Folding and stability of beta-barrel membrane proteins from Gram-negative bacteria

Lade...
Vorschaubild
Dateien
Pocanschi.pdf
Pocanschi.pdfGröße: 4.49 MBDownloads: 447
Datum
2005
Autor:innen
Pocanschi, Cosmin Lorin
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Faltung und Stabilität der beta-Fass-Aussermembranproteinen Gram-negativer Bakterien
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Life, in the form we know it, could not be imagined without the existence of biomembranes. They are a prerequisite for the formation and functioning of cells and different organelles within the cell. Biomembranes contain phospholipids and proteins in approximately equal amounts. Although intensively studied, many questions about their organization and function remained unanswered. During their biosynthesis, many secretory and plasma membrane proteins are transported across the endoplasmic reticulum (ER) membrane in eukaryotes or across the cytoplasmic membrane in prokaryotes. How do membrane proteins insert and fold for example into the outer membrane of bacteria after translocation is largely unknown. Both classes namely alpha-helical and beta-barrel integral membrane proteins (IMPs) require either detergent micelles or lipid bilayers for folding. This thesis is focused on the folding mechanism of outer membrane proteins (OMPs) of Gram-negative bacteria that form transmembrane beta-barrels. Currently there are several studies on the folding of OMPs into detergent micelles while only the outer membrane protein A (OmpA) from Escherichia coli has been shown to quantitatively fold into lipid bilayers and has been successfully used as a model for studying the mechanism of folding of OMPs into phospholipids bilayers. The fatty core of a phospholipid bilayer requires hydrophobic amino acid residues at the interface of the integral membrane protein to the fatty acyl chains of the phospholipids. Polar amide groups of transmembrane proteins that are located in the fatty region of the membrane must form hydrogen bonds with a carbonyl oxygene of a peptide bond in close vicinity to allow the stable assembly of a protein segment in the hydrophobic region of the lipid bilayer.
This thesis describes several important advancements in the study of membrane protein folding of OMPs that will be summarized in separate paragraphs below. In the first project a new technology for isolating large amounts of beta-barrel membrane proteins was established using amphipathic polymers (amphipols). To characterize similarities and differences to OmpA folding into lipid bilayers the kinetics of OmpA folding into amphipols were studied in a second investigation. In a third study the folding kinetics of the major non-specific porin FomA of Fusobacterium nucleatum into lipid bilayers were characterized. It is shown that FomA can serve as a second, alternative model to study the folding of outer membrane proteins. Thermodynamics of folding are linked to energetics of unfolding. In a fourth investigation unfolding experiments were carried out in order to calculate the energy of folding. The ferrichrome-iron receptor FhuA from E. coli was used as an example. In the last two studies, lipid-protein interactions, that may be critical for the folding process were studied on the examples of OmpA and FhuA.

Zusammenfassung in einer weiteren Sprache

Das Leben, wie wir es kennen, ist ohne die Existenz von Biomembranen nicht vorstellbar. Biologische Membranen sind eine Voraussetzung für die Bildung und das Funktionieren von Zellen und der verschiedenen Organellen inerhalb der Zelle. Die Biomembranen enthalten Phospholipide und Proteine in etwa gleiche Masse. Während ihrer Biosynthese werden viele sekretorische und Plasmamembranproteine durch die Membran des endoplasmatischen Retikulums (ER) von Eukaryoten oder durch die cytoplasmatische Membran von Prokaryoten transportiert. Über den Einbauprozess von integralen Membranproteinen in biologische Membranen ist nur wenig bekannt. So ist beispielsweise nicht geklärt, wie Aussenmembranproteine der Zellwand Gram-negativer Bakterien nach ihrer Translokation durch die Cytoplasmamembran in die äussere Membran einbauen und falten. Beide Klassen integraler Membranproteine (IMPs), nämlich alpha-helikale und beta-Fass Membranproteine erfordern für die Faltung entweder Detergenzmicellen oder Lipiddoppelschichten.
Der Schwerpunkt dieser Dissertation ist das Studium der Faltung von Aussermembranproteinen (OMPs) Gram-negativer Bakterien, die beta-Fass-Transmembranstrukturen ausbilden. Eine Reihe von Untersuchungen über die Faltung von OMPs wurden in Detergenzmicellen durchgeführt. Das einzige äussere Membranprotein, das bislang quantitativ in Lipiddoppelschichten faltet und erfolgreich als Modell für das Studium des Faltungsmechanismus von OMPs in Phospholipiddoppelschichten benutzt wurde, ist OmpA von Escherichia coli. Die hydrophobe Region einer Phospholipiddoppelschicht erfordert hydrophobe Aminosäurereste an der Oberfläche des integralen Membranenproteins zu den apolaren Acylketten der Phospholipide. Die polaren Amidgruppen der Transmembranproteine müssen Wasserstoffbindungen mit einem Carbonylsauerstoffatom einer Peptidbindung bilden, um den stabilen Einbau eines Proteinsegments in die hydrophobe Region der Lipiddoppelschicht zu ermöglichen. Diese Dissertation beschreibt mehrere wichtige Fortschritte für das Studium der Membranproteinfaltung von OMPs die unten in separaten Abschnitten zusammengefasst werden. Im ersten Projekt, wurde eine neue Tehnologie für die Isolierung von grösseren Mengen von beta-Fass Membranproteinen mit Hilfe von amphipathischen Polymeren (Amphipolen) entwickelt. Die Unterschiede und die Ähnlichkeiten zwischen der OmpA Faltung in Lipiddoppelschichten bzw. in Amphipolen wurden in eine zweite Untersuchung studiert. In einer dritten Studie wurden die Faltungskinetiken des unspezifischen Porins FomA von Fusobacterium nucleatum in Lipiddoppelschichten untersucht. Es wird gezeigt, daß FomA als zweites alternatives Modell für die Faltung der äußeren Membranenproteinen, zusätzlich zu OmpA dienen kann. Die Thermodynamik der Faltung kann durch das Studium der Entfaltung beschrieben werden. In einem vierten Projekt wurden die Energieumsätze bei der Faltung eines Membranproteins untersucht. Der Ferrichromtransporter FhuA von E. coli wurde als Beispiel benutzt. In den letzten zwei Studien wurden Lipid/Protein Wechselwirkungen, die für den Faltungsprozess kritisch sein können, am Beispiel von OmpA und von FhuA studiert.

Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Protein folding, stability, outer membrane protein
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690POCANSCHI, Cosmin Lorin, 2005. Folding and stability of beta-barrel membrane proteins from Gram-negative bacteria [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Pocanschi2005Foldi-7737,
  year={2005},
  title={Folding and stability of beta-barrel membrane proteins from Gram-negative bacteria},
  author={Pocanschi, Cosmin Lorin},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/7737">
    <dc:language>eng</dc:language>
    <dc:format>application/pdf</dc:format>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:37:10Z</dcterms:available>
    <dcterms:issued>2005</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:alternative>Faltung und Stabilität der beta-Fass-Aussermembranproteinen Gram-negativer Bakterien</dcterms:alternative>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Folding and stability of beta-barrel membrane proteins from Gram-negative bacteria</dcterms:title>
    <dc:contributor>Pocanschi, Cosmin Lorin</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7737/1/Pocanschi.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7737/1/Pocanschi.pdf"/>
    <dc:creator>Pocanschi, Cosmin Lorin</dc:creator>
    <dcterms:abstract xml:lang="eng">Life, in the form we know it, could not be imagined without the existence of biomembranes. They are a prerequisite for the formation and functioning of cells and different organelles within the cell. Biomembranes contain phospholipids and proteins in approximately equal amounts. Although intensively studied, many questions about their organization and function remained unanswered. During their biosynthesis, many secretory and plasma membrane proteins are transported across the endoplasmic reticulum (ER) membrane in eukaryotes or across the cytoplasmic membrane in prokaryotes. How do membrane proteins insert and fold for example into the outer membrane of bacteria after translocation is largely unknown. Both classes namely alpha-helical and beta-barrel integral membrane proteins (IMPs) require either detergent micelles or lipid bilayers for folding. This thesis is focused on the folding mechanism of outer membrane proteins (OMPs) of Gram-negative bacteria that form transmembrane beta-barrels. Currently there are several studies on the folding of OMPs into detergent micelles while only the outer membrane protein A (OmpA) from Escherichia coli has been shown to quantitatively fold into lipid bilayers and has been successfully used as a model for studying the mechanism of folding of OMPs into phospholipids bilayers. The fatty core of a phospholipid bilayer requires hydrophobic amino acid residues at the interface of the integral membrane protein to the fatty acyl chains of the phospholipids. Polar amide groups of transmembrane proteins that are located in the fatty region of the membrane must form hydrogen bonds with a carbonyl oxygene of a peptide bond in close vicinity to allow the stable assembly of a protein segment in the hydrophobic region of the lipid bilayer.&lt;br /&gt;This thesis describes several important advancements in the study of membrane protein folding of OMPs that will be summarized in separate paragraphs below. In the first project a new technology for isolating large amounts of beta-barrel membrane proteins was established using amphipathic polymers (amphipols). To characterize similarities and differences to OmpA folding into lipid bilayers the kinetics of OmpA folding into amphipols were studied in a second investigation. In a third study the folding kinetics of the major non-specific porin FomA of Fusobacterium nucleatum into lipid bilayers were characterized. It is shown that FomA can serve as a second, alternative model to study the folding of outer membrane proteins. Thermodynamics of folding are linked to energetics of unfolding. In a fourth investigation unfolding experiments were carried out in order to calculate the energy of folding. The ferrichrome-iron receptor FhuA from E. coli was used as an example. In the last two studies, lipid-protein interactions, that may be critical for the folding process were studied on the examples of OmpA and FhuA.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:37:10Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/7737"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
November 15, 2005
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen