Genome duplication and the evolution of gene clusters in teleost fishes

Lade...
Vorschaubild
Dateien
Hoegg_Diss.pdf
Hoegg_Diss.pdfGröße: 11 MBDownloads: 431
Datum
2007
Autor:innen
Högg, Simone
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Genomduplikation und die Evolution von Genclustern in Teleostiern
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

The traditional view on the evolution of novel gene functions was divided in two groups, those who believed that genome duplication is more important and those who promoted the primary importance of regulatory evolution. Already before the genomic era, the idea emerged that new gene functions would only evolve after a duplication event, so that one copy continues with the original function while the other one changes. Some researchers claimed that major transitions in evolution have only been possible through an increase in gene number due to gene or genome duplications. The finding of a series of genome duplications that occurred during vertebrate evolution was taken as support for this hypothesis.
Regulatory evolution is the change of regulatory elements by mutations followed by a changed expression pattern and possibly a new function. A new research field, evolutionary development (EvoDevo) that joins gene expression with evolutionary aspects was able to bring together gene duplication and regulatory evolution during recent years.
Chapter 1 presents a study on the evolution of a biochemical pathway, glycolysis, and the duplication history of the genes involved. We investigated ten enzymes for which we obtained sequences from genomic and EST (expressed sequence tags) databases for different vertebrate species. Even though many of the genes involved follow a pattern of 2R/3R in vertebrates and show subfunctionalization in terms of tissue specialization, a general trend for the retention of paralogs could not be deduced.
Among the most cited examples of duplicated genes, as well as of regulatory evolution, are Hox clusters - an ideal study object for comparative genomics. Hox genes establish positional information during embryonic development and in this way determine, which structure develops at which position. Therefore, a very precise regulation of those genes is essential. In Chapter 2, the advantages of the Hox clusters system for studying conserved non-coding sequences (CNS) is discussed, together with a review on recently published papers using a new method to identify CNS.
In Chapter 3, another multigene family was studied, the KCNA genes that code for voltage-gated potassium channels (shaker-related). In tetrapods, eight genes were identified and of those, six are organized in two 3-gene-clusters. Teleost fish have four clusters with only one gene lost and an additional 2-3 genes that are located elsewhere in the genome.
Apart from the Hox genes already mentioned, there are many other homeobox proteins that are also transcription factors and some of them are also arranged in conserved clusters. The ParaHox cluster consists of three genes (gsh, pdx/xlox, cdx) and this genomic region was also subject to a series of duplications. In contrast to the rather well conserved Hox clusters, the ParaHox clusters are often not recognizable as such anymore and only the neighboring receptor tyrosine kinases (RTKs) provide supporting evidence of large scale duplication events. While tetrapods have one cluster with three genes (and three additional genomic regions with one ParaHox gene each), the situation in fishes is even more complicated. Each of the eight genomic regions that resulted from genome duplications, the so-called paralogons, contain at maximum one ParaHox gene. To the contrary, RTKs exist in multiple copies. In Chapter 4, we compare the ParaHox paralogons of several fish species in terms of gene order and the size the clusters cover within a genome. Additionally, we characterize the C1-paralogon of Astatotilapia burtoni, an East-African cichlid. Some of the RTKs are known to be involved in coloration of fishes and these characteristics make the ParaHox paralogon highly interesting. We could show that duplicated ParaHox genes not only were eliminated from fish genomes that now have the same number of ParaHox genes as tetrapods, but that the gene order was rearranged several times in the case of the D paralogon. The surrounding of the RTKs contains only very few CNS, while we were able to detect conserved areas surrounding the ParaHox genes. In contrast to the Hox genes, the cluster arrangement in this case seems not to be required for correct gene expression.
In Chapter 5 we present the genomic sequences of Hox clusters in the haplochromine cichlid Astatotilapia burtoni. One possible source for the amazing variation of cichlids is regulatory change of developmentally important genes. We compared the Hox cluster setup with other teleost fishes and found that relative high percentages (11-38%) of the intergenic regions are made up of CNS.
Regulatory evolution offers an easy and fast possibility for genes expressed in a very specific pattern to evolve new functions, while for genes that are expressed more widely, at least in a temporal sense such as potassium channels, duplication and subsequent evolution of protein sequences might provide enough variety for adaptations.

