Impacts of invasive amphipods on the local benthic fauna and leaf litter decomposition

Lade...
Vorschaubild
Dateien
Dissertation_Hesselschwerdt.pdf
Dissertation_Hesselschwerdt.pdfGröße: 3.53 MBDownloads: 751
Datum
2009
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Einfluss invasiver Amphipoden auf die einheimische benthische Lebensgemeinschaft und den Abbau von Falllaub
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

In the last decades, the Ponto-Caspian amphipod Dikerogammarus villosus has invaded most European waterways while displacing native benthic invertebrates. D. villosus is rather described as a predator than a shredder and even preys directly on other amphipods. In 2002, D. villosus was introduced to Lake Constance and was expected to quickly outcompete the smaller shredder Gammarus roeselii, which has dominated the amphipod fauna so far. As expected, the density of G. roeselii in Lake Constance declined very quickly but has now remained stable for seven years. During the winter G. roeselii even dominates the stony littoral. In this thesis, I have been able to clarify the mechanisms behind this coexistence in Lake Constance.

Enclosure experiments in the littoral revealed different substrate preferences for both amphipod species. D. villosus strongly preferred stones, especially when covered with the also invasive mussel Dreissena polymorpha. In contrast, G. roeselii did not show any preferences at all. In the field, D. villosus was found distributed mostly on stones and in lower densities within the macroalgae Chara, according to its preference. G. roeselii was only found in Chara and on leaf litter and was nearly completely absent on stones, contrary to its preference. Thus, the stronger D. villosus displaced G. roeselii from stones but G. roeselii successfully occupied the substrates less preferred by D. villosus.

Aside from habitat segregation, G. roeselii indicated active enemy avoiding behavior by reacting to olfactory traces. In choice experiments within a Y-maze, G. roeselii as well as D. villosus revealed the capability to perceive the kairomone of the other amphipod species and the kairomone of another invasive crustacean, the American crayfish Orconectes limosus. Both amphipods displayed an avoiding reaction against the other species but did not react to the kairomone of conspecifics. Thus, both amphipods seem to avoid other crustaceans. This is a reasonable reaction for G. roeselii but is counterproductive for D. villosus since G. roeselii represents prey. D. villosus did not change its reaction after being trained to become familiar with G. roeselii as prey for seven days. Therefore it is a reasonable assumption that D. villosus has probably not adapted to local amphipods in Central Europe. Repetition of the experiment in several years could clarify whether D. villosus is able to adapt to the new situation.

The mainly discussed mechanism for the displacement of other amphipods by D. villosus is direct predation. Since D. villosus was found together with G. roeselii in Chara, I assumed a substrate specific predation and conducted predation experiments on all dominant substrates in Lake Constance: stones (with and without D. polymorpha), sand, Potamogeton perfoliatus, Chara, and an artificial substrate mimicking the structure of Chara: fish net). In most substrates G. roeselii suffered strongly from predation by D. villosus. It was only inside Chara and the corresponding artificial substrate that I was unable to detect any predation on G. roeselii at all. D. villosus seems to be hindered within the fine structure of these substrates. D. villosus is bigger and has more protruding pereiopods than G. roeselii. Thus, G. roeselii can escape the predation inside Chara. G. roeselii now benefits from the strong efforts that were made to reoligotrophicate Lake Constance after a phase of eutrophication in the 1980s. During this period, numbers of Chara were strongly reduced, but began to increase again as phosphate loads declined. But Chara is still lacking in most winters and leaves G. roeselii without shelter over winter.

In aquaria experiments, D. villosus shifted its predatory behavior when the water temperature dropped below 6°C reducing feeding on G. roeselii; below 4°C it stopped preying on the latter at all. This result is supported by field data around a warm water outlet of a thermal bath on Lake Constance: in the surrounding area (4°C) both species occurred in equal densities, while at the outlet (mean 5.5°C with higher peaks) D. villosus almost completely displaced G. roeselii. In Lake Constance, Chara and low temperatures provide refuge for G. roeselii over the whole year and secure coexistence with the invasive D. villosus. But this situation could be at risk if global warming elevates the water temperature over winter by 2°C, as predicted by 2050.

In literature, D. villosus is described as predator rather than shredder. I tested the feeding rates of both amphipods on several common leaf species. D. villosus displayed much lower feeding rates on leaves than G. roeselii and did not feed on beech at all. Therefore, reduced densities of the previously dominant shredder G. roeselii could affect leaf litter decomposition in Lake Constance.

To gain deeper insight into leaf litter decomposition within the lake, I conducted a decomposition experiment in winter 2005/06. Litter bags filled with leaves of beech (Fagus sylvatica) and black alder (Alnus glutinosa) were placed in the littoral of Lake Constance at depths of 0.5, 2, 5, and 10 m and on the shoreline for up to 107 days. Naturally shed leaves were collected with nets under trees one month prior to the experiment and never touched the ground. In the lake, beech decomposed much slower than alder and than beech in a previous study in Lake Constance at higher temperatures. The invertebrate community in the bags was highly affected by the water depth but was abundant from the first day in the lake. The dominating shredders were the amphipods G. roeselii and D. villosus and the isopod Asellus aquaticus. At most depths, G. roeselii significantly outnumbered D. villosus, which was able to withstand very low temperatures of 3.5°C for long periods at a depth of 0.5 m. D. villosus seemed to have no strong impact on the litter decomposition over winter in Lake Constance. Decomposition rate and all other leaf parameters were not affected by water depth. The core processes of leaf decomposition are conducted by microorganisms. In my experiment, the fungal biomass displayed an interesting pattern on alder leaves: directly after exposure in the lake, biomass increased rapidly by day six, even almost reaching the maximum biomass. It subsequently declined back to the start value and then slowly rose again by the end of the experiment. This pattern could be observed in all depths, even on the swampy shore. I interpret this pattern as a reaction to preattached fungi on the leaves while still on the tree. After a short outbreak of the terrestrial fungi, they degrade after being submersed for too long; after a certain amount of time, a stable aquatic fungal community is established. This hypothesis is strongly supported by DGGE analyses with sequencing of several strains of this samples.
In these analyses, several terrestrial fungi were found during the initial days of incubation (data by Sven Boekhoff and not included in the thesis). The bacterial biomass remained much lower than fungal biomass over the whole period of exposure. Antagonism between fungi and bacteria has been reported in literature several times. Bacteria can hinder fungal growth unless the fungi inoculate the leaves before the bacteria. In this event, the bacterial community cannot establish itself very well. This corresponds to our findings of preattached terrestrial fungi and a smaller bacterial biomass. It is important to use naturally inoculated leaf material that has not been stored too long for experiments analyzing the natural development of the decomposition process.

Zusammenfassung in einer weiteren Sprache

In den letzten Jahrzehnten hat sich der aus der Ponto-Kaspis stammende Amphipode Dikerogammarus villosus über die meisten europäischen Wasserstrassen ausgebreitet und dabei viele einheimische Benthosorganismen verdrängt. In der Literatur wird er meist als Räuber und nicht als Shredder eingeordnet, er jagt sogar andere Amphipodenarten. Im Jahr 2002 wurde D. villosus in den Bodensee eingeführt und es wurde erwartet, dass er den bisher dominanten Amphipoden Gammarus roeselii verdrängen würde. Die Dichten von G. roeselii wurden auch sehr schnell reduziert konnten sich aber seit nun sieben Jahren stabil halten. Während der Winter dominiert G. roeselii sogar das steinige Litoral. In meiner Doktorarbeit konnte ich die dieser Koexistenz zugrunde liegenden Mechanismen aufklären.

In Enclosure Experimenten im Litoral zeigten beide Amphipodenarten unterschiedliches Substratwahlverhalten. D. villosus bevorzugte Steine, vor allem wenn sie von der ebenfalls invasiven Muschel Dreissena polymorpha besiedelt waren. G. roeselii zeigte im Gegensatz dazu keinerlei Wahlverhalten. Wie auch in den Käfigversuchen wurde D. villosus auch im Freiland vor allem auf Steinen und in geringen Anzahlen in der Makroalge Chara gefunden. G. roeselii wurde dagegen nur in Chara und auf Laub gefunden, im Gegensatz zu seiner Präferenz. Folglich wurde G. roeselii von dem stärkeren D. villosus von den steinigen Substraten verdrängt. Allerdings konnte G. roeselii erfolgreich die von D. villosus verschmähten Substrate besiedeln.

G. roeselii kann auch aktiv Feinde aufgrund ihrer olfaktorischen Spuren vermeiden. In Wahlexperimenten in einer Y-Rinne zeigten beide Amphipodenarten die Fähigkeit sowohl Kairomone der jeweils anderen Art als auch die eines weiteren invasiven Krebses, des Amerikanischen Flusskrebses (Orconectes limosus) wahrzunehmen. Beide Amphipoden zeigten dabei jeweils eine Vermeidungsreaktion. Auf das Kairomon der eigenen Art reagierten sie allerdings nicht. Sie scheinen daher andere Krebse zu vermeiden. Für G. roeselii ist dieses Verhalten sinnvoll, für D. villosus allerdings ungünstig, da er damit auch seine Beute G. roeselii vermeidet. D. villosus hat das Verhalten auch beibehalten nachdem er sieben Tage auf G. roeselii als Beute trainiert wurde. Möglicherweise ist D. villosus noch nicht an mitteleuropäische Amphipoden angepasst. Eine Wiederholung der Experimente in mehreren Jahren könnte klären, ob er sich über längere Zeiträume an die neue Situation anpassen kann.

In der Literatur wird direkte Prädation auf andere Amphipoden als hauptsächlicher Verdrängungsmechanismus beschrieben. Da ich D. villosus und G. roeselii im Freiland zusammen in Chara gefunden hatte vermutete ich eine substratabhängige Prädation. Für Pädationsexperimente im Aquarium wurden alle häufigen Substrate im Bodensee untersucht: Steine (mit und ohne D. polymorpha), Sand, Potamogeton perfoliatus, Chara, und ein Kunstsubstrat welches die Struktur von Chara nachbildet (feines Fischernetz). Auf fast allen Substraten hatte G. roeselii stark unter der Prädation durch D. villosus zu leiden. Nur in Chara und dem Kunstsubstrat konnte keine Prädation beobachtet werden. D. villosus scheint von der feinen Struktur in der Bewegung behindert zu werden, er ist größer und hat abstehendere Pereiopoden als G. roeselii. Somit kann G. roeselii der Prädation entgehen. Er profitiert zudem von den großen Anstrengungen zur Reoligotrophierung des Bodensees nach einer sehr eutrophen Phase in den 1980ern. Zu der Zeit war Chara kaum noch vorhanden und hat sich nach der Reduzierung der Phosphatgehalte wieder stark ausgebreitet. Aber Chara kommt immer noch nur selten über den Winter vor und kann damit im Winter nicht als Refugium für G. roeselii dienen.

In Aquarienexperimenten hat D. villosus sein Prädationsverhalten stark reduziert wenn die Wassertemperatur unter 6°C gesunken ist, unterhalb von 4°C wurde keine Prädation mehr beobachtet. Dieses Ergebnis wird von Freilanddaten um einen Warmwassereinfluss der Therme Konstanz gestützt. In der Umgebung kamen beide Amphipoden in ähnlichen Dichten vor (4°C), wogegen G. roeselii bei dem Einfluss (5,5°C mit höheren Temperaturspitzen) fast komplett von D. villosus verdrängt wurde. Im Bodensee bietet Chara von Frühjahr bis Herbst und niedrige Temperaturen im Winter ein Refugium für G. roeselii. Aber diese Situation kann sich ändern wenn sich die Wassertemperatur des Bodensees, wie für das Jahr 2050 vorhergesagt, um 2°C erhöht.

Da für D. villosus kaum bekannt ist ob er auch als Sredder fungiert habe ich die Fraßraten von D. villosus und G. roeselii auf unterschiedlichen Laubarten untersucht und verglichen. D. villosus hat sehr viel weniger gefressen als G. roeselii, von Buche sogar überhaupt nichts. Wenn D. villosus die Dichten von G. roeselii im Bodensee verringert kann das den Laubabbau negativ beeinflussen.

Um einen tieferen Einblick in den Abbau von Falllaub im Bodensee zu bekommen habe ich ein Dekompositionsexperimt im Winter 2005/06 durchgeführt. Mit Buche (Fagus sylvatica) und Schwarzerle (Alnus glutinosa) gefüllte Beutel wurden im Littoral für bis zu 107 Tage in 0,5, 2, 5, 10 m und knapp über der Wasserlinie ausgebracht. Hierfür wurde ein Monat vor Versuchsbeginn natürlich herabfallendes Laub in Netzen unter Bäumen aufgefangen und trocken gelagert. Das Laub hatte dabei nie den Boden berührt. Im See wurde Buche sehr viel langsamer abgebaut als Erle und auch als Buche in einem früheren Experiment bei höheren Temperaturen. Die Gemeinschaft an Wirbellosen in den Beuteln wurde stark von der Tiefe beeinflusst. Als Shredder dominierten die beiden Amphipoden G. roeselii und D. villosus und die Assel Asellus aquaticus. In den meisten Tiefen kam G. roeselii in viel höheren Dichten vor als D. villosus. D. villosus scheint keinen großen Einfluss auf den Abbau von Falllaub im Winter im Bodensee zu haben.

Die Abbaurate und auch alle anderen Blattparameter wurden nicht von der Tiefe beeinflusst. Der eigentliche Abbau des Laubes wird allerdings von Mikroorganismen geleistet. Im meinem Experiment zeigten die auf Buche wachsenden Pilze ein sehr interessanten Verlauf. Direkt nach dem Einbringen in den See ist die Pilzbiomasse stark angestiegen. Bei Tag sechs sind die Werte wieder auf das Ausgangsniveau gefallen um danach langsam bis zum Ende des Versuches zu anzusteigen. Diesen Verlauf konnte ich in allen Tiefen beobachten. Meines Erachtens ist dies eine Reaktion auf eine terrestrische Vorbesiedelung der Blätter schon am Baum. Frisch im See wachsen die terrestrischen Pilze schnell an um dann, nach zu langer Zeit unter Wasser, einzugehen. Danach entwickelt sich eine stabile aquatische Pilzgemeinschaft. Diese Hypothese wird durch weitergehende Analysen dieser Proben gestützt (Sven Boekhoff, DGGE mit Sequenzierung einiger Banden). Dabei wurden terrestrische Pilze für die ersten Tage im See beschrieben. Die bakterielle Biomasse war während des ganzen Versuches deutlich geringer als die der Pilze. Über einen Antagonismus zwischen Pilzen und Bakterien wird in der Literatur häufiger berichtet. Bakterien können das Pilzwachstum stark hemmen wenn die Pilze das Blatt nicht vorab besiedeln konnten. In dem Fall entwickeln sich die Bakterien langsamer. In meinem Experiment wurden die Bakterien vermutlich durch die terrestrische Vorbesiedelung mit Pilzen gehemmt. Für Versuche zum natürlichen Verlauf des Abbaus von Falllaub sollten daher natürlich mit Pilzen vorbesiedelte Blätter verwendet werden.

Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Dikerogammarus villosus, Gammarus roeselii, Habitatwahl, Feindvermeidung, Dekomposition, habitat choice, predator avoidance, decomposition
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690HESSELSCHWERDT, John, 2009. Impacts of invasive amphipods on the local benthic fauna and leaf litter decomposition [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Hesselschwerdt2009Impac-7984,
  year={2009},
  title={Impacts of invasive amphipods on the local benthic fauna and leaf litter decomposition},
  author={Hesselschwerdt, John},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/7984">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:39:03Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-29T23:25:05Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7984/1/Dissertation_Hesselschwerdt.pdf"/>
    <dcterms:abstract xml:lang="eng">In the last decades, the Ponto-Caspian amphipod Dikerogammarus villosus has invaded most European waterways while displacing native benthic invertebrates. D. villosus is rather described as a predator than a shredder and even preys directly on other amphipods. In 2002, D. villosus was introduced to Lake Constance and was expected to quickly outcompete the smaller shredder Gammarus roeselii, which has dominated the amphipod fauna so far. As expected, the density of G. roeselii in Lake Constance declined very quickly but has now remained stable for seven years. During the winter G. roeselii even dominates the stony littoral. In this thesis, I have been able to clarify the mechanisms behind this coexistence in Lake Constance.&lt;br /&gt;&lt;br /&gt;Enclosure experiments in the littoral revealed different substrate preferences for both amphipod species. D. villosus strongly preferred stones, especially when covered with the also invasive mussel Dreissena polymorpha. In contrast, G. roeselii did not show any preferences at all. In the field, D. villosus was found distributed mostly on stones and in lower densities within the macroalgae Chara, according to its preference. G. roeselii was only found in Chara and on leaf litter and was nearly completely absent on stones, contrary to its preference. Thus, the stronger D. villosus displaced G. roeselii from stones but G. roeselii successfully occupied the substrates less preferred by D. villosus.&lt;br /&gt;&lt;br /&gt;Aside from habitat segregation, G. roeselii indicated active enemy avoiding behavior by reacting to olfactory traces. In choice experiments within a Y-maze, G. roeselii as well as D. villosus revealed the capability to perceive the kairomone of the other amphipod species and the kairomone of another invasive crustacean, the American crayfish Orconectes limosus. Both amphipods displayed an avoiding reaction against the other species but did not react to the kairomone of conspecifics. Thus, both amphipods seem to avoid other crustaceans. This is a reasonable reaction for G. roeselii but is counterproductive for D. villosus since G. roeselii represents prey. D. villosus did not change its reaction after being trained to become familiar with G. roeselii as prey for seven days. Therefore it is a reasonable assumption that D. villosus has probably not adapted to local amphipods in Central Europe. Repetition of the experiment in several years could clarify whether D. villosus is able to adapt to the new situation.&lt;br /&gt;&lt;br /&gt;The mainly discussed mechanism for the displacement of other amphipods by D. villosus is direct predation. Since D. villosus was found together with G. roeselii in Chara, I assumed a substrate specific predation and conducted predation experiments on all dominant substrates in Lake Constance: stones (with and without D. polymorpha), sand, Potamogeton perfoliatus, Chara, and an artificial substrate mimicking the structure of Chara: fish net). In most substrates G. roeselii suffered strongly from predation by D. villosus. It was only inside Chara and the corresponding artificial substrate that I was unable to detect any predation on G. roeselii at all. D. villosus seems to be hindered within the fine structure of these substrates. D. villosus is bigger and has more protruding pereiopods than G. roeselii. Thus, G. roeselii can escape the predation inside Chara. G. roeselii now benefits from the strong efforts that were made to reoligotrophicate Lake Constance after a phase of eutrophication in the 1980s. During this period, numbers of Chara were strongly reduced, but began to increase again as phosphate loads declined. But Chara is still lacking in most winters and leaves G. roeselii without shelter over winter.&lt;br /&gt;&lt;br /&gt;In aquaria experiments, D. villosus shifted its predatory behavior when the water temperature dropped below 6°C reducing feeding on G. roeselii; below 4°C it stopped preying on the latter at all. This result is supported by field data around a warm water outlet of a thermal bath on Lake Constance: in the surrounding area (4°C) both species occurred in equal densities, while at the outlet (mean 5.5°C with higher peaks) D. villosus almost completely displaced G. roeselii. In Lake Constance, Chara and low temperatures provide refuge for G. roeselii over the whole year and secure coexistence with the invasive D. villosus. But this situation could be at risk if global warming elevates the water temperature over winter by 2°C, as predicted by 2050.&lt;br /&gt;&lt;br /&gt;In literature, D. villosus is described as predator rather than shredder. I tested the feeding rates of both amphipods on several common leaf species. D. villosus displayed much lower feeding rates on leaves than G. roeselii and did not feed on beech at all. Therefore, reduced densities of the previously dominant shredder G. roeselii could affect leaf litter decomposition in Lake Constance.&lt;br /&gt;&lt;br /&gt;To gain deeper insight into leaf litter decomposition within the lake, I conducted a decomposition experiment in winter 2005/06. Litter bags filled with leaves of beech (Fagus sylvatica) and black alder (Alnus glutinosa) were placed in the littoral of Lake Constance at depths of 0.5, 2, 5, and 10 m and on the shoreline for up to 107 days. Naturally shed leaves were collected with nets under trees one month prior to the experiment and never touched the ground. In the lake, beech decomposed much slower than alder and than beech in a previous study in Lake Constance at higher temperatures. The invertebrate community in the bags was highly affected by the water depth but was abundant from the first day in the lake. The dominating shredders were the amphipods G. roeselii and D. villosus and the isopod Asellus aquaticus. At most depths, G. roeselii significantly outnumbered D. villosus, which was able to withstand very low temperatures of 3.5°C for long periods at a depth of 0.5 m. D. villosus seemed to have no strong impact on the litter decomposition over winter in Lake Constance. Decomposition rate and all other leaf parameters were not affected by water depth. The core processes of leaf decomposition are conducted by microorganisms. In my experiment, the fungal biomass displayed an interesting pattern on alder leaves: directly after exposure in the lake, biomass increased rapidly by day six, even almost reaching the maximum biomass. It subsequently declined back to the start value and then slowly rose again by the end of the experiment. This pattern could be observed in all depths, even on the swampy shore. I interpret this pattern as a reaction to preattached fungi on the leaves while still on the tree. After a short outbreak of the terrestrial fungi, they degrade after being submersed for too long; after a certain amount of time, a stable aquatic fungal community is established. This hypothesis is strongly supported by DGGE analyses with sequencing of several strains of this samples.&lt;br /&gt;In these analyses, several terrestrial fungi were found during the initial days of incubation (data by Sven Boekhoff and not included in the thesis). The bacterial biomass remained much lower than fungal biomass over the whole period of exposure. Antagonism between fungi and bacteria has been reported in literature several times. Bacteria can hinder fungal growth unless the fungi inoculate the leaves before the bacteria. In this event, the bacterial community cannot establish itself very well. This corresponds to our findings of preattached terrestrial fungi and a smaller bacterial biomass. It is important to use naturally inoculated leaf material that has not been stored too long for experiments analyzing the natural development of the decomposition process.</dcterms:abstract>
    <dc:creator>Hesselschwerdt, John</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Hesselschwerdt, John</dc:contributor>
    <dcterms:title>Impacts of invasive amphipods on the local benthic fauna and leaf litter decomposition</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7984/1/Dissertation_Hesselschwerdt.pdf"/>
    <dcterms:alternative>Einfluss invasiver Amphipoden auf die einheimische benthische Lebensgemeinschaft und den Abbau von Falllaub</dcterms:alternative>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2009</dcterms:issued>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/7984"/>
    <dc:format>application/pdf</dc:format>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
July 12, 2010
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen