Monocrystalline silicon : future cell concepts

Lade...
Vorschaubild
Dateien
Raabe_opus-122202.pdf
Raabe_opus-122202.pdfGröße: 288.4 KBDownloads: 131
Datum
2007
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
The compiled state-of-the-art of PV solar technology and deployment : 22nd European Photovoltaic Solar Energy Conference, EU PVSEC ; proceedings of the international conference, held in Milan, Italy, 3 - 7 September 2007. Munich: WIP-Renewable Energies, 2007, pp. 1024-1029
Zusammenfassung

An overview of currently used cell processes for monocrystalline silicon in industry is given. Since the screen printed solar cell process has the biggest market share, advanced screen printing processes are presented. The front-side with selective emitter structures are investigated by measuring the emitter saturation current (j0e) on symmetrical test samples with QSSPC. The reference sample with an industrial homogeneous 50 Ω/□ emitter and fired PECVD SiN has a j0e of 220 fA/cm2. On selective emitter structures with two diffusion steps, using first a 100 Ω/□ diffusion then a SiN layer as mask and finally a 10 Ω/□ diffusion, j0e is 140 fA/cm2 using PECVD SiN and 120 fA/cm2 respectively with LPCVD SiN. By changing the sequence of light and heavy diffusion and applying PECVD SiN for surface passivation, j0e was measured to 90 fA/cm2. Solar cells were made with a two step selective emitter and a simplified process with a single diffusion step using laser structured SiN as diffusion suppressing layer and no texture was applied to these cells. The best reference cell with homogeneous 50 Ω/□ emitter has an efficiency of 16.2% and 625 mV VOC. The best selective emitter solar cells with both used processes have a 10 mV increase of VOC leading to 635 mV and an efficiency of 17.0% of a cell using the simplified selective emitter process. The bulk lifetime of Cz-Si was monitored during a selective emitter process with a screen printed aluminium BSF on the rear. The bulk lifetime of the as grown wafer was 32 μs and was subsequently improved by phosphorous gettering to 67 μs. Bulk lifetime was further raised to 120 μs through aluminum gettering of the screen printed BSF. This result has to be taken into account when applying alternative rear sides with dielectric passivation where beneficial aluminium gettering cannot be used. Therefore material that does not strongly depend on aluminum gettering should be used. A dielectric rear side passivation can be integrated at several stages in the production process. Each sequence entails different challenges especially in maintaining the rear side passivation quality at the end of the process.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
selective emitter, czochralski, gettering
Konferenz
EU PVSEC, 3. Sep. 2007 - 7. Sep. 2007, Milan, Italy
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690RAABE, Bernd, Helge HAVERKAMP, Felix BOOK, Amir DASTGHEIB-SHIRAZI, Robert MOLL, Giso HAHN, 2007. Monocrystalline silicon : future cell concepts. EU PVSEC. Milan, Italy, 3. Sep. 2007 - 7. Sep. 2007. In: The compiled state-of-the-art of PV solar technology and deployment : 22nd European Photovoltaic Solar Energy Conference, EU PVSEC ; proceedings of the international conference, held in Milan, Italy, 3 - 7 September 2007. Munich: WIP-Renewable Energies, 2007, pp. 1024-1029
BibTex
@inproceedings{Raabe2007Monoc-884,
  year={2007},
  title={Monocrystalline silicon : future cell concepts},
  publisher={WIP-Renewable Energies},
  address={Munich},
  booktitle={The compiled state-of-the-art of PV solar technology and deployment : 22nd European Photovoltaic Solar Energy Conference, EU PVSEC ; proceedings of the international conference, held in Milan, Italy, 3 - 7 September 2007},
  pages={1024--1029},
  author={Raabe, Bernd and Haverkamp, Helge and Book, Felix and Dastgheib-Shirazi, Amir and Moll, Robert and Hahn, Giso}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/884">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:51:43Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/884"/>
    <dc:creator>Moll, Robert</dc:creator>
    <dc:creator>Raabe, Bernd</dc:creator>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:51:43Z</dc:date>
    <dcterms:bibliographicCitation>Publ. in: The compiled state-of-the-art of PV solar technology and deployment : 22nd European Photovoltaic Solar Energy Conference, EU PVSEC ; proceedings of the international conference, held in Milan, Italy, 3 - 7 September 2007. - Munich : WIP-Renewable Energies, 2007, pp. 1024-1029</dcterms:bibliographicCitation>
    <dc:contributor>Haverkamp, Helge</dc:contributor>
    <dc:contributor>Raabe, Bernd</dc:contributor>
    <dc:contributor>Moll, Robert</dc:contributor>
    <dcterms:issued>2007</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Haverkamp, Helge</dc:creator>
    <dc:creator>Dastgheib-Shirazi, Amir</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/884/1/Raabe_opus-122202.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Book, Felix</dc:creator>
    <dcterms:title>Monocrystalline silicon : future cell concepts</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/884/1/Raabe_opus-122202.pdf"/>
    <dcterms:abstract xml:lang="eng">An overview of currently used cell processes for monocrystalline silicon in industry is given. Since the screen printed solar cell process has the biggest market share, advanced screen printing processes are presented. The front-side with selective emitter structures are investigated by measuring the emitter saturation current (j0e) on symmetrical test samples with QSSPC. The reference sample with an industrial homogeneous 50 Ω/□ emitter and fired PECVD SiN has a j0e of 220 fA/cm2. On selective emitter structures with two diffusion steps, using first a 100 Ω/□ diffusion then a SiN layer as mask and finally a 10 Ω/□ diffusion, j0e is 140 fA/cm2 using PECVD SiN and 120 fA/cm2 respectively with LPCVD SiN. By changing the sequence of light and heavy diffusion and applying PECVD SiN for surface passivation, j0e was measured to 90 fA/cm2. Solar cells were made with a two step selective emitter and a simplified process with a single diffusion step using laser structured SiN as diffusion suppressing layer and no texture was applied to these cells. The best reference cell with homogeneous 50 Ω/□ emitter has an efficiency of 16.2% and 625 mV VOC. The best selective emitter solar cells with both used processes have a 10 mV increase of VOC leading to 635 mV and an efficiency of 17.0% of a cell using the simplified selective emitter process. The bulk lifetime of Cz-Si was monitored during a selective emitter process with a screen printed aluminium BSF on the rear. The bulk lifetime of the as grown wafer was 32 μs and was subsequently improved by phosphorous gettering to 67 μs. Bulk lifetime was further raised to 120 μs through aluminum gettering of the screen printed BSF. This result has to be taken into account when applying alternative rear sides with dielectric passivation where beneficial aluminium gettering cannot be used. Therefore material that does not strongly depend on aluminum gettering should be used. A dielectric rear side passivation can be integrated at several stages in the production process. Each sequence entails different challenges especially in maintaining the rear side passivation quality at the end of the process.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Hahn, Giso</dc:contributor>
    <dc:creator>Hahn, Giso</dc:creator>
    <dc:contributor>Dastgheib-Shirazi, Amir</dc:contributor>
    <dc:contributor>Book, Felix</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen