Syntrophic butyrate and propionate oxidation processes : from genomes to reaction mechanisms

Lade...
Vorschaubild
Dateien
2010_Mueller_489_499.pdf
2010_Mueller_489_499.pdfGröße: 336.18 KBDownloads: 2385
Datum
2010
Autor:innen
Worm, Petra
Stams, Alfons J. M.
Plugge, Caroline M.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Environmental Microbiology Reports. 2010, 2(4), pp. 489-499. eISSN 1758-2229. Available under: doi: 10.1111/j.1758-2229.2010.00147.x
Zusammenfassung

In anoxic environments such as swamps, rice fields and sludge digestors, syntrophic microbial communities are important for decomposition of organic matter to CO2 and CH4. The most difficult step is the fermentative degradation of short-chain fatty acids such as propionate and butyrate. Conversion of these metabolites to acetate, CO2, formate and hydrogen is endergonic under standard conditions and occurs only if methanogens keep the concentrations of these intermediate products low. Butyrate and propionate degradation pathways include oxidation steps of comparably high redox potential, i.e. oxidation of butyryl-CoA to crotonyl-CoA and of succinate to fumarate, respectively, that require investment of energy to release the electrons as hydrogen or formate. Although investigated for several decades, the biochemistry of these reactions is still not completely understood. Genome analysis of the butyrateoxidizing Syntrophomonas wolfei and Syntrophus aciditrophicus and of the propionate-oxidizing Syntrophobacter fumaroxidans and Pelotomaculum thermopropionicum reveals the presence of energytransforming protein complexes. Recent studies indicated that S. wolfei uses electron-transferring flavoproteins coupled to a menaquinone loop to drive butyryl-CoA oxidation, and that S. fumaroxidans uses a periplasmic formate dehydrogenase, cytochrome b:quinone oxidoreductases, a menaquinone loop and a cytoplasmic fumarate reductase to drive energydependent succinate oxidation. Furthermore, we propose that homologues of the Thermotoga maritima bifurcating [FeFe]-hydrogenase are involved in NADH oxidation by S. wolfei and S. fumaroxidans to form hydrogen.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690MÃœLLER, Nicolai, Petra WORM, Bernhard SCHINK, Alfons J. M. STAMS, Caroline M. PLUGGE, 2010. Syntrophic butyrate and propionate oxidation processes : from genomes to reaction mechanisms. In: Environmental Microbiology Reports. 2010, 2(4), pp. 489-499. eISSN 1758-2229. Available under: doi: 10.1111/j.1758-2229.2010.00147.x
BibTex
@article{Muller2010Syntr-7488,
  year={2010},
  doi={10.1111/j.1758-2229.2010.00147.x},
  title={Syntrophic butyrate and propionate oxidation processes : from genomes to reaction mechanisms},
  number={4},
  volume={2},
  journal={Environmental Microbiology Reports},
  pages={489--499},
  author={Müller, Nicolai and Worm, Petra and Schink, Bernhard and Stams, Alfons J. M. and Plugge, Caroline M.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/7488">
    <dc:creator>Schink, Bernhard</dc:creator>
    <dc:creator>Worm, Petra</dc:creator>
    <dc:contributor>Worm, Petra</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Schink, Bernhard</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Müller, Nicolai</dc:creator>
    <dcterms:abstract xml:lang="eng">In anoxic environments such as swamps, rice fields and sludge digestors, syntrophic microbial communities are important for decomposition of organic matter to CO2 and CH4. The most difficult step is the fermentative degradation of short-chain fatty acids such as propionate and butyrate. Conversion of these metabolites to acetate, CO2, formate and hydrogen is endergonic under standard conditions and occurs only if methanogens keep the concentrations of these intermediate products low. Butyrate and propionate degradation pathways include oxidation steps of comparably high redox potential, i.e. oxidation of butyryl-CoA to crotonyl-CoA and of succinate to fumarate, respectively, that require investment of energy to release the electrons as hydrogen or formate. Although investigated for several decades, the biochemistry of these reactions is still not completely understood. Genome analysis of the butyrateoxidizing Syntrophomonas wolfei and Syntrophus aciditrophicus and of the propionate-oxidizing Syntrophobacter fumaroxidans and Pelotomaculum thermopropionicum reveals the presence of energytransforming protein complexes. Recent studies indicated that S. wolfei uses electron-transferring flavoproteins coupled to a menaquinone loop to drive butyryl-CoA oxidation, and that S. fumaroxidans uses a periplasmic formate dehydrogenase, cytochrome b:quinone oxidoreductases, a menaquinone loop and a cytoplasmic fumarate reductase to drive energydependent succinate oxidation. Furthermore, we propose that homologues of the Thermotoga maritima bifurcating [FeFe]-hydrogenase are involved in NADH oxidation by S. wolfei and S. fumaroxidans to form hydrogen.</dcterms:abstract>
    <dcterms:bibliographicCitation>First publ. in: Environmental Microbiology Reports ; 2 (2010), 4. - S. 489-499</dcterms:bibliographicCitation>
    <dc:format>application/pdf</dc:format>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/7488"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7488/1/2010_Mueller_489_499.pdf"/>
    <dc:creator>Plugge, Caroline M.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2010</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:contributor>Müller, Nicolai</dc:contributor>
    <dc:contributor>Stams, Alfons J. M.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7488/1/2010_Mueller_489_499.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:34:49Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Syntrophic butyrate and propionate oxidation processes : from genomes to reaction mechanisms</dcterms:title>
    <dc:creator>Stams, Alfons J. M.</dc:creator>
    <dc:contributor>Plugge, Caroline M.</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen