Sulfite dehydrogenases in organotrophic bacteria : enzymes, genes and regulation

Lade...
Vorschaubild
Dateien
Lehmann_237408.pdf
Lehmann_237408.pdfGröße: 3.9 MBDownloads: 1044
Datum
2013
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Sulfitdehydrogenasen in organotrophen Bakterien : Enzyme, Gene und deren Regulation
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Sulfite is the product of desulfonation in organotrophic bacteria. Due to its high reactivity with biomolecules (DNA, proteins) it has to be detoxified by oxidation to sulfate catalyzed by sulfite-oxidizing enzymes (SOEs). In prokaryotes the responsible enzymes are sulfite dehydrogenases (SDHs) which are molybdopterin cofactor (Moco)-binding enzymes belonging to the DMSO reductase family. SDHs are highly diverse in their overall structures and up to date two bacterial SDHs have been characterized: SorA and/or SorT. About 50% of the organisms which are known to degrade organosulfonates excrete the sulfonate moiety as sulfate but do not share any sequence similarities to SorA or SorT. Therefore, the focus of this study was filling up the gap of knowledge about sulfite dehydrogenases in organotrophic bacteria.


Physiological studies with taurine and cysteate as sole carbon and energy source in Ruegeria pomeroyi DSS-3 revealed that taurine is completely utilized concomitant with the excretion of sulfate. However, negligible sulfite-oxidizing activity was measured. In contrast, cysteate was not quantitatively utilized and sulfite was excreted. The highest SDH activity was found in these cell extracts using a previously described enzyme assay. The activity was purified and it turned out that a homotrimer, consisting of three monomers of 11 kDa, is responsible for this enzyme activity. This 11 kDa protein is a soluble protein located in the periplasm which is encoded by a gene (SPO3124 for R. pomeroyi DSS-3) within a three-gene operon with genes encoding for an ECF26-type RNA polymerase σ-factor (SPO3125) and an anti σ-factor (SPO3126). Reverse transcription (RT)-PCR experiments and regulator studies using lacZ-fusion plasmids revealed that the SPO3124-26 gene operon is induced by sulfite. The discovered 11 kDa protein was interpreted to represent a periplasmic sensor protein for an ECF-type signal transduction through the cytoplasmatic membrane, e. g. for sensing of sulfite stress or of other environmental stress, and that the apparent SDH activity measurable for this protein is a reflection of its ‘sensory domain’.


Bioinformatic analyses revealed that two-thirds of the organisms with an unknown SDH possess a three-gene cluster: soeABC, which is in close neighbourhood of genes involved in desulfonation. A hypothesis for the function of SoeABC was developed in which SoeA, annotated as a Moco containing oxidoreductase, oxidizes sulfite while transferring the electrons to SoeB, a [4Fe-4S]-cluster binding protein which itself transfers the electrons to SoeC, a transmembrane protein, for which it would be conceivable that the electrons are shuttled to the respiratory chain. First hints for the involvement of SoeABC in sulfite oxidation were obtained by orbitrap analyses and gradient SDS-PAGE indicating that SoeA is inducibly expressed in taurine-grown cell extracts of R. pomeroyi DSS-3 (SPO3559), R. nubinhibens ISM (ISM_10700) and Roseovarius sp. strain 217 (ROS217_11926). Further, Clark-type electrode experiments revealed that the enzyme is located in the membrane supporting the hypothesis that SoeABC is attached to the membrane. An soeA knockout mutant of R. pomeroyi DSS-3 was created by insertional mutation. The mutant was not able to grow with taurine or isethionate within the first two days of growth. However, revertants occurred within six days of growth. It was shown that the soeABC gene cluster is co-transcribed and also co-transcribed with the upstream genes xsc and pta. These findings led to the assumption that TauR is induced by sulfoacetaldehyde (SAA), which is an intermediate in taurine- and in isethionate-degradation. To test this hypothesis, SAA was supplied intracellularly to cysteate-grown R. pomeroyi DSS-3 cells. These cells were now able to quantitatively utilize cysteate while sulfate was excreted; only traces of sulfite were detected. Phylogenetic analyses of SoeA (R. pomeroyi DSS-3) within the DMSO reductase family revealed a close relationship with PsrA which is required for sulfide oxidation. This protein shares 24% sequence identity to the PsrLC complex which was previously described as a novel sulfite dehydrogenase in some green sulfur bacteria.


In this study, an 11 kDa protein induced by sulfite stress was discovered. In the absence of an active sulfite-oxidizing enzyme, the 11 kDa protein presumably acts as sensor protein in R. pomeroyi DSS-3. However in this bacterium as well as in members of the order of Rhodobacterales, a novel type of sulfite dehydrogenase was discovered, which was termed SoeABC.

Zusammenfassung in einer weiteren Sprache

Sulfit, ein Spaltprodukt von Desulfonierungsreaktionen in organotrophen Bakterien, ist aufgrund seiner Nukleophilie und seines hohen Reduktionspotentials toxisch, da es mit Biomolekülen (DNA, Proteinen) in der Zelle reagieren kann. Daher ist eine Detoxifizierung in Form einer Sulfitoxidation, katalysiert durch sulfitoxidierende Enzyme (SOEs), notwendig. Diese Funktion übernehmen in Prokaryoten die strukturell sehr unterschiedlichen Sulfitdehydrogenasen (SDH), die einen Molybdopterin-Kofaktor (Moco) binden und zu der DMSO Reduktase Familie gehören. Bislang wurden zwei bakterielle SDHs beschrieben: SorA und SorT. Jedoch weisen nur 50% der desulfonierenden Bakterien Sequenzhomologien zu SorA und/oder SorT auf, obwohl in den meisten Fällen der Organosulfonat-Schwefel in Form von Sulfat ausgeschieden wird. Daher ist anzunehmen, dass es noch weitere, bislang unbekannte SDHs in diesen Bakterien gibt. Deren Identifizierung und Charakterisierung war das Ziel dieser Doktorarbeit.


Physiologische Experimente in Ruegeria pomeroyi DSS-3 mit Taurin oder Cysteat als alleiniger Kohlenstoff- und Energiequelle zeigten, dass Taurin vollständig unter Ausscheidung von Sulfat verwertet wurde, während Cysteat nur zum Teil verstoffwechselt und der Schwefel in Form von Sulfit ausgeschieden wurde. Anschließende SDH Aktivitätsmessungen, die mit einem für SDHs etablierten Enzymassay durchgeführt wurden, zeigten, dass in Extrakten aus mit Taurin gewachsenen Zellen nur eine geringe Enzymaktivität vorlag, hingegen in Extrakten aus mit Cysteat gewachsenen Zellen die höchste Aktivität gemessen wurde. Dieses Enzym wurde gereinigt und es stellte sich heraus, dass ein Homotrimer, bestehend aus drei Monomeren zu je 11 kDa, für diese Aktivität verantwortlich war. Das Gen für dieses periplasmatische, lösliche 11 kDa Protein liegt in einem drei Gene umfassenden Operon, welches für das 11 kDa Protein kodiert (SPO3124), einem RNA Polymerase σ-Faktor (SPO3125) vom ECF26-Typ und einem Anti σ-Faktor (SPO3126). Transkriptions-analysen und die Verwendung von lacZ-Fusionsplasmiden zeigten, dass Sulfit der Induktor für das Operon SPO3124-26 ist. Aufgrund der gewonnenen Daten wird angenommen, dass das neu entdeckte 11 kDa Protein als periplasmatisches Sensorprotein agiert und somit eine Rolle in der Signaltransduktion, gesteuert über ECF σ-Faktoren, einnimmt.


Aufgrund von bioinformatischen Analysen wurde ein aus drei Genen bestehendes Gencluster gefunden, welches sich in unmittelbarer Nachbarschaft von Genen befindet, die für desulfonierende Enzyme kodieren. Dieses Gencluster, welches in dieser Arbeit als soeABC bezeichnet wurde, tritt bei zwei Drittel der desulfonierenden Organismen auf, deren SDH unbekannt ist. Die daraus abgeleitete Hypothese über die Funktion von SoeABC besagt, dass SoeA, welches als Molybdopterin-Kofaktor (Moco) bindende Oxidoreduktase annotiert ist, die Sulfitoxidation katalysiert und die beiden Elektronen vom Moco auf SoeB überträgt, welches als [4Fe-4S]-Komplex Bindeprotein annotiert ist. Dieses überträgt die Elektronen auf SoeC, ein Transmembranprotein, welches die Elektronen letztendlich auf eine Komponente der Atmungskette übertragen könnte. Erste Hinweise für diese Hypothese lieferten Orbitrap-Analysen und Gradientengele, welche zeigten, dass SoeA in Taurin-gewachsenen Zellextrakten von R. pomeroyi DSS-3 (SPO3559), R. nubinhibens ISM (ISM_10700) und Roseovarius sp. strain 217 (ROS217_11926) induziert exprimiert wurde. Mit Hilfe von Sauerstoffelektrodenmessungen konnte gezeigt werden, dass sich die Enzymaktivität in der Membranfraktion befindet, welches ebenfalls für die Hypothese einer membrangebundenen SDH spricht. Eine soeA-knockout Mutante von R. pomeroyi DSS-3, konnte innerhald der ersten beiden Inkubationstage weder Taurin noch Isethionat verwerten. Jedoch zeigte sich nach sechstägiger Inkubation eine Reversion der Mutation, welche ein Wachstum mit Taurin und Isethionat ermöglichte. Transkriptionsanalysen zeigten, dass das soeABC Gencluster und die davor geschalteten Gene (xsc, pta) ko-transkribiert wurden, welches die Vermutung eines gemeinsamen Regulators (TauR) nahelegt, der durch Sulfoacetaldehyd (SAA), ein Zwischenprodukt des Taurin- und Isethionatabbaus, induziert wird. Als Beweis wurde zu Cysteat verstoffwechselnden R. pomeroyi DSS-3 Zellen intrazellulär gebildetes SAA gegeben. Unter diesen Bedingungen waren die Zellen nun in der Lage, Cysteat vollständig zu verwerten und den Sulfonat-Schwefel hauptsächlich in Form von Sulfat auszuscheiden. Phylogenetische Analysen von SoeA (R. pomeroyi DSS-3) mit anderen Proteinen der DMSO-Reduktase Familie zeigten eine nahe Verwandtschaft von SoeA mit PrsA, welches eine Rolle bei der Sulfidoxidation einnimmt und eine 24%-ige Sequenzidentität zu PrsLC aufweist, welches als neue SDH in einigen grünen Schwefelbakterien beschrieben wurde.


In der vorliegenden Doktorarbeit wurde ein periplasmatisches, über ECF σ-Faktoren reguliertes Sensorprotein (z. Bsp. für Sulfitstress) und eine neue, vor allem in der Ordnung Rhodobacterales vorkommende SDH (SoeABC) beschrieben.

Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690LEHMANN, Sabine, 2013. Sulfite dehydrogenases in organotrophic bacteria : enzymes, genes and regulation [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Lehmann2013Sulfi-23740,
  year={2013},
  title={Sulfite dehydrogenases in organotrophic bacteria : enzymes, genes and regulation},
  author={Lehmann, Sabine},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23740">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-24T07:24:25Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23740/1/Lehmann_237408.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23740/1/Lehmann_237408.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Sulfite dehydrogenases in organotrophic bacteria : enzymes, genes and regulation</dcterms:title>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23740"/>
    <dc:contributor>Lehmann, Sabine</dc:contributor>
    <dcterms:alternative>Sulfitdehydrogenasen in organotrophen Bakterien : Enzyme, Gene und deren Regulation</dcterms:alternative>
    <dcterms:abstract xml:lang="eng">Sulfite is the product of desulfonation in organotrophic bacteria. Due to its high reactivity with biomolecules (DNA, proteins) it has to be detoxified by oxidation to sulfate catalyzed by sulfite-oxidizing enzymes (SOEs). In prokaryotes the responsible enzymes are sulfite dehydrogenases (SDHs) which are molybdopterin cofactor (Moco)-binding enzymes belonging to the DMSO reductase family. SDHs are highly diverse in their overall structures and up to date two bacterial SDHs have been characterized: SorA and/or SorT. About 50% of the organisms which are known to degrade organosulfonates excrete the sulfonate moiety as sulfate but do not share any sequence similarities to SorA or SorT. Therefore, the focus of this study was filling up the gap of knowledge about sulfite dehydrogenases in organotrophic bacteria.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;Physiological studies with taurine and cysteate as sole carbon and energy source in Ruegeria pomeroyi DSS-3 revealed that taurine is completely utilized concomitant with the excretion of sulfate. However, negligible sulfite-oxidizing activity was measured. In contrast, cysteate was not quantitatively utilized and sulfite was excreted. The highest SDH activity was found in these cell extracts using a previously described enzyme assay. The activity was purified and it turned out that a homotrimer, consisting of three monomers of 11 kDa, is responsible for this enzyme activity. This 11 kDa protein is a soluble protein located in the periplasm which is encoded by a gene (SPO3124 for R. pomeroyi DSS-3) within a three-gene operon with genes encoding for an ECF26-type RNA polymerase σ-factor (SPO3125) and an anti σ-factor (SPO3126). Reverse transcription (RT)-PCR experiments and regulator studies using lacZ-fusion plasmids revealed that the SPO3124-26 gene operon is induced by sulfite. The discovered 11 kDa protein was interpreted to represent a periplasmic sensor protein for an ECF-type signal transduction through the cytoplasmatic membrane, e. g. for sensing of sulfite stress or of other environmental stress, and that the apparent SDH activity measurable for this protein is a reflection of its ‘sensory domain’.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;Bioinformatic analyses revealed that two-thirds of the organisms with an unknown SDH possess a three-gene cluster: soeABC, which is in close neighbourhood of genes involved in desulfonation. A hypothesis for the function of SoeABC was developed in which SoeA, annotated as a Moco containing oxidoreductase, oxidizes sulfite while transferring the electrons to SoeB, a [4Fe-4S]-cluster binding protein which itself transfers the electrons to SoeC, a transmembrane protein, for which it would be conceivable that the electrons are shuttled to the respiratory chain. First hints for the involvement of SoeABC in sulfite oxidation were obtained by orbitrap analyses and gradient SDS-PAGE indicating that SoeA is inducibly expressed in taurine-grown cell extracts of R. pomeroyi DSS-3 (SPO3559), R. nubinhibens ISM (ISM_10700) and Roseovarius sp. strain 217 (ROS217_11926). Further, Clark-type electrode experiments revealed that the enzyme is located in the membrane supporting the hypothesis that SoeABC is attached to the membrane. An soeA knockout mutant of R. pomeroyi DSS-3 was created by insertional mutation. The mutant was not able to grow with taurine or isethionate within the first two days of growth. However, revertants occurred within six days of growth. It was shown that the soeABC gene cluster is co-transcribed and also co-transcribed with the upstream genes xsc and pta. These findings led to the assumption that TauR is induced by sulfoacetaldehyde (SAA), which is an intermediate in taurine- and in isethionate-degradation. To test this hypothesis, SAA was supplied intracellularly to cysteate-grown R. pomeroyi DSS-3 cells. These cells were now able to quantitatively utilize cysteate while sulfate was excreted; only traces of sulfite were detected. Phylogenetic analyses of SoeA (R. pomeroyi DSS-3) within the DMSO reductase family revealed a close relationship with PsrA which is required for sulfide oxidation. This protein shares 24% sequence identity to the PsrLC complex which was previously described as a novel sulfite dehydrogenase in some green sulfur bacteria.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;In this study, an 11 kDa protein induced by sulfite stress was discovered.  In the absence of an active sulfite-oxidizing enzyme, the 11 kDa protein presumably acts as sensor protein in R. pomeroyi DSS-3. However in this bacterium as well as in members of the order of Rhodobacterales, a novel type of sulfite dehydrogenase was discovered, which was termed SoeABC.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Lehmann, Sabine</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2013</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-24T07:24:25Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
April 10, 2013
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen