Trace conditioning in insects : keep the trace!

Lade...
Vorschaubild
Dateien
Dylla_263377.pdf
Dylla_263377.pdfGröße: 2.09 MBDownloads: 265
Datum
2013
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold, Open Access Gold
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Frontiers in Physiology. 2013, 4, 67. eISSN 1664-042X. Available under: doi: 10.3389/fphys.2013.00067
Zusammenfassung

Trace conditioning is a form of associative learning that can be induced by presenting a conditioned stimulus (CS) and an unconditioned stimulus (US) following each other, but separated by a temporal gap. This gap distinguishes trace conditioning from classical delay conditioning, where the CS and US overlap. To bridge the temporal gap between both stimuli and to form an association between CS and US in trace conditioning, the brain must keep a neural representation of the CS after its termination—a stimulus trace. Behavioral and physiological studies on trace and delay conditioning revealed similarities between the two forms of learning, like similar memory decay and similar odor identity perception in invertebrates. On the other hand differences were reported also, like the requirement of distinct brain structures in vertebrates or disparities in molecular mechanisms in both vertebrates and invertebrates. For example, in commonly used vertebrate conditioning paradigms the hippocampus is necessary for trace but not for delay conditioning, and Drosophila delay conditioning requires the Rutabaga adenylyl cyclase (Rut-AC), which is dispensable in trace conditioning. It is still unknown how the brain encodes CS traces and how they are associated with a US in trace conditioning. Insects serve as powerful models to address the mechanisms underlying trace conditioning, due to their simple brain anatomy, behavioral accessibility and established methods of genetic interference. In this review we summarize the recent progress in insect trace conditioning on the behavioral and physiological level and emphasize similarities and differences compared to delay conditioning. Moreover, we examine proposed molecular and computational models and reassess different experimental approaches used for trace conditioning.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690DYLLA, Kristina Verena, Dana S. GALILI, Paul SZYSZKA, Alja LÜDKE, 2013. Trace conditioning in insects : keep the trace!. In: Frontiers in Physiology. 2013, 4, 67. eISSN 1664-042X. Available under: doi: 10.3389/fphys.2013.00067
BibTex
@article{Dylla2013Trace-26337,
  year={2013},
  doi={10.3389/fphys.2013.00067},
  title={Trace conditioning in insects : keep the trace!},
  volume={4},
  journal={Frontiers in Physiology},
  author={Dylla, Kristina Verena and Galili, Dana S. and Szyszka, Paul and Lüdke, Alja},
  note={Article Number: 67}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26337">
    <dcterms:abstract xml:lang="eng">Trace conditioning is a form of associative learning that can be induced by presenting a conditioned stimulus (CS) and an unconditioned stimulus (US) following each other, but separated by a temporal gap. This gap distinguishes trace conditioning from classical delay conditioning, where the CS and US overlap. To bridge the temporal gap between both stimuli and to form an association between CS and US in trace conditioning, the brain must keep a neural representation of the CS after its termination—a stimulus trace. Behavioral and physiological studies on trace and delay conditioning revealed similarities between the two forms of learning, like similar memory decay and similar odor identity perception in invertebrates. On the other hand differences were reported also, like the requirement of distinct brain structures in vertebrates or disparities in molecular mechanisms in both vertebrates and invertebrates. For example, in commonly used vertebrate conditioning paradigms the hippocampus is necessary for trace but not for delay conditioning, and Drosophila delay conditioning requires the Rutabaga adenylyl cyclase (Rut-AC), which is dispensable in trace conditioning. It is still unknown how the brain encodes CS traces and how they are associated with a US in trace conditioning. Insects serve as powerful models to address the mechanisms underlying trace conditioning, due to their simple brain anatomy, behavioral accessibility and established methods of genetic interference. In this review we summarize the recent progress in insect trace conditioning on the behavioral and physiological level and emphasize similarities and differences compared to delay conditioning. Moreover, we examine proposed molecular and computational models and reassess different experimental approaches used for trace conditioning.</dcterms:abstract>
    <dc:creator>Galili, Dana S.</dc:creator>
    <dc:contributor>Szyszka, Paul</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2013</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>Trace conditioning in insects : keep the trace!</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26337/2/Dylla_263377.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26337/2/Dylla_263377.pdf"/>
    <dc:creator>Lüdke, Alja</dc:creator>
    <dc:creator>Szyszka, Paul</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Dylla, Kristina Verena</dc:contributor>
    <dc:contributor>Galili, Dana S.</dc:contributor>
    <dc:rights>Attribution 3.0 Unported</dc:rights>
    <dc:creator>Dylla, Kristina Verena</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T10:36:06Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T10:36:06Z</dcterms:available>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/3.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26337"/>
    <dc:contributor>Lüdke, Alja</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:bibliographicCitation>Frontiers in Physiology ; 4 (2013). - 67</dcterms:bibliographicCitation>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen