Towards the structure of proteins involved in membrane transport processes : NptA, PulG and SycD/YopB/YopD

Lade...
Vorschaubild
Dateien
Dissertation_Schaefer_2009.pdf
Dissertation_Schaefer_2009.pdfGröße: 4.51 MBDownloads: 651
Datum
2009
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Versuche zur Strukturbestimmung von Proteinen mit Beteiligung an Membrantransportprozessen : NptA, PulG und SycD/YopB/YopD
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

The work presented here was focussed on the expression, purification and crystallization of proteins that are involved in transport processes across bacterial membranes: NptA from Vibrio cholerae, PulG from Klebsiella oxytoca and SycD/YopB/YopD from Yersinia enterocolitica. Sodium dependent phosphate cotransporters (NaPi II's) have been known for a long time from higher vertebrates where they play an important role in phosphate homoeostasis and bone metabolism. Due to their substantial physiological and medical relevance they are functionally well characterized. Despite the obvious need for a high resolution structure, NaPi II's were so far not amenable to structural investigations since it was not possible to express and purify them in sufficient amounts. Chapter 2 describes the recombinant expression of NptA, a recently discovered sequence and functional homologue from the Gram- bacterium V. cholerae. Extensive screenings for suitable solubilization conditions and optimization of the purification yielded ~2 mg His-tagged NptA from 5 l Escherichia coli culture, but only in the form of inhomogeneous, large oligomers/aggregates inappropriate for crystallization. Attempts to prepare these aggregates into a homogeneous solution of mono- or small oligomers failed. During the course of this work, further NaPi II homologues were identified in the genomes of numerous other bacteria. Ten genes were selected from databases and the E. coli optimized sequences were inserted into a pET vector for expression. p32-phosphate uptake measurements revealed an increased sodium dependent uptake in E. coli C43 for eight of the constructs, indicating functional expression. Seven transporters showed a clear signal on western blots when tested for their expression. These new expression systems are the basis for further attempts to reach the ultimate goal of a high resolution crystal structure. The pseudopilin PulG is an essential component of the type II pullulanase secretion machinery of the Gram- bacterium K. oxytoca. The sequence of the N-terminal 25 amino acids of the PulG precursor is hydrophobic and very similar to the corresponding region of type IV pilins where these residues form a long alpha-helical spine that protrudes from a globular head domain. Chapter 3 presents the crystal structure of truncated PulG lacking the N-terminal hydrophobic region --- the first structure of a type II pseudopilin. The obtained crystals belonged to space group P6522 and diffracted to a 1.6 A resolution. The model was refined to a final R-factor of 16.7% (Rfree = 19.8%). Truncated PulG was found to include part of the long N-terminal alpha-helix and the four internal anti-parallel beta-strands that characterize the type IV pilins, even though sequence similarity is missing in the crystallized head domain. The highly variable loop region with a disulfide bond which is found in the type IV pilins is not present in the PulG structure. When overproduced, PulG forms flexible pili whose structural features, as visualized by electron microscopy, are similar to those of bacterial type IV pili. The PulG structure was used to build an atomic model of the pseudopilus assembly by fitting PulG monomers into data obtained by cryo electron microscopy and mass spectrometry analyses of pilus filaments. The complex type III protein secretion machinery of Y. enterocolitica directly injects bacterial effectors into immune cells of mammalian hosts. Two hydrophobic components, YopD and YopB, have one, respectively two predicted transmembrane helices and form the translocation pore in the host cell membrane. Targeting of these translocators depends on the presence of their specific chaperone SycD in the bacterial cytoplasm where it prevents the presecretional aggregation of YopB and YopD. With the goal to determine the three-dimensional structures of the chaperone and its complexes with the translocators, His-tagged SycD was recombinantly expressed in E. coli, either alone or together with YopB and/or YopD as described in chapter 4. Extensive crystallization experiments with the purified His-SycD dimer and a homogeneous His-SycD/YopD complex (most probably composed of 2 + 2 monomers) did not produce crystals --- potentially due to the sensitivity of His-SycD to oxidation at one or more of the four cysteine sites. Thus, different combinations of cysteine versus alanine mutations were introduced in His-SycD. One double mutant His-SycD(C113A, C164A) exhibited the same behavior in respect to YopD binding but was not sensitive to oxidation. This mutant is a further promising candidate for crystallization experiments of the chaperone and the chaperone/YopD complex.

Zusammenfassung in einer weiteren Sprache

Im Mittelpunkt der hier vorgestellten Arbeit stehen die Expression, Reinigung und Kristallisation von Proteinen, die an Transportprozessen über bakterielle Membranen beteiligt sind: NptA von Vibrio cholerae, PulG von Klebsiella oxytoca und SycD/YopB/YopD von Yersinia enterocolitica. Natrium abhängige Phosphatcotransporter (NaPi II Proteine) sind seit längerer Zeit aus Vertebraten bekannt. Hier spielen sie eine wichtige Rolle bei der Phosphathomöostase und damit auch im Knochenmetabolismus. Aufgrund ihrer physiologischen und medizinischen Bedeutung wurden sie funktionell gut charakterisiert. Der Bedarf für eine hochauflösende Proteinstruktur ist offensichtlich. Kapitel 2 beschreibt die rekombinante Expression und Reinigung von NptA, einem jüngst entdeckten Homologen aus dem Gram- Bakterium V. cholerae. Die ausgiebige Suche nach geeigneten Bedingungen für die Solubilisierung und die Optimierung der Reinigung resultierten in einer Ausbeute von 2mg reinem His-NptA aus 5l Escherichia coli Kultur, jedoch nur in Form von großen Oligomeren bzw. Aggregaten. Versuche, His-NptA in eine homogene Lösung von Monomeren oder kleinen Oligomeren zu bringen, schlugen fehl. Im Verlauf dieser Arbeit wurden weitere NaPi II Homologe in den Genomen einer Vielzahl anderer Bakterien identifiziert. Zehn Gene wurden aus Datenbanken ausgewählt. Die E. coli optimierten Sequenzen wurden mittels Gensythese hergestellt und in einen pET Vektor für deren Expression überführt. P32-Phosphataufnahmemessungen ergaben für acht dieser Konstrukte eine erhöhte natriumabhängige Aufnahme in E. coli C43 Zellen, ein deutlicher Hinweis auf funktionelle Expression. Sieben Transporter zeigten bei Expressionstests ein deutliches Signal in Western Blots. Die neuen Expressionsysteme bilden die Grundlage für weitere Versuche, das finale Ziel, eine hochauflösende Kristallstruktur, zu erreichen. Das Pseudopilin PulG ist eine essentielle Komponente des Typ II Pullulanase Sekretionssystems aus dem Gram- Bakterium K. oxytoca. Die Sequenz der N-terminalen 25 Aminosäuren des PulG Vorläuferproteins ist hydrophob und dem äquivalenten Abschnitt von Typ IV Pilinen sehr ähnlich. Dort bilden diese Reste einen langen alpha-helikalen Fortsatz aus, der deutlich aus der globulären Proteindomäne herrausragt. In Kapitel 3 wird die Kristallstruktur einer verkürzten PulG Variante vorgestellt, welcher der N-terminale hydrophobe Bereich fehlt - die erste Struktur eines Typ II Pseudopilins. Die erhaltenen Kristalle der Raumgruppe P6522 beugten am Synchrotron bis zu einer Auflösung von 1.6A. Die Struktur wurde bis zu einem R-Faktor von 16.7% (Rfree=19.8%) verfeinert. Die verkürzte PulG Variante enthielt einen Teil der für Typ IV Piline charakteristischen langen N-terminalen alpha-Helix sowie die vier internen antiparallelen beta-Stränge. Der hochvariable "Loop"-Bereich der Typ IV Piline inklusive der Disulphidbrücke ist in der PulG Struktur nicht enthalten. Bei starker Überexpression bildet PulG flexible Pili aus, deren strukturelle Eigenschaften, elektronenmikroskopisch dargestellt, ähnlich zu Typ IV Pili sind. Die PulG Struktur wurde dazu verwendet, ein atomares Model des Pseudopilus zu generieren, wobei PulG Monomere in kryoelektronenmikroskopisch sowie massenspektrometrisch erhobene Daten eingepasst wurden. Der komplex aufgebaute Typ III Sekretionsapparat von Y. enterocolitica dient der direkten Injektion von bakteriellen Effektorproteinen in Immunzellen des Säugertierwirts. Zwei hydrophobe Komponenten, YopD und YopB, besitzen eine bzw. zwei vorhergesagte Transmembranhelizes und bilden die Translokationspore in der Wirtszellmembran. Das erfolgreiche Targeting der Translokatoren ist von der Gegenwart des spezifischen Chaperones SycD im bakteriellen Zytoplasma abhängig. Hier verhindert es die Aggregation von YopB und YopD bevor diese sekretiert werden. Mit dem Ziel die dreidimensionale Struktur des Chaperones sowie dessen Proteinkomplexen mit den Translokatoren zu bestimmen, wurde, wie in Kapitel 4 beschrieben, SycD mit einem N-terminalen His-Tag in E. coli exprimiert, sowohl alleine, als auch zusammen mit YopB und/oder YopD. Umfangreiche Kristallisationsexperimente mit dem gereinigten His-SycD Dimer und einem homogenen His-SycD/YopD Komplex, dessen Größe am besten 2+2 Monomeren entspricht, erbrachten keine Kristalle. Die Ursache dafür könnte die beobachtete Oxidationsempfindlichkeit von His-SycD an einer oder mehrerer der vier Cysteinpositionen sein. Daher wurden in His-SycD verschiedene Kombinationen von Cystein versus Alanin Mutationen eingebracht. Eine Doppelmutante His-SycD(C113A, C164A) verhielt sich, in Bezug auf die Eigenschaft YopD zu binden, identisch zum Wildtyp, zeigte jedoch keine Oxidation mehr. Diese Mutante stellt einen aussichtsreichen Kandidaten für weitere Kristallisationsversuche dar.

Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
crystallization, x-ray crystallography, membrane proteins, protein secretion, carrier proteins
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SCHÄFER, Karsten, 2009. Towards the structure of proteins involved in membrane transport processes : NptA, PulG and SycD/YopB/YopD [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Schafer2009Towar-6767,
  year={2009},
  title={Towards the structure of proteins involved in membrane transport processes : NptA, PulG and SycD/YopB/YopD},
  author={Schäfer, Karsten},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6767">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Schäfer, Karsten</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:29:02Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6767/1/Dissertation_Schaefer_2009.pdf"/>
    <dcterms:alternative>Versuche zur Strukturbestimmung von Proteinen mit Beteiligung an Membrantransportprozessen : NptA, PulG und SycD/YopB/YopD</dcterms:alternative>
    <dcterms:abstract xml:lang="eng">The work presented here was focussed on the expression, purification and crystallization of proteins that are involved in transport processes across bacterial membranes: NptA from Vibrio cholerae, PulG from Klebsiella oxytoca and SycD/YopB/YopD from Yersinia enterocolitica. Sodium dependent phosphate cotransporters (NaPi II's) have been known for a long time from higher vertebrates where they play an important role in phosphate homoeostasis and bone metabolism. Due to their substantial physiological and medical relevance they are functionally well characterized.  Despite the obvious need for a high resolution structure, NaPi II's were so far not amenable to structural investigations since it was not possible to express and purify them in sufficient amounts. Chapter 2 describes the recombinant expression of NptA, a recently discovered sequence and functional homologue from the Gram&lt;sup&gt;-&lt;/sup&gt; bacterium V. cholerae. Extensive screenings for suitable solubilization conditions and optimization of the purification yielded ~2 mg His-tagged NptA from 5 l Escherichia coli culture, but only in the form of inhomogeneous, large oligomers/aggregates inappropriate for crystallization.  Attempts to prepare these aggregates into a homogeneous solution of mono- or small oligomers failed.  During the course of this work, further NaPi II homologues were identified in the genomes of numerous other bacteria.  Ten genes were selected from databases and the E. coli optimized sequences were inserted into a pET vector for expression. p&lt;sup&gt;32&lt;/sup&gt;-phosphate uptake measurements revealed an increased sodium dependent uptake in E. coli C43 for eight of the constructs, indicating functional expression.  Seven transporters showed a clear signal on western blots when tested for their expression.  These new expression systems are the basis for further attempts to reach  the ultimate goal of a high resolution crystal structure. The pseudopilin PulG is an essential component of the type II pullulanase secretion machinery of the Gram&lt;sup&gt;-&lt;/sup&gt; bacterium K. oxytoca.  The sequence of the N-terminal 25 amino acids of the PulG precursor is hydrophobic and very similar to the corresponding region of type IV pilins where these residues form a long alpha-helical spine that protrudes from a globular head domain.   Chapter 3 presents the crystal structure of truncated PulG lacking the N-terminal hydrophobic region --- the first structure of a type II pseudopilin. The obtained crystals belonged to space group P6&lt;sub&gt;5&lt;/sub&gt;22 and diffracted to a 1.6 A resolution.  The model was refined to a final R-factor of 16.7% (R&lt;sub&gt;free&lt;/sub&gt; = 19.8%).  Truncated PulG was found to include part of the long N-terminal alpha-helix and the four internal anti-parallel beta-strands that characterize the type IV pilins, even though sequence similarity is missing in the crystallized head domain.  The highly variable loop region with a disulfide bond which is found in the type IV pilins is not present in the PulG structure.  When overproduced, PulG forms flexible pili whose structural features, as visualized by electron microscopy, are similar to those of bacterial type IV pili.  The PulG structure was used to build an atomic model of the pseudopilus assembly by fitting PulG monomers into data obtained by cryo electron microscopy and mass spectrometry analyses of pilus filaments. The complex type III protein secretion machinery of Y. enterocolitica directly injects bacterial effectors into immune cells of mammalian hosts. Two hydrophobic components, YopD and YopB, have one, respectively two predicted transmembrane helices and form the translocation pore in the host cell membrane.  Targeting of these translocators depends on the presence of their specific chaperone SycD in the bacterial cytoplasm where it prevents the presecretional aggregation of YopB and YopD. With the goal to determine the three-dimensional structures of the chaperone and its complexes with the translocators, His-tagged SycD was recombinantly expressed in E. coli, either alone or together with YopB and/or YopD as described in chapter 4. Extensive crystallization experiments with the purified His-SycD dimer and a homogeneous His-SycD/YopD complex (most probably composed of 2 + 2 monomers) did not produce crystals --- potentially due to the sensitivity of His-SycD to oxidation at one or more of the four cysteine sites. Thus, different combinations of cysteine versus alanine mutations were introduced in His-SycD.  One double mutant His-SycD&lt;sup&gt;(C113A, C164A)&lt;/sup&gt; exhibited the same behavior in respect to YopD binding but was not sensitive to oxidation.  This mutant is a further promising candidate for crystallization experiments of the chaperone and the chaperone/YopD complex.</dcterms:abstract>
    <dcterms:title>Towards the structure of proteins involved in membrane transport processes : NptA, PulG and SycD/YopB/YopD</dcterms:title>
    <dcterms:issued>2009</dcterms:issued>
    <dc:creator>Schäfer, Karsten</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6767/1/Dissertation_Schaefer_2009.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:29:02Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:format>application/pdf</dc:format>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6767"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
November 12, 2009
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen