5.5 Identifying the Fatal Box — A Key Sub-Problem 107
7.5.6 Is Bisection Optimal? . 108
7.5.7 Random Subdivision . 109
7.5.8 A Newton Method . 110

7.6 Conclusions . 111

8 Solution of Systems of Polynomial Equations 113
8.1 Algorithm . 113

8.1.1 Subdivision and Pruning . 113
8.1.2 Existence Test . 115

8.2 Examples . 116
8.3 Reduction of Computational Cost and Preconditioning 119

8.3.1 Permutation Checking . 119
8.3.2 Preconditioning . 120

9 Improved Bernstein Expansion 123
9.1 Overview . 124
9.2 Bernstein Coefficients of Monomials . 125

9.2.1 Bernstein Coefficients of Univariate Monomials 126
9.2.2 Monotonicity of the Bernstein Coefficients of Monomials 127

9.3 The Implicit Bernstein Form . 129

ix

Contents

9.3.1 Determination of the Bernstein Enclosure for Polynomials 130
9.3.2 Algorithm for the Efficient Calculation of the Bernstein Enclosure of

Polynomials . 133
9.4 Numerical Results . 134

10 Bounding Functions for Polynomials 136
10.1 Convex–Concave Extensions . 137

10.1.1 Extension 1 (One Affine Function) . 137
10.1.2 Extension 2 (Two Affine Functions) 138
10.1.3 Extension CH (Convex Hull) . 138
10.1.4 Inclusion Isotonicity . 139

10.2 Affine Bounding Functions . 141
10.2.1 Overview . 141
10.2.2 Method C (Constant Bound Function) 142
10.2.3 Method LP (Linear Programming Problems) 142
10.2.4 Method LE (Linear Equations) . 145
10.2.5 Method MinBC (Minimum Bernstein Coefficients) 148
10.2.6 Method MinS (Minimum Slopes) . 148
10.2.7 Method LLS (Linear Least Squares Approximation) 149
10.2.8 Numerical Results . 151
10.2.9 An Equilibriation Transformation . 153
10.2.10 Verified Bounding Functions . 153

11 Conclusions 156
11.1 Summary . 156
11.2 Future Work . 159

A Software 173
A.1 Topological Degree Software . 173
A.2 Bernstein Expansion Software . 177

x

List of Figures

3.1 Graphs of the Bernstein basis polynomials Bl
i(x) for l equal to 4. 22

3.2 The graph of a degree 5 polynomial and the convex hull (shaded) of its control
points (marked by squares). 31

3.3 The graph of the polynomial in Figure 3.2 with the convex hull (shaded light)
of its control points and its Bernstein enclosure, together with the smaller
convex hulls (shaded dark) and enclosures over sub-domains arising from a
bisection. 31

3.4 Example subdivision of the unit box X = I with n = 2, r = 1, and λ = 1
2 . . . 35

4.1 Boundary determinism in R2: even and odd numbers of solutions. 41
4.2 Computation of topological degree: example in R2. 44
4.3 Computation of topological degree: examples with y1 and y2 containing zero. 45
4.4 Computation of topological degree: example in R3. 46
4.5 Computation of topological degree: sub-problem generated in R2. 47

6.1 Approximations of the solution set Σ and its boundary ∂Σ over a box X in
R2. 66

7.1 Overlapping faces in R2 and new faces generated (numbered) for the undu-
plicated regions. 75

7.2 Schematic of the recursive topological degree algorithm. 78
7.3 Zero sets of f1, f2, and f3 intersecting a rectangular face. 84
7.4 Set of line families with angle θ intersecting a rectangle. 86
7.5 Lines intersecting one quadrant of the rectangle (Case 1). 87
7.6 Lines intersecting one quadrant of the rectangle (Case 2). 87
7.7 Lines intersecting one or two quadrants of the rectangle (Case 1). 89
7.8 Lines intersecting one or two quadrants of the rectangle (Case 2). 89
7.9 1000 random degree computations: linear functions (left) and simple quadrat-

ics (right) in R2. 95
7.10 1000 random degree computations: simple quadratics (left) and quadratics

with cross terms (right) in R3. 96
7.11 1000 random degree computations: simple quadratics in R2 (top left), R3

(top right), R4 (bottom left), and R5 (bottom right). 97
7.12 Solution sets of fi(x) = 0, i = 1, 2, 3, over a face s in Example 7.5. 100
7.13 Partitioning of the face s into regions R1, . . . , R4 in Example 7.5. 101
7.14 Example optimal partitioning of the face s into terminal sub-faces s1, . . . , s4

in Example 7.5. 101

xi

List of Figures

7.15 Optimal face partitioning in the maximal projection case (where the zero sets
of each fi intersect each edge). 102

7.16 Crucial boxes (shaded) and optimal partitioning (dotted lines) in troublesome
linear case. 104

7.17 Worthwhile (left) and non-worthwhile (right) subdivisions of a face. 106
7.18 Fatal box of a face. 107
7.19 Bisection is not always optimal. 108
7.20 Newton method: an example 2-dimensional face in R3. 110

8.1 Example 8.1: ε-boxes enclosing the zero set of p1 (top-left), the zero set of
p2 (top-right), the intersection of both zero sets (bottom-left), and those for
which the Miranda test succeeds (bottom-right). 117

8.2 An example of failure of the requirement (8.3) for the improved permutation
checking scheme and potential failure of the Miranda test. 121

8.3 The same example after preconditioning. 121

10.1 Extension 1 (top), Extension 2 (centre), and Extension CH (bottom) over
the intervals x = [0, 0.5], [0, 0.6], [0, 0.7], and [0, 1] for Example 10.1. 140

10.2 The four polynomials from Example 10.2, their control points, and computed
affine lower bounding functions. 144

10.3 The two bivariate polynomials from Example 10.3, their control points, and
computed affine lower bounding functions. 144

10.4 Method MinBC — an example of a poor lower bounding function; the desig-
nated control points are given in black and a downward shift is required. . . . 149

10.5 Method MinS — an example of a poor lower bounding function; the desig-
nated control points are given in black. 150

10.6 The curve of the polynomial from Figure 3.2, the convex hull (shaded) of its
control points (marked by squares), the intermediate affine function c∗ and
the affine lower bounding function c from Method LLS versus the affine lower
bounding function cn from Method LE. 151

10.7 An equilibriation transformation applied to a degree 6 polynomial over the
unit box and the corresponding change in choice of slope-based affine lower
bounding function. 154

A.1 Example subdivision trees for the six faces (two non-terminal and four ter-
minal) of a box in R3. 176

xii

List of Tables

3.1 The Bernstein basis polynomials Bl
i(x) for l up to 4. 22

3.2 Bernstein coefficients bi of p(x1, x2) = 2x3
1 − 1

2x2
1x2 + 7x2

2 − 4x1x2 + 3. 26

7.1 Diagnostic output for the degree calculations of Example 7.1. 80
7.2 Diagnostic output for the degree calculations of Example 7.2. 81
7.3 Diagnostic output for the degree calculations of Example 7.3. 81
7.4 Diagnostic output for the degree calculation of Example 7.4. 82
7.5 Table of conditional probabilities arising in the calculation of the average

branching factor. 91

8.1 Starting boxes, subdivision depths, and numbers of solutions for the example
systems of polynomial equations. 118

8.2 Total numbers of boxes and Miranda tests for the example systems of poly-
nomial equations. 118

9.1 Number of Bernstein coefficients calculated and computation time for some
example multivariate polynomials. 135

10.1 Vertices of the convex–concave extensions for Example 10.1. 139
10.2 Numerical results (computation time and maximum discrepancies) for the six

methods for affine lower bounding functions, applied to random polynomials
over the unit box I. 152

xiii

1 Introduction

The abstraction and formalisation of a real-world problem into precise mathematical terms
is a fundamental process. Typically each discrete piece of information is rewritten as a
mathematical statement; consequently one is presented with a set of variables and param-
eters, together with one or more conditions or constraints that have to be satisfied. The
set of variables defines the search space — a solution typically consists of a tuple of values
for these variables satisfying all the constraints, each of which represents some limitation
or property that a valid solution is required to observe, a relationship typically expressed
in the form of an equality or inequality, or perhaps as a set-theoretic statement involving
quantifiers. Different values for parameters characterise each problem instance.

For example, consider the problem of determining the landing point of a parachutist.
The solution might consist of the x and y co-ordinates of the landing location, plus t, the
time taken. Parameters might include the starting position, wind direction and speed,
size of parachute, weight of the parachutist, etc. Possible solutions are constrained by
the laws of physics and the range of controlled movement of the parachute. One might
wish to determine the solution exactly, or it might suffice merely to be satisfied that it
lies within a certain ‘safe’ region. Alternatively one might wish to minimise the time in
the air, or maximise the displacement in the x-direction, for example. In the latter case
we have an optimisation problem and it is desired to compute the control inputs which
correspond to the optimal outcome. Sources of uncertainty might include wind variability
and measurement imprecision; this may cause the real-world solution to deviate from the
mathematical solution, unless such uncertainty is explicitly included in the model.

Many such problems are highly non-trivial to solve. The number of variables and the
complexity of the constraints influences the solution difficulty in a generally unforeseeable
fashion. However, higher-dimensional problems (i.e. problems with many variables) are
generally harder than lower-dimensional ones; problems involving nonlinear functions are
typically orders of magnitude harder than those involving linear functions only. Added
complexity is added if one wishes to robustly model uncertainty, for example by giving the
parameters ranges of values, or by using a computation scheme such as interval arithmetic
which explicitly tracks small uncertainties such as rounding errors.

Examples of the types of problem under consideration, restricted to Rn, include:

• Problems involving only equations:

– A system of n linear equations in n unknowns (variables). Such a system can be
represented as a matrix coupled with a right-hand-side vector and is classically
solved by Gaussian elimination; it has a single solution in all but degenerate
cases.

1

1 Introduction

– A system of n nonlinear equations (e.g. polynomial equations) in n unknowns.
Such a system may have zero or more unique solutions, or a continuum of so-
lutions; it may be desired to compute them all, or only those within a certain
region.

• Problems involving only inequalities:

– A system of one or more inequalities in n unknowns. Here, the solution is a
subset (either bounded or unbounded) of Rn; robust control problems fall into
this category. If bounded, the solution set may be determined exactly, or else an
enclosure for it is sought. In some cases, it suffices to determine a single feasible
solution.

• Problems involving both equations and inequalities:

– A system of inequalities and equations in n unknowns defining a feasible set. It
is desired to find one or more feasible solutions (or else complete a proof that no
feasible solutions exist); this is a constraint satisfaction problem.

• Problems involving an objective function:

– A system of linear inequalities together with a linear objective function in n
unknowns. This is a linear programming problem, where it is desired to find the
solution which, in canonical form, maximises the value of the objective function,
whilst satisfying all the inequality constraints.

– A system of equality and inequality constraints (at least some of which are non-
linear) together with an objective function in n unknowns. This is a constrained
optimisation problem. In the canonical form, it is desired to find the (possibly
unique) point in the feasible set minimising the objective function.

A wide and interesting subset of nonlinear problems are those involving polynomial func-
tions. Many relationships and laws in real-world and abstract problems have a natural
expression in polynomial form. Polynomial problems tend to be (but are not always) some-
what more tractable than those involving arbitrary functions.

In this thesis we consider techniques mostly for polynomial problems which may be
broadly labelled as enclosure methods. Here, ‘enclosure’ is used to refer to the principle
of searching for solutions within a specified region, as well as to the notion of partitioning
solutions into isolated regions (i.e. subdivision). Somewhat related to this is the use of
information on the behaviour of component functions over the edges of such regions (i.e.
boundary methods). It is possible to employ concepts such as the topological degree of a
mapping over a region, which exhibits a root-counting property, or the Bernstein expansion
of a polynomial over a box, which exhibits a range-enclosing property. The term ‘enclosure’
is also often used to refer to an interval range of values.

2

1 Introduction

A commonly-employed technique for the determination of solutions within a specified
region of interest is the category of algorithms known as branch-and-bound methods (some-
times also called branch-and-prune or subdivision methods). Given a starting box of inter-
est, a branch-and-bound algorithm recursively splits it into sub-boxes, eliminating infeasible
boxes by using bounds for the range of the functions under consideration over each of them.
Refinements may include proofs of non-existence of solutions to discard (prune) sub-boxes,
box contraction techniques, and various strategies for subdivision, e.g. a choice of subdivi-
sion direction or a choice of subdivision point corresponding to a bisection or otherwise. At
the end, it delivers a union of boxes of a suitably small size that contains all solutions to
the system which lie within the given box.

In (correctly) formulating a real-world problem in mathematical terms, the goal of achiev-
ing a solution may be regarded as already half-completed. We do not stray into the issues
regarding problem formulation (which are many), but consider problems that are already
presented in one of the formulations listed above.

1.1 Systems of Nonlinear Equations

A common problem that arises in applied mathematics is that of solving a system of non-
linear equations for individual solutions. Such a system can be written in the form F = 0
where

F : Rn → Rn.

The expected solutions (x1, . . . , xk), where the number of solutions k is not generally known
in advance, are present in the solution space Rn; for many problems, some or all of the
solutions are in Cn.

A problem specification can usually be reduced to a set of n component functions fi :
Rn → R, where the fi may be described in terms of elementary functions, composed with
the usual arithmetic operators. Except in the simplest of cases, this forms a nonlinear
system with a set of solutions that are highly non-trivial.

Since the scope of all nonlinear systems is so wide, a significant amount of research effort
is focussed upon polynomial systems. Systems of polynomial equations are a major subset
of systems of nonlinear equations and they appear in many applications, such as geomet-
ric intersection computations, chemical equilibrium problems, combustion, kinematics, and
many more.

Let n polynomials pi, i = 1, . . . , n, in the real variables x1, . . . , xn and a box X in Rn be
given. We wish to determine the set of all solutions to the equations pi(x) = 0, i = 1, . . . , n,
within X, viz. the set

{x ∈ X | pi(x) = 0, ∀i = 1, . . . , n} . (1.1)

There are several varied categories of methods for solving such systems, including elimi-
nation methods based on a construction of Gröbner bases and symbolic computation, con-
tinuation methods, and branch-and-bound methods. Due to the computational overheads
associated with symbolic computation, elimination methods are typically unsuitable for

3

1 Introduction

high-dimensional problems. Continuation methods deliver all complex solutions of the sys-
tem, which may be unnecessarily time-consuming for many applications in which only the
solutions in a given area of interest — typically a box — are sought. The final category
consists of methods which utilise a domain-splitting approach, and it is here that tools such
as interval computation techniques and the Bernstein expansion may be employed.

1.2 Systems of Polynomial Inequalities

Numerous problems in control system design and analysis may be recast and reduced to
systems of inequalities involving multivariate polynomials in real variables. This corresponds
to the following problem:

Let p1, . . . , pm be n-variate polynomials and let a box X in Rn be given. We wish to
determine the solution set Σ of the system of polynomial inequalities, given by

Σ := {x ∈ X | pi(x) > 0, ∀i = 1, . . . ,m} . (1.2)

A common example is the problem of determining the stability region of a family of
polynomials in a given parameter box, a type of control problem. This problem can be
reformulated as a system of polynomial inequalities. The structure of the solution set may
be complex, for example it may be non-convex or even disconnected. A typical approach is
to seek an outer enclosure for this set, either in the form of a single bounding box, or as a
union of such boxes generated by a branch-and-bound algorithm.

A system of inequalities may be augmented with one or more equations, yielding a con-
straint satisfaction problem. Instead of an enclosure for a many-dimensional solution set,
we seek a single feasible solution (although in general no assumption is made about the
dimensionality of the solution set). Two main recursive search techniques for such solutions
are constraint propagation and backtracking. Local search methods may also be employed,
but are not guaranteed to find a solution to a feasible problem.

1.3 Global Optimisation Problems

Global optimisation problems are very widely occurring, arising naturally in application ar-
eas such as the optimisation of manufacturing and chemical processes, logistics, and finance,
as well as in abstract mathematical problems such as curve fitting or sphere packing. A
constrained global optimization problem may be written as follows:

min
x∈F

f(x), (1.3)

where the set of feasible solutions F is defined by

F :=

x ∈ S

∣∣∣∣∣∣
gi(x) ≤ 0 for i = 1, . . . , t
hj(x) = 0 for j = 1, . . . , s
x ∈ X

 ,

4

1 Introduction

and where some S ⊆ Rn, X is an axis-aligned box contained in S, and f, gi, hj are real-valued
functions defined on S.

Among the most frequently used deterministic methods for solving such problems are
branch-and-bound and interval algorithms. Other types of methods involve stochastics
(e.g. Monte-Carlo sampling) or heuristics.

1.4 Outline

The thesis is divided into two main parts. In the first part we present the background
material and current state of the art in greater depth and review the existing litera-
ture. The major topics of relevance are: the theory and techniques of the solution of
systems of equations, inequalities, and optimisation problems; topological degree theory;
Bernstein expansion; and interval arithmetic. The second part of the thesis consists of
contributions in four areas, each of which is given in a separate chapter: a major in-
vestigation of a recursive topological degree computation algorithm, a branch-and-bound
method for systems of polynomial equations, an improved Bernstein expansion, and affine
bounding functions. This second part includes results which appear in the publications
[GS01a, GS01b, GJS03a, GJS03b, GS04, GS05, GS07, GS08, Smi09]. Here follows a brief
overview of each chapter:

Chapter 2: An introduction to interval analysis and arithmetic. Beginning with a brief
discussion on uncertainty, we proceed to review the fundamental theory of interval arith-
metic and its properties. We introduce interval enclosures and give an overview of the main
categories of interval algorithms. The algorithm in Chapter 7 deals centrally with intervals
and the Bernstein expansion (utilised in Chapters 8–10) is closely related to interval analysis.

Chapter 3: A treatment of the Bernstein expansion. Firstly we deal with the Bern-
stein basis, the Bernstein basis polynomials, and conversions to and from the Bernstein and
power bases. The major properties of the Bernstein coefficients are then discussed, before
proceeding to a number of important algorithms for the computation of the Bernstein coeffi-
cients. Finally, there is a brief discussion of the mean value Bernstein form and Bézier curves.

Chapter 4: An introduction to topological degree. We review the foundations of topo-
logical degree theory, in particular the Brouwer degree and its properties. There follows a
review of existing known algorithms for its calculation, which are relatively few and mostly
grounded upon similar ideas. The recursive method of Aberth [Abe94] is explained at some
length, with an illustrative worked example, serving as the starting point for Chapter 7.

Chapter 5: A discussion on systems of polynomial equations. We firstly mention sev-
eral application areas where such systems arise and give a simple example. There follows
a discussion on the categorisation of solution methodology and an overview of five known
techniques.

5

1 Introduction

Chapter 6: A review of problems involving polynomial inequalities. We briefly cover
systems of polynomial inequalities, including stability regions, and global optimisation prob-
lems, including the use of relaxations.

Chapter 7: A detailed study of a recursive algorithm for the computation of Brouwer
degree. The behavioural attributes of the recursive method in practice (especially the com-
plexity) were not previously well-understood and so we begin with some open questions. A
detailed abstract analysis is followed by a number of computational examples. An estimate
of the complexity, with a focus on the face subdivision process, is obtained through an
unorthodox abstract complexity study, a probabilistic analysis based on a simplified geo-
metric model. The software is exercised with a catalogue of examples, and data are obtained
through the large-scale repetition of randomly-generated test problems, which support the
conclusions of the complexity study. A further abstract analysis concerning an optimal
face subdivision strategy is undertaken, introducing some new terminology for strategy at-
tributes and identifying a crucial sub-problem. This material motivates the conception of a
proposed new subdivision heuristic.

Chapter 8: A branch-and-bound method for the solution of systems of polynomial equa-
tions. We describe a new algorithm, which is based on the Bernstein expansion, coupled
with a simple existence test which utilises interval arithmetic. The method is tested with
several examples, and a couple of simple strategies for the choice of subdivision direction
selection are compared. The method is then improved by the addition of a preconditioning
scheme which results in a reduced complexity.

Chapter 9: A new representation for the Bernstein coefficients which offers a major
computational advantage. We firstly derive some key results concerning the Bernstein coef-
ficients of monomials, and their monotonicity. This motivates the formulation of an implicit
Bernstein representation. Coupled with three tests which are proposed, this form poten-
tially allows a much faster computation of the Bernstein enclosure. An illustrative example
is given, and the scheme is tested with several example polynomials from the literature. It
is seen that the complexity is much reduced for many types of sparse polynomial.

Chapter 10: Several different types of affine bounding functions for polynomials, based
upon the Bernstein expansion. After a brief discussion on convex envelopes, we consider
the advantageous construction of affine bounding functions, which might be utilised in a
relaxation scheme within a branch-and-bound framework. Six different algorithms, some
simple and some elaborate, are described. They are compared with a large catalogue of
randomly-generated polynomials. Finally, there is a brief discussion on the potential use of
the implicit Bernstein form, as well as the application of such affine bounding functions for
polynomials.

6

1 Introduction

Chapter 11: Summary and conclusions. In the final chapter we review the main results
of the thesis, placing them in context, and outline possible directions for further related work.

Appendix A: Software. In the appendix we present an overview of the developed soft-
ware, both for the computation of topological degree and for the computation of the Bern-
stein expansion and associated bounding functions.

7

Part I: Background and Existing Work

8

2 Interval Analysis

When a mathematical model involving continuous data (e.g. real numbers) is applied to
a real world problem, one must typically reckon with uncertainty. The values of the pa-
rameters or variables on which computations are performed are only an approximation of
their true, real-world values. These true values are either known only approximately, or
else they cannot be represented in a computer exactly. Sources of such uncertainty may be
categorised as follows:

• Aleatory (irreducible, statistical) uncertainty: Inherent variability due to fun-
damental ‘unknowable’ factors. For example, a physical quantity may vary according
to environmental conditions (e.g. temperature, pressure, humidity, etc.) or as a result
of manufacturing imperfection; there may be an element of risk (e.g. risk of failure or
deformation) associated with a process. For practical purposes, these factors may be
considered to be effectively random. Consequently, the corresponding parameters for
supposedly identical problems will vary from instance to instance.

• Epistemic (reducible, systematic) uncertainty: Variability due to lack of knowl-
edge about the problem. This uncertainty is often caused by measurement impreci-
sion, due either to random errors (e.g. the limits of human observation) or systematic
errors (e.g. hidden data, neglect of additional factors, faulty equipment). It is gener-
ally possible to reduce such uncertainty by improving the accuracy of a measurement
technique, eliminating sources of error, or adopting a more complete model.

• Computational uncertainty: Variability due to the way that the data are stored
and manipulated in a computer. Continuous data are typically stored as floating-
point numbers, which are (very close) approximations of the true values, with a (very
small, possibly zero) rounding error. When arithmetic operations are performed on
two floating-point numbers, the rounding error is compounded. Where many such
operations are performed in succession, there is the potential for the rounding error
to accumulate in magnitude to many times the initial rounding error. Well-known
examples of important failures due to rounding errors include a failure of the Patriot
missile system during the first Gulf War [Ske92] and the faulty distribution of seats
after a parliamentary election in the German State of Schleswig-Holstein [WW92].
S. M. Rump [Rum88] gives an example of a seemingly straightforward arithmetic
expression for which even extended precision floating-point arithmetic gave a faulty
result; it was also explored in [Han03]. Computational uncertainty may be considered
to be a subset of epistemic uncertainty, since it is reducible, for example by the use
of arbitrarily high precision floating-point arithmetic, albeit at greater computational
expense.

9

2 Interval Analysis

In the context of uncertainty, an interval is closely related to the concept of a margin
of error, which is commonly quoted in any field involving measurement (e.g. engineering,
physics, statistics, weather forecasting, risk assessment, and many more). The latter is
usually expressed as the radius of a confidence interval centred on a nominal value. In
some cases, a quantity is implied to lie within the margin of error (i.e. within the associated
confidence interval) with 100% certainty; in other cases the confidence is lower. For example,
a manufacturer might guarantee that the length of a certain component will lie within a
specified margin of error, whereas the results of an opinion poll are usually quoted with a
margin of error representing a 95% confidence interval.

Classical interval analysis is predicated on the assumption that the probability distribu-
tion of a measure within an interval is flat, i.e. all values within the interval are equally
likely. (In fact, interval analysis is merely a special case of fuzzy analysis where the proba-
bility distributions are flat.) It should be noted that the true probability distribution of the
measure need not be flat, and typically is not flat, for interval analysis to be applicable —
the type of distribution is merely disregarded. Thus interval analysis concerns itself with
the extent of the range of possible values of a measure, and not the shape of the distribution
of such values within the range.

Where one is aware of the existence of uncertainty in a computation scheme, it is natural
to question the quality and/or veracity of the outcome. Depending on the precision to which
the solution is quoted, the following questions naturally arise:

• How likely to be correct is the solution?

• How accurate is the solution?

Under an interval-based approach, these questions are answered as follows:

The solution is 100% correct within the specified range.

This is the most common model for handling uncertainty: precision is sacrificed for
accuracy. Although interval analysis can still be performed with less than full confidence
intervals, the most typical (and most powerful) use of interval analysis is with 100% con-
fidence intervals. Amongst others, typical adjectives for this type of computation include:
guaranteed, reliable, rigorous, and verified (some authors point out subtle differences in
meaning between these terms). Reliable computing has obvious applications in many real-
world engineering problems and safety-critical systems, where guaranteed results are highly
desirable or essential.

2.1 Interval Arithmetic

The foundations of interval arithmetic began to become somewhat widely studied with the
publication of R. E. Moore’s seminal work [Moo66] in 1966, wherein the philosophy, basic
rules, and some applications of computation with intervals were introduced. The moment
of this publication is widely considered to be the beginning of modern interval arithmetic.

10

2 Interval Analysis

However a small handful of earlier interval works are known: M. Warmus [War56] and T.
Sunaga [Sun58] each independently proposed computation schemes for intervals a decade
earlier, around the time of Moore’s own early interval papers. The first known paper
including interval analysis was published as early as 1931 by R. C. Young [You31]. That
numerous authors independently proposed the same basic rules of interval arithmetic is a
reflection of the fact that the basic arithmetic operations on intervals are readily deducible.
After the appearance of Moore’s work, much further early work was performed by German
researchers, most notably U. W. Kulisch [Kul08], K. L. E. Nickel [Gar10], and G. Alefeld
[AH83].

Although interval arithmetic still does not enjoy widespread recognition, fields of applica-
tion have expanded to include systems of equations, global optimisation, matrix methods,
and differential equations, amongst others. It has achieved notable success with computer-
aided proofs of some classic conjectures, e.g. [Hal05]; a good overview is presented in
[Rum05]. Related schemes of arithmetic include fuzzy arithmetic and affine arithmetic.
Standards for machine implementation, including an IEEE standard [IEE], are ongoing,
and numerous software packages for interval arithmetic have been produced (see Subsection
2.1.8). Interval computations are becoming increasingly popular, but cannot yet be consid-
ered to be mainstream. As the technology improves, this trend should continue. Efforts to
realise interval arithmetic in hardware are ongoing by Oracle (formerly Sun Microsystems)
and others.

We provide here an introduction to the field of interval arithmetic; for further details
see [Moo66, Moo79, AH83, RR88, Neu90, Sta95, Kul08, MKC09]. A further introduction,
detailing applications of interval arithmetic, resources, and an exhaustive bibliography is
available [Kea96a]; see also [Int].

2.1.1 Elementary Definitions

Definition 2.1 (Interval). An interval x = [x, x] where x ≤ x and x, x ∈ R denotes the set
of real numbers {x ∈ R | x ≤ x ≤ x}.

A degenerate interval is one consisting of a single point, i.e. its lower and upper bounds
are identical. (Strictly, a degenerate interval is a singleton set, but is often treated as
equivalent to a real number, and that convention will be followed here.) Interval arithmetic
is an arithmetic which operates on the set of intervals with real endpoints IR rather than
the real numbers R.

Definition 2.2 (Box). X = [x1, x1]×. . .×[xn, xn] ∈ IRn, a Cartesian product of n intervals,
where n ≥ 1, is termed a box.

2.1.2 Idealised Interval Arithmetic

We would wish to define interval operations in such a way that they yield the exact range
of the corresponding real operation. For example, [−1, 2.5] + [1, 4] should yield [0, 6.5]. In

11

2 Interval Analysis

other words, an elementary operation � ∈ {+,−, ∗,÷} for idealised interval arithmetic must
obey

x� y = {x� y | x ∈ x, y ∈ y}. (2.1)

2.1.3 Operational Definitions

The above definition of idealised arithmetic is not sufficient to permit calculation on a
computer. For this purpose, we require a definition for each operation in terms of the
corresponding real operation:

Definition 2.3 (Interval Operations). For x = [x, x] and y = [y, y],

x + y = [x + y, x + y],
x− y = [x− y, x− y],
x ∗ y = [min{x ∗ y, x ∗ y, x ∗ y, x ∗ y},max{x ∗ y, x ∗ y, x ∗ y, x ∗ y}],
x÷ y = x ∗ (1 / y), where
1 / y = [1 / y, 1 / y], if y < 0 or y > 0 (otherwise undefined).

It should be clear that these operators are defined in a way such that a single operation
x � y will yield an exact (ideal) interval result. But what properties does the operational
arithmetic satisfy when these operators are composed?

Theorem 2.1 (Algebraic Properties). The elementary interval operations + and ∗ satisfy
the properties of associativity, commutativity, and the existence of a zero/one element, i.e.
for all x,y, z ∈ IR,

(x + y) + z = x + (y + z),
(x ∗ y) ∗ z = x ∗ (y ∗ z),

x + y = y + x,

x ∗ y = y ∗ x,

0 + x = x,

1 ∗ x = x.

Theorem 2.2 (Subdistributivity). For all x,y, z ∈ IR

x ∗ (y + z) ⊆ x ∗ y + x ∗ z (2.2)

with equality if either x ∈ R, y, z ≥ 0, or y, z ≤ 0.

2.1.4 Overestimation and the Dependency Problem

As Theorem 2.2 suggests, we can very quickly arrive at simple examples of operational arith-
metic with non-ideal results, either from simple compound expressions where the operators
are composed, or from the presence of multiple occurences of the same variable. In such
cases, outer bounds on the range of a real function are obtained.

Example 2.1. Let x = [−1, 1].

12

2 Interval Analysis

• x − x, is computed as [x − x, x − x] = [−2, 2], not 0 (although it contains 0). (This
illustrates the fact that intervals do not have inverses.)

• x2, if implemented as x ∗ x, yields [−1, 1], which is only an outer bound for the true
range, [0, 1].

• Let f(x) = x(x + 1). Then f(x) = [−0.25, 2], however f(x) = [−1, 1]([−1, 1] + 1) =
[−1, 1][0, 2] = [−2, 2], where f is the natural interval extension (see Subsection 2.1.7)
of f .

We can see that overestimation rapidly becomes a fact of life with interval arithmetic. This
phenomenon is called the dependency problem (also decorellation): In general, if a variable
appears more than once in a symbolic expression for a real function, the computed range
will exhibit an undesirable overestimation which can rapidly become excessive, because each
variable instance is treated as if it were an independent variable in its own right.

The quality of an interval method may therefore be judged not only by its efficiency
and range of applicability, but also by the tightness of the solution intervals it delivers (i.e.
the amount of overestimation). There is often a tradeoff of quality versus computational
expense. An easy answer for a single real number result is (−∞,+∞) = R, which is always
valid, but not very helpful. (From a computational perspective, this is sometimes written
as [−∞,+∞], since most types of floating-point format include encodings for positive and
negative infinities.)

Higher-order functions, defined in terms of elementary operations, may therefore need to
be rewritten in order to minimise these inaccuracies. Where possible, multiple occurrences
of the same variable should be avoided. A good example is exponentiation — the standard
definition in terms of a simple recursive multiplication is not satisfactory. A suitable rewrite
is given below.

2.1.5 Further Operational Definitions

These definitions apply to intervals x = [x, x] and y = [y, y].

Definition 2.4 (Exponentiation).

xn = [min{xn, xn},max{xn, xn}], if x ≤ 0 or x ≥ 0,

= [min{xn, xn, 0},max{xn, xn}], if x < 0 < x.

Definition 2.5 (Infimum, Supremum).

inf(x) = x,

sup(x) = x,

13

2 Interval Analysis

Definition 2.6 (Midpoint, Radius, Width).

mid(x) =
1
2
(x + x),

r(x) =
1
2
(x− x),

w(x) = x− x.

Definition 2.7 (Absolute Value, Magnitude, Mignitude).

|x| = {|x| | x ∈ x}
= [x, x], if x ≥ 0
= [−x,−x], if x ≤ 0
= [0,max{|x|, |x|}], otherwise,

mag(x) = max
x∈x

|x| = max{|x|, |x|},

mig(x) = min
x∈x

|x|

= 0, if 0 ∈ x

= min{|x|, |x|}, otherwise.

The distance between two intervals is usually defined as the Hausdorff distance, which
yields:

Definition 2.8 (Distance).

dist(x,y) = max{|x− y|, |x− y|}.

Union and intersection can be performed on intervals in the usual set-theoretic fashion.
However these operators do not always yield an interval result; union either yields a single
interval or the union of two disjoint intervals, intersection either yields an interval or the
empty set. Instead we can define the following operators:

Definition 2.9 (Meet, Join).

x ∧ y = [max(x, y),min(x, y)], if max(x, y) ≤ min(x, y), (meet)
x ∨ y = [min(x, y),max(x, y)]. (join)

For further operational definitions, including the exponential function, trigonometric func-
tions, square root, etc., see [LTWvG01].

14

2 Interval Analysis

2.1.6 Relations on Intervals

Definition 2.10 (Interval Relations).

x = y ⇐⇒ x = y and x = y,

x ⊆ y ⇐⇒ x ≥ y and x ≤ y,

x ≤ y ⇐⇒ x ≤ y and x ≤ y,

x < y ⇐⇒ x < y and x < y.

2.1.7 Interval Functions

Let f : Rn → R be a real-valued function and let f : IRn → IR be an interval-valued
function. Given a box

X = [x1, x1]× . . .× [xn, xn],

the range of f (the real-valued function) on X is given by

f(X) = {f(x) | x ∈ X} .

Definition 2.11 (Interval Extension). The interval-valued function f : IRn → IR is an
interval extension of f : Rn → R if

f(x) = f(x), ∀x ∈ Rn, and
f(X) ⊇ f(X), ∀X ∈ IRn.

Interval extensions (sometimes also known as inclusion functions, cf. [RR88, Section 2.6])
are used to bound the range of a real function.

Definition 2.12 (Inclusion Isotone). Let f : IRn → IR. f is inclusion isotone if

X1 ⊆ X2 =⇒ f(X1) ⊆ f(X2), ∀X1,X2 ∈ IRn.

This property is often also called inclusion monotone. Where an interval-valued function
is inclusion isotone, equality with a real-valued function on all degenerate intervals (i.e.
point values) suffices for it to be an interval extension:

Theorem 2.3. If f is inclusion isotone and

f(x) = f(x), ∀x ∈ Rn,

then f is an interval extension of f .

Moore’s fundamental theorem of interval arithmetic [Moo66, Theorem 3.1] states that
an interval-valued function which is a rational expression of interval variables is inclusion
isotone (over the valid domain of the arithmetic operations appearing therein). The natural
interval extension (see Definition 2.13) of a real-valued function is therefore inclusion isotone.

15

2 Interval Analysis

Definition 2.13 (Natural Interval Extension [Moo66]). The natural interval extension of a
real-valued function f : Rn → R is the interval extension obtained by replacing the real vari-
ables and operations in the function expression for f by the corresponding interval variables
and operations.

Note that a precise mathematical definition for the natural interval extension requires
recursion and an unambiguous lexical notion of function expression; it would thus be more
accurate to consider the natural interval extension of a particular function expression. The
natural interval extension provides an overestimation for the range of f , except in the case
where each variable appears at most once in the rational expression of the extension, in
which case it provides the actual range.

In practice, where f is a non-trivial composition of operational elementary and higher-
order functions, the natural interval extension yields a non-ideal wider interval (which nev-
ertheless contains the true range of f over the box). As illustrated by Example 2.1, and
according to the principle of decorellation, the tightness of the bounds depends largely upon
the expression of the function. In this regard, it is highly desirable to first simplify it as
much as possible, reducing the number of interval operations and in particular the number of
occurrences of each variable, where possible. This process itself is non-trivial and is a topic
for research. In extreme cases, a badly-presented interval function may yield (−∞,+∞) for
all but the narrowest of arguments. Some types of rewriting which may be advantageous
for regular arithmetic are less suitable for the purpose of interval computations. However
it is fairly straightforward to obtain rigorous enclosures for functions such as trigonometric
functions and the exponential function, permitting a wide range of interval functions to be
computed effectively.

2.1.8 Computer Implementation

Since no mainstream hardware implementation of interval arithmetic exists (to date), it
must generally be realised in software, based upon a hardware implementation of floating-
point arithmetic. Since, as illustrated earlier, floating-point arithmetic is subject to com-
putational uncertainty, achieving guaranteed results is therefore not trivial. Fortunately,
modern standards for floating-point arithmetic include encodings for positive and negative
infinities and NaNs (‘Not a Number’; used to signal an undefined or unrepresentable value),
as well as different modes for rounding, which can be used to support verified computation.

Broadly speaking, two steps are necessary:

• Any floating-point value is stored as the smallest ‘safe’ interval which is guaranteed
to enclose it. This is sometimes called the hull approximation; it is usually an interval
of machine-precision width.

• Outward rounding is used throughout: whenever an arithmetic operation is performed,
the floating-point operations on the endpoints are performed using the appropriate
directed rounding mode.

16

2 Interval Analysis

With such an implementation, erroneous results due to rounding errors associated with
traditional floating-point arithmetic may be avoided and we achieve result interval(s) that
are guaranteed to contain the true function range, irrespective of machine rounding.

A more detailed specification of interval arithmetic implementation may be found in, e.g.,
[Sta95, LTWvG01].

Software Libraries

Numerous interval arithmetic libraries for the programming language C++ exist, as well
as one or two others for other languages. The earliest libraries to achieve recognition were
Pascal-XSC [KK+92] and C-XSC [XSCb] (a brief history of their development is given in
[XSCa]), as well as PROFIL/BIAS (Programmer’s Runtime Optimised Fast Interval Library,
Basic Interval Arithmetic Subroutines) [Knu94, PRO]. In this thesis, the library filib++
(Fast Interval LIBrary for C++) [LTWvG01] was used. Other C++ libraries include Boost
[BMP03] and Gaol (not Just Another Interval Library) [GAO]. A number of commercial
mathematical softwares also include interval arithmetic components or addons, for example
INTLAB [Rum99] is a toolbox for the MATLAB system; in particular it has fast routines
for interval vector and matrix manipulation.

2.2 Interval Enclosures

A valid interval extension yields a guaranteed enclosure for the range of a real-valued func-
tion over an interval, but the tightness of the resulting interval (i.e. the quality or usefulness
of this enclosure) may vary, depending on its construction. Firstly it should be noted that
the natural interval extension (see Definition 2.13, i.e. the straightforward application of
interval arithmetic) can often deliver bounds which are tighter and/or quicker to compute
than those obtained by traditional means with floating-point arithmetic, such as the use
of Lipschitz conditions. Nevertheless, as the interval width is shrunk, the natural interval
extension converges only linearly to the true enclosure. However it can be improved upon
considerably and the comparison of different types of interval enclosures is a fruitful topic
for research. In many cases, there is a tradeoff between the tightness of an enclosure and
its computational complexity.

One of the most fundamental interval enclosures is the mean value form (or mean value
interval extension), cf. [RR88, Neu90], which exhibits quadratic convergence to the true
enclosure with shrinking interval width. In the univariate case, it derives from the mean
value theorem, which states that if a function f is continuous over an interval [a, b] and
differentiable over (a, b) then there exists a point c ∈ (a, b) for which

f ′(c) =
f(b)− f(a)

b− a
. (2.3)

Now let x, x̃ ∈ [a, b]. Applying (2.3) and rearranging yields

f(x) = f(x̃) + f ′(ξ)(x− x̃), (2.4)

17

2 Interval Analysis

where ξ lies between x and x̃. Therefore given an interval x we must have for all x, x̃ ∈ x

f(x) ∈ f(x̃) + f ′(x)(x− x̃). (2.5)

Therefore
f(x) ⊆ f(x̃) + f ′(x)(x− x̃). (2.6)

One typically chooses x̃ := mid(x). Here, an interval extension for f ′ is required; it is
commonly the case that it is tighter than that for f and the mean value form yields a
tighter enclosure than the natural interval extension.

A detailed treatment of other types of centred form, including variants on the mean value
form, types of Taylor form (based on the Taylor expansion), as well as interval enclosures
specific to polynomials, such as the Horner form (see, e.g., [PS00]) and Bernstein form
(see Section 3.1.2) is given in [Sta95], with a detailed comparison. Centred forms specific
to polynomials are considered in [Rok81]. For some classes of random polynomials, it is
demonstrated in [Sta95] that the Horner form and simple variants of the mean value form
deliver relatively wide enclosures, which are improved upon by more sophisticated variants,
whereas the Bernstein form generally gives the tightest enclosures.

2.3 Interval Algorithms

Due to the dependency problem, a straightforward adaption of an algorithm designed for
floating-point arithmetic is usually unsuitable, typically delivering excessively wide result
intervals. For example, an unmodified interval Gaussian elimination for the solution of
a system of linear equations with interval coefficients will generally quickly fail due to
division by the interval values for pivots containing zero, cf. Subsection 2.3.3. In general,
therefore, floating-point algorithms have to be adapted in order to minimise the effect of
the dependency problem. In some cases, completely new algorithms have to be devised.

2.3.1 Branch-and-Bound Methods

Branch-and-bound algorithms are a general scheme most often employed for the solution
of optimisation problems, but also for systems of nonlinear equations and other types of
problems. Required is a starting finite search space — in most formulations, a box —
which is successively subdivided into smaller sub-regions until they can be excluded from
the search. The search space is structured in the form of a tree and the sub-regions are
usually (but not always) defined as boxes (see Definition 2.2).

It should be noted that the branch-and-bound method is not an interval method per se,
however in the common case where boxes and sub-boxes are used, it naturally lends itself to
interval approaches, which are often (but by no means always) employed for the bounding
step (see below).

The first branch-and-bound methods, not utilising interval analysis, appeared the in
1960s; the first interval branch-and-bound method was the Moore-Skelboe algorithm [Moo76],

18

2 Interval Analysis

also described in [RR88]. Thereafter, interval branch-and-bound methods were further de-
veloped by H. Ratschek and J. Rokne [RR88] and E. R. Hansen [Han80, Han03], amongst
others.

There are two key steps to a branch-and-bound approach:

• A subdivision (or branching, splitting) step, which partitions the current (sub-)region
under investigation into two (or more) smaller sub-regions. Typically, such a region
consists of an n-dimensional box, and a subdivision (often a bisection) is performed
in one direction.

• A bounding (or pruning) step, where sub-regions are safely discarded as candidates
for containing a solution. The character of this step depends on whether a system
of equations or an optimisation problem is being solved. In the former case, bounds
on the ranges of the component functions may be computed; where one such function
can be guaranteed to exclude zero, the sub-region may be discarded. In the latter
case, which is canonically presented as a minimisation problem, the sub-region may
likewise be tested for feasibility, but a lower bound for the objective function is also
computed. This is compared against a global variable which records the minimum
upper bound for sub-regions so far; where the lower bound for a sub-region exceeds
this, it can safely be discarded. This step is also called ‘pruning’, because branches of
the search tree are removed.

Also required is a search strategy for the order in which sub-regions are processed and a
termination criterion which stipulates when sub-regions become satisfactorily small. At the
end, zero or more sub-regions of this small size remain, which enclose the solution set (in
the case of a system of equations) or contain the minimiser and provide an upper bound on
the corresponding value of the objective function (in the case of an optimisation problem).

Heuristics and tests may be employed to accelerate the algorithm, by minimising the total
number of sub-regions to be processed [RR88, Section 3.11]. These may include tree search
strategies, heuristics for selection of subdivision direction, e.g. [RC95], monotonicity tests,
and box contraction techniques, e.g. [VHMK97].

2.3.2 Interval Newton Methods

The interval Newton method is obtained by replacing the real (floating-point) variables in
the standard Newton iteration by intervals. It is discussed in further detail in Subsection
5.3.3.

2.3.3 Matrix Methods

An interval matrix is one whose entries are intervals, instead of real numbers. Repetetive
operations on such matrix entries or rows, where each interval variable often appears mul-
tiple times, make them very susceptible to the dependency problem. A common example is
the classic Gaussian elimination, used to solve a system of linear equations or find a matrix

19

2 Interval Analysis

inverse; a naive interval version of this method will fail for all but the simplest of prob-
lems, with the excessive widths of the entries used as pivots rapidly causing a division by
zero. Such methods therefore need to be adapted in order to circumvent or mitigate these
problems, e.g. with a scheme for the tightening of interval pivots [Gar09].

2.3.4 Other Interval Methods

Many other interval methods for a number of different application areas exist. A good
overview is given in [Int, Kea08] and a few are listed below:

• Taylor models with interval arithmetic, commonly used for the verified solution of
ordinary differential equations,

• Methods for automated theorem proving (a notable example is a proof of the Kepler
conjecture, concerning sphere packing in three dimensions, by T. Hales [Hal05]; see
[Rum05] for further examples),

• Constraint propagation, applied to global optimisation or constraint satisfaction prob-
lems, e.g. [Gra07],

• Various methods for the solution of finite element truss structure models with uncer-
tain parameters, e.g. [Zha05, GPS12].

20

3 Bernstein Expansion

Bernstein expansion refers to the process of rewriting a polynomial in Bernstein form,
a procedure which can be employed in function approximation and bounding the ranges
of polynomials. A polynomial in Bernstein form is expressed as a linear combination of
Bernstein basis polynomials. These polynomials were first defined by S. N. Bernstein in
1912 [Ber12] in a constructive proof of the Weierstrass approximation theorem, which states
that a continuous function may be uniformly approximated over a finite interval arbitrarily
closely by a polynomial.

In the case of the real numbers R the theorem may be stated as follows:

Theorem 3.1 (Weierstrass Approximation Theorem). Let f be a continuous real-valued
function defined over an interval [a, b]. For any ε > 0 there exists a polynomial p : R → R
such that

|f(x)− p(x)| < ε, ∀x ∈ [a, b].

Bernstein explicitly provided a sequence of polynomials which converge uniformly to a
given continuous function over the unit interval I = [0, 1]. It should firstly be observed that
we can consider the unit interval without loss of generality. It is readily apparent that an
affine transformation of a polynomial to or from I and a non-degenerate interval [a, b] yields
a polynomial of the same degree and that the same transformation preserves the continuity
of an arbitrary function.

Given a function f which is continuous over I, for a given degree l Bernstein’s approxi-
mation is

fl(x) = f(0)(1− x)l + lf(
1
l
)x(1− x)l−1 + . . . +

(
l

i

)
f(

i

l
)xi(1− x)l−i + . . . + f(1)xl. (3.1)

As l → ∞, fl(x) tends uniformly to f(x) over I. The proof [Ber12] relies upon the obser-
vation that fl(x) (3.1) is a weighted average of f(0), . . . , f(i

l), . . . , f(1). In particular, as l
becomes large, only those terms for which i

l ≈ x make a significant contribution, since the
values of the weights depend upon x. The result is obtained by equating this to a probability
distribution and employing a bound provided by Chebyshev’s inequality.

It can be seen that each of the weights (or multipliers) for the f values appearing in (3.1)
is a degree l polynomial in x; these are the Bernstein basis polynomials and fl is a degree l
polynomial presented in Bernstein form.

There is an early monograph on Bernstein polynomials [Lor53]; thereafter the Bernstein
expansion was first applied to the range of univariate polynomials in [CS66] and then [Riv70]
and [Rok77]; an extension to the multivariate case appears in [Gar86]. More recent treat-
ment appears in [NA07], [BCR08] and [RN09], and a comprehensive survey paper has just
been completed [Far12]. An alternative explanation of the theory of Bernstein polynomials
is presented in [Zum08, Chapter 4].

21

3 Bernstein Expansion

3.1 Fundamentals

In this section the fundamental theory of Bernstein polynomials and Bernstein expansion
is introduced.

3.1.1 Bernstein Basis Polynomials

The ith Bernstein basis polynomial of degree l is given by

Bl
i(x) =

(
l

i

)
xi(1− x)l−i, i = 0, . . . , l. (3.2)

Where required, we shall adopt the convention that Bl
i(x) = 0 for all x if i < 0 or i > l.

For l up to and including 4, the Bernstein basis polynomials are given explicitly in Table
3.1 and, for l = 4, depicted in Figure 3.1.

l i = 0 i = 1 i = 2 i = 3 i = 4
0 1
1 1− x x

2 1− 2x + x2 2x− 2x2 x2

3 1− 3x + 3x2 − x3 3x− 6x2 + 3x3 3x2 − 3x3 x3

4 1− 4x + 6x2 − 4x3 + x4 4x− 12x2 + 12x3 − 4x4 6x2 − 12x3 + 6x4 4x3 − 4x4 x4

Table 3.1: The Bernstein basis polynomials Bl
i(x) for l up to 4.

B (x)i
4

i = 0 i = 4

i = 1 i = 3
i = 2

 0 1
x

 0.5
 0

 1

Figure 3.1: Graphs of the Bernstein basis polynomials Bl
i(x) for l equal to 4.

22

3 Bernstein Expansion

Here, the term ‘Bernstein polynomial’ is used to mean ‘Bernstein basis polynomial’, and
not a polynomial which is presented in Bernstein form (see Subsection 3.1.2). Some authors
use this latter meaning, but this would appear to be redundant since every polynomial is a
Bernstein polynomial in this sense — any polynomial can be rewritten in Bernstein form,
as stated below.

Basic Properties

It can readily be seen that the Bernstein basis polynomials satisfy the following properties
for all l ∈ N, i = 0, . . . , l:

• Bl
i(x) ≥ 0, ∀x ∈ I.

• The set of Bernstein polynomials of degree l form a partition of unity, i.e.

l∑
i=0

Bl
i(x) = 1, ∀x ∈ R.

• Bl
0(0) = 1 ; Bl

i(0) = 0, if i > 0.

• Bl
l(1) = 1 ; Bl

i(0) = 0, if i < l.

• Bl
i(x) = Bl

l−i(1− x), ∀x ∈ R.

• The Bernstein polynomials of degree l form a basis for the vector space of polynomials
of degree less than or equal to l. Thus a Bernstein representation exists for every
polynomial, and the coefficients are defined in Section 3.1.3.

Degree Elevation and Reduction Properties

• A Bernstein polynomial of degree l can be generated recursively from lower-degree
polynomials:

Bl
i(x) = xBl−1

i−1(x) + (1− x)Bl−1
i (x). (3.3)

This can be proven using the recursive relation for binomial coefficients:

Bl
i(x) =

(
l

i

)
xi(1− x)l−i

=
[(

l − 1
i− 1

)
+
(

l − 1
i

)]
xi(1− x)l−i

=
(

l − 1
i− 1

)
xi(1− x)l−i +

(
l − 1

i

)
xi(1− x)l−i

= x

(
l − 1
i− 1

)
xi−1(1− x)(l−1)−(i−1) + (1− x)

(
l − 1

i

)
xi(1− x)(l−1)−i

= xBl−1
i−1(x) + (1− x)Bl−1

i (x). 2

23

3 Bernstein Expansion

• A Bernstein polynomial of degree l can also be expressed as a linear combination of
two Bernstein polynomials of degree l + 1:

Bl
i(x) =

l + 1− i

l + 1
Bl+1

i (x) +
i + 1
l + 1

Bl+1
i+1(x). (3.4)

This is proven by combining the following two results:

• A Bernstein polynomial of degree l can further be related to a single Bernstein poly-
nomial of degree l + 1 as follows:

(1− x)Bl
i(x) =

(
l

i

)
xi(1− x)l+1−i

=

(
l
i

)(
l+1
i

)(l + 1
i

)
xi(1− x)l+1−i

=
l + 1− i

l + 1
Bl+1

i (x);

also

xBl
i(x) =

(
l

i

)
xi+1(1− x)l−i

=

(
l
i

)(
l+1
i+1

)(l + 1
i + 1

)
xi+1(1− x)(l+1)−(i+1)

=
i + 1
l + 1

Bl+1
i+1(x).

• By repeated application of (3.4), a Bernstein polynomial of degree l can be expressed
as a linear combination of Bernstein polynomials of degree l + r, where r ∈ N:

Bl
i(x) =

i+r∑
j=i

(
l
i

)(
r

j−i

)(
l+r
j

) Bl+r
j (x). (3.5)

3.1.2 Bernstein Form

Here we begin to make use of the abbreviated notation for multipowers and vectors. If n
is set to 1, then we have the univariate case. Let us suppose that we have an n-variate
polynomial p presented in the usual power form (i.e. in the power basis) as

p(x) =
l∑

i=0

aix
i, x = (x1, . . . , xn). (3.6)

It may be rewritten in Bernstein form (i.e. in the Bernstein basis) over I = [0, 1]n as

p(x) =
l∑

i=0

biB
l
i(x), (3.7)

24

3 Bernstein Expansion

where Bl
i is the ith Bernstein basis polynomial of degree l (3.8) and bi are the so-called

Bernstein coefficients. The derivation of these coefficients is given below in Subsection
3.1.3. In the n-dimensional case, the ith Bernstein polynomial of degree l = (l1, . . . , ln) is
given as a straightforward product of univariate Bernstein polynomials (3.2) as follows:

Bl
i(x) = Bl1

i1
(x1)Bl2

i2
(x2) · . . . ·Bln

in
(xn). (3.8)

We may allow that the degree of p is given by some r, where r < l. In this case, the formulae
herein remain in force with the convention that aj = 0 if j > r.

3.1.3 Basis Conversion

Here we derive formulae for converting between the coefficients {ai} of a polynomial in the
power basis and the coefficients {bi} in the Bernstein basis.

Conversion From Power Basis to Bernstein Basis

Theorem 3.2. Let p be a multivariate polynomial in power form given as in (3.6). Then
its coefficients in Bernstein form (its Bernstein coefficients) are given by

bi =
i∑

j=0

(
i
j

)(
l
j

)aj , 0 ≤ i ≤ l. (3.9)

Proof:

p(x) =
l∑

j=0

ajx
j =

l∑
j=0

ajx
j (x + (1− x))l−j

=
l∑

j=0

ajx
j

l−j∑
k=0

(
l − j

k

)
x(l−j)−k(1− x)k

=
l∑

j=0

l−j∑
k=0

aj

(
l − j

k

)
xl−k(1− x)k

=
l∑

k=0

l−k∑
j=0

aj

(
l − j

k

)
xl−k(1− x)k

=
l∑

i=0

i∑
j=0

aj

(
l − j

l − i

)
xi(1− x)l−i (by setting i + k = l)

=
l∑

i=0

i∑
j=0

aj

(
l−j
l−i

)(
l
i

) (l

i

)
xi(1− x)l−i

=
l∑

i=0


i∑

j=0

(
i
j

)(
l
j

)aj

Bl
i(x). 2

25

3 Bernstein Expansion

Conversion From Bernstein Basis to Power Basis

Theorem 3.3. Let p be a multivariate polynomial in Bernstein form given as in (3.7).
Then its coefficients in power form are given by

ai =
i∑

j=0

(−1)i−j

(
l

i

)(
i

j

)
bj , 0 ≤ i ≤ l. (3.10)

Proof:

p(x) =
l∑

j=0

bjB
l
j(x)

=
l∑

j=0

bj

(
l

j

)
xj(1− x)l−j

=
l∑

j=0

bj

(
l

j

)
xj

l−j∑
k=0

(
l − j

k

)
(−1)kxk

=
l∑

j=0

bj

(
l

j

)
xj

l∑
i=j

(
l − j

i− j

)
(−1)i−jxi−j (by setting i− j = k)

=
l∑

j=0

l∑
i=j

bj

(
l

j

)(
l − j

i− j

)
(−1)i−jxi

=
l∑

j=0

l∑
i=j

bj

(
l

i

)(
i

j

)
(−1)i−jxi

=
l∑

i=0


i∑

j=0

(−1)i−j

(
l

i

)(
i

j

)
bj

xi. 2

Example 3.1. Let p(x1, x2) = 2x3
1− 1

2x2
1x2+7x2

2−4x1x2+3. Its representation in Bernstein

form is p(x1, x2) =
l∑

i=0
biB

l
i(x1, x2), where the degree l = (3, 2) and the Bernstein coefficients

{bi} over [0, 1]2 calculated according to (3.9) are given in Table 3.2.

i1 = 0 i1 = 1 i2 = 2 i3 = 3
i2 = 0 3 3 3 5
i2 = 1 3 7

3
19
12

11
4

i2 = 2 10 26
3

43
6

15
2

Table 3.2: Bernstein coefficients bi of p(x1, x2) = 2x3
1 − 1

2x2
1x2 + 7x2

2 − 4x1x2 + 3.

26

3 Bernstein Expansion

3.1.4 Generalised Bernstein Form

In many cases it is desired to calculate the Bernstein expansion of a polynomial over a
general non-degenerate n-dimensional box

X = [x1, x1]× . . .× [xn, xn]. (3.11)

It is possible to firstly apply the affine transformation which transforms the unit box I to
X and then apply (3.9), using the coefficients of the transformed polynomial. However it
is sometimes useful to consider a direct calculation. Here, the ith Bernstein polynomial of
degree l = (l1, . . . , ln) over X may be written as

Bl
i(x) =

(
l

i

)
(x− x)i(x− x)l−i

(x− x)l
, 0 ≤ i ≤ l. (3.12)

The Bernstein coefficients bi of a polynomial p (3.6) of degree l over X (3.11) are given by

bi =
i∑

j=0

(
i
j

)(
l
j

)(x− x)j
l∑

k=j

(
k

j

)
xk−jak, 0 ≤ i ≤ l. (3.13)

3.2 Properties of the Bernstein Coefficients

From the point of view of bounding the ranges of polynomials, the Bernstein coefficients
(3.9, 3.13) exhibit a number of important and useful properties, encapsulating the behaviour
and properties of a polynomial over a box of interest. These coefficients may be collected in
an n-dimensional array (i.e. a tensor); in the field of computer-aided geometric design such
a construct is typically labelled as a patch. For simplicity, we will refer to the tensor of the
Bernstein coefficients hereafter as an ‘array’.

Where the general case is considered, we shall assume that we have an n-dimensional
polynomial p (3.6) of degree l = (l1, . . . , ln) over a box X (3.11). In this case the number of
coefficients appearing in this array is

#{bi} =
n∏

i=1

(li + 1). (3.14)

3.2.1 Vertex Values

It is readily apparent that the 2n Bernstein coefficients occurring at a vertex of the array are
identical to the values attained by p at the corresponding vertices of X. In the univariate
case over the unit box:

b0 = a0 = p(0), (3.15)

bl =
l∑

i=0
ai = p(1). (3.16)

27

3 Bernstein Expansion

In the general case, if ij ∈ {0, lj} ∀j = 1, . . . , n, then bi = p(v) where

vj =
{

xj if ij = 0,

xj if ij = lj ,
∀j = 1, . . . , n.

3.2.2 Face Values

Lemma 3.1. Let p be an n-variate polynomial (3.6) of degree l = (l1, . . . , ln) over a box
X (3.11). Then the Bernstein coefficients of p over the m-dimensional faces of X, where
0 ≤ m ≤ l − 1, are the same as the coefficients located at the corresponding m-dimensional
faces of the array of Bernstein coefficients of p over X.

Proof (see also [GS01b]): We consider the case of the unit box I = [0, 1]n without loss
of generality. It suffices to prove the statement for m = l − 1; the statement for smaller
m then follows by repeated application. Here we indicate by a subscript (k) that the
quantity under consideration is taken without the contribution of the kth component, e.g.
x(k) = (x1, . . . , xk−1, xk+1, . . . , xn). The ith Bernstein coefficient of

p(x1, . . . , xk−1, 0, xk+1, . . . , xn) =
∑

i≤l,ik=0

ai(xi)(k),

considered as a polynomial in n− 1 variables, is given by

∑
j≤i,jk=0

(
i
j

)
(k)(

l
j

)
(k)

aj ,

which coincides with bi1...ik−1 0 ik+1...in . Similarly, the ith Bernstein coefficient of

p(x1, . . . , xk−1, 1, xk+1, . . . , xn) =
∑

i(k)≤l(k)


lk∑

ik=0

ai

 (xi)(k),

is given by ∑
j(k)≤i(k)

(
i
j

)
(k)(

l
j

)
(k)

lk∑
jk=0

aj ,

which coincides with

bi1...ik−1 lk ik+1...in =
∑

j≤i,ik=lk

(
i
j

)(
l
j

)aj . 2

An application of Lemma 3.1 for bounding the range of a polynomial over an edge of a
box was given in [ZG98, Edge Lemma].

28

3 Bernstein Expansion

3.2.3 Linearity

Let p(x) = αp1(x)+βp2(x), where p1 and p2 are polynomials and l is the degree of p. Then

bi = αb
{p1}
i + βb

{p2}
i ∀ 0 ≤ i ≤ l,

where b
{p1}
i and b

{p2}
i are the ith coefficients of the degree l Bernstein expansions of p1 and

p2, respectively.

3.2.4 Range Enclosure

The essential property of the Bernstein expansion, given by Cargo and Shisha [CS66], is
that the range of p over X is contained within the interval spanned by the minimum and
maximum Bernstein coefficients (which is called the Bernstein enclosure):

min
i
{bi} ≤ p(x) ≤ max

i
{bi}, x ∈ X. (3.17)

The proof follows readily by firstly applying an affine transformation to the unit box I and
observing, as in [Riv70], from (3.7) that, for all x ∈ I, p(x) is a convex combination of
b0, . . . , bl.

By computing all the Bernstein coefficients, one therefore obtains bounds on the range of
p over X; this is central to the application of the Bernstein expansion in enclosure methods.
As discussed in Section 2.2, it is known [Sta95] that these bounds are in general tighter than
those given by interval arithmetic and many centered forms. However it should be noted that
the computational effort of generating all the Bernstein coefficients is often much greater
than that of these alternatives.

3.2.5 Sharpness

The lower bound on the range of p over X provided by the minimum Bernstein coefficient
is sharp, i.e. there is no underestimation, if and only if this coefficient occurs at a vertex
of X. Likewise, the upper bound provided by the maximum Bernstein coefficient is sharp
(in this case, there is no overestimation), if and only if the coefficient occurs at a vertex of
X. If both bounds are sharp, then the Bernstein enclosure provides the exact range; this
property allows one to easily test whether or not this is the case.

3.2.6 Convex Hull

This property is a generalisation of the range enclosing property. We firstly need to define
the control points associated with the Bernstein coefficients, and then we shall consider their
convex hull.

Definition 3.1 (Control Points). Given the degree l Bernstein expansion (i.e. the Bernstein
coefficients) of an n-dimensional polynomial p over the unit box I = [0, 1]n, the control point

29

3 Bernstein Expansion

associated with the ith Bernstein coefficient bi is the point bi ∈ Rn+1 given by

bi :=
(

i1
l1

, . . . ,
in
ln

, bi

)
. (3.18)

The abscissae of the control points thus form a uniform grid over the box and the ordinates
are equal to the values of the Bernstein coefficients.

Theorem 3.4 (Convex Hull Property). The graph of p over I is contained within the convex
hull of the control points derived from the Bernstein coefficients, i.e.

{(x1, . . . , xn, p(x)) | x ∈ I} ⊆ conv {bi | 0 ≤ i ≤ l} . (3.19)

Proof: Consider the degree l Bernstein expansion of the identity function idj(x) := xj .
From (3.9) we have that b

{idj}
i = ij

lj
and therefore

x1
...

xn

p(x)

 =
l∑

i=0


i1
l1
...
in
ln
bi

Bl
i(x). (3.20)

For all x ∈ I, (x1, . . . , xn, p(x)) is thus a convex combination of b0, . . . ,bl and is therefore
contained within their convex hull. 2

Figure 3.2 illustrates the convex hull property for a univariate polynomial of degree 5 over
the unit interval. The property holds in the case of a general box X by simply adjusting
the control points accordingly so that they form a uniform grid over X.

3.2.7 Inclusion Isotonicity

The Bernstein form is inclusion isotone (see Definition 2.12), i.e. if the interval X is shrunk
to a smaller interval then the Bernstein enclosure shrinks, too. This was proven for the
univariate case in [HS95a]. Here we give a shorter proof for the multivariate case and an
extension to show that the convex hull of the control points associated with the Bernstein
coefficients is also inclusion isotone [GJS03a]. For simplicity we consider the case of the unit
interval I = [0, 1].

Theorem 3.5 (Inclusion Isotonicity of the Convex Hull [GJS03a]). The convex hull of
the control points associated with the Bernstein coefficients of a univariate polynomial is
inclusion isotone.

Proof: Let p be a degree l univariate polynomial, with Bernstein coefficients b0, . . . , bl

over the interval [0, 1]. It suffices to show that inclusion isotonicity holds if we shrink only
one of the two endpoints. Let b∗0, . . . , b

∗
l and b†0, . . . , b

†
l be the Bernstein coefficients of p over

[0, 1 − ε] and [ε, 1], respectively, where ε ∈ (0, 1). We refer to the subdivision algorithm

30

3 Bernstein Expansion

bI

b2

b5

b1

b0 b4

b3

 0.4 0.6 0.8 0.2 0 1 5

i

Figure 3.2: The graph of a degree 5 polynomial and the convex hull (shaded) of its control
points (marked by squares).

b2

b5

b0

bI

b1 b3

b4

 0.4 0.6 0.8 0.2 0 1 5

i

0.5

Figure 3.3: The graph of the polynomial in Figure 3.2 with the convex hull (shaded light) of
its control points and its Bernstein enclosure, together with the smaller convex
hulls (shaded dark) and enclosures over sub-domains arising from a bisection.

31

3 Bernstein Expansion

in Subsection 3.3.2 and may use it to compute the Bernstein coefficients on the intervals
[0, 1− ε] and [ε, 1]. In (3.27), only convex combinations are formed, therefore

b∗i ∈ conv{b0, . . . ,bi} and b†i ∈ conv{bi, . . . ,bl}, i = 0, . . . , l. 2 (3.21)

In the multivariate case, the proof of the inclusion isotonicity of the convex hull of the con-
trol points can be obtained similarly by shrinking the unit box in each dimension separately,
thus forming convex combinations in only one direction.

As an immediate consequence, we also have:

Corollary 3.1 (Hong and Stahl [HS95a]). The enclosure for the range of a univariate
polynomial p over an interval X provided by the interval spanning its Bernstein coefficients
b0, . . . , bl is inclusion isotone.

Figure 3.3 illustrates this property with the same polynomial as above, after performing
a bisection about the midpoint. The inclusion isotonicity of convex-concave extensions and
affine bounding functions based upon the Bernstein coefficients is considered in Chapter 10.

3.2.8 Partial Derivatives

As given by Farouki and Rajan [FR88], the partial derivative of p with respect to xr, where
r = 1, . . . , n, is given by

∂p

∂xr
(x) = lr

∑
i≤(l1,...,lr−1,...,ln)T

(bi1... ir+1 ...in − bi) Bl1... lr−1 ...ln
i (x). (3.22)

3.3 Algorithms

We may now detail a number of useful algorithms for Bernstein coefficients, in particular
efficient difference table schemes for the computation of Bernstein coefficients both from
scratch and over subdivided boxes. Formulae for degree elevation and for the Bernstein
coefficients of partial derivatives are also given. Further algorithms (including integration,
greatest common divisor, etc.) are given by Farouki and Rajan [FR88].

There seems to be very little software in the public domain that deals with the Bernstein
expansion either rigorously or in the multivariate case. However a C++ software library
with a number of routines for univariate polynomials in Bernstein form, BPOLY, exists
[TF01].

As before, it is assumed that we have an n-dimensional polynomial p (3.6) of degree
l = (l1, . . . , ln) over a box X (3.11).

3.3.1 Computation of Bernstein Coefficients

To exploit any of the properties of the Bernstein expansion, it is typically required to
compute the whole set of

∏n
i=1(li + 1) Bernstein coefficients. This is necessary even when

32

3 Bernstein Expansion

it is only desired to determine the minimum and maximum Bernstein coefficient, for the
Bernstein enclosure.

It is of course possible to compute the bi directly, using the generalised formula (3.13),
however more efficient methods can be employed to avoid the calculation of many of the
binomial coefficients and products inherent therein. Algorithms for the univariate case
are given in [Rok82, Fis90] and for the multivariate case in [Gar86, ZG98]. A method
has also been proposed [Ray07, RN09] whereby the Bernstein coefficients are arranged in
matrix form; this allows one to potentially exploit fast native routines for vector and matrix
arithmetic.

We describe here the method of J. Garloff [Gar86, ZG98] for the computation of the
Bernstein coefficients in the multivariate case using a difference table scheme:

The first stage of the algorithm requires an affine transformation to be applied to p,
yielding p†, such that p(X) = p†(I), where I = [0, 1]n, i.e.

p(x1, . . . , xn) = p† (x1 + (x1 − x1)x1, . . . , xn + (xn − xn)xn) . (3.23)

The coefficients of p† are labelled a†i , 0 ≤ i ≤ l. They may be calculated efficiently by the
multivariate Horner scheme (see, e.g., [Dow90, PS00]).

The second stage of the algorithm generates the Bernstein coefficients iteratively, from
the coefficients of the transformed polynomial:

• bi := a†i
(l

i)
, 0 ≤ i ≤ l.

• For r = 1, . . . , n:

– For k = 1, . . . , lr:

b∗i :=
{

bi, if ir < k
bi + bi1,...,ir−1,...,in , if ir ≥ k

}
, 0 ≤ i ≤ l.

bi := b∗i , 0 ≤ i ≤ l.

(3.24)

• bi are the desired Bernstein coefficients, 0 ≤ i ≤ l.

The algorithm (excluding the multivariate Horner scheme) exhibits time complexity
O(nl̂n+1) and space complexity (equal to the number of Bernstein coefficients) O((l̂ + 1)n),
where l̂ = maxn

j=1 lj . It may be noted that such exponential complexity renders the compu-
tation of the entire set of Bernstein coefficients infeasible for polynomials with moderately
many (typically, 10 or more) variables.

3.3.2 Subdivision

Where the Bernstein enclosure is employed in branch-and-bound methods, it is required
to subdivide a box into sub-boxes and recompute the Bernstein enclosure (i.e. the set of

33

3 Bernstein Expansion

Bernstein coefficients) over each sub-box. Due to the inclusion isotonicity (see Section 3.2.7)
of the Bernstein form, these enclosures cannot be wider than that for the parent box. In
fact, the enclosures for sub-boxes will usually improve (i.e. narrow), if the bounds are not
already sharp (see Section 3.2.5). It is also known [Sta95] that a bisection performed around
zero will yield an improvement of the bounds, unless they are already sharp.

The most common type of subdivision is a bisection performed in one direction by bi-
secting the corresponding component interval of the box. Heuristics for the selection of
subdivision direction are considered in [RC95, ZG98, GS01b, NA07, RN09]. A subdivision
algorithm for the univariate case was first proposed in [LR81].

Given the Bernstein coefficients bi of p over X, we wish to compute the Bernstein coeffi-
cients over sub-boxes X1 and X2 which result from subdividing X in the rth direction, i.e.

X1 = [x1, x1]× . . .× [xr, xλ]× . . .× [xn, xn],
X2 = [x1, x1]× . . .× [xλ, xr]× . . .× [xn, xn],

(3.25)

where
xλ := (1− λ)xr + λxr, (3.26)

for some λ ∈ (0, 1). In the case of a bisection, λ = 1
2 .

It is possible to recompute the Bernstein coefficients over X1 and X2 (denoted bX1
i and

bX2
i , respectively) from scratch using (3.9), but a more efficient method is similar to the de

Casteljau algorithm in computer-aided geometric design (see, e.g., [Far02, PBP02]):

• b
(0)
i := bi, 0 ≤ i ≤ l.

• For k = 1, . . . , lr:

b
(k)
i :=

{
b
(k−1)
i , if ir < k

(1− λ)b(k−1)
i1,...,ir−1,...,in

+ λb
(k−1)
i , if ir ≥ k

}
, 0 ≤ i ≤ l. (3.27)

• bX1
i := b

(lr)
i , 0 ≤ i ≤ l.

• bX2
i := b

(lr−ir)
i1,...,lr,...,in

, 0 ≤ i ≤ l.

In the final step, the Bernstein coefficients bX2
i on the neighbouring sub-box X2 are obtained

as intermediate values in this computation, since for k = 0, . . . , lr the following relation holds
[Gar93]:

bX2
i1,...,lr−k,...,in

= b
(k)
i1,...,lr,...,in

.

Figure 3.4 illustrates the subdivision process with the unit box in the bivariate case
(n = 2) with λ = 1

2 .

34

3 Bernstein Expansion

(bi) (bX1
i) (bX2

i)
6

-

-
Subdivide(X, r, λ)

λ = 1/20,1

0,0

x2

x1 1,0

1,1 0,1

0,0 1/2,0

1/2,1 1,1

1,0

Figure 3.4: Example subdivision of the unit box X = I with n = 2, r = 1, and λ = 1
2 .

3.3.3 Degree Elevation

For simplicity we consider here the univariate case. Assuming we have already computed
the degree k Bernstein coefficients b

[k]
i of p over x, we wish to compute the set of degree

k + 1 Bernstein coefficients, i.e. the coefficients of the degree k + 1 Bernstein expansion
of p, where the superscript in square brackets denotes the degree of the coefficient. Given
the formulae for degree elevation of the Bernstein basis polynomials (Section 3.1.1), we can
deduce (see also [FR88]) that the coefficients of higher degree can be expressed as a simple
weighted sum of the existing lower degree coefficients, as follows:

b
[k+1]
i =

ib
[k]
i−1 + (k + 1− i)b[k]

i

k + 1
, with b

[k]
−1 = b

[k]
k+1 = 0, i = 0, . . . , k + 1. (3.28)

3.3.4 Bernstein Coefficients of Partial Derivatives

As before, assume that we have the Bernstein coefficients bi of p over X. Here we wish
to compute the Bernstein coefficients b′i, 0 ≤ i ≤ l∗, of p′ := ∂p

∂xr
, over X, for some r ∈

{1, . . . , n}, and where l∗ := (l1, . . . , lr − 1, . . . , ln)T . Referring to (3.22) we can see that
these coefficients can be calculated in a relatively fast and straightforward manner, by
taking linear combinations of the bi:

b′i = lr (bi1,...,ir+1,...,in − bi) , 0 ≤ i ≤ l∗. (3.29)

3.4 Mean Value Bernstein Form

The mean value form, a type of interval enclosure, was outlined in Section 2.2. It is possible
to derive a new enclosure for the range of a polynomial p over a box X by combining this
with the Bernstein form (3.7) as follows (for simplicity, only the univariate case is considered
here):

Using the mean value theorem, from (2.4) we have

p(x) = p(x̌) + p′(ξ)(x− x̌), (3.30)

35

3 Bernstein Expansion

where ξ ∈ X lies between x and the midpoint x̌ of X. To compute an enclosure for p(X)
we replace x on the right hand side of (3.30) by X and have to find an enclosure for p′(X).
We can apply Bernstein expansion to p′, using the easy calculation of the Bernstein form
of p′ from the Bernstein form of p, cf. (3.29). This yields the mean value Bernstein form
(given here with X = I = [0, 1], for simplicity)

p(
1
2
) + BE(p′)[−1

2
,
1
2
], (3.31)

which encloses p([0, 1]), where BE(p′) denotes the interval spanned by the minimum and
maximum of the Bernstein coefficients of p′, cf. (3.17). However, the mean value Bernstein
form does not yield any improvement on the usual Bernstein form:

Theorem 3.6 ([GS05, Appendix]). Let p be a univariate polynomial of degree l with Bern-
stein coefficients bi, i = 0, . . . , n, over [0, 1]. If the lower or upper bound for p([0, 1]) provided
by the Bernstein coefficients is not sharp, then the width of this enclosure is strictly less
than that of the mean value Bernstein form.

Proof: Using (3.29), we can write (3.31) as

p(
1
2
) +

l

2
max

i=0,...,l−1
|bi+1 − bi|[−1, 1].

Thus the width of the mean value Bernstein form is

l max
i=0,...,l−1

|bi+1 − bi|. (3.32)

Let

bL := min
i=0,...,l

{bi} and bU := max
i=0,...,l

{bi}.

Assume without loss of generality that L < U . If either bound is non-sharp, we have
U − L ≤ l − 1. The width of the enclosure provided by the usual Bernstein form can be
bounded as follows:

bU − bL = (bU − bU−1) + (bU−1 − bU−2) + . . . + (bL+2 − bL+1) + (bL+1 − bL)
≤ |bU − bU−1|+ |bU−1 − bU−2|+ . . . + |bL+2 − bL+1|+ |bL+1 − bL|
≤ (U − L) max

i=0,...,l−1
|bi+1 − bi|

≤ (l − 1) max
i=0,...,l−1

|bi+1 − bi|.

Comparison with (3.32) concludes the proof. 2

36

3 Bernstein Expansion

3.5 Bézier Curves

An important application of Bernstein polynomials is in the construction of Bézier curves,
which are briefly outlined here.

Suppose we are given l + 1 control points P0, . . . , Pl ∈ Rn. This defines a degree l Bézier
curve, which is a function mapping a single parameter t to co-ordinates in Rn:

Bz(t) =
l∑

i=0

Bl
i(t)Pi, (3.33)

where the Bl
i are the degree l Bernstein basis polynomials (3.2). Any point Bz(t), where

t ∈ [0, 1], on the curve is a weighted average of the control points P0, . . . , Pl and lies within
their convex hull. Furthermore, Bz(0) = P0 and Bz(1) = Pl; the curve thus starts at P0

and passes somewhat close to each of the control points P1, . . . , Pl−1 in turn (without, in
general, passing through them), before ending at Pl.

Bézier curves are thus a very simple way to define and represent a smooth curved surface
in a computer. They have their origin in automobile design (originally at Citroën and
Renault in France) in the 1960s and have since become ubiquitous in the field of computer-
aided geometric design; they are also used in computer drawing programs and the design
of fonts, e.g. [Knu86]. The operation of degree elevation (3.28) is very commonly used to
refine a curve through the addition of a new control point, cf. [TP96]. Bézier curves may
be generalised into (and are components of) different types of splines, the most common
of which is the B-Spline (basis spline), also widely employed in computer-aided geometric
design.

Further material on Bézier curves may be found in [Far02, PBP02]. Detailed discussion
on the application of Bernstein polynomials to Bézier curves appears in [Ber00]; another ap-
plication of Bernstein expansion to computer-aided geometric design is given in [HMSP96].

37

4 Topological Degree

Topological degree is a concept from mathematical analysis that is central to the issue of
counting the number of roots to a system of equations. Root-counting can be a useful tool in
solving such systems. Topological degree is related to the theory of fixed points of functions
and is a generalisation of the winding number of a curve.

There are various types of topological degree, cf. [Llo78], some concerned with finite-
dimensional spaces, such as the Brouwer degree, others with infinite-dimensional spaces, such
as the Leray–Schauder degree, which is useful for demonstrating the existence of solutions
to differential equations. It is the Brouwer degree which is of interest to the problem of
solution enumeration (and by extension, solution) of systems of nonlinear equations.

4.1 The Brouwer Fixed Point Theorem

The Brouwer fixed point theorem [Bro12] is the foundation of the theory of topological
degree and is one of the building blocks of modern topology.

Theorem 4.1 (Brouwer). A continuous mapping F of a compact convex subset D of a
Euclidean space to itself has a fixed point, i.e. there exists an x ∈ D such that F(x) = x.

The condition on D can also be stated as being homeomorphic to the closed unit ball in
Rn. Where D ⊆ Rn, the condition holds if and only if it is closed and bounded.

This theorem establishes the principle that the existence of solutions to equations within
a region can be determined without detailed information on function behaviour. We only
require continuity. As given in Lloyd [Llo78], the general aim of degree theory is as follows:

Suppose that we have an open subset D of a topological space X , where y ∈ X and
F : D → X is continuous. We wish to define an integer deg(F , D, y), the degree of F at y
relative to D, with the following properties:

1. The degree deg(F , D, y) is an estimate of the number of solutions of F(x) = y for all
x ∈ D.

2. The degree is continuous in both F and y.

3. The degree is additive in the domain D, so that if D = D1 ∪ D2, where D1 and D2

are disjoint, then

deg(F , D, y) = deg(F , D1, y) + deg(F , D2, y).

38

4 Topological Degree

The first property is the most fundamental. Topological degree is a useful tool for root
counting precisely because it is a measure which is defined by a (form of) root count. The
other properties hint at the usefulness of topological degree from a computational viewpoint.
Property 2 means that it is possible to compute the degree exactly, given a sufficiently good
approximation to the arguments by some finite construction. Property 3 demonstrates that
solutions can potentially be isolated by subdivision of the region D.

It is hard to define topological degree in greater detail for a general topological space X .
In particular, the more general the space X , the more restrictions there are on the function
F , which are necessary to preserve the above properties. For a more detailed treatment of
general degree theory, see [AH35, Llo78, OR09].

4.2 Brouwer Degree

The Brouwer degree is, broadly speaking, a particular instance of the topological degree
where the topological space is specified as Rn.

Conceptually, the degree deg(F , D, y) of a mapping F : Rn → Rn, where D is a bounded
open subset of Rn and y ∈ Rn, is the excess of the number of points of F−1(y) ∩ D at
which the Jacobian determinant of F is positive over those at which it is negative. An
integer result, it can be regarded (and utilised) as an estimate to the number of solutions
to F(x) = y in D. In particular, a non-zero result guarantees the presence of at least one
such solution. Given a system of equations F = 0 and a box X, deg(F ,X, 0) thus estimates
the number solutions (i.e. roots of F) within X.

Definition 4.1 (Brouwer Degree). For some n, let D be a bounded open subset of Rn,
F : cl(D) → Rn be continuous, and y ∈ Rn\F(∂D). Under these conditions, the Brouwer
(topological) degree is a function

deg : {(F , D, y)} → Z (4.1)

satisfying the following:

• Identity function property: deg(id,D, y) = 1 if y ∈ D.

• Additive property: If D = D1 ∪D2, where D1 and D2 are disjoint, or if D1 and D2

are disjoint sets such that y 6∈ F(D\(D1 ∪D2)), then

deg(F , D, y) = deg(F , D1, y) + deg(F , D2, y). (4.2)

• Homotopic invariance property: If F ,G : cl(D) → Rn are continuous, and homotopic
with homotopy Ht(x) = H(t, x), then if H−1

t (y) does not intersect the boundary of D
for all values of t ∈ [0, 1], deg(F , D, y) = deg(G, D, y).

See Subsection 5.3.5 for a definition and further discussion of homotopies. It can be shown
(and should be clear) that these conditions define the Brouwer degree in a meaningful way
for all possible choices of argument satisfying the stated restrictions. Where the restrictions
are violated, for example y ∈ F(∂D), it is undefined.

39

4 Topological Degree

Complex Functions

The above definition for Brouwer degree only caters for real-valued functions of a real
variable in a finite number of dimensions. However, it can easily be adapted to cater for
complex functions F∗ : Cn → Cn. Such a function F∗ may be regarded as a function from
R2n to R2n and then the degree is defined as before. Indeed, complex functions have an
additional beneficial property when treated in this fashion: an analytic function will be
orientation preserving (i.e. its Jacobian determinant is always non-negative). Therefore the
degree will simply count the number of solutions in D, with multiplicity.

4.2.1 Properties of the Brouwer Degree

The following are fundamental properties of the Brouwer degree. They can be of use in
guiding the construction of algorithms to compute the degree.

Additive Property

This property (4.2) holds axiomatically and provides that the topological degree is defined
as a summation of values for all roots present in a given region.

Root-Counting Property

If F(x) = y has no solutions in D, then deg(F , D, y) = 0. Otherwise, if all the solutions of
F(x) = y in D are non-singular and F has continuous derivatives, then deg(F , D, y) is the
sum of the signs of the Jacobian determinants at all the solutions:

deg(F , D, y) =
∑

x∈F−1(y)

sgn(det(JF (x))). (4.3)

This property is meaningful for cases with continuously differentiable functions and non-
singular solutions. In the case of singular solutions, the Brouwer degree is less well-defined
— here it merely indicates the existence of solutions.

Boundary Determinism

The Brouwer degree deg(F , D, y) is determined by y and the values of F on the boundary
of D only. This property is crucial since it means that the degree can (in principle) be
computed merely by analysing the behaviour of the function F on the boundary of a region,
irrespective of the complexity of the behaviour of F within the region in question.

Figure 4.1 illustrates this property for a simple system f1 = 0, f2 = 0 in R2; the ordering
of the zero sets around the boundary of the region determines whether either an even or
odd number of solutions are present, not the behaviour of the functions within the box. In
the left-hand case, there must be an even number of solutions (since the degree sums to
zero in this particular example, half have a positive Jacobian determinant and the other
half negative). In the base case (where the zero sets are depicted with solid lines) there

40

4 Topological Degree

are zero solutions; in an alternative case (where the zero set of f1 is a dashed line) there
might be two solutions. Conversely, in the right-hand case, there must be an odd number
of solutions.

D D

f (x)=01

f (x)=01

f (x)=0 f (x)=02 2

Figure 4.1: Boundary determinism in R2: even and odd numbers of solutions.

Continuity

This property also holds axiomatically (see Definition 4.1, homotopic invariance property).
This provides that the Brouwer degree deg(F , D, y) is an integer which is (locally) continuous
with respect to F and y. In other words, it is constant for small peturbations in F and y.

Suppose that Y is a box which contains points y1 and y2. Then if F−1(Y) does not
intersect the boundary of D, deg(F , D, y1) = deg(F , D, y2).

This illustrates that a smooth change in either y or F , in such a way as to not move
solutions to F(x) = y across the boundary of D, leaves the degree deg(F , D, y) unchanged.
In practice this means that sufficiently good numerical approximations to F and y will be
enough to compute the degree exactly, given sufficient precision. This property is completely
ruined in the case where a solution lies on the boundary of D, which is why these cases are
explicitly excluded.

4.2.2 Example

This is a simple system of equations taken from Aberth [Abe94]. F : R3 → R3 is given by

f1 = x2
1 + x2

2 − x3,

f2 = x2
2 + x2

3 − x1,

f3 = x2
3 + x2

1 − x2.

F has roots at (0, 0, 0) and (1
2 , 1

2 , 1
2), the former with negative Jacobian determinant and

the latter with positive Jacobian determinant. Hence:

• deg(F , ([−1
4 , 1

4], [−1
4 , 1

4], [−1
4 , 1

4]), 0) = −1. This (box) region encloses only the first
root, so the degree is the sign of its Jacobian determinant, −1.

41

4 Topological Degree

• deg(F , ([14 , 3
4], [14 , 3

4], [14 , 3
4]), 0) = 1. This region encloses only the second root, so the

degree is the sign of its Jacobian determinant, 1.

• deg(F , ([1, 2], [1, 2], [1, 2]), 0) = 0. This region encloses neither of the roots, so the
degree is 0.

• deg(F , ([−1, 1], [−1, 1], [−1, 1]), 0) = 0. This region encloses both roots, so the degree
is the sum of the signs of the Jacobian determinants, 0. This example neatly illustrates
a potential cause for confusion — it can be difficult to discern whether there are no
roots, or roots with Jacobian determinants of opposite sign which cancel out.

4.3 Algorithms for Computing Topological Degree

Here we discuss each of the main known algorithms for computing Brouwer degree, covering
the recursive method in greater detail in Section 4.4. Very few techniques are devoted to
the computation of the topological degree as an objective in itself, although there also exist
methods that seek to exploit it indirectly, e.g. [BFLW09], an existence test for systems of
equations based on the construction of homotopies (see Definition 5.4) and the application
of interval arithmetic.

4.3.1 Integration over the Boundary

Given a box D and component functions fi, as before, we may consider the function h(x) =
F(x)/|F(x)| on the boundary of D. We see that h is a mapping onto the unit sphere in Rn,
and the degree is given by the number of times which h wraps the boundary around the
unit sphere. This is otherwise referred to as the winding number.

The method of O’Neal and Thomas [OT75] makes use of a definition of the degree in terms
of the Kronecker integral [Kro69]. The integral of the Jacobian of h over the boundary of D
is divided by the surface area of the unit sphere to give the degree. A degree computation
thus essentially becomes a (fairly hard) problem of numerical integration. In [OT75], a
quadrature method was used to compute the integral. It seems that only a very low precision
should be required, since an error of less than 1

2 suffices to determine the correct (integer)
answer. However the error analysis performed by the authors is complicated, and they
were unable to guarantee results within an error margin, although they showed that the
probability of error could be made arbitrarily small, and that the numerical convergence
is good. The method was succesfully employed for some examples in R3 and R6. Using
this basic idea, one is of course dependent upon the performance of the numerical method
chosen.

4.3.2 Triangulation of the Boundary

Very similar to the integration over the boundary method, a technique has been proposed
which also considers the function h which wraps the boundary of D around the unit sphere,
but which does not rely upon numerical integration. Instead, the boundary is triangulated

42

4 Topological Degree

into a set of simplices s1, . . . , si for which each simplex does not wrap the unit sphere. More
specifically, for x1 and x2 in a simplex, |h(x1)−h(x2)| < 1. This is based on the work of A.
Eiger et al. [ESS84], who used a simplex-bisection scheme in the construction of a nonlinear
solver.

This method can work by projecting the vertices of each simplex under the mapping h,
and comparing the components of the results with a sample point on the unit sphere. With
the restriction on the variance of h(x) over the simplices, we are sure that none wholly wraps
the unit sphere. In essence, the sample point is a marker on the sphere and we count the
winding number according to the orientations of those simplices with which it intersects.
This could be regarded as a symbolic analogue of the integration method. Given a set of
suitable simplices, it appears that the rest of the algorithm is fairly trivial, but the question
of how to appropriately determine the simplices is hard.

4.4 The Recursive Method

This section describes in detail the algorithm which is explored further in Chapter 7. A
formulation of the algorithm was proposed by O. Aberth [Abe94], which is in turn an
elaboration of the method of R. B. Kearfott [Kea79b]. Unlike the two methods outlined
above, this method does not consider the winding number of a mapping to the unit sphere
at all. Instead, it uses interval arithmetic with the component functions fi on the boundary
of D. It only considers the case where D is a co-ordinate aligned box (see Def. 2.2), and
recurses by taking faces of D of succesively lower dimension.

The broad principle is that the boundary of the box is projected under F , and then there
exists a solution to F(x) = y in D if and only if y is contained within the projection of
the box (this is a region of Rn which itself is not in general a box). This is determined by
taking any ray emanating from y and counting the number of times which it crosses this
projection. If, for instance, it crosses once then y must lie within the projection, assuming
that the projection is bounded — which will be the case for a continuous F over a finite
box.

4.4.1 Faces of a Box

Let us suppose we have a starting box in Rn as follows:

X = [x1, x1]× . . .× [xn, xn]. (4.4)

A face is obtained by restricting one of the component intervals to an endpoint value
(for some i, either xi or xi). Lower-dimensional faces are obtained by further restricting
intervals to an endpoint. These are referred to as child faces derived from a parent. A face
is therefore a lower-dimensional subset of a box, and can be considered as a box of lower
dimension, together with one or more point values. A face is subdivided into two or more
sub-faces by dividing one or more of the intervals into two. Unlike a child face, a sub-face
therefore has the same dimension as the parent face, but a smaller width in one or more
directions.

43

4 Topological Degree

4.4.2 Scope

This is a recursive technique for the computation of Brouwer degree, using interval arith-
metic. Given a box X in Rn and a continuous function F : X → Rn given by the component
real-valued functions

fi(x1, . . . , xn), i = 1, . . . n,

the Brouwer degree of F over X at 0, deg(F ,X, 0), is computed. The degree is calculated at
0 without loss of generality — it can be adapted to calculate the degree at a general point
y ∈ Rn with a trivial modification to the functions fi.

A set of interval arithmetic routines (see Chapter 2) are required which cater for the
types of functions under consideration. Elementary functions, for example, require a set of
routines to deal with exponential and trigonometric operators, as well as the usual arithmetic
operators. Due to the nature of the algorithm, variable-precision interval arithmetic is
needed to make a degree-finder completely infallible.

4.4.3 Overview

Consider a simple example in R2, illustrated by Figure 4.2.

F : R R
2 2

O

Ray from origin intersecting with

F(X)

image of box under mapping

X

Co-ordinate aligned box

Figure 4.2: Computation of topological degree: example in R2.

44

4 Topological Degree

In this case we test to see whether the image of X under the mapping contains the origin.
A ray is drawn from the origin (for the sake of simplicity it is taken in the positive direction
of the primary variable). The question is answered by determining the number of times the
ray crosses the boundary of F(X); twice in this case. Clearly, the origin is only contained
within F(X) if the ray crosses an odd number of times.

To determine which segments of F(X) intersect with the ray, the boundary of the box X
is split into its 4 component faces s1, s2, s3, s4 and the image of each face f(si) is considered
in turn. Deciding whether a given segment f(si) intersects with the ray is perhaps not
quite as trivial as it might first seem. Using interval arithmetic, two interval enclosures are
computed:

y1 := f1(si),
y2 := f2(si).

If y1 is always positive and y2 contains zero, then the ray must intersect this segment.
Similarly, if y1 is always negative or if y2 does not contain the zero point, there cannot be
an intersection. This seems simple enough, but the problematic case is when both y1 and
y2 contain zero. It is not immediately clear how to discern the two different cases illustrated
in Figure 4.3.

Intersection of image boundary with ray

positions of endpoints
is not necessarily dependent on

OO

Case 1: Case 2:

Figure 4.3: Computation of topological degree: examples with y1 and y2 containing zero.

In fact in this case the troublesome face must be subdivided and each fragment (sub-face)
must be analysed in turn. Further subdivisions must be performed until each fragment
satisfies one of the above criteria. When this is done for all the faces si, the crossing parity
is equal to the number of intersections modulo two. Alternatively, the Brouwer degree can
be found by assigning orientations of ±1 to the faces, and taking the sum of the orientations
of all the faces that intersect. The crossing parity is slightly cruder in that it only indicates
the presence of one or more roots, rather than incorporating information about the signs of

45

4 Topological Degree

Jacobian determinants. That is to say, the degree is an integer whereas the parity is just a
binary result.

This example in R2 does not illustrate the recursive nature of the algorithm, however an
example in R3 (see Figure 4.4) — beyond the base two-dimensional case — shows how the
recursion arises and illustrates the algorithm more fully.

F : R R
33

Ray from origin intersecting with
image of box under mapping

O

F(X)

X

Co-ordinate aligned box

Figure 4.4: Computation of topological degree: example in R3.

Here a list of 6 faces in two dimensions is analysed in a similar fashion. As before, the
functions f1, f2, f3 are used to generate interval enclosures y1, y2, and y3. This time, those
faces which are positively checked (those for which y1 is wholly positive and for which y2

and y3 contain zero) are tested further, since it is not guaranteed that the ray from the
origin intersects the images of these faces. An intersection here seems likely, but it is not
possible (without further computation) to discern the two cases as illustrated in Figure 4.5

It can be seen that the question of whether or not a given face contributes to the degree
resolves to another Brouwer degree computation. This sub-problem has one fewer dimension,
with the primary variable (x1) having been eliminated. The ray is this time taken in the
positive direction of x2.

46

4 Topological Degree

s

F : R R
33

O
F(s)

x

x

x

1

2

3
Image of face under mapping

x

x

3

2

Side view
(2D subproblem with x eliminated)

1

?

Figure 4.5: Computation of topological degree: sub-problem generated in R2.

Any given degree computation therefore recursively generates a succession of sub-problems
of lower dimension, so that the boundaries of the initial box are effectively broken down into
a large number of one-dimensional line segments, with the computation ultimately resolving
to a large number of function evaluations over these intervals.

A more formal expression of the algorithm formulation is to say that

deg(F ,X, 0) = i(Cn, 0),

where i(Cn, 0) is the incidence number of Cn with the origin in Rn, and Cn is a polyhedral
complex approximating F(X) to sufficient accuracy. The next section provides the algorithm
in full.

47

4 Topological Degree

4.4.4 Detailed Algorithm

Face Generation

The initial stage generates an array L of the 2n faces of X (4.4). For j = 1, . . . , n add the
list elements whose components are given by

s2j−1i =
{

[xi, xi] if i 6= j,
xi if i = j,

s2ji =
{

[xi, xi] if i 6= j,
xi if i = j.

Each face therefore comprises the product of n − 1 intervals taken from X, plus either
the left-most or right-most point value from the remaining interval. The dimension of each
face is n− 1.

There is also an orientation field which is assigned to each face. For each of the 2n faces
this is assigned as follows:

• The face which has xj = xj is given orientation σ = (−1)j .

• The (opposite) face which has xj = xj is given orientation σ = (−1)j+1.

Selection of Faces

This process takes the array of faces L generated above and performs a series of tests, using
interval arithmetic. Some faces (which are tested positively) are placed into a new array L1.
Others are subdivided into smaller sub-faces (of the same dimension) which are appended
to L for repeated analysis. Others are discarded. The amount of subdivision required may
depend in part on the extent of the overestimation due to the use of interval arithmetic.
Note that the array L grows dynamically with the addition of smaller fragments of larger
faces — there may be an issue concerning the best order in which to search the elements of
L, which is discussed in Chapter 7.

Eventually the array L is exhausted with the generation of L1. Clearly, many of the
entries of L1 will be faces that were also present in L, and all entries will have the same
dimension. This second array represents those portions of the boundary for which it is
suspected that the ray from the origin intersects, destined for further examination. It can
only be a suspicion, since for problems of non-trivial dimension the polyhedral complex
formed by applying the function to the boundary is only an approximation to F(X); in
some cases not a very good one.

More formally, for each face si in L, do the following:

1. For j = 1, . . . , n, use interval arithmetic to generate interval values, yj , from applying
fj to the interval si.

48

4 Topological Degree

2. Do one of the following:

• If any of y2, . . . ,yn do not contain zero, then discard si.

• If y1 is to the left of zero, i.e. y1 < 0, then discard si.

• If y1 is to the right of zero, i.e. y
1

> 0, then add si to L1.

• Otherwise generate the 2n−1 sub-faces that can be formed from si by bisecting
all component intervals and taking either the left-hand or right-hand half of each.
Copy point values and orientations σ. Append these sub-faces to L.

3. Process next face si+1.

This procedure is iterated until the array L is exhausted.

Reduction of Faces

This procedure takes the array of faces L1 selected above and generates their component
child faces of one lower dimension. For example, if the initial box X was a cuboid in R3,
then the input array would comprise faces of dimension two — rectangles with one variable
fixed. These would now be reduced to a list of one-dimensional line segments (with two
variables fixed), obtained from the 4 edges of the rectangles.

For each element of L1, in the first iteration 2(n−1) child faces are generated, in the same
fashion as for the initial generation of the faces. The orientation of each child face is deter-
mined by multipying σ, the orientation of the parent face, by (−1)j or (−1)j+1, depending
on whether the left-most or right-most point, respectively, of the jth non-degenerate interval
component of the parent was taken. All of the child faces are placed into a new array L.

Unfortunately, this process is greatly complicated by a seemingly minor consideration.
One of the limitations of the algorithm is that it cannot work in the case of a solution
occuring on the boundary of the box. It is taken as given that this scenario is excluded for
the initial computation, but we need to ensure that this is also the case for the automatically
generated sub-problems. Since the new system of equations upon recursion will have had
the primary variable fixed (and the first function eliminated) it is nevertheless possible
that f2, . . . , fn are simultaneously zero somewhere on a child face. Such a scenario would
cause an infinite subdivision of faces and would result in failure to terminate. However, such
problematic child faces would have been generated twice, from different parents — where this
boundary condition occurs, it must by construction also occur for a neighbouring selected
parent face. For example, with an initial cuboid in R3, two adjacent rectangular faces have
a common edge (child face). It can be seen that double selection of child faces is a necessary
condition for the failure case, furthermore in such cases the two copies of the child face
would, by construction, have opposite orientations. So two duplicate child faces cancel out
in the computation, making contributions to the result that are equal but opposite in sign,
and can safely be eliminated. This fail-safe mechanism is required in order to guarantee
that the computation succeeds, although it does introduce new overhead costs.

49

4 Topological Degree

After the generation of child faces, an exhaustive search is therefore performed, firstly to
find, and then to eliminate any duplicates. The situation is complicated further by the fact
that faces may not only be strict duplicates, but may also partially overlap one another.
For instance one child face may be the result of a subdivided parent face, and thus form a
subset of the larger copy.

In R, it is straightforward to resolve overlap. There are two line segments, and the
ovelapping portion can easily be removed by comparing endpoints, and one (or two) new
line segments can be computed which represent the symmetric difference. In R3, however,
more work is needed. Consider two cuboid faces that overlap in one corner. In removing
the duplicated region from one cuboid, we are left with a cuboid that has a block cut out
of one corner. This is no longer a primitive shape, and cannot therefore be represented as
a simple product of intervals. The simplest approach is to decompose this into 7 primitives
(cuboid faces), although this could be done with as few as 3. So to remove the duplication
from two overlapping faces in three dimensions may typically require the generation of up
to 14 new faces. In the rare case where one face is contained entirely within the other, 26
new faces would result. It seems reasonable to assume that the elimination process may
increase the number of faces in L by a theoretical maximum factor of 3m − 1, where m is
the dimension of the faces (in the first iteration, m = n − 1); see Subsection 7.1.2 for an
explanation.

Recursion

At this stage we have a new array L of faces with dimension n− 2 (in the first recursion),
which are analysed in a similar fashion. Essentially we now have to resolve a number of
Brouwer degree problems with lower dimension. For the second cycle, a ray from the origin
in the direction of x2 is drawn in each case, so that only y2, . . . ,yn need to be determined
with interval arithmetic, with f2 being the deterministic function this time. The recursive
property of the degree is given by:

deg((f1, . . . , fn),X, 0) =
∑
s∈L1

σ(s)deg((f2, . . . , fn), s, 0). (4.5)

In total, n− 1 cycles have to be performed (including the first), at the end of which the
result is an array L containing faces of zero dimension (points in Rn). These points si need
to be filtered to only select those for which fn(si) > 0. The degree is given by taking the
sum of the orientations of these selected points:

deg(F ,X, 0) =
∑

i,fn(si)>0

σ(si). (4.6)

In the case of calculating only the crossing parity, the result is merely the size of L modulo
two (again, after selecting points with positive image).

50

4 Topological Degree

4.4.5 Example

We revisit the straightforward example from Section 4.2.2. F : R3 → R3 is given by

f1 = x2
1 + x2

2 − x3,

f2 = x2
2 + x2

3 − x1,

f3 = x2
3 + x2

1 − x2.

We wish to compute the degree over the box X = ([−1
4 , 1

4], [−1
4 , 1

4], [−1
4 , 1

4]).

Face Generation

The 6 faces initially placed into the array L are:

s1 = (−1
4
, [−1

4
,
1
4
], [−1

4
,
1
4
]), σ = −1

s2 = (
1
4
, [−1

4
,
1
4
], [−1

4
,
1
4
]), σ = 1

s3 = ([−1
4
,
1
4
],−1

4
, [−1

4
,
1
4
]), σ = 1

s4 = ([−1
4
,
1
4
],

1
4
, [−1

4
,
1
4
]), σ = −1

s5 = ([−1
4
,
1
4
], [−1

4
,
1
4
],−1

4
), σ = −1

s6 = ([−1
4
,
1
4
], [−1

4
,
1
4
],

1
4
), σ = 1

First Iteration

In the testing of L, there is no subdivision of faces (assuming exact interval arithmetic).
Only s5 is passed onto L1, since

f1(s5) = [
1
4
,
3
8
] > 0

and
f2(s5) = f3(s5) = [− 3

16
,
3
8
] 3 0.

None of the other si satisfy these conditions. Now the 4 sub-faces of s5 are generated:

s′1 = (−1
4
, [−1

4
,
1
4
],−1

4
), σ = 1

s′2 = (
1
4
, [−1

4
,
1
4
],−1

4
), σ = −1

s′3 = ([−1
4
,
1
4
],−1

4
,−1

4
), σ = −1

s′4 = ([−1
4
,
1
4
],

1
4
,−1

4
), σ = 1

51

4 Topological Degree

Second Iteration

As before, there is no face subdivision required, and only one element, s′1, is passed to L1.
Then the 2 final sub-faces are generated (from s′1):

s′′1 = (−1
4
,−1

4
,−1

4
), σ = −1

s′′2 = (−1
4
,
1
4
,−1

4
), σ = 1

Final Computation

The final array L now contains just two points: s′′1 and s′′2. Only f3(s′′1) is positive, and so
deg(F ,X, 0) = −1, since that is the orientation of the only remaining face. This is the sign
of the Jacobian determinant of the only root of F in X, (0, 0, 0).

This simple example serves as a basic illustration. Here, however, no face subdivision or
overlap resolution is required; in practice these requirements complicate things greatly, so
that a solution by hand becomes excessively longwinded and a solution by computer may
require non-trivial time.

52

5 Systems of Polynomial Equations

In this chapter we mainly address systems of nonlinear equations (briefly introduced in
Section 1.1) where the component functions are polynomials, which constitute a wide subset
of such problems. We consider what it means to ‘solve’ such a system, and we survey
existing methods of solution. An overview of real-world applications in which polynomial
(and nonlinear) systems commonly arise is also given.

A system of polynomial equations can be written in the form P = 0, where

P : Rn → Rn

comprises n polynomials pi, i = 1, . . . , n, in the real variables x1, . . . , xn. In the most general
case, it is desired to determine the solution set, i.e. the set consisting of all solutions to the
equations, viz.

{x ∈ Cn | pi(x) = 0, ∀i = 1, . . . , n} . (5.1)

In many (but by no means all) cases, complex solutions do not correspond to real-world
solutions; here, we can restrict the search space for the solution set to Rn. Similarly, solutions
where some or all of the variables have negative (or zero) values may not correspond to
solutions of interest. In many cases, we seek only one real-world solution, which has to be
distinguished from the one or more spurious solutions accompanying it, which may have
negative or complex components (see Subsection 5.1.1 for such an example).

We may often further restrict the search for solutions to a particular box X in Rn. Here
the solution set is

{x ∈ X | pi(x) = 0, ∀i = 1, . . . , n} . (5.2)

There are several cases where non-polynomial systems can be converted to polynomial sys-
tems (in Rn) with a relatively straightforward variable substitution. Systems with complex-
valued polynomials can be rewritten simply by separating each variable and each polyno-
mial into their real and imaginary parts, doubling the number of variables. Functions where
powers of trigonometric functions appear can often satisfactorily be converted to polyno-
mials by employing a simple substitution for those variables which represent angles, as can
trigonometric polynomials. In this case the relationship between the sine and the cosine of
a quantity (sin2(θ) + cos2(θ) ≡ 1) can be expressed as a quadratic equation.

These problems are subject to attack by various means. A solution by hand may involve
clever manipulations, intuitive leaps, or even guesswork. A computer program or algorithm
(commonly called a solver) is more likely to rely on set strategies and repetetive calculation.
The classic means of solving systems of equations by hand involves variable substitution
and algebraic manipulation. This is only feasible when the total degrees of the component
polynomials are low. In fact, due to the classic result of the insolubility of the quintic (the

53

5 Systems of Polynomial Equations

impossibility theorem of Abel), we know that, in general, algebraic solutions to polynomial
equations of degree five or greater are impossible.

5.1 Applications

To date, fields of application where problems may be presented as systems of nonlinear
equations include (but are not limited to) the following. Some of these applications only
involve systems of polynomial equations. Further examples can be found in the monograph
[Mor87].

The number of equations, n, is typically small — less than 10 — although this can vary
widely for certain problems.

• Astronomical Calculations: The behaviour of an orbiting system of astronomical
bodies is governed by a system of equations. Typical problems include intercept
planning or scheduling, satellite tracking, and collision checking. Under the classical
theory of Laplace, the determination of an orbit can result in a degree 8 polynomial
[MG+08].

• CAGD (Computer-Aided Geometric Design): CAGD involves the modelling
of a real or virtual three-dimensional scene on a computer, cf. [Far02]. The objects
in the environment are typically constructed from a set of primitives — simple ge-
ometric objects such as spheres, cones, etc. An example of such a CAGD package
is SvLis [Bow99]. Surface intersection or shape interrogation problems in the model
thus present themselves as a system of equations, where each primitive is governed
by one equation. Systems of polynomial equations appearing in geometric intersec-
tion computations are considered in [HMSP96]. Ray-tracing problems are of a similar
type. Such problems are usually comprised of polynomial equations of low degree.
In a model, two surfaces will very commonly just touch, which is an inherent cause
of numerical ill-conditioning. This makes them unsuitable for solution by non-robust
methods.

• Chemical Engineering: Process design problems in chemical engineering can be
formulated as systems of nonlinear equations, and interval Newton methods can tackle
some of them successfully [BS95].

• Chemical Equilibrium Problems: Complex chemical systems may comprise a
number of different substances which inter-react according to given formulae, where
each variable represents the amount of each substance. A point of equilibrium of
the chemical system is found as a solution to a system of equations [MM90]. These
problems are typically polynomial systems of low degree. Combustion problems to
determine flash points are similar.

• Dynamics: Problems in dynamics are often presented as systems of equations. The
types of equations may vary, e.g. polynomials for motion under gravity, sinusoidal

54

5 Systems of Polynomial Equations

functions for simple harmonic motion, etc. In [DS09], polynomial dynamic systems
are considered and the bound function from Section 10.2.4 based upon the Bernstein
expansion is employed.

• Economical Sciences: Economic systems can be modelled as a series of interacting
variables and numerous problems can then be posed as systems of equations to solve.
Cost functions are often polynomial and many cost analysis problems therefore consist
of systems of polynomial equations. An elementary example of a polynomial arising
in an investment decision problem is given in [Jud85]. Several further examples can
be found in [Mor87].

• Electrical Engineering: Electric current network equations arise in circuit design
[NR08]. It is desired solve the network equations to find the electrical current through
every component (equivalently, the voltage at every connection). Many circuit ele-
ments exhibit linear behaviour, in which case the network equations comprise a linear
system, but often there are nonlinear components such as semiconductors. Where
there is uncertainty in component tolerances, interval analysis may be applied [Dre05].

• Mechanical Systems: The configuration of a mechanical device consisting of con-
nected components is described by a system of (often polynomial) equations. An
example from [Mor87] is the six-revolute-joint problem; a valid configuration may be
sought as a solution to the system. Truss and frame structures, consisting of struc-
tural elements connected at nodes, may be placed under loading, and it is desired to
compute the resultant displacements and stress/strain forces. Application of the finite
element method results in a (usually large) system of linear equations; where uncer-
tainty in loading forces and positions is modelled, polynomial parametric dependencies
may be added [GPS12].

• Neurophysiology / Neural Networks: Simple systems of connected and inter-
dependent firing neurons can be modelled by a system of equations with low-degree
polynomials, typically large and sparse. There may be many neurons, but they are
not connected to all others, and the behaviour of each is simple. Neural networks can
be modelled similarly [Noo89].

• Robot Motion Planning / Kinematics: The motion of a free-standing or wheeled
robot, or of a robot arm with a fixed base, may be constrained by the presence of
obstacles or other physical limitations. The robot may move in a number of dimensions
and the set of all valid positions is called the configuration space. Each constraint can
be expressed as an inequality which must be satisfied. To plan a motion from a given
starting point to a desired end point, we must seek a valid path in the configuration
space. In some cases, we may seek an optimal path (i.e. the shortest/quickest route),
or we may question the existence of a valid path. This is also called the piano movers
problem. In cases such as these, the problem formulation can be modified to a system
of equations. One example problem concerns the inverse kinematics of an elbow
manipulator [HS95b].

55

5 Systems of Polynomial Equations

5.1.1 Example System

The amounts x1, . . . , x5 of 5 substances at the chemical equilibrium point of a particular
hydrocarbon combustion [MM90] occur as roots of the following system of equations:

p1 = x1x2 + x1 − 3x5,

p2 = 2x1x2 + x1 + 0.0000019230x2
2 + x2x

2
3 + 0.00054518x2x3

+0.000034074x2x4 + 0.00000044975x2 − 10x5,

p3 = 2x2x
2
3 + 0.00054518x2x3 + 0.386x2

3 + 0.00041062x3 − 8x5,

p4 = 0.000034074x2x4 + 2x2
4 − 40x5,

p5 = x1x2 + x1 + 0.00000096150x2
2 + x2x

2
3 + 0.00054518x2x3

+0.000034074x2x4 + 0.00000044975x2 + 0.1930x2
3 + 0.00041062x3

+x2
4 − 1.

There are 4 real and 12 complex roots. The real roots are:

(0.0027572, 39.242,−0.061388, 0.85972, 0.036985),
(0.0021533, 50.550,−0.054145,−0.86067, 0.037001),

(0.0031141, 34.598, 0.065042, 0.85938, 0.036952),
(0.0024710, 43.879, 0.057784,−0.86021, 0.036966).

The root with wholly positive components corresponds to the real-world solution to this
problem.

5.2 Types of Solutions

We first need to consider the dimensionality of the solution set. In underdetermined or
degenerate systems of equations, this dimension is either greater than zero (i.e. there are
infinitely many solutions) or else the system is inconsistent (i.e. there are no solutions). A
solution set of non-zero dimensionality can be given an algebraic or geometric description
(or approximation), but this is usually rather different to the procedure of finding point
solutions. Hereafter, we do not consider the case where the number of variables and the
number of equations are unequal, and assume that the dimension of the solution set is zero,
in other words, that there are a finite number of unique solutions.

In this case, there may be one or more values x in the domain set which satisfy P(x) = 0;
these are the solutions and we wish to find them. This simple description, however, is
incomplete in several details — we need to be more specific in order to fully describe what
we mean by ‘solution’.

The presentation of solutions may be characterised by two main attributes:

56

5 Systems of Polynomial Equations

• Form of solutions

In increasing order of desirability, a solution may either be given implicitly, as a
floating-point approximation within a specified tolerance, or, ideally, as a closed-form
expression or an exact number. A solution expressed implicitly might be regarded
as merely a refinement of the problem, and not a proper solution; however if the
implicit form is simpler than the system itself, and perhaps coupled with an existence
proof or bounds, it would go a fair way towards satisfying the demands of ‘solution’.
Alternatively, if floating-point results are given, what level of precision is acceptable?

• Choice of solutions

Do we wish to find all solutions that exist within the domain, all solutions within a
specified region of interest, only one solution from within a specified region, or will
any solution at all suffice? If only one solution is required from several, does it matter
how the chosen solution is designated? For example, in some cases, we may seek the
solution nearest to a specified point.

The answers to these questions will depend largely on the application. A safety-critical
engineering problem will likely require a numerical approximation provably within tightly-
constrained bounds. All solutions within a specified region may be required. Algebraic
problems may require exact algebraic answers, which can only be provided by symbolic
computation (by machine or hand), not by numerical computation. To satisfy a mathemat-
ical proof, a guarantee of existence of a single solution (or a guarantee of non-existence of
any solutions) within a specified region may suffice.

All these variations do occur, but the most common category of problem that arises in
practical applications seems to be that of finding good numerical approximations to all the
solutions within a specified region of interest. The required precision is typically between 3
or 4 significant figures up to as accurate as the machine arithmetic will allow, although some
problems require arbitrary precision arithmetic (also sometimes called range arithmetic, cf.
[AS92]).

It may be that there exist no solutions to the system within the region in question; in this
case a procedure which verifies this fact and terminates may be considered to have satisfied
the requirements of the solution process.

5.3 Methods of Solution

The classic numerical technique for solving a system of equations is the Newton method
(see Subsection 5.3.2). This yields a single solution and requires a sufficiently good initial
approximation and a numerically well-conditioned problem. In such cases it usually works
well. Today, there are many more methods available; amongst numerical methods there are
many refinements of Newton’s method, there are techniques based upon symbolic manipu-
lation, and interval and homotopy methods. A general-purpose, high-performance infallible
solver for nonlinear systems remains an elusive goal, although robust polynomial system
solvers are becoming increasingly successful.

57

5 Systems of Polynomial Equations

Most authors, e.g. [SP93], place methods for the solution of polynomial systems into three
categories: elimination methods, continuation methods, and subdivision methods, where the
latter category includes interval-based techniques. In the remainder of this chapter we
review each of these approaches and some specific solvers from the literature. A discussion
of techniques for the solution of systems of nonlinear equations is given in the monograph
[Sik97].

Firstly we outline a scheme for categorisation in Subsection 5.3.1, and then we broadly
classify and consider the existing solvers in Subsections 5.3.2 to 5.3.7. Unless otherwise
noted, we assume that we have a polynomial system P = 0 where the number of equations
and the number of variables is both n, and where we consider the solution set in the form
of (5.1) or (5.2).

5.3.1 Categorisation of Methods

One problem encountered in attempting a thorough review of existing polynomial and non-
linear solvers is that there is no universal standard for nomenclature and classification.
It is sensible first to examine some common features of solvers and equip ourselves with
some terminology. For such a classification we can identify (at least) five key distinguishing
attributes:

Scope

A global method will find all solutions within a designated region of interest, but a local
method will only find one such solution, which may be designated in a seemingly arbitrary
fashion. Some solvers are only designed for polynomial systems; others may handle any
types of nonlinear function for which a computer implementation of their evaluation can be
achieved.

Robustness

A solver is robust if it is not subject to numerical instability. Robustness might be achieved,
for example, by the use of interval arithmetic or if the solver operates on an exact symbolic
representation, although these approaches have their own computational disadvantages.

Theoretical Basis

Of course, an acceptable solver must have a theoretical basis to support it, i.e. a proof that
it works. Existing methods tend to be grounded either in the fields of numerical analysis or
algebraic geometry.

Internal Data Type

The basic data type(s) upon which the necessary manipulations are performed may be
floating-point numbers, rational numbers, intervals, symbolic data, or a mixture thereof.

58

5 Systems of Polynomial Equations

Solution Process Structure

What computational strategies may be adopted to find the solution(s)? Commonly ob-
served are iteration (repetition of a computation upon an initial approximation to achieve a
sequence of converging values), recursion (obtaining a result as the combination of a number
of similar problems of lower degree or dimension), subdivision (repetition of a computation
on successively smaller portions of the domain to achieve greater accuracy and isolate solu-
tions), and continuation (construction of a homotopy to a known function, which exhibits
branching and path-tracing). These categories are not mutually exclusive, as any given
method may utilise a number of different computational techniques.

5.3.2 Newton Methods

The obvious starting point in this review is the classic Newton method. Given our classifi-
cation above, we may describe this as an iterative non-robust local numerical solver.

Given F : Rn → Rn, an initial approximation x0 to a solution of F(x) = 0 is refined by
the iteration

xi+1 = xi − J−1(xi)F(xi), (5.3)

where J is the Jacobian matrix of F .
In many cases this method can be used as a simple and effective solver. If successful, a

quadratic rate of convergence is achieved. There are, however, a number of limitations:

• As a local method, root designation is arbitrary. This is a big problem if no information
concerning the placement of all solutions is available. The iteration may converge to
a solution other than the one desired, which might be unanticipated and unwanted.

• The method will fail for numerically ill-conditioned problems, being sensitive to the
behaviour of the partial derivatives of the component functions of F in the vicinity of
a solution. Singular solutions cannot be found.

• The choice of the initial approximation to a desired solution must be sufficiently
good, otherwise the sequence of approximations will either converge to an alternative
solution, not converge at all (oscillating or diverging to give no useful result), or exhibit
extremely slow convergence.

Many categories of problems (e.g. CAGD) are thus inappropriate for solution by Newton’s
method. If the actual existence of a solution is in question, as is the case for many abstract
problems (e.g. geometric intersection), there may well be no choice of the initial value
possible other than a guess, so that the sequence of iterates generated is unlikely to be
satisfactory.

To apply Newton’s method with rigour, one requires a verification that a solution ex-
ists and is isolated within a given region. It is possible to determine a (possibly small)
neighbourhood within which any choice of initial approximation is guaranteed to yield a

59

5 Systems of Polynomial Equations

correctly-converging sequence. This neighbourhood, and convergence bounds, can be com-
puted (for example by application of Kantorovich’s theorem), based on the values of the
partial derivatives.

There exist numerous algorithmic improvements and modifications to Newton’s method,
which improve robustness or convergence properties, but the fundamental limitations re-
main. Most of these methods have been in use for some time, and well-established suites
of software exist; the Numerical Algorithms Group (NAG) library [NAG] claims to be the
largest. It contains a large selection of routines which will cater for problems with various
numerical difficulties. However, precise knowledge in advance of the properties of the system
is needed in order to choose the correct routines. In practice, categories of well-understood
and numerically well-behaved problems where a single specified solution is required can
generally be solved by an expert user.

5.3.3 Interval Newton Methods

Broadly speaking, the interval Newton method is an adaption of the Newton method ob-
tained by replacing the real (floating-point) variables in (5.3) by intervals (see Section 2.1).
This requires tight interval extensions for the component functions and their partial deriva-
tives. The initial approximation is replaced by a starting interval (in the univariate case) or
a starting box (in the multivariate case), and each iteration delivers a new interval or box,
which is intersected with it. The central result here is that if the new iterate is contained
within the previous approximation, i.e. the new interval or box is a proper subset of its
predecessor, then the existence of a unique solution inside is guaranteed. In this case a
successively narrowing sequence of bounding intervals or boxes for this solution is obtained.
An iterative non-robust local or global interval solver can be thus constructed.

It is not quite this straightforward, however. One may be confounded by the fact that,
now using interval arithmetic, convergence is not achieved. Convergence now depends on
the non-ideal interval arithmetic used, and the dependency problem (see Subsection 2.1.4)
will likely arise. Especially since the interval computation involves the partial derivatives
as well as the function itself, in some cases it may be rather hard to achieve a narrowing
interval sequence, without a sufficiently tight interval or box in the first place. It may be
appropriate to employ subdivision to tighten these bounds, albeit at greater computational
cost. Where convergence is achieved, however, it is quadratic, as per the Newton method.

The interval Newton method is subject to the same limitations in scope as before, i.e.
it requires a numerically well-conditioned problem with a good-quality starting approxima-
tion. The efficiency (or overestimation) of the underlying interval arithmetic is a further
limitation. However it does possess some of the advantages of other subdivision-based meth-
ods described in Subsection 5.3.6. Versions of the interval Newton method are able to solve
some categories of problems with speed. It is also quite suitable merely as a verifier, offering
existence proofs that are superior to those based on the traditional Newton method.

Improvements to the method include the use of the Krawczyk operator and the Hansen-
Sengupta operator, amongst others. For a more detailed treatment of types of interval
Newton method and these operators, see [RR88, Neu90, Sta95, Gra07].

60

5 Systems of Polynomial Equations

5.3.4 Elimination (Symbolic) Methods

These are global methods with symbolic data which are often recursive in nature. By op-
erating symbolically on the component equations, they are not defeated by numerically
ill-conditioned problems. The hurdles which symbolic methods must overcome are inter-
mediate expression swell and restrictively high orders of complexity. The former is the
commonly-encountered phenomenon in which complicated intermediate data (such as high-
degree polynomials or very large integers) are formed from relatively simple input data,
which can drastically slow a computation or halt it altogether. The latter often arises from
the recursive expression of the solution in terms of a number of smaller (with respect to
either degree or dimension) problems. This typically leads to exponential orders of growth.
Elimination methods are usually restricted to the case of polynomials with rational coeffi-
cients, since they rely on properties such as factorisation and divisibility.

In the case of systems of polynomial equations, the most common techniques are based
upon the computation of a Gröbner basis for the system. We begin with a few definitions:

Definition 5.1 (Polynomial Ideal). The ideal of (generated by) a set of polynomials p1, . . . ,
pn ∈ Q[x1, . . . , xn] is the set of all linear combinations of the pi with polynomial coefficients,
i.e.

〈p1, . . . , pn〉 = {q1p1 + . . . + qnpn | q1, . . . , qn ∈ Q[x1, . . . , xn]} .

The polynomials which comprise a system of equations can be viewed as forming an ideal.
An alternative basis for the same ideal will have the same solution set. We then require a
basis from which the solution set can be mechanically constructed.

Definition 5.2 (Polynomial Reduction). A polynomial p is reduced with respect to a set
of polynomials S if all the leading monomials of polynomials in S do not divide the leading
monomial of p.

Where p is not reduced with respect to S, a suitable multiple of a polynomial from S
can be subtracted to eliminate the leading monomial. This definition needs to be furnished
with an admissible relational operator for polynomials; a suitable example ordering is the
lexicographic order. We omit the details of what constitutes such an ordering here for
brevity; for details see [DST93].

Definition 5.3 (Gröbner (Standard) Basis). A basis (generating set) S of a polynomial
ideal I, with respect to a given ordering, is a Gröbner basis if every possible reduction of an
element of I to a polynomial reduced with respect to S yields zero.

The essence of the idea is thus to rewrite the system of polynomials into a standard
basis, by a process of reduction. B. Buchberger’s algorithm [Buc70] is the classic method.
Given such a basis, broadly speaking, the solution set is then elaborated by first finding
an expression for the zeros of the least (with respect to the ordering) polynomial and a
mechanism of successive substitution. A more complete treatment is to be found in [DST93,
Chapter 3], cf. [Win96, Chapter 8].

61

5 Systems of Polynomial Equations

Intermediate expression swell can be observed both in the degrees and number of polyno-
mials; the Gröbner basis may be larger than the starting set of polynomials. The average-
case complexity of Buchberger’s algorithm is exponential in the number of variables n. At
worst, it is doubly exponential.

In the case of more general systems of equations, other known methods of solution include
Wu stratification [Wu84, Ric99], with origins in the work of W.-T. Wu, based similarly
on rewriting, and retract or cylindrical decomposition [Kan96], from algebraic geometry.
Intermediate expression swell is known to be a problem for these methods, but experimental
software exists. An overview of these methods for solving elementary systems is presented
in [Ric96]. More recent work includes the triangular decomposition [CD+10] and J.-C.
Faugère’s improved algorithms for the computation of Gröbner bases [Fau02]. A recent
summary and historical overview of symbolic methods for solving systems of polynomial
equations is given in [Laz09].

The collaborative Polynomial System Solving project [POS95] implemented several vari-
ants of Buchberger’s algorithm as a major component of the PoSSo C++ software libarary.
This software proved effective for certain categories of industrial applications. Such solvers
may succeed where numerical algorithms fail, but due to the high computational over-
heads associated with symbolic computation, high-dimension problems typically prove pro-
hibitively expensive. Packages for computing Gröbner bases, based both on Buchberger’s
algorithm and also a variant of Faugère’s method, are included in the computer algebra
system Sage [SJ05]; other computer algebra systems include similar implementations.

5.3.5 Continuation (Homotopy) Methods

These methods, which are generally only applicable for systems of polynomial equations,
are a result of the combination of theory from algebraic geometry with numerical analysis
techniques. They can be classified as global solvers with numeric data.

Definition 5.4 (Homotopy). Let A,B ⊂ Rn and F ,G : A → B be continuous. A homotopy
from F to G is a continuous function

H : [0, 1]×A → B

(jointly continuous in both arguments) with H(0, x) = F(x) and H(1, x) = G(x), ∀x ∈ A.
Two functions are said to be homotopic if there exists a homotopy between them.

In other words, H(t, x) describes a gradual transformation (a change in a continuous
fashion) from F(x) to G(x) as t transits from 0 to 1.

The process of homotopy continuation is broadly as follows: A given system of n poly-
nomial equations in n variables P(z) = 0, where z ∈ Cn, is extended to a system of n + 1
variables by the addition of a homotopy parameter t. It is desired that the new system
H(t, z) = 0 has the property that H(1, z) = P(z) and that the solutions to H(0, z) = 0 are
known. The two (non-trivial) stages are then firstly defining the homotopy function H, and
then applying an appropriate numerical method to track the paths defined by H(t, z) = 0
as t varies from 0 to 1.

62

5 Systems of Polynomial Equations

The major problems which seem to be encountered involve the large number of paths to
trace, and paths which diverge to infinity. This method also cannot be used to determine
singular solutions, and other numerical difficulties may arise. The number of paths to be
traced (and hence the complexity) is sensitive to the total degree of the system.

An overview of early continuation techniques was given in [Mor87]; detailed treatment
may also be found in [AG90, AG97]. A continuation scheme utilising the topological degree
for existence tests is proposed in [BFLW09].

HOMPACK [MSW89], probably the first major implementation of a polynomial contin-
uation method, had difficulties in solving even small systems. It has since been refined,
benefiting from both algorithmic improvements and advancements in available computing
power. Thereafter, PHCpack [Ver99], met with more success, having solved a catalogue
of certain problems with n upto 12. A more recent FORTRAN 90 software package is
HOM4PS; it has been tested in comparison with these predecessors [LLT08].

5.3.6 Subdivision Methods

Where they succeed, elimination and continuation methods often deliver more information
than is needed, since they typically determine all complex solutions of the system, whereas
for many applications only the solutions within a given area of interest are required. With
a subdivision, or branch-and-bound, method (see Subsection 2.3.1), we may ignore spurious
solutions outside the specified region without wasting computational effort. The starting
box is successively partitioned into smaller sub-boxes; those sub-boxes which are infeasible
(i.e. they cannot contain a solution) may be eliminated by an exclusion test, e.g. using
bounds for the ranges of the polynomials under consideration over them; where at least
one component polynomial has a range which excludes zero, infeasibility is assured. Such
a method ends by producing zero or more sub-boxes of a suitably small size which contain
all solutions to the system within the specified starting box. They are thus also suited to
the determination of isolating regions for solutions.

Solvers based upon subdivision methods are generally global and robust. The main chal-
lenge lies in achieving a subdivision sequence which terminates, and in a reasonable time.
Without an effective pruning step, the search tree of sub-boxes generated can become exces-
sively large. Here, tools such as interval computation techniques and the Bernstein expan-
sion may be employed, exploiting their beneficial bound convergence properties. Straight-
forward interval evaluation, however, tends not to perform well, often yielding bounds that
are too wide or which do not converge sufficiently quickly. Some manipulations can be ben-
eficial for achieving tighter bounds, for example a conversion to Horner (nested) form in the
case of polynomial systems, or various kinds of interval enclosures (introduced in Section
2.2).

Of course, methods for solving general systems of nonlinear equations can be applied to
polynomial systems, too. The method of A. Eiger et al. [ESS84], cf. Subsection 4.3.2,
was based on a pseudo-computation of the topological degree upon simplices. Having a
high order of complexity, it was only applied succesfully for some small-dimension systems.
Interval computation schemes for general systems, cf. [RR88, Neu90, Kea96b], can likewise

63

5 Systems of Polynomial Equations

be applied to polynomial systems. Some variants of the interval Newton method can also
be classified as subdivision methods. V. Stahl investigated a number of interval arithmetic
methods [Sta95], based on linear and nonlinear tightening, and has applied them to inverse
kinematics problems in the field of robotics. A further approach using intervals is given in
[VHMK97].

There seem to be relatively few branch-and-bound methods which are specific to polyno-
mial systems. A couple of methods which apply the expansion of a multivariate polynomial
into Bernstein polynomials (see Chapter 3) have been proposed [SP93, FL00]. In the scheme
of Sherbrooke and Patrikalakis [SP93], sequences of bounding boxes for solutions are gener-
ated firstly by projecting control polyhedra onto a set of co-ordinate planes and secondly by
utilising linear programming. However the relationship between the Bernstein coefficients
of neighbouring sub-boxes, cf. Subsection 3.3.2 is not exploited, nor is an existence test
employed. The method is further developed with preconditioning and the reduction scheme
is augmented with a univariate solver in [MP09].

The development of a subdivision-based solver based on the Bernstein expansion, coupled
with existence testing, forms the subject of Chapter 8.

5.3.7 Combined Methods

A given polynomial system whose degree and/or number of equations is relatively modest
can nowadays typically be solved, given the right choice of method. Whether or not the
polynomials are dense or sparse, or whether the problem is ill-conditioned, for example, are
factors which influence the best choice. The task remains to automate the selection of the
optimal method, and to improve the speed and extend the scope of such solvers.

The theory of solving polynomial systems is generally segregated into the three main
categories (Subsections 5.3.4, 5.3.5, and 5.3.6), with little crossover. However, given the
strengths and weaknesses of each type of solver — Newton-based methods don’t always
work, whereas symbolic methods tend to have an inherently high structural complexity,
for example — it seems sensible to combine methods, if in some way possible. There
have been a couple of notable attempts: Jäger and Ratz [JR95] combined the method of
Gröbner bases with interval computations. A NAG-led collaborative project, Framework for
Integrated Symbolic-Numeric Computation (FRISCO) [FRI99], aimed to integrate a number
of techniques (both symbolic and numeric) in the development of a fast black-box solver
suitable for multi-purpose industrial applications.

There are more solvers for general systems of equations, cf. Subsections 5.3.2 and 5.3.3,
than for polynomial systems alone. The drawback of general-purpose solvers is precisely
their generality: a single method that could succesfully tackle any nonlinear system would
seem to be all but impossible to achieve. The Newton and interval Newton methods and
their variants remain the most widely used general nonlinear solvers, although it appears
there is no consensus on an optimal choice of method. Given the wide diversity of problem
types (both polynomial and non-polynomial), it seems doubtful that there is a universally
good or optimal approach.

64

6 Problems Involving Polynomial Inequalities

We conclude the first part of this thesis with a brief overview of systems of polynomial
inequalities, and problems which may include polynomial inequalities, such as global op-
timisation problems. The Bernstein expansion (introduced in Chapter 3) has previously
been applied to robust stability problems, cf. [Gar00], and to the solution of systems of
polynomial inequalities [GG99b]. Constraint satisfaction problems typically consist of both
equations and inequalities. In [Gra07], for example, interval analysis (introduced in Chapter
2) is applied within a branch-and-bound scheme for their solution.

6.1 Systems of Polynomial Inequalities

Dynamical systems arising in control theory are commonplace, occurring in application
areas such as manufacturing plant control, digital control, guidance systems for rockets and
missiles, and automobile cruise control. Numerous problems in control system design and
analysis, often problems of robust control and robust stability, may be recast and reduced to
systems of inequalities involving multivariate polynomials in real variables. This corresponds
broadly to the following problem:

Let p1, . . . , pm be polynomials in x = (x1, . . . , xn) and let a box X in Rn be given. We
wish to determine the solution set Σ of the system of polynomial inequalities, given by

Σ := {x ∈ X | pi(x) > 0, i = 1, . . . ,m} . (6.1)

In general, it is not possible to describe the solution set Σ exactly; instead a good approxi-
mation to it is sought. A subdivision scheme (i.e. branch-and-bound scheme, cf. Subsection
2.3.1), in which the box X is repeatedly partitioned into sub-boxes and bounds for the ranges
of the component polynomials thereupon are sought, may typically be employed. A number
of techniques from the theory of interval analysis (cf. Chapter 2), or else the Bernstein ex-
pansion (cf. Chapter 3), may be employed. In the latter case, the Bernstein coefficients of
each pi, i = 1, . . . ,m, can be computed for each sub-box, and the range enclosing property
(3.17) used to determine whether each polynomial is strictly negative, strictly positive, or
neither over the box. Sub-boxes should be subdivided until either strict positivity for all
polynomials or non-positivity for at least one polynomial is satisfied, or until the sub-box
volume or maximum sub-box edge length falls below a certain minimum ε > 0, which spec-
ifies a satisfactory level of ‘resolution’ for the final box-union approximation of the solution
set.

An inner approximation (underestimation) of Σ, and for its complement, and an approx-
imation of the boundary of Σ, respectively, may be labelled and defined as follows:

65

6 Problems Involving Polynomial Inequalities

• Σi: an inner approximation (underestimation) of Σ, consisting of the union of sub-
boxes of X on which all polynomials pi are positive.

• Σe: an inner approximation of the exterior (complement) of Σ, given by the union
of sub-boxes of X with the property that on each there is at least one non-positive
polynomial pi∗ .

• Σb: an outer approximation (overestimation) of the boundary ∂Σ of Σ, consisting of
the union of sub-boxes of X on which all polynomials pi attain positive values, but on
which at least one polynomial also attains non-positive values.

The union of Σi and Σb forms an outer approximation (an overestimation, or guaranteed
enclosure) for Σ. An example of these three sets and corresponding sub-boxes is depicted
in Figure 6.1.

x1

Σ

x2

Σi

Σe Σb

X

Figure 6.1: Approximations of the solution set Σ and its boundary ∂Σ over a box X in R2.

Details of a branch-and-bound algorithm utilising the Bernstein expansion and its ap-
plication to the computation of D-stability regions (see below) are given in [GG99b] and
[Gar00].

In the context of robust control problems, a common formulation is as follows: we are
presented with the problem of determining the D-stability region of a family of polynomials
within a given parameter box Q. For a given polynomial family p in x with a tuple of
parameters q (6.3), this is the set

{q ∈ Q | p(x, q) 6= 0, ∀x /∈ D} . (6.2)

66

6 Problems Involving Polynomial Inequalities

This problem can be reformulated as a system of polynomial inequalities. We may consider
a family of polynomials

p(x, q) = a0(q)xm + . . . + am−1(q)x + am(q), (6.3)

where the coefficients depend polynomially on n parameters q = (q1, . . . , qn), i.e., for k =
0, . . . ,m ,

ak(q) =
l∑

i1,...,in=0

a
(k)
i1...in

qi1
1 · . . . · qin

n . (6.4)

The uncertain parameters qi belong to specified intervals

qi ∈ [q
i
, qi], i = 1, . . . , n. (6.5)

These parameter intervals are represented in the form of a box Q := [q
1
, q1]× . . .× [q

l
, ql].

A polynomial p may be termed D-stable, where D is a set in the complex plane, if all the
zeros of p are inside D. The robust D-stability problem consists of determining whether the
family of polynomials p(q) are robustly D-stable for Q, i.e. whether the polynomials p(q)
are D-stable for all q ∈ Q. Three problems of interest of this type are

• Hurwitz stability, where D is the open left half of the complex plane,

• Schur stability, where D is the open unit disc, and

• damping, where D is a sector centered around the negative real axis with its vertex
at the origin.

Testing of determinants for positivity (determinantal criteria) may be used in order to
reduce the problem to one of strict inequalities involving multivariate polynomials, which
may then be solved with a subdivision-based scheme, as outlined above. The use of deter-
minants is generally restricted to systems depending on only a small number of parameters.
Several other types of control problems, e.g. static output feedback stabilisation, can also
be reduced to the solution of systems of polynomial inequalities. Apart from stability, other
performance specifications of control systems may also be modelled in the frequency domain
as polynomial inequalities. In [ZG98] a method based on Bernstein expansion is developed
which is capable of treating robust Hurwitz stability problems with a larger number of
parameters; an application to robust Schur stability is given in [GG99a].

6.2 Constrained Global Optimisation

Many real-world problems have a natural mathematical formulation where their solution is
defined as the minimisation or maximisation of a particular function, known as the objective
function, usually subject to a number of constraints which can be specified by inequalities
and equalities involving constraint functions. Physical problems include manufacturing

67

6 Problems Involving Polynomial Inequalities

optimisation, logistics optimisation (e.g. the travelling salesman problem), chemical engi-
neering, the engineering verification of mechanical structures, and many more. Numerous
abstract mathematical problems, such as curve-fitting or the Kepler conjecture [Hal05], can
be formulated as optimisation problems. Some further examples are given in [Zum08].

A constrained global optimisation problem is canonically presented as

min
x∈F

f(x), (6.6)

where the set of feasible solutions F is defined by

F :=

x ∈ S

∣∣∣∣∣∣
gi(x) ≤ 0 for i = 1, . . . , t
hj(x) = 0 for j = 1, . . . , s
x ∈ X

 ,

and where S ⊆ Rn, X is a box contained in S, and f, gi, hj are real-valued functions defined
on S. The function f is referred to as the objective function, the gi define inequality
constraints, and the hj equality constraints. We have to determine the global minimum
over the entire feasible set, not just a local minimum, as is the case for a local optimisation
problem.

A frequently used approach is the generation of relaxations and their use in a branch and
bound framework. Generally speaking, a relaxation of the given problem has the properties
that

1. each feasible point of the given problem is feasible for the relaxation,

2. the relaxation is easier to solve than the original problem, and

3. the solutions of the relaxation converge to the solutions of the original problem, pro-
vided the maximal width of the set of feasible points converges to zero.

We obtain a relaxation for the global optimisation problem (6.6) by proceeding as follows:

1. Replace the objective function f and the functions gi by valid lower bounding functions
f and g

i
, respectively.

2. If the function hj defining the jth equality constraint is affine, then this equation
is added to the constraints that define the relaxation. The remaining equations are
rewritten as a pair of inequalities and are treated in the same way as above.

The following optimisation problem is then obtained:

min
x∈F rel

f(x) (6.7)

with the set F rel of feasible solutions given by

g
i
(x) ≤ 0, i = 1, . . . , t′, x ∈ X,

hj(x) = 0, j = 1, . . . , s′, x ∈ X,

68

6 Problems Involving Polynomial Inequalities

where t′ ≥ t and s′ ≤ s.
The optimisation problem (6.7) is a valid relaxation of (6.6) if its set of feasible solutions

F rel satisfies F ⊆ F rel and f(x) ≤ f(x) for all x ∈ F . The relaxed subproblem with its set of
feasible solutions constitutes a simpler type of problem (for example, a linear programming
problem) whose solution provides a lower bound for the solution of (6.6).

These relaxations are commonly used for solving constrained global optimisation prob-
lems, e.g. [AMF95, AF96]. The computation of a good quality convex lower bounding
function for a given function is thus of significant importance when a branch-and-bound
approach is employed, such as in the COCONUT software package [BSV+01, Sch03]. Tight
bounding functions and tight bounds for the ranges of the objective and constraint func-
tions over sub-boxes are crucial for the efficient resolution of the associated subproblems.
Convex envelopes, the uniformly tightest underestimating convex functions, exhibit good
performance, cf. [AF96, Flo00, TS02].

Because of their simplicity and ease of computation, constant and affine lower bounding
functions are especially useful. Constant bound functions are often used when interval
computation techniques are applied to global optimisation, cf. [RR88, Kea96b, Han03].
However, when using constant bound functions, all information about the shape of the
given function is lost. A compromise between convex envelopes, which in general require
significant computational effort, and constant lower bounding functions are affine lower
bounding functions.

To generate an affine relaxation for problem (6.6), the functions f , gi (i = 1, . . . , t), and
hj (j = 1, . . . , s) are replaced by affine lower bounding functions f , g

i
, and hj , respectively.

Then the relaxed problem (6.7) with the respective set of feasible solutions yields a linear
programming problem whose solution provides a lower bound for the solution of (6.6). Affine
lower bounding functions are simpler to compute and work with than convex envelopes,
preserving basic shape information and yielding linear programming subproblems that are
relatively fast to resolve. A sequence of diverse methods for computing such affine bounding
functions for polynomials based upon the Bernstein expansion is proposed in Chapter 10.

Apart from relaxations, many branch-and-bound based methods require bounds on the
gradients and Hessians of constraint functions, which are preferably computed rigorously.
For example, the αBB algorithm, cf. [AMF95, Flo00], relies heavily on such bounds. Rigor-
ous bounds for the partial derivatives of polynomials can also be provided by the Bernstein
expansion, see Subsection 3.3.4.

69

Part II: Contributions

70

7 Computation of Topological Degree

This chapter consists of a detailed study of the recursive algorithm for the computation of
topological degree, an outline of which was proposed by O. Aberth [Abe94]. Topological
degree formed the subject of Chapter 4 and this algorithm was introduced in Subsection 4.4,
with a simple example. The behavioural attributes in practice (especially the complexity)
of Aberth’s method are unknown and remain to be investigated. Here we undertake an
in-depth analysis of the algorithm and obtain an estimate of its complexity with the use of
a geometric model coupled with a probabilistic analysis. The method is to be implemented
and tested with a catalogue of examples, and the data is to be compared with the complexity
study. Improvements to the algorithm, in particular the face subdivision strategy, will be
considered and proposed. The implemented software is described in Appendix A.

To briefly recall from Section 4.4.2, we are given a box X in Rn and a continuous function
F : X → Rn given by component real-valued functions

fi(x1, . . . , xn), i = 1, . . . n, (7.1)

for which we assume efficient interval arithmetic implementations are available. Since inter-
val arithmetic is a core low-level component of this method, we do not consider cases where
the component functions fi may have non-standard interval implementations, cf. Subsec-
tion 2.1.7. It is desired to compute the Brouwer degree (see Section 4.2) of F over X at 0,
deg(F ,X, 0), where the degree is calculated at 0 without loss of generality.

7.1 Open Questions

There are a number of open questions which arise from Aberth’s presentation of the al-
gorithm and design issues which need to be addressed, rendering an implementation non-
trivial. In some cases a translation from informal algorithm description to precise specifica-
tion and program code is highly intricate and introduces ‘hidden’ design choices, for which
it is unclear how to proceed. We list these questions here, and explore them further in this
chapter.

• Performance

The performance of the algorithm is undocumented; it is only stated that it was
implemented. The performance characteristics, range of practical applicability, and
complexity are all unknown and require investigation. The dependence of the al-
gorithm upon the performance of the interval arithmetic used is also unclear. For
instance, if the interval ranges generated are too wide, a non-terminating subdivision
of faces may be a threat.

71

7 Computation of Topological Degree

• Face Processing Strategy

The main workspace of the algorithm consists of an array of faces L, cf. Subsection
4.4.4, which are in the first instance taken from X. There is an issue concerning the
ordering of these faces in L, and the manner in which generated sub-faces are added
to it. In an abstract sense, it is more accurate to say that the structure of faces which
are generated and analysed is a tree. There is then a choice of preferential order for
face processing. In [Abe94] it is stated that sub-faces are added to the front of L,
implying a depth–first strategy. It is not clear that this choice is the most efficient.
This design choice only affects the non-functional performance, however.

• Face Subdivision Strategy

The given strategy for subdividing faces into sub-faces is that all interval fields of the
face are bisected. However, this is not a functional requirement, since any sensible
means of partitioning a face into smaller parts might plausibly work just as well. It is
possible to subdivide in one or only some dimensions, provided that face edge widths
may ultimately reach arbitrary smallness. This generates fewer immediate sub-faces,
but increases the likelihood of requiring further subdivisions. Furthermore, it may
be that a good choice of subdivision point reduces the number of faces processed
overall. A heuristic to choose such a point may be possible. It is unclear if bisection
is an optimal choice in this regard. Since we have observed that the sub-faces form
a tree, it is clearly desirable to try to reduce both the branching factor and depth
of this tree, to minimise the computational effort. The entire computation is based
on recursive face generation and processing, thus it seems that the number of faces
generated, especially in the early stages, should be a major deterministic factor in
(non-functional) algorithm performance.

• Overlap Resolution Strategy

In Subsection 4.4.4 (Reduction of Faces) the necessity to eliminate any overlaps be-
tween child faces was explained. In the first instance, there is the question of whether
the problem of boundary zeros for sub-problems occurs with sufficient frequency to
merit a strategy of resolving overlaps in all cases. If this is indeed necessary, there are
issues concerning both how to structure the search for overlaps between face pairs,
and how to resolve overlaps once found. We may wish to resolve either by minimising
immediate effort, or alternatively by minimising the number of generated faces for
later work.

• Ordering of Variables

In the default case we intersect the image of the box with a ray emanating from the
origin in the positive direction of x1 (see Figure 4.4), but this choice is arbitrary. We
could choose any coordinate-aligned direction, without essentially changing the algo-
rithm; a choice of initial ray in the direction of a different variable simply corresponds
to a variable reordering. It may be possible to make a beneficial choice of ray direc-
tion and improve performance. It is simple to provide a pictorial justification for this

72

7 Computation of Topological Degree

supposition, at least. In Figure 4.2, if we take a ray emanating in a perpendicular
direction to that which is illustrated (i.e. in the direction of the secondary variable),
there is no intersection with the box image at all, so it seems that less computational
effort would be needed. It may be that, at least in some cases, an optimal reordering
of the variables is possible.

We address two of these issues immediately before proceeding further:

7.1.1 Face Processing Strategy

As noted above, in each major iteration of the algorithm, we are presented with an array L
of faces which have to be tested (with interval arithmetic function evaluations) and either
discarded (negative result), retained and placed in the output array L1 (positive result),
or divided into sub-faces for further testing (ambiguous result). The structure of faces
and sub-faces forms a tree. Choices of either prepending or appending new sub-faces to L
correspond to processing of the face tree in depth-first or breadth-first order, respectively.

Both breadth-first and depth-first strategies were implemented and compared. A detailed
analysis is omitted for the sake of brevity, but this comparison showed clearly that the
depth-first choice had a much smaller memory requirement. This is a common observation
for many types of tree search algorithms.

The computation time seems to be largely unaffected by this design choice, since the same
number of faces need to be processed in either case. The reason for the marked observed
difference in memory usage becomes clear once we consider the branching factor of this
process; 2n−1 sub-faces are generated from each face in the first major iteration of an n-
dimensional problem. In the depth-first case, the number of sub-faces which need to be
stored (for subsequent analysis) is proportional to the depth of the current sub-face in the
tree. In the breadth-first case, however, the number of deferred sub-faces is proportional to
the breadth of the tree at the current depth. For given n, the maximum tree depth is the
deterministic memory requirement factor, and this requirement grows linearly with depth
for the depth-first search, but exponentially with depth for the breadth-first search.

A possible additional advantage of the depth-first strategy is that sub-faces are entered
into L1 in an order which has potential benefit from the viewpoint of searching for overlap-
ping faces (discussed below). In this case, the elements of L1 are ordered with respect to
the original face in L that they are a subset of, i.e. L1 is constructed as a series of sequential
‘blocks’ of faces, where all faces within a block were generated by subdivision of the same
original face. The probability of two elements of L1 sharing a common edge is therefore
greater if they are in the same block. It is plausible (although highly non-trivial) to imagine
that by exploiting this structure, the number of required comparisons when checking the
new list L of generated child faces may be lower. In contrast, with the breadth-first strategy
the elements of L1 are ordered with respect to size. There would seem to be no easy way
to exploit this structure to optimise the overlap search.

The depth-first face processing strategy is therefore favoured. This is implemented by
recursing on all sub-faces before advancing to the next face in the input list L, i.e. by

73

7 Computation of Topological Degree

prepending sub-faces to L.
It may also be worth noting that a good choice of face processing strategy also depends

on the face subdivision mechanism that is used, since this determines the structure of the
sub-face tree. For instance if one only subdivides in a single variable, then the maximum
branching factor is drastically reduced (to 2).

7.1.2 Overlap Elimination Strategy

After the subdivision of faces is complete, all those elements positively selected (in L1)
are decomposed into their child faces and entered into a new array L, ready for the next
major iteration. Those faces in L1 that are geometrically adjacent will yield overlapping (or
identical) child faces which will, by construction, have opposite orientation.

The first question which is posed is whether a common zero of the reduced subsystem
(i.e. fi = 0, . . . , fn = 0, where i > 1) occurs on the boundary of a face with any sufficient
frequency to justify a systematic elimination of all overlapping regions. Although it seems
that for categories of randomly-generated problems this phenomenon should occur with
zero probability, testing quickly revealed that, for the kinds of simple problems a user may
be likely to input (e.g. low degree polynomials with integer coefficients over a unit box),
this failure case arises significantly often. A systematic elimination therefore seems fully
justified and is implemented. In any case, it may even be that the computational effort
required for this elimination is outweighed by the benefits of possibly reducing the total
number of faces for later analysis. This is because, although the failure case notionally
arises with zero probability, non-critical face overlap occurs more often than not. Whether
the overlap elimination reduces the number of faces overall, or generates more, depends
on whether an overlap is an exact duplicate (removing two faces) or partial (removing two
faces, but generating possibly several more).

In implementing the overlap resolution there are two major design choices. Firstly, how
should one structure the search for overlapping faces, and secondly, how should overlaps be
best resolved, once found?

Let #L be the length of the array L to be searched. In the absence of any information
concerning the positions of pairs which cannot by construction overlap, a complete check
of all pairs of faces, requiring #L(#L−1)

2 comparisons, is required. We do have some such
information; L is composed sequentially of small subsets of child faces with a common
parent in L1, therefore each such face need not be compared with its immediate neighbours.
However, eliminating these comparisons would yield only a very minor reduction, which is
likely not worth the implementation cost. As discussed in Subsection 7.1.1 above, further
information could potentially be derived from the order in which the faces were entered into
L1. Although it certainly seems that a more structured search, using fewer than #L(#L−1)

2
comparisons, is therefore possible, this is a complex problem; indeed it is not at all clear
whether any saving would not be offset by the effort required in generating and processing
structural meta-data for L. It was therefore decided to proceed with an unmodified search.

After the search, those faces which are not matched (overlapped) with any other are re-
tained in L, but the others are separated out for the process of removal of duplicates and

74

7 Computation of Topological Degree

duplicated regions. In general, new faces must be created to represent the unduplicated
portions of any copies. To remove the duplicated portion of a pair of faces, the correspond-
ing component intervals of each must be compared. This is a somewhat involved process
which involves determining a number of split points: points which are an endpoint of an
interval from one face, but which occur inside the corresponding interval of the other. The
duplicated region is given by the product of duplicated interval segments, and the new faces
are generated as products of intervals formed by breaking up the component intervals for
each face at the split points. Due to the intricacies of this process, it occupies a notable
portion of the software code, and can take up a fair chunk of the execution time. For brevity,
technical coding details are omitted.

There are a number of different possibilities for the number of new faces that are generated.
Let m be the common dimension of the overlapping faces. The best case, of course, is when
all the interval fields coincide, requiring no new faces. The next-best case is when there is
but a single split point, which requires a single new face for the unduplicated region. There
are a number of intermediate cases, and the worst case arises when there are 2 split points in
all interval fields. Each interval pair here may overlap end-to-end or one may be contained
within the other. If all pairs overlap end-to-end, 2(2m − 1) new faces are generated, if one
face is entirely inside another, there are 3m − 1 new faces. These cases are illustrated in
Figure 7.1.

1 21

4 5

6

3

1

2

1 2 3

5

876

4

worst casequasi−worst case

best case next−best case next−next−best case

Figure 7.1: Overlapping faces in R2 and new faces generated (numbered) for the undupli-
cated regions.

Although this seems the simplest way of generating the new faces, it is certainly possible
to reduce the number of these faces, since some of them could be viably merged (i.e. their

75

7 Computation of Topological Degree

union is expressible as a product of intervals). Minimising the number of faces is desirable,
but this refinement has a significant associated computational cost, so there is a conflict
between minimising the effort immediately expended or the number of faces (which may save
effort later). Due to the siginificant computational effort already required by the overlap
resolution, it was decided not to burden it further.

It is finally worth commenting that this phenomenon of overlap resolution also occurs
similarly in geometric modelling systems. For example, the modelling package SvLis [Bow99]
deals with constructing objects from simple primitives, and can test for overlap of these
objects in R3.

7.2 Analysis of the Algorithm

The analysis and performance of the degree-finding algorithm form the subject material for
this section. We take two approaches to the algorithm analysis. Firstly, we perform an
abstract analysis, by constructing a simplified geometric model, and secondly we exercise
the program with a large number of randomly-generated polynomial problems to construct
a data analysis. There are some major questions to be posed:

• What are the factor(s) that determine the computational effort for any particular
problem instance?

There are six candidates identified in answer to this question. We wish to investigate
these in order to determine those factors with the greatest degree of influence.

– Problem dimension

– Function behaviour within the box

– Box volume

– Number of solutions to system within the box

– Proximity of solution(s) to boundary of box

– Overestimation in interval arithmetic implementations of functions

• Over what range of problems is the method practically applicable?

We wish to determine which types of problem are too hard (i.e. for which the time or
memory requirement of the computation becomes prohibitive).

• How does this method compare with others?

A substantive answer here is not possible, given the scarcity of other methods and
available data. The numerical quadrature method of O’Neal and Thomas [OT75] is
reported to “perform efficiently” for topological degree problems in R6, although no
timing data are provided. In any case, a peformance comparison would be rather
unfair, given the relative advantage in computing power which is available today. For

76

7 Computation of Topological Degree

their triangulation method, A. Eiger et al. [ESS84] reported only on specific low-
degree examples, and discussed the barriers to achieving robustness in their method.
We hope that this work will help to contribute to a meaningful comparison with any
future topological degree finders that may be developed.

7.2.1 Schematic

Figure 7.2 depicts an overview of the entire degree computation process, starting with an
n-dimensional box X, and returning a single integer as the final result.

This illustrates a view of the algorithm as a chain of face processes, where the faces
involved are of successively lower dimension after each major iteration. The complexity
issue therefore resolves to a question of the number of faces that are generated and processed
at each stage. The generation of faces, sub-faces, and child faces, as well as the resolution
of overlaps can cause an increase in the number of faces, indicated by the multiplicative
factors in Figure 7.2. For a non-trivial computation, the number of faces produced will be
significantly larger than the size of the initial array of box sub-faces L, i.e. intermediate
expression swell is observed.

7.2.2 Metrics and Notation

We wish to measure or estimate each of the following quantities, in order to fully understand
in practice the mechanisms of face generation, processing and discard.

• Work–Dimension Distribution

How many faces are processed in each major iteration? In other words, is the bulk
of the computational effort occupied with processing faces of high dimension (early
iterations), of low dimension (late iterations), or is the distribution equal?

• Designation Ratio

The designation ratio is defined as the proportion of the terminal (sub-)faces in L that
are accepted into L1. A terminal (sub-)face is one for which no (further) subdivision
is performed. We wish to measure this quantity for each major iteration.

• Maximum Subdivision Depth

The process of face subdivision generates a tree of sub-faces, where those sub-faces
at a greater depth have been subdivided more and are therefore smaller. We wish to
measure the maximum required subdivision depth for each iteration.

• Branching Factor

An m-dimensional face that is terminal of course produces 0 sub-faces; otherwise 2m

sub-faces are generated, i.e. there is a fixed branching factor of either 0 or 2m. We
define the average branching factor as the mean number of sub-faces generated per
node, averaged over all nodes (including terminal faces, i.e. leaf nodes) in the search

77

7 Computation of Topological Degree

L

X
generate

faces

check
faces

subfaces
generate

L 1

generate
 child
faces

pre-L
check for
overlaps

resolve
overlaps

L
check
faces L 1

generate
 child
facessubfaces

generate

pre-L
check for
overlaps L

check
faces

orientation
sum

fields

dimension:

n-1:

n:

n-2:

0:

accept

subdivide

discard

no

yes

discard

accept

subdivide

no

yes

discard

accept

result
discard

x 2

x 2n

x 2(n-1)

x 2

x 2(n-2)

n-2

n-1

x 0 ... 3 -1
n-2

Figure 7.2: Schematic of the recursive topological degree algorithm.

78

7 Computation of Topological Degree

tree. For a given number of initial faces, the average branching factor is indicative
of the total number of nodes in the tree (and therefore of the total computational
effort required in processing it). In particular, any tree of finite size (i.e. a subdivision
process that terminates) must by necessity exhibit an average branching factor less
than 1.

Let Lt be the set of terminal faces that are generated from L with an average branching
factor b, where b < 1. By counting the numbers of nodes at each depth we have

#Lt = #L + #Lb + #Lb2 + . . . = #L

∞∑
i=0

bi =
#L

1− b
.

An example tree of sub-faces is given in Figure A.1. In the left-most tree, we start
with a single face of dimension 2, thus the fixed branching factor is 0 for a terminal
face and 4 for a face that is subdivided. The total number of faces (nodes) is 29 and
the average branching factor is 28

29 .

• Overlap Ratio

As indicated in Figure 7.2, child faces of one lower dimension are generated from L1

and are placed into pre-L. The overlap ratio is defined as the proportion of these faces
that overlap with another. (Note that the number of overlapping faces is exactly twice
the number of occurrences of overlap, since all overlaps occur in pairs.)

• Overlap Badness

In resolving an overlap between two m-dimensional faces, anywhere between 0 and
3m − 1 new faces may be generated to represent the disjoint union. The more new
faces produced, the worse the outcome, in terms of computational effort. We may
therefore quantify the overlap badness as the average number of new faces produced
per overlap. If the product of this measure with the overlap ratio is above 2, the net
effect of the overlap resolution is an increase in the size of L from pre-L.

Example 7.1. Let F : Rn → Rn where F(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))
be given by

fi(x1, . . . , xn) = x2
i − xi+1, for i = 1, . . . , n− 1,

fn(x1, . . . , xn) = x2
n − x1.

This is the extended Kearfott function [Kea79a]; known solutions are (0, . . . , 0) and (1, . . . , 1).
We wish to compute deg(F ,X, 0), where

X = [−10, 10]n.

The recursive algorithm is run for the cases n = 3 and n = 6; see the diagnostic information
in Table 7.1, where i is the iteration number and m is the dimension of faces in L. The
algorithm successfully terminates, reporting in both cases that deg(F ,X, 0) = 0 (note that
the two solutions have opposite signs of their Jacobian determinants).

79

7 Computation of Topological Degree

i m #L max. search faces avg. branch. #L1 desig. overlaps overlap
depth checked factor ratio ratio

R3, X = [−10, 10]3, deg(F ,X, 0) = 0
1 2 6 0 6 0 1 16% 0 0%
2 1 4 0 4 0 2 50% 0 0%

R6, X = [−10, 10]6, deg(F ,X, 0) = 0
1 5 12 0 12 0 1 8% 0 0%
2 4 10 0 10 0 2 20% 0 0%
3 3 16 0 16 0 4 25% 0 0%
4 2 24 0 24 0 8 33% 0 0%
5 1 32 0 32 0 16 50% 0 0%

Table 7.1: Diagnostic output for the degree calculations of Example 7.1.

No face subdivision at all is required for this example. This illustrates that a degree com-
putation, even for a large box enclosing one or more solutions, can potentially be performed
with very little effort.

Example 7.2. Let F : R2 → R2 where F(x1, x2) = (f1(x1, x2), f2(x1, x2)) be given by

f1 = x2(x2 + 1)− 4(x1 + 1),

f2 = (x3
2 − 10x1 −

13
2

)2 − 1
4
.

This system of equations represents the intersection of a parabola and a squared cubic. So-
lutions (specified to a precision of 3 decimal places) are (−0.910,−1.281), (−0.866, −1.386),
(−0.652, 0.781), (−0.5, 1), (2, 3) and (1.804, 2.886). The recursive algorithm is run for four
different boxes; see the diagnostic information in Table 7.2, with the same notation as be-
fore. In each case, the reported degree is equal to the sum of the signs of the Jacobian
determinants of all solutions within the box.

Despite the low dimension of this example, a significant amount of face subdivision is
required in all cases. These results hint that there is a (possibly weak) correlation between
the interval widths of the box and the search depth.

Example 7.3. Let F : R6 → R6 where F(x1, . . . , x6) = (f1(x1, . . . , x6), . . . , f6(x1, . . . , x6))
be given by

f1 = x2
1 − x2

2 + x2
3 − x2

4 + x2
5 − x2

6 − r2,

f2 = 2x1x2 + 2x3x4 + 2x5x6,

f3 = (x1 − 1)2 − x2
2 + (x3 − 1)2 − x2

4 + (x5 − 1)2 − x2
6 − r2,

f4 = 2(x1 − 1)x2 + 2(x3 − 1)x4 + 2(x5 − 1)x6,

f5 = x5 − x3,

f6 = x6 − x4.

80

7 Computation of Topological Degree

i m #L max. search faces avg. branch. #L1 desig. overlaps overlap
depth checked factor ratio ratio

X = [−5, 5]2, deg(F ,X, 0) = 0
1 1 4 4 14 0.714 1 7% 0 0%

X = ([−1, 0], [0, 2]), deg(F ,X, 0) = 0
1 1 4 3 14 0.714 1 7% 0 0%

X = ([−0.6,−0.4], [0.9, 1.1]), deg(F ,X, 0) = −1
1 1 4 2 12 0.667 3 25% 2 66%

X = ([−0.6, 5], [0.9, 5]), deg(F ,X, 0) = −1
1 1 4 7 22 0.818 1 4% 0 0%

Table 7.2: Diagnostic output for the degree calculations of Example 7.2.

The solutions to this system represent the extremal points of the intersection of two spheres,
where the problem dimension has artificially been increased from 3 to 6. The two spheres
are of radius r, with centres (0, 0, 0) and (1, 1, 1).
If r >

√
3

2 , a single pair of real solutions (with x2 = x4 = x6 = 0) is produced.
If r <

√
3

2 , complex solutions are generated.
The recursive algorithm is run for different values of r and X; see the diagnostic information
in Table 7.3. As before, the reported degree is equal to the sum of the signs of the Jacobian
determinants of all solutions within the box.

i m #L max. search faces avg. branch. #L1 desig. overlaps overlap
depth checked factor ratio ratio

r = 1, X = [−1, 1]6, deg(F ,X, 0) = 2
1 5 12 4 10828 0.999 56 0% 132 47%
2 4 296 0 296 0 28 9% 52 46%
3 3 120 0 120 0 16 13% 24 50%
4 2 48 0 48 0 8 16% 8 50%
5 1 16 0 16 0 4 25% 2 50%

r = 2, X = [1, 2]6, deg(F ,X, 0) = 0
1 5 12 0 12 0 0 0%

r = 2, X = ([−8, 0], [−2, 2], [−2, 2], [−2, 2], [−2, 2], [−2, 2]), deg(F ,X, 0) = 1
1 5 12 4 13612 0.999 52 0% 98 37%
2 4 324 1 708 0.542 26 3% 53 50%
3 3 172 1 236 0.271 22 9% 35 53%
4 2 62 0 62 0 4 6% 4 50%
5 1 8 0 8 0 2 25% 1 50%

Table 7.3: Diagnostic output for the degree calculations of Example 7.3.

81

7 Computation of Topological Degree

Here we can observe that there is a vast difference in the number of faces that need to be
processed for boxes that contain solutions versus one that does not. This seems to be often
(but is not always) the case. Where a significant amount of subdivision is required for a
face of high dimension, many sub-faces are produced.

Example 7.4. Let F : R5 → R5 where F(x1, . . . , x5) = (f1(x1, . . . , x5), . . . , f5(x1, . . . , x5))
be given by

f1(x1, . . . , x5) = (x1 + x5)2 − sin(x3),
f2(x1, . . . , x5) = x1x2 + x3 − x2

4 − 2x5,

f3(x1, . . . , x5) = x3x4 − x1,

f4(x1, . . . , x5) = x2 + x3 + ex4 − 2,

f5(x1, . . . , x5) = x5.

We wish to compute deg(F ,X, 0), where

X = [−10, 10]× [−10, 10]× [−5, 5]× [−5, 5]× [−5, 5].

The recursive algorithm is run; see the diagnostic information in Table 7.4. As before, the
algorithm successfully terminates, reporting that deg(F ,X, 0) = 1 (thus there is at least one
solution to F = 0 within X).

i m #L max. search faces avg. branch. #L1 desig. overlaps overlap
depth checked factor ratio ratio

1 4 10 8 1690 0.994 24 1% 27 28%
2 3 251 4 563 0.554 21 3% 32 50%
3 2 103 1 115 0.104 6 5% 3 25%
4 1 18 0 18 0 6 33% 3 50%

Table 7.4: Diagnostic output for the degree calculation of Example 7.4.

Here, some of the component functions are non-polynomial. Note that, as with most of
the preceding examples, each variable appears at most once in each component function;
this example therefore illustrates the performance without any effect of the dependency
problem (cf. Subsection 2.1.4) in interval arithmetic.

The preceding examples are typical of non-trivial degree computations over (relatively)
large boxes. The following observations become readily apparent:

• The amount of computational effort is generally unpredictable. Where it is consider-
able, there is often a very similar example (e.g. the same function but with a different
box) which would appear to have the same degree of complexity, but for which the
algorithm requires little or no subdivision, or where almost all faces are discarded.
This may be to a certain extent dependent on hidden factors such as the choice of

82

7 Computation of Topological Degree

ray direction as well as the function behaviour within the box. Nevertheless, certain
categories of simple functions such as the identity function or the extended Kearfott
function (Example 7.1) generally require no subdivision.

• The work–dimension distribution seems to be heavily weighted towards the faces of
highest dimension, i.e. the majority of the work is performed in the first iteration.
For large boxes, this may simply be due to the fact that the face selection criteria (i.e.
select or discard) are more likely to be satisfied for small faces. The subdivision is
mostly performed in the first iteration; thereafter the faces are already mostly small.

A more rigorous analysis of the algorithm with more examples is presented in Section 7.4.

7.3 Abstract Analysis (Face Subdivision)

In this section, we undertake an analysis of the face subdivision process in order to deter-
mine the likely average branching factor. The branching factor appears to be crucial in
determining the overall computational effort — where it is low, only few faces are processed
throughout.

We aim to determine the branching factor in the case of systems of linear equations, and
then extrapolate to the general case.

7.3.1 Best and Worse Case Analysis

The best case of the face subdivision process occurs when no subdivision at all is required.
Processing of such a face is trivial and the branching factor is 0. This case occurs with
non-zero probability (an example is the identity function over the unit box in Rn).

The subdivision process is guaranteed to terminate, provided that there are no solutions
to the system of equations on the face (to within machine precision) and that the interval
arithmetic used has the property that w(f(x)) → 0 as w(x) → 0, where f is an interval
function and w denotes the width operator. The natural interval extension (see Definition
2.13) is inclusion isotone and satisfies this requirement. However the amount of subdivision
required may be arbitrarily large; it is unfortunately not possible in general to compute
an upper bound on the amount of computational work that may be required for any given
problem. Asymptotically speaking, the worst case is a failure to terminate, which can only
arise through limitations in interval arithmetic or machine precision which we assume, for
reasonable categories of problems, to occur with negligible or very low probability.

Since the best and worse cases are both extreme, the only meaningful alternative is to
perform an average case analysis. We firstly exclude all the (best) cases with branching
factor 0, therefore this is more accurately described as an average case analysis of all non-
trivial instances of face processing.

83

7 Computation of Topological Degree

7.3.2 Basic Operations

We assume the basic operation in this complexity analysis to be an instance of a face check.
For an m-dimensional face, this requires (up to) m + 1 interval function evaluations. The
cost of this check is not static, but does vary according to lexical function complexity (i.e.
the number of basic operations in a function) and problem dimension in a predictable way.
It is also dependent on the efficiency of the interval arithmetic.

7.3.3 Linear Systems in R2

This case is straightforward. A face s of a 2-dimensional box X is a 1-dimensional line
segment. The zero sets of the two linear functions f1 and f2 constitute straight lines which
must (since we assume non-triviality) each intersect s. This is the only requirement of the
functions, so the two intersection points can be considered to be designated at random. The
face s is subdivided into sub-faces s1 and s2 by bisecting the line segment. Each sub-face
may contain one of the intersection points, or one may contain both; it is clear that each
case arises with probability 1

2 . In the former case both sub-faces are terminal; in the latter
case the sub-face containing both points is non-terminal. Therefore for non-trivial faces
with random linear functions, the average branching factor is 0 · 1

2 + 1 · 1
2 = 1

2 .

7.3.4 Linear Systems in R3

Here we consider a face of a 3-dimensional box X, and component linear functions f1, f2,
and f3. Let us assume that the face is non-trivial, i.e. at least some subdivision is required.
The interval values for f1, f2, and f3 over the (2-dimensional) face then must all contain
zero.

In abstract terms we can envisage this as the solution sets of each fi(x) = 0 (straight
lines) intersecting the face (a rectangle), illustrated in Figure 7.3.

f (x)=01

f (x)=02

f (x)=03

Figure 7.3: Zero sets of f1, f2, and f3 intersecting a rectangular face.

84

7 Computation of Topological Degree

To determine the average branching factor of the search tree here, we need to consider
how many of the sub-faces (the four quadrants of the rectangle) are designated after a
subdivision. The problem may thus be formulated abstractly as follows:

• Given a rectangle intersected by three ‘random’ lines, how many of its four quadrants
are likely to be intersected by all three lines?

We first need to define exactly what is meant by a ‘random’ line. The only property
which is assumed is that each line intersects the rectangle, so from the set of all possible
random lines, we restrict selection to those for which this holds.

There are different conceivable ways of picking random lines, which correspond to different
choices of random parameters in the corresponding linear equations. A line in a two-
dimensional plane can be defined either by two distinct points (through which the line
passes), or as a point and a gradient (alternately specified as an angle of incidence with an
axis of reference). It is clear that a random choice of angle, rather than gradient, is sensible,
since we wish to select random parameters within finite bounds. Random points could be
selected either upon the boundary of, or within the rectangle, or upon a segment of the x-
or y-axis.

The set of all intersecting lines has infinitely many distinct members, so choosing a mem-
ber at random is a non-trivial issue. Deciding upon this issue actually transpires to be a
rather subtle means of parameter selection corresponding to slightly different definitions of
randomness. For ‘true’ randomness, we wish to afford no bias to any types of line. This
means that any point within the rectangle should be just as likely to be intersected by a
line as any other point. Therefore the following approach is devised:

Line Family Model

Given a rectangular face, for a given intersecting line, let θ be the angle of incidence with
the horizontal axis. It is assumed that all angles θ ∈

[
−π

2 , π
2

]
occur with equal probability

in the set of all intersecting lines. (Note that the direction of the line is irrelevant.) Fixing
θ, we may consider the set of intersecting lines, all with gradient arctan(θ), each member of
which may intersect 1, 2, or 3 (but not 0) of the quadrants. Such a set is depicted in Figure
7.4.

Conditional upon θ, the general strategy now is to determine the probability of such
a line intersecting a single quadrant, P (1 | θ), the probability of intersecting exactly two
quadrants, P (2 | θ), and of intersecting three quadrants, P (3 | θ). It should be clear that it
is not possible for any one line to wholly intersect all four quadrants, or that lines coincident
with either of the bisectors for the rectangle occur with probability zero. Each line in the
family can be characterised by a unique point of intersection with any chosen non–parallel
line, such as an axis. The conditional probabilities can be determined by integration over
all possible intercept values.

The overall probability of intersection with exactly n quadrants (where n must be 1, 2,
or 3) is given by

85

7 Computation of Topological Degree

θ

3 2 1

1

2

Figure 7.4: Set of line families with angle θ intersecting a rectangle.

P (n) =
1
π

∫ π
2

−π
2

P (n | θ) dθ.

Computation of P (1)

We enumerate the (horizontal) length of the rectangle as a, and the (vertical) height as b,
and split into two separate cases:

• Case 1: tan(θ) < b
a

This case is depicted in Figure 7.5. By measuring the range of intercept l of all lines,
and the range of intercept d of lines intersecting just one quadrant (the upper left or
bottom right) we have

P1(1 | θ) =
2d

l
=

a tan(θ)
b + a tan(θ)

.

• Case 2: tan(θ) > b
a , tan(φ) < a

b

86

7 Computation of Topological Degree

d

d

l

θ

b

a

d =
a tan()

l = b + a tan()

θ

θ

2

Figure 7.5: Lines intersecting one quadrant of the rectangle (Case 1).

a

b

c

c

m

θ
φ

c =
b tan()

m = a + b tan()

2

φ

φ

Figure 7.6: Lines intersecting one quadrant of the rectangle (Case 2).

87

7 Computation of Topological Degree

This case is depicted in Figure 7.6. Setting φ = π
2 − θ and measuring the range m of

intercept of all lines, and the range of intercept c of lines intersecting just one quadrant
we have

P2(1 |φ) =
2c

m
=

b tan(φ)
a + b tan(φ)

.

Combining the two cases and integrating over all possible θ values (and considering neg-
ative gradient lines by symmetry) we have

P (1) =

 arctan b
a∫

0

a tan θ

b + a tan θ
dθ +

arctan a
b∫

0

b tanφ

a + b tanφ
dφ

 2
π

=
2
π

(
[

a

2(a2 + b2)
(
b log(tan2 θ + 1)− 2b log(a tan θ + b) + 2aθ

)]arctan b
a

0

+
[

b

2(a2 + b2)
(
a log(tan2 φ + 1)− 2a log(b tanφ + a) + 2bφ

)]arctan a
b

0

)

=
1

π(a2 + b2)

(
a

(
b log

(
b2

a2
+ 1
)
− 2b log(2b) + 2a arctan

b

a
+ 2b log b

)
+ b

(
a log

(
a2

b2
+ 1
)
− 2a log(2a) + 2b arctan

a

b
+ 2a log a

))
=

1
π(a2 + b2)

(
2ab log

(
a2 + b2

ab

)
− 4ab log 2 + 2a2 arctan

b

a
+ 2b2 arctan

a

b

)
=

2ab

π(a2 + b2)

(
log
(

a2 + b2

ab

)
− log 4 +

a

b
arctan

b

a
+

b

a
arctan

a

b

)
.

Setting the ratio of the side lengths, r = a
b , we have

P (1) =
2
π

(
r

r2 + 1

)(
log
(

r +
1
r

)
− log 4 + r arctan

1
r

+
1
r

arctan r

)
. (7.2)

In the case of a square face (i.e. r = 1), P (1) = 1
2 −

log 2
π ≈ 0.27936.

Computation of P (1 ∨ 2)

Labelling the rectangle as before, we consider the same two cases:

• Case 1: tan(θ) < b
a

This case is depicted in Figure 7.7. By measuring the range of intercept l of all lines,
and the range of intercept d of lines intersecting either one or two quadrants (here, a
horizontally adjacent pair) we have

88

7 Computation of Topological Degree

a

b

θ

d

d

l

d =

l = a+

b
2 tan()

b
tan()

θ

θ

Figure 7.7: Lines intersecting one or two quadrants of the rectangle (Case 1).

a

b

c

c

m

c =

m = b +θ
φ

a
2 tan()

tan()
a

φ

φ

Figure 7.8: Lines intersecting one or two quadrants of the rectangle (Case 2).

89

7 Computation of Topological Degree

P1((1 ∨ 2) | θ) =
2d

l
=

b

b + a tan(θ)
.

• Case 2: tan(θ) > b
a , tan(φ) < a

b

This case is depicted in Figure 7.8. Setting φ = π
2 − θ, as before, and measuring the

range of intercept m of all lines, and the range of intercept c of lines intersecting either
one or two quadrants (here, a vertically adjacent pair) we have

P2((1 ∨ 2) |φ) =
2c

m
=

a

a + b tan(φ)
.

Combining the two cases and integrating over all possible θ values (and considering neg-
ative gradient lines by symmetry) we have

P (1 ∨ 2) =

 arctan b
a∫

0

b

b + a tan θ
dθ +

arctan a
b∫

0

a

a + b tanφ
dφ

 2
π

=
2
π

(
[

b

2(a2 + b2)
(
−a log(tan2 θ + 1) + 2a log(a tan θ + b) + 2bθ

)]arctan b
a

0

+
[

a

2(a2 + b2)
(
−b log(tan2 φ + 1) + 2b log(b tanφ + a) + 2aφ

)]arctan a
b

0

)

=
1

π(a2 + b2)

(
b

(
−a log

(
b2

a2
+ 1
)

+ 2a log(2b) + 2b arctan
b

a
− 2a log b

)
+ a

(
−b log

(
a2

b2
+ 1
)

+ 2b log(2a) + 2a arctan
a

b
− 2b log a

))
=

1
π(a2 + b2)

(
−2ab log

(
a2 + b2

ab

)
+ 4ab log 2 + 2b2 arctan

b

a
+ 2a2 arctan

a

b

)
=

2ab

π(a2 + b2)

(
− log

(
a2 + b2

ab

)
+ log 4 +

b

a
arctan

b

a
+

a

b
arctan

a

b

)
.

With the ratio of the side lengths, r = a
b , as before, we have

P (1 ∨ 2) =
2
π

(
r

r2 + 1

)(
− log

(
r +

1
r

)
+ log 4 +

1
r

arctan
1
r

+ r arctan r

)
. (7.3)

In the case of a square face (i.e. r = 1), P (1 ∨ 2) = 1
2 + log 2

π ≈ 0.72064.

90

7 Computation of Topological Degree

Derivation of Average Branching Factor

Now P (3) = 1−P (1∨ 2) and we can observe from (7.2) and (7.3) that P (1)+P (1∨ 2) = 1.
Therefore there are only two distinct probabilities that we need to be concerned with, which,
for brevity in the material which follows, we label as p and q:

p := P (1) = P (3),

q := 1− 2p = P (2).

Let us now consider three random, independent lines (linear functions) crossing the rect-
angle (two-dimensional face). Each line may intersect 1, 2, or 3 quadrants, with probabilities
p, q, and p, respectively. We are interested to know if any of the four quadrants are inter-
sected by all three lines (a sub-face which requires further subdivision) and if so, how many.
There may be 0, 1, 2, or 3 of the quadrants (sub-faces) so designated.

There are a number of different cases to consider, depending upon the pattern of intersec-
tion of the three lines, listed in Table 7.5. Here, a ‘configuration’ of (e.g.) 1,1,2 means that
two of the lines intersect one quadrant and that one of the lines intersects two quadrants.

Configuration Probability of Conditional probability that the number

of lines configuration of quadrants containing all 3 lines is:

0 1 2 3

1,1,1 p3 15
16

1
16 0 0

1,1,2 3p2q 7
8

1
8 0 0

1,1,3 3p3 13
16

3
16 0 0

1,2,2 3pq2 3
4

1
4 0 0

1,2,3 6p2q 5
8

3
8 0 0

1,3,3 3p3 7
16

9
16 0 0

2,2,2 q3 3
4 −

3
4α(1− α) 3

2α(1− α) 1
4 −

3
4α(1− α) 0

2,2,3 3pq2 1
2 −

1
2α(1− α) 1

4 + α(1− α) 1
4 −

1
2α(1− α) 0

2,3,3 3p2q 1
8

5
8

1
4 0

3,3,3 p3 0 3
8

9
16

1
16

Table 7.5: Table of conditional probabilities arising in the calculation of the average branch-
ing factor.

91

7 Computation of Topological Degree

The entries for the configurations 2,2,2 and 2,2,3 require a little explanation. Where a
line intersects two quadrants, α is defined as the probability that these two quadrants will
be vertically adjacent, rather than horizontally adjacent. (Of course, lines intersecting two
diametrically opposite quadrants occur with probability zero.) We will see that we do not
require an explicit formula for α, but note that it is dependent on the ratio of side lengths
r.

By taking the conditional probabilities in the third column, and multiplying by the con-
figuration probabilities and taking the sum we can compute the overall probability that
no quadrants are designated (i.e. no quadrant contains all three lines). We can proceed
likewise for the overall probabilities that one or more quadrants are designated. Let N be
the number of designated quadrants.

P (N = 0) =
1
16

(15p3 + 42p2q + 39p3 + 36pq2 + 60p2q + 21p3 +

12q3 − 12α(1− α)q3 + 24pq2 − 24α(1− α)pq2 + 6p2q)

=
1
16
(
75p3 + 108p2q + (60− 24α(1− α))pq2 + (12− 12α(1− α))q3

)
,

P (N = 1) =
1
16

(p3 + 6p2q + 9p3 + 12pq2 + 36p2q + 27p3 +

24α(1− α)q3 + 12pq2 + 48α(1− α)pq2 + 30p2q + 6p3)

=
1
16
(
43p3 + 72p2q + (24 + 48α(1− α))pq2 + 24α(1− α)q3

)
,

P (N = 2) =
1
16
(
4q3 − 12α(1− α)q3 + 12pq2 − 24α(1− α)pq2 + 12p2q + 9p3

)
=

1
16
(
9p3 + 12p2q + (12− 24α(1− α))pq2 + (4− 12α(1− α))q3

)
,

P (N = 3) =
1
16
(
p3
)
.

We can now compute E, the expected number of quadrants designated:

E =
3∑

i=1

iP (N = i)

=
1
16
(
64p3 + 96p2q + 48pq2 + 8q3

)
= 4p3 + 6p2q + 3pq2 +

1
2
q3

=
(

p +
1
2
q

)(
4p2 + 4pq + q2

)

92

7 Computation of Topological Degree

=
(

p +
1
2
q

)
(2p + q)2

=
1
2

(2p + q)3

=
1
2
.

This satisfying result proves that, for this particular problem type at least, the average–
case complexity (i.e. average branching factor) of the face subdivision process is independent
of the ratio of side lengths of the face. Also, we can expect the subdivision process for a
non-trivial face to be characterised by a branching factor of 1

2 on average.
That the expression for E resolves to such a simple fraction also hints at the possibility

that an easier method for its calculation might exist.
We briefly outline two possible alternatives to the line family model:

Area Integration Model

This is a model in which all points within the rectangle are assumed to be equally likely to
be hit by any intersecting line. For any such point, we consider a family of lines passing
through it, where the angle of incidence varies. One may then integrate over the x- and
y-directions in turn.

Boundary Integration Model

Here we consider that all points on the boundary of the rectangle are equally likely to be hit
by any intersecting line. One can integrate over the range of possible boundary intercepts.

The three models proposed here correspond to differing definitions of ‘random lines in-
tersecting a rectangle’. Actual results for random examples will depend on the particular
choice of random parameter(s).

7.3.5 Linear Systems in Rn

Conjecture 7.1. Suppose we are given an (n− 1-dimensional) face s of an n-dimensional
box X and arbitrary component linear functions fi : Rn → R, i = 1, . . . , n, where each fi

attains zero somewhere within s. Partition s into 2n−1 sub-faces by bisecting each component
interval of s. Then the expected number of sub-faces intersected by all of the zero sets of
fi, i = 1, . . . , n, (i.e. the average branching factor in the corresponding part of the degree
computation for s) is 1

2 .

This conjecture remains open for general n, but we have proven the cases n = 2 and
n = 3, assuming that the arbitrary functions are distributed randomly according to the line
family model. A further discussion on true randomness is beyond the scope of this work.

93

7 Computation of Topological Degree

7.3.6 Nonlinear Systems in Rn

Conjecture 7.2. Suppose we are given an (n− 1-dimensional) face s of an n-dimensional
box X and arbitrary component functions fi : Rn → R, i = 1, . . . , n, where each fi is
continuously differentiable and attains zero somewhere within s. Partition s into 2n−1 sub-
faces by bisecting each component interval of s. Then the expected number of sub-faces
intersected by all of the zero sets of fi, i = 1, . . . , n, (i.e. the average branching factor in
the corresponding part of the degree computation for s) is greater than 1

2 , but tends towards
1
2 as the component interval widths tend towards zero.

Intuitively, it seems more likely that an arbitrary curve intersecting a face will enter
more sub-faces than an arbitrary straight line, on average. For continuously differentiable
functions, as the size of the face becomes smaller, so the complexity analysis should become
increasingly similar to the linear case.

An average-case complexity analysis for arbitrary nonlinear functions is highly non-trivial.
One possibility may be to model a nonlinear function (or its derivative, for a continuously
differentiable function) as a random walk that intersects the face.

7.4 Data Analysis

To test in practice the characteristics of the face subdivision process in the recursive com-
putation of topological degree, a large number of randomly-generated examples were run.
A description of the software is given in Appendix A. The following categories of functions
F : Rn → Rn where F(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) were tested:

• Linear functions in Rn

fi(x1, . . . , xn) =
n∑

j=0

bijxj + ci, i = 1, . . . , n. (7.4)

• Simple quadratics in Rn

fi(x1, . . . , xn) =
n∑

j=0,j 6=i

(
aijx

2
j + bijxj

)
+ xi + ci, i = 1, . . . , n. (7.5)

• Quadratics with cross terms in Rn

fi(x1, . . . , xn) =
n∑

j=0

n∑
k=0

aijkxjxk +
n∑

j=0

bijxj + ci, i = 1, . . . , n. (7.6)

In every case, each of the coefficients aij(k), bij , and ci were randomly assigned floating-
point values in the range [−1, 1]. For each category, 1000 such instances were run, in each
case to compute the degree at zero, deg(F ,X, 0), with X = [−1, 1]n. The maximum required
search depth (over all faces) was recorded in each case.

94

7 Computation of Topological Degree

Linear Functions vs. Simple Quadratics

The results for problem types (7.4) and (7.5) with n = 2 are given in Figure 7.9.
Were each problem instance to consist of a single starting face, and assuming a fixed

average branching factor, we might expect the maximum search depth to exhibit an ex-
ponential distribution. Since each problem instance consists of 2n starting faces, however,
we can instead expect a negative binomial distribution. As the maximum search depth in-
creases, this asymptotically approaches an exponential distribution, where each increment
in the maximum search depth should correspond to a multiplication of the frequency by the
average branching factor. Both distributions here appear consistent with this model with
an average branching factor of about 1

2 .
There is a clear difference in the typical maximum search depth between the two problem

types. This appears to be consistent with Conjecture 7.2, but we should be careful about
drawing a firm conclusion — the difference may to a greater or lesser extent be attributable
to the interval arithmetic dependency problem (cf. Subsection 2.1.4), which is slightly in
effect for the simple quadratics (7.5) but not for the linear functions (7.4).

We should also note that the choice of random parameters does not necessarily conform
to the line family model of Subsection 7.3.4, nor do we filter out trivial instances where the
zero sets of one or more of the component functions do not intersect the box at all. Firstly,
this has the consequence that the frequency of cases where no subdivision at all is required
is not necessarily significant. Secondly, there may be a small sampling bias (e.g. towards
cases where the zero sets of the component functions tend to occur near the centre of the
box), which may affect the average branching factor (here, increasing it slightly from the
conjectured value of 1

2).

151050

400

300

200

100

0

Maximum Search Depth

F
re

q
u

e
n

cy

151050

300

200

100

0

Maximum Search Depth

F
re

q
u

e
n

cy

Figure 7.9: 1000 random degree computations: linear functions (left) and simple quadratics
(right) in R2.

95

7 Computation of Topological Degree

Simple Quadratics vs. Quadratics with Cross Terms

The results for problem types (7.5) and (7.6) with n = 3 are given in Figure 7.10.
The distributions of the maximum search depth are more clearly recognisable as negative

binomial distributions, asymptotically approaching exponential decay corresponding to an
average branching factor with a value close to 1

2 .
There is a significant difference in the mean maximum search depth, with the quadratics

with cross terms (7.6) requiring more face subdivision (and thus the generation of more
sub-faces and more computational effort overall). Again, this may be largely attributable
to the dependency problem, which has a stronger effect for this category of problem, where
each variable appears more often in the function expressions.

151050

300

200

100

0

Maximum Search Depth

F
re

q
u

e
n

cy

151050

250

200

150

100

50

0

Maximum Search Depth

F
re

q
u

e
n

cy

Figure 7.10: 1000 random degree computations: simple quadratics (left) and quadratics with
cross terms (right) in R3.

Simple Quadratics by Dimension

The results for problem types (7.5) with n = 2, 3, 4, 5 are given in Figure 7.11.
We can observe a gradual increase of the mean maximum search depth (a rightward shift

of the distribution) as n increases, which can be attributable to two factors: Firstly, the
overestimation of interval widths due to the dependency problem should increase broadly
linearly with n, since each of the n variables contribute additively. Secondly, we have a
number of starting faces equal to 2n. The negative binomial distribution exhibits just
such a shift as the number of trials increases. Thus, there is likely still a difference when
comparing single face instances of differing dimensions, but less marked.

It therefore seems reasonable to propose that the search depth does not intrinisically
increase with n, but rather is more linked to the lexical complexity or behaviour of (the
interval extensions of) the component functions. The asymptotic behaviour of the distribu-
tions remains the same and appears to be unrelated to n. This is strong evidence that the

96

7 Computation of Topological Degree

average branching factor is independent of the problem dimension.

151050

300

200

100

0

Maximum Search Depth

F
re

q
u

e
n

cy

151050

300

200

100

0

Maximum Search Depth

F
re

q
u

e
n

cy

151050

200

100

0

Maximum Search Depth

F
re

q
u

e
n

cy

151050

250

200

150

100

50

0

Maximum Search Depth

F
re

q
u

e
n

cy

Figure 7.11: 1000 random degree computations: simple quadratics in R2 (top left), R3 (top
right), R4 (bottom left), and R5 (bottom right).

7.5 Subdivision Strategy

The recursive degree-computation algorithm may essentially be regarded as a sequence of
interval computations upon faces. Instances leading to minimal computational effort arise
where no face subdivisions are incurred. Morever, the effort required for such cases is negligi-
ble in comparison to the average, non-trivial case. Considering an individual m-dimensional
face (or sub-face), the upper bound on the number of interval function evaluations is m,
i.e. there is a small fixed cost for each face. It is then clear that the overall computational
effort for a degree calculation is determined to a large extent by the number of faces which
are processed in total.

We have also seen that the processing of faces is in general characterised by a large
number which are discarded or designated and a relatively small proportion of ‘problem’

97

7 Computation of Topological Degree

faces. We are usually faced with a large number of sub-faces which descend from these one
or few crucial faces. In other words, it is the process of face subdivision which is responsible
for the majority of the computational effort. It is therefore reasonable to assume that the
choice of face subdivision strategy is a crucial design choice in an attempt to reduce average
computational effort.

In this section we present an abstract analysis, based on the assumption of precise and
complete knowledge of the solution sets of the relevant equations — knowledge which we
will not have in practice. While not therefore directly applicable, certain concepts are
elaborated which may be useful for motivating and guiding the design process for new
subdivision strategies.

7.5.1 Theoretical Optimal Strategy

Suppose we have a n-dimensional box X and a continuous function F : X → Rn given by
(7.1). Given an m-dimensional face which arises in a topological degree computation over
X, we are required to evaluate some or all of the functions fn−m, . . . , fn over the face. A
subdivision is required precisely when all of the resultant intervals contain zero; in this case
the face is partitioned into sub-faces. A sub-face will itself require further subdivision if all
of the interval evaluations over it contain zero. Ideally, therefore, we would partition the
original face into the smallest number of sub-faces that do not require further subdivision,
so that the total number of faces to be processed is minimised.

Abstracted Subdivision Problem

As before, we can abstract the notion of face subdivision away from the broader context of
computing the topological degree. Here we will consider the first iteration of the algorithm,
without loss of generality. Disregarding the assigned orientation, a face s can be considered
to be just an n−1-dimensional box in Rn. We have n continuous functions f1, . . . , fn : s → R,
not identically zero, with no zero in s common to all functions. We wish to partition s into
sub-boxes s1, . . . , sk such that for each si, i = 1, . . . , k, there exists some ji ∈ {1, . . . , n} for
which 0 6∈ fji(si), where the latter denotes the interval extension used for fji .

Definition 7.1 (Non-terminal). A face s is non-terminal, with respect to a set of (interval
extensions for) functions f1, . . . , fn, if ∀i = 1, . . . , n, 0 ∈ fi(s).

The non-terminal faces are precisely those which require subdivision in the degree com-
putation algorithm.

Definition 7.2 (Subdivision point). A subdivision point is a point chosen inside an n− 1-
dimensional face as the basis for a partitioning of that face into 2n−1 sub-faces, by dividing
all component intervals about that point. More generally, we may choose not to divide all
component intervals of a face s; in this case we just say that it is partitioned into sub-
faces s1, . . . , sk. The term subdivision will either refer to the partition itself (as a set of
sub-faces) or to the n − 2-dimensional box which forms the common boundary of any two
adjacent sub-faces. The context in which this is used should make the meaning unambiguous.

98

7 Computation of Topological Degree

Optimal Face Partitioning

Definition 7.3 (Optimal partitioning). A partitioning of s into terminal sub-faces s1, . . . , sk

is optimal, with respect to a set of (interval extensions for) functions f1, . . . , fn, if, for any
other partitioning into terminal sub-faces s′1, . . . s′l, k ≤ l, i.e. k is minimal.

Let us consider the solution set for each of f1(x) = 0, . . . , fn(x) = 0 over s. Under the
starting assumptions, each solution set must consist of one or more closed subsets of s of
dimension n − 2 or less: curves in R2, surfaces in R3, hypersurfaces in R4+. Under the
terminology of cylindrical decomposition (cf. Subsection 5.3.4), sign conditions on all the
fi will, collectively, form a stratification of s into manifolds.

Typical Case

Let us assume that the solution set of fi(x) = 0 for at least one i ∈ {1, . . . , n} does not
project fully onto all edges (child faces) of the face, viz. the box enclosure for the intersection
of the solution set of fi(x) = 0 with the face s is smaller than s itself.

The following abstract mechanism for determining the minimum number of subdivisions is
then proposed: We can arbitrarily select an n−2-dimensional cross-section of the face which
does not intersect at least one of these solution sets, by restricting one of the interval fields
to a point. This subset of the face can then be expanded (back into an n − 1-dimensional
box) by gradually extending the width of the interval field that was restricted, only until all
of the solution sets intersect — this now constitutes a non-terminal subface. We are now
guaranteed that at least one subdivision must occur within this designated region. Since
the last of the solution sets (continuous curves) to be included only intersects minutely, we
can be sure that only one subdivision within this region will suffice.

The remainder of the face can be partitioned by repetition of this method, assuming we
always remain in the typical case. We then have a partition into r1 + r0 (box) regions, of
which r1 should contain exactly one (distinct) subdivision, and r0 of which (possibly r0 = 0)
do not require a subdivision. Therefore the minimum possible number of subdivisions is
precisely r1, which results in an optimum partitioning into r1 + 1 sub-faces. With such a
partitioning, the maximum number of interval function evaluations over this face is thus
n(r1 + 1).

Example 7.5. Consider a 2-dimensional face s from a box in R3, where the solution sets
of f1(x) = 0, f2(x) = 0, f3(x) = 0 are as depicted in Figure 7.12.

• Starting from the left-hand edge of the face, we must have a sub-face which intersects
the f2(x) = 0 curve. Gradually extending this rightward, we can incorporate part of
f3(x) = 0 and finally we can just include the smallest part of f1 = 0. This is the first
region, R1, which must contain a subdivision.

• Continuing on in the same fashion, we can designate a region R2 which intersects
f1(x) = 0, f2(x) = 0, and the smallest part of f3(x) = 0.

99

7 Computation of Topological Degree

f (x)=0 f (x)=0 f (x)=0
 1 2 3

Figure 7.12: Solution sets of fi(x) = 0, i = 1, 2, 3, over a face s in Example 7.5.

• The left-hand edge of the remainder of the face (s\(R1∪R2)) is intersected by all three
solution sets, so we can instead expand a new region from the top. This can grow down
until it finally includes f1(x) = 0 in its corner. This region is designated R3.

• The remaining region, R4, is not intersected by f2(x) = 0, so it need not contain a
subdivision.

We thus have a partition into four regions; R1, . . . , R4, three of which (R1, R2, and R3)
need a subdivision, as depicted in Figure 7.13. An optimal subdivision using precisely three
subdivisions, i.e. into four subfaces (s1, . . . , s4), is therefore possible, as illustrated in Figure
7.14.

The reader’s attention is drawn to the difference between the partition of the face into the
regions Ri, each of which must contain a subdivision, and the (example) partition into the
actual sub-faces si.

The analysis here is predicated upon the assumption of exact interval arithmetic (i.e.
ignoring the dependency problem), which is in general not delivered in practice. To cater
for interval extensions of functions, the individual solution sets may need to be expanded;
also their extent (and the extent of overestimation) depends on the size of the (sub-)face in
question. However, the approach is still fundamentally applicable.

Linear Case

In the case where all of the fi are linear, the solution sets of all fi(x) = 0 can be determined
exactly, and it is feasible to actually implement some variant of an optimal subdivision
strategy. This is of limited merit in itself, since the computation of topological degree for
linear systems is easy in any case. However, if a sufficiently good approximation can be
found for each solution set over a face, a method based on this optimal strategy may also
be applicable for nonlinear systems.

Maximal Projection Case

In the (presumbly rare) case where the solution sets for all of the fi(x) = 0 project onto
all the edges of the face, the optimal partitioning technique outlined above can not be

100

7 Computation of Topological Degree

R R

R

R

1 2

3

4

Figure 7.13: Partitioning of the face s into regions R1, . . . , R4 in Example 7.5.

1s s2

s3

s4

Figure 7.14: Example optimal partitioning of the face s into terminal sub-faces s1, . . . , s4

in Example 7.5.

101

7 Computation of Topological Degree

performed, since any n−2-dimensional cross-section that is chosen will intersect all solution
sets. Such an example is illustrated in Figure 7.15.

f (x)=01 f (x)=02 f (x)=03

Figure 7.15: Optimal face partitioning in the maximal projection case (where the zero sets
of each fi intersect each edge).

Here, finding a partitioning which is optimal is a significantly harder problem than for the
typical case. We may briefly sketch a couple of possible approaches to this. The first is to
observe that, although all solution sets project fully onto all edges of the face, it is possible
to find sub-faces which do not have this maximal projection property. Any such sub-face,
falling into the typical case, can be resolved by the former method. It therefore suffices to
find a good way to partition the face into sub-faces with this property — this is in itself an
optimal partitioning problem! So we have nested optimal partitioning problems; furthermore
it is the case that an optimal partitioning into individually optimally-partitioned sub-faces
does not necessarily constitute an overall partitioning that is optimal. This is clearly an
extremely hard searching problem.

The other approach that we may mention, like the typical case, relies on enumerating the
smallest possible subsets of the face which must contain a subdivision, except that instead
of starting with a cross-section of the face, we start with a corner. From each corner, we
can expand box subsets (which must initially be terminal) until they only just become
non-terminal (where the last solution set enters minutely). As before, the remainder of
the face can be handled repetetively. The difficulty here is that we can consider expanding
these box subsets in more than one dimension (for faces of dimension 2 or more), so that
there are more degrees of freedom in determining such minimally non-terminal regions.
(In the typical case, these regions were uniquely determined from any given cross–section,
leading to a single partitioning.) The number of remaining divisions that may be required

102

7 Computation of Topological Degree

is dependent on the choice of initial region. The choice of each region can be described
by n − 2 variables, and we may need many regions, so we have a nonlinear minimisation
problem. Since it is likely that the system of equations and inequalities which governs such
an optimal partitioning may well be larger and more complicated than the original system
under examination, the effort required to solve it would very likely not be worthwhile.

In conclusion, it is plausible to outline strategies that give very good face partitionings —
optimal ones in many cases — but not strategies that give provably optimal ones in all cases.
Although the abstract problem of finding optimal partitionings is useful for motivating the
design of practical algorithms, we have seen here that the problem of finding an optimal face
partitioning can be more difficult to solve than the entire original degree computation. In
terms of reducing computational effort, therefore, any attempt at a comprehensive optimal
face–partitioning algorithm would be counterproductive — any further analysis here would
thus only satisfy an esoteric, not a practical, interest.

7.5.2 Worst Case Analysis

Theorem 7.1. For any particular instance of a face s and functions fi given by (7.1)
satisfying the preconditions of the topological degree computation algorithm, the number of
sub-faces in any optimal partitioning is bounded above.

Proof: Let

M = min

{
n∑

i=1

|fi(a)|

∣∣∣∣∣ a ∈ s

}
.

Since there are no common zeros of all n functions fi, M > 0.
Choose some i ∈ {1, . . . , n} and some point a ∈ s. It is assumed that each fi is continuous

over all of s, in particular at a. Therefore ∃ δ > 0 such that

|x− a| < δ ⇒ |fi(x)− fi(a)| < M

n
.

Let us choose such a δ for each instance, and label it δi,a.
Let

δs = min {δi,a | a ∈ s, i = 1, . . . , n} > 0.

Now let us select any point a ∈ s. ∃ j ∈ {1, . . . , n} such that |fj(a)| ≥ M
n . (If this were not

so, we would have |fj(a)| < M
n for all j, which would contradict the definition of M .) For all

x in the neighbourhood Nδs(a), |fj(x) − fj(a)| < M
n . Therefore for all such x, |fj(x)| > 0.

Any sub-face chosen within Nδs(a) will therefore be terminal. A sub-face centred on a, say,
with each interval width equal to n

√
δs will suffice.

We can place a lattice of points, with lattice width n
√

δs in each dimension, over the whole
of s, and partition s by assigning one sub-face to be centred over each lattice point. The
size of each sub-face guarantees that it is terminal. If s = [x1, x1]× . . .× [xn, xn], an upper
bound on the number of such subfaces is

n∏
i=1

⌈
xi − xi

n
√

δs

⌉
. 2

103

7 Computation of Topological Degree

This (crude) upper bound limits the number of sub-faces required in any optimal (or
worthwhile — see below) subdivision for any given problem, and proves that the problem
of face subdivision is solvable with finitely many sub-faces.

Can we find a general upper bound on the number of necessary sub-faces for a broad
category of problems? To address this, we define the following:

Definition 7.4 (Crucial box). Given an instance of a face s and functions fi as before, the
crucial box of s is the smallest (with respect to the largest component interval width) box
subset of s that is non-terminal.

The crucial box must therefore contain a subdivision, but if it is small, it is a region which
is unlikely to contain a subdivision which is chosen at random, which may be problematic.

f (x)=01

f (x)=03

f (x)=02

Figure 7.16: Crucial boxes (shaded) and optimal partitioning (dotted lines) in troublesome
linear case.

It is possible (although it is unlikely to occur in practice) to construct an example face
which has many crucial boxes. For example, a 2-dimensional face in R3 intersected by
the zero sets of three similar linear functions, illustrated in Figure 7.16. If these zero
sets (straight lines) are close and parallel, we can have many small crucial boxes whose
corresponding component intervals do not intersect at all. In this case, it is not possible
to construct a subdivision which enters more than one of the designated crucial boxes.
Therefore, the number of subdivisions (and sub-faces) required is bounded below by the
number of crucial boxes. Problems can be chosen which have arbitrarily many (arbitrarily
small) such crucial regions, for example by making the three straight lines arbitrarily close
together. In other words, for any proposed general fixed upper bound on the number of
required sub-faces, a problem can be (quite easily) constructed which disproves it. The

104

7 Computation of Topological Degree

minimum Hausdorff distance between any two solution sets within the face would seem to
be a reasonable metric for the severity of this problem.

In the parlance of the proof for the individual case above, the size of the crucial box is
related to the absolute joint function minimum M , and also to the bounds on the partial
derivatives of the fi over the face. For a category of problems with a concrete (non-zero)
lower bound on M , and upper bounds on the absolute value of the partial derivates, an
upper bound on the number of subdivisions does exist. Where the partial derivatives can
be made arbitrarily large, or M arbitrarily small (as in the category of problems with parallel
linear solution sets) there is no such bound.

7.5.3 Robustness of Subdivision Strategies

We have seen above that any given face subdivision problem is solvable with finitely many
subdivisions and subfaces. This does not guarantee, however, that all subdivision algorithms
will terminate with a finite number of sub-faces processed. In the same way that it is possible
to have an infinite descending sequence of real numbers with a lower bound, it is possible
to subdivide a face in a manner which removes increasingly smaller sub-faces ad infinitum,
but which always leaves a certain region undivided. If the untouched region is non-terminal,
the process will not terminate.

Definition 7.5 (Robust). A face subdivision algorithm is robust if, after having performed
N subdivisions, the maximum component interval width wN of any distinct remaining non-
terminal regions is related to N with the property that wN → 0 as N →∞.

A robust algorithm therefore has the property that any remaining non-terminal ‘problem’
region can be made arbitrarily small by performing a finite number of subdivisions. Since
we can place a limit on the smallness of any crucial box, remaining regions can be made
smaller than this, at which point they must be terminal. A robust algorithm is therefore
terminating, at least in theory. If we are using an inclusion isotone (see Definition 2.12)
interval arithmetic with the property that, for a box X and well-conditioned function f ,
the computed value of the interval extension f(X) tends to the box enclosure of the true
value of f(X) as the size of X tends to zero, the algorithm will be terminating in practice,
since we will always be able to find sufficiently small sub-faces which are deemed, even with
imperfect interval evaluation, not to require subdivision, in finite time.

It should be possible to construct an example problem which will cause failure to terminate
for a non-robust subdivision algorithm. Bisection is an example of a robust subdivision
algorithm. An algorithm which only ever divides a face in one dimension would be non-
robust.

7.5.4 Worthwhile Subdivision — A Realistic Strategy

The abstract strategies for face partitioning discussed above rely upon precise and detailed
knowledge of the solution sets for all the fi(x) = 0. We are not likely to have this infor-
mation, however, nor be able to obtain it easily — if we did then the whole topological

105

7 Computation of Topological Degree

degree calculation could likely be performed without recourse to the recursive algorithm at
all. It is clear that in practice we must reckon with not having access to such knowledge.
As an aside, such detailed analysis of the function behaviour in the interior of a face also
sits rather awkwardly with the principle of boundary determinism, which is fundamental to
topological degree (cf. Subsection 4.2.1).

Some form of analysis of the behaviour of the functions within the box (or a face) may
still be useful, however. Such analysis has a computational cost, so when trying to minimise
the overall computational effort for processing a face, a balance must be drawn between
the cost of choosing the point(s) of subdivision, and the cost of the mechanistic subdivision
itself. A method of subdivision point selection is only worthwhile if it is at least as cheap
as the probable savings made by reducing the number of faces to be processed overall.

As has been illustrated above, it is possible to partition a face in an elaborate fashion,
but a simple computational scheme is to pick a single subdivision point, and subdivide the
face around that. (Each component interval is divided around the point, so that an n− 1-
dimensional face is partitioned into 2n−1 subfaces.) This is also the scheme used in the
original outline method of Aberth [Abe94]. It seems reasonable that any heuristic method
which selects a single point is likely to be less costly than a method to select a number of
points (or some other hybrid structure which can represent a partitioning).

Definition 7.6 (Worthwhile subdivision). Given an n−1-dimensional face s and functions
fi as above, consider the topology of the face where the loci of f1(x) = 0, . . . , fn(x) = 0 are
drawn upon it. A worthwhile subdivision of s is a partition of it into 2n−1 sub-faces about
a point p, all of which are topologically different (in general, they have a simpler topology)
than the original face. Therefore a subdivision is only non-worthwhile if there is at least one
sub-face which is homeomorphic to the original face with respect to the solution sets inside
and on each edge (i.e. the corresponding child faces are likewise homeomorphic).

p
2

p
1

Figure 7.17: Worthwhile (left) and non-worthwhile (right) subdivisions of a face.

An example of a worthwhile and non-worthwhile subdivision of a face is given in Figure
7.17.

106

7 Computation of Topological Degree

Intuitively, therefore, with a worthwhile subdivision, it seems we are making some progress
towards splitting the face into a series of manageable chunks, even if further subdivisions
may be required. More formally:

Conjecture 7.3. A worthwhile subdivision can always be performed on a non-terminal face.

Conjecture 7.4. A sequence of worthwhile subdivisions on a face will lead to completion
of the degree computation (i.e. all final sub-faces are terminal) in a finite number of steps.

If both of these conjectures are true, then firstly the existence of a worthwhile subdivision
algorithm is plausible, and secondly, any such algorithm will be terminating.

7.5.5 Identifying the Fatal Box — A Key Sub-Problem

Definition 7.7. Considering an n − 1-dimensional face s arising in a topological degree
computation of F over some box X in Rn, the fatal box of s is the smallest box subset of the
face containing all points for which all but one of the functions f1, . . . , fn are simultaneously
zero. The fatal box is undefined if there are fewer than two such distinct points.

fatal box

Figure 7.18: Fatal box of a face.

An example fatal box of a face is depicted in Figure 7.18.
Any subdivision point chosen inside the fatal box will lead to a worthwhile subdivision of

the face, although the fatal box need not be non-terminal (but probably is). It is proposed
that new subdivision methods might rely on either computing an estimate to the fatal box,
and selecting a subdivision point inside, or computing a subdivision point directly which is
likely to lie within the fatal box.

107

7 Computation of Topological Degree

7.5.6 Is Bisection Optimal?

In the absence of any educated guess as to where might be a good place to put a subdivision
point, locating it squarely in the centre of the face would seem to be an eminently sensible
strategy. This partitions an m-dimensional face into 2m sub-faces of equal size. Offering
the maximum rate of largest sub-face shrinkage with respect to search depth, it seems a
plausible scheme to minimise the search depth, since, in general, the probability of a sub-face
requiring further subdivision is proportional to its size.

Bisection is the usual default strategy for most branch-and-bound schemes for solving
systems of equations. In some cases, it can be proved to be optimal, e.g. finding the root
of a univariate function over an interval, based on function evaluations [Sik82, Sik97].

The likely size (and existence) of the fatal box of a face depends upon the class of functions
fi. For a general analysis, though, let us assume that the fatal box is located arbitrarily
within the face, its vertices designated randomly. (This assumes that there is no correlation
between the extent of the fatal box and the dimension; it is however possible that such a
relationship exists.) For an individual component interval of the face, the probability of the
two endpoints of the corresponding component interval of the fatal box occuring in opposite
halves of it is 1

2 . This is equivalent to the probability that the interval field of the fatal box
includes the midpoint of the interval field for the face. Compounding this probability over
all interval variables, we have the probability of the midpoint of an n− 1-dimensional face
occurring within the fatal box as 1

2n−1 , i.e. it becomes increasingly unlikely with higher
dimension.

Bisection of faces does not nearly always produce the minimum number of sub-faces, as
illustrated by an example (see Figure 7.19; the three zero sets, two perpendicular lines and
a circle, are given by continuous lines and the (successive) subdivisions by dotted lines). In
such cases, it seems that perhaps an informed choice of subdivision point would prove more
effective.

subdivision inside fatal box bisection

Figure 7.19: Bisection is not always optimal.

Bisection is robust (cf. Definition 7.5). Upon each face subdivision, the width of each
interval field of each sub-face is halved — the sub-face size decays exponentially (asymptot-

108

7 Computation of Topological Degree

ically approaching zero) with subdivision depth.

7.5.7 Random Subdivision

It is possible to pick an arbitrary point of subdivision within the face totally at random.
While this is likely not a good strategy in itself, it is useful for the purposes of comparing
against other variants. If a heuristic subdivision algorithm which picks some subdivision
point in a probabilistic way proves to be better in practice than a random choice, then that
is evidence of merit. (Although if still worse than bisection, it is perhaps of questionable
merit.)

Let us again consider an arbitrarily located fatal box within a face, and calculate the
probability of a random subdivision point occurring within it. In the one-dimensional case,
let the face be given by the interval [a, b] and the fatal box by the interval [x, y], where x
and y are random points within [a, b]. What is the probability of a random (subdivision)
point in [a, b] being contained within [x, y]? The expected width of the fatal box, w([x, y])
can be determined as follows:

E(w([x, y])) =
1

(b− a)2

b∫
a

b∫
a

|y − x| dxdy

=
1

(b− a)2

b∫
a

 y∫
a

(y − x)dx +

b∫
y

(x− y)dx

 dy

=
1

(b− a)2

b∫
a

[
yx− 1

2
x2

]y

a

+
[
1
2
x2 − yx

]b

y

dy

=
1

(b− a)2

b∫
a

y2 − (a + b)y +
1
2
(a2 + b2)dy

=
1

(b− a)2

[
1
3
y3 − a + b

2
y2 +

1
2
(a2 + b2)y

]b

a

=
1

(b− a)2

(
1
3
b3 − b2a + a2b− 1

3
a3

)
=

1
3
(b− a).

The probability of a random point in [a, b] also being contained within [x, y] is therefore 1
3 .

Extending to an n− 1-dimensional face, the probability of a random point being contained
within an arbitrary fatal box is 1

3n−1 . This compares poorly to bisection and demonstrates
that bisection is a clearly better strategy than choosing a random subdivision point.

Random subdivision is robust, assuming a true random choice of subdivision point. The
probability of an infinite sequence of random real numbers chosen inside a given interval all

109

7 Computation of Topological Degree

excluding any given non-zero sub-interval is zero. Therefore the size of sub-faces will tend
to zero as subdivisions are chosen randomly. A poor pseudo-random choice of subdivision
points could however cause the algorithm not to terminate.

7.5.8 A Newton Method

Here we present an outline of a proposed heuristic method for choosing a subdivision point.
Given the problem setup as before and an n − 1-dimensional face s, it is based on the
following hypotheses:

• The point in s which minimises the value of |f1| + . . . + |fn| is more likely to yield a
worthwhile subdivision than a point chosen at random.

• A projection of the nearest solution to f(x) = 0 onto s is a reasonable approximation
to such a point.

The method is as follows (and is also illustrated in Figure 7.20):

proj (p)
 1 s

f (x)=0

f (x)=0

f (x)=0

p
p

s

O

 1

 2

 3

0
1

Figure 7.20: Newton method: an example 2-dimensional face in R3.

1. Set p0 to be the midpoint of s.

2. Perform one Newton iteration with p0, giving p1 as an estimate to a solution of f(x) =
0.

3. Project p1 onto the (hyper-)plane containing s.

110

7 Computation of Topological Degree

4. If this new point lies within s, use it as a subdivision point. Otherwise, resort to using
p0 (the midpoint).

A variant of this strategy would be to use the Newton method on all possible subsystems
with one function fi removed, and by taking the box hull of their projections onto s, thereby
compute an estimation for the fatal box, from which the midpoint is taken.

7.6 Conclusions

There may be both a theoretical and a practical interest in topological degree computation;
let us deal with both in turn.

In Section 7.2 we listed a number of candidate factors which may determine the computa-
tional effort for a problem instance. Before proceeding further, it may be wise to distinguish
between trivial and non-trivial instances. In trivial cases at least one component function
can be bounded away from zero over the box; in such a case no subdivision is required.
Let us therefore consider contributing factors to the complexity for non-trivial instances,
i.e. where subdivision is required and/or at least one face or sub-face is designated. Based
on the analysis performed in Sections 7.3 and 7.4, we may estimate an ordering for these
factors, in order from most deterministic to least deterministic, as follows:

• Behaviour of enclosures for component functions over the box: How wide
are the enclosures for the ranges of the component functions, how quickly do they
contract upon subdivision, and how quickly can zero be excluded? As noted above,
for non-trivial cases, all such enclosures are assumed to contain zero. Where all the
enclosures still stubbornly include zero even after a number of subdivisions, few of the
sub-faces are terminal and the local branching factor is high, requiring a great number
of sub-faces to be processed.

The answers to these questions are actually dependent upon a number of sub-factors
(nonlinearity of functions, interval overestimation, and proximity of solutions to the
boundary), which are listed below:

• Nonlinearity of component functions: Where the component functions are highly
nonlinear, the loci of their solution sets have a more complicated structure, meaning
that potentially several distinct worthwhile subdivisions are required.

• Problem dimension (number of variables): The dimension n is unavoidably
strongly related to the complexity. Although we have posited that the average branch-
ing factor is independent of n, and the number of starting faces increases only linearly
with n, where subdivision is required the number of sub-faces generated by a subdi-
vision increases exponentially with n.

• Overestimation in interval arithmetic implementations of functions: The
effect of the dependency problem in interval arithmetic would seem to have a moderate

111

7 Computation of Topological Degree

impact (although this factor has not been explicitly investigated), making somewhat
more subdivisions necessary before zero can be excluded from a component function
enclosure.

• Proximity of solution(s) to the boundary of the box: Where a common zero of
all component functions is close to a particular face, the face is likely to have a small
crucial box. The smaller a crucial box, the more difficult it is to subdivide within it,
or the larger the sequence of subdivisions required.

• Number of solutions to the system within the box: This has only an indirect
effect — the extent of each component function zero set appears to be more important.
Indeed, one can construct trivial instances (e.g. Example 7.1) with multiple solutions
within the box.

• Box volume: If we assume that the problem is non-trivial, then the size of the box
appears not to matter much. However, the box volume and location may play
a major role in determining whether a problem is non-trivial or not in the
first place.

From a practical perspective, and given the subject area of this thesis, it is envisioned that
the topological degree is principally useful as a component of branch-and-bound methods
for solving systems of equations. It is difficult to avoid the conclusion that the generally high
and unpredictable complexity of the method remains a fundamental limitation for its use
as a low-level component (e.g. a repetetive root isolator or verifier for sub-boxes) within a
branch-and-bound scheme. Nevertheless, where the topological degree computation is fast,
the root-counting property may be a powerful asset. The issues are not only how to speed up
the degree calculation, but also when to apply it judiciously in such a scheme; application
to every single sub-box may be excessive. It may be considered as a root-designation,
preprocessing, or verification tool for other iterative or subdivision-based methods, which is
not designed to be used in every iteration. For example, it may be suitable for application
to boxes of terminal width.

Some further remarks on the applicability of the topological degree method are given in
Chapter 11.

112

8 Solution of Systems of Polynomial Equations

In this chapter we present a method for finding all solutions to a system of polynomial
equations within a given box [GS01b]. Central to this algorithm is the expansion of the
component multivariate polynomials into Bernstein polynomials, which were introduced in
Chapter 3; see also Chapter 9. After subdivision, a union of small sub-boxes which enclose
the set of solutions is generated by way of an existence test. Some rules for selecting the
bisection direction are proposed, and tested with some numerical examples. Additionally, a
preconditioning step is developed in order to reduce the computational cost of the existence
test [GS01a]. Under the categorisation proposed in Subsection 5.3.1, this is a robust global
solver utilising interval arithmetic.

As in Chapter 5, let us write our system of polynomial equations as P = 0, where
P : Rn → Rn is comprised of n polynomials pi, i = 1, . . . , n, in the real variables x1, . . . , xn.
Let a box X in Rn be given and let the maximum degree of all the pi be l = (l1, . . . , ln).
We wish to compute the set of all solutions (in this case, tight box enclosures for each
individual solution) to the system of equations P = 0 within X, cf. (5.2). The existence
test and preconditioning may be more broadly applied to systems of continuous nonlinear
equations fi(x) = 0, i = 1, . . . , n, although in this case the Bernstein expansion may no
longer be (directly) employed.

8.1 Algorithm

The algorithm (cf. [GS01b]) consists of two main parts. In the first stage the starting
box, together with corresponding Bernstein coefficients (cf. Subsection 3.1.2) of each of
the polynomials, is successively subdivided into sub-boxes. After each subdivision, a test is
performed to prune out those sub-boxes which cannot contain a solution. The second stage
begins once all sub-boxes are sufficiently small; it comprises an existence test.

In the case that the number of the equations does not equal the number of the variables,
the first stage of the algorithm is still applicable; it is possible to obtain an enclosure for
the solution set as a union of boxes. However the existence test could no longer be applied.

8.1.1 Subdivision and Pruning

Firstly, the Bernstein coefficients of each polynomial pi, i = 1, . . . , n, over the starting box
X are computed and stored (cf. the algorithm in Subsection 3.3.1). The domain is then
repeatedly subdivided into sub-boxes, and the Bernstein coefficients of the polynomials over
these sub-boxes are computed simultaneously (cf. the algorithm in Subsection 3.3.2 and the
description of the sweep procedure, below).

113

8 Solution of Systems of Polynomial Equations

An exclusion test is performed on each box: If any one of the polynomials pi has an
entire set of Bernstein coefficients which are either wholly negative or wholly positive (cf.
[BCR08]), then we can be sure from the range enclosing property of the Bernstein expansion
(3.17) that that polynomial cannot attain zero over the box, and that therefore the box
cannot contain a solution to the system. The infeasible boxes which fail this exclusion test
are thus discarded and do not need to be subdivided further. In this fashion the total
number of boxes to be processed is kept down to a manageable level.

This stage of the algorithm is complete once all of the boxes have side lengths which are
smaller than a predetermined width ε > 0. There are now zero or more boxes of very small
volume which may contain a solution to the system.

Sweep Procedure

The bounds obtained by the inequalities (3.17) are in general tightened if the box X is
bisected into sub-boxes and the Bernstein expansion is applied to each polynomial pi over
these sub-boxes. A sweep in the rth direction (1 ≤ r ≤ n) is a bisection of a box perpendicu-
lar to this direction and is performed efficiently by recursively applying a linear interpolation
according to the algorithm in Subsection 3.3.2, where λ = 1

2 . A simple example sweep in
the case of two variables is depicted in Figure 3.4. A single sweep requires O(l̂n+1) additions
and multiplications, where l̂ = maxn

i=1 li, cf. [ZG98].

Subdivision Direction Selection

A heuristic sweep direction selection rule is employed in an attempt to minimise the total
number of sub-boxes which need to be processed. For example, a rule may favour directions
either in which the polynomials have large partial derivatives and/or in which the box edge
lengths are larger, in order to avoid repetitive sweeps in a single direction. Let the current
box be Xcur = [x1, x1]× . . .× [xn, xn], where the number of subdivisions already performed
on it (i.e. the current depth in the subdivision tree) is depth. Following in part the proposals
of Ratz and Csendes [RC95], the method is tested with the following variant rules for the
selection of the subdivision direction r:

• C: Each direction is chosen in sequence and the sequence is repeated. Each direction
is thus afforded an equal bias (in the long run) and this rule is used as a control.

r := (depth mod n) + 1.

• D1: We compute an upper bound for the absolute value of the partial derivative for
each direction on each polynomial over the box. In each direction, we sum these values
over all polynomials, and select the direction for which the product of box edge length
and partial derivative sum is maximal. Tight bounds on the partial derivatives are
readily computed from the available Bernstein coefficients according to the algorithm

114

8 Solution of Systems of Polynomial Equations

in Subsection 3.3.4.

r maximises

(
n∑

i=1

∣∣∣∣∂pi

∂r
(Xcur)

∣∣∣∣
)

(xr − xr) .

• D2: As D1, except that we take the maximum of the upper bounds for the absolute
value of the partial derivatives over all polynomials for each direction (instead of their
sum), and then multiply by the box edge length, as before.

r maximises
(

max
i=1,...,n

∣∣∣∣∂pi

∂r
(Xcur)

∣∣∣∣) (xr − xr) .

8.1.2 Existence Test

At the start of the second stage, we have remaining zero or more (likely several or many)
ε-boxes, viz. boxes with side lengths smaller than ε, that are of sufficiently small volume.
In order to separate those boxes which do not contain a solution from those which do, an
existence test is performed.

We use the existence test of C. Miranda [Mir41] (see below). Miranda’s theorem provides
a generalisation of the intermediate value theorem (in particular the fact that if a univariate
continuous function f attains values of opposite sign at the two endpoints of an interval,
then the interval must contain a zero of f) to many dimensions. The theorem bears a close
relationship to Brouwer’s fixed point theorem (Theorem 4.1) and can be proven using it.

Theorem 8.1 (Miranda). Let X = [x1, x1]× . . .× [xn, xn]. Denote by X−
i := {x ∈ X |xi =

xi} and X+
i := {x ∈ X |xi = xi} the pair of opposite parallel faces of X perpendicular to

the ith coordinate direction.
Let F = (f1, . . . , fn) : X → Rn be a continuous function. If there is a permutation

(v1, . . . , vn) of (1, . . . , n) such that

fi(x)fi(y) ≤ 0 for all x ∈ X−
vi

, y ∈ X+
vi

, i = 1, . . . , n, (8.1)

then the system of equations F(x) = 0 has a solution in X.

A short proof of Miranda’s Theorem was given by M. N. Vrahatis [Vra89], cf. [Vra95].
It should be noted that the result provides a proof of existence, but not a proof of

uniqueness. Neither is this a necessary condition for a solution, so boxes for which the test
(8.1) fails are not proven to lack one. However if the test is augmented with, e.g., a proof
of monotonicity (which can easily be obtained by bounds on the Bernstein enclosure of the
partial derivatives), which generally holds for small boxes, then a non-existence proof is
achieved.

The test (8.1) requires the computation of the ranges attained by each polynomial over
the 2n faces of each box, in numerous permutations. This can be achieved very cheaply by
utilising the corresponding subarrays of Bernstein coefficients; the Bernstein coefficients of
each pi on the faces of X are known once the Bernstein coefficients of pi on X are computed,
cf. Lemma 3.1 in Subsection 3.2.2.

At the end, there are zero or more ε-boxes which are thus guaranteed to contain a solution
to the system.

115

8 Solution of Systems of Polynomial Equations

8.2 Examples

We first begin with a simple illustrative example:

Example 8.1. Let

p1(x, y) = 0.0625x2 + 0.1111y2 − 1,

p2(x, y) = 0.06x2 + 0.12y2 − 1.

The zero sets of p1 and p2 are two very similar ellipses which intersect at four distinct
points (see Figure 8.1). At the end of the subdivision and pruning step, after subdividing the
starting box of [−5, 5]× [−5, 5] eight times in each direction, ε-boxes of width approximately
0.04 remain. Due to the proximity of the zero sets, we have many dozens of such boxes where
both p1 and p2 cannot be bounded away from zero (see Figure 8.1, bottom-left). However
only those four boxes which contain the four solutions pass the Miranda test; the others may
be discarded.

We can see here that the Miranda test coupled with the Bernstein enclosure can be very
effective in correctly filtering small candidate boxes for solutions.

The method was further tested for some of the sample problems used by Sherbrooke and
Patrikalakis [SP93] (SP) and Jäger and Ratz [JR95] (JR); see Table 8.1. The polynomial
in SP2 is the Wilkinson polynomial.

The maximum subdivision depth is chosen to achieve the same tolerance as used in SP
and JR, respectively. In each case, we record in Table 8.2 the total number of boxes
processed (which is equal to twice the number of sweep operations, plus one), the number
of Miranda tests performed, and the execution time (averaged over 5 repeat runs). These
examples were run on a old PC equipped with a 450MHz Pentium III processor (broadly
comparable but up to an order of magnitude faster than used in SP and JR).

Some categories of problems (e.g. those for which all the component polynomials are
similar and have coefficients of the same magnitude) seem to require subdivision in all
directions equally; for these cases we observe no appreciable difference in the output data
between the control (C) and the derivative-based methods (D1, D2). In other cases we
notice that the choice of the sweep direction based on the absolute value of the partial
derivatives is effective in reducing the overall number of boxes that are processed and the
number of Miranda tests required. There is very little difference between the sum (D1)
and maximum (D2) variants. A choice of sweep direction based on maximal box edge
length seems obvious, but this metric is seen to be improved by weighting according to (i.e.
multiplying by) the magnitude of the partial derivatives — it is better to contract faster
with respect to those variables that have a more dominant effect on the values attained
(locally) by each component polynomial.

A greater variance in the number of Miranda tests (and the computation time) between
the methods may be observed for a range of differing subdivision depths, corresponding to
alternative tolerances not used in SP and JR. The timings compare mostly favourably to
those reported by SP and JR, but we should note that the processor capability available
to us is approximately an order of magnitude faster.

116

8 Solution of Systems of Polynomial Equations

−5 5
−5

5

−5 5
−5

5

−5 5
−5

5

−5 5
−5

5

Figure 8.1: Example 8.1: ε-boxes enclosing the zero set of p1 (top-left), the zero set of p2

(top-right), the intersection of both zero sets (bottom-left), and those for which
the Miranda test succeeds (bottom-right).

117

8 Solution of Systems of Polynomial Equations

Name X Tolerance Max. subdivision depth #Solutions
SP1 [0, 1]2 10−8 53 1
SP2 [0, 21] 10−7 28 20
SP3 [0, 1]2 10−8 53 9
SP4 [0, 1]6 10−8 159 4
SP5 [0, 1]2 10−14 93 1
JR2 [−1, 1]3 10−12 123 2
JR4 [−1, 1]3 10−12 123 8

Table 8.1: Starting boxes, subdivision depths, and numbers of solutions for the example
systems of polynomial equations.

Example Method C D1 D2
SP1 Number of boxes 205 183 183

Miranda tests 2 1 1
Time (s) 0.02 0.02 0.02

SP2 Number of boxes 983 identical results
Miranda tests 20 (sweep in one direction only)
Time (s) 0.12

SP3 Number of boxes 2493 2245 2245
Miranda tests 28 20 20
Time (s) 0.29 0.27 0.29

SP4 Number of boxes 6901 6315 6789
Miranda tests 15 12 9
Time (s) 11.99 10.15 8.69

SP5 Number of boxes 5141 5131 5131
Miranda tests 31 32 32
Time (s) 0.80 0.80 0.85

JR2 Number of boxes 3705 3571 3655
Miranda tests 16 16 16
Time (s) 0.77 0.77 0.82

JR4 Number of boxes 8759 5895 6173
Miranda tests 27 22 22
Time (s) 3.05 2.23 2.49

Table 8.2: Total numbers of boxes and Miranda tests for the example systems of polynomial
equations.

118

8 Solution of Systems of Polynomial Equations

8.3 Reduction of Computational Cost and Preconditioning

We may improve the method of Section 8.1 by an optimisation of the permutation-checking
procedure and the addition of a preconditioning step (cf. [GS01a]). The former reduces the
computational complexity and the latter enables the avoidance of failure cases.

The results of this section are valid for general continuous functions.

8.3.1 Permutation Checking

A straightforward implementation of the Miranda test (Theorem 8.1) requires all possible
permutations (v1, . . . , vn) of (1, . . . , n) to be checked; this exhibits complexity O(n!) with
respect to each individual component test (8.1), since in the worst case this test has to be
performed n! times. As it stands, therefore, the test is only feasible for small n.

Here we propose a more efficient method for checking all permutations. We begin with
a partial uniqueness result: Suppose that the ith part of a component Miranda test (8.1),
i.e. the test for the component function fi, for some i ∈ {1, . . . , n}, is successful for some
k ∈ {1, . . . , n}, i.e.

fi(x)fi(y) ≤ 0 ∀x ∈ X−
k , ∀y ∈ X+

k . (8.2)

Assume that there exist j ∈ {1, . . . , k − 1, k + 1, . . . , n} and X∗
k ∈ {X

−
k ,X+

k } such that

fi(x) 6= 0 ∀x ∈ X∗
k ∩ (X−

j ∪X+
j). (8.3)

Note that the intersection of two differing non-opposite faces of a box is their common child
face (using the terminology of Subsection 4.4.1), which is a face of one lower dimension, i.e.
dimension n− 2. In the polynomial case, this condition can easily be checked by inspection
of the Bernstein coefficients on the two corresponding (n−2)-dimensional faces of the array
of Bernstein coefficients of the polynomial over X, cf. Lemma 3.1. It follows then from
(8.2), noting that fi cannot attain both positive and negative values over X∗

k, that

∃v ∈ X∗
k ∩X−

j , w ∈ X∗
k ∩X+

j : fi(v)fi(w) > 0,

so that the component Miranda test is sure to fail for fi on the face pair (X−
j ,X+

j). There-
fore, if condition (8.3) is fulfilled for all other face pairs (X−

j ,X+
j), with j 6= k, then the

pair (X−
k ,X+

k) is the only one for which the component Miranda test will be successful.
However, the condition (8.3) may not be satisfied, cf. Example 8.2. We will consider below
how to ensure that it may be fulfilled, by applying preconditioning.

Where (8.3) is satisfied, the computational cost of the overall Miranda test may be re-
duced, with O(n2) complexity, as follows: Define an n× n matrix M = (mij) by

mi j :=
{

1
0

if the test of fi on (X−
j ,X+

j)
succeeds

fails.
As soon as we find any row or column in M consisting wholly of zeroes, we may terminate
since no successful permutation is possible. If each row and column of M contain a 1, we
may terminate since there is a successful permutation, and we can conclude that the box
under consideration contains a solution of the system.

119

8 Solution of Systems of Polynomial Equations

8.3.2 Preconditioning

It is proposed, amongst others, by J. B. Kioustelidis [Kio78], cf. [MK80, ZN88], that
a system of nonlinear equations F(x) = 0 should be preconditioned, i.e., it should be
substituted by a system AF(x) = 0, where A is a suitably chosen n× n matrix. Let F be
differentiable on the box in question X and suppose its Jacobian F ′ := J(F) is nonsingular
at x̌, where

x̌i := (xi + xi)/2, i = 1, . . . , n,

i.e. x̌ is the midpoint of X. Then a good choice for A is an approximation to F ′(x̌)−1.
If we have the explicit functions describing all the partial derivatives, then we may com-

pute F ′(x̌)−1 exactly. Otherwise, for polynomials, we may again exploit the easy calculation
of the Bernstein coefficients of their partial derivatives, cf. Subsection 3.3.4, in order to com-
pute an interval matrix enclosing the Jacobian over the box. The preconditioning matrix A
can be set to the inverse of the midpoint matrix (the matrix obtained by setting all entries
of the interval matrix to their midpoints).

The following example illustrates a failure case of the improved permutation checking in
Miranda test and the application of preconditioning.

Example 8.2. Consider the system of polynomial equations P = 0 where P(x1, x2) =
(p1(x1, x2), p2(x1, x2)) is given by

p1(x1, x2) = x2
1 + x2

2 − 1,

p2(x1, x2) = x1 − x2.

We wish to determine if there is a solution to the system in the box X := I. The zero sets
of both polynomials are displayed in Figure 8.2. Both p1 and p2 exhibit sign changes on both
pairs of opposite faces, but either p1 or p2 attains the value zero on all four vertices of the
box (face intersections), thus (8.3) is not satisfied and the permutation optimisation cannot
be applied. Furthermore, the slightest overestimation in the computed interval enclosures
for p1 and p2 over the faces would negate (8.2) and thus cause failure of the unmodified
Miranda test.

The preconditioning matrix is

A = P ′(x̌)−1 =
(

1
2

1
2

1
2 −1

2

)
.

This yields the preconditioned system

q1(x1, x2) =
1
2

{
(x1 +

1
2
)2 + (x2 −

1
2
)2 − 3

2

}
,

q2(x1, x2) =
1
2

{
(x1 −

1
2
)2 + (x2 +

1
2
)2 − 3

2

}
.

120

8 Solution of Systems of Polynomial Equations

x 1

x 2

−

−

XX 11

X2

+

+

2X
 0 1

0

1

p (x , x) = 0

p (x , x) = 0

1 1 2

2 1 2

Figure 8.2: An example of failure of the requirement (8.3) for the improved permutation
checking scheme and potential failure of the Miranda test.

x 1

x 2

− +

−0 1

0

1

q (x , x) = 01 1 2

q (x , x) = 02 1 2

X1

X2

+

X1

2X

Figure 8.3: The same example after preconditioning.

121

8 Solution of Systems of Polynomial Equations

The zero sets of the two polynomials q1 and q2 are displayed in Figure 8.3. Both poly-
nomials have a sign change on one pair of opposite faces instead of at the vertices and
condition (8.3) is now satisfied for both. The two solutions of the preconditioned system
(both the solution sought inside the unit box and the spurious solution outside it) are of
course identical to the solutions of the original system.

Let us consider a preconditioned system of functions G, i.e. G(x) = AF(x), where A :=
F ′(x̃)−1 and x̃ is an approximation to x∗, a regular solution to F(x) = 0 and therefore also
to G(x) = 0. Zuhe and Neumaier [ZN88] have shown that G is given by

G(x) = x− x∗ + o(ε),

wherever x ∈ Rn with ||x − x∗|| ≤ ε, for sufficiently small ε. Where this holds, and where
gi : X → R is the ith component function of G, we thus have

gi(x) < 0 ∀x ∈ X−
i and gi(x) > 0 ∀x ∈ X+

i , i = 1, . . . , n, (8.4)

for any box X with [xi, xi] = [x̌i − di, x̌i + di], i = 1, . . . , n, where d is a vector with

|x̌i − x∗i | <
d

2
, i = 1, . . . , n, (8.5)

and where ||d|| is sufficiently small.
Condition (8.5) means that we require the solution x∗ to be quite centrally located within

the box (i.e. away from its edges), more specifically

x∗ ∈ Xcentre := [
3x1 + x1

4
,
x1 + 3x1

4
]× . . .× [

3xn + xn

4
,
xn + 3xn

4
].

This condition is not usually satisfied, in fact for an arbitrary example the probability of
x∗ ∈ Xcentre is 1

2n . It would hypothetically be possible, given knowledge of x∗ in advance, to
perform a sequence of subdivisions which eventually yields a box X with x∗ ∈ Xcentre, but
it seems difficult to guarantee satisfaction of this condition in practice, without artificially
expanding the size of the final box by a volume factor of 2n.

Nevertheless, if (8.4) holds, then the (problematic) case that G vanishes (i.e. all gi simul-
taneously attain zero) on the boundary of X is avoided, and condition (8.3) is fulfilled. In
this case not only will the Miranda test suceed with the improved permutation checking, but
it will succeed for the identity permutation, removing the need for any further permutation
checking at all. However the overall complexity is not necessarily reduced, since we replace
the permutation checking with a matrix inversion.

122

9 Improved Bernstein Expansion

At a typical point during the execution of a branch-and-bound method to solve a system
of equations and/or inequalities (e.g. a global optimisation problem) involving polynomial
functions, we have a polynomial

p(x) =
l∑

i=0

aix
i, x = (x1, . . . , xn), (9.1)

in n variables, x1, . . . , xn, of degree l = (l1, . . . , ln), and a box

X := [x1, x1]× . . .× [xn, xn]. (9.2)

In this chapter we address the question of how to determine a tight outer approximation
for p(X), the range of p over X, in a timely fashion. Such bounds can be determined by
utilising the coefficients of the expansion of the given polynomial into Bernstein polynomials,
cf. Chapter 3. As we have seen (cf. Subsection 3.2.4), the coefficients of the Bernstein
expansion of a given polynomial over a specified box of interest tightly bound the range
of the polynomial over the box; in Chapter 8 this property was exploited in a solver for
systems of polynomial equations.

The traditional approach (see, for example, [Gar86], [ZG98], Chapter 8) assumes that
all of the Bernstein coefficients are computed, in order to determine their minimum and
maximum. By use of the algorithm in Subsection 3.3.1, this computation can be made
somewhat more efficient, with time complexity O(nl̂n+1) and space complexity (equal to
the number of Bernstein coefficients) O((l̂ + 1)n), where

l̂ =
n

max
j=1

lj . (9.3)

Nevertheless, this usual approach still requires that all the Bernstein coefficients are com-
puted, and their number is often very large for polynomials with moderately-many variables.

This exponential complexity is a major drawback of the existing method, rendering it
infeasible for polynomials with moderately many (typically, 10 or more) variables. The
main motivation of the work in this chapter is therefore to exploit the range enclosing
property of the Bernstein expansion without recourse to the exhaustive computation of all
the Bernstein coefficients.

An improved representation and computation scheme is developed [Smi09]. The faster
performance of the new method is demonstrated with some numerical examples. The soft-
ware which was developed is introduced in Appendix A.

123

9 Improved Bernstein Expansion

9.1 Overview

A new method for the representation and computation of Bernstein coefficients of multivari-
ate polynomials has been derived. This new technique represents the coefficients implicitly
and uses lazy evaluation so as to render the approach practical for many types of non-trivial
sparse polynomials typically encountered in global optimisation problems and systems of
polynomial equations; the computational complexity becomes nearly linear with respect to
the number of terms t in the polynomial, instead of exponential with respect to the number
of variables n.

A brief overview of this approach is as follows:

• It is firstly necessary to derive some fundamental properties of the Bernstein coeffi-
cients of multivariate monomials. It is proven that such coefficients of a multivariate
monomial can be computed as a simple product of the Bernstein coefficients of its
component univariate monomials.

• It is proven that monotonicity of the Bernstein coefficients of monomials holds over a
single orthant of Rn.

• A new method of storing and representing the Bernstein coefficients of multivariate
polynomials is proposed, which is called the implicit Bernstein form. Only the coeffi-
cients of the component univariate monomials are stored; the Bernstein coefficients of
the whole polynomial itself are stored implicitly and are computed upon demand as
a sum of t products. Computing and storing the whole set of Bernstein coefficients is
not generally required for many types of sparse polynomial.

The implicit Bernstein form consists of computing and storing sets of univariate Bern-
stein coefficients for each of the terms of the polynomial. Computing this form in
general requires much less effort than for the explicit form.

• We consider the determination of the minimum or maximum Bernstein coefficient.
The Bernstein enclosure (3.17) is given as the interval spanned by the minimum and
maximum Bernstein coefficients; we are usually not interested in the intermediate
coefficients.

If the box X (9.2) spans multiple orthants of Rn, then it should be subdivided around
the origin into two or more sub-boxes, and the Bernstein enclosure for each sub-box
computed separately. It should be noted that, for most branch-and-bound methods,
the vast majority of the computational effort is typically occupied with small sub-boxes
which lie within a single orthant.

Finding the minimum Bernstein coefficient is essentially a problem of searching the
array of the Bernstein coefficients. The search space can be dramatically reduced by
employing three tests: uniqueness, monotonicity, and dominance.

124

9 Improved Bernstein Expansion

9.2 Bernstein Coefficients of Monomials

We begin by deriving some fundamental properties of the Bernstein coefficients of mul-
tivariate monomials. Let us consider the case of a polynomial comprising a single term

q(x) = akx
k, x = (x1, . . . , xn), for some 0 ≤ k ≤ l, (9.4)

where l is the degree of the Bernstein expansion to be computed. Let a box X (9.2) be
given. Without loss of generality, we can take ak = 1, since the Bernstein form is linear,
cf. Subsection 3.2.3, i.e. here the Bernstein coefficients for general ak may be obtained by
multiplying these Bernstein coefficients by ak. Using the compact notation for multipowers
and generalised binomial coefficients, for 0 ≤ i ≤ l we have:

bi =
min{i,k}∑

j=0

(
i
j

)(
l
j

)(x− x)j

(
k

j

)
xk−jak

= ak

min{i,k}∑
j=0

(
i
j

)(
l
j

)(x− x)j

(
k

j

)
xk−j .

Theorem 9.1. Let

q(x) = xk, x = (x1, . . . , xn), for some 0 ≤ k ≤ l, (9.5)

where l = (l1, . . . , ln). The Bernstein coefficients of q (of degree l) over a box X (9.2) are
given by

bi =
n∏

m=1

b
(m)
im

, (9.6)

where b
(m)
im

is the imth Bernstein coefficient (of degree lm) of the (univariate) monomial xkm

over the interval [xm, xm].

Proof: The Bernstein coefficients of q (of degree l) over X are given by

bi =
min{i,k}∑

j=0

(
i
j

)(
l
j

)(x− x)j

(
k

j

)
xk−j

=
min{i1,k1}∑

j1=0

. . .

min{in,kn}∑
jn=0

((
i1
j1

)
. . .
(
in
jn

)(
l1
j1

)
. . .
(

ln
jn

)(x1 − x1)
j1 . . . (xn − xn)jn

(
k1

j1

)
. . .

(
kn

jn

)
xk1−j1

1 . . . xkn−jn
n

)

125

9 Improved Bernstein Expansion

=
min{i1,k1}∑

j1=0

(
i1
j1

)(
l1
j1

)(x1 − x1)
j1

(
k1

j1

)
xk1−j1

1 . . .

min{in,kn}∑
jn=0

(
in
jn

)(
ln
jn

)(xn − xn)jn

(
kn

jn

)
xkn−jn

n

=
n∏

m=1

min{im,km}∑
jm=0

(
im
jm

)(
lm
jm

)(xm − xm)jm

(
km

jm

)
xkm−jm

m

=
n∏

m=1

b
(m)
im

. 2

Example 9.1. Let n := 2, q(x) := x3
1x

2
2, l := (3, 2), and the box X := [1, 2] × [2, 4]. The

Bernstein coefficients are

{bi} =


4 8 16
8 16 32
16 32 64
32 64 128

 . (9.7)

Instead of calculating and storing all 12 Bernstein coefficients, we might instead represent
them by

1
(

4 8 16
)

1
2
4
8




. . .

. . .

. . .

. . .

 ,
(9.8)

i.e. the coefficient ak = 1, plus the Bernstein coefficients of x3 over [1, 2], plus the Bernstein
coefficients of x2 over [2, 4]. Any Bernstein coefficient of q over X can be computed as
required, as a simple product of ak and two of these respective coefficients.

9.2.1 Bernstein Coefficients of Univariate Monomials

In this section we consider the Bernstein coefficients b
(m)
i , 0 ≤ i ≤ lm, of degree lm, of the

univariate monomial xkm over the interval [xm, xm], for some 1 ≤ m ≤ n. For the remainder
of the section, we omit the subscript m and the superscript (m), for simplicity.

The Bernstein coefficients are given by

bi =
min{i,k}∑

j=0

(
i
j

)(
l
j

)(x− x)j

(
k

j

)
xk−j . (9.9)

We wish to simplify this computation as much as possible.

126

9 Improved Bernstein Expansion

Case k = l:

In this case, the formula can be simplified as follows:

bi =
min{i,k}∑

j=0

(
i
j

)(
l
j

)(x− x)j

(
k

j

)
xk−j

=
i∑

j=0

(
i

j

)
(x− x)jxk−j

= xk−i
i∑

j=0

(
i

j

)
(x− x)jxi−j

= xk−i(x− x + x)i

= xk−ixi.

Case k < l:

In this case, we can start with the Bernstein coefficients of degree k, and use degree elevation.
We have seen in Subsection 3.3.3 that the coefficients of higher degree can be expressed as a
simple weighted sum of lower degree coefficients. Starting with the formula for b

[k+1]
i (3.28),

repeated degree elevation yields the following expression (cf. [FR88]) for the coefficients of
degree l:

bi =
min{k,i}∑

j=max{0,i−m}

(
m

i−j

)(
k
j

)(
k+m

i

) b
[k]
j

=
min{k,i}∑

j=max{0,i−m}

(
m

i−j

)(
k
j

)(
k+m

i

) xk−jxj ,

where m = l − k. This computation can be simplified (cf. [TP96]) by observing that the
part of the formula consisting of the two binomial coefficients where m appears can always
be expressed as a product of k factors.

9.2.2 Monotonicity of the Bernstein Coefficients of Monomials

We now derive an important property of the Bernstein coefficients for a monomial over an
orthant-restricted box:

Theorem 9.2. Let q(x) = akx
k, x = (x1, . . . , xn), for some 0 ≤ k ≤ l and let X be a box

(9.2) which is restricted to a single orthant of Rn. Then the Bernstein coefficients bi of q
(of degree l) over X are monotone with respect to each variable xj, j = 1, . . . , n.

Proof: Given that the Bernstein coefficients of q over X can be expressed as a simple
product of Bernstein coefficients of univariate monomials (cf. Theorem 9.1), it suffices to
show monotonicity in the univariate case:

127

9 Improved Bernstein Expansion

Lemma 9.1. Let q(x) = xk, for some 0 ≤ k ≤ l, be a univariate monomial and let
x = [x, x] be an interval where x and x do not have opposite signs (i.e. x does not contain
both positive and negative values). Then the Bernstein coefficients bi of q (of degree l) over
x are monotone with respect to i.

Proof: We will assume that 0 ≤ x < x; the negative case is entirely analogous. The
result follows by induction on the degree of the Bernstein coefficients.

Case l = k:

From the case k = l in the previous section we have

b
[k]
i = xk−ixi, (9.10)

from which it is clear that b
[k]
i ≤ b

[k]
i+1, i = 0, . . . , k − 1.

Case l = k + m, m ≥ 1:

Assume that the Bernstein coefficients of degree k + j, b
[k+j]
i , i = 0, . . . , k + j, 0 ≤ j < m,

are increasing. The coefficients of degree k + j + 1, from (3.28), may be expressed as

b
[k+j+1]
i =

ib
[k+j]
i−1 + (k + j + 1− i)b[k+j]

i

k + j + 1
, i = 0, . . . , k + j + 1, (9.11)

with b
[k+j]
−1 = b

[k+j]
k+j+1 = 0. We observe that each b

[k+j+1]
i is an affine combination of b

[k+j]
i−1

and b
[k+j]
i , from which

b
[k+j]
i−1 ≤ b

[k+j+1]
i ≤ b

[k+j]
i , i = 0, . . . , k + j + 1. (9.12)

Therefore we have
b
[k+j+1]
i ≤ b

[k+j+1]
i+1 , i = 0, . . . , k + j, (9.13)

and the result follows by induction. 2

With this property, for a single-orthant box, the minimum and maximum Bernstein co-
efficients must occur at two vertices of the array of Bernstein coefficients. This also implies
that the bounds provided by these coefficients are sharp (see the sharpness property in
Subsection 3.2.5). Finding the minimum and maximum Bernstein coefficients is therefore
straightforward; it is not necessary to explicitly compute the whole set of Bernstein co-
efficients. Computing the component univariate Bernstein coefficients for a multivariate
monomial has time complexity O(n(l̂ + 1)2). Of course, one can readily calculate the exact
range of a multivariate monomial over a single-orthant box without recourse to any Bern-
stein coefficients: Given the exponent k and the orthant in question, one can determine
whether the monomial (and its Bernstein coefficients) is increasing or decreasing with re-
spect to each coordinate direction. This allows one to determine in advance at which vertex

128

9 Improved Bernstein Expansion

of the box the minimum or maximum is attained; one then merely needs to evaluate the
monomial at these two vertices.

Without the single orthant assumption, monotonicity does not necessarily hold, and the
problem of determining the minimum and maximum Bernstein coefficients is more com-
plicated. For boxes which intersect two or more orthants of Rn, the box can be bisected,
and the Bernstein coefficients of each single-orthant sub-box can be computed separately.
The complexity of computing the minimum or maximum Bernstein coefficient will often
still be much less than O((l̂ + 1)n). A bisection performed around zero will also yield an
improvement of the bounds, unless they are already sharp [Sta95].

9.3 The Implicit Bernstein Form

In this section, a new method of storing and representing the Bernstein coefficients of
multivariate polynomials is proposed, which we call the implicit Bernstein form.

Firstly, we can observe that since the Bernstein form is linear, cf. Subsection 3.2.3, if a
polynomial p consists of t terms, as follows,

p(x) =
t∑

j=1

aijx
ij , 0 ≤ ij ≤ l, x = (x1, . . . , xn), (9.14)

then each Bernstein coefficient is equal to the sum of the corresponding Bernstein coefficients
of each term, as follows:

bi =
t∑

j=1

b
(j)
i , 0 ≤ i ≤ l, (9.15)

where b
(j)
i are the Bernstein coefficients of the jth term of p. (Hereafter, a superscript in

brackets specifies a particular term of the polynomial. The use of this notation to indicate
a particular coordinate direction, as in the previous section, is no longer required.)

Therefore one may implicitly store the Bernstein coefficients of each term, as in Sec-
tion 9.2.2, and compute the Bernstein coefficients as a sum of t products, only as needed.
Computing and storing the whole set of Bernstein coefficients, should, in general, not be
required.

The implicit Bernstein form thus consists of computing and storing the n sets of univariate
Bernstein coefficients (one set for each component univariate monomial) for each of t terms.
Computing this form has time complexity O(nt(l̂ + 1)2) and space complexity O(nt(l̂ + 1)),
as opposed to O((l̂ + 1)n) for the explicit form. Computing a single Bernstein coefficient
from the implicit form requires (n + 1)t− 1 arithmetic operations.

Example 9.2. We extend Example 9.1. Let n := 2, p(x) := x3
1x

2
2− 30x1x2, l := (3, 2), and

the box X := [1, 2]× [2, 4]. The sum of the corresponding Bernstein coefficients of each term
gives the Bernstein coefficients of p:

129

9 Improved Bernstein Expansion

{bi} =


4 8 16
8 16 32
16 32 64
32 64 128

+


−60 −90 −120
−80 −120 −160
−100 −150 −200
−120 −180 −240


=


−56 −82 −104
−72 −104 −128
−84 −118 −136
−88 −116 −112

 .

(9.16)

The implicit form of these coefficients can be represented as

1
(

4 8 16
)

1
2
4
8




. . .

. . .

. . .

. . .

 +

−30
(

2 3 4
)

1
4
3
5
3
2




. . .

. . .

. . .

. . .

 .
(9.17)

A desired Bernstein coefficient can now be computed as a sum of two simple products. Note
that here the minimum Bernstein coefficient, b(2,2) = −136 is not attained at a vertex of the
array.

9.3.1 Determination of the Bernstein Enclosure for Polynomials

In this section we consider the determination of the minimum Bernstein coefficient; the
determination of the maximum Bernstein coefficient is analogous. The Bernstein enclosure
(3.17) is the interval spanned by the minimum and maximum Bernstein coefficients.

If the box X (9.2) spans multiple orthants of Rn, then it should be subdivided around the
origin into two or more sub-boxes, and the Bernstein enclosure for each sub-box computed
separately. The remainder of this section thus assumes that X is restricted to a single
orthant. It should be noted that, for branch-and-bound methods for constrained global op-
timisation or systems of equations, the vast majority of the computational effort is typically
occupied with small sub-boxes which lie within a single orthant.

Clearly, the determination of the minimum Berstein coefficient is not so simple as for a
polynomial comprising a single term; the minimum is not guaranteed to occur at a vertex of
the array, although this may often be the case. For polynomials in general, it is doubtful that
a universal method more efficient than simply computing all of the Bernstein coefficients
exists. However, when the number of terms of the polynomial is much less than the number
of Bernstein coefficients (which is typically the case for many real-world problems), it is
often possible in practice to dramatically reduce the number of coefficients which have to
be computed, by reducing the number of Bernstein coefficients which have to be searched.

The minimum Bernstein coefficient is referenced by a multi-index, which we label imin,
0 ≤ imin ≤ l. We wish to determine the value of the multi-index of the minimum Bernstein
coefficient in each direction. In order to reduce the search space (among the (l̂+1)n Bernstein
coefficients) we can exploit Theorem 9.2 and employ the following tests:

130

9 Improved Bernstein Expansion

• Uniqueness: If a variable xj appears in only one term of the polynomial, then the
Bernstein coefficients of the term in which it appears determines iminj , which is thus
either 0 or lj .

• Monotonicity: If the Bernstein coefficients of all terms containing xj are likewise
monotone with respect to xj , then iminj = 0 (if all are increasing) or lj (if decreasing).

• Dominance: Otherwise, all the terms containing xj can be partitioned into two sets,
depending on whether they are increasing or decreasing with respect to xj . If the
width of the Bernstein enclosure of one set (treated as the polynomial comprising its
terms) is less than the minimum difference between Bernstein coefficients among the
terms of the other set, then the first set can make no contribution to the determination
of iminj , and the monotonicity clause applies.

Theorem 9.3 (Location of minimum Bernstein coefficient under uniqueness / monotonic-
ity). For a polynomial p given as per (9.14), the multi-index of the minimum Bernstein
coefficient of p over a single-orthant box X (9.2), imin, must satisfy

min
j=1,...,t

{i(j)min} ≤ imin ≤ max
j=1,...,t

{i(j)min}. (9.18)

Proof: Suppose there is some k, k ∈ {1, . . . , n}, for which

min
j=1,...,t

{imin
(j)
k } > imink. (9.19)

The case of imink exceeding the maximum of the imin
(j)
k is entirely analogous. Assume

0 ≤ xk < xk; the negative case is analogous. Then there is no m, m ∈ {1, . . . , t}, for which
imin

(m)
k = 0 and therefore the b

(m)
i are decreasing with respect to ik for all m ∈ {1, . . . , t}.

Therefore the bi =
∑t

j=1 b
(j)
i are decreasing with respect to ik and so imink = lk, which is a

contradiction of the initial supposition, and so the result follows. 2

Theorem 9.4 (Location of minimum Bernstein coefficient under dominance). Given a
polynomial p as per (9.14) and a single-orthant box X (9.2), for some j ∈ {1, . . . , n}, let pinc

be the polynomial comprising the sum of the terms of p which are increasing with respect to
xj, and let pdec be the polynomial comprising the sum of the terms of p which are decreasing
with respect to xj, with Bernstein coefficients binc

i and bdec
i , respectively, 0 ≤ i ≤ l. If

∀i = 0, . . . , l, ij 6= lj : binc
i1,...,ij+1,...,il

− binc
i1,...,ij ,...,il

> bdec
i1,...,0,...,il

− bdec
i1,...,lj ,...,il

(9.20)

then iminj = 0. If

∀i = 0, . . . , l, ij 6= lj : bdec
i1,...,ij ,...,il

− bdec
i1,...,ij+1,...,il

> binc
i1,...,lj ,...,il

− binc
i1,...,0,...,il

(9.21)

then iminj = lj.

131

9 Improved Bernstein Expansion

Proof: The proof is presented for the first result (9.20); the proof of the second (9.21) is
entirely analogous. For all i = 0, . . . , l, ij 6= lj we have

bi1,...,ij+1,...,il = binc
i1,...,ij+1,...,il

+ bdec
i1,...,ij+1,...,il

≥ binc
i1,...,ij+1,...,il

+ bdec
i1,...,lj ,...,il

> binc
i1,...,ij ,...,il

+ bdec
i1,...,0,...,il

≥ binc
i1,...,ij ,...,il

+ bdec
i1,...,ij ,...,il

= bi1,...,ij ,...,il ,

namely that the bi are increasing with respect to xj , and the result follows. 2

Example 9.3. Consider the polynomial

p(x) = 3x1x
5
2 + 2x4

1x2 − 8x2
1x

6
3x

2
4 − x1x

8
4 + 3x3

2x5 − 10x5
4x

5
5x

5
6 + 0.01x2

5x
2
6 + 4x3

5x
4
7 (9.22)

over the box
X = [1, 2]7. (9.23)

The degree, l, is (4, 5, 6, 8, 5, 5, 4) and the number of Bernstein coefficients is thus 340200
(5× 6× 7× 9× 6× 6× 5). We can make the following observations:

• Uniqueness: x3 appears only in term 3, which is decreasing with respect to it. Therefore
imin3 = 6.

• Uniqueness: x7 appears only in term 8, which is increasing with respect to it. Therefore
imin7 = 0.

• Monotonicity: x2 appears in terms 1 and 2, both of which are increasing with respect
to it. Therefore imin2 = 0.

• Monotonicity: x4 appears in terms 3, 4, and 6, all of which are decreasing with respect
to it. Therefore imin4 = 8.

• Dominance: x6 appears in terms 6 and 7, one of which is decreasing and one of which
is increasing with respect to it. However, term 6 dominates term 7 to such an extent
that term 7 plays no role in determining imin6. Therefore imin6 = 5, since term 6 is
decreasing with respect to x6.

Variable x1 appears in terms 1, 2, 3, and 4, and x5 appears in terms 6, 7, and 8. A
determination of imin1 and imin5 thus seems to be non-trivial.

So far, we have determined that imin = (?, 0, 6, 8, ?, 5, 0). The dimensionality of the search
space has thus been reduced from 7 to 2. The number of Bernstein coefficients to compute is
consequently reduced from 340200 to 30 (5× 6), plus those needed for the implicit Bernstein
form, 78 (8 + 7 + 13 + 11 + 6 + 18 + 6 + 9), i.e. 108 in total.

132

9 Improved Bernstein Expansion

9.3.2 Algorithm for the Efficient Calculation of the Bernstein Enclosure of
Polynomials

An algorithm for the determination of the minimum Bernstein coefficient is given here; the
procedure for the determination of the maximum Bernstein coefficient is analogous.

We are given a polynomial p (9.14) consisting of t terms, whose degree is l = (l1, . . . , ln),
and a box X (9.2), as before. We seek to find a multiindex imin which references the
minimum Bernstein coefficient bimin .

1. If X is not restricted to a single orthant of Rn (i.e. there is one or more component
intervals of X, [xm, xm], 1 ≤ m ≤ n, which contain both positive and negative num-
bers), then subdivide X around 0, perform steps 2-5 below for each sub-box, and take
the minimum of the minimum Bernstein coefficients for each sub-box.

2. Compute the implicit Bernstein form of p over X, consisting of the Bernstein coeffi-
cients of the component univariate monomials of each term.

3. Initialise the search space for imin, S, as the set of all possible multi-indices {(0, . . . , 0),
. . . , (l1, . . . , ln)}. (We do not need to store each possible multi-index explicitly; we are
only interested in the dimensions of S.)

4. For each variable xj , j = 1, . . . , n:

a) Uniqueness test: Count the number of terms for which the Bernstein coefficients
are non-constant with respect to xj . If the number is one, then restrict S so
that the jth index corresponds to the minimum Bernstein coefficient of the non-
constant term; it is either 0 or lj .

b) If the uniqueness test fails, then proceed with the monotonicity test: Sort the
terms into those which are increasing, decreasing, and constant with respect to
xj . If the set of increasing terms is empty, then restrict S so that the jth index
is lj . If the set of decreasing terms is empty, then restrict S so that the jth index
is 0.

c) If the uniqueness and monotonicity tests fail, then proceed with the dominance
test: Using the two non-empty sets of increasing and decreasing terms from the
monotonicity test, compute the width of the Bernstein enclosures of each set,
and the minimum absolute difference between Bernstein coefficients of each set.
If the minimum absolute difference of the decreasing terms is greater than the
width of the increasing terms, then restrict S so that the jth index is lj . If the
minimum absolute difference of the increasing terms is greater than the width of
the decreasing terms, then restrict S so that the jth index is 0.

5. Explicitly compute the Bernstein coefficients corresponding to the remaining multi-
indices in S, from the implicit form, and determine their minimum.

133

9 Improved Bernstein Expansion

9.4 Numerical Results

The implicit Bernstein form (cf. Section 9.3) and the algorithm presented above in Sub-
section 9.3.2 is tested here, and compared to the usual Bernstein form (cf. Chapter 3).
For each test problem, consisting of a polynomial p and a starting box X, the Bernstein
enclosure is computed, using each method. The box X is then bisected in each variable
direction in turn, providing a basic simulation of a branch-and-bound environment. One of
the two resulting sub-boxes is selected at random; it is retained and the other is discarded.
After each bisection, the Bernstein enclosure is recomputed over the new box. This process
is iterated 100 times, so that the final sub-box is very small.

With normal floating-point arithmetic, inaccuracies may be introduced into the calcula-
tion of the Bernstein coefficients and the corresponding bounds, due to rounding errors. As
a result, the bounds may not be guaranteed to enclose the range of the polynomial over the
box. Therefore interval arithmetic (cf. Section 2.1) has been used; all Bernstein coefficients
are computed and stored as intervals. The bounds provided are thus guaranteed, in line
with other schemes to provide ‘safe’ bounds and bounding functions [BVH05, HK04, NS04].

The first test problem consists of the polynomial

p(x) = 3x2
1x

3
2x

4
3 + 1x3

1x2x
4
3 − 5x1x2x

5
4 + 1x3x4x

3
5 (9.24)

over the box
X = [1, 2]× [2, 3]× [4, 6]× [−5,−2]× [2, 10]. (9.25)

The second test problem is the one given in Example 9.3. The remaining test problems are
polynomial objective functions drawn from GLOBALLib library [GLO] of test problems for
global optimisation. Where otherwise unspecified, a suitable single-orthant starting box of
unit width was chosen.

The results are given in Table 9.1; n is the number of variables, t the number of terms,
and l the degree, in each case. The number of Bernstein coefficients refers to the number
that have to be computed explicitly; for test2 (Example 9.3), for example, 30 Bernstein
coefficients are required to determine the minimum, and 30 to determine the maximum.
The timings given in the table are the mean computation times for a single iteration; these
numbers should be multiplied by 100 to get the computation times for all iterations. The
results were produced with C++ on a single-core 2.4 GHz PC running Linux; the BeBP
software package described in Section A.2 and the interval library filib++ [LTWvG01] were
employed. The algorithm may alternatively be executed with floating-point arithmetic in
place of interval arithmetic; this speeds up the process (by approximately one order of
magnitude), but the resultant bounds are no longer guaranteed.

It is clear that the use of the implicit Bernstein form can dramatically reduce the num-
ber of Bernstein coefficients that need to be computed explicitly, thereby speeding up the
computation of the Bernstein enclosure by up to several orders of magnitude.

It should be noted that almost all of the polynomials in [GLO] are sparse and of low
degree, with few or no terms involving more than a single variable. This seems to be typical
of the types of polynomials encountered in global optimisation problems. In such cases, the

134

9 Improved Bernstein Expansion

Bernstein Form Implicit Bernstein Form
Name n t Iterations No. of BCs time (s) Iterations No. of BCs time (s)
test1 5 4 1-100 1920 0.01 1-3 60
l = (3, 3, 4, 5, 3) 4-5 12 0.0001

6-100 2
test2 7 8 1-100 340200 6.05 1-9 60
l = (4, 5, 6, 8, 5, 5, 4) 10-100 12

0.0004

mhw4d 5 17 1-100 1500 0.04 1-3 1000
l = (2, 3, 4, 4, 4) 4-100 200

0.0068

meanvar 7 49 1-100 2187 0.24 1-100 2 0.0008
l = (2, 2, 2, 2, 2, 2, 2)
ex2_1_5 10 16 1-100 17496 0.83 1-100 2 0.0003
l = (2, 2, 2, 2, 2, 2, 2,

1, 1, 1)
harker 20 40 1-100 1.96×1011 > 105 1-100 2 0.0019
l = (3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2)

Table 9.1: Number of Bernstein coefficients calculated and computation time for some ex-
ample multivariate polynomials.

uniqueness, monotonicity, and dominance tests are much more likely to succeed, compared
to a polynomial where each variable appears in many terms.

135

10 Bounding Functions for Polynomials

We return in this chapter to the question of determining a guaranteed outer approximation
for a multivariate polynomial over a given box, but now we also aim to preserve the local
shape of the polynomial within the box to a certain extent — we wish to compute bounding
functions, rather than just a pair of bounding values defining an interval enclosure, as was
the case in Chapters 3, 8, and 9.

As before, we have a polynomial

p(x) =
l∑

i=0

aix
i, x = (x1, . . . , xn), (10.1)

in n variables, x1, . . . , xn, of degree l = (l1, . . . , ln), and a box

X := [x1, x1]× . . .× [xn, xn]. (10.2)

Now, rather than tight constant bounds for p(X), we wish to compute either a lower bound-
ing function f

X
or an upper bounding function fX, or both, with the property that

f
X

(x) ≤ p(x) ≤ fX(x), ∀x ∈ X. (10.3)

Of course, it is relatively easy merely to satisfy these conditions, but we wish in general to
minimise fX(x)− p(x) and p(x)− f

X
for x ∈ X.

A principal application of such bounding functions is in the generation of relaxations for
global optimisation problems within a branch-and-bound framework (cf. Section 6.2). Here,
it is important for a good lower bounding function to satisfy three basic properties, apart
of course from the definitional requirement (10.3):

• It must approximate the original function as tightly as possible.

• It should preserve (in a basic way) the broad shape of the function over the box.

• It should be simpler to evaluate than the original function, and possess ‘easier’ nu-
merical properties, such as linearity, monotonicity, or convexity.

In this chapter we consider bounding functions for polynomials which may be derived
from the Bernstein expansion (cf. Chapter 3) of the polynomial, i.e. from its Bernstein
coefficients. Constant bounds provided by the Bernstein enclosure were utilised in Chapter
8, but they only satisfy the last of the three above points; they do not preserve any shape
and they do not, in general, approximate a polynomial as closely as other types of bounding
functions, as we shall see. We shall firstly consider convex–concave extensions and then
affine bounding functions.

136

10 Bounding Functions for Polynomials

10.1 Convex–Concave Extensions

Convex–concave extensions, introduced in [Jan00], are pairs of functions which generalise
the concept of an interval extension (cf. Definition 2.11).

Definition 10.1 (Convex–Concave Extension). A convex–concave extension of a function
f : S → R, where S ⊆ Rn, is a mapping [f, f] which provides for each nonempty box
X ⊆ S a convex function f

X
: X → R (a lower bounding function) and a concave function

fX : X → R (an upper bounding function) such that

f
X

(x) ≤ f(x) ≤ fX(x), ∀x ∈ X. (10.4)

Such bound functions are sometimes called convex underestimators and concave overes-
timators, respectively.

Here we define three different convex–concave extensions for univariate polynomials,
based on the coefficients of the Bernstein expansion, and consider their inclusion isotonicity
[GJS03a]. We will later consider the extension to the multivariate case. All three are based
on the control points defined by the Bernstein coefficients (cf. Subsection 3.1.2). The exten-
sions exhibit an increasing order of complexity; the first lower bounding function and upper
bounding function are affine functions, the second extension comprises two affine functions
for each bounding function, and the third convex–concave extension is derived from the
convex hull of all the control points.

We are given a univariate (i.e. n = 1) polynomial p (10.1) and an interval x = [x, x]. Let
b0, . . . , bl be the Bernstein coefficients (3.13) of p over x and let their minimum be referenced
by imin, i.e. bimin = min

i=0,...,l
bi.

Let b0, . . . ,bl be the control points derived from the Bernstein coefficients, i.e.

bi =
(

(l − i)x + ix

l
, bi

)
, i = 0, . . . , l. (10.5)

The first two convex–concave extensions rely on a calculation of the slope between control
points. The slope between bimin and bi is given by

d(imin,i) =
l

x− x

bi − bimin

i− imin
, i = 0, . . . , imin − 1, imin + 1, . . . , l. (10.6)

10.1.1 Extension 1 (One Affine Function)

Let bk be a Bernstein coefficient such that the slope between its control point bk and bimin

has minimal absolute value, i.e.∣∣∣∣bk − bimin

k − imin

∣∣∣∣ = min
i=0,...,imin−1,imin+1,...,l

∣∣∣∣bi − bimin

i− imin

∣∣∣∣ (10.7)

and let

dimin =
l

x− x

bk − bimin

k − imin
. (10.8)

137

10 Bounding Functions for Polynomials

Then for all x ∈ x, define an affine lower bounding function f as

f(x) = bimin + dimin

(
x− (l − imin)x + iminx

l

)
. (10.9)

An upper bounding function f can be defined in a similar fashion, giving (by construction)

f(x) ≤ p(x) ≤ f(x), for all x ∈ x. (10.10)

In Subsection 10.2.3 we extend the affine lower bounding function f to multivariate poly-
nomials, where its coefficients can now be determined as the optimal solution of a linear
programming problem.

10.1.2 Extension 2 (Two Affine Functions)

Following a similar scheme to the above extension, we now wish to achieve a tighter enclosure
by the use of two affine functions for each bounding function. The lower bounding function
should thus have a negative slope to the left of the chosen minimum control point and a
positive slope to the right of it. Let bimin be the minimum Bernstein coefficient, as above.
Note that where imin = 0 or imin = l, we only have one affine function, as above. Otherwise,
define two slopes d−imin

and d+
imin

by

d−imin
=

l

x− x
max

i=0,...,imin−1

bi − bimin

i− imin
, d+

imin
=

l

x− x
min

i=imin+1,...,l

bi − bimin

i− imin
. (10.11)

Then for all x ∈ x, define a lower bounding function comprised of two affine functions, f as

f(x) =

 bimin + d−imin

(
x− (l−imin)x+iminx

l

)
, if x ≤ (l−imin)x+iminx

l ,

bimin + d+
imin

(
x− (l−imin)x+iminx

l

)
, if x > (l−imin)x+iminx

l .
(10.12)

An upper bounding function f can be defined analogously, such that (10.10) is satisfied.

10.1.3 Extension CH (Convex Hull)

Convex–concave extensions 1 and 2 have a natural extension to the use of (up to) l upper
and lower affine functions, which are provided by the convex hull of the control points
associated with the Bernstein coefficients. Starting from the left-most Bernstein coefficient
b0 = f(x) = f(x) and its associated control point, we construct the lower bound function f
by using the facets of the convex hull lying below (or on) the straight line connecting b0 with
the control point bl associated with the right-most Bernstein coefficient bl = f(x) = f(x).
Analogously, the upper bounding function f is determined by the facets of the convex hull
lying above (or on) this straight line. An algorithm for the computation of the convex hull
is relatively straightforward in the one-dimensional case, but highly non-trivial in higher
dimensions. An example of the convex hull extension is presented in the following section.

138

10 Bounding Functions for Polynomials

10.1.4 Inclusion Isotonicity

Following Definition 2.12, a convex–concave extension [f, f] is inclusion isotone if, for all
intervals x and y with x ⊆ y,

f
y
(x) ≤ f

x
(x) ≤ fx(x) ≤ fy(x), ∀x ∈ x. (10.13)

In Theorem 3.5, we have seen that the convex hull of the Bernstein control points is
inclusion isotone. The following counterexample shows, however, that the convex–concave
extensions based upon either one or two affine upper and lower bounding functions are, in
general, not inclusion isotone.

Example 10.1 ([GJS03a]). Let p(x) = 32x4 − 112x3 + 118x2 − 47x + 6. Table 10.1 gives
the convex–concave extensions (of each type) over the intervals x = [0, 0.5], [0, 0.6], [0, 0.7],
and [0, 1], specified by their upper and lower vertices (rounded to 3 decimal places). For
example, the first entry for Extension 1 states that the affine upper bounding function f
has the values f(0) = 6, f(0.5) = 0, and the affine lower bounding function f satisfies
f(0) = −1.667, f(0.5) = 0. The corresponding convex–concave extension is not inclusion
isotone, since f

[0,0.5]
(0) = −1.667 < f

[0,0.6]
(0) = −1.08. A similar situation occurs on the

same intervals for Extension 2. The three extension types for all intervals are depicted in
Figure 10.1.

x Extension 1 Extension 2
[0, 0.5] (0,6) (0.5,0) (0,6) (0.5,0)

(0,-1.667) (0.5,0) (0,1.083) (0.25,-0.833) (0.5,0)
[0, 0.6] (0,6) (0.6,0.235) (0,6) (0.6,0.235)

(0,-1.08) (0.6,-0.96) (0,6) (0.15,-1.05) (0.6,-0.96)
[0, 0.7] (0,6) (0.7,0.187) (0,6) (0.7,0.187)

(0,-3.029) (0.7,0.187) (0,6) (0.175,-2.225) (0.7,0.187)
[0, 1] (0,6) (1,0.333) (0,6) (1,0.333)

(0,-6.667) (1,-3) (0,6) (0.25,-5.75) (1,-3)
Extension CH

[0, 0.5] (0,6) (0.5,0)
(0,6) (0.125,0.125) (0.25,-0.833) (0.5,0)

[0, 0.6] (0,6) (0.6,0.235)
(0,6) (0.15,-1.05) (0.3,-1.02) (0.6,0.235)

[0, 0.7] (0,6) (0.7,0.187)
(0,6) (0.175,-2.225) (0.7,0.187)

[0, 1] (0,6) (0.75,1.75) (1,-3)
(0,6) (0.25,-5.75) (1,-3)

Table 10.1: Vertices of the convex–concave extensions for Example 10.1.

139

10 Bounding Functions for Polynomials

-6

-4

-2

0

2

4

6

0 0.2 0.4 0.6 0.8 1

y

x

p(x)
convex-concave extensions of p(x)

-6

-4

-2

0

2

4

6

0 0.2 0.4 0.6 0.8 1

y

x

p(x)
convex-concave extensions of p(x)

-6

-4

-2

0

2

4

6

0 0.2 0.4 0.6 0.8 1

y

x

p(x)
convex hulls of p(x)

Figure 10.1: Extension 1 (top), Extension 2 (centre), and Extension CH (bottom) over the
intervals x = [0, 0.5], [0, 0.6], [0, 0.7], and [0, 1] for Example 10.1.

140

10 Bounding Functions for Polynomials

10.2 Affine Bounding Functions

We now restrict our attention to affine lower bounding functions. We begin with the simple
convex–concave extension from Subsection 10.1.1, Extension 1, and firstly extend it to the
multivariate case. Thereafter we consider a sequence of potentially improved methods for
the computation of such bounding functions, and compare them.

Suppose, as usual, that we have an n-variate polynomial p (10.1) of degree l = (l1, . . . , ln)
and a box X (10.2). We wish to find an affine lower bounding function

c(x1, . . . , xn) = a0 + a1x1 + . . . + anxn (10.14)

such that
c(x) ≤ p(x), ∀x ∈ X. (10.15)

There are many possible such functions, but we wish to define a construction in such a way
as to tightly approximate the polynomial from below, so that the maximum discrepancy
between the values attained by the bounding function and the polynomial over the box is
small. Given a method for a lower bounding function, an upper bounding function for p
over X can usually be obtained in a completely analogous way; an upper bounding function
cu for p can be defined by cu(x) := −c(x), where c is a valid lower bounding function for
p−(x) := −p(x).

During the course of this research, several possible approaches [GJS03b, GS04, GS07,
GS08] for deriving a tight affine lower bounding function from the Bernstein control points
(coefficients) of a given polynomial have been developed. An initial comparison of the first
two of these methods was undertaken in [GS05] and a more complete comparison is given
in Subsection 10.2.8.

As noted at the beginning of this chapter, the likely main application of such bound-
ing functions is in relaxations for global optimisation problems with a branch-and-bound
approach (cf. Section 6.2). When affine bounding functions are used, local relaxed subprob-
lems become linear programming problems, which satisfy the requirement of being easier to
solve than the original local problem. Good bounding functions also need to be tight and
shape-preserving.

10.2.1 Overview

We first present a brief summary of the six methods presented, before going into detail.
The simplest type of affine bounding function is a constant bound function obtained by

choosing the minimum Bernstein coefficient (cf. Subsection 10.2.2). This is equivalent to
merely using the Bernstein enclosure (e.g. the approach in Chapter 8), i.e. point bounds,
rather than an affine underestimator.

Most of the other methods rely on a control point associated with the minimum Bernstein
coefficient, bimin , and a determination of n other control points. These are generally chosen
in such a way that the linear interpolant of these points coincides with one of the lower
facets of the convex hull of the control points and therefore constitutes a valid lower bounding

141

10 Bounding Functions for Polynomials

function for the given polynomial. Such a bounding function can be obtained as the solution
of a linear programming problem (cf. Subsection 10.2.3, [GJS03b]). An alternative (cf.
Subsection 10.2.4, [GS04]), which, as we shall see, requires less computational effort, is the
construction of a sequence of hyperplanes passing through bimin which approximate from
below the lower part of the convex hull increasingly well. In this case, only the solution of
a system of linear equations together with a sequence of back substitutions is needed.

We shall also consider a straightforward approach based upon the designation of control
points corresponding to the n + 1 smallest Bernstein coefficients (cf. Subsection 10.2.5), or
to the minimum Bernstein coefficient bimin and n others for which the absolute value of the
slope between them (considered as control points) is minimal (cf. Subsection 10.2.6).

The final approach considered consists of deriving an affine approximation to the entire
set of control points (and thereby the graph of the polynomial) over the box (cf. Subsection
10.2.7, [GS07, GS08]). It requires the use of the linear least squares approximation of the
set of control points, which yields an affine function closely approximating the graph of the
polynomial over the whole of the box. It must be adjusted by a downward shift so that it
passes under all the control points, yielding a valid lower bounding function.

These six methods are to be compared, both with respect to the tightness of the bounding
functions and with respect to computational complexity (computation time).

10.2.2 Method C (Constant Bound Function)

The easiest type of affine lower bounding function is one equal to a constant; we can simply
assign it the value of the minimum Bernstein coefficient, bimin :

c(x) := bimin := min
i=0,...,l

{bi}.

Then, according to the range enclosing property (3.17)

c(x) ≤ p(x), ∀x ∈ X.

This method is used here principally as a control — any method which does not deliver a
noticably tighter approximation than it is likely to be of no benefit.

10.2.3 Method LP (Linear Programming Problems)

The next method tested is an expansion of Extension 1 (cf. Subsection 10.1.1) into the
multivariate case, devised by C. Jansson [GJS03b], which we summarise here. It computes
a bounding function passing through bimin

and relies upon the computation of slopes and
the solution of a linear programming (LP) problem (a brief description of which was given
in Chapter 1).

Theorem 10.1 (Jansson [GJS03b]). Let J ⊆ {j | 0 ≤ j ≤ l, j 6= imin} be a set of at least
n multi-indices such that

bj − bimin

‖j/l − imin/l‖
≤ bi − bimin

‖i/l − imin/l‖
∀ j ∈ J, 0 ≤ i ≤ l, i 6= imin, i 6∈ J, (10.16)

142

10 Bounding Functions for Polynomials

where ‖ · ‖ denotes the Euclidean norm. Then the LP problem

minimise

∑
j∈J

(j/l − imin/l)

T

· s such that

(i/l − imin/l)T · s ≥ bimin − bi for 0 ≤ i ≤ l, i 6= imin

has the following properties:

1. It has an optimal solution ŝ.

2. The affine function

c(x) := −ŝT · x + ŝT · (imin/l) + bimin

is a lower bound function for p over the unit box I.

The proof is given in [GJS03b]; we omit it for brevity. An error bound is also given therein.
An affine transformation (3.23, inverse) is applied to c to obtain the lower bounding function
over X. The quantities in (10.16, left-hand side) are absolute values of slopes in the direction
j/l−imin/l. Aside from bimin , n control points are chosen (corresponding to the multi-indices
in J) for which these quantities are minimal. The result is an affine lower bounding function
comprising in a weighted form these n smallest slopes, which passes through a facet of the
convex hull of the control points with a minimal weighted slope.

We illustrate the construction of these affine lower bounding functions with a couple of
examples:

Example 10.2 ([GJS03b]). For l = 3, 8, 13, 17, let p(x) =
l∑

i=0

(−1)i+1

i+1 xi, x ∈ [0, 1]. The

graphs of the four polynomials, their control points, and the computed affine lower bounding
functions are given in Figure 10.2.

Example 10.3 ([GJS03b]). A model for a hydrogen combustion with excess fuel [MS87] is
described by equations with two bivariate polynomials, given by

p1(x1, x2) = α1x
2
1x2 + α2x

2
1 + α3x1x2 + α4x1 + α5x2,

p2(x1, x2) = α6x
2
1x2 + α7x1x

2
2 + α8x1x2 + α9x

3
2 + α10x

2
2 + α11x2 + α12,

where
α1 = −1.697× 107 α7 = 4.126× 107

α2 = 2.177× 107 α8 = −8.285× 106

α3 = 0.5500 α9 = 2.284× 107

α4 = 0.4500× 107 α10 = 1.918× 107

α5 = −1.0000× 107 α11 = 48.40
α6 = 1.585× 1014 α12 = −27.73.

The graphs of the two polynomials, their control points, and the computed affine lower
bounding functions over the unit box I2 are given in Figure 10.3.

143

10 Bounding Functions for Polynomials

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

Figure 10.2: The four polynomials from Example 10.2, their control points, and computed
affine lower bounding functions.

0 0.5 100.51

−2.5

−2

−1.5

−1

−0.5

0

0.5

x 10
7

0 0.5 1
0

0.5
1

−16

−14

−12

−10

−8

−6

−4

−2

0

2

x 10
13

Figure 10.3: The two bivariate polynomials from Example 10.3, their control points, and
computed affine lower bounding functions.

144

10 Bounding Functions for Polynomials

10.2.4 Method LE (Linear Equations)

With this method, we construct an affine lower bounding function by only solving a system
of linear equations together with a sequence of back substitutions [GS04]. We aim to
find hyperplanes passing through the chosen control point b0 = bimin

(associated with the
minimum Bernstein coefficient bimin) which approximate from below the lower part of the
convex hull of the control points increasingly well. In addition to b0, we will designate n
additional control points b1, . . . ,bn. Starting with c0(x) := bimin , we will construct from
these control points a sequence of affine lower bounding functions c1, . . . , cn. We end up
with cn, a hyperplane which passes through a lower facet of the convex hull spanned by
the control points b0, . . . ,bn. In the course of this construction, we will generate a set
of linearly independent vectors {u1, . . . , un} and we will compute slopes from b0 to bj in
direction uj . Also, wj will denote the vector connecting b0 and bj .

For ease of exposition, the bounding functions (hyperplanes) are specified in the case of
the unit box I. As above, an affine transformation (3.23, inverse) can be applied to cn to
obtain the lower bounding function over a general box X.

Algorithm, First Iteration

Let u1 =


1
0
...
0

 .

Compute slopes g1
i from the control point bi to b0 in direction u1:

g1
i =

bi − bimin

i1
l1
− i01

l1

for all i with i1 6= imin1 .

Let i1 be a multi-index with smallest absolute value of associated slope g1
i . Designate the

control point b1 =
(

i1

l , bi1

)
and the vector w1 = i1−i0

l .
Define the lower bounding function

c1(x) = b0 + g1
i1u

1 ·
(

x− imin

l

)
.

jth Iteration, j = 2, . . . , n

Let ũj =



βj
1
...

βj
j−1

1
0
...
0



145

10 Bounding Functions for Polynomials

such that ũj · wk = 0, k = 1, . . . , j − 1. (10.17)

Solving (10.17) for the coefficients βj
1, . . . , β

j
j−1 requires the solution of a system of j − 1

linear equations in j − 1 unknowns. This system has a unique solution due to the linear
independence amongst the vectors w1, . . . , wn, which is guaranteed by Theorem 10.2.

Normalise this vector thusly:

uj =
ũj

‖ũj‖
. (10.18)

Compute slopes gj
i from the control point bi to b0 in direction uj :

gj
i =

bi − cj−1(i
l)

i−imin
l · uj

for all i, except where
i− imin

l
· uj = 0. (10.19)

Let ij be a multi-index with smallest absolute value of associated slope gj
i . Designate the

control point bj =
(

ij

l , bij

)
and the vector wj = ij−imin

l .
Define the lower bounding function

cj(x) = cj−1(x) + gj
ij

uj ·
(

x− imin

l

)
. (10.20)

Theorem 10.2. Let wj,k be the vectors in Rj given by taking the first j components of wk,
defined as above, for k = 1, . . . , j. Then the vectors wj,1, . . . , wj,j are linearly independent,
for j = 1, . . . , n.

Proof: We proceed by induction. Define vectors uj,k analogously by taking the first j
components of uk. The result holds for j = 1. Assume that wj−1,1, . . . , wj−1,j−1 are linearly
independent. By adding an extra component, we have that wj,1, . . . , wj,j−1 are linearly in-
dependent. By (10.17), noting that only the first j components of uj are nonzero, we have
that uj,j · wj,k = uj · wk = 0, for k = 1, . . . , j − 1, i.e. uj,j is in the orthogonal comple-
ment of wj,1, . . . , wj,j−1. Similarly by (10.19), we have that uj,j ·wj,j = uj ·wj 6= 0, i.e. wj,j

is not orthogonal to uj,j . Therefore wj,j is not in the subspace spanned by wj,1, . . . , wj,j−1. 2

For the n iterations of the algorithm, the solution of such a sequence of systems of linear
equations would normally require 1

6n4 + O(n3) arithmetic operations. However we can take
advantage of the fact that, in the jth iteration, the vectors w1, . . . , wj−1 are unchanged from
the previous iteration. The solution of these systems can then be formulated as Gaussian
elimination applied rowwise to a single (n− 1)× (n− 1) matrix. In addition, a sequence of
back-substitution steps has to be performed. Then altogether only n3 + O(n2) arithmetic
operations are required.

Let

L = n

√√√√ n∏
i=1

(li + 1).

146

10 Bounding Functions for Polynomials

There are then Ln Bernstein coefficients, so that the computation of the slopes gj
i in all

iterations requires at most n2Ln + LnO(n) arithmetic operations.

Theorem 10.3. In the context of the above algorithm, and setting i0 := imin, it holds for
all j = 0, . . . , n that

cj

(
ik

l

)
= bk, for k = 0, . . . , j.

Proof: We proceed by induction. We already have that c0

(
i0

l

)
= b0. Assume that

cj−1

(
ik

l

)
= bk, for k = 0, . . . , j − 1.

Then we have for k = 0 by (10.20) and the induction hypothesis that

cj

(
i0

l

)
= cj−1

(
i0

l

)
+ αju

j ·
(

i0

l
− i0

l

)
= b0.

If k = 1, . . . , j − 1, we can conclude using (10.17)

cj

(
ik

l

)
= cj−1

(
ik

l

)
+ αju

j ·
(

ik

l
− i0

l

)
= bk + αju

j · wk

= bk.

Finally, if k = j, we apply (10.19) to obtain

cj

(
ij

l

)
= cj−1

(
ij

l

)
+

bj − cj−1(ij

l)
ij−i0

l · uj
uj ·

(
ij

l
− i0

l

)
= cj−1

(
ij

l

)
+ bj − cj−1

(
ij

l

)
= bj . 2

In particular, we have that

cn

(
ik

l

)
= bk, k = 0, . . . , n, (10.21)

which means that cn passes through all n + 1 control points b0, . . . ,bn. Since cn is by
construction a lower bound function, b0, . . . ,bn must therefore span a lower facet of the
convex hull of all the control points.

We can readily obtain a pointwise error bound for the underestimating function cn.

147

10 Bounding Functions for Polynomials

Theorem 10.4. The affine lower bounding function cn satisfies

0 ≤ p(x)− cn(x) ≤ max
0≤i≤l

{
bi − cn

(
i

l

)}
, ∀x ∈ I,

which specifies in the univariate case to

0 ≤ p(x)− c1(x) ≤ max
0≤i≤l,i6=i0

{(
bi − b0

i− i0
− b1 − b0

i1 − i0

)
(i− i0)

}
.

The proof is the same as for the proof of Theorem 10.5 in Subsection 10.2.7.

10.2.5 Method MinBC (Minimum Bernstein Coefficients)

Perhaps an obvious approach for the definition of an affine lower bounding function based
upon the Bernstein control points is to start by designating the control points corresponding
to the n + 1 smallest Bernstein coefficients. With a bit of luck, these points uniquely
define an affine function, the hyperplane interpolating them, which can be calculated in a
straighforward fashion as the solution of a system of linear equations. Two issues need to
be addressed before a lower bounding function is obtained. Firstly, the choice of control
points may need to modified to avoid the degenerate cases either where they do not define
a unique interpolating hyperplane (i.e. a singular matrix arises in the system of equations)
or where the hyperplane has infinite gradient. An example of potential degeneracy is given
in Figure 10.4; here, the three minimum control points are collinear and so the choice of
defining control points must be altered. A similar requirement as in (10.19) can be enforced,
to avoid such cases. Secondly, the interpolating hyperplane is not guaranteed to be a valid
lower bounding function. In this case it must be corrected by the computation of an error
term followed by a downward shift.

Suppose that we have determined the minimum Bernstein coefficient bimin and n smallest
others, b1, . . . , bn, defining a non-degenerate lower bounding function c∗ as their interpolant.
We must then compute the maximum positive discrepancy between c∗ and the control points:

δ+ = max
0≤i≤l

{
c∗
(

i

l

)
− bi

}
. (10.22)

Assuming δ+ is non-zero, a valid bounding function is obtained by performing a downward
shift:

c(x) = c∗(x)− δ+. (10.23)

An example of this method is given in Figure 10.4; we can see that this scheme does not
always yield a tight bounding function.

10.2.6 Method MinS (Minimum Slopes)

A variant of the above scheme is to designate the control point corresponding to the min-
imum Bernstein coefficient and n others which connect to it with minimum absolute value

148

10 Bounding Functions for Polynomials

Figure 10.4: Method MinBC — an example of a poor lower bounding function; the desig-
nated control points are given in black and a downward shift is required.

of slope. As before a lower bounding function is obtained by interpolating the designated
control points as the solution of a system of linear equations. Again, degenerate cases
should be avoided and this bounding function may be invalid, in which case it is corrected
by the computation of an error term followed by a downward shift, exactly as in (10.22)
and (10.23).

An example of this method is given in Figure 10.5; again, we see that a tight bounding
function is not always obtained.

10.2.7 Method LLS (Linear Least Squares Approximation)

In the final method, we endeavour to find an affine function that closely approximates
all of the Bernstein control points and to further reduce the computational complexity
[GS07, GS08].

Let A be the matrix with
∏n

i=1(li + 1) rows and n + 1 columns where the i, jth element
is defined as

ai,j = ij/lj , for 1 ≤ j ≤ n, ai,n+1 = 1.

Let b be a vector consisting of the corresponding
∏n

i=1(li + 1) Bernstein coefficients. Then
the coefficients of the linear least squares approximation of all the control points are given
by the solution γ to

AT Aγ = AT b, (10.24)

149

10 Bounding Functions for Polynomials

Figure 10.5: Method MinS — an example of a poor lower bounding function; the designated
control points are given in black.

yielding the affine function

c∗(x) =
n∑

i=1

γixi + γn+1. (10.25)

Numerically reliable approaches to solving the linear least squares problem are considered
in [Bjö04]. As before (10.22) we compute the maximum positive discrepancy between c∗ and
the control points, δ+, and perform a downward shift (10.23) to obtain a lower bounding
function c. By construction, c is then a valid affine lower bounding function, and exhibits
the same error bound as before:

Theorem 10.5. The following error bound is valid:

0 ≤ p(x)− c(x) ≤ max
0≤i≤l

{
bi − cn

(
i

l

)}
, ∀x ∈ I, (10.26)

Proof: We already know (cf. Subsection 3.2.1) that the value of p at a vertex of the unit
box I coincides with the respective Bernstein coefficient, i.e.

bi = p

(
i

l

)
, for all i = 0, . . . , l with iµ ∈ {0, lµ} , µ = 1, . . . , n.

We may consider dividing the surface of the convex hull of the control points into a lower
and an upper part, in a natural way. The function describing the upper surface is piecewise
affine over the uniform grid for the abscissae of the control points; let us denote it by u.
The discrepancy u− c is the difference of a piecewise affine and an affine function and must
therefore assume its maximum at a point i∗

l at which the associated control point is an
exposed vertex of the convex hull, hence u

(
i∗

l

)
= bi∗ . So we may conclude that

maxx∈I (p(x)− c(x)) ≤ maxx∈I (u(x)− c(x))
= maxi=0,...,l

(
u
(

i
l

)
− c

(
i
l

))
= maxi=0,...,l

(
bi − c

(
i
l

))
. 2

150

10 Bounding Functions for Polynomials

bI

b2

b5

b1

b0 b4

b3

c*

 0.4 0.6 0.8 0.2 0 1 5

i
cn

c

Figure 10.6: The curve of the polynomial from Figure 3.2, the convex hull (shaded) of its
control points (marked by squares), the intermediate affine function c∗ and
the affine lower bounding function c from Method LLS versus the affine lower
bounding function cn from Method LE.

Again, the same affine transformation as before (3.23) can be applied in inverse, transforming
c, a bounding function over I, to an affine function which is then by construction a valid
lower bounding function for p over X.

Figure 10.6 illustrates the construction of an affine lower bounding function using this
scheme for the same univariate polynomial of degree 5 as in Figure 3.2. It is compared to
the bounding function obtained by Method LE.

10.2.8 Numerical Results

We run a series of tests to compare the performance of the described methods for affine lower
bounding functions. We are interested in both the computational complexity (computation
time) and the tightness of the functions (smallness of the error bound).

The methods were tested with polynomials in n variables with degree l = (D, . . . , D) and
k non-zero terms over the unit box I. The non-zero coefficients ai were randomly generated
with ai ∈ [−1, 1]. In each case, the entire set of Bernstein coefficients was computed as a
precursor to computing the bounding function.

Table 10.2 lists the results for different values of n, D, and k; (D + 1)n is the number of
Bernstein coefficients. In each case, 100 random polynomials were generated and the mean
computation time (including the time for the computation of the Bernstein coefficients) and

151

10 Bounding Functions for Polynomials

discrepancy δ according to (10.26, right-hand side) are given. The results were produced
with C++ on a single-core 2.4 GHz PC running Linux; the BeBP software package described
in Section A.2, the interval library filib++ [LTWvG01], and the LP_SOLVE [BD+] software
for solving linear programming problems were used.

Method Method C Method LP Method LE
n D k (D + 1)n time (s) δ time (s) δ time (s) δ
2 2 5 9 0.000002 1.420 0.00020 0.976 0.000069 0.981
2 6 10 49 0.000011 2.002 0.0025 1.695 0.00031 1.677
2 10 20 121 0.000044 2.852 0.023 2.543 0.00074 2.511
4 2 20 81 0.000053 3.458 0.0082 2.847 0.0012 2.797
4 4 50 625 0.00055 5.682 2.82 5.056 0.0093 5.045
6 2 20 729 0.00056 4.075 4.48 3.403 0.016 3.353
8 2 50 6561 0.0090 6.941 > 1 minute 0.24 6.291

10 2 50 59049 0.11 7.142 > 1 minute 3.43 6.503
12 2 50 531441 1.32 7.377 > 1 minute > 1 minute

Method MinBC Method MinS Method LLS
2 2 5 9 0.000085 1.147 0.00011 0.961 0.000006 0.698
2 6 10 49 0.00031 4.914 0.00044 1.910 0.000024 1.496
2 10 20 121 0.00090 11.49 0.0012 3.014 0.000070 2.435
4 2 20 81 0.0012 4.797 0.0015 3.199 0.000090 2.468
4 4 50 625 0.0088 14.05 0.011 5.940 0.00079 4.870
6 2 20 729 0.015 5.921 0.017 3.687 0.0010 3.131
8 2 50 6561 0.21 14.33 0.24 7.360 0.018 6.300

10 2 50 59049 2.69 17.11 3.11 7.680 0.29 6.473
12 2 50 531441 > 1 minute > 1 minute 3.81 6.712

Table 10.2: Numerical results (computation time and maximum discrepancies) for the six
methods for affine lower bounding functions, applied to random polynomials
over the unit box I.

We can make the following observations:

• Being the simplest type of bounding function, Method C (a constant bound function)
is of course the fastest. However constant bounding functions are crude and we would
expect them to exhibit a mediocre error bound, which is what we see.

• The ‘naive’ choices of affine bounding function based on the smallest Bernstein coef-
ficients (Method MinBC) or the smallest slopes (Method MinS) are unreliable, giving
extremely poor bound functions in some cases. In several cases, the mean discrepancy
is worse than a constant bound function. However, they are relatively fast.

• Method LP clearly demonstrates an improved error bound relative to constant bound
functions, but is slow. The bulk of the computation time is occupied with the solution
of the component LP problems, which seems unavoidable.

152

10 Bounding Functions for Polynomials

• Method LE delivers a slightly better average error bound than Method LP. Moreover,
it is much faster — the solution of systems of linear equations is less computationally
intensive than LP problems.

• Method LLS is faster than all except Method C, and it has the best average error
bound.

• The best method for any given polynomial and box may vary, but is most often Method
LLS.

10.2.9 An Equilibriation Transformation

Here we propose in outline a preprocessing step which may potentially improve the perfor-
mance of some of the aforementioned methods for affine lower bounding functions. This
is founded on the observation that methods based on minimum absolute values of slopes
(e.g. Method LP, Method LE, Method MinS) may not perform well in situations where the
polynomial exhibits a large gross change in value in one or more directions over the box.
More specifically, this is the case where the range of values of one or more of its partial
derivatives over the box does not contain zero and is far from zero, i.e. it is monotonically
increasing in one or more directions with high Lipschitz constant. Such a polynomial in the
univariate case is illustrated in Figure 10.7; the polynomial is increasing over the unit box.
The obvious affine lower bounding function based on minimum slopes connects b0 and b1;
however a bounding function connecting b1 and b6 more closely represents the gross shape
of the polynomial and has a lower error bound.

We may thus apply an equilibriation affine transformation, in this case by adding the
term − b6−b0

x to the polynomial, so that the first and last Bernstein coefficients have the
same value. Then, we compute an affine lower bounding function using minimum slopes, as
before, before finally applying the inverse transformation to this bound function.

The procedure for computing such a transformation in the univariate case is obvious, but
becomes non-trivial in the multivariate case. Where n ≥ 2, it is not in general possible to
equilibriate all 2n vertex Bernstein coefficients to the same value with an affine transfor-
mation. Instead we might proceed, for example, by applying such a transformation in each
direction in turn, so as to equilibriate the mean values of Bernstein coefficients on opposite
pairs of faces of the box. Indeed such a transformation, if augmented by a suitable downward
shift as in (10.23), might itself comprise a good choice of lower bounding function.

10.2.10 Verified Bounding Functions

It is often desirable to compute the affine lower bounding function in a rigorous fashion,
i.e. in such a way that it can be guaranteed to stay below the given polynomial over
the box, cf. [HK04, NS04, BVH05]. Otherwise, rounding errors may cause inaccuracies
to be introduced into the calculation of the Bernstein coefficients and the corresponding
bounding function. As a result, the computed affine function may not stay below the
given polynomial everywhere over the box. We may also wish to treat problems with

153

10 Bounding Functions for Polynomials

*

* *
*

* * *

*

bI

 0 1 6

i

bI

 0 1 6

i

b1

b0
b2

b3 b4 b5 b6

b0

b1

b2

b3

b4

b5

b6

Figure 10.7: An equilibriation transformation applied to a degree 6 polynomial over the
unit box and the corresponding change in choice of slope-based affine lower
bounding function.

uncertain input data, such as a polynomial with interval coefficients, assuming that for each
coefficient a lower and an upper bound can be determined. Such a polynomial might result
either from real uncertainties in the problem, or otherwise very small intervals of machine
precision width may be used to cater for rounding errors in the initial data input. The
Bernstein coefficients bi can be computed as before, using interval arithmetic. Each power-
form coefficient ai contributes only once to each Bernstein coefficient, so this can be done
without any overestimation.

It is possible to interpolate interval control points in a safe fashion, e.g. [BVH05]. In the
case of Method LLS (cf. Subsection 10.2.7), we may readily obtain a verified lower bounding
function based upon interval Bernstein coefficients by proceeding as follows:

1. Given a polynomial with interval coefficients, compute its interval Bernstein coeffi-
cients as before, but with interval arithmetic.

2. Compute the linear least squares approximation of the control points as before, except
using the midpoints of the interval Bernstein coefficients.

154

10 Bounding Functions for Polynomials

3. Compute the discrepancy δ+ and perform the downward shift as before, but according
to the lower bounds of the control points (Bernstein coefficients).

Step 2 (the bulk of the computation) does not need to be performed rigorously, and is
implemented with normal floating-point arithmetic. Since only the first and last steps need
to be performed with interval arithmetic, the extra computational effort is relatively light.

155

11 Conclusions

We conclude this work with a review of the main results of the thesis and list a number of
suggestions for future research.

11.1 Summary

We have considered methods applicable to systems of polynomial equations and problems
involving polynomial inequalities, such as global optimisation problems. A branch-and-
bound, or subdivision, framework is commonly employed. Here, at a particular iteration,
we have a box or sub-box for which we wish to determine the existence or non-existence
of solutions to a system of equations or an optimisation problem. As tests for systems
of equations, we consider as a boundary method the topological degree, specifically the
Brouwer degree, and as an enclosure method the Bernstein expansion and the related issue
of bounding the ranges of component polynomials. For problems involving polynomial
inequalities, we generate affine relaxations based upon the control points of the Bernstein
expansion.

Comparison of Topological Degree and the Miranda Test

We may compare the use of the topological degree (cf. Chapter 7) against the Miranda
test coupled with Bernstein expansion (cf. Chapter 8) as an existence test. Neither provide
proofs of both existence and non-existence by themselves alone. The Miranda test is a
sufficient but not a necessary condition for a solution to a system of equations; for a proof
of non-existence, i.e. to exclude the possibility of solutions, it needs to be augmented with a
proof of monotonicity (e.g. by computing Bernstein enclosures for the partial derivatives).
The topological degree comprises an existence test only if the result is non-zero, due its root-
counting property; in order to provide an existence or non-existence proof in the case of a
zero outcome, suitable bounds on the Jacobian determinant are also needed. The Bernstein
enclosure can also be used as a non-existence test by itself and provides enclosures which
are generally tighter than those given by most interval enclosures.

In comparing the computational performance of the two alternatives, two observations
become clear: Firstly, the computational cost of the Miranda test and the calculation of
the Bernstein coefficients is generally predictable, whereas the computational cost of the
recursive topological degree calculation is highly variable. Secondly, in non-trivial cases,
the topological degree calculation is often more expensive. It itself is a type of branch-
and-bound scheme; any overall solver where the component iterations themselves consist of
branch-and-bound problems (i.e. doubly-nested subdivision overall) is likely to be prone to
extreme slowness. Nevertheless, the topological degree calculation is sometimes very fast. It

156

11 Conclusions

may be possible to additionally exploit the root-counting property of the topological degree
(viz. it is equal to the sum of the signs of Jacobian determinants at roots), whereas the
Miranda test only provides a binary result. Still, in the basic application, the root-counting
property is superfluous, although it may be of greater interest where the topological degree
is applied as a root designation or counting tool. In a branch-and-bound scheme where one
makes a binary decision (e.g. to prune or to retain a sub-box, or to test candidate boxes for
solutions), a binary result is precisely the level of information needed.

Applicability of the Topological Degree

The recursive algorithm given in outline by O. Aberth [Abe94] has been investigated in de-
tail, particularly the central aspect of face subdivision. We have illustrated the impossibility
of bounding the computational effort in the general case, but have performed an average-
case analysis which strongly indicates (and proves, under a simplified model) that the face
subdivision is characterised by an average branching factor which approaches 1

2 from above
as the box size tends to zero. We have explored the theory of subdivision here, introducing
the concepts of crucial boxes, fatal boxes, and worthwhile subdivision; this theory may also
be more generally applicable to other box subdivision schemes involving systems of equa-
tions. The merit of bisection is considered and a heuristic for choice of subdivision point
is proposed. Some further specific conclusions for Chapter 7, concerning the details of the
algorithm, are given in Section 7.6.

There may be applications for which it is desired to compute specifically the topological
degree, rather than a solution to a system of equations, but the latter phenomenon seems
far more common, so we shall focus on this context.

The question of how this algorithm, or any scheme for topological degree computation,
may be integrated into the existing milieu of solvers for nonlinear systems of equations
remains open. As yet, there is no scheme for the computation of the Brouwer degree over
an arbitrary box for which the computational effort is bounded in the worst case. It thus
seems hard to avoid the conclusion that the topological degree is best applied sparingly or
judiciously, perhaps as a solution-counting pre-processing tool or a verification routine for
very small boxes which complements rather comprises the ‘main engine’ of a branch-and-
bound solver, which may be accelerated with other box contraction techniques.

Given the unpredictable computational effort, it may make sense to start a topological
degree computation, perhaps even multiple instances in parallel with different choices of ray
direction (cf. Subsection 4.4.3), in order to check whether one of them terminates quickly.
If all instances are non-trivial, it may be more efficient to terminate them and perform
a subdivision in the branch-and-bound algorithm, rather than in the topological degree
algorithm.

Applicability of the Bernstein Expansion

The main computational advantages and disadvantages of the Bernstein expansion (cf.
Chapter 3) are already known. Aside from the major application to Bézier curves, from

157

11 Conclusions

the point of view of polynomial approximation, two beneficial attributes are the tightness
of the Bernstein enclosure — the coefficients of the Bernstein expansion of a given polyno-
mial over a specified box tightly bound the range of the polynomial over the box — and
the relative numerical stability of computation with the Bernstein form compared to the
power form. The principal disadvantage is that the traditional computation of the entire
set of Bernstein coefficients (previously assumed to be necessary to compute the Bernstein
enclosure) exhibits exponential complexity with respect to dimension (number of variables),
rendering the approach infeasible for problems with many variables.

With the introduction of the implicit Bernstein form (cf. Chapter 9), this disadvantage
has been largely eliminated for sparse polynomials and single-orthant boxes, which appear
in many types of problem. For such problems, the Bernstein enclosure can typically be
obtained without recourse to the computation of the entire set of Bernstein coefficients;
the new technique represents the coefficients implicitly and uses lazy evaluation. Instead,
the complexity becomes approximately linear with respect to the number of terms; this
constitutes a dramatic speedup for many kinds of polynomials that typically appear in
problems. Bernstein expansion as a range-enclosing method thus becomes feasible for many
categories of polynomials with more variables.

The Bernstein expansion has also been applied to the solution of systems of polynomial
equations (cf. Chapter 8). It can be seen that the tight range-enclosing property of the
Bernstein expansion can be used to effectively prune boxes in a branch-and-bound scheme.
At the end, a set of very small candidate boxes for solutions are obtained. The Miranda test
is used to prove the existence of solutions; a computational speedup and a preconditioning
scheme are proposed.

A complete solver for systems of polynomial equations is challenging, and would ideally
incorporate multiple approaches. As well as the aforementioned schemes, narrowing oper-
ators, e.g. [VHMK97, Gra00], or domain reduction, e.g. [SP93, MP09], could be included.
The implicit Bernstein form would doubtless improve the performance for many categories
of polynomial.

The Bernstein expansion has also recently been employed to obtain tight enclosures for
the ranges of rational functions [GSS12]. On the occasion of the 100th anniversary of its
introduction by S. N. Bernstein [Ber12], there appears an extensive survey paper [Far12] as
well as a forthcoming special issue of the journal Reliable Computing dedicated to Bernstein
expansion [Ge12].

Affine Bounding Functions

In Chapter 10 we have presented a series of methods for the computation of guaranteed
affine lower bounding functions for polynomials, based upon the Bernstein expansion and
the use of interval arithmetic. Such bounding functions can be applied (as a black-box
component) to the solution of constrained global optimisation problems within a branch-
and-bound framework; if they are used to construct relaxations for a global optimisation
problem, then sub-problems over boxes can be reduced to linear programming problems,
which are easier to solve.

158

11 Conclusions

Due to the tightness of the Bernstein enclosure and the convex hull property (cf. Sub-
section 3.2.6), we can obtain bounding functions which are both tight and broadly shape-
preserving. We have seen that the question of how to compute such functions in the multi-
variate case is highly non-trivial, and naive approaches often yield poor-quality functions.
The investigated methods are based upon the computation of slopes and the solution of
linear programming problems, systems of linear equations, or linear least squares approxi-
mations. Bounding functions for derivatives can also be computed; first- and second-order
information is easily obtainable from the Bernstein coefficients.

The series of methods investigated currently rely upon the availability of the entire array of
Bernstein coefficients. As noted above, the exponential complexity limits these approaches
to polynomials in relatively few variables. Nevertheless, the approach is suited to many
polynomials which appear in typical global optimisation problems; even if the number of
variables in the problem is large, the number which appear in any given constraint function
is typically much fewer. A revised or new method based on the more efficient implicit
Bernstein form would similarly extend the applicability of the Bernstein expansion to a
larger class of polynomials. It should ultimately be possible to exploit the implicit Bernstein
form to provide a good-quality guaranteed affine bounding function for a high degree sparse
polynomial in many variables over a box, in low or moderate time.

11.2 Future Work

Topological Degree

There are still several potential improvements to the recursive algorithm for the computation
of Brouwer degree, described in Section 4.4 and investigated in Chapter 7.

• Further work may be possible with the complexity study of the face subdivision pro-
cess undertaken in Section 7.3. Conjectures 7.1 and 7.2 require proof; an extension
to arbitrary nonlinear functions, however, would seem very difficult. However such
detailed study of the minutiae of the algorithm may be of limited practical interest.

• There is the potential to improve the subdivision procedure, i.e. to reduce the number
of faces in total to be processed, with new heuristic(s) for the selection of the subdi-
vision point as an alternative to bisection; a proposal is made in Subsection 7.5.8. It
remains to implement and test such heuristic rules.

• Conceptually, the algorithm relies upon a ray projected from the origin intersecting
the image of a box under the mapping in question (cf. Subsection 4.4.3). For a
given example, it is often possible to reduce the number of face images intersected by
altering the direction of this ray, which may be chosen freely. The key question, which
remains to be investigated, is the way in which an advantageous ray direction might
be determined.

• It ought to be possible to develop an experimental topological-degree based branch-
and-bound global solver for systems of nonlinear equations. The topological degree

159

11 Conclusions

computation needs to be augmented either with some kind of monotonicity test or,
more likely, bounds for the ranges of the Jacobian determinant, in order to provide
complete non-existence and existence tests. It is suspected that the computational
cost of the topological degree calculations is too high for repetetive application in
a branch-and-bound environment, but this remains open. Such a solver may also
provide a suitable environment for testing the topological degree against other root
verification methods.

Solution of Systems of Polynomial Equations

• Up to now, the implicit Bernstein form has not been employed in the branch-and-
bound algorithm for the solution of systems of polynomial equations, described in
Chapter 8. Its use ought to offer a considerable speedup for many problems involv-
ing sparse polynomials. However, the preconditioning step, if retained, may have
the property of generating preconditioned polynomials that are no longer sparse (i.e.
increasing the number of non-zero terms in their power-form expression).

Improved Bernstein Expansion

• The current algorithm (cf. Subsection 9.3.2) for the computation of the Bernstein
enclosure based upon the implicit Bernstein form requires that the box is restricted
to a single orthant of Rn; if this requirement is not satisfied, the box must firstly
be subdivided. However an improved algorithm designed for boxes spanning multiple
orthants of Rn may be possible.

Affine Bounding Functions

The affine bounding functions for polynomials based upon the Bernstein expansion, intro-
duced in Section 10.2, may potentially be developed further.

• These affine lower bounding functions have already been tested in a simulated branch-
and-bound environment. It would further be of interest to integrate these functions
into a complete branch-and-bound solver for global optimisation problems and test
them therein; for example the COCONUT software environment [Sch03], a general-
purpose package for the solution of global optimisation and continuous constraint
satisfaction problems, presents a potential modular black-box environment for such
tests.

• A question of significant interest is whether a good quality affine bounding function
utilising the implicit Bernstein form is possible. Of the described methods, it is only
obvious that the constant bounding function can make use of the implicit Bernstein
form. The generally best method, Method LLS (cf. Subsection 10.2.7) would seem to
be impossible to adapt, since the linear least squares approximation requires all control
points (Bernstein coefficients) explicitly. Methods based upon minimum slopes may

160

11 Conclusions

be adaptable to the implicit Bernstein form, provided that the slopes are computed in
coordinate directions only. Were the partial derivatives to be computed symbolically,
polynomial sparseness would be preserved and the implicit Bernstein form could read-
ily yield the minimum and maximum slope in each direction. A suitable modification
of Method LP or LE may thus be possible.

• It is conjectured that the equilibriation transformation proposed in Subsection 10.2.9
may improve the performance of the affine bounding functions based upon minimum
slopes. It remains to construct a precise formulation in the multivariate case — there
are several possibilities — and test this.

• In principle, the Bernstein approach may be extended to the construction of tight
bounding functions for arbitrary sufficiently differentiable functions, by using the
Taylor expansion. A high-degree Taylor polynomial can be calculated, for which the
Bernstein form and the resulting bounds or bounding functions can be computed, as
before. The remainder of the Taylor expansion can be enclosed in an interval, by
using established methods from interval analysis, e.g. the software package ACETAF
[EN03]. Subtracting this interval from the lower bound of the Taylor polynomial, or
from a lower bounding function with a downshift, provides a lower bound or lower
bounding function for the given function. However, such Taylor polynomials are in
general dense, for which the computational advantage of the implicit Berstein form is
negated.

161

Bibliography

[Abe94] O Aberth. Computation of topological degree using interval arithmetic, and
applications. Mathematics of Computation, 62(205):1–10, January 1994.

[AF96] C S Adjiman and C A Floudas. Rigorous convex underestimators for general
twice-differentiable problems. J. Global Optimization, 9(1):23–40, 1996.

[AG90] E Allgower and K Georg. Numerical Continuation Methods, volume 13 of
Springer Series in Computational Mathematics. Springer, Berlin, Heidelberg,
New York, 1990.

[AG97] E Allgower and K Georg. Numerical path following. In P G Ciarlet and
J L Lions, editors, Handbook of Numerical Analysis, Vol. V, Techniques of
Scientific Computing (Part 2), pages 3–207. Elsevier Sci. Publ., Amsterdam,
Lausanne, New York, 1997.

[AH35] P Alexandroff and H Hopf. Topologie. Springer, Berlin, 1935.

[AH83] G Alefeld and J Herzberger. Introduction to Interval Computation. Academic
Press, New York, 1983. Translated from 1974 publication, Wissenschaftsverlag,
Mannheim.

[AMF95] I P Androulakis, C D Maranas, and C A Floudas. aBB: A global optimization
method for general constrained nonconvex problems. J. Global Optimization,
7(4):337–363, 1995.

[AS92] O Aberth and M J Schaefer. Precise computation using range arithmetic, via
C++. ACM Trans. on Mathematical Software, 18(4):481–491, 1992.

[BCR08] F Boudaoud, F Caruso, and M-F Roy. Certificates of positivity in the Bernstein
basis. Discrete and Computational Geometry, 39(4):639–655, 2008.

[BD+] M Berkelaar, J Dirks, et al. LP_SOLVE: Linear programming code. http:
//lpsolve.sourceforge.net/.

[Ber12] S N Bernstein. Démonstration du théorème de Weierstrass fondée sur le calcul
des probabilités. Comm. Soc. Math. Kharkow, 13:1–2, 1912.

[Ber00] J Berchtold. The Bernstein Basis in Set-Theoretic Geometric Modelling. PhD
thesis, University of Bath, UK, 2000.

162

http://lpsolve.sourceforge.net/
http://lpsolve.sourceforge.net/

Bibliography

[BFLW09] T Beelitz, A Frommer, B Lang, and P Willems. A framework for existence
tests based on the topological degree and homotopy. Numerische Mathematik,
111(4):493–507, 2009.

[Bjö04] A Björck. The calculation of linear least squares problems. In A Iserles et al.,
editors, Acta Numerica 2004, pages 1–53. Cambridge University Press, 2004.

[BMP03] H Brönnimann, G Melquiond, and S Pion. The Boost interval arithmetic
library. In Real Numbers and Computers, pages 65–80, Lyon, 2003. http:
//www.boost.org/.

[Bow99] A Bowyer. SvLis — Introduction and User Manual. Information Geometers
Ltd. and the University of Bath, 1999. http://people.bath.ac.uk/ensab/
G_mod/Svlis/book/node1.html.

[Bro12] L E J Brouwer. Über Abbildung von Mannigfaltigkeiten. Mathematische An-
nalen, 71:97–115, 1912.

[BS95] G V Balaji and J D Seader. Application of interval Newton methods to chemical
engineering problems. Reliable Computing, 1(3):215–223, 1995.

[BSV+01] C Bliek, P Spellucci, L N Vicente, et al. Algorithms for solving nonlinear
constrained and optimization problems: The state of the art, 2001. A progress
report of the COCONUT project, available under http://www.mat.univie.
ac.at/~neum/glopt/coconut/StArt.html.

[Buc70] B Buchberger. Ein algorithmisches Kriterium für die Lösbarkeit eines alge-
braischen Gleichungssystems. Aequationes Mathematicæ, 4:374–383, 1970.

[BVH05] G Borradaile and P Van Hentenryck. Safe and tight linear estimators for global
optimization. Mathematical Programming, 102(3):495–518, 2005.

[CD+10] C Chen, J H Davenport, et al. Triangular decomposition of semi-algebraic
systems. In Proceedings of the 2010 International Symposium on Symbolic and
Algebraic Computation (ISSAC 2010), pages 187–194. ACM Press, New York,
2010.

[CS66] G T Cargo and O Shisha. The Bernstein form of a polynomial. J. Res. Nat.
Bur. Standards, 70B:79–81, 1966.

[Dow90] M L Dowling. A fast parallel Horner algorithm. SIAM Journal on Computing,
19:133–142, 1990.

[Dre05] A Dreyer. Interval Analysis of Analog Circuits with Component Tolerances.
Shaker-Verlag, Aachen, Germany, 2005.

163

http://www.boost.org/
http://www.boost.org/
http://people.bath.ac.uk/ensab/G_mod/Svlis/book/node1.html
http://people.bath.ac.uk/ensab/G_mod/Svlis/book/node1.html
http://www.mat.univie.ac.at/~neum/glopt/coconut/StArt.html
http://www.mat.univie.ac.at/~neum/glopt/coconut/StArt.html

Bibliography

[DS09] T Dang and D Salinas. Image computation for polynomial dynamical systems
using the Bernstein expansion. In A Bouajjani and O Maler, editors, Computer
Aided Verification CAV’09, volume 5643 of Lecture Notes in Computer Science,
pages 277–287. Springer, 2009.

[DST93] J H Davenport, Y Siret, and E Tournier. Computer Algebra. Academic Press,
London, second edition, 1993.

[EN03] I Eble and M Neher. ACETAF: A software package for computing validated
bounds for Taylor coefficients of analytic functions. ACM Trans. on Math.
Software, 29:263–286, 2003.

[ESS84] A Eiger, K Sikorski, and F Stenger. A bisection method for systems of nonlinear
equations. ACM Trans. on Mathematical Software, 10(4):367–377, 1984.

[Far02] G Farin. Curves and Surfaces in CAGD. Morgan Kaufmann, San Francisco,
fifth edition, 2002.

[Far12] R T Farouki. The Bernstein polynomial basis: A centennial retrospective.
Computer Aided Geometric Design, 29:379–419, 2012.

[Fau02] J-C Faugère. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation (ISSAC 2002), pages 75–83. ACM Press,
New York, 2002.

[Fis90] H C Fischer. Range computations and applications. In C Ullrich, editor,
Contributions to computer arithmetic and self-validating numerical methods,
pages 197–211. J. C. Baltzer, Amsterdam, 1990.

[FL00] D Fausten and W Luther. Verifizierte Lösungen von nichtlinearen polynomialen
Gleichungssystemen. Technical report, Gerhard Mercator University Duisburg,
2000. Schriftenreihe des Fachbereichs Mathematik no. SM-DU-477.

[Flo00] C A Floudas. Deterministic Global Optimization: Theory, Methods, and Ap-
plications, volume 37 of Nonconvex Optimization and its Applications. Kluwer
Acad. Publ., Dordrecht, Boston, London, 2000.

[FR88] R T Farouki and V T Rajan. Algorithms for polynomials in Bernstein form.
Computer Aided Geometric Design, 5:1–26, 1988.

[FRI99] FRISCO — Framework for Integrated Symbolic-numeric Computation project,
1996–1999. http://www.nag.co.uk/projects/FRISCO.html.

[GAO] Gaol (not Just Another Interval Library). http://gaol.sourceforge.net/.

164

http://www.nag.co.uk/projects/FRISCO.html
http://gaol.sourceforge.net/

Bibliography

[Gar86] J Garloff. Convergent bounds for the range of multivariate polynomials. In
K Nickel, editor, Interval Mathematics 1985, volume 212 of Lecture Notes in
Computer Science, pages 37–56. Springer, Berlin, Heidelberg, New York, 1986.

[Gar93] J Garloff. The Bernstein algorithm. Interval Computations, 2:154–168, 1993.

[Gar00] J Garloff. Application of Bernstein expansion to the solution of control prob-
lems. Reliable Computing, 6:303–320, 2000.

[Gar09] J Garloff. Interval Gaussian elimination with pivot tightening. SIAM J. Matrix
Anal. Appl., 30(4):1761–1772, 2009.

[Gar10] J Garloff. Karl L. E. Nickel (1924–2009). Reliable Computing, 14:61–65, 2010.

[Ge12] J Garloff and A P Smith (editors). Special issue of the journal Reliable Com-
puting on the Use of Bernstein Polynomials in Reliable Computing, to appear,
2012.

[GG99a] J Garloff and B Graf. Robust Schur stability of polynomials with polyno-
mial parameter dependency. Multidimensional Systems and Signal Processing,
11:189–199, 1999.

[GG99b] J Garloff and B Graf. Solving strict polynomial inequalities by Bernstein ex-
pansion. In N Munro, editor, The Use of Symbolic Methods in Control System
Analysis and Design, pages 339–352. The Institution of Electrical Engineers
(IEE), London, 1999.

[GJS03a] J Garloff, C Jansson, and A P Smith. Inclusion isotonicity of convex-concave
extensions for polynomials based on Bernstein expansion. Computing, 70:111–
119, 2003.

[GJS03b] J Garloff, C Jansson, and A P Smith. Lower bound functions for polynomials.
J. Computational and Applied Mathematics, 157:207–225, 2003.

[GLO] GLOBAL library. http://www.gamsworld.org/global/globallib.htm.

[GPS12] J Garloff, E D Popova, and A P Smith. Solving linear systems with polynomial
parameter dependency with application to the verified solution of problems
in structural mechanics. In A Chinchuluun, P M Pardalos, R Enkhbat, and
E N Pistikopoulos, editors, Proceedings of the International Conference on
Optimization, Simulation and Control, Ulaanbaatar, Mongolia (2010), Springer
Optimization and Its Applications. Springer-Verlag, to appear, 2012.

[Gra00] L Granvilliers. Towards cooperative interval narrowing. In Proceedings 3rd
International Workshop on Frontiers of Combining Systems (FroCoS’2000,
Nancy, France), volume 1794 of Lecture notes in artificial intelligence. Springer,
Berlin, Heidelberg, New York, 2000.

165

http://www.gamsworld.org/global/globallib.htm

Bibliography

[Gra07] C Grandón. Solution of Systems of Distance Equations with Uncertainty. PhD
thesis, Université de Nice-Sophia Antipolis, 2007.

[GS01a] J Garloff and A P Smith. Investigation of a subdivision based algorithm for
solving systems of polynomial equations. J. of Nonlinear Analysis: Series A
Theory and Methods, 47(1):167–178, 2001.

[GS01b] J Garloff and A P Smith. Solution of systems of polynomial equations by using
Bernstein expansion. In G. Alefeld, S. Rump, J. Rohn, and T. Yamamoto,
editors, Symbolic Algebraic Methods and Verification Methods, pages 87–97.
Springer, 2001.

[GS04] J Garloff and A P Smith. An improved method for the computation of affine
lower bound functions for polynomials. In C A Floudas and P M Pardalos, ed-
itors, Frontiers in Global Optimization, volume 74 of Nonconvex Optimization
with its Applications, pages 135–144. Kluwer Acad. Publ., Dordrecht, Boston,
London, 2004.

[GS05] J Garloff and A P Smith. A comparison of methods for the computation of
affine lower bound functions for polynomials. In C Jermann, A Neumaier, and
D Sam, editors, Global Optimization and Constraint Satisfaction, volume 3478
of Lecture Notes in Computer Science, pages 71–85. Springer-Verlag, Berlin,
Heidelberg, 2005.

[GS07] J Garloff and A P Smith. Guaranteed affine lower bound functions for multi-
variate polynomials. Proc. Appl. Math. Mech., 7:1022905–1022906, 2007.

[GS08] J Garloff and A P Smith. Rigorous affine lower bound functions for multivariate
polynomials and their use in global optimisation. Lecture Notes in Manage-
ment Science, 1:199–211, 2008. Proceedings of the 1st International Conference
on Applied Operational Research, Tadbir Institute for Operational Research,
Systems Design and Financial Services.

[GSS12] J Garloff, A Schabert, and A P Smith. Bounds on the range of multivariate
rational functions. Proc. Appl. Math. Mech., submitted, 2012.

[Hal05] T C Hales. A proof of the Kepler conjecture. Annals of Mathematics, 162:1065–
1185, 2005.

[Han80] E R Hansen. Global optimization using interval analysis — the multidimen-
sional case. Numerische Mathematik, 34:247–240, 1980.

[Han03] E R Hansen. Global Optimization Using Interval Analysis. Marcel Dekker, Inc.,
New York, second edition, 2003.

[HK04] S Hongthong and R B Kearfott. Rigorous linear overestimators and underes-
timators. Technical report, University of Louisiana, 2004.

166

Bibliography

[HMSP96] C-Y Hu, T Maekawa, E C Sherbrooke, and N M Patrikalakis. Robust interval
algorithm for curve intersections. Computer-Aided Design, 28:495–506, 1996.

[HS95a] H Hong and V Stahl. Bernstein form is inclusion monotone. Computing,
55(1):43–53, 1995.

[HS95b] H Hong and V Stahl. Safe starting regions by fixed points and tightening.
Computing, 53(3–4):322–335, 1995.

[IEE] IEEE Interval Standard Working Group — P1788. http://grouper.ieee.
org/groups/1788/.

[Int] Interval computations homepage. http://www.cs.utep.edu/
interval-comp/.

[Jan00] C Jansson. Convex-concave extensions. BIT, 40:291–313, 2000.

[JR95] C Jäger and D Ratz. A combined method for enclosing all solutions of nonlinear
systems of polynomial equations. Reliable Computing, 1:41–64, 1995.

[Jud85] G Judge. Developing an interest in polynomials — an example from the eco-
nomics of investment decision making. Teaching Mathematics and its Applica-
tions, 4(3):127–129, 1985.

[Kan96] J S Kang. Wu stratification and retract decomposition. In Effective Methods
in Algebraic Geometry (MEGA), 1996.

[Kea79a] R B Kearfott. An efficient degree-computation method for a generalized method
of bisection. Numerische Mathematik, 32:109–127, 1979.

[Kea79b] R B Kearfott. A summary of recent experiments to compute the topological
degree. In Proceedings of a Conference on Applied Nonlinear Analysis, pages
627–633. Academic Press, New York, 1979.

[Kea96a] R B Kearfott. Interval computations: Introduction, uses and resources. Euro-
math Bulletin, 2(1):95–112, 1996.

[Kea96b] R B Kearfott. Rigorous Global Search: Continuous Problems, volume 13 of
Nonconvex Optimization and its Applications. Kluwer Acad. Publ., Dordrecht,
Boston, London, 1996.

[Kea08] R B Kearfott. Mainstream contributions of interval computations in
engineering and scientific computing, 2008. http://www.cs.utep.edu/
interval-comp/kearfottPopular.pdf.

[Kio78] J B Kioustelidis. Algorithmic error estimation for approximate solutions of
nonlinear systems of equations. Computing, 19:313–320, 1978.

167

http://grouper.ieee.org/groups/1788/
http://grouper.ieee.org/groups/1788/
http://www.cs.utep.edu/interval-comp/
http://www.cs.utep.edu/interval-comp/
http://www.cs.utep.edu/interval-comp/kearfottPopular.pdf
http://www.cs.utep.edu/interval-comp/kearfottPopular.pdf

Bibliography

[KK+92] R Klatte, U W Kulisch, et al. PASCAL-XSC — Language Reference with
Examples. Springer-Verlag, New York, 1992.

[Knu86] D E Knuth. MetaFont: the Program. Addison-Wesley, 1986.

[Knu94] O Knuppel. PROFIL/BIAS — a fast interval library. Computing, 53(3–4):277–
287, 1994.

[Kro69] L Kronecker. Über Systeme von Funktionen mehrerer Variabeln. Monatsber.
Berlin Akad., pages 159–193; 688–698, 1869.

[Kul08] U W Kulisch. Computer Arithmetic and Validity: Theory, Implementation,
and Applications. De Gruyter, Berlin, New York, 2008.

[Laz09] D Lazard. Thirty years of polynomial system solving, and now? J. of Symbolic
Computation, 44:222–231, 2009.

[Llo78] N G Lloyd. Degree Theory. Cambridge University Press, 1978.

[LLT08] T L Lee, T Y Li, and C H Tsai. HOM4PS-2.0: A software package for solving
polynomial systems by the polyhedral homotopy continuation method. Com-
puting, 83(2–3):109–133, 2008.

[Lor53] G G Lorentz. Bernstein Polynomials. Univ. Toronto Press, Toronto, 1953.

[LR81] J M Lane and R F Riesenfeld. Bounds on a polynomial. BIT, 21:112–117,
1981.

[LTWvG01] M Lerch, G Tischler, and J Wolff von Gudenberg. filib++ — Interval li-
brary specification and reference manual. Technical Report 279, University of
Würzburg, 2001.

[MG+08] A Milani, G F Gronchi, et al. Topocentric orbit determination: Algorithms for
the next generation surveys. Icarus, 195(1):474–492, May 2008.

[Mir41] C Miranda. Un’ osservazione su un teorema di Brouwer. Boll. Un. Mat. Ital.
Ser. 2, 3:5–7, 1941.

[MK80] R E Moore and J B Kioustelidis. A simple test for accuracy of approximate
solutions to nonlinear (or linear) systems. SIAM J. Numer. Anal., 17:521–529,
1980.

[MKC09] R E Moore, R B Kearfott, and M J Cloud. Introduction to Interval Analysis.
SIAM, Philadelphia, 2009.

[MM90] K Meintjes and A P Morgan. Chemical equilibrium systems as numerical test
problems. ACM Trans. on Mathematical Software, 16(2):143–151, 1990.

168

Bibliography

[Moo66] R E Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1966.

[Moo76] R E Moore. On computing the range of values of a rational function of n
variables over a bounded region. Computing, 16:1–15, 1976.

[Moo79] R E Moore. Methods and Applications of Interval Analysis, volume 2 of SIAM
Studies in Applied Mathematics. SIAM, Philadelphia, 1979.

[Mor87] A P Morgan. Solving polynomial systems using continuation for engineering
and scientific problems. Prentice-Hall, Englewood Cliffs, N.J., 1987.

[MP09] B Mourrain and J-P Pavone. Subdivision methods for solving polynomial
equations. J. of Symbolic Computation, 44:292–306, 2009.

[MS87] A P Morgan and V Shapiro. Box-bisection for solving second-degree sys-
tems and the problem of clustering. ACM Trans. on Mathematical Software,
13(2):152–167, 1987.

[MSW89] A P Morgan, A J Sommese, and L T Watson. Finding all isolated solutions to
polynomial systems using HOMPACK. ACM Trans. on Mathematical Software,
15(2):93–122, 1989.

[NA07] P S V Nataraj and M Arounassalame. A new subdivision algorithm for the
Bernstein polynomial approach to global optimization. Int. J. of Automation
and Computing, 4(4):342–352, 2007.

[NAG] Numerical Algorithms Group (NAG) Library. http://www.nag.co.uk/
numeric/numerical_libraries.asp.

[Neu90] A Neumaier. Interval Methods for Systems of Equations. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1990.

[Noo89] V W Noonburg. A neural network modelled by an adaptive Lotka-Volterra
system. SIAM Journal of Applied Mathematics, 49(6):1779–1792, 1989.

[NR08] J W Nilsson and S A Riedel. Electric Circuits. Prentice-Hall, eighth edition,
2008.

[NS04] A Neumaier and O Shcherbina. Safe bounds in linear and mixed-integer pro-
gramming. Math. Programming A, 99:283–296, 2004.

[OR09] E Outerelo and J M Ruiz. Mapping Degree Theory, volume 108 of Graduate
Studies in Mathematics. American Mathematical Society, 2009.

[OT75] T O’Neal and J Thomas. The calculation of topological degree by quadrature.
SIAM Journal of Numerical Analysis, 12:673–680, 1975.

[PBP02] H Prautzsch, W Boehm, and M Paluszny. Bézier and B-Spline Techniques.
Springer, Berlin, Heidelberg, 2002.

169

http://www.nag.co.uk/numeric/numerical_libraries.asp
http://www.nag.co.uk/numeric/numerical_libraries.asp

Bibliography

[POS95] PoSSo — Polynomial System Solving project, 1993–1995. http://posso.dm.
unipi.it/.

[PRO] PROFIL/BIAS (Programmer’s Runtime Optimised Fast Interval Library, Ba-
sic Interval Arithmetic Subroutines). http://www.ti3.tu-harburg.de/keil/
profil/index_e.html.

[PS00] J M Peña and T Sauer. On the multivariate Horner scheme. SIAM J. Numer.
Anal., 37:1186–1197, 2000.

[Ray07] S Ray. A New Approach to Range Computation of Polynomials using the Bern-
stein Form. PhD thesis, Indian Institute of Technology, Dept. of Systems and
Control Engineering, Bombay, India, 2007.

[RC95] D Ratz and T Csendes. On the selection of subdivision directions in interval
branch-and-bound methods for global optimization. J. Global Optimization,
7:183–207, 1995.

[Ric96] D S Richardson. Solution of elementary systems of equations in a box in Rn.
In Proceedings of the 1996 International Symposium on Symbolic and Algebraic
Computation (ISSAC 1996), pages 120–126. ACM Press, New York, 1996.

[Ric99] D S Richardson. Weak Wu stratification in Rn. J. of Symbolic Computation,
28(1–2):213–223, July 1999.

[Riv70] T J Rivlin. Bounds on a polynomial. J. Res. Nat. Bur. Standards, 74B:47–54,
1970.

[RN09] S Ray and P S V Nataraj. An efficient algorithm for range computation of
polynomials using the Bernstein form. J. Global Optimization, 45:403–426,
2009.

[Rok77] J Rokne. Bounds for an interval polynomial. Computing, 18:225–240, 1977.

[Rok81] J Rokne. The centred form for interval polynomials. Computing, 27:339–348,
1981.

[Rok82] J Rokne. Optimal computation of the Bernstein algorithm for the bound of an
interval polynomial. Computing, 28:239–246, 1982.

[RR88] H Ratschek and J Rokne. New Computer Methods for Global Optimization.
Ellis Horwood Ltd., Chichester, 1988.

[Rum88] S M Rump. Algorithms for verified inclusions — theory and practice. Reliability
in Computing, 19:109–126, 1988.

[Rum99] S M Rump. INTLAB — INTerval LABoratory. In T Csendes, editor, Develop-
ments in Reliable Computing, pages 77–104. Kluwer Acad. Publ., Dordrecht,
1999. http://www.ti3.tu-harburg.de/rump/.

170

http://posso.dm.unipi.it/
http://posso.dm.unipi.it/
http://www.ti3.tu-harburg.de/keil/profil/index_e.html
http://www.ti3.tu-harburg.de/keil/profil/index_e.html
http://www.ti3.tu-harburg.de/rump/

Bibliography

[Rum05] S M Rump. Computer-assisted proofs and self-validating methods. In B Einars-
son, editor, Handbook on Accuracy and Reliability in Scientific Computation,
pages 195–240. SIAM, 2005.

[Sch03] H Schichl. Mathematical modeling and global optimization, 2003. Habilita-
tionsschrift, University of Vienna, Cambridge University Press, to appear.

[Sik82] K Sikorski. Bisection is optimal. Numerische Mathematik, 40:111–117, 1982.

[Sik97] K Sikorski. Optimal Solution of Nonlinear Equations. Oxford Press, 1997.

[SJ05] W Stein and D Joyner. SAGE: System for Algebra and Geometry Experimen-
tation. ACM SIGSAM Bulletin, 39(2):61–64, 2005. http://www.sagemath.
org/index.html.

[Ske92] R Skeel. Roundoff error cripples Patriot missile. SIAM News, 25(4):11, 1992.

[Smi09] A P Smith. Fast construction of constant bound functions for sparse polyno-
mials. J. Global Optimization, 43(2–3):445–458, 2009.

[SP93] E C Sherbrooke and N M Patrikalakis. Computation of the solutions of non-
linear polynomial systems. Computer Aided Geometric Design, 10:379–405,
1993.

[Sta95] V Stahl. Interval Methods for Bounding the Range of Polynomials and Solving
Systems of Nonlinear Equations. PhD thesis, Johannes Kepler Universität,
Linz, September 1995.

[Sun58] T Sunaga. Theory of interval algebra and its applications to numerical analysis.
RAAG Memoirs, 2:29–46, 1958.

[TF01] Y Tsai and R T Farouki. BPOLY: An object-oriented library of algorithms
for polynomials in Bernstein form. ACM Trans. on Mathematical Software,
27(1):267–296, 2001.

[TP96] W Trump and H Prautzsch. Arbitrarily high degree elevation of Bezier repre-
sentations. Computer Aided Geometric Design, 13(5):387–398, 1996.

[TS02] M Tawarmalani and N V Sahinidis. Convexification and Global Optimization in
Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms,
Software, and Applications, volume 65 of Nonconvex Optimization and its Ap-
plications. Kluwer Acad. Publ., Dordrecht, Boston, London, 2002.

[Ver99] J Verschelde. PHCpack: A general-purpose solver for polynomial systems by
homotopy continuation. ACM Trans. on Mathematical Software, 25(2):251–
276, 1999.

171

http://www.sagemath.org/index.html
http://www.sagemath.org/index.html

Bibliography

[VHMK97] P Van Hentenryck, D McAllester, and D Kapur. Solving polynomial systems
using a branch and prune approach. SIAM J. Numer. Anal., 34:797–827, 1997.

[Vra89] M N Vrahatis. A short proof and a generalization of Miranda’s existence the-
orem. Proc. Amer. Math. Soc., 107:701–703, 1989.

[Vra95] M N Vrahatis. An efficient method for locating and computing periodic orbits
of nonlinear mappings. Journal of Computational Physics, 119:105–119, 1995.

[War56] M Warmus. Calculus of approximations. Bull. Acad. Polon. Sci., Cl. III,
4(5):253–259, 1956.

[Win96] F Winkler. Polynomial Algorithms in Computer Algebra. Springer, Vienna,
New York, 1996.

[Wu84] W-T Wu. Basic principles of mechanical theorem proving in elementary ge-
ometries. J. Sys. Sci. and Math. Sci., 1(3):207–235, 1984.

[WW92] D Weber-Wulff. Rounding error changes Parliament makeup. The Risks Digest,
13(37), 1992.

[XSCa] History of XSC-Languages and Credits. http://www2.math.uni-wuppertal.
de/wrswt/xsc/history.html.

[XSCb] XSC Languages (C-XSC, PASCAL-XSC). http://www.xsc.de/.

[You31] R C Young. The algebra of many-valued quantities. Mathematische Annalen,
104:260–290, 1931.

[ZG98] M Zettler and J Garloff. Robustness analysis of polynomials with polyno-
mial parameter dependency using Bernstein expansion. IEEE Trans. Automat.
Contr., 43:425–431, 1998.

[Zha05] H Zhang. Nondeterministic Linear Static Finite Element Analysis: An Interval
Approach. PhD thesis, School of Civil and Environmental Engineering, Georgia
Institute of Technology, 2005.

[ZN88] S Zuhe and A Neumaier. A note on Moore’s interval test for zeros of nonlinear
systems. Computing, 40:85–90, 1988.

[Zum08] R Zumkeller. Global Optimization in Type Theory. PhD thesis, École Poly-
technique, Paris, 2008.

172

http://www2.math.uni-wuppertal.de/wrswt/xsc/history.html
http://www2.math.uni-wuppertal.de/wrswt/xsc/history.html
http://www.xsc.de/

A Software

Here we give an overview of two of the main software packages that were developed during
the course of this research.

A.1 Topological Degree Software

This section summarises the software for Brouwer (topological) degree computations that
was created to undertake the experiments described in Chapter 7. The software package
was implemented in C++ and designed in a modular fashion to use an interval arithmetic
implementation of choice; in the first instance a custom interval arithmetic package was
used; subsequently the filib++ library [LTWvG01] was employed. An alternative software
package (e.g. utilising advanced interval algorithms to enhance the performance) can be
substituted without affecting the system for degree computation. The interval arithmetic
implementation is however required to have the property that degenerate intervals (i.e. point
values) and non-degenerate intervals can be used interchangably, since faces are gradually
reduced in dimension (becoming child faces) by successively restricting interval fields to
point values. We wish to evaluate (interval extensions for) functions over a face by applying
interval arithmetic to such an aggregate of non-degenerate and degenerate intervals.

We can identify a three-tiered hierarchy to the processing of data in this algorithm: there
are low-level operations performed on intervals, mid-level operations performed on faces
(which are composed of intervals), and high-level operations performed on arrays or sets of
faces (in which intervals are effectively doubly-nested). This hierarchy naturally lends itself
to an object-oriented approach where the the algorithm can essentially be expressed as a
face generation and processing scheme.

Below we outline the main data structures used by the software, the main degree compu-
tation routine, and the different output modes.

Data Structure: Function

The software permits three different modes for function input and evaluation with interval
arguments:

1. The component functions are coded inline using native floating-point arithmetic. This
allows an expert user to optimise the implementation in order to minimise the effect
of the dependency problem, but requires non-trivial code rewriting and compilation
for each new problem instance.

2. The component functions are coded inline using an interval arithmetic library. The
ease of this depends on the interval arithmetic package used; for a library such as

173

A Software

filib++, for example, an interval-valued function can be written in exactly the same
way as one returning a floating-point value. The code still requires rewriting and
compilation each time, although in an easy fashion which can be done by a non-expert.

3. The functions are entered symbolically during run-time (e.g. by a non-expert user)
and stored as their own data type. (For brevity, we omit the technical details of the
input format and parser.) This has the advantage of not requiring any recompilation
and is thus the mode that was used for the results presented herein.

In the latter case, a recursive data structure is used whereby each function is represented as
a binary tree. The nodes consist of operators and the leaves are literal values and variable
instances. An operator node has one or two branches (sub-trees), depending on the number
of arguments required. The parenthetic level is related to depth in the tree, in that operators
of lower precedence occur higher up.
Function:

• n: number of variables (integer)

• node: (one of a number of fixed values for simple unary or binary operators)

• c: constant (floating-point)

• i: variable index or exponent (natural number)

• fl: first sub-tree (pointer to function)

• fr: first sub-tree (pointer to function)

Data Structure: Box

Given a dimension n, a box (cf. Definition 2.2) in Rn has a straightforward representation
as an array of n intervals.
Box:

• n: number of variables (integer)

• x: box width (array of n intervals)

Data Structure: Face

A face in Rn is similar to a box, but slightly more complicated, in that an orientation field
is required and also the dimension of the face (defined as the number of non-degenerate
interval fields) is less than the number of variables. A child face therefore has a lower
dimension than its parent, but they share the same n.
Face:

• n: number of variables (integer)

174

A Software

• d: dimension (integer, where d < n)

• x: face width (array of n intervals, n− d of which are degenerate)

• σ: orientation (integer; either +1 or −1)

Routine: Evaluate

Where the above datatype for functions is used, such a function can be evaluated over a
(sub-)face in a recursive fashion. The relevant interval operation is called for each operator
node, with arguments given by the result of the recursive evaluation over the sub-trees.
Variables are substituted by the interval or point values for the corresponding fields of the
face.
INPUT:

• fi: (single-valued) function (function)

• s: (face)

OUTPUT:

• y: an interval enclosure for f(s) (interval)

Routine: TDegree

Conceptually, the degree finder is expressed as a single function, taking an array of symbolic
functions and a box as input, and returning a single integer. Main subroutines generate the
initial face array L, subdivide and check faces, and search and resolve overlaps, utilising a
hierarchy of array, face, and interval processes.
INPUT:

• n: number of variables (integer)

• F : (multi-valued) function (array of n functions)

• X: (box)

OUTPUT:

• deg(F ,X, 0): Brouwer degree of F at 0 relative to X (integer)

Output

The result of a topological degree computation is a single integer; nevertheless four different
options for program output are implemented:

• Terse Output: If no diagnostic information is required, the program merely returns
the (integer) result.

175

A Software

• Tabular Output: For an analysis of the algorithm’s characteristics, as undertaken
in Chapter 7, a concise chart of diagnostic information for each major iteration is
displayed, just as in Tables 7.1 to 7.4.

• Graphical Output: For a more complete illustration of the face subdivision process,
this option produces a pseudo-graphical illustration of the tree of sub-faces. It is thus
possible to observe the structure of this tree (e.g. problem branches, node clustering)
in a way that is not possible with the tabular output. An example is given in Figure
A.1; * indicates a subdivision (i.e. a non-terminal face), 0 a terminal face that is
discarded, and +-> a terminal face that is retained.

*---0 *---*---0 0 +-> 0 0
0 | *---0
*---0 | | 0
| *---0 | | 0
| | 0 | | 0
| | 0 | 0
| | 0 | *---0
| 0 | *---0
| 0 | | 0
------0 | | 0

| 0 | | 0
| *---0 | 0
| | 0 | +->
| | 0 *---0
| | 0 | 0
| 0 | *---0
0 | | 0
*---0 | | +->
| 0 | | 0
| 0 | 0
| 0 +->
0 +->

Figure A.1: Example subdivision trees for the six faces (two non-terminal and four terminal)
of a box in R3.

• Verbose Output: This option is useful only for debugging and very detailed low-
level analysis. Every single face that is generated during the subdivision process is
displayed, and it is stated whether it is discarded, retained, or subdivided. For large
examples, this option can generate several megabytes of text.

176

A Software

A.2 Bernstein Expansion Software

The algorithms detailed in Section 3.3 and in Subsection 9.3.2 are implemented in BeBP,
a C++ software package for the computation of Bernstein-based affine bound functions
for polynomials. Interval arithmetic is used extensively throughout, for which the filib++
library [LTWvG01] is employed. As noted in Section 3.3, there is very little previously exist-
ing software in the public domain that deals with the Bernstein expansion either rigorously
or in the multivariate case.

We give here a brief overview of this software package. The following subsections introduce
the data structures used by the program, and some of the most important routines available.
By default, the program operates in a rigorous mode, whereby the coefficients of polynomials
and Bernstein coefficients are stored and manipulated as intervals with double-precision
floating point endpoints. This delivers bounds which are guaranteed to be valid.

There are two versions of the main data structure and routines (with the exception of the
bounding functions), one for the standard Bernstein form, and one for the implicit Bernstein
form.

Data Structure: Polynomial

Polynomials are passed to the program in a sparse representation, consisting of a one-
dimensional array of non-zero terms. The ordering of the terms in the polynomial is unim-
portant. Each term thus consists of a coefficient with an array of associated variable expo-
nents. Coefficients are stored as intervals; they may be entered as point values, in which case
they are converted to intervals of machine-precision width. Implicit in this data structure
are n, the number of variables, and l, the degrees in each variable. These values are instead
stored alongside the polynomial in the BCPB data structure, below.
Polynomial:

• k: number of terms (integer)

• t: terms (array of k terms); each term consists of

– a: coefficient (interval)

– i: multi-index exponent (array of n integers)

Data Structure: BCPB

The principal data construct created by the program, designed as a ‘workspace’ for appli-
cations, is an aggregate structure called a BCPB (Bernstein coefficients, polynomial, box).
By storing the Bernstein coefficients in such a workspace alongside the corresponding poly-
nomial and box, they do not need to be recomputed from scratch in subsequent application
iterations; the more efficient subdivision-based scheme can be used.
BCPB:

• n: number of variables (integer)

177

A Software

• l: degrees in each variable l1, . . . , ln (array of n integers)

• p: polynomial (polynomial)

• X: box (array of n intervals)

• b: Bernstein coefficients ((l1 + 1)× . . .× (ln + 1) array of intervals)

Data Structure: IBCPB

An alternative to the BCPB data structure, above, is an aggregrate which makes use of the
implicit Bernstein form (cf. Section 9.3). This workspace has the same data fields as the
BCPB, but the Bernstein coefficients of the component univariate monomials are stored,
instead of the whole set of the Bernstein coefficients.
IBCPB:

• n: number of variables (integer)

• l: degrees in each variable l1, . . . , ln (array of n integers)

• p: polynomial (polynomial)

• X: box (array of n intervals)

• b: Bernstein coefficients (k
∑n

i=1 li + 1 array of intervals)

Routine: Initialise

Given a polynomial and box as input, this procedure initialises a workspace and calculates
and stores the corresponding Bernstein coefficients. In the case of the usual Bernstein
form, the entire set of coefficients are computed, according to the algorithm in Subsection
3.3.1; in the case of the implicit Bernstein form, instead those of the component univariate
monomials are computed.
INPUT:

• n: number of variables (integer)

• l: degrees in each variable (array of n integers)

• p: polynomial (polynomial)

• X: box (array of n intervals)

OUTPUT:

• w: work structure (pointer to BCPB or IBCPB)

178

A Software

Routine: Subdivide

Given a workspace as input (containing a box and Bernstein coefficients), this procedure
performs a subdivision into two sub-boxes, according to the algorithm in Subsection 3.3.2.
The old workspace is destroyed and two new workspaces are created. The boxes and Bern-
stein coefficients are updated for each new workspace.
INPUT:

• w: work structure (pointer to BCPB or IBCPB)

• d: subdivision direction (integer)

• xλ: split point (floating point)

OUTPUT:

• w1: work structure (pointer to BCPB or IBCPB)

• w2: work structure (pointer to BCPB or IBCPB)

Routine: Range

Given a workspace as input (containing a polynomial and a box), this procedure returns a
tight outer estimation for the range of the polynomial over the box. This range is equal to
the Bernstein enclosure, i.e. the range spanned by the minimum and maximum Bernstein
coefficients. In many cases (often for small boxes and/or where the polynomial is monotonic
over the box), the range is provided without overestimation (except for the outward rounding
which is inherent in the interval arithmetic). Due to the use of interval arithmetic, this range
is a guaranteed outer estimation. In the case of the implicit Bernstein form, the algorithm
in Subsection 9.3.2 is used.
INPUT:

• w: work structure (pointer to BCPB or IBCPB)

OUTPUT:

• r: range (interval)

Routine: Derivative

Given a workspace as input (containing a polynomial and Bernstein coefficients), together
with a choice of one of the variables, this procedure calculates the Bernstein coefficients of
the partial derivative of the polynomial with respect to the chosen variable, over the same
box, according to Subsection 3.3.4. These coefficients are placed into a new workspace which
is created, along with the derivative of the polynomial and the same box.
INPUT:

• w: work structure (pointer to BCPB or IBCPB)

179

A Software

• d: index of differentiation variable (integer)

OUTPUT:

• w1: work structure (pointer to BCPB or IBCPB)

Routine: LowerBF (6 Versions)

Given a workspace as input (containing a polynomial and a box), this procedure returns a
tight affine lower bounding function for the polynomial over the box. The workspace must
be of type BCPB, i.e. the entire set of Bernstein coefficients is explicity required. The
coefficients a0, . . . , an of the bound function are returned in an array. There are six versions
of this routine, according to the variant methods described in Subsections 10.2.2 to 10.2.7.

For the variant which requires it (Method LP), the LP_SOLVE [BD+] package for solving
linear programming problems is used. Other methods may require the solution of a system
of linear equations; here a Householder transformation is employed to yield a QR decom-
position. In the case of the method using the linear least squares approximation (Method
LLS), it is worth noting that the bulk of the computation does not need to be performed
using interval arithmetic; the midpoints of the Bernstein coefficient intervals are used to
construct the linear least squares problem. Only the final stage of the computation, the
downward shift, needs to be performed with interval arithmetic. This suffices for the lower
bounding function to be guaranteed to be valid.
INPUT:

• w: work structure (pointer to BCPB)

OUTPUT:

• c: affine function (array of n + 1 coefficients(floating point))

Routine: UpperBF (6 Versions)

This procedure is entirely analogous to LowerBF (in all variants), except that an affine
upper bounding function is computed.
INPUT:

• w: work structure (pointer to BCPB)

OUTPUT:

• c: affine function (array of n + 1 coefficients(floating point))

180

A Software

Routine: AffineAF

This procedure takes the same input as LowerBF (and UpperBF), but instead yields an
affine function which closely approximates the polynomial over the box. As in Subsection
10.2.7, a linear least squares approximation is employed in the same fashion, except that the
final stage, the downward (or upward) shift, is omitted. This then yields an affine function
which closely approximates the polynomial over the box. It may be of use for applications
in which an affine approximator, instead of an affine relaxation, is required. As before, the
coefficients a0, . . . , an of the approximating function are returned in an array.
INPUT:

• w: work structure (pointer to BCPB)

OUTPUT:

• c: affine function (array of n + 1 coefficients(floating point))

181

	Introduction
	Systems of Nonlinear Equations
	Systems of Polynomial Inequalities
	Global Optimisation Problems
	Outline

	Part I: Background and Existing Work
	Interval Analysis
	Interval Arithmetic
	Elementary Definitions
	Idealised Interval Arithmetic
	Operational Definitions
	Overestimation and the Dependency Problem
	Further Operational Definitions
	Relations on Intervals
	Interval Functions
	Computer Implementation

	Interval Enclosures
	Interval Algorithms
	Branch-and-Bound Methods
	Interval Newton Methods
	Matrix Methods
	Other Interval Methods

	Bernstein Expansion
	Fundamentals
	Bernstein Basis Polynomials
	Bernstein Form
	Basis Conversion
	Generalised Bernstein Form

	Properties of the Bernstein Coefficients
	Vertex Values
	Face Values
	Linearity
	Range Enclosure
	Sharpness
	Convex Hull
	Inclusion Isotonicity
	Partial Derivatives

	Algorithms
	Computation of Bernstein Coefficients
	Subdivision
	Degree Elevation
	Bernstein Coefficients of Partial Derivatives

	Mean Value Bernstein Form
	Bézier Curves

	Topological Degree
	The Brouwer Fixed Point Theorem
	Brouwer Degree
	Properties of the Brouwer Degree
	Example

	Algorithms for Computing Topological Degree
	Integration over the Boundary
	Triangulation of the Boundary

	The Recursive Method
	Faces of a Box
	Scope
	Overview
	Detailed Algorithm
	Example

	Systems of Polynomial Equations
	Applications
	Example System

	Types of Solutions
	Methods of Solution
	Categorisation of Methods
	Newton Methods
	Interval Newton Methods
	Elimination (Symbolic) Methods
	Continuation (Homotopy) Methods
	Subdivision Methods
	Combined Methods

	Problems Involving Polynomial Inequalities
	Systems of Polynomial Inequalities
	Constrained Global Optimisation

	Part II: Contributions
	Computation of Topological Degree
	Open Questions
	Face Processing Strategy
	Overlap Elimination Strategy

	Analysis of the Algorithm
	Schematic
	Metrics and Notation

	Abstract Analysis (Face Subdivision)
	Best and Worse Case Analysis
	Basic Operations
	Linear Systems in R2
	Linear Systems in R3
	Linear Systems in Rn
	Nonlinear Systems in Rn

	Data Analysis
	Subdivision Strategy
	Theoretical Optimal Strategy
	Worst Case Analysis
	Robustness of Subdivision Strategies
	Worthwhile Subdivision --- A Realistic Strategy
	Identifying the Fatal Box --- A Key Sub-Problem
	Is Bisection Optimal?
	Random Subdivision
	A Newton Method

	Conclusions

	Solution of Systems of Polynomial Equations
	Algorithm
	Subdivision and Pruning
	Existence Test

	Examples
	Reduction of Computational Cost and Preconditioning
	Permutation Checking
	Preconditioning

	Improved Bernstein Expansion
	Overview
	Bernstein Coefficients of Monomials
	Bernstein Coefficients of Univariate Monomials
	Monotonicity of the Bernstein Coefficients of Monomials

	The Implicit Bernstein Form
	Determination of the Bernstein Enclosure for Polynomials
	Algorithm for the Efficient Calculation of the Bernstein Enclosure of Polynomials

	Numerical Results

	Bounding Functions for Polynomials
	Convex--Concave Extensions
	Extension 1 (One Affine Function)
	Extension 2 (Two Affine Functions)
	Extension CH (Convex Hull)
	Inclusion Isotonicity

	Affine Bounding Functions
	Overview
	Method C (Constant Bound Function)
	Method LP (Linear Programming Problems)
	Method LE (Linear Equations)
	Method MinBC (Minimum Bernstein Coefficients)
	Method MinS (Minimum Slopes)
	Method LLS (Linear Least Squares Approximation)
	Numerical Results
	An Equilibriation Transformation
	Verified Bounding Functions

	Conclusions
	Summary
	Future Work

	Software
	Topological Degree Software
	Bernstein Expansion Software

	Text1: Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-208986