Zusammenfassung in einer weiteren Sprache

Traditionell gab es zwei Erklärungsansätze, wie neue Funktionen von Genen entstehen können: zum einen durch die Gen-/Genomduplikationstheorie, die Susumo Ohno (1970) in seinem Buch beschrieb und zum anderen durch regulatorische Evolution.
Schon sehr früh, bereits vor der Aufklärung der Struktur von Genen, entstand die Idee, dass neue Funktionen von Genen nur dann entstehen können, wenn eine Duplikation stattfindet und eine der beiden Kopien die ursprüngliche Funktion weiterführt, während die andere sich verändert und eine neue Aufgabe übernimmt. Später wurde argumentiert, dass die großen Übergänge in der Evolution, wie z.B. der Übergang vom Einzeller zum mehrzelligen Lebewesen, von einem Anstieg der Genmenge begleitet werden musste. Die Entdeckung von mehreren Genomduplikationen während der Wirbeltierevolution passte sehr gut in dieses Bild.
Regulatorische Evolution ist ein Konzept, nach dem Mutationen regulatorische Elemente (z.B. Transkriptionsfaktor-Bindestellen) verändern und daher die Expression des zu regulierenden Gens geändert wird. Dadurch kann es auch zu einer neuen Expressionsdomäne kommen und damit ein neuer Phänotyp entstehen.
In Kapitel 1 wird die Evolution eines biochemischen Stoffwechselweges, der Glykolyse, und die Duplikationsgeschichte der beteiligten Gene untersucht. Wir analysierten zehn Enzyme, deren Gene wir aus genomischen und EST (expressed sequence tags) Daten für verschiedene Wirbeltierarten heraussuchten. Aber obwohl viele der involvierten Gene einem Muster der 2R/3R folgen, konnte kein allgemeiner Trend für die Beibehaltung von Paralogen abgeleitet werden.
Eines der meist genannten Beispiele sowohl für duplizierte Gene als auch für regulatorische Evolution sind Hox-Cluster - ein ideales Forschungsobjekt für vergleichende, genomische Studien. Hox-Gene kodieren für Transkriptionsfaktoren, die normalerweise in ununterbrochenen Clustern auf dem Chromosom vorkommen. Hox-Gene etablieren die positionelle Identität während der Embryoentwicklung, und bestimmen daher, welche Struktur sich an welcher Stelle entwickelt. Dazu ist eine sehr exakte Regulierung der Expression notwendig. In Kapitel 2 werden die Vorteile des Hox-Cluster-Systems für die Erforschung von konservierten, nichtkodierenden Sequenzen (CNS) hervorgehoben.
Kapitel 3 beschreibt die Situation in einer anderen Genfamilie (KCNA), die für spannungsgesteuerte Kaliumkanäle (shaker-related) kodieren. In Landwirbeltieren wurden acht KCNA-Gene identifiziert und von diesen sind sechs in zwei 3-Gen-Clustern organisiert. Teleostei haben vier Cluster, wovon ein Gen verloren gegangen ist und 2-3 zusätzliche Gene, die einzeln im Genom verteilt sind. Obwohl die Cluster-Struktur über lange Zeit konserviert ist, konnten vergleichende genomische Analysen keine größeren konservierten Bereiche außerhalb der kodierenden Regionen identifizieren.
Neben den bereits erwähnten Hox Genen, gibt es noch eine Vielzahl anderer Homeobox-Proteine - ebenfalls Transkriptionsfaktoren - und auch sie liegen zum Teil in konservierten Clustern vor. Der ParaHox Cluster besteht aus drei Gene (gsh, pdx, cdx) und auch hier erfolgte durch die Genomduplikationen eine Vervielfältigung der Region. Anders als bei den Hox-Cluster, sind die ParaHox Cluster oft nicht mehr als solche zu erkennen und nur die benachbarten Rezeptor-Tyrosin-Kinasen (RTKs) weisen auf umfassende Duplikationen hin. Während bei Tetrapoden ein Cluster mit drei Genen vorhanden ist (und drei weitere genomische Regionen mit jeweils einem ParaHox Gen), ist die Situation in Fischen sogar noch ausgeprägter. Jede der acht aus Duplikation entstandenen, genomischen Regionen (Paralogons) enthält höchstens ein ParaHox Gen. Im Gegensatz dazu sind die RTKs in mehrfachen Kopien vorhanden. In Kapitel 4 werden die ParaHox Paralogons von mehreren Fischarten in Bezug auf die Anordnung der Gene und die Größe, die diese Cluster im Genom einnehmen, verglichen. Außerdem wird das C1 Paralogon von Astatotilapia burtoni, einem ostafrikanischen Buntbarsch, charakterisiert.
In Kapitel 5 präsentieren wir die genomische Sequenz von Hox-Clustern des haplochrominen Buntbarsches Astatotilapia burtoni. Eine mögliche Quelle für die immense Variation von Cichliden ist eine veränderte Regulation von entwicklungsbiologisch wichtigen Genen. Der Hox-Cluster Aufbau wurde mit anderen Teleostei verglichen und wir fanden, dass ein relativ hoher Anteil (11-38%) der intergenischen Regionen von CNS eingenommen wird.
Regulatorische Evolution stellt für Gene, die in einem sehr spezifischen Muster exprimiert werden wie beispielsweise Hox-Gene, vermutlich die schnellste und einfachste Methode dar, neue Funktionen zu entwickeln. Hingegen können Genduplikationen und anschließende Modifikation von Proteinsequenzen genug Variabilität für Anpassungen bei - zumindest im zeitlichen Sinn - beständig exprimierten Genen wie Kaliumkanälen liefern.

Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Gencluster, Genomduplikation, Hox gene, gene cluster, genome duplication, Hox genes
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690HÖGG, Simone, 2007. Genome duplication and the evolution of gene clusters in teleost fishes [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Hogg2007Genom-8442,
  year={2007},
  title={Genome duplication and the evolution of gene clusters in teleost fishes},
  author={Högg, Simone},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/8442">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Genome duplication and the evolution of gene clusters in teleost fishes</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Högg, Simone</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <dcterms:abstract xml:lang="eng">The traditional view on the evolution of novel gene functions was divided in two groups, those who believed that genome duplication is more important and those who promoted the primary importance of regulatory evolution. Already before the genomic era, the idea emerged that new gene functions would only evolve after a duplication event, so that one copy continues with the original function while the other one changes. Some researchers claimed that major transitions in evolution have only been possible through an increase in gene number due to gene or genome duplications. The finding of a series of genome duplications that occurred during vertebrate evolution was taken as support for this hypothesis.&lt;br /&gt;Regulatory evolution is the change of regulatory elements by mutations followed by a changed expression pattern and possibly a new function. A new research field, evolutionary development (EvoDevo) that joins gene expression with evolutionary aspects was able to bring together gene duplication and regulatory evolution during recent years.&lt;br /&gt;Chapter 1 presents a study on the evolution of a biochemical pathway, glycolysis, and the duplication history of the genes involved. We investigated ten enzymes for which we obtained sequences from genomic and EST (expressed sequence tags) databases for different vertebrate species. Even though many of the genes involved follow a pattern of 2R/3R in vertebrates and show subfunctionalization in terms of tissue specialization, a general trend for the retention of paralogs could not be deduced.&lt;br /&gt;Among the most cited examples of duplicated genes, as well as of regulatory evolution, are Hox clusters - an ideal study object for comparative genomics. Hox genes establish positional information during embryonic development and in this way determine, which structure develops at which position. Therefore, a very precise regulation of those genes is essential. In Chapter 2, the advantages of the Hox clusters system for studying conserved non-coding sequences (CNS) is discussed, together with a review on recently published papers using a new method to identify CNS.&lt;br /&gt;In Chapter 3, another multigene family was studied, the KCNA genes that code for voltage-gated potassium channels (shaker-related). In tetrapods, eight genes were identified and of those, six are organized in two 3-gene-clusters. Teleost fish have four clusters with only one gene lost and an additional 2-3 genes that are located elsewhere in the genome.&lt;br /&gt;Apart from the Hox genes already mentioned, there are many other homeobox proteins that are also transcription factors and some of them are also arranged in conserved clusters. The ParaHox cluster consists of three genes (gsh, pdx/xlox, cdx) and this genomic region was also subject to a series of duplications. In contrast to the rather well conserved Hox clusters, the ParaHox clusters are often not recognizable as such anymore and only the neighboring receptor tyrosine kinases (RTKs) provide supporting evidence of large scale duplication events. While tetrapods have one cluster with three genes (and three additional genomic regions with one ParaHox gene each), the situation in fishes is even more complicated. Each of the eight genomic regions that resulted from genome duplications, the so-called paralogons, contain at maximum one ParaHox gene. To the contrary, RTKs exist in multiple copies. In Chapter 4, we compare the ParaHox paralogons of several fish species in terms of gene order and the size the clusters cover within a genome. Additionally, we characterize the C1-paralogon of Astatotilapia burtoni, an East-African cichlid. Some of the RTKs are known to be involved in coloration of fishes and these characteristics make the ParaHox paralogon highly interesting. We could show that duplicated ParaHox genes not only were eliminated from fish genomes that now have the same number of ParaHox genes as tetrapods, but that the gene order was rearranged several times in the case of the D paralogon. The surrounding of the RTKs contains only very few CNS, while we were able to detect conserved areas surrounding the ParaHox genes. In contrast to the Hox genes, the cluster arrangement in this case seems not to be required for correct gene expression.&lt;br /&gt;In Chapter 5 we present the genomic sequences of Hox clusters in the haplochromine cichlid Astatotilapia burtoni. One possible source for the amazing variation of cichlids is regulatory change of developmentally important genes. We compared the Hox cluster setup with other teleost fishes and found that relative high percentages (11-38%) of the intergenic regions are made up of CNS.&lt;br /&gt;Regulatory evolution offers an easy and fast possibility for genes expressed in a very specific pattern to evolve new functions, while for genes that are expressed more widely, at least in a temporal sense such as potassium channels, duplication and subsequent evolution of protein sequences might provide enough variety for adaptations.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8442/1/Hoegg_Diss.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:43:42Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2007</dcterms:issued>
    <dc:creator>Högg, Simone</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8442/1/Hoegg_Diss.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/8442"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:43:42Z</dc:date>
    <dcterms:alternative>Genomduplikation und die Evolution von Genclustern in Teleostiern</dcterms:alternative>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
June 15, 2007
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen