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3Dipartimento di Informatica, Università di Pisa, Via Buonarroti 2, 56127 Italy
E-mail: lafuente@di.unipi.it

Abstract. In this paper we present work on trail im-
provement and partial-order reduction in the context of
directed explicit-state model checking. Directed explicit-
state model checking employs directed heuristic search
algorithms such as A* or best-first search to improve the
error-detection capabilities of explicit-state model check-
ing. We first present the use of directed explicit-state
model checking to improve the length of already estab-
lished error trails. Second, we show that partial-order re-
duction, which aims at reducing the size of the state space
by exploiting the commutativity of concurrent transitions
in asynchronous systems, can coexist well with directed
explicit-state model checking. Finally, we illustrate how
to mitigate the excessive length of error trails produced
by partial-order reduction in explicit-state model check-
ing. In this context we also propose a combination of
heuristic search and partial-order reduction to improve
the length to already provided counterexamples.

Keywords: Model checking – Heuristic search – Trail
improvement – Partial-order reduction – HSF-SPIN

1 Introduction

The success of explicit-state model checking [11] as a soft-
ware verification technology is largely founded in the
automatic nature and the error trail reporting capabili-
ties of the underlying state space exploration algorithms.
Broadly speaking, checking whether or not a system sat-
isfies its specification is done by analyzing the state space
of the system. A violation of the specification corresponds
to a path in the state space of the system that leads from
the initial system state into some target state.We call this
path an error trail, witness, or counterexample. When
checking safety properties, the target state is the state
violating the desired property. When checking liveness

properties, we search for states that establish a property
violating cyclic execution of the system. Explicit-state
model checkers usually perform a depth-first search for
checking safety properties and a nested depth-first search
when checking liveness properties. When a target state
has been encountered during the search, the search stack
of the depth-first search algorithm contains an execution
path from the initial system state into the target state.
Similarly, when a property-violating cycle has been en-
countered, the information contained in the search stacks
of the nested depth-first search can be used to reproduce
a property-violating execution of the system. Hence, it is
very easy in explicit-state model checking to provide the
user with an error explanation.
A large number of model checking tools based on

explicit-state technology have been built and success-
fully applied in practice [6]. Explicit-state model check-
ing has proven particularly successful in the analysis of
concurrent software systems such as communication pro-
tocols or embedded real-time systems. Models for these
types of systems are characterized by a combinatorial
state space explosionmainly induced by the data portions
of the system model as well as the concurrent compo-
sition of processes. Their concurrent nature also causes
the execution of these systems to reveal a high degree
of nondeterminism. Explicit-state model checkers such as
SPIN [35, 36] employ efficient abstraction techniques and
data structures to deal with these characteristics. Most
notably, symmetry aspects due to concurrent composi-
tion have been studied [9, 25, 39], partial-order reductions
have been developed to take advantage of the commu-
tativity of independent concurrent transitions [54], and
data abstraction techniques have been proposed to reduce
very large or even infinite state spaces to finite tractable
ones [16, 28].
While in early work on model checking the complete

verification of the model was of central interest, in re-
cent applications the focus has been more on using model

http://www.springerlink.com/content/101563
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-57668
http://www.ub.uni-konstanz.de/kops/volltexte/2008/5766/


278

checking as a debugging technique for existing require-
ments, designs, or code artifacts [3, 14, 38]. One of the
important problems to be addressed when using model
checking in this way is the size of the counterexamples.
During debugging, counterexamples are used to under-
stand why errors occur. It is the working hypothesis of
this paper that in most error debugging situtations “short
is beautiful”, i.e., that a shorter error trail is easier to
understand than a longer one. We do not rule out the pos-
sibility that in some particular situations a longer error
trail may be preferable over a shorter one, but many prac-
titioners have confirmed that often our premise is appro-
priate and therefore claim that our approach applies to
a large set of error debugging situations.
In precursory work we addressed this problem by rec-

onciling explicit-state model checking with heuristic, dir-
ected search algorithms that had previously been used
successfully in solving planning problems [8]. We intro-
duced the concept of directed explicit-state model checking
in [21]. Traditional model checking algorithms perform an
uninformed state space exploration based on depth-first
or breadth-first search algorithms. In directed explicit-
state model checking we employ heuristic search algo-
rithms such as A* [33] or best-first search [52] in order
to guide the search on the shortest, or a close to short-
est, path into a property-violating state. Best-first search
accelerates the search for error states, while A* produces
optimal paths to a target state when the heuristic es-
timate is admissible, i.e., a lower bound for the actual
distance to a target state.
As proposed in [12], and also reflecting our own ex-

perience, model-checking-based debugging can be used
during two different phases of the software design process.
During a first exploratory phase the focus is on quickly
finding errors in the system. In this context, quickly
means with as little computational effort as possible while
ensuring that relatively short error trails are found. The
next fault-finding phase concentrates on improved error
explanation, in particular by finding short counterexam-
ples with less emphasis on computational effort than dur-
ing the first phase. During this phase we often exploit
errors found during the first phase. This two-phase struc-
ture has bearing on the use of different heuristic search
algorithms in directed explicit-state model checking, as
we shall explain later in the paper.
This paper presents a revised and extended version of

portions of our previous work on directed model check-
ing, focusing on the joint use of partial-order reduction
methods and directed explicit-state model checking [47],
and on the improvement of already established coun-
terexamples [22]. The rationale for addressing these ques-
tions is as follows.

– The predecessor of this paper [21] focused on the use
of logically characterized system properties in directed
model checking. For instance, in some of that work
logical formulae over state propositions were used to

derive heuristic estimates to be used in the state space
search. In the current paper, we will investigate a dif-
ferent approach: we will use given error states as the
specification of the search target in the directed model
exploration. This is useful either to those who have
previously “played” with the system and obtained an
error state for which they now wish to obtain a shorter
trail or to those who have performed nondirected
model checking on the state space and wish to reach
a target state along a shorter path. In both situations
it is not necessary to possess a logical characteriza-
tion of the state; all that is needed is an error trail
that leads into the state in question. We therefore call
this approach trail improvement . It should be noted
that our approach not only permits finding the exact
same error state but can also be used to find error
states that are equivalent to a partial characterization
of an error state. Trail improvement is primarily ap-
plicable during the fault-finding phase. While we limit
ourselves to the consideration of safety properties in
most of this paper, when discussing trail improvement
we also consider liveness properties.
– Directed model checking can only hope to be prac-
tically applicable if it can be shown to coexist well
with other state space reduction techniques. Partial-
order reduction techniques are known to be extremely
efficient in reducing the state space of concurrent sys-
tem models to an analyzable size. The state space re-
duction can be an order of magnitude or more [11],
and practitioners know that enabling partial-order
reduction often means the difference between infea-
sibility and feasibility of model checking for models
of practical concurrent systems. This reduction tech-
nique takes advantage of the commutativity of con-
current transitions if those are independent of each
other. Consider a pair of concurrent transitions α and
β that are both enabled in a given system state, that
are independent of each other, which means that one
does not disable the other, and that do not change the
state of the system with respect to the property that
we are analyzing. Since the transitions are concurrent,
the system’s global state space is likely to contain both
the sequence 〈α, . . . , β〉 and the sequence 〈β, . . . , α〉.
Given that the above conditions hold, we may reduce
the global state space so that it contains only one
of the two sequences, thereby eliminating all transi-
tions and states along the path that is abstracted.
Since this entails a pruning of a portion of the state
space that may contain optimally short error trails,
partial-order reduction will likely not preserve the op-
timality of a directed model checking counterexample
obtained through A* and an admissible heuristic es-
timate. We will therefore carefully have to analyze
the impact on the error path quality of partial-order
reduction when applied to directed model checking.
Another twist stems from the fact that existing ap-
plications of partial-order reduction in explicit-state
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model checkers rely on the existence of a search stack
in the search algorithm. Since this stack is not avail-
able in A*, we will have to define overapproximations
of the reduction criteria originally defined for partial-
order reduction.
– Finally, we are interested in reconciling the ideas
of partial-order reduction and trail improvement.
First, we propose partial-order-like reordering tech-
niques for given error trails that offer a remedy to
the loss of solution quality in the error trails ob-
tained when jointly using partial-order reduction
and directed model checking. Second, we investigate
the use of partial-order techniques when doing trail
improvement.

As we argued above, the premise of our work is that
“short is beautiful”, i.e., that obtaining shorter coun-
terexamples offers improvements with respect to error
explanation and interpretation. In the sections in which
we present experimental results, we will mainly focus on
describing the quantitative improvements that directed
model checking offers and only in some instances discuss
how different error trails differ qualitatively. A detailed
qualitative analysis requires a deep understanding of both
the models and the error trails involved. Providing all the
details necessary to obtain a sufficiently deep understand-
ing of these aspects would exceed the scope of this paper.

Related work. In a preliminary paper [21], we provided
an extended discussion of related work on directed model
checking. This includes initial work on guided state space
search [58], the use of guided state space exploration in
real-time model checking using the tool UPPAAL [4, 5],
guided search in symbolic CTL model checking [7], the
use of heuristic search in data flow analysis [12], and dir-
ected state space exploration in Java code verification [29,
30]. Also relevant is work on alternative heuristic state
space search schemes such as genetic algorithms [27].
While for some of the abovementioned approaches [4,
5, 12] the finding of meaningful counterexamples using
guided search techniques is of central interest, other re-
cent papers [2, 31, 40, 55] concentrate on the analysis of
counterexamples rather than on improving them. We are
not aware of other work on improving given error trails.
Several approaches to partial-order reduction techniques
have been proposed, namely, those based on “stubborn”
sets [56], “persistent” sets [26], and “ample” sets [53]. Al-
though they differ in detail, they are based on similar
ideas. For an extended survey of partial-order reduction
methods, we refer the reader to [54]. In our paper we
will focus on the ample set approach. Since many dir-
ected search algorithms do not possess a search stack,
we will need to pay special attention to the cycle condi-
tion (sometimes also referred to as cycle provisio) when
constructing ample sets. The detection of cycles with-
out search stacks has been addressed. The Two-Phase
algorithm [50] has been successfully used in partial-order
reduction to reduce state space sizes for some protocol

examples. The disadvantage of this algorithm is that it
stores much information in a cache, which entails addi-
tional complexity. Recent work by Lerda et al. [45] pro-
poses a two-phase approach to the detection of cycles
in breadth-first-search-bounded model checking. To the
best of our knowledge, at the time of writing partial-
order reduction and directed model checking have not
been combined by any other authors.

Structure of paper. In Sect. 2 we present a review of dir-
ected explicit-state model checking and its application
to protocol verification. In Sect. 3 we discuss our ap-
proach to trail improvement. We present a discussion of
the joint usage of directed explicit-state model checking
and partial-order reduction in Sect. 4. In Sect. 5 we ana-
lyze the application of partial-order reduction techniques
to the shortening of already established counterexamples.
We conclude the paper with a summary of our results and
an outline of current and future work in Sect. 6.

2 Directed model checking

In this section we review the key concepts of directed
explicit-state model checking as published in [21] and [47].
Our discussion of uninformed and informed search algo-
rithms is based on the presentation in [52].

2.1 State space search in explicit-state model checking

Model checking is a technique to determine the validity of
a property for a given model. This approach has proven
to be particularly successful in the verification of soft-
ware designs and code. In this domain, the properties to
be checked are often represented by temporal constraints
on the valid execution sequences of the system. These
are typically given in an automaton representation or as
temporal logic formulae. In this paper we use linear-time
temporal logic (LTL) as defined in [48]. In LTL, the oper-
ator� represents the temporal modality globally, and the
operator � represents the temporal modality eventually.
The models to be checked represent the state space of
the system. Model checking algorithms analyze the state
space in order to validate whether or not the property
holds.We will now present the semantic model that we as-
sume and we will provide an introduction to state space
exploration and related verification algorithms.

Models and systems. In the remainder of this paper we
assume that the system to be verified consists of the
asynchronous composition of n finite-state communicat-
ing processes P0, . . . ,Pn. The state space of the system
is represented by a labeled transition system (LTS). A fi-
nite LTS (or system, for short) is a tuple 〈S, S0, T, AP,L〉
where S is a finite set of states, S0 is the set of initial
states, T is a finite set of transitions such that each tran-
sition α ∈ T is a partial function α : S→ S, AP is a finite
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set of atomic propositions, and L is a labeling function
S→ 2AP . We say that proposition p holds in state S iff
p ∈L(S). In order to distinguish between states and tran-
sitions in the system and in each of its processes, we call
the former global system states and transitions and the
latter local process states and transitions. Each process
is represented by an LTS as well as a set of variables
V , a domain Dn with n=| V |, and a partial assignment
function α : V →Dn. The state of a process is determined
by an assignment of values fromDn to variables in V . The
global system is obtained via asynchronous composition
of the process LTSs. A transitionα is said to be enabled in
a state s if α(s) is defined. Each global transition corres-
ponds to at least one local transition of a process. A tran-
sition has a guard and an effect . The guard is a boolean
predicate over the variables of the system that determines
whether or not the transition is enabled in a global system
state. The effect determines the changes in the assign-
ment of values to variables of the system, including the
local states of the processes. The execution of a transition
system is defined as a sequence of states interleaved by
transitions, i.e., a sequence s0α0s1 . . . , such that s0 is in
S0 and for each i≥ 0, αi(si) is defined and si+1 = αi(si).

Property classes. We focus on the verification of two
standard property classes: safety and liveness. Safety
properties express that, under certain conditions, a bad
event will never occur, while liveness properties express
that, under certain conditions, a good event will ulti-
mately occur. The violation of a safety error in an LTS
is characterized by a path leading from the initial system
state into an error state. Liveness properties, however,
are violated not by single states but by infinite cyclic ex-
ecution paths of the form uvω, where u and v are finite
sequences of states of the LTS. Liveness errors are there-
fore characterized by paths uv in the state space of the
LTSwhere a finite prefix u is succeeded by a cyclic trace v.

Automata-based model checking. The automata-based
model checking approach to liveness properties [11] com-
prises the modeling of both the property specification
and the system as a Büchi automaton. More precisely,
the property specification is negated before being trans-
lated into a Büchi automaton. Accepting runs in a Büchi
automaton are those that pass infinitely often through
at least one accepting state. Checking whether or not
the system satisfies the specification consists of checking
whether the intersection of the system automaton and the
automaton corresponding to the negation of the specifi-
cation is empty. The intersection between both automata
represents the bad behaviors of the system. The intersec-
tion of both automata is nonempty if and only if there is
a cycle in the state space that contains an accepting state
of the specification automaton. Such a bad cycle is called
an accepting cycle.

Verification algorithms. Checking safety errors can be
done by applying simple reachability algorithms like

depth-first search or breadth-first search. Checking live-
ness errors is commonly accomplished using a nested
depth-first search algorithm. Those algorithms are un-
informed , i.e., they do not take information regarding
structural properties of the state space into account when
determining the state space exploration strategy. On the
contrary, in directed model checking we consider a class
of algorithms that does exactly this, and we call these
algorithms informed . Due to the structural information
they exploit, these algorithms are, among other things,
capable of finding goal states (in our context: error states)
along generating paths of minimal length. In keeping
with terminology introduced by [52] we say that a state
space exploration algorithm is complete if it finds an error
exactly when there is an error in the system and admis-
sible when the error is found using a generating path of
minimal length. We sometimes refer to these minimal
generating paths as “optimal” or “shortest” as well as
calling the error states that are reached along these paths
“optimal”. For performance reasons the state traversal
for current explicit-state model checkers is implemented
on the fly. This means that the state space is not being en-
tirely generated in one pass and then analyzed in a second
pass; instead it is generated in a stepwise fashion as the
exploration proceeds. This has the advantage that only
reachable states will actually be generated. Also, if er-
rors are present, only a portion of the state space needs to
be computed, which means that the state space creation
terminates when an error state has been found.

A general search algorithm. Figure 1 presents a general
state expanding algorithm (GSEA) for the verification of
safety properties. The algorithm divides the set of system
states S into three mutually disjoint sets: the set Open
of visited but not yet expanded states, the set Closed of
visited and expanded states, and the set of nonexpanded
states. The algorithm performs the search by extracting
states from Open and moving them into Closed . States
extracted from Open are expanded, i.e., the respective
successor states are generated. If a successor of an ex-

( 1) procedure GeneralStateExpandingAlgorithm(s)
( 2) Closed←∅;
( 3) Open←∅;
( 4) Open.insert(s);
( 5) while not Open.empty() do
( 6) u←Open.extract();
( 7) Closed.insert(u);
( 8) if goal(u) then
( 9) return solution;
(10) for each e ∈ outgoing(u) do
(11) v← to(e);
(12) if v �∈Closed and v �∈Open then
(13) Open.insert(v);

Fig. 1. A general state-expanding search algorithm
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panded state is in neither Open nor Closed , it is added
to Open. Simple breadth-first and depth-first searches
can be defined as instances of the GSEA, where breadth-
first search implements Open as a queue while depth-first
search implements Open as a stack.

2.2 Promela and the SPIN model checker

SPIN [36] is an explicit state model checking tool im-
plementing the automata-based model checking ap-
proach [11]. Its input language Promela permits the defin-
ition of concurrent processes, called proctypes in Promela
parlance, as well as synchronous or asynchronous com-
munication channels and a limited set of C-like data
structures. Concurrency in SPIN is interpreted using
an interleaving approach. Properties can be specified in
various ways. To express safety properties, the Promela
code can be augmented with assertions or deadlock state
characterizations. In order to express liveness proper-
ties, Promela models can be extended by never claims,
a form of Büchi automaton, that express undesired prop-
erties of the model. SPIN also provides an automatic
LTL to the never claim translator. To check whether
a Promela model satisfies an LTL property, SPIN imple-
ments the synchronous product construction approach
to determine the emptiness of the intersection of the
Promela model and the never claim. SPIN uses on-the-
fly state space exploration algorithms and implements
various optimizations such as, for instance, partial-order
reduction. Promela models can be simulated randomly,
user guided, or following an error trail. As of this writ-
ing no comprehensive operational semantics of Promela
has been published. However, the SPIN Web site1 con-
tains an informal description of the Promela semantics.2

It is straightfoward to interpret the operational Promela
semantics in terms of LTSs. In the remainder of the paper
we assume this interpretation.

2.3 Uninformed search algorithms

Model checkers often use uninformed search algorithms
like breadth-first search (BFS) or depth-first search
(DFS) for checking safety properties. While BFS ensures
that counterexamples of minimal depth are found, DFS
is more memory efficient. Since memory efficiency is most
crucial for explicit-state model checkers in order to tackle
the state explosion problem, DFS is the search algorithm
of choice in explicit-state model checkers. In addition to
DFS, the SPIN model checker implements two strategies
to reduce the length of error trails for finding shorter or
even optimally short error trails.
The first strategy uses a depth-first search that con-

tinues the exploration once an error state is found and

1 http://spinroot.com
2 Cf. http://spinroot.com/spin/Man/Intro.html.

Fig. 2. Anomaly in depth-bounded search

bounds the search depth to the depth of that state. In
other words, the depth bound is the depth at which the
last error state was found. Initially, there is no depth
bound or the depth bound is set to a certain value by
the user. Unfortunately, bounding the depth to a value d
does not guarantee that every state actually reachable at
a search depth less than d will eventually be visited by
the algorithm. As a consequence, there is no guarantee
of finding the optimal counterexample. This is illustrated
in the search tree of Fig. 2. The search visits state s for
the first time (lower left copy) and stores it. Goal state e
cannot be reached due to the depth bound. When, after
backtracking, the search reaches state s for the second
time at a shallower search depth (top right copy), it stops
exploring its successors, since s has been visited before.
As a consequence, e is not found even though it is located
at a depth smaller than the depth bound. This anomaly
can easily be confirmed experimentally in SPIN when
adjusting the search depth manually.3 We call the algo-
rithm just described iterative-bounding depth-first search
(IDFS).
The second strategy implemented in SPIN is an ad-

missible variant of the first strategy. We call it admissi-
ble depth-first search (ADFS). Admissibility is achieved
by reexploring states that have previously been reached
by the algorithm. We call such previously reached states
duplicates . More precisely, states are reexplored when
they are reached through a path that is shorter than
the currently shortest one on which they were previously
reached. This reexploration is sometimes also called re-
opening. This strategy has three major drawbacks.

– First, it is necessary to store the current depth of each
visited state, which adds considerable memory over-
head.
– Second, the worst-case time complexity for the re-
opening strategy is exponential in the size of the state
space.

3 For instance, we have observed this behavior in a telephony
system model analyzed in SPIN. Up to a search depth bound of
67 no error is found, from bound 68 to 139 an error is found, from
bound 140 to 154 no error is found, from 155 onwards an error is
found again, and so on.
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– Third, even when the last remaining error state in
the state space has been found, the search must con-
tinue, since the algorithm only terminates when no
more states can be explored. This phenomenon, which
is common to both options implemented in SPIN, has
a very unfavorable effect on the average computa-
tional effort required by ADFS.

2.4 Informed heuristic search

Uninformed search algorithms explore the state space
without exploiting knowledge about structural properties
of the state space or about the property to be verified. On
the contrary, heuristic search algorithms exploit informa-
tion about the underlying problem in order to guide the
search. In particular, heuristic functions assess the desir-
ability of expanding a state. An important class of heuris-
tic functions are estimates of the distance from a given
state to a set of goal states. Commonly used heuristic
search algorithms include A* [33], best-first search (BF),
and IDA* [43].

Algorithm A*, as presented in Fig. 3 for the verification
of safety properties, is a further variant of GSEA. It treats
Open as a priority queue in which the priority of a state
v is determined by a value f . The f -value for a state v

( 1) procedure A*(s)
( 2) begin
( 3) Closed←∅;
( 4) Open←∅;
( 5) s.f ← h(s); s.g← 0;
( 6) Open.insert(s);
( 7) while not Open.empty() do
( 8) u←Open.extractmin();
( 9) Closed.insert(u);
(10) if goal(u) then
(11) return solution;
(12) for each e ∈ outgoing(u) do
(13) v← to(e);
(14) v.g← u.g+ cost(e); f ′← v.g+h(v);
(15) if v ∈Open then
(16) if (f ′ < v.f) then
(17) v.f ← f ′;
(18) else if v ∈ Closed then
(19) if (f ′ < v.f) then
(20) v.f ← f ′;
(21) Closed.delete(v);
(22) Open.insert(v);
(23) else;
(24) v.f ← f ′;
(25) Open.insert(v);

Fig. 3. A* search algorithm

is computed as the sum of (i) the length v.g of the cur-
rently shortest path from the start state to v and (ii)
the estimated distance h(v) from v to a goal state. As
a modification of the GSEA in Fig. 1 and in contrast to
the depth-bounded DFS algorithm described above, A*
can perform a reopening of states. This means that it can
move states from Closed to Open when they are reached
along a path that is shorter than any path that they were
reached on earlier. It is necessary to reopen some states in
order to guarantee that the algorithm will find the short-
est path to the goal state when nonmonotone heuristics
are used. Monotone heuristics satisfy the property that
for each state u and each successor v of u the difference
between h(u) and h(v) is less than or equal to the cost4 of
the transition that goes from u to v. Notice that, if non-
monotone heuristics are used, the number of reopenings
can be exponential in the size of the state space. How-
ever, even if many of the heuristics that we use cannot
be proven to be monotone, our experimental experience
has shown that, in practical protocol validation examples,
states are very rarely reopened. An interesting property
of A* is that if h is a lower bound of the distance to
a goal state, then A* is admissible, which means that it
will always return the shortest path to a goal state [51]. In
overlaying terminology, we sometimes say that h is admis-
sible if it is a lower bound estimate.

Comparison of A*, ADFS, and IDFS . Both ADFS and
A* are optimal search strategies and share some similar-
ities. Both algorithms use hash tables to memorize the
set of reached states for fast duplicate detection. In terms
of memory consumption, both algorithms use a constant
amount of additional information (search tree depth and
f -value, respectively) for each state. At least for non-
monotone estimates, both algorithms perform reopen-
ing. However, both algorithms also have significant differ-
ences. First, A* stops at the first final state it encounters
and uses no depth-bounded search iterations, avoiding
the additional workload induced by visiting parts of the
search tree more than once. Second, by applying heuris-
tic estimates A* takes more information about the search
process into account than ADFS. Theoretically, there is
not much exploration gain to be expected when using
ADFS instead of A*, since every optimal uninformed al-
gorithm at least has to explore all states with a merit
smaller than the optimal one. In ADFS this is the set
traversed in the final iteration to prove that the error
state is of optimal depth; in IDFS this is the state set
encountered in the second to last iteration. Optimal ex-
ploration algorithms may, of course, behave very differ-
ently when considering the number of states they ex-
plore that meet the optimal solution value. Due to the
guidance that the heuristic estimate provides, the criti-
cal state set that at least has to be explored is smaller
in A* than in ADFS. In other words, A* will not con-
sider nodes with a very large h-value even if they occur

4 In our framework, each transition has a cost of 1.
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at a small depth. Under certain assumptions, e.g., on
the same tie-breaking rules and related monotone esti-
mates, it has been shown that A* is an optimal best-
first search strategy with respect to the number of nodes
it expands [17]. Moreover, the search strategy in A* is
more conservative, so we expect fewer reopenings in the
search with admissible but nonmonotone estimates in A*
than in the depth-first variant ADFS. The main advan-
tage of ADFS compared to A* is that it may include
acceleration techniques such as recursive hashing [13] and
incremental state description updates. The main disad-
vantage of ADFS is the additional work to determine the
optimal search threshold. Depending on the sequence of
depths for the error states, it will explore many nodes
that have a merit larger than the optimal one. A re-
lated approach to ADFS with overshooting thresholds
uses a doubling strategy and is known as refined threshold
determination [57].

Best-first search. (BF) can be considered a reopening-
free variant of A* that takes only h into account, i.e.,
f(u) = h(u) for all states u. It can also be viewed as an
instance of the GSEA, where Open is implemented as
a priority queue and states are prioritized solely accord-
ing to the heuristic value. BF is a greedy algorithm that,
like hill climbing [52], does not guarantee optimal results.
However, contrary to hill climbing, which always follows
the most promising successor without backtracking, BF is
complete. Especially for weak heuristics and a high dens-
ity of goal states, according to our experimental results
BF appears to be the algorithm of choice. It quickly es-
tablishes a first solution, making it well suited to be used
during the exploratory phase of the software process.

Iterative-deepening A*. The need to store all expanded
and generated states in lists seriously limits the appli-
cability of A* when memory is a strictly constrained re-
source. Once all memory is exhausted, the algorithm can
no longer proceed. As a way out of this dilemma we sug-
gested the use of iterative-deepening A*, IDA* for short.
IDA* is an informed variant of the brute-force depth-first
iterative-deepening search (DFID) [43] that combines the
space efficiency of depth-first search and the admissibility
of A*. The price to pay, however, is a loss of time efficiency
compared to A*. While DFID performs successive depth-
first search iterations with increasing depth bounds, in
IDA* increasing cost bounds are used to limit search iter-
ations. The initial cost bound is the f value of the initial
state. In each of the following iterations, states for which
the f value is higher than the current cost bound are
not explored. If no more states can be explored, the algo-
rithm enters the next iteration. The minimal f value of all
states reached but not yet expanded in the current itera-
tion is used as the cost bound for the next iteration. IDA*
simulates A* much like DFID simulates BFS: while A*
expands in each iteration the state in the search horizon
with minimal value f , IDA* uses in each iteration as cost

bound the minimal f value of the states that were reached
but not yet expanded in the previous iteration. Like A*,
IDA* guarantees optimal solution paths if the heuristic
used is admissible. We have used IDA* in combination
with bit-state hashing [34] to improve the coverage of the
state space exploration of very large state spaces, at the
expense of a loss of completeness of the model checking
procedure.

2.5 Heuristic functions

The key to a well-functioning heuristic search with BF,
A*, or IDA* is an informative heuristic estimator func-
tion that, for a given state s, returns an estimated path
length h(s) of global system state transition steps neces-
sary to reach a goal state s from a given current state. In
our setting, goal states are states violating a desired prop-
erty. The approach presented here can be generalized to
consider path costs instead of path lengths. This can be
achieved by assigning cost weights to transitions. For ex-
ample, we could assign a cost of 1 to each transition of
the system corresponding to a communication operation
and a cost of 0 to the rest. We would then aim at find-
ing the counterexample involving the minimal number of
communication operations. However, for the sake of sim-
plicity in this paper we will concentrate on a uniform cost
model where all transitions are assigned equal costs. Ide-
ally, when using A* we would like to have admissible well-
informed estimates in order to be able to quickly find the
optimal error trail with A*. Unfortunately, finding such
a function is not easy. We have developed a number of
property-dependent heuristic estimates that we summa-
rize below. They are neither admissible nor well informed
in general and are thus more suited for a best-first search
exploration with the objective of quickly finding an error
rather than aiming at optimal trails. However, we found
that in the experiments we carried out, even inadmissible
heuristics led to optimal or very close to optimal results
when applied to A*.

Formula-based heuristic estimate. Assume that f is
a global state formula describing a property to be satis-
fied by an error state. We recursively define a function
Hf (s) that, for a given global system state s, computes
the distance to a state in which f holds. Ground terms
in the state formula language include expressions such as
i@si, which means that the Promela process with ID i
is in its local control state si, empty(q), which requires
that the communication channel5 q be empty, or a, which
states that state proposition a is true. We directly assign
model-dependent lower bound values to these arguments.
For instance, Hi@si(s) is computed using a local control
state distance matrix that indicates how many compu-
tation steps a process has to take at least in order to

5 In Promela a communication channel is modeled as a special
kind of variable that represents a FIFO message buffer.
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go from one local control state to another. Obviously,
this yields a lower bound for the number of global con-
trol state transitions needed to reach a global goal state
in which process i is in local control state si. To com-
pute Hempty(q)(s), we simply return the current number
of elements in channel q, which provides an admissible
heuristic estimate as long as every global state transi-
tion can at most remove one element from the channel.
Ha(s) returns the value 0 if a holds in s, and 1 otherwise.
This heuristic estimate is admissible as well. For boolean
formulae, we compute the heuristic estimates based on
the conjuncts or disjuncts present in the formula. As an
example, for Hg∨h we use min{Hg(s),Hh(s)} as an ad-
missible estimate. For Hg∧h we use max{Hg(s),Hh(s)},
which is only admissible in case g and h are in fact in-
dependent. To deal with logical negation, we compute
a value Hf for a formula of the form ¬f . For the details
we refer the reader to [21]. The formula-based heuristic
estimate can be applied directly to model check invariants
and code assertions.

Heuristic estimates for deadlock detection. While feas-
ible, characterizing a deadlock state using a state for-
mula f is nontrivial and possibly leads to very unin-
formed heuristics. As an alternative, we have proposed
a heuristics that is based on a function characterizing the
number of active, i.e., nonblocked processes. It is non-
admissible and not particularly informative for models
with small numbers of processes, but it worked well on
some practical examples. To improve deadlock detection,
we have also included heuristic estimates based on user-
provided characterizations of local control states as dead-
lock prone.

2.6 Experimental results

We implemented the directed explicit-state model check-
ing approach in the HSF–SPIN experimental tool.6 It
combines the capabilities of the SPIN model checker
with the heuristic search framework (HSF) [19]. Both
SPIN and HSF–SPIN use the same specification language
(Promela) and trail format. In our predecessor paper [21]
we performed an extensive set of experiments using vari-
ous Promela protocol models.

– The leader electionalgorithmexample [18] (leader(n))
solves the problem of finding the leader among a num-
ber of nodes in a ring topology. In the original algo-
rithm, each of the n nodes of the ring has a distinct
identifier. The algorithm guarantees that the node
bidding for leadership with the highest identifier is
recognized as leader by every other node. In our faulty
version of the leader election algorithm, which we use
in the experiments, every node has the same identi-
fier. This causes the violation of an invariant stating

6 Source available from
http://www.informatik.uni-freiburg.de/∼lafuente/hsf-spin.

that when a process decides that it is the leader, the
number of leaders is exactly one.
– We also use the Promela model of a concurrent solu-
tion to the stable marriage problem [49] authored by
us (marriers(n)). The model consists of n concurrent
processes (the suitors) that are looking for a partner
(a wife). A process Pi that has found a partner k is
idle. If a different process Pj decides that he is bet-
ter suited for pairing up with k, then k is assigned to
Pj and Pi continues the search for a new pair. When
each process has a partner, the algorithm terminates.
Our model contains a deadlock due to a race condi-
tion caused by two actions that should be performed
atomically.
– The CORBAGIOP protocol [41] (giop(n,m)) is a key
component of the OMG’s Common Object Request
Broker Architecture (CORBA) specification. It spec-
ifies a standard protocol that enables interoperability
between ORBs from different vendors. The architec-
ture of the model includes a set of n ORB clients that
communicate withmORB servers via the GIOP inter-
face. As explained in [41], a deadlock was revealed in
the early development of the model. Indeed, the error
is similar to a known problem in the TCP protocol and
is documented in the GIOP specification [32]. Addi-
tionally we have another version of the protocol that
violates a response property requiring that whenever
a user (ORB Client) process sends a request, a reply
will eventually be received.
– Model pots is a preliminary design of a plain old
telephony system (POTS). This model was generated
with the visual modeling tool VIP [42]. It is a “first
cut” implementation of a two-party call processing
model of which we know that it is full of faults of var-
ious kinds. The model consists of two user processes
representing the environment behavior of the switch
as well as two phone handler processes representing
the software instances that control the internal oper-
ation of the switch according to signals (on-hook, off-
hook, etc.) received from the environment. The model
violates an invariance requiring that it cannot happen
that all user processes and one phone handler pro-
cess are in conversation states, indicating that they
presume the two phones to be connected, while the
second phone handler is not in a conversation state.
– We also use a model of an imperfect elevator system
(elevator(n)).7 It violates a simple response prop-
erty: whenever an elevator request button is pressed at
any given floor, the elevator will eventually reach the
floor where it was requested and open its door.
– Finally, we use a potentially deadlock-free solution to
Dijkstra’s dining philosophers problem (philo(n)).
It involves a number of philosophers sitting around
a table. There is a plate in front of each philoso-

7 Based on the model described in
http://www.inf.ethz.ch/∼biere/applets/elsim/.
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pher and a fork between each pair of adjacent plates.
A philosopher needs two forks to eat the spaghetti
on his own plate. The problem is to find a protocol
that allows the philosophers to use the forks in such
a manner that they can all eat. A winning strategy
consists of every philosopher taking his left and right
fork as a single atomic action. This avoids the occur-
rence of deadlocks but violates a response property
stating that whenever a philosopher is eating, his left
neighbor will eventually eat. A deadlock, however, oc-
curs if every philosopher decides to pick up his left fork
and not to release it before a second fork has been ac-
quired.

In the remainder of the paper we use the indicated ab-
breviations for the models. For scalable protocols we in-
dicate the number of instances using brackets after the
name of the protocol. For example, philo(8) denotes an
instance of the dining philosopher’s problem with eight
philosophers.
We now summarize our previously obtained experi-

mental results (cf. [47]).

– For deadlock detection as well as for invariance and
assertion violations the directed model checking ap-
proach led to substantial improvements in reducing
the length of the error trails. In many examples,
the length reduction factor was approximately in the
range 0.5 to 500. As an example, checking an invari-
ance violation in the POTS model led to a reduction
in the size of the counterexample from 477 messages
down to 12 messages, which greatly facilitated error
explanation.
– In some instances, the exploration effort as measured
in terms of states visited, states expanded, and tran-
sitions taken was lower than the effort required to
perform SPIN’s depth-first traversal. However, there
also was a number of instances where the depth-first
traversal explored many fewer states than the A*-
based approach. The reason for this phenomenon lies
in the structure of the model and the properties of
the formula to be checked. It became clear that the
exploration effort is dependent on the quality of the
heuristic estimate function. A poor range of values
provided by the estimate is a symptom of a poorly in-
formed heuristic.
– In most instances, the A*-based search delivered op-
timally short counterexamples, even if the heuristic
estimates were not admissible.
– The greedy best-first search usually improved the
counterexample length, but in many instances re-
turned results were not optimal. In some instances,
best-first delivered results close to the optimum with
substantially lower exploration effort than A*.
– In the deadlock detection in the dining philosophers
problem, the A*-based directed model checking could
analyze problem instances of a size orders of magni-
tude larger than those analyzable with SPIN’s depth-

first search. In fact, the size of the state space explored
by A* scaled linearly in the number of philosophers,
while with depth-first search it grew exponentially. As
we explained in [21], directed model checking is not
subject to the exploration strategy, in this case infe-
licitous, that SPIN is using in which the exploration
order depends on the lexical ordering of the processes.
This entails that the behavior of one process, corres-
ponding to one philosopher, is expanded in the depth
before other processes’ behaviors are exploited. This is
contrary to the strategy of leading the dining philoso-
phers into a deadlock by allowing every philosopher to
take exactly one step, namely, acquiring a fork.
– Deadlock detection in the GIOP protocol proved the
usefulness of IDA* jointly with bitstate hashing to
analyze systems with very large state spaces. This ap-
proach can find deadlocks where A*- and IDA*-based
approaches fail due to the exhaustion of memory re-
sources.

3 Trail improvement

In this section we discuss a method to obtain improved
error trails in a situation in which the error state is given,
not by a logic formula, but by an existing error trail. Very
much like in the remainder of this paper, we follow the
conjecture that in this setting “short is beautiful”, i.e.,
we aim at obtaining shorter error trails. This approach
is practically useful when error states and their corres-
ponding error trails have been obtained during previous
verification or simulation runs. We consider both the im-
provement of trails illustrating the violation of safety and
liveness properties. We first present the heuristic esti-
mates that we will use throughout the section.

3.1 Heuristics for known error states

We now present suitable heuristics that estimate the dis-
tance from a current global system state to a target global
system state if that target state is given. The global sys-
tem state of a concurrent-message-based system such as it
is defined by Promela is determined by the control states
of all processes, the local data state of all processes, the
state of all global variables, and the state of all com-
munication channels. We assume that, as the result of
a previous verification or simulation run, we are in the
possession of a complete characterization of a global error
state, given by an error trail leading into this state. We
present two heuristic estimates that exploit information
regarding a given error state in order to direct the search.

Hamming distance heuristic. Let s ∈ S be a global state
given in a suitable binary encoding, i.e., as a bit vector
s= (s1, . . . , sk). Furthermore, let e be the error state we
are searching for. One coarse estimate for the number of
transitions necessary to get from s to e is the number of
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bit flips necessary to transform s into e. The estimate is
called the Hamming distance Hed(s) and is defined as

Hed(s) =
k∑

i=1

|si− ei|.

Obviously, |si− ei| ∈ {0, 1} for all i ∈ {1, . . . , k}. The
computation of the estimate Hed(s) can be performed in
time linear in the size of the binary encoding of a state.
The obtained estimate is not admissible since one state
transition in the system may change more than one bit
in the state description. Nonetheless, as we shall see, the
Hamming distance turns out to provide a useful guidance
when used as a goal distance estimate in heuristic search
algorithms. In other words, despite its inadmissibility it
imposes a valuable ordering of the states that the directed
search algorithm exploits during state space exploration.

Finite-state machine (FSM) distance heuristic. Another
distance metric centers around the local states of com-
ponent processes. Given a target global state e ∈ S the
FSM heuristic estimate Hem(s) is defined as the sum of
the distances between the local states of eachPi in system
state s and in system state e, i.e.,

Hem(s) =
n∑

i=1

Di(pci(s), pci(e)),

where pci(s) denotes the local state of processPi in global
state s. The shortest paths between states in the local
state transition graph of each process Pi are stored in
a matrix Di. The matrix Di can be precomputed in time
cubic in the number of the states in the state transition
graph of process Pi. Johnson’s algorithm [15] can also be
applied, offering an asymptotically better time complex-
ity if the graph is sparse. The computation of the distance
matrix does not impose a severe burden on the overall
computation since local state transition graphs are small
in comparison to the global state space.8 Once the matri-
ces Di are constructed, H

e
m(s) can be computed in time

linear in the number of processes of the system.
In contrast to the Hamming distance, the FSM dis-

tance does not take the current queue contents and the
values of local and global variables into account. There-
fore, while the Hamming distance is capable of direct-
ing the search into exactly the same given error state,
the FSM distance will guide the search into finding the
shortest path into states that are equivalent to the ori-
ginal error state in the following sense: two global states
are equivalent if the local states of the processes in both
states are the same. We expect that the search will then
be directed into equivalent error states that could poten-
tially be reachable through shortest paths. We contend

8 In fact, experimental results with our model checker HSF–
SPIN show that computing these tables requires some milliseconds
of running time, while the total execution time of the directed
model checking run is usually higher than 1 s.

that in some situations this type of heuristic estimate is
useful since some errors depend only on the local control
states of all processes and not on the data state of the sys-
tem. Next we prove that the FSM heuristic is monotone.

Theorem 1. The FSM heuristic estimate is monotone.

Proof. We have to show that for each transition s→ s′ of
the system: Hem(s)≤ 1+H

e
m(s

′). Let e be the goal state
and let Pj be the corresponding process of the transition.
We have

Hem(s) =
n∑

i=1

Di(pci(s), pci(e)),

which can be rewritten as

Dj(pcj(s), pcj(e))+
n∑

i=1,i�=j

Di(pci(s), pci(e)).

On the other hand, we have

Hem(s
′) =

n∑

i=1

Di(pci(s
′), pci(e)),

which in turn can similarly be rewritten as

Dj(pcj(s
′), pcj(e))+

n∑

i=1,i�=j

Di(pci(s
′), pci(e)).

We know that in an asynchronous system, a transition
changes only the local state of the process perform-
ing the local transition, which is Pj in this case. As
a consequence,

n∑

i=1,i�=j

Di(pci(s), pci(e))

is equal to

n∑

i=1,i�=j

Di(pci(s
′), pci(e))

since

∀i= 1..n, i �= j : pci(s) = pci(e).

Moreover, it is easy to see that Dj(pcj(s), pcj(e)) ≤ 1+
Dj(pcj(s

′), pcj(e)). It follows that H
e
m(s) ≤ 1+H

e
m(s

′).
�

The proof of Theorem 1 does not generally hold for
synchronous communication in which one global tran-
sition implies more than one local transition. Promela
possesses both synchronous and asynchronous commu-
nication primitives. In case of synchronous communica-
tion, the sum of the local distances between s and s′ may
drop by more than the path distance 1 between s and s′,
which means that the heuristic estimate is not monotone.



287

There are two possible solutions. First, if one modifies the
estimate so that for each global transition at most one
local transition is counted when determining the overall
value, then the resulting heuristics would remain mono-
tone. The second solution, which has also been adopted in
HSF–SPIN, is to measure the length of a trail as the num-
ber of steps such that a system transition involving two
local transitions in different processes is counted as two
steps.

Corollary 1. The FSM heuristic estimate is admissible.

Proof. The stated result follows immediately from Theo-
rem 1 since every monotone heuristic is also admissi-
ble [52] if the application of the heuristic applied to a goal
state yields the value 0. The FSM heuristic estimate sat-
isfies this condition since

Hem(e) =
n∑

i=1

Di(pci(e), pci(e)) = 0.

3.2 Improving safety trails

Trail improvement can be used in two ways, as illustrated
in Fig. 4. It can be used to reduce the length of an error
trail to a given error state e that violates property f or it
can be used to find a shorter error trail to some state e′

that also violates f . The difference is determined by the
nature of the specification, i.e., whether it characterizes
precisely one global system state or whether it character-
izes an equivalence class of more than one global state
violating f . Let us now assume that f is a property speci-
fication and that a previous model checking or simulation
run has returned e as a state violating f . More formally,
searching for state e entails searching for the violation of
a property fe, stating that state e is never reached . Prop-
erty fe can be represented by an invariant that negates
a formula uniquely characterizing state e. Such a formula
φe requires each variable (including those representing
the local control states) to have the same value as in e.
Let fe be denoted by ¬φe. We can now use fe as the
property specification for an A* guided model checking
run, as described in the previous section. This will lead
to error states at shallower depths. The Hamming dis-
tance heuristic helps if error states are very similar in
their binary encodings, while the FSM distance directs
the search very effectively if error states have similar local
states.

Fig. 4. Two methods of trail improvement: searching for the same
error state e or searching for equivalent error states e′

To validate these ideas we use the directed model
checker HSF–SPIN, which we described in Sect. 2. All ex-
periments were performed on a SUN workstation with
a 248-MHz UltraSPARC-II CPU under Solaris 5.7. If
nothing else is stated, the depth bound is set to 10000
and no state compression technique is used. We let the
experiments run for 24h with a maximum memory con-
sumption of 512MB.

Experiments. In the following set of experiments we as-
sume that we are in the possession of an error trail ob-
tained through a previous verification run using a DFS
state exploration. We will show that a shorter error trail
can be found using directed model checking with the A*
algorithm in a more efficient way than using blind search
algorithms like IDFS and ADFS. The heuristic estimates
are obtained by applying the Hamming and FSM dis-
tance metrics to the error state derived from the given
error trail. More precisely, the provided error trail is simu-
lated in order to generate the last global system state in
the trail that is the error state. It is stored and used as
the basis for the heuristic estimate functions in a subse-
quent directed model checking run on the original model.
We noticed that the time required for generating the
error state from a given error trail is not significant com-
pared to the time required to perform the subsequent
directed exploration. Table 1 depicts the results of search-
ing for different safety errors with uninformed DFS and
improving the resulting error trail with A*. Table 2 con-
tains results obtained by the uninformed IDFS and ADFS
strategies. We consider the two types of error state spe-
cifications that we alluded to above: searching equivalent
states violating the same property f or searching for ex-
actly the same error state e by using the specification
formula fe. Estimates applied are the Hamming distance
(Hed) and the FSM distance H

e
m. The table includes the

number of stored states (s) and the length of the error
trail (l) as well as time (t) and memory consumption (m)
for the verification run. When an experiment runs out of
time or memory, we write o.t. or o.m., respectively.

Result interpretation. In all experiments of Table 1 the
heuristic search approach outperforms the blind search
strategies in terms of computational effort, where com-
putational effort is measured in terms of the rows s, m,
and r. This is especially evident in the models pots and
leader. In Table 2 ADFS runs out of time for pots be-
cause of the large number of reopenings that are neces-
sary for this model. On the other hand, for leader both
IDFS and ADFS run out memory since the portion of the
state space below the last error state is too large to be
completely stored. Note that in leader the algorithms
are able to deliver an error trial before running out of
memory. In some instances, for example for the leader
or giop models, the uninformed search strategies are ca-
pable of producing shorter counterexamples. This is not
the case for the potsmodel, where IDFS delivers a coun-
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Table 1. Improving various trails corresponding to safety errors
with directed model checking using A*

marriers(4)

DFS A*
f ,Hed f ,Hem fe,H

e
d fe,H

e
m

s 407009 26545 225404 126479 1754408
l 121 99 66 121 121
m 58MB 8MB 26MB 22MB 248MB
r 367 s 6 s 126 s 62 s 1150 s

pots

DFS A*
f ,Hed f ,Hem fe,H

e
d fe,H

e
m

s 118099 988 13865 4432 14714
l 987 89 81 89 88
m 58MB 7MB 11MB 7MB 12MB
r 81 s 5 s 5 s 5 s 5 s

leader(8)

DFS A*
f ,Hed f ,Hem fe,H

e
d fe,H

e
m

s 36 10733 3161 10773 3173
l 71 71 69 71 71
m 3MB 10MB 6MB 10MB 6MB
r 1 s 6 s 1 s 6 s 1 s

giop(2,1)

DFS A*
f ,Hed f ,Hem fe,H

e
d fe,H

e
m

s 218 988 30629 23518 446689
l 134 67 65 134 134
m 3MB 5MB 22MB 18MB 266MB
r 1 s 1 s 8 s 21 s 128 s

terexample that is far from optimal while A* finds a near-
optimal error trail. The nonoptimality of the A* search in
these cases can be traced back to the use of nonadmissible
heuristic estimates.
We now concentrate on those results obtained by dir-

ected model checking using A*. The first significant result
is that finding a shorter path to exactly the same error
state fe is not always possible. Indeed, a shorter path
was only found in pots. On the other hand, searching
for shorter paths to equivalent errors is feasible and in
most instances requires less computational effort. In some
cases, as in the marriers model, the original error state
and the equivalent error states that the search finds differ
only in the data values. More precisely, only the informa-
tion regarding which wife is paired up with which suitor
is different, but not the control states of the processes. In
the error state determined by the original error trail, all
suitors are pretending to marry the same woman, while
in the other deadlock states only two of them think they
will marry the same person. The race condition is the
same, but the scenario leading to the original error state
involves more processes.

Table 2. Improving various trails corresponding to safety errors
with various uninformed search strategies

marriers(4)

IDFS,f f ,ADFS IDFS,fe ADFS,fe

s 1042407 1042407 2218127 22128127
l 77 66 121 121
m 147MB 147MB 311MB 311MB
r 677 s 698 s 1424 s 1430 s

pots

IDFS,f ADFS,f IDFS,fe ADFS,fe

s 313677 o.t. 387604 o.t.
l 428 o.t. 897 o.t.
m 151MB o.t. 188 MB o.t.
r 182 s o.t. 232 s o.t.

leader(8)

IDFS,f ADFS,f IDFS,fe ADFS,fe

s o.m. o.m. o.m. o.m.
l 68 68 68 68
m o.m. o.m. o.m. o.m.
r 1073 s 1073 s 1074 s 1074 s

giop(2,1)

IDFS,f ADFS,f IDFS,fe ADFS,fe

s 58703 58703 547839 548989
l 58 58 134 134
m 37MB 37MB 322MB 323MB
r 15 s 15 s 153 s 155 s

By contrast, in the pots model the states differ also
in the local state of the processes. Recall that the invari-
ant violated in this model requires two telephone users
and one phone handler process to be in a conversation
state, while the other phone handler is not. In the original
counterexample, the phone handler that is not in the con-
versation state is in a different state in the shortened trail.
This corresponds to a different violation of the identical
property.
The use of the Hamming distance heuristic mostly re-

quires less computational effort than the FSM distance.
The only case in which this is not true is in the leader ex-
ample, where the inadmissible Hamming distance heuris-
tic misleads the search. As expected, in all experiments
the FSM distance provides counterexamples of equal or
smaller length.

3.3 Improving liveness trails

Recall that a liveness error trail consists of a path with
an initial prefix leading from the initial system state to
a state forming the seed of a cycle and an accepting cycle
starting from that seed state. We propose the following
strategy to improve liveness error trails, illustrated in
Fig. 5. First, we shorten the path from the initial state
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Fig. 5. A liveness error trail (left) shortened in two phases: search
for a shorter path leading to an equivalent seed state s′ (center)

and search for a shorter cycle through the seed (right)

to either the original seed state or to an equivalent seed.
Then, we shorten the cycle through the seed.

Shortening the path to a seed. The first strategy when
looking for a shorter prefix to a cycle seed is to shorten
the path from the initial state to the original seed state.
This can be done by using A* with heuristics like the
Hamming or the FSM distance. Another possible strat-
egy consists of searching for equivalent seeds. Let s be the
original seed state of some cycle and let c= 〈α1, . . . , αn〉
be the sequence of transitions of this cycle. We know that
executing the sequence from c to s results in state s, i.e.,
αn(. . . (α1(s))) = s. The question that arises is whether
there are other reachable states s′ in the state space so
that executing the sequence c from s′ results in an accept-
ing cycle.We call such states s′ equivalent seeds. Consider
the processes and variables involved in the sequence c.
In the automata-based model checking approach during
the synchronous product construction, the transitions of
a system M are executed in synchrony with the negated
property specification automaton N . Each state s of the
product can be considered as a pair (sM , sN ), where sM is
a state ofM and sN is a state ofN . Each transition α can
then be considered a pair (αM , αN ), where αM is a tran-
sition in M and αN is a transition in N . We know that
every cycle in the intersection consists of a cycle in both
M and N . Let cM = 〈αM,1, . . . , αM,n〉 be the sequence
of transitions in M that corresponds to c. Similarly, let
cN = 〈αN,1, . . . , αN,n〉 be the sequence of transitions inN
that corresponds to c.
We now discuss how to identify the states for which

executing the system sequence cM is possible and results
in a cycle. Recall that each transition αM of the system
corresponds to a state change in one process. A transition
has a guard determining the enabledness of the transition
and an effect determining the changes in the variables.
The variables involved in a transition are the variables
that appear either in the guard or in the effect. Let us
denote these variables by VcM and the set of processes in-
volved in cM by Pc. It is obvious that the values of the
variables and of the local states of processes not involved

in executing transitions from the sequence cM play no
role in determining whether or not cM is executable in
a state and whether its execution results in a cycle. A suf-
ficient but not strictly necessary condition for a state s′M
to be an equivalent seed is that the values of the vari-
ables of VcM and the local states of the processes of Pc
are identical to those in the original seed sM . This is an
overapproximative characterization of the set of all equiv-
alence seeds. Assume that the sequence cM consists of two
transitions of the same process Pi and that the first tran-
sition increments by one a numerical variable x, while the
second transition decrements the value of x by one. In this
case the value of x obviously plays no role in the cycle, i.e.,
irrespective of the value of x at a state s′M the question
of whether the sequence of transitions results in a cycle
depends only on whether Pi is in the same local state as
in the original seed. However, to make this approximation
more precise would require a more thorough analysis of
the effect of the sequence cM , which is beyond the scope
of this paper. We now apply the same idea to identify
those states for which executing the system sequence cN
is possible and results in a cycle in the property automa-
ton. The transitions of N are all side-effect free. Hence,
we only have to require that the local state of N and the
value of each variable involved in cN must be the same as
in s. In summary, we consider a state s′ to be an equiva-
lent seed with respect to the original seed s and the cycle
sequence c if the local states of the processes involved in
c, the local state of the never claim, and the values of the
variables of the system and the never claim involved in c
are the same in both s′ and s. We denote this set of states
by [s].

Shortening the cycle. Shortening the cycle througha given
seed s consists of searching for a shorter path from s to it-
self. Our approach consists of using A* for this purpose.
Once A* finds a shorter path from s to itself, it remains
to be verified that the shorter cycle is indeed accepting.
We perform this in an efficient manner by adding to each
state s′ a flag that indicates whether an accepting state
was crossed to reach s′. When A* reopens a flagged state
while exploring an unflagged state, the flag for the re-
opened state will be removed. This way we record for
each state s′ whether the path from the initial state to
s′ contains an accepting state. If a nonaccepting cycle is
found and it is not accepting, the algorithm continues the
search.

Heuristic estimates for seeds. To achieve the shortening
of a path to a seed, we apply directed model checking
using A* and the Hamming or FSM distances as heuris-
tic estimates. In particular, to shorten the initial path to
the original seed s we use the Hamming distance Hsm and
the FSM distance Hsd as heuristic functions. When aim-
ing at equivalent seeds we use alternative heuristics based
on a characterization of the equivalence class of s. For
example, this can be accomplished by using variants of
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Table 3. Improving the trail of liveness properties in various
protocols

elevator(3)

NDFS A*

s,Hsd s,Hsm [s],H
[s]
d [s],H

[s]
m

s 192 58856 69162 60346 61979
l 231+90 189+90 189+90 175+90 175+90
m 3MB 16MB 19MB 16MB 16MB
r 1 s 31 s 25 s 27 s 24 s

philo(8)

NDFS A*

s,Hsd s,Hsm [s],H
[s]
d [s],H

[s]
m

s 57 18 11 18 11
l 71+68 31+4 31+4 31+4 31+4
m 3MB 4MB 4MB 4MB 4MB
r 1 s 1 s 1 s 1 s 1 s

giop(2,1)

NDFS A*

s,Hsd s,Hsm [s],H
[s]
d [s],H

[s]
m

s 7331 355249 931901 1730 1929
l 288+2 288+2 288+2 52+2 52+2
m 8MB 235MB 609MB 6MB 6MB
r 3 s 549 s 430 s 1 s 1 s

the Hamming or FSM distance estimates that take only
the common part of the states of [s] into account. More
precisely, we can base the Hamming distance estimate ex-
clusively on the bits corresponding to the variables and
local states that characterize [s]. We denote this variant

of the Hamming distance by H
[s]
d . For the FSM distance

we use only the local states that characterize [s], i.e., the
local states that are equal for every state [s]. We denote

this heuristic estimate byH
[s]
m .

Experiments. We present experiments on shortening live-
ness error trails that were produced by the nested depth-
first search algorithm (NDFS). We use A* with the FSM
and Hamming distance estimates as described above. Let
s denote the search for the same original seed and [s] de-
note the search for an equivalent seed. Table 3 depicts
the results. We define the length of a liveness trail as the
sum of the length of the prefix path plus the length of the
cycle and use a corresponding sum notation in the rows
labeled l.

Result interpretation. In the case of giop the computa-
tional effort required when aiming at the same seed is
significant, but the error trail is not improved. However,
if we aim at equivalent seeds, our approach is able to find
a significantly shorter error trail, with much less effort.
This is possible because the cycle involves only one pro-
cess. As a consequence there are many equivalent seeds
in the state space. In all other examples we are able to

shorten the initial prefix. However, the cyclic part of the
trace was only shortened in philo. Note that in most
cases application of the Hamming distance requires the
storage of fewer states than does application of the FSM
distance. On the other hand, the FSM distance leads to
improved running times. The reason is that computing
the Hamming distance for a state requires more time
than computing the FSM distance, in particular when
the number of processes in the system is small while the
size of a state representation is large. This phenomenon
becomes obvious in the giop example, where applying
the Hamming distance requires the exploration of about
three times fewer states while consuming substantially
more time.

4 Partial-order reduction
and directed model checking

Partial-order reduction methods exploit the commutativ-
ity of concurrent transitions in asynchronous systems in
order to reduce the size of the state space. Concurrent
transitions can be interleaved in any order. If the order of
execution is irrelevant with respect to the property to be
analyzed, then a set of concurrent transitions defines an
equivalence class of execution paths with respect to that
property. The goal of partial-order reduction is to reduce
the state space of the system by replacing the portion of
the state space that corresponds to this equivalence class
by just one representative. This results in pruning por-
tions of the state space graph. The construction of the
reduced state space needs to ensure that the reduced state
space is equivalent to the original one with respect to the
property to be analyzed. In other words, the construction
must ensure that the property to be verified is satisfied
in the reduced state space if and only if it is satisfied in
the nonreduced original state space. Due to its popularity,
we mainly follow the ample set approach [11] in our pa-
per. Nonetheless, most of the reasoning presented in this
section can be adjusted to any of the other approaches.

4.1 Ample set construction

The algorithm for generating a reduced state space ex-
plores only some of the successors of a state. Recall that
transition α is enabled in a state s if α(s) is defined. The
set of enabled transitions from a state s is usually called
the enabled set and is denoted by enabled(s). The algo-
rithm selects and explores only a subset of this set called
the ample set , which we denoted by ample(s). A state s
is said to be fully expanded when ample(s) = enabled(s),
otherwise it is said to be partially expanded . In the follow-
ing discussion let S = 〈S, S0, T,AP, L〉 denote a labeled
transition system.

Independence. As we argued above, partial-order reduc-
tion techniques are based on the observation that the
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order in which some transitions are executed may not be
relevant. This leads to the concept of transition indepen-
dence, which encompasses the property that executing
independent transitions in one order does not preclude
their execution in another order and that any order of ex-
ecution leads to the same state. More formally, two tran-
sitions α, β ∈ T are independent if, for each state s ∈ S
in which both transitions are defined, the following two
properties hold:

1. α and β do not disable each other: α ∈ enabled(β(s))
and β ∈ enabled(α(s)).

2. α and β are commutative: α(β(s)) = β(α(s)).

Two transitions are dependent if they are not indepen-
dent.

Invisibility. A further fundamental concept is the fact
that some transitions are invisible with respect to the set
of atomic propositions that occur in the property specifi-
cation. This is equivalent to saying that they do not alter
the truth value of any proposition in the set. A transi-
tion α is invisible with respect to a set of propositions P
if for each pair of states s and s′, if s′ = α(s), then L(s)∩
P = L(s′)∩P . In the following discussion, we will say
that a transition is invisible if it is invisible with respect
to the set of propositions that appear in the safety LTL
formulae being checked. Figure 6 illustrates independence
and invisibility of transitions. Transitions α, β, and γ are
pairwise independent. Transitions α and β are invisible
with respect to the set of propositions P = {p}, while γ is
not.

Stuttering equivalence. We now present the concept of
stuttering equivalence with respect to an LTL formula.
Let P be the set of atomic propositions that appear in the
formula. A block is defined as a finite execution contain-
ing invisible transitions only. Intuitively, two executions
are stuttering equivalent if they can be defined as a con-
catenation of blocks such that the atomic propositions of
the ith block of both executions have the same intersec-
tion with P , for each i > 0. Figure 7 depicts two stutter-
ing equivalent paths with respect to an LTL property in
which only propositions p and q occur. Two transition

Fig. 6. Illustration of independence
and invisibility of transitions

Fig. 7. Stuttering equivalent executions

systems are stuttering equivalent if and only if they have
the same set of initial states and for each execution in
one of the systems starting from an initial state there ex-
ists a stuttering equivalent execution in the other system
starting from the same initial state. It can be shown that
LTL−X formulae9 cannot distinguish between stuttering
equivalent transition systems [11]. In other words, ifM
and N are two stuttering equivalent transition systems,
thenM satisfies a given LTL−X specification if and only
if N also does.

Ample set construction for LTL−X . The main goal of the
ample set construction is to select a subset of the suc-
cessors of a state such that the reduced state space is
stuttering equivalent to the full state space with respect
to a property specification that contains a set P of atomic
propositions. The construction should offer a significant
reduction without entailing a substantial computational
overhead. The following four conditions are necessary and
sufficient for the proper construction of a partial-order
reduced state space for a given set of atomic proposi-
tions P [11]:

Condition C0: The set ample(s) is empty exactly
when enabled(s) is empty.

Condition C1: Along every path in the full state space
that starts at s, a transition that is dependent on
a transition in ample(s) does not occur without
a transition in ample(s) occurring first.

Condition C2: If a state s is not fully expanded, then
each transition α in the ample set of s must be invis-
ible with respect to P .

Condition C3: If for each state of a cycle in the reduced
state space a transitionα is enabled, then αmust be in
the ample set of some of the states of the cycle.

Conditions C0, C1, and C2 or their approximations can
be implemented independently of the particular search al-
gorithm used in the model checking. It was shown in [11]
that the complexity of checking C0 and C2 does not de-
pend on the search algorithm. Checking conditionC1 is
more complicated. In fact, it has been shown to be at
least as hard as checking reachability for the full state
space. It is, however, usually overapproximated by check-
ing a stronger condition [11] that can be checked irre-
spective of which search algorithm is used in the state
space exploration. In addition, this approximation re-
duces the number of ample set candidates from exponen-
tial in enabled(s) to linear in the number of processes

9 LTL−X is the linear-time temporal logic without the next-time
operator X.
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since it requires an ample set to be composed of all the en-
abled transitions belonging to a process. In the following
discussionwe shall see that the complexity of checking the
cycle condition C3 does indeed depend on which search
algorithm is used.

Dynamically checking the cycle condition. Condition
C3 is commonly overapproximated using the following
condition:

Condition C3cycle: Every cycle in the reduced state
space contains at least one state that is fully expanded.

Hence checking C3 can be reduced to detecting cycles
during the search. During a DFS in the search space cy-
cles can easily be detected: every cycle contains a back-
ward edge, i.e., an edge that links back to a state that
is stored on the search stack [11]. Consequently, avoid-
ing ample sets containing backward edges except when
the state is fully expanded ensures satisfaction of C3
when using stack-based search algorithms. The result-
ing stack-based cycle condition C3stack can be stated as
follows [37]:

C3stack: If a state s is not fully expanded, then no tran-
sition in ample(s) leads to a state on the search stack.

The example depicted in Fig. 8 illustrates how C3stack
is used. The set of enabled transitions in state s is
{α1, . . . , αn}. Transition α1 closes a cycle on the stack
and cannot be included in any ample set candidate, ex-
cept when the state is fully expanded. Therefore, the set
of transitions {α2} is a valid candidate, while {α1, α2}
and {α1} are examples of invalid ample sets. The im-
plementation of C3stack for depth-first search strategies
marks each expanded state on the stack with an addi-
tional flag, so that stack containment can be checked
in constant time. Depth-first strategies recording visited
states will not consider every cycle in the state space
on the search stack since there might exist exponen-
tially many of them. However, C3stack is still a sufficient
condition for C3 since every cycle contains at least one
backward edge.

Cycle condition for safety properties. ConditionC3− has
been implicitly proposed as a relaxation of C3 in [37]:

Fig. 8. Reduction example
for depth-first search

Condition C3−: If for each state of a cycle in the re-
duced state space a transition α is enabled, then α
must be in the ample set of some of the successors of
some of the states of the cycle.

Note that C3− is only correctly applicable to the veri-
fication of safety properties. A disadvantage of this ap-
proximation is that it still relies on cycle detection. As
a remedy, the authors of [37] propose the following ap-
proximation of the C3− condition:

Condition C3−stack: If a state s is not fully expanded,
then at least one transition in ample(s) does not lead
to a state on the search stack.

Consider again the example in Fig. 8. Condition C3−stack
does not characterize the set {α1} as a valid candidate
for the ample set. Contrary toC3stack, conditionC3

−
stack

accepts {α1, α2} as a valid ample set since at least one
transition (α2) of the set leads to a state that is not on
the search stack of the depth-first search. This illustrates
that conditionC3−stack is not sufficient to fully guarantee
C3, which is necessary for preserving the correctness of
liveness properties during partial-order reduction.

Statically checking the cycle condition. The approxima-
tion of the cycle condition C3 that we introduce now
is checked dynamically, but the checking method bene-
fits from information gathered statically, i.e., before the
verification process starts. In contrast to the previous
approaches this overapproximation method explicitly ex-
ploits the structure of the underlying concurrent sys-
tem. Recall that the global system is constructed as the
asynchronous composition of several components. The
authors of [44] present what they call a static partial-
order reduction method based on the following observa-
tion. Any cycle in the global state space is composed of
a local cycle, which may be of length zero, in the state
transition graph of each component process. Breaking
every local cycle breaks every global cycle. The control
flow structure of the individual processes within the sys-
tem is analyzed before state space generation begins and
all local control flow cycles are determined. The method
is independent of the search algorithm to be used dur-
ing the verification. Some transitions are marked with
a special flag, called sticky. It is then necessary to en-
force that no such transition be allowed in an ample set
of a state if the state is not fully expanded. Consequently,
sticky transitions must be selected such that they enforce
the cycle condition C3. Marking at least one transition
in each local cycle as sticky guarantees that at least one
state in each global cycle will be fully expanded, which
entails conditionC3. This approach can be refined as fol-
lows. The effect of local cycles on the set of variables of
the system can be analyzed in order to establish certain
dependencies between local cycles. Assume, for example,
that a local cycle C1 has an overall incrementing effect
on variable v. For a global cycle to exist, it is necessary
(but not sufficient) to execute C1 in combination with
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a local cycleC2 that has an overall decrementing effect on
v. In this case one can select only a sticky transition for
this pair of local cycles. The resulting overapproximating
cycle conditionC3static is defined as follows:

Condition C3static: If a state s is not fully expanded,
then no transition in ample(s) is sticky.

4.2 Ample set reduction with directed search

When combining partial-order reduction with directed
search two major problems have to be considered. The
first problem lies in the fact that, as we argue above,
common partial-order reduction techniques require a con-
dition to be checked, which entails the detection of cy-
cles during the construction of the reduced state space.
Depth-first-search-based algorithms can easily detect cy-
cles during the exploration by looking up the contents
of the current search stack. On the other hand, gen-
eral state-expanding algorithms like A* or BF are not
well suited for cycle detection since they do not possess
a search stack. Alternative cycle conditions or static re-
duction methods such as the ones we discussed above
must be applied. The second problem is that partial-order
reduction techniques do not preserve admissibility of the
directed state space search. In other words, when partial-
order reduction is used in the presence of directed model
checking, there is no guarantee that the shortest coun-
terexample that leads to an error will be found. Although
we will not always require the shortest counterexample to
effectively explain an error, we need to assess the extent
of the negative impact that partial-order reduction has on
the improvements achievable by directed model checking.

Checking the cycle condition with a GSEA. Detecting cy-
cles with general state-expanding search algorithms that
do not perform a depth-first traversal of the state space
is more complex. For a cycle to exist, it is necessary to
reach analreadyvisited state. If during the search a state is
found to have alreadybeen visited, checking that this state
is part of a cycle requires checking whether this state is
reachable from itself, which increases the time complexity
of the algorithm from linear to quadratic in the size of the
state space. Therefore, the commonly adopted approach
assumes that a cycle exists whenever an already visited
state is found. Using this idea leads to weaker reductions
since it is known that state spaces of concurrent systems
usually contain a high number of paths leading to the same
state, which is precisely one of the features of concurrent
systemmodels that partial-order reduction is trying to ex-
ploit. The resulting condition [1, 10] is defined as:

C3duplicate: If a state s is not fully expanded, then no
transition in ample(s) leads to an already visited
state.

We use the example of Fig. 9 to illustrate this condition.
Transition α1 leads to a state s

′ that lies below the search
horizon defined by the Open set, i.e., s′ has already been

Fig. 9. Reduction example for GSEA

visited when state s is expanded. ConditionC3duplicate
forbids s′ in any ample set if s is not fully expanded.
Hence, {α1} and {α1, α2} are examples of nonvalid ample
sets. On the other hand, the set {α2} is not refuted.

Safety cycle condition for a GSEA. The cycle condition
C3−stack defined above cannot be used with general node-
expanding algorithms that do not use a search stack since
cycles cannot be efficiently detected. Therefore, we pro-
pose an alternative condition based on the same idea as
C3duplicate in order to enforce the cycle conditionC3

−,
which is sufficient to guarantee a correct reduction when
checking safety properties.

Condition C3−duplicate: If a state s is not fully ex-
panded, then at least one transition in ample(s) does
not lead to an already visited state.

Like the comparison of conditions C3−stack and C3stack,
Fig. 9 illustrates that the set of transitions {α1, α2} is re-
jected as ample set by condition C3duplicate but not by
C3−duplicate.
In order to show the correctness of partial-order

reduction with conditionC3−duplicate for general state-
expanding algorithms, we prove a lemma stating the com-
pleteness of execution of all transitions leading out of any
given state once the general state exploration terminates.
We use induction on the state expansion ordering, start-
ing from a completed exploration and moving backwards
with respect to the traversal algorithm. As a by-product,
the more general setting in the lemma also proves the
correctness of partial-order reduction according to con-
ditionC3−duplicate for depth-first, breadth-first, best-first,
and A*-like search schemes. The lemma fixes a state s ∈ S
after termination of the search and ensures that each en-
abled transition is executed either in the ample set of
state s or in a state that appears later on in the expansion
process. Therefore, no transition is omitted. Applying the
lemma to all states s in S implies C3−, which in turn
ensures a correct reduction.

Lemma 1. For each state s ∈ S the following is true:
when the search of a general search algorithm terminates,
each transition α ∈ enabled(s) has been selected either in
ample(s) or in a state s′ such that s′ has been expanded
after s.

Proof. Let s be the last expanded state. Every transi-
tion α ∈ enabled(s) leads to an already expanded state;
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otherwise the search would have been continued. Condi-
tionC3−duplicate enforces, therefore, that state s is fully
expanded and the lemma trivially holds for s. Now sup-
pose that the lemma is valid for those states whose expan-
sion order is greater than n. Let s be the nth expanded
state. If s is fully expanded, the lemma trivially holds for
s. Otherwise we have that ample(s) ⊂ enabled(s). Tran-
sitions in ample(s) are selected in s. Since ample(s) is
accepted by conditionC3−duplicate, there is a transition
α ∈ ample(s) such that α(s) leads to a state that has
been previously neither visited nor expanded. Evidently
the expansion order of α(s) is higher than n. Condi-
tionC1 implies that the transitions in ample(s) are all
independent of those in enabled(s)\ample(s) [11]. A tran-
sition γ ∈ enabled(s)\ample(s) cannot be dependent on
a transition in ample(s), since otherwise in the full graph
there would be a path starting with γ and a transition
depending on some transition in ample(s) would be ex-
ecuted before a transition in ample(s). Hence, transi-
tions in enabled(s)\ample(s) are still enabled in α(s) and
contained in enabled(α(s)). By the induction hypothesis
the lemma holds for α(s), and therefore transitions in
enabled(s)\ample(s) are selected in α(s) or in a state that
is expanded after it. Hence the lemma also holds for s.

Hierarchy of cycle conditions. Figure 10 depicts a dia-
gram with all the presented cycle conditions for checking
safety properties. Arrows indicate which condition en-
forces which other condition. In the following discussion,
we will say that a condition A is stronger than a condi-
tionB ifA enforcesB. The dashed arrow fromC3−duplicate
to C3−stack denotes that when the search is done with
a depth-first-search-based algorithm, conditionC3−stack
enforcesC3−duplicate, but not vice versa. The inner dashed
region contains the conditions that can be correctly
used with general state-expanding algorithms. The outer
dashed region contains the condition that works only for
depth-first-search-like algorithms. For a given algorithm,
the arrows also denote that a condition at the tail of the
arrow will produce better or equal reduction than the
condition at the head.

Solution quality and partial order. One of the goals of
directed model checking is to find short paths to errors.
Partial-order reduction, however, does not preserve the
optimality of the length of error trails for the full state

Fig. 10. C3 conditions

Fig. 11. Example of a full state space
(left) and a reduction (right)

space. In fact, the shortest path to an error in the re-
duced state space may be longer than the shortest path
to an error in the full state space. Intuitively, the rea-
son is that the concept of stuttering equivalence does not
make assumptions about the length of equivalent blocks.
Suppose that transitions α and β of the state space de-
picted in Fig. 11 are independent and that α is invisible
with respect to the set of propositions p. Suppose fur-
ther that we want to check the invariant Gp, where p is
an atomic proposition. With these assumptions the re-
duced state space for the example is stuttering equivalent
to the full one. The shortest path that violates the invari-
ant in the reduced state space consists of transitions α
and β, which has a length of 2. In the full one, the ini-
tial path with transition β is the shortest path to an error
state, such that the corresponding error trail has a length
of 1. In Sect. 4.3 we will provide experimental results il-
lustrating the practical impact that the theoretical loss of
solution optimality has. In Sect. 5 we will introduce an ap-
proach to mitigating this problem for a given error trail
that was generated.

4.3 Experiments with partial-order reduction

We now present experimental results in which we high-
light the impact of various reduction methods when de-
tecting safety errors with A*. We also assess the impact
of the loss of solution quality on practical verification
problems.
The combination of A* and partial-order reduction

is implemented by replacing e ∈ outgoing(u) in A* (cf.
Fig. 3) by e ∈ ample(outgoing(u)). In order to assess the
potential of using the heuristic distance estimate values
during the ample set selection, we perfomed additional
experiments not documented in this paper. In these ex-
periments we computed every possible valid ample set10

and selected one according to some heuristic strategies.
Recall that the common implementation of the ample set
selection is to arbitrarily choose the first valid ample set
that has been computed. The heuristic strategies we con-
sidered included (a) the selection of the ample set that
included a state with the best heuristic value, (b) the
ample set with the best mean value of the heurisitc esti-

10 Note that applying the approximation for C1 suggested in [11]
reduces the number of ample sets to O(|n|), where n is the number
of processes in the system.



295

mates for the states in this ample set, and (c) the ample
set that included the smallest number of states. We found
no significant improvement using any of these heuristics
over arbitrary ample set seletion and have therefore not
pursued this idea any further.
In the following discussion, we will compare the cycle

conditions C3−duplicate andC3static that can be applied
jointly with A*. In addition, we include experiments that
ignore the cycle condition altogether in order to show how
much reduction is lost due to the cycle conditions.

Isolated effect of partial-order reduction. The heuristic
estimates that we use in our set of experiments are the
formula-based heuristics for pots and leader, the active-
process heuristics for giop, and the Hamming distance for
themarriersmodel. In this last case, the goal state against
which the Hamming distance is measured is derived from
a previously executed DFS run. We have selected two ex-
amples for which partial-order reduction and heuristic
search offer both small and large exploration gains. For
instance, heuristic search has a better effect in pots and
leader than in the other examples, while partial-order re-
duction performs better in giop and leader.
Table 4 shows the effect of applying C3−duplicate and

C3static in conjunction with A*. ColumnC30 illustrates

Table 4. Finding a safety violation with A* and several reduction
methods

marriers(4)

no C30 C3−duplicate C3static

s 26545 10348 20049 10348
l 99 99 99 99
m 8MB 6MB 7MB 6MB
r 6 s 2 s 6 s 2 s

pots

no C30 C3−duplicate C3static

s 6654 5429 5574 5429
l 81 81 81 81
m 7MB 6MB 6MB 6MB
r 3 s 2 s 2 s 2 s

leader(8)

no C30 C3−duplicate C3static

s 558214 104 104 97
l 76 119 119 96
m 272MB 3MB 3MB 3MB
r 237 s 1 s 1 s 1 s

giop(2,1)

no C30 C3−duplicate C3static

s 29915 5683 17703 11981
l 58 58 58 58
m 20MB 7MB 13MB 10MB
r 11 s 2 s 7 s 4 s

the effect of ignoring conditionC3 when computing the
ample sets. The column labeled “no” contains the experi-
mental values obtained when A* was used without any
partial-order reduction. As expected, both C3−duplicate
and C3static reduce the number of stored states and
transitions performed. In all cases except leader, con-
ditionC3static offers better reductions than C3

−
duplicate.

This is probably due to the relatively large number of
local cycles in the state transition graph of the processes
in the leader model, while at the same time there is no
cycle in the global state space. Since our implementation
of the static reduction considers only the simplest ap-
proach where one transition in each cycle is marked as
sticky, we assume that the results will be even better with
refined static reduction methods.
Ignoring the cycle conditionC3 entails an abstraction

of the state space that is not sound, i.e., the resulting
state space may no longer contain a property-violating
state that was present in the original state space. We
provide the figures in columnC30 only to illustrate the
computational impact that conditionC3 has on the com-
putation of the state space reduction. However, it is in-
teresting to observe that in all experiments error states
were found, i.e., pruning the state space in this nonva-
lid way did not eliminate the error states that we were
looking for. It is interesting to observe that in some
models the cycle condition does not restrict the construc-
tion of any ample set. For example, applying condition
C3static in marriers and pots as well as applying condi-
tionC3−duplicate in leader has the same effect on the size
of the explored state space as ignoring the cycle condi-
tion. Note that a stronger cycle condition, which entails
a larger reduction of the state space, can delay the detec-
tion of an error since a more effective reduction obviously
increases the probability of an optimal solution being
pruned from the state space. In other words, larger reduc-
tions mean longer stuttering equivalent executions, which
entail longer expected error trails. This phenomenon can
be observed in leader(8), where ignoring the cycle con-
dition requires the exploration of a few more states than
applying the condition C3static. Solution quality is lost
only in the case of leader, but note that this is also the
model for which partial-order reduction is most effective.
Table 4 also shows that, in spite of the overhead intro-
duced by partial-order reduction and heuristic search, the
running times for the reduced models are still smaller
than for the depth-first search exploration.

Effects of joint usage. In the next set of experiments
we are interested in analyzing the combined state space
reduction effect of partial-order reduction and heuristic
search. More precisely, we have measured the reduction
ratio (size of full state space vs. size of reduced state
space) provided by one of the techniques when the other
technique is enabled and when the other is not enabled.
We also determine the reduction ratio of using both tech-
niques simultaneously. The same models and estimates
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Table 5. Table with reduction factor due
to partial-order and heuristic search

marriers(3)

marriers(3) N C

H 1.1 1.2
PO 2.3 2.3
H+PO 5.9

pots

N C
H 3.7 4.2
PO 1.1 1.2
H+PO 4.5

leader(8)

N C
H 43.2 1.9
PO 109.1 4.9
H+PO 210.4

giop(2,1)

N C
H 2.6 2.5
PO 1.4 1.3
H+PO 3.4

of the previous experiments are used here. When partial-
order reduction is applied, the static cycle condition is
used. Note that, in order to obtain indicative numbers, we
selected the models and heuristics so that we obtain all
four combinations of small and large reduction effects due
to heuristic search and partial-order reduction. Table 5
indicates the reduction factor achieved by partial-order
and heuristic search when A* is used as the search al-
gorithm. The reduction factor due to a given technique
t is computed as the number of stored states when the
search is performed without applying t divided by the
number of stored states when the search is done apply-
ing t. Recall that, when no heuristic is applied, A* per-
forms like Dijkstra’s algorithm. The leftmost column of
the table indicates the technique(s) for which the reduc-
tion effect is measured. When testing the reduction ratios
of the methods separately, we distinguish whether the
other method is applied (C) or not (N).
In most cases the reduction factors provided by one of

the techniques when working alone ((H,N) and (PO,N))
or combined with the other ((H,C) and (PO,C)) are al-
most identical. A very favorable situation is pots, where
the expected gain of applying both techniques indepen-
dently would be 3.7× 1.1 = 4.1 while the combined ef-
fect is a reduction of 4.5. Another favorable case is the
marriers example. This indicates a potentially syner-
getic effect of the joint application of both techniques.
However, in the case of leader, each technique signifi-
cantly reduces the effect of the other. The combined re-
duction is 210.4, while the expected gain is 109.1×43.2=

4713. The reason is that partial-order reduction performs
very well in this example. Hence, most of the paths that
would be discarded by A* are being discarded by the
partial-order reduction already.
In conclusion, we have shown that for the practical

examples analyzed here, partial-order reduction and dir-
ected model checking using heuristic search can nicely
coexist. In some situtations, applying both techniques
jointly leads to larger state space reductions than apply-
ing each technique in isolation.

5 Optimizing error trails
using partial-order techniques

In this section we discuss a remedy for the problem of so-
lution quality loss due to partial-order reduction. We also
analyze the joint usage of partial-order reduction and the
trail improvement method discussed in Sect. 3.

5.1 Reordering trails

We contend that in practical examples the loss of solu-
tion quality when jointly using partial-order reduction
and heuristic search can be traced to the following phe-
nomenon. One of the concurrent processes in the system
has an enabled transition that will lead to an error state,
but the search algorithm defers exploring that transition
by first considering actions of other processes that are ac-
tually irrelevant with respect to the reaching of the error
state. This occurs since partial-order reduction ensures
that stuttering equivalent sequences of transitions will
be explored without ensuring that these sequences have
a minimal length. We shall see that this problem can be
addressed by postprocessing the error trail after the ver-
ification has finished. The intuition behind this approach
is to ignore those transitions in the error trail that are in-
dependent of the transition that directly leads to the error
state. Independence of these transitions means they are
not relevant, and we propose to ignore those irrelevant
transitions. In order to obtain a reduced trail represent-
ing an actual execution of the system, it is also necessary
that ignored transitions be incapable of enabling transi-
tions that occur later in the original trail. Moreover, re-
moved transitions may not be visible since otherwise the
resulting execution would not be stuttering equivalent to
the original one. In the following discussion we formalize
these ideas.

Definition 1. We say that a transition α can enable
a transition β if and only if there exists a state s ∈
S such that β /∈ enabled(s), but α ∈ enabled(s) and β ∈
enabled(α(s)).

Definition 2. A transition αj of an execution r= s0
α1−→

. . .
αn−→ sn is irrelevant with respect to the execution if and

only if all of the following conditions hold:
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– αj is invisible,
– αj is independent of each transition αi, where j < i≤
n, and
– αj cannot enable any transition αi, where j < i≤ n.

A transition that is not irrelevant is called relevant.

The following lemma states that by removing an irrel-
evant transition from an execution, a stuttering equiva-
lent execution will be obtained.

Lemma 2. Let r = s0
α1−→ . . .

αn−→ sn be an execution of
the system and αj a transition that is irrelevant with re-

spect to r. Let further r′ = s0
α1−→ . . .

αj−1
−→ sj−1

αj+1
−→ s′j

αj+2
−→

. . .
αn−→ s′n−1 be an execution obtained by eliminating tran-

sition αj from execution r. Then, r
′ is an execution of the

system that is stuttering equivalent to r (cf. Fig. 12).

Proof. Suppose that r′ is not an execution of the sys-
tem; then at least one transition of the execution is not
enabled. It is easy to see that this transition belongs to
the suffix of r′ that occurs after state sj−1 since the pre-

fix s0
α1−→ . . .

αj−1
−→ sj−1 is an execution of the system by

definition. Let αi with j < i < n be the first such tran-
sition. We have that αi /∈ enabled(s′i−2). Consider state
s′i−2. Transition αj is enabled in that state since αj is in-
dependent of all αk with j < k ≤ n. Due to the commuta-

tivity of independent transitions, the execution sj−1
αj+1
−→

s′j
αj+2
−→ . . .

αi−1
−→ s′i−2

αj
−→ s′′i−1 and the execution sj−1

αj
−→

sj
αj+1
−→ . . .

αi−1
−→ si−1 end in the same state, i.e., s′′i−1 = si.

We know that αi is enabled in si but not in s
′
i−2. There-

fore, αj can enableαi, which contradicts our assumptions.
Moreover, it is easy to see that if the eliminated transi-
tion is invisible, then the resulting execution is stuttering
equivalent to the original one. �

Our approach to trail improvement successively elim-
inates all irrelevant transitions from a counterexample.
Note that by eliminating an irrelevant transition, pre-
viously relevant transitions may become irrelevant, for
instance if they are dependent on the eliminated transi-
tion. To perform the elimination efficiently, we must start
eliminating irrelevant transitions at the end of the ori-
ginal trail. By Lemma 2, every elimination of an irrelevant
transition yields a stuttering equivalent execution.

Optimality. While our trail improvement method may
shorten a given error trail, the resulting improved trail

Fig. 12. Illustration of lemma’s proof

Fig. 13. Another example of a full state space and a reduction
(dashed region)

may not be optimal in terms of trail length. Figure 13
illustrates this problem using an example of a full state
space and a possible reduction. As in the example of
Fig. 11, an error state is one in which proposition p does
not hold. Suppose that the following pairs of transitions
are independent: (α3, α4), (α6, α7) and (α6, α8), and that
only α6 and α4 are visible and negate the value of the
proposition p. Assume that we reduce the state space to
only include those states contained in the area delimited
by the dashed line. Then, the path formed by transitions
α1, α2, α3, and α4 can be established as the shortest path
in the reduced state space. Applying the approach de-
scribed above to trail reordering may lead to the error
path α1α2α4, which is of length 3. This is possible since
α3 is invisible, it is independent of α4, it cannot enable α4,
and hence it can be ignored. On the other hand, the opti-
mal error path in the full state space is of length 2: α5α6.

Experiments. We now report on some experiments to
show that by reordering the events of an error trail one
can mitigate the loss of solution quality caused by partial-
order reduction. The only experiment in which we have
observed the loss of quality is the assertion violation
checking in the leader example. Table 6 depicts the re-
sults of performing reordering on the suboptimal error
trails for this example. As algorithms we use DFS and
A*, both combined with partial-order reduction. DFS
uses conditionC3−duplicate, while A*, which in this case
employs the FSM distance as heuristic estimate, uses
C3−duplicate and C3static. After the verification we apply
the trail reordering algorithm described above to the de-
livered trail. The length of the originally obtained trail
(bef.), the shortened one (aft.), and the optimal one (opt.)
are shown. The leader election protocol example is used
with different numbers of processes as indicated by the
numbers in the left column.
The results show that our method is efficient in short-

ening trails obtained by A* or DFS with partial-order
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Table 6. Effect of reordering trails for recovering solution quality
measured in error trail length

leader(n)

n C3−stack C3−duplicate C3static opt.

bef. aft. bef. aft. bef. aft.

3 51 49 49 46 49 46 46
4 66 55 63 53 56 53 52
5 80 59 77 59 66 59 56
6 94 63 91 63 76 63 60
7 108 67 105 67 86 67 64
8 122 71 119 71 96 71 68

reduction. The reordering also yields near-optimal error
trails. We observed that the reordered trails are qualita-
tively very similar to the original ones. In the reduced
trail the same two processes assume that they are the
leader. The only differences between the original and the
reduced trail relate to transitions in other processes that
are not significant for the error. Although not shown, the
running time required for the reordering algorithm can be
neglected.

5.2 Trail improvement with partial order reduction

We now discuss the combined use of partial-order reduc-
tion and trail improvement as described in Sect. 3.
Recall that the ample set construction in partial-order

reduction depends on the visibility of transitions with re-
spect to a property f . A transition is visible with respect
to f if it does not change the truth value of the propo-
sitions that appear in the specification of f . In the fol-
lowing discussion, we will denote by po(f) the application
of partial-order reduction with respect to property spe-
cification f . Also recall that the full state space and the
reduced state space after applying po(f) are semantically
equivalent. This means that if there is a state violating
f in the full state space, then there is also a state violat-
ing f in the reduced state space. However, not every state
violating f in the full state space is also included in the re-
duced state space, i.e., the application of po(f) may entail
a pruning of states violating f .
As we saw in Sect. 3, trail improvement can be used in

two ways. It can either be used to reduce the length of an
error trail to a given error state or it can be used to find
an improved error trail to some state that is equivalent to
a previously found error state with respect to a property
f . The difference is determined by the nature of f , i.e.,
whether f characterizes precisely one global system state
or whether it characterizes an equivalence class of more
than one state violating f . Let us now assume that f is
a property specification and that a previous model check-
ing or simulation run has returned s as a state violating f .
Applying po(f) to improve the trail leading to s may not
yield the desired result since po(f) may decide to prune
the subtree containing s. On the other hand, po(f) may

safely be used if we wish to improve the trail leading to
some state s′ that also violates f since by the soundness
of partial-order reduction we know that at least one such
state will remain in the reduced state space.
We now focus on alternative solutions to using partial-

order reduction in improving the error trail leading to
the given state s. The search for a given state s can be
expressed using a propositional formula φs that charac-
terizes the control state of all processes, the values of all
data variables, and the contents of all queues in state s.
We can now formulate the invariant ¬φs expressing that
s will never be reached and hand this over to a model
checker. Now, applying po(¬φs) guarantees that at least
one state violating fs will be found. There is only one such
state, namely, s. Unfortunately, this solution has a severe
drawback. Since the formula φs characterizing a state s
refers to every variable and local state in s, almost every
transition in the system is visible. More precisely, only
self-transitions that do not change the value of any vari-
able will be invisible with regard to fs. As a consequence,
the ample set rules will enforce an almost complete ex-
pansion of the state space.
In the following discussion, we shall propose a solu-

tion to this problem for the case where the provided error
state was found using po(f).11 We shall see that proce-
dural constraints on the ample set construction algorithm
allow us to apply A* with po(f) instead of po(fs) in order
to find the shortest path to a state found with depth-
first search and po(f). We first show an example to illus-
trate that the generated reduced state space depends on
the selection of the ample set among the different ample
set candidates. Consider Fig. 14. Transitions α1 and α2
are independent and invisible with regard to the atomic
proposition p. At state s0, both {α1} and {α2} are valid
ample sets. Selecting the latter produces the dotted sub-
graph, while selecting the former produces the dashed
one. Both systems represented by these subgraphs pre-
serve violation of the invariant ¬p. If a first exploration

11 Note that our trail improvement approach can also be applied
to trails obtained by a verification without partial-order reduction,
by a random simulation, or by manual inspection or simulation.

Fig. 14. Different ample sets lead
to different state spaces



299

selects {α1} as the ample set of state s0, state s1 is pro-
vided as the error state. A second exploration that applies
reduction with regard to the invariant and that selects
{α2} will find a state violating the invariant but fail to
find state s1. In order to show that a GSEA applying
po(f) with C3−duplicate is capable of finding a state pro-
vided by depth-first search and po(f), we need to make
some assumptions regarding the strategy used for choos-
ing ample sets among the various candidates. We require
that during the ample set construction candidate tran-
sitions always be considered in the same order. We also
assume that the first subset satisfying the ample set con-
dition is chosen. The ample set constructions in SPIN and
in HSF–SPIN work exactly according to this scheme.

Theorem 2. It is possible to find a state that violates
a specification formula f produced by depth-first search
and po(f) by applying a GSEA with po(f) and using
C3−duplicate as cycle condition.

Proof. Suppose the contrary, i.e., that there is a state
in the system that is visited by a depth-first search and
po(f) but not by a GSEA with po(f). Let s be the first
state visited by the depth-first search but not with the
GSEA. State s must be the result of a transition of the
ample set of a state s′ during the depth-first exploration.
Let ample1(s) be that ample set. State s

′ was visited be-
fore s in the depth-first search. According to our assump-
tion, s′ is visited by the GSEA. Since we have assumed
that the order in which the ample set candidates are con-
sidered is always the same, ample1(s) must have been
checked for validity and refused by the ample set rules for
GSEA. Since the only difference between those rules and
the rules for the depth-first search is the cycle condition,
this means that every transition in ample1(s) leads to an
already visited state during the GSEA, which contradicts
our assumption that state s is not visited by the GSEA.
�

Experiments. In the next set of experiments we aim at
finding the optimal path to a state previously found with
depth-first search and partial-order reduction. We use
A* with the FSM distance as heuristics for this purpose
and apply partial-order reduction with the cycle condi-
tion C3−duplicate. Unfortunately, our model checker HSF–
SPIN inherits SPIN’s partial-order reduction method,
which is weaker than the ample set approach. As a con-
sequence, we cannot compare po(f) against po(fs) for
a given specification f and state s violating f . However,
as we have argued above, applying po(fs) does not re-
duce the state space in practice and is therefore similar to
not using partial-order reduction at all. Moreover, HSF–
SPIN’s partial-order reduction is weaker than applying
po(f). Hence, the experiments presented in Table 7 can
help us understand what would happen in a comparion of
po(f) with po(fs). In most cases the error trail cannot be
improved, which means that there is either a unique path
to the established error state in the reduced state space

Table 7. Trail improvement with partial-order reduction

pots

DFS+PO A*+PO A*

s 118012 19366 20999
l 897 88 88
m 58MB 14MB 15MB
r 84 s 9 s 9 s

giop(2,1)

DFS+PO A*+PO A*

s 326 204416 446689
l 134 134 134
m 3MB 124MB 266MB
r 1 s 59 s 131 s

or there are several paths with the same cost. Only in the
case of pots are we able to find a shorter path. On the
other hand, the results obtained by A* when no partial-
order reduction is applied show that there is no better
path to the provided state in the original state space.

6 Conclusions and future work

The first contribution of this paper lies in the introduc-
tion of the concept of trail improvement. We have shown
how to use directed model checking techniques in order to
improve existing error trails. We suggested two heuristic
estimates, the Hamming distance and the FSM distance
metrics. We then illustrated the use of these techniques
to reduce the length of safety error trails. The heuristics
were used to search for either exactly the given error state
or for a property equivalent state. A main result was that
it is easier to improve results if one searches for equiva-
lent states, which leads to better improvements as well
as lower computational costs. The inadmissible Hamming
distance appears to require less computational effort com-
pared to the admissible FSM distance heuristics.
As the second main contribution of our paper we ana-

lyzed the joint usage of partial-order reduction techniques
and directed model checking. We gave effective over-
approximations of the cycle condition C3 that permit
partial-order reduction to work well for search algorithms
that do not employ a stack, such as A*. We also showed
that the potential loss in solution quality is not problem-
atic for the practical examples that we have experimented
with.
Finally, we reconciled trail improvement with partial-

order reduction. We suggested a reordering technique
that improves the length of suboptimal error trails ob-
tained through partial-order reduction. We also analyzed
the application of heuristic search and partial-order re-
duction in order to find shorter paths to a given state. The
first step in this scheme consists of finding an error state
using partial-order reduction with respect to some specifi-
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cation property and a depth-first search. We showed that
it is possible to reduce the length of the resulting error
trail by applying A* as the search algorithm in a post-
processing step. Together with partial-order reduction we
could further reduce the exploration effort.
As we mentioned earlier, the working hypothesis of

our paper is that “short is beautiful”, i.e., that shorter
error trails are preferable over longer ones in common
error debugging situations. We have also argued that
other approaches to error explanation (cf. [2, 31, 40, 55])
are orthogonal in that they focus on qualitative rather
than quantiative properties of error trails. We intend to
pursue further research to assess the impact of short error
trails on their error explanation capabilities.
In [46] we analyze the combination of heuristic search

and symmetry reduction to mitigate the state explosion
problem of automated verification. Symmetry reduction
reduces the state space to be explored to an equivalent
smaller one by exploiting symmetries in the system, while
heuristic search guides the search in the direction of er-
rors. Both techniques are, at first, orthogonal and can
be combined without drastic changes in the search al-
gorithms. However, we observed that in some instances
the computational effort of using search heuristics may
offset the time saved by heuristic techniques applied in
symmetry reduction. In other work, partial-order reduc-
tion has been combined with symmetry reduction [24].
Hence, we plan to perform experiments combining all
three techniques.
In [20] a fragment of SPIN’s input language Promela is

compiled into an action planning description language to
take advantage of more involved state-to-goal approxima-
tions that planning tools offer. Refined estimates for im-
proved error detection are introduced, such as the relaxed
plan and pattern database heuristic, that come along with
an enforced hill climbing search engine.
Work described in [23] extends the idea of using struc-

tural heuristics to improve the verification of Java byte
code as originally proposed in [29, 30]. The authors of [23]
devise heuristics applicable to the finite-state machine
structure of the Java byte code. These heuristics have
been derived from the FSM distance heuristics that we
describe in this paper. That work also includes an ap-
proach to trail-directed search.
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